Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=input() import math from collections import Counter # A function to print all prime factors of # a given number n def f(n): l=[] # Print the number of two's that divide n while n % 2 == 0: l.append(2) n = n / 2 # n must be odd at this point # so a skip of 2 ( i = i + 2) can be used for i in range(3,int(math.sqrt(n))+1,2): # while i divides n , print i ad divide n while n % i== 0: l.append(i) n = n / i # Condition if n is a prime # number greater than 2 if n > 2: l.append(n) return l for i in range(t): n=input() l=f(n) c=Counter(l) if len(c)==0: print "NO" elif len(c)==1: for key in c: if c[key]>=6: print "YES" print key,key**2,key**(c[key]-3) break else: print "NO" break elif len(c)==2: x=0 lis=[] for key in c: x+=c[key] lis.append(key) if x>=4: print "YES" print lis[0],lis[1],n/(lis[0]*lis[1]) else: print "NO" else: j=0 s='' x=1 for key in c: if j<=1: s=s+str(key)+' ' x=x*key j+=1 t=n/x print "YES" print str(t)+' '+s
PYTHON
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math n = int(input()) for i in range(n): deb = t = int(input()) divs = [] for j in range(2,round(math.sqrt(t)+1)): if t%j==0 and j not in divs: divs.append(j) t //= j if len(divs) == 2: divs.append(t) break if len(set(divs)) == 3 and deb == divs[0]*divs[1]*divs[2]: print("YES") print(divs[0],divs[1],divs[2]) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in[0]*int(input()): n=int(input());a=['YES'];i=j=2 while j<4and i*i<n: if n%i<1:a+=i,;n//=i;j+=1 i+=1 print(*(a+[n],['NO'])[j<4])
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int MAX = 100002; long long n, n_0; bool c[MAX]; vector<int> primes, fact; int main() { ios_base::sync_with_stdio(0); cin.tie(0); int t; cin >> t; for (int i = 2; i < MAX; i++) { if (!c[i]) { for (int j = i + i; j < MAX; j += i) { c[j] = true; } } } while (t--) { primes.clear(); fact.clear(); cin >> n; n_0 = n; c[0] = c[1] = true; for (int i = 1; i <= sqrt(n) + 2; i++) { if (!c[i]) primes.push_back(i); } for (int i = 0; i < primes.size(); i++) { while (n % primes[i] == 0) { fact.push_back(primes[i]); n /= primes[i]; } } if (n != 1) fact.push_back(n); sort(fact.begin(), fact.end()); if (fact.size() < 3) { cout << "NO\n"; continue; } long long a = fact[0], b = fact[1], c = fact[2]; if (a == b) { b *= c; c = 1; } for (int i = 3; i < fact.size(); i++) { c *= fact[i]; } if (a != c && b != c && a != b && (a * b * c) == n_0 && c != 1) { cout << "YES\n" << a << " " << b << " " << c << "\n"; } else cout << "NO\n"; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5, MOD = 1e9 + 7; int t, n, a, b, c; int main() { cin >> t; while (t--) { cin >> n; for (int i = 2; i * i <= n; ++i) if (n % i == 0) { a = i; break; } if (a) for (int i = 2; i * i <= n / a; ++i) if ((n / a) % i == 0 && a != i) { b = i; break; } if (a && b && a != b && a != n / (a * b) && b != n / (a * b) && n % (a * b) == 0) cout << "YES" << endl << a << " " << b << " " << n / (a * b) << endl; else puts("NO"); } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys input=sys.stdin.readline t=int(input()) import math def primeFactors(n): factor=[] number=[] while n % 2 == 0: factor.append(2) n = n / 2 for i in range(3,int(math.sqrt(n))+1,2): while n % i== 0: factor.append(int(i)) n = n / i if n > 2: factor.append(int(n)) return(factor) for i in range(t): n=int(input()) ffactor=(primeFactors(n)) #print(ffactor) ffactor2=list(set(ffactor)) if len(ffactor2)>=3: print("YES") print(int(ffactor2[0]),int(ffactor2[1]),int(n/(ffactor2[1]*ffactor2[0]))) elif len(set(ffactor))>=2 and len(ffactor)>=4: print("YES") print(int(ffactor2[0]),int(ffactor2[1]),int(n/(ffactor2[1]*ffactor2[0]))) elif len(ffactor2)>=1 and len(ffactor)>=6: print("YES") first=int(ffactor2[0]) sec=int((ffactor2[0])**2) third=int(n/(first*sec)) print(int(first),int(sec),int(third)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) while t: n=int(input()) cnt=0 i=2 ans=[] while True: while i*i<n: if n%i==0: ans.append(i) cnt+=1 if cnt==2: ans.append(int(n/i)) break n=n/i i+=1 if i*i>=n or cnt==2: break if cnt==2: print("YES") print(*ans,sep=' ') else: print("NO") t-=1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def solve(): ans = [] n = int(input()) for j in range(2 , int(n ** (1 / 2)) + 1): if(n % j == 0): ans.append(j) ans.append(n // j) ans = list(set(ans)) if(len(ans) < 3): print("NO") else: for j in range(len(ans)): for g in range(j + 1, len(ans)): for k in range(g + 1 , len(ans)): if((ans[j] * ans[g] * ans[k]) == n): print("YES") print(ans[j] , ans[g] , ans[k]) return print("NO") t = int(input()) for i in range(t): solve()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys input=sys.stdin.readline t=int(input()) p=[] for _ in range(t): n=int(input()) fac=[] for i in range(2,int(n**0.5)+1): if(n%i==0): fac.append(i) fac.append(n//i) nn=len(fac) st=0 # print(fac) for i in range(nn): for j in range(i+1,nn): if(n%(fac[i]*fac[j])==0): k=n//(fac[i]*fac[j]) if fac[i]==fac[j] or fac[i]==k or fac[j]==k: continue if 1 in [fac[i],fac[j],k]: continue st=1 ii,jj,kk=fac[i],fac[j],k break if st: print("YES") print(ii,jj,kk) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int t, n, a, b, c; signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> t; while (t--) { cin >> n; a = 0; b = 0; c = 0; int m = n; for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { a = i; m /= a; break; } } for (int i = a + 1; i <= sqrt(n); i++) { if (m % i == 0) { b = i; break; } } if (a == 0 || b == 0) { cout << "NO\n"; continue; } else if (n / (a * b) == a || n / (a * b) == b || n / (a * b) == 1) { cout << "NO\n"; continue; } else { cout << "YES\n" << a << " " << b << " " << n / (a * b) << "\n"; } } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t = int(input()) for tt in range(t): n = int(input()) f = 0 for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0: a = i c = 1 b = 1 for j in range(2, int(math.sqrt(n / a)) + 1): if (n / a) % j == 0 and j != a: b = j c = int(n / (a * j)) break if a != c and b != c and c != 1: print("YES") print("%s %s %s" % (a, b, c)) f = 1 else: print ("NO") f = 1 break if f == 0: print ("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for T in range(int(input())): N = int(input()) D = set() for I in range(2, int(N**0.5)+1): if N % I == 0: D.add(I) D.add(N//I) D = sorted(list(D)) F = 0 if len(D) < 3: F = 1 print('NO') else: for I in range(len(D)): for J in range(len(D)): if I != J: X = N/(D[I]*D[J]) if X != D[I] and X != D[J] and X > 1 and X % 1 ==0: F = 1 print('YES') print(D[I], D[J], int(X)) break if F == 1: break if F == 0: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n = int(input()) f = [] i = 2 while i <= math.sqrt(n): if n % i == 0: if n // i == 0: f.append(i) else: f.append(n//i) f.append(i) i = i + 1 f = set(f) f = list(f) #print(f) ln = len(f) f.sort() f1 = 0 for i in range(ln): for j in range(1,ln): for k in range(2,ln): if f[i]*f[j]*f[k] == n: print("YES") print(f[i],f[j],f[k]) f1 = 1 break if f1 == 1: break if f1 == 1: break if f1 == 0: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; long long int n, i, j, k; vector<long long int> vec; cin >> t; while (t--) { int flag = 0; vec.clear(); cin >> n; for (i = 2; i * i <= n; i++) { if (n % i == 0) { if (i != (n / i)) { vec.push_back(i); vec.push_back(n / i); } else vec.push_back(i); } } sort(vec.begin(), vec.end()); long long int m = vec.size(); for (i = 0; i < m; i++) { for (j = i + 1; j < m; j++) { for (k = j + 1; k < m; k++) { if ((vec[i] * vec[j] * vec[k]) == n) { flag = 1; goto label; } } } } goto label; label: if (flag) { cout << "YES" << endl; cout << vec[i] << " " << vec[j] << " " << vec[k] << endl; } else cout << "NO" << endl; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys import math Z = sys.stdin.readline def main(): for t in range(int(Z().strip())): n = int(Z().strip()) c=00 if n>=24: r=[0] for i in range(2,roundsqrt(n)): if n%i==0: q=n//i r[0]=i break if r[0]!=0: for i in range(r[0]+1,roundsqrt(q)): if q%i==0: r.append(i) c=1 break if c==1: r.append(n/((r[0])*(r[1]))) print("YES") print(" ".join(str(x) for x in r)) else: print("NO") else: print("NO") else: print("NO") def roundsqrt(x): return int(math.ceil(math.sqrt(x))) if __name__=="__main__": main()
PYTHON
