entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
| pytorch_code
stringlengths 200
4.05k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
Downsample | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/l3/cl3qgtljwm55hj7prrlq32vnxhqj5elf2qeptwkrprrhumnm7twn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Downsample(nn.Module):
def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False,
fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_ch = out_ch if out_ch else in_ch
if not fir:
if with_conv:
self.Conv_0 = conv3x3(in_ch, out_ch, stride=2, padding=0)
elif with_conv:
self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch,
kernel=3, down=True, resample_kernel=fir_kernel, use_bias=
True, kernel_init=default_init())
self.fir = fir
self.fir_kernel = fir_kernel
self.with_conv = with_conv
self.out_ch = out_ch
def forward(self, x):
_B, _C, _H, _W = x.shape
if not self.fir:
if self.with_conv:
x = F.pad(x, (0, 1, 0, 1))
x = self.Conv_0(x)
else:
x = F.avg_pool2d(x, 2, stride=2)
elif not self.with_conv:
x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2)
else:
x = self.Conv2d_0(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class DownsampleNew(nn.Module):
def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False,
fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_ch = out_ch if out_ch else in_ch
if not fir:
if with_conv:
self.Conv_0 = conv3x3(in_ch, out_ch, stride=2, padding=0)
elif with_conv:
self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch,
kernel=3, down=True, resample_kernel=fir_kernel, use_bias=
True, kernel_init=default_init())
self.fir = fir
self.fir_kernel = fir_kernel
self.with_conv = with_conv
self.out_ch = out_ch
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| chen-hao-chao/dlsm | Downsample | false | 3,273 | [
"Apache-2.0"
] | 0 | aea88aa7e59a02fe44f25f4de9d6f2eaf044093b | https://github.com/chen-hao-chao/dlsm/tree/aea88aa7e59a02fe44f25f4de9d6f2eaf044093b | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False,
fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_ch = out_ch if out_ch else in_ch
if not fir:
if with_conv:
self.Conv_0 = conv3x3(in_ch, out_ch, stride=2, padding=0)
elif with_conv:
self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch,
kernel=3, down=True, resample_kernel=fir_kernel, use_bias=
True, kernel_init=default_init())
self.fir = fir
self.fir_kernel = fir_kernel
self.with_conv = with_conv
self.out_ch = out_ch
def forward(self, x):
_B, _C, _H, _W = x.shape
if not self.fir:
if self.with_conv:
x = F.pad(x, (0, 1, 0, 1))
x = self.Conv_0(x)
else:
x = F.avg_pool2d(x, 2, stride=2)
elif not self.with_conv:
x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2)
else:
x = self.Conv2d_0(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ModelClassifier | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kn/ckn2syfaxwp4ztr62byudg2w3sr3vpb73ohe73jlv2tii6s6aj2v.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# x_3 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6528
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 408
x2 = (xindex // 1632)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (408 + x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (816 + x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1224 + x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mw/cmw5idtkljb5udzozaozopfkxrnlgn4fdddbwb4qtweauenliupq.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# x_3 => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6528
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 408
x2 = (xindex // 1632)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (408 + x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (816 + x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (1224 + x0 + (1632*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (102, 4), (4, 1))
assert_size_stride(primals_7, (102, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 102), (102, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 102), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 102), (1632, 408, 102, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf4, buf5, 6528, grid=grid(6528), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 102), (1632, 408, 102, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf5, buf6, 6528, grid=grid(6528), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((102, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((102, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class ModelClassifier(nn.Module):
"""
This class creates new classifier to update the pre-trained Neural Network.
"""
def __init__(self, in_features, hidden_features, hidden_features2,
out_features=102, drop_prob=0.25):
"""
Function to create the classifier architecture with arbitrary hidden layers.
Parameters:
in_features: integer, pre-defined input for the network.
hidden_features: integer, arbitrary hidden units decided by the user.
hidden_features2: integer, pre-defined hidden units.
out_features: integer, 102 classified output.
drop_prob: float, dropout probability.
"""
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, hidden_features2)
self.fc3 = nn.Linear(hidden_features2, out_features)
self.drop = nn.Dropout(drop_prob)
def forward(self, x):
"""
Function to forward pass through the network.
Parameters:
x: tensor to pass through the network.
Returns:
x: output logits.
"""
x = self.drop(F.relu(self.fc1(x)))
x = self.drop(F.relu(self.fc2(x)))
x = self.fc3(x)
x = F.log_softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'hidden_features': 4, 'hidden_features2': 4}
]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 6528
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 408
x2 = xindex // 1632
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 1632 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (408 + x0 + 1632 * x2), xmask, eviction_policy
='evict_last')
tmp4 = tl.load(in_ptr0 + (816 + x0 + 1632 * x2), xmask, eviction_policy
='evict_last')
tmp6 = tl.load(in_ptr0 + (1224 + x0 + 1632 * x2), xmask,
eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 6528
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 408
x2 = xindex // 1632
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 1632 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (408 + x0 + 1632 * x2), xmask, eviction_policy
='evict_last')
tmp6 = tl.load(in_ptr0 + (816 + x0 + 1632 * x2), xmask, eviction_policy
='evict_last')
tmp9 = tl.load(in_ptr0 + (1224 + x0 + 1632 * x2), xmask,
eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (102, 4), (4, 1))
assert_size_stride(primals_7, (102,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 102), (102, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 102), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 102), (1632, 408, 102, 1),
torch.float32)
triton_poi_fused__log_softmax_1[grid(6528)](buf4, buf5, 6528,
XBLOCK=256, num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 102), (1632, 408, 102, 1), 0)
del buf4
triton_poi_fused__log_softmax_2[grid(6528)](buf5, buf6, 6528,
XBLOCK=128, num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class ModelClassifierNew(nn.Module):
"""
This class creates new classifier to update the pre-trained Neural Network.
"""
def __init__