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt n = int(input()) for i in range(n): q = int(input()) qq = q for i in range(2, int(sqrt(q)) + 1): if q % i == 0: a = i q //= i break else: print("NO") continue for i in range(a + 1, int(sqrt(q)) + 1): if q % i == 0: b = i c = qq // (a * b) break else: print("NO") continue if a == b or b == c or a == c: print("NO") continue print("YES") print(a, b, c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static int mod=(int)1e9+7; public static void main(String[] args) throws IOException { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while (t-->0){ int n=sc.nextInt(); HashMap<Integer,Integer> hm= fac(n); int[] arr1=new int[hm.size()]; int[] arr2=new int[hm.size()]; int count=0; for (int x:hm.keySet()){ arr1[count]=x; arr2[count]=hm.get(x); count++; } if (count>=3){ System.out.println("YES"); System.out.println(arr1[0]+" "+arr1[1]+" "+n/(arr1[0]*arr1[1])); }else if (count==2){ if (arr2[0]+arr2[1]>=4){ System.out.println("YES"); System.out.println(arr1[0]+" "+arr1[1]+" "+(n/(arr1[0]*arr1[1]))); }else System.out.println("NO"); }else{ if (arr2[0]>=6){ System.out.println("YES"); System.out.println(arr1[0]+" "+(arr1[0]*arr1[0])+" "+(n/(arr1[0]*arr1[0]*arr1[0]))); }else System.out.println("NO"); } } } static HashMap<Integer, Integer> fac(int x){ HashMap<Integer,Integer> map=new HashMap<>(); for (int i=2;i*i<=x;i++){ int cnt=0; boolean f=false; while (x%i==0){ f=true; x/=i; cnt++; } if (f)map.put(i,cnt); } if (x>1)map.put(x,map.getOrDefault(x,0)+1); return map; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin def f(n): res=[] for i in range(2,int(n**0.5)+1): if n%i==0 and i not in res: n=n//i res.append(i) break for i in range(2,int(n**0.5)+1): if n%i==0 and i not in res: n=n//i res.append(i) break if len(res) < 2 or n in res or n == 1: return False else: return res+[n] t=int(stdin.readline().strip()) for _ in range(t): n=int(stdin.readline().strip()) res=f(n) if res==False: print('NO') else: print('YES') print(' '.join(map(str,res)))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) for i in range(t): n=int(input()) flag=0 for j in range(2,int(pow(n,0.5)+1)): if n%j==0: n1=n//j for k in range(j+1,int(pow(n1,0.5)+1)): n2=n1//k if n1%k==0 and n2!=k: flag=1 n2=n1//k print("YES") print(j,end=" ") print(k,end=" ") print(n2) break break if flag==0: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t, n, d, a, b, c, i; scanf("%d", &t); while (t--) { scanf("%d", &n); d = 2; vector<int> ord; while (d * d <= n) { while (n % d == 0) { ord.push_back(d); n /= d; } d++; } if (n > 1) ord.push_back(n); if (ord.size() < 3) { printf("NO\n"); continue; } a = ord[0]; b = ord[ord.size() - 1], i = ord.size() - 2; if (a == b && ord.size() > 2) b *= ord[ord.size() - 2], i = ord.size() - 3; c = 1; while (i > 0) c *= ord[i--]; if (a == b || b == c || a == c || c == 1) printf("NO\n"); else { printf("YES\n%d %d %d\n", a, b, c); } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t>0){ int n = sc.nextInt(); int num = n; final int MAX = 100000; int[] arr = new int[MAX]; int id = 0; for(int i=2;i*i<=num;i++) { if(num%i==0) { while(num%i==0) { arr[id++] = i; num = num/i; } } } if(num>1) arr[id++] = num; if(id<3){ System.out.println("NO"); t--;continue; } int a = arr[0]; int b = 1; int c = 1; int st = 1; if(arr[0]!=arr[1]){ b = arr[1]; st = 2; } else{ b = arr[1]*arr[2]; st = 3; } if(a*b==n){ System.out.println("NO"); t--; continue; } for(int i=st;i<id;i++){ c = c*arr[i]; } if(a!= b && b!=c && c!=a){ System.out.println("YES"); System.out.print(a + " " + b + " " + c); System.out.println();} else System.out.println("NO"); t--; } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int q; cin >> q; for (int i = 0; i < q; ++i) { int n; cin >> n; set<int> used; for (int i = 2; i * i <= n; ++i) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } for (int i = 2; i * i <= n; ++i) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } if (int(used.size()) < 2 || used.count(n) || n == 1) { cout << "NO" << endl; } else { cout << "YES" << endl; used.insert(n); for (auto it : used) cout << it << " "; cout << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t = int(input()) for _ in range(t): n = int(input()) n_i = n if n<24: print("NO") else: a, b, c = 2, 2, 2 sq = int(math.sqrt(n)) + 2 for i in range(a,sq): if n%i==0: a = i n = n//a sq = int(math.sqrt(n)) + 2 break for i in range(a+1,sq): if n%i==0: b = i n = n//b break c = n if c==b or c==2 or b==2: print("NO") elif a==2 and n_i%2!=0: print("NO") else: print("YES") print(a, b, c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# Python program to print prime factors import math def solution(n): a = 0 b = 0 for i in range(2, int(math.sqrt(n))+1): if n % i == 0: a = i n //= i break if a: for j in range(a + 1, int(math.sqrt(n))+1): if n % j == 0: b = j n //= j break if a and b and b != n: print('YES') print(f'{a} {b} {n}') else: print('NO') t = int(input()) kls = [int(input()) for _ in range(t)] for k in kls: solution(k)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.util.Map.Entry; import java.lang.*; import java.math.*; import java.text.*; import java.io.*; public final class Solve { static PrintWriter out = new PrintWriter(System.out); static void flush() { out.flush(); } static void run(long s, long e) { NumberFormat formatter = new DecimalFormat("#0.00000"); System.out.print("Execution time is " + formatter.format((e - s) / 1000d) + " seconds"); } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return a*b/gcd(a, b); } static class FastReader { static BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } static boolean isPalindrome(String str1, String str2) { String str3 = str1+str2; int i = 0, j = str3.length()-1; while(i < j) { char a = str3.charAt(i), b = str3.charAt(j); if(a != b) return false; i++;j--; } return true; } static boolean isPalindrome(String str) { int i = 0, j = str.length()-1; while(i < j) { char a = str.charAt(i), b = str.charAt(j); if(a != b) return false; i++;j--; } return true; } String next() { while (st == null || !st.hasMoreElements()) { try{st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();} } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next());} static int fact(int n) { if(n == 1) return 1; return n * fact(n-1); } public int[] readIntArray(int n) { int[] arr = new int[n]; for(int i=0; i<n; ++i) arr[i]=nextInt(); return arr; } public long[] readLongArray(int n) { long[] arr = new long[n]; for(int i=0; i<n; ++i) arr[i]=nextLong(); return arr; } public int[][] readIntArray(int m, int n){ int[][] arr = new int[m][n]; for(int i = 0;i<m;i++) for(int j = 0;j<n;j++) arr[i][j] = nextInt(); return arr; } public String[] readStringArray(int n) { String[] arr = new String[n]; for(int i=0; i<n; ++i) arr[i]= nextLine(); return arr; } double nextDouble() {return Double.parseDouble(next());} String nextLine() { String str = ""; try{str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } static void solve(int n){ int k = n,c = 0; int j = 0; List<Integer> list = new ArrayList<>(); int fl = 0; Set<Integer> set = new HashSet<>(); for(int i = 2;i*i <= 1000000000;i++) { if(k%i == 0) { k = k/i; list.add(i); set.add(i); c++; } if(c == 2) { if(!set.contains(k) && k != 1) { list.add(k); fl = 1; } break; } } if(c == 2 && fl == 1) { out.println("Yes"); out.println(list.get(0)+" "+list.get(1)+" "+list.get(2)); } else out.println("No"); } public static void main(String args[]) throws IOException { FastReader sc = new FastReader(); long s1 = System.currentTimeMillis(); int t = sc.nextInt(); while(t-- > 0 ) { int n = sc.nextInt(); solve(n); } flush(); long e = System.currentTimeMillis(); // run(s1,e); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n=int(input()) if n<24: print("NO") continue a=1 b=1 c=1 for i in range(2,int(math.sqrt(n))+1): if n%i==0: a=i break n//=a for i in range(2,int(math.sqrt(n))+1): if i!=a and n%i==0: b=i break if b!=1: c=n//b if a is not b and b is not c and c is not a: print("YES") print(a,end=" ");print(b,end=" ");print(c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for t in range(int(input())): n = int(input()) k = 2 i = k a = -1 b = -1 c = -1 while i <= n/k: k+=1 if n%i == 0: a = i x = n/a break else: i = k if a == -1: print("NO") else: # print(x) k = 3 i = k while i <= x/k: k+=1 if x%i == 0 and i != a: b = i c = x//b c = int(c) break else: i = k if b == -1 or c == -1: print("NO") elif a==c or b==c or a==b: print("NO") else: print("YES") print(a,b,c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for case in range (int (input ())) : n = int (input()) a, b, c = 0, 0, 0 for i in range(2, int (math.sqrt (n)) + 1) : if n % i == 0 : a, b = i, n // i break if a : for i in range (a + 1, int (math.sqrt(b)) + 1) : if b % i == 0 : b, c = i, b // i break print ("YES\n" + ' '.join ([str (a), str (b), str (c)]) if a >= 2 and b >= 2 and c >= 2 and b != c else "NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) for tt in range(t): n=int(input()) m=n fact=[] while m%2==0: fact.append(2) m = m / 2 for i in range(3,int(math.sqrt(m))+1,2): while m % i== 0: fact.append(i) m = m / i if m > 2: fact.append(m) a,b = 1,1 for v in fact: if a == 1: a = v elif b == 1 or b == a: b *= v else: break if (a*b) == 0: print('NO') continue c = n/(a*b) if c == 1 or c == a or c == b: print('NO') continue print('YES') d = int(c) print(a,b,d)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt t = int(input()) def factor(n): factors = [] div = int(sqrt(n)) i = 2 count = 1 aux_n = n while n > 1 and i <= div: while n%i == 0: factors.append(i) n = n//i count *= i i += 1 if n > 1: factors.append(aux_n//count) return factors for _ in range(t): n = int(input()) primes = factor(n) ans = [] i = 0 while i < len(primes): count = primes[i] if count not in ans: ans.append(count) i += 1 else: i += 1 while i < len(primes) and count in ans: count *= primes[i] i += 1 ans.append(count) if len(ans) > 2: last = 1 for i in range(2, len(ans)): last *= ans[i] ans = [ans[0], ans[1], last] if len(set(ans)) == 3: print("YES") print(ans[0], ans[1], last) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
/****************************************************************************** Online Java Compiler. Code, Compile, Run and Debug java program online. Write your code in this editor and press "Run" button to execute it. *******************************************************************************/ import java.util.*; public class Main { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int t=scan.nextInt(),i; int[] a=new int[3]; while(t-->0) { int n=scan.nextInt(); a[0]=a[1]=a[2]=0; int c=0; for(i=2;i<=Math.sqrt(n);i++) { if(n%i==0){ a[c++]=i; n/=i; if(c==2) { a[2]=n; break; } } } if(c==2&&a[1]<a[2]) { System.out.println("YES\n"+a[0]+" "+a[1]+" "+a[2]); }else System.out.println("NO"); }} }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt from math import ceil def find(fro, n): if n % fro == 0: return fro return find(fro + 1, n) t = int(input()) answers = [] for ti in range(t): n = int(input()) first = -1 for i in range(2, ceil(sqrt(n)) + 1): if n % i == 0: first = i break if first == -1: answers.append("NO") continue second = -1 nn = n // first for i in range(first + 1, ceil(sqrt(nn))): if nn % i == 0: second = i break if second == -1: answers.append("NO") continue third = nn // second answers.append("YES") answers.append(str(first) + " " + str(second) + " " + str(third)) for a in answers: print(a)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys from math import sqrt def readlines(type=int): return list(map(type, sys.stdin.readline().split())) def read(type=int): return type(sys.stdin.readline().strip()) joint = lambda it, sep=" ": sep.join( [str(i) if type(i) != list else sep.join(map(str, i)) for i in it]) def solve(num): def break_(num, n, already=-1): for i in range(n, int(sqrt(num)) + 1): if num % i == 0 and i != num // i and i != already and num // i != already and num // i != 1: return i, num // i return -1, -1 first, second = break_(num, 2) if first == -1: return "NO" third, fourth = break_(second, first + 1, first) if third == -1: return "NO" return("YES\n{} {} {}".format(first, third, fourth)) return "NO" def main(): print(joint(list(map(solve, [read() for _ in range(read())])), '\n')) main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n = int(input()) a = [] for i in range(2,int((n**0.5))+1): if n%i == 0: n=n//i a.append(i) break if len(a)==1 : for j in range(a[0]+1,int((n**0.5))+1): if n%j == 0: n=n//j a.append(j) break a.append(n) if len(a) == 3 and a[1]<a[2]: print("YES") print(*a) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class ProductOf3Numbers { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int t = sc.nextInt(); int arr[] = new int[t]; for(int i=0; i<t; i++) { arr[i] = sc.nextInt(); } sc.close(); for(int i=0; i<t; i++) { if(isPossible(arr[i]) == "NO") System.out.println(isPossible(arr[i])); else { System.out.println("YES"); System.out.println(isPossible(arr[i])); } } } static String isPossible(int n) { int sqrt = (int)Math.floor(Math.pow(n,0.5)); ArrayList<Integer> arr = new ArrayList<>(); int i; for(i=2; i<= sqrt; i++) { if(n%i == 0 && arr.size() < 2) { n = n/i; arr.add(i); } } if(arr.size() < 2) { return "NO"; } else { if(arr.get(0) != n && arr.get(1) != n) return arr.get(0) + " " + arr.get(1) + " " + n; } return "NO"; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for i in range(int(input())): a=int(input()) b=[] i=2 while(len(b)<2 and (i**2)<a): if(a%i==0): a=a//i b.append(i) i+=1 if(len(b)==2 and a not in b): print('YES') b.append(a) b=' '.join(str(i) for i in b) print(b) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for i in range(t): n=int(input()) f=False for i in range(2,2000): if n%i != 0: continue newn = n//i if(f): break for j in range(2,100000): if newn%j != 0: continue k = newn//j if(k >=2 and i!=j and i!=k and j!=k): print("YES") print(i,j,k) f=True break if(not f): print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class CodeforcesContest { private static void sport(int n) { int r=n; Set<Integer> used = new HashSet<>(); int a = div(n, used); if (a < 0) { System.out.println("NO"); return; } n/=a; used.add(a); int b = div(n, used); if (b < 0) { System.out.println("NO"); return; } used.add(b); int c = r % (a * b) == 0 ? r / (a * b) : -1; if (c < 2 || c == a || c == b) { System.out.println("NO"); return; } System.out.println("YES"); System.out.println(a + " " + b + " " + c); } private static int div(int n, Set<Integer> set) { int k = (int) Math.sqrt(n); for (int i = 2; i <= k; i++) { if (n % i == 0 && !set.contains(i)) { return i; } } return -1; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int nExperiments = Integer.valueOf(sc.nextLine()); for (int i = 0; i < nExperiments; i++) { int n = sc.nextInt(); sport(n); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# cook your dish here import math def factors(n): num = int(math.sqrt(n))+1 fac = [] for i in range(2, num): if (n%i) == 0: fac.append(i) n = n//i if (len(fac) == 2): break if (len(fac) == 2 and n > fac[1]): print("YES") print(fac[0], fac[1], n) else: print("NO") for _ in range(int(input())): n = int(input()) if (n <= 23): print("NO") else: factors(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int n; vector<int> p; void solve() { cin >> n; p.clear(); int cur = n; for (int i = 2; i * i <= cur; i++) { while (cur % i == 0) { p.push_back(i); cur /= i; } } if (cur > 1) { p.push_back(cur); } sort(p.begin(), p.end()); if ((int)p.size() < 3) { puts("NO"); return; } if (p[0] != p.back()) { int num = 1; for (int i = 1; i < (int)p.size() - 1; i++) { num *= p[i]; } if (p[0] != p.back() && p[0] != num && p.back() != num) { puts("YES"); cout << p[0] << " " << p.back() << " " << num << endl; } else { puts("NO"); } } else { if ((int)p.size() - 3 <= 2) { puts("NO"); return; } int num = 1; for (int i = 3; i < (int)p.size(); i++) { num *= p[i]; } if (p[0] != p[0] * p[0] && p[0] != num && p[0] * p[0] != num) { puts("YES"); cout << p[0] << " " << p[0] * p[0] << " " << num << endl; } else { puts("NO"); } } } int main() { int tn; cin >> tn; while (tn--) { solve(); } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def kkk(n): for i in range(2,min(1000,n-1)): if n%i==0: return i return 1 def kkk2(n,p): for i in range(p,min(1000000,n-1)): if n%i==0: return i return 1 for i in range(int(input())): n=int(input()) r=kkk(n) if r==1: print("NO") else: n=n//r rr=kkk2(n,r+1) if rr==1 or rr*rr==n or r==n//rr: print("NO") else: print("YES") print(r,rr,n//rr)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class Class1 { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); StringBuffer rs = new StringBuffer(); while (t-- > 0) { int n=Integer.parseInt(br.readLine()); ArrayList<Integer> ar=new ArrayList<>(); for(int i=2;i<=(int)Math.sqrt(n);i++){ if(n%i==0){ ar.add(i); ar.add(n/i); } } int fl=0; for(int i:ar){ for(int j:ar){ for(int k:ar){ if(i==j||i==k||j==k){ continue; } if(i*j*k==n){ rs.append("YES\n"); rs.append(i+" "+j+" "+k+"\n"); fl=1; break; } } if (fl==1){ break; } } if(fl==1){ break; } } if(fl==0){ rs.append("NO\n"); } } System.out.println(rs); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
MOD = 1000000007 MOD2 = 998244353 ii = lambda : int(input()) si = lambda : input() dgl = lambda : list(map(int, input())) f = lambda : map(int, input().split()) il = lambda : list(map(int, input().split())) ls = lambda : list(input()) for _ in range(ii()): n=ii() fg=0 oans=[-1,-1,-1] for i in range(2,int(n**0.5)+1): if n%i==0: ans=[-1,-1] for j in range(2,int((n//i)**0.5)+1): if (n//i)%j==0 and (n//i)//j!=j and j!=i: ans[0]=j ans[1]=(n//i)//j break if not -1 in ans and ans[0]!=ans[1]!=i: oans[0]=ans[0] oans[1]=ans[1] oans[2]=i fg=1 break if fg: print('YES') print(*oans) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") const long long INF = 0x3f3f3f3f3f3f3f3f; const long long llinf = (1LL << 62); const int inf = (1 << 30); const int nmax = 1e3 + 50; const int mod = 1e9 + 7; using namespace std; int n, x, t, i, a, b, c, bl, j; vector<int> d; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cerr.tie(0); cout.tie(0); cin >> t; while (t--) { cin >> n; d.clear(); for (i = 2; i * i <= n; i++) { if (n % i == 0) { d.push_back(i); if (i * i != n) d.push_back(n / i); } } bl = 0; for (i = 0; i < (int)d.size(); i++) { for (j = i + 1; j < (int)d.size(); j++) { if (n % (d[i] * d[j]) == 0 && n / (d[i] * d[j]) != d[i] && n / (d[i] * d[j]) != d[j] && n / (d[i] * d[j]) != 1) { a = d[i], b = d[j], c = n / (d[i] * d[j]); bl = 1; break; } } } if (!bl) cout << "NO\n"; else cout << "YES\n" << a << " " << b << " " << c << '\n'; } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys input = sys.stdin.readline def make_divisors(n): divisors = [] for i in range(1, int(n**0.5)+1): if n % i == 0: divisors.append(i) if i != n // i: divisors.append(n//i) # divisors.sort() return divisors def main(): t = int(input()) for _ in range(t): N = int(input()) d = make_divisors(N) if len(d) <= 2: print("NO") continue fl = False for i in d: if i == 1 or i == N: continue f = make_divisors(N // i) if len(f) <= 2: continue for j in f: if j == 1 or j == (N // i): continue k = (N // i) // j if k != i and j != i and k != j: print("YES") print(i, j, k) fl = True break if fl: break if not fl: print("NO") if __name__ == '__main__': main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import * sInt = lambda: int(input()) mInt = lambda: map(int, input().split()) lInt = lambda: list(map(int, input().split())) def isPrime(n,w): for i in range(w,int(sqrt(n))+1): if n%i==0: return False,i return True,0 t = sInt() for _ in range(t): n = sInt() q,a = isPrime(n,2) if q==True: print("NO") else: n = n//a q,b = isPrime(n,a+1) if q==True or b==n//b: print("NO") else: print("YES") print(a,b,n//b)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in ' '*int(input()): n = int(input()) m=n p = [] d = 2 ln = 0 x = 0 while d * d <= n: if n % d == 0: p.append(d) n //= d ln += 1 else: d += 1 if n > 1: p.append(n) ln+=1 #print(p) if ln>2: a = p[0] if p[1]==p[0]: b = p[1]*p[2] if ln>3 and b!=m//b//a and a!=m//b//a: print('YES\n', a,b,m//b//a) else: print('NO') elif p[1]!=m//p[1]//a and a!=m//p[1]//a: b = p[1] print('YES\n', a,b,m//b//a) else: print('NO') else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=int(input()) f=0 a=0 b=0 c=0 f2=0 for i in range(2,int(n**0.5)+1): if n%i==0: a=i f2=1 break #print(i,'yo') #print(int(i**0.5)+1) if f2==1: for j in range(2,int((n//i)**0.5)+1): if (n//i)%j==0 and j!=i and (n//i)//j!=j and (n//i)//j!=i: #print(j) b=(n//i)//j c=j f=1 break if f==0: print('NO') else: print("YES") print(a,b,c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class practice { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); while (T-->0) { int n = in.nextInt(); int a=0, b=0; for (int i=2; (i*i)<n; i++) { if (n%i==0) { n /= i; if(a==0) { a = i; } else { b = i; break; } } } if(a != 0 && b != 0 && n > b) { System.out.println("YES"); System.out.println(a + " " + b + " " + n); } else { System.out.println("NO"); } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.io.*; public class CodeForces { public static void main(String[] args)throws IOException { Scanner sc=new Scanner(System.in); //Scanner sc=new Scanner(new File("ip.txt")); int tc,n,a,b,i,sq; boolean flag; tc=sc.nextInt(); while(tc-->0) { n=sc.nextInt(); sq=(int)Math.sqrt(n); for(i=2;i<=sq;i++) if(n%i==0) break; if(i==sq+1) { System.out.println("NO"); continue; } a=i; n=n/i; sq=(int)Math.sqrt(n); for(i=2;i<=sq;i++) if(n%i==0&&i!=a) break; if(i==sq+1) { System.out.println("NO"); continue; } b=i; n=n/i; if(n!=b&&n!=a) { System.out.println("YES"); System.out.println(a+" "+b+" "+n); } else System.out.println("NO"); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) def isnotprime(n): for i in range(1, int(n**0.5)+1): if n%i == 0: return True return False for _ in range(t): n = int(input()) if n<8: print('NO') continue found = list() foundmul = 1 done = False for i in range(2, int(((n//2)+1)**0.5)+1): if n%i == 0: found.append(i) foundmul *= i n //= i if len(found) >= 2: if n >= 2 and (n not in found): print('YES') print(found[0], found[1], n) done = True break else: done = True print('NO') break if n <= 1: done = True print("NO") break if not done: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
'''input 5 64 32 97 2 12345 ''' def chay(a,n): i = a while i*i <= n: if n%i == 0: b = i c = int(n/i) if b == c: return(0,0) else: return(b,c) i+=1 return(0,0) def ktra(n): i = 2 while i*i <= n: if n%i == 0: a = i b, c = chay(a+1,int(n/i)) if b != 0: return (1,a,b,c) break i+=1 return(0,0,0,0) for i in range(int(input())): n = int(input()) kq, a, b, c = ktra(int(n)) if kq == 1: print('YES') print(a,b,c) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for t in range(int(input())): n = int(input()) a = -1 b = -1 i = 2 while i * i < n: if n%i == 0: a = i n /= i break i += 1 i = 2 while i * i < n: if n%i == 0 and i != a: b = i n /= i break i += 1 if b == -1 or n == 1: print("NO") else: print("YES") print(a,b,int(n))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import collections, math local = False if local: file = open("inputt.txt", "r") def inp(): if local: return file.readline().rstrip() else: return input().rstrip() def ints(): return [int(_) for _ in inp().split()] t = int(inp()) for _ in range(t): n = int(inp()) sqrtn = int(math.sqrt(n)) found = False for a in range(2, sqrtn): if n % a == 0: rem = n//a for b in range(a+1, sqrtn): if rem % b == 0: c = rem//b if a != c and a != b and b != c: print("YES") print(str(a) + " " + str(b) + " " + str(c)) found = True break if found: break if not found: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=int(input()) f=0 a=set() i=2 while(i*i<=n): if n%i==0: a.add(i) a.add(n//i) i+=1 a=list(a) a.sort() l=len(a) for i in range(l): for j in range(i+1,l): for k in range(j+1,l): if a[i]*a[j]*a[k]==n: print("YES") print(a[i],a[j],a[k]) f=1 break if f: break if f: break if not f: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin,stdout from math import gcd, ceil, sqrt ii1 = lambda: int(stdin.readline().strip()) is1 = lambda: stdin.readline().strip() iia = lambda: list(map(int, stdin.readline().strip().split())) isa = lambda: stdin.readline().strip().split() mod = 1000000007 n = ii1() for _ in range(n): num = ii1() res = [] for i in range(2, int(sqrt(num)) + 1): if num % i == 0: num //= i res.append(i) if len(res) == 2 and num > 2: res.append(num) if len(set(res)) == 3: print("YES") print(*res) break else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def is_prime(n): if n == 1: return False i = 2 while i*i <= n: if n % i == 0: return False i += 1 return True for _ in range(int(input())): n = int(input()) a = [] z = int(math.sqrt(n)) if is_prime(n) == True: print("NO") else: for i in range(2, z): if n%i==0: a.append(i) n = n//i if len(a)==2: break if n<2: print("NO") elif len(a)==2: if n==a[0] or n==a[1]: print("NO") else: print("YES") for i in a: print(i, end=' ') print(n) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t = int(input()) for zxx in range(t): n = int(input()) l =[] k =int(0) for i in range(2,int(math.sqrt(n))): if(n%i == 0 ): n = n//i l.append(i) k = i if len(l) == 2: break elif i>n: break else: k = i if len(l) == 2: if(n > i): l.append(n) print('YES') for x in l: print(x, end=' ') print() else: print('NO') else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.io.*; public class Linkedlist { static PrintWriter pw; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static int gcd(int a,int b) { return b==0?a:gcd(b,a%b); } public static boolean isPrime(long n) { if(n==2)return true; int i=2; while(i*i<=n) { if(n%i==0) return false; i++; } return true; } public static long[] remove(long n) { long res[]=new long[1000000000]; long rese=0; int i=0; while(n>0) { long dig=n%10; n=n/10; if(dig>0) { rese=dig; res[i++]=rese; } } return res; } public static void main(String[] args) { FastReader ob=new FastReader(); pw = new PrintWriter(System.out); int t=ob.nextInt(); while(t-->0) { int n=ob.nextInt(),a=0,b=0,c=0; for(int i=2;i<Math.sqrt(n);i++) { if(n%i==0) { if(a==0) { a=i;n/=i; } else { b=i; n/=i; if(a<b && b<n) { c=1; break; } } } } if(c==1) { pw.println("YES"); pw.println(a+" "+b+" "+n); } else pw.println("NO"); } pw.flush(); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
num = int(input()) mas = [None] * num for i in range(num): mas[i] = int(input()) for i in range(num): n = mas[i] n0 = n i = 2 delit = [] while i * i <= n0: while n % i == 0: delit.append(i) n //= i i += 1 if n != 1: delit.append(n) if len(set(delit)) == 1 and len(delit) > 5: print("YES") print(delit[0], delit[0] * delit[0], n0 // delit[0] ** 3) elif (len(set(delit)) == 2 and len(delit) > 3) or len(set(delit)) > 2: print("YES") a = delit[0] b = delit[-1] print(a, b, n0 // (a * b)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n = int(input()) ans = [] count = 0 for i in range(2, int(n**(1/2) + 1)): if (n % i == 0): count += 1 ans.append(i) n = n//i if(count == 2): if(n not in ans): ans.append(n) break else: break if(len(ans) == 3): print("YES") for i in range(3): ans[i] = str(ans[i]) print(" ".join(ans)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys import math from collections import defaultdict,Counter # input=sys.stdin.readline # def print(x): # sys.stdout.write(str(x)+"\n") # sys.stdout=open("CP1/output.txt",'w') # sys.stdin=open("CP1/input.txt",'r') # m=pow(10,9)+7 t=int(input()) for i in range(t): n=int(input()) a=b=c=-1 d=-1 for j in range(2,int(math.sqrt(n))+1): if n%j==0: a=j if n//j!=j: d=n//j break if a==-1 or d==-1: print("NO") else: for j in range(2,int(math.sqrt(d))+1): if d%j==0 and j!=a: b=j if d//j!=j: c=d//j break if b==-1 or c==-1: print("NO") else: print("YES") print(a,b,c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# -*- coding: utf-8 -*- """ Created on Sun Jan 19 16:11:01 2020 @author: PC """ def product(n): A = [] L1 = isPrime(n, A) if len(L1) != 1: print("NO") else: n = n//L1[0] L2 = isPrime(n, L1) if len(L2) != 2: print("NO") else: n = n//L2[1] if n in L2: print("NO") else: L2.append(n) print("YES") for el in L2: print(el, end = " ") def isPrime(n, B): d = 2 isPrime = True while d*d <= n and isPrime: if n%d == 0 and d not in B: B.append(d) isPrime = False else: d += 1 return B t = int(input()) for i in range(t): n = int(input()) product(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin, stdout from collections import defaultdict import math rl = lambda: stdin.readline() rll = lambda: stdin.readline().split() def main(): cases = rll() for line in stdin: n = int(line) ans = [] f1 = 2 while f1 <= math.sqrt(n): if n % f1 == 0: ans.append(f1) break f1 += 1 if len(ans) == 0: stdout.write("NO\n") continue m = n//f1 f2 = f1 + 1 while f2 <= math.sqrt(m): if m % f2 == 0: ans.append(f2) break f2 += 1 if len(ans) == 1: stdout.write("NO\n") continue f3 = n//(f1*f2) if f3 not in {f1, f2}: stdout.write("YES\n") stdout.write(" ".join((str(x) for x in [f1, f2, f3]))) stdout.write("\n") else: stdout.write("NO\n") stdout.close() if __name__ == "__main__": main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int j=0;j<t;j++) { int n=sc.nextInt(); int a=0,b=0,c=0,d=0,x=0,flag=0; for(int i=2;i<=Math.sqrt(n);i++){ if(n%i==0){ a=i; b=n/i; break; } } x=(int)Math.max(a,b); for(int i=(int)Math.min(a,b)+1;i<Math.sqrt(x);i++){ if(x%i==0){ c=i; d=x/i; break; } } if(flag==1 || a==0 || b==0 || c==0 || d==0) System.out.println("NO"); else{ System.out.println("YES"); System.out.println(a+" "+c+" "+d); } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#!/usr/bin/env python import os import sys from io import BytesIO, IOBase #from bisect import bisect_left as bl #c++ lowerbound bl(array,element) #from bisect import bisect_right as br #c++ upperbound br(array,element) from collections import defaultdict import math def main(): for _ in range(int(input())): n=int(input()) data=defaultdict(lambda:0) for x in range(2,math.floor(math.sqrt(n))+1): if n%x==0: while n%x==0: n=n//x data[x]=data[x]+1 if n!=1: data[n]+=1 ele=[] #print(data) if len(data.keys())>=3: for x,y in data.items(): if len(ele)==3: ele[2]*=(x**y) else: ele.append(x**y) print("YES") print(*ele) elif len(data.keys())==2: dat=sorted(data.items(),key=lambda x:x[0]) if dat[0][1]>=3: ele.append(dat[0][0]) ele.append(dat[0][0]**(dat[0][1]-1)) ele.append(dat[1][0]**(dat[1][1])) print("YES") print(*ele) elif dat[1][1]>=3: ele.append(dat[1][0]) ele.append(dat[1][0]**(dat[1][1]-1)) ele.append(dat[0][0]**(dat[0][1])) print("YES") print(*ele) elif dat[0][1]>=2 and dat[1][1]>=2: ele.append(dat[0][0]) ele.append(dat[1][0]) ele.append(dat[1][0]**(dat[1][1]-1)*dat[0][0]**(dat[0][1]-1)) print("YES") print(*ele) else: print("NO") elif len(data.keys())==1: done=False for x,y in data.items(): if y>=6: print("YES") print(x,x**2,x**(y-3)) else: print("NO") else: print("NO") #-----------------------------BOSS-------------------------------------! # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class Main { public static void main(String[] args){ Scanner s = new Scanner(System.in); int t = s.nextInt(); while(t>0){ int a=0; int b=0; int c=0; int n = s.nextInt(); for(int i =2; i*i<=n;i++ ){ a=0; if(n%i==0){ a=i; n=n/i; for(int j=i+1;j*j<=n;j++){ b=0; c=0; if(n%j==0){ b=j; c=n/j; if(c!=b) break; } b=0; } if(b!=0){ break; } } } if(b==0){ System.out.println("NO"); }else{ System.out.println("YES"); System.out.println(a+" "+b+" "+c); } t--; } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n = int(input()) a, i, d = [], 0, 2 while d * d <= n and i < 2: if n % d == 0: a.append(d) n = n // d i += 1 d += 1 if n >= d and i == 2: a.append(n) print("YES") print(" ".join(map(str, a))) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for _ in range(t): n = int(input()) test = 2 out = [] while len(out) < 2 and test * test < n: if n % test == 0: out.append(test) n //= test test += 1 if len(out) == 2 and n > out[1]: print('YES') print(out[0], out[1], n) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) for i in range(t): n=int(input()) ok=True if n<24:ok=False i=1 j=1 for i in range(2,int(n**0.5)+1): if n%i==0: n=n//i break if i==int(n**0.5):ok=False if (i+1)>int(n**0.5):ok=False for j in range(i+1,int(n**0.5)+1): if n%j==0: n=n//j break if j==int(n**0.5):ok=False if ok and n>j: print('YES') print(i,j,n) else:print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for a in range(t): n = ori = int(input()) num = [] for b in range(2,int(ori**0.5)+1): # print(n) if n % b == 0: num.append(b) n = n//b if len(num) == 2: if n != 1: num.append(n) break num = list(set(num)) if len(num) == 3: print("YES") print(" ".join(map(str, num))) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
pr = [1]*40000 primes = [] for i in range(2, 40000): if pr[i]: primes.append(i) for j in range(i*i, 40000, i): pr[j] = 0 def sl(a,b,kkk): print("YES") print(a,b,kkk//(a*b)) n = int(input()) for i in range(n): k = int(input()) kk = k f = [] for p in primes: if k % p == 0: f.append([p,1]) k //= p while k % p == 0: f[-1][1] += 1 k //= p if len(f) > 2: break if p*p >= kk: break if k != 1: f.append([k,1]) # print(f) if len(f) >= 3: # print("YES") sl(f[0][0], f[1][0], kk) elif len(f) == 2: if f[0][1] >= 2 and f[1][1] >= 2: sl(f[0][0], f[1][0], kk) elif f[0][1] >= 3: sl(f[0][0], f[0][0] * f[0][0], kk) elif f[1][1] >= 3: sl(f[1][0], f[1][0] * f[1][0], kk) else: print("NO") else: if f[0][1] >= 6: sl(f[0][0], f[0][0] * f[0][0], kk) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') INF = 10 ** 18 MOD = 10**9+7 Ri = lambda : [int(x) for x in sys.stdin.readline().split()] ri = lambda : sys.stdin.readline().strip() for _ in range(int(ri())): n = int(ri()) p = 2 flag = False ans = [] while p*p <= n: if n%p == 0: ans.append(p) n = n//p p+=1 while p*p <= n: if n%p == 0 and n//p not in ans and n//p != p: ans.append(p);ans.append(n//p) flag = True break p+=1 if flag: break p+=1 if flag : YES() print(*ans) else: NO()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys from math import sqrt inp = sys.stdin.readline ans = "" for i in range(int(inp())): n = int(inp()) arr = "" c = 0 flag = 0 for i in range(2, round(sqrt(n))+1): if n % i == 0: c += 1 arr += str(i)+" " n = n//i if c == 2 and n > i: flag = 1 arr += str(n)+"\n" break if flag: ans += ("YES\n" + arr) else: ans += ("NO\n") print(ans)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def factorize(n): i = 2 s = int(math.sqrt(n)) f = dict() while n > 1: if i > s: # print(i,s,n,f) f[i] = 1 return f if n % i == 0: f[i] = f.get(i, 0) + 1 n //= i else: i += 1 return f t = int(input()) for _ in range(t): n = int(input()) f = factorize(n) if len(f) == 1: x = list(f.keys())[0] if f[x] >= 6: print("YES") print(int(x), int(x**2), int(x**(f[x]-3))) else: print("NO") elif len(f) == 2: x = list(f.keys()) x1, x2 = x[0],x[1] if (f[x1] == 2 and f[x2] == 2): print("YES") print(int(x1), int(x2), int(x1*x2)) elif f[x1] >= 3: print("YES") print(int(x1), int(x1*x1), int(n//(x1**3))) elif f[x2] >= 3: print("YES") print(int(x2), int(x2*x2), int(int(n//(x2**3)))) else: print("NO") else: print("YES") x = list(f.keys()) print(int(x[0]), int(x[1]), (n//(x[0]*x[1])))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.HashSet; import java.util.Scanner; import java.util.Set; public class ProductOfThreeNumbers { public static void main(String[] args) { // TODO Auto-generated method stub Scanner s=new Scanner(System.in); int t=s.nextInt(); while(t--!=0){ int n=s.nextInt(); int v=n; Set<Integer> st=new HashSet<>(); for(int i=2;i<=Math.sqrt(v);i++){ if(v%i==0){ st.add(i); v=v/i; break; } } for(int i=2;i<=Math.sqrt(v);i++){ if(v%i==0){ if(!st.contains(i)){ st.add(i); v=v/i; break; } } } if(st.size()!=2){ System.out.println("NO"); continue; } int r=1; for(Integer i:st){ r*=i; } if(n%r==0){ int y=n/r; st.add(y); if(st.size()==3){ System.out.println("YES"); for(Integer i:st){ System.out.print(i+" "); } System.out.println(); }else{ System.out.println("NO"); } }else{ System.out.println("NO"); } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; long long int hcf(long long int a, long long int b) { if (b == 0) return a; return hcf(b, a % b); } long long int lcm(long long int a, long long int b) { return (a * b) / hcf(a, b); } bool isprime(long long int n) { if (n == 1) return false; for (long long int i = 2; i * i <= n; ++i) { if (n % i == 0) return false; } return true; } vector<long long int> primeFactors(long long int n) { vector<long long int> ans; while (n % 2 == 0) { ans.push_back(2); n = n / 2; } for (long long int i = 3; i <= sqrt(n); i = i + 2) { while (n % i == 0) { ans.push_back(i); n = n / i; } } if (n > 2) ans.push_back(n); return ans; } void solve() { long long int n; cin >> n; vector<long long int> a = primeFactors(n); sort(a.begin(), a.end()); if (a.size() == 3 and a[0] != a[1] and a[1] != a[2]) { cout << "YES" << "\n" << a[0] << " " << a[1] << " " << a[2] << "\n"; return; } if (a.size() > 3 and a.front() != a.back()) { cout << "YES" << "\n" << a[0] << " "; long long int temp = 1; for (long long int i = 1; i <= a.size() - 2; i++) temp *= a[i]; cout << temp << " " << a.back() << "\n"; return; } if (a.size() > 5) { cout << "YES " << "\n" << a[0] << " "; long long int temp = 1; long long int temp2 = 1; for (long long int i = 1; i <= a.size() - 3; i++) temp *= a[i]; for (long long int i = a.size() - 2; i <= a.size() - 1; i++) temp2 *= a[i]; cout << temp << " " << temp2 << "\n"; return; } { cout << "NO" << "\n"; return; } } void onlinejudge() {} int main() { onlinejudge(); long long int ttt; ttt = 1; cin >> ttt; cout << fixed << setprecision(16); while (ttt--) solve(); return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.io.*; public class Solution { static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); public static void main(String args[]) throws IOException { int t = Integer.parseInt(br.readLine()); while(t-- > 0) { boolean flag = true; int n = Integer.parseInt(br.readLine()); first : for(int i = 2; (i * i) <= n; i++) { if(n % i == 0) { for(int j = 2; (j * j) <= i; j++) { if(i % j == 0) { if(allDistinct(n / i, j, i / j)) { bw.write("YES\n"); flag = false; bw.write((n / i) + " " + j + " " + (i / j) + "\n"); break first; } } } for(int j = 2; (j * j) <= (n / i); j++) { if((n / i) % j == 0) { if(allDistinct(i, j, (n / i) / j)) { bw.write("YES\n"); flag = false; bw.write((i) + " " + j + " " + ((n / i) / j) + "\n"); break first; } } } } } if(flag) { bw.write("NO\n"); } } bw.flush(); } public static boolean allDistinct(int a, int b, int c) { if(a == b || a == c || b == c) { return false; } return true; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); boolean[] arr = new boolean[32000]; for(int i=4;i<32000;i+=2) { arr[i] = true; } for(int i=3;i*i<32000;i+=2) { if(!arr[i]) { for(int j=i+i;j<32000;j+=i) { arr[j] = true; } } } int t = scan.nextInt(); while (t-- > 0) { int n = scan.nextInt(); int pnt = 2; int cnt = 0; LinkedList<Integer> ans = new LinkedList<>(); while (n > 1 && pnt < 32000) { if(!arr[pnt]) { if(n % pnt == 0) { n /= pnt; ans.add(pnt); cnt++; if(cnt > 5) { break; } } else { pnt++; } } else { while (pnt < 32000 && arr[pnt]) { pnt++; } } } if(n > 1) { ans.add(n); } if(ans.size() < 3) { System.out.println("NO"); continue; } int diff = 1; int now = ans.get(0); for(int i=1;i<ans.size();i++) { if(now != ans.get(i)) { diff++; } now = ans.get(i); } if((diff == 1 && ans.size() < 6) || (diff == 2 && ans.size() < 4)) { System.out.println("NO"); continue; } System.out.println("YES"); if(diff >= 3) { System.out.print(ans.get(0)+" "); int i = 1; int loc = 1; while (i < ans.size()-1) { loc *= ans.get(i); i++; } System.out.println(loc+" "+ans.get(ans.size()-1)); continue; } if(diff == 2) { System.out.print(ans.get(0)+" "); int loc = 1; for(int i=1;i<ans.size()-1;i++) { loc *= ans.get(i); } System.out.println(loc+" "+ans.get(ans.size()-1)); continue; } //diff 1 System.out.print(ans.get(0)+" "); int loc = 1; int i = 3; while (i < ans.size()) { loc *= ans.get(i); i++; } System.out.println(ans.get(1)*ans.get(2)+" "+loc); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def run(): num = int(input()) if num < 24: print("NO") return else: used = set() i = 2 while i * i <= num: if num % i == 0 and i not in used: used.add(i) num //= i break i += 1 while i * i <= num: if num % i == 0 and i not in used: used.add(i) num //= i break i += 1 if len(used) < 2 or num in used or num == 1: print("NO") else: print("YES") print(used.pop(), used.pop(), num) n = int(input()) for i in range(n): run()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for i in range(t): n = int(input()) m = [0, 0, 0] k = 0 for j in range(2, int(n ** 0.5) + 1): if n % j == 0 and j not in m: m[k] = j k += 1 n //= j if k == 2 or j > n: break if k == 2 and n not in m: m[2] = n if m[0] and m[1] and m[2]: print("YES") print(m[0], m[1], m[2]) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math n = int(input()) def check_prime(n, k): for i in range(k, int(pow(n, 0.5)) + 1): if n%i == 0: return (0, i) return (1, -1) e = {} for j in range(n): m = int(input()) d = [] k = 2 for _ in range(2): x = check_prime(m, k) #print(x) if x[0] != 0: break else: m /= x[1] k = x[1]+1 d.append(str(x[1]) + ' ') if (len(d) == 2) and (x[1] != m): d.append(str(int(m))) #print(d) e[j] = d for k in range(n): if k in e.keys(): print('YES') print(''.join(e[k])) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t, k = 0; cin >> t; while (t > 0) { k = 0; long long n, a, b, c; cin >> n; for (long long i = 2; i <= sqrt(n); i++) { if (n % i == 0) { k = 0; for (long long j = 2; j <= sqrt(n / i); j++) { if (i != j && (n / (i * j)) != i && (n / (i * j)) != j && (n % (i * j)) == 0) { cout << "YES\n"; cout << i << " " << j << " " << n / (i * j) << endl; k++; break; } } if (k == 1) break; } } if (k == 0) cout << "NO\n"; t--; } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int q; cin >> q; while (q--) { long long int n, x; cin >> n; x = n; vector<long long int> result; int i = 1; while (i * i <= x) { if (x % i == 0) { result.push_back(i); if (x / i != i) { result.push_back(x / i); } } i++; } if (result.size() >= 5) { long long int c = 0, p = 1; vector<long long int> v; sort(result.begin(), result.end()); for (int i = 0; i < result.size(); i++) { if (result[i] != 1) { if (n % result[i] == 0) { n = n / result[i]; v.push_back(result[i]); c++; p = p * result[i]; } if (c == 2) { break; } } } v.push_back((x) / p); if ((v[0] != v[1]) && v[0] != v[2] && v[1] != v[2] && (v[0] * v[1] * v[2] == x)) { cout << "YES" << endl; cout << v[0] << " " << v[1] << " " << v[2] << endl; } else { cout << "NO" << endl; } } else { cout << "NO" << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math as m t=int(input()) for i in range(t): n=int(input()) a=0 b=0 c=0 for j in range(2,int(m.sqrt(n))+1): if n%j==0: a=j n=n/j break for k in range(a+1,int(m.sqrt(n))+1): if n%k==0: b=k c=n/k break if a>1 and b>1 and c>1 and ( a!=b and a!=c and b!=c) : print("YES") print(int(a),int(b),int(c)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main(int argc, char *argv[]) { std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); ; int t; int n; cin >> t; while (t--) { cin >> n; set<int> used; for (int i = 2; i * i <= n; i++) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } for (int i = 2; i * i <= n; i++) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } if (int(used.size()) < 2 || n == 1 || used.count(n)) cout << "NO" << endl; else { cout << "YES" << endl; set<int>::iterator iter; iter = used.begin(); used.insert(n); for (; iter != used.end(); iter++) { cout << *iter << " "; } cout << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; long long fpow(long long x, long long y, long long p = 1000000007) { x = x % p; long long sum = 1; while (y) { if (y & 1) sum = sum * x; sum %= p; y = y >> 1; x = x * x; x %= p; } return sum; } long long fact[3000007] = {0}; void facto() { fact[0] = 1; fact[1] = 1; for (long long i = 2; i < 3000007; i++) fact[i] = (fact[i - 1] * i) % 1000000007; } long long ncr(long long n, long long r) { if (r > n) return 0; long long res = 1; res = fact[n]; res = (res * (fpow(fact[r], 1000000007 - 2))) % 1000000007; res = (res * (fpow(fact[n - r], 1000000007 - 2))) % 1000000007; return res; } long long npr(long long n, long long r) { if (r > n) return 0; long long res = 1; res = fact[n]; res = (res * (fpow(fact[n - r], 1000000007 - 2))) % 1000000007; return res; } long long mul(long long x, long long y) { return (x * y) % 1000000007; } long long add(long long x, long long y) { return (x + y) % 1000000007; } long long sub(long long x, long long y) { return (x - y + 1000000007) % 1000000007; } long long expomod(long long x, long long y) { long long result = 1; x %= 1000000007; while (y > 0) { if (y & 1) { result = (1ll * result * x) % 1000000007; } y = y >> 1; x = (1ll * x * x) % 1000000007; } return result; } vector<long long> v; void inline in(long long n) { v.resize(n + 1); for (long long i = 1; i <= n; i++) { cin >> v[i]; } } long long f[35]; long long ans, f1; void add(long long x) { for (long long i = 31; i >= 0; i--) { if (x & (1LL << i)) { f[i] += 1; } } } void remove(long long x) { for (long long i = 31; i >= 0; i--) { if (x & (1LL << i)) { f[i]--; if (f[i] == 0) { ans ^= (1LL << i); } } } } void go() { long long k; cin >> k; long long fg = 0; for (long long i = 2; i * i * i <= (k); i++) { if (k % i == 0) { for (long long j = i + 1; j * j <= (k / i); j++) { if ((k / i) % j == 0) { if (j != (k / i) / j) { cout << "YES" << "\n" << i << " " << j << " " << (k / i) / j << "\n"; fg = 1; break; } } } } if (fg) { break; } } if (!fg) { cout << "NO" << "\n"; } } signed main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long t; cin >> t; while (t--) { go(); } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { long long int n, a, b, c, d, i, j, k, l, m, x, t; cin >> t; while (t--) { cin >> n; d = 0; if (n % 2 == 0) { d = 0; a = 2; n = n / 2; x = (n / 2) - 1; if (x > 999999) x = 999999; for (i = 3; i <= x; i++) { if (n % i == 0) { b = i; c = n / i; if (c != b && c != a) { d = 1; break; } } } if (d == 1) { cout << "YES" << endl; cout << a << " " << b << " " << c << endl; } else cout << "NO" << endl; } else if (n >= 3 && n % 2 != 0) { d = 0; a = 0; for (i = 3; i <= 1111; i += 2) { if (n % i == 0) { a = i; n = n / i; break; } } x = (n / 2) - 1; if (x > 999999) x = 999999; if (a == 0) { cout << "NO" << endl; continue; } for (i = a + 2; i <= x; i += 2) { if (n % i == 0) { b = i; c = n / i; if (c != b && c != a) { d = 1; break; } } } if (d == 1) { cout << "YES" << endl; cout << a << " " << b << " " << c << endl; } else cout << "NO" << endl; } else cout << "NO" << endl; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.*; import java.util.*; import static java.lang.Double.parseDouble; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Math.abs; import static java.lang.System.exit; public class Main { static BufferedReader in; static PrintWriter out; static StringTokenizer tok; void Case() throws IOException { int n = nextInt(); List<Integer> divs = new ArrayList<>(); for (int i = 2; i * i <= n; i++) if (n % i == 0) { divs.add(i); divs.add(n / i); } for (int xxx : divs) for (int x : divs) for (int y : divs) for (int z : divs) if (x != y && x != z && y != z && x * y * z == n) { out.println("Yes\n" + x + " " + y + " " + z); return; } out.println("NO"); } void solve() throws Exception { int t = nextInt(); while (t-- > 0) Case(); } // call it like this: lower_bound(a, x + 1) ( /!\ + 1 ) public static int lower_bound(Integer[] a, int v) { int low = -1, high = a.length; while (high - low > 1) { int h = high + low >>> 1; if (a[h] >= v) { high = h; } else { low = h; } } return high; } private String getFraction(int a, int b) { assert b != 0; String sign = (a > 0 && b > 0) || (a < 0) && (b < 0) ? "+" : "-"; a = abs(a); b = abs(b); int gcd = gcd(a, b); return sign + (a / gcd) + "/" + (b / gcd); } private int gcd(int a, int b) { while (b > 0) { int temp = b; b = a % b; a = temp; } return a; } private int lcm(int a, int b) { return a * (b / gcd(a, b)); } public static int[] radixSort(int[] f) { if (f.length < 100) { Arrays.sort(f); return f; } int[] to = new int[f.length]; { int[] b = new int[65537]; for (int i = 0; i < f.length; i++) b[1 + (f[i] & 0xffff)]++; for (int i = 1; i <= 65536; i++) b[i] += b[i - 1]; for (int i = 0; i < f.length; i++) to[b[f[i] & 0xffff]++] = f[i]; int[] d = f; f = to; to = d; } { int[] b = new int[65537]; for (int i = 0; i < f.length; i++) b[1 + (f[i] >>> 16)]++; for (int i = 1; i <= 65536; i++) b[i] += b[i - 1]; for (int i = 0; i < f.length; i++) to[b[f[i] >>> 16]++] = f[i]; int[] d = f; f = to; to = d; } return f; } public static long pow(long a, long n, long mod) { long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } public static boolean nextPermutation(Integer[] a) { int n = a.length; int i; for (i = n - 2; i >= 0 && a[i] >= a[i + 1]; i--) ; if (i == -1) return false; int j; for (j = i + 1; j < n && a[i] < a[j]; j++) ; int d = a[i]; a[i] = a[j - 1]; a[j - 1] = d; for (int p = i + 1, q = n - 1; p < q; p++, q--) { d = a[p]; a[p] = a[q]; a[q] = d; } return true; } void print(Object x) { out.print(String.valueOf(x)); out.flush(); } void println(Object x) { out.println(String.valueOf(x)); out.flush(); } // for Map with custom key/value, override toString in your custom class void printMap(Map map) { if (map.keySet().size() == 0) return; Object firstValue = map.keySet().iterator().next(); if (map.get(firstValue) instanceof Queue || map.get(firstValue) instanceof List) { for (Object key : map.keySet()) { out.print(String.valueOf(key) + ": "); Collection values = (Collection) map.get(key); for (Object value : values) out.print(String.valueOf(value) + " "); out.println(); } } else if (map.get(firstValue).getClass().isArray()) { for (Object key : map.keySet()) { out.print(String.valueOf(key) + ": "); Object[] values = (Object[]) map.get(key); for (Object value : values) out.print(String.valueOf(value) + " "); out.println(); } } else { for (Object key : map.keySet()) { out.println(String.valueOf(key) + ": " + map.get(key)); } } } private int[] na(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } private long[] nal(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int nextInt() throws IOException { return parseInt(next()); } long nextLong() throws IOException { return parseLong(next()); } double nextDouble() throws IOException { return parseDouble(next()); } String next() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } public static void main(String[] args) throws Exception { try { boolean isLocal = false; if (isLocal) { in = new BufferedReader(new FileReader("solution.in")); out = new PrintWriter(new BufferedWriter(new FileWriter("solution.out"))); } else { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); } //long lStartTime = System.currentTimeMillis(); new Main().solve(); //long lEndTime = System.currentTimeMillis(); //out.println("Elapsed time in seconds: " + (double)(lEndTime - lStartTime) / 1000.0); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
test_cases = int(input()) for z in range(test_cases): n = int(input()) x=n l =[] for i in range(2,int(n**0.5)+2): if x%i==0: l.append(i) x=x/i if len(l)>=3 : if l[0]*l[1]*l[2]<=n: print('YES') print(l[0],l[1],int(n/(l[0]*l[1]))) break elif len(l)==2 and (l[0]*l[1])<=(n**0.5): print('YES') print(l[0], l[1], int(n / (l[0] * l[1]))) break if len(l)<2: print('NO') if len(l)==2: if (l[0]*l[1])>(n**0.5) : print('NO') elif len(l)>=3: if l[0]*l[1]*l[2]>n: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import static java.lang.Math.*; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { static int mod = 1000000007; static int MOD = 1000000007; static int temp = 998244353; static final long M = (int)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int aa, int bb) { first = aa; second = bb; } public int compareTo(Pair p) { // if(a == p.a) return b - p.b; // return a - p.a; if(first == p.first) return second - p.second; return first - p.first; } } /* * IO FOR 2D GRID IN JAVA * char[][] arr = new char[n][m]; //grid in Q. for(int i = 0;i<n;i++) { char[] nowLine = sc.next().toCharArray(); for(int j = 0;j<m;j++) { arr[i][j] = nowLine[i]; } } * */ static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String next() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } public BigInteger nextBigInteger() { // TODO Auto-generated method stub return null; } } public static boolean isPrime(long n) { if(n == 1) { return false; } for(long i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Integer> Sieve(int n) { boolean prime[] = new boolean[n+1]; Arrays.fill(prime, true); List<Integer> l = new ArrayList<>(); for (int p=2; p*p<=n; p++) { if (prime[p] == true) { for(int i=p*p; i<=n; i += p) { prime[i] = false; } } } for (int p=2; p<=n; p++) { if (prime[p] == true) { l.add(p); } } return l; } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static int phi(int n) //euler totient function { int result = 1; for (int i = 2; i < n; i++) if (gcd(i, n) == 1) result++; return result; } public static int[] computePrefix(int arr[], int n) { int[] prefix = new int[n]; prefix[0] = arr[0]; for(int i = 1;i<n;i++) { prefix[i] = prefix[i-1]+arr[i]; } return prefix; } public static int fastPow(int x, int n) //include mod at each step if asked and in args of fn too { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(int n, int p) { return power(n, p - 2, p); } // Returns nCr % p using Fermat's // little theorem. public static long nCr(int n, int r, int p) { if (n<r) return 0; if (r == 0) return 1; int[] fac = new int[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(int[] a) { List<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); //Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } //MODULO OPS for addition and multiplication public static long perfomMod(long x){ return ((x%M + M)%M); } public static long addMod(long a, long b){ return perfomMod(perfomMod(a)+perfomMod(b)); } public static long mulMod(long a, long b){ return perfomMod(perfomMod(a)*perfomMod(b)); } public static void main(String[] args) throws IOException { Reader sc = new Reader(); PrintWriter out = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(); int c = 0; List<Integer> l = new ArrayList<>(); for(int i = 2;i*i<=n;i++) { if(n%i == 0) { if(c == 0) { c++; l.add(i); n /= i; } else if(c == 1) { c++; l.add(i); if(n/i != i) { l.add((n/i)); c++; break; } else { break; } } } } if(c == 3) { System.out.println("YES"); for(int x : l) { System.out.print(x + " "); } System.out.println(); } else { System.out.println("NO"); } } out.close(); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.Scanner; public class cfTaskC1{ public static void main(String[] args) { Scanner input = new Scanner(System.in); int t = input.nextInt(); int num; int[] arr = new int[3]; arr[0] = 0; arr[1] = 0; arr[2] = 0; for(int i = 0; i < t; i++){ num = input.nextInt(); int realnum = num; int min = 2; for(int z = min; z*z <= num; z++){ if(num%z == 0){ arr[0] = z; min = z+1; num /= z; break; } } for(int z = min; z*z <= num; z++){ if(num%z == 0){ arr[1] = z; min = z+1; break; } } if(arr[0] != 0 && arr[1] != 0){ if(realnum % (arr[0] * arr[1]) == 0 && realnum / (arr[0] * arr[1]) != arr[0] && realnum / (arr[0] * arr[1]) != arr[1]){ arr[2] = realnum / (arr[0] * arr[1]); } } if(arr[2] != 0){ System.out.println("YES"); System.out.println(arr[0] + " " + arr[1] + " " + arr[2]); } else{ System.out.println("NO"); } arr[0] = 0; arr[1] = 0; arr[2] = 0; } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t, n, fl = 0, fl2; cin >> t; while (t--) { fl = 0, fl2 = 0; cin >> n; vector<int> v; int p = n; for (int i = 2; i * i <= n; i++) { if (p % i == 0 && fl <= 1) { v.push_back(i); p /= i; fl++; } } if (v.size() == 2 && v[0] != v[1] && v[0] != p && v[1] != p) { cout << "YES" << endl; cout << v[0] << " " << v[1] << " " << p << endl; } else cout << "NO" << endl; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def dell(num): global ans for i in range(2, 2 + int(math.sqrt(num))): if num % i == 0: ans.append(i) return dell(num // i) if num >= 2: ans.append(num) t = int(input()) for _ in range(t): num = int(input()) ans = [] dell(num) ans = sorted(ans) # print(ans) if len(ans) < 3: print('NO') continue ch1 = ans[0] ch2 = ans[1] ind = 2 if ch2 == ch1: ch2 *= ans[2] ind = 3 ch3 = 1 for j in range(ind, len(ans)): ch3 *= ans[j] if min(ch3, ch1, ch2) >= 2 and ch1 != ch2 and ch1 != ch3 and ch2 != ch3: print('YES') print(ch1, ch2, ch3) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt t = int(input()) for i in range(t): n = int(input()) sol = {} j = 2 sqroot = {} sqroot[n] = int(sqrt(n)) while(j<=sqroot[n]): if len(sol)==2: break if n%j==0: sol[j] = 1 n = n//j sqroot[n] = int(sqrt(n)) j += 1 if len(sol)==2 and (n not in sol): print("YES") for j in sol: print(j,end=" ") print(n) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.*; import java.util.*; public class R615C { public static void main(String[] args) { JS scan = new JS(); int t = scan.nextInt(); PrintWriter out = new PrintWriter(System.out); loop:while(t-->0) { int n = scan.nextInt(); int r = n; ArrayDeque<Integer> factors = new ArrayDeque<>(); while(n%2==0) { factors.add(2); n/=2; } for(int i = 3;i*i<=n;i+=2) { while(n%i==0) { n/=i; factors.add(i); } } if(n>2) { factors.add(n); } if(factors.size()<3) { System.out.println("NO"); continue; } int a = factors.poll(); int b = factors.poll(); int c = 1; while(!factors.isEmpty() && a==b)b*=factors.poll(); while(!factors.isEmpty())c*=factors.poll(); if(a>1 && b>1 && c>1 && a!=b && a!=c && b!=c && a*b*c==r) { System.out.println("YES"); System.out.println(a+" "+b+" "+c); }else { System.out.println("NO"); } } out.flush(); out.close(); } static class JS{ public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public JS() { in = new BufferedInputStream(System.in, BS); } public JS(String s) throws FileNotFoundException { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) for i in range(t): n=int(input()) c1,c2=0,0 arr=[] for j in range(2,int(math.sqrt(n))+1): if(n%j==0): arr.append(j) c1=1 n=n//j store=j break if(c1==1): for j in range(store+1,int(math.sqrt(n))+1): if(n%j==0): arr.append(j) arr.append(n//j) if(arr[2]==arr[1]): arr.pop() break if(len(arr)==3): print("YES") print(arr[0],end=' ') print(arr[1],end=' ') print(arr[2]) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n=int(input()) flag=0 for i in range(2,math.ceil(math.sqrt(n))+1): l=[] if n%i==0: l.append(i) a=n//i for j in range(2,math.ceil(math.sqrt(a))+1): if a%j==0 and j!=l[-1]: l.append(j) break if len(l)<2: continue b=n//(l[0]*l[1]) if b!=l[0] and b!=l[1] and b!=1: l.append(b) print("YES") print(*l) flag=1 break else: continue if flag==0: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) for i in range(t): n=int(input()) flag=0 for i in range(2,int(math.sqrt(n))+1): if(n%i==0): t=n//i for j in range(2,int(math.sqrt(t))+1): if(t%j==0): if(j!=i and t//j!=i and j!=t//j): flag=1 print("YES") print(str(i)+" "+str(j)+" "+str(t//j)) break if(flag==1): break if(flag==0): print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n=int(input()) a=[] for i in range(2,int(math.sqrt(n))+1): if n%i==0 and not(i in a): a.append(i) n/=i break for i in range(2,int(math.sqrt(n))+1): if n%i==0 and not(i in a): a.append(i) n/=i break if len(a)<2 or n==1 or (n in a): print("NO") else: a.append(int(n)) print("YES") print(*a)
PYTHON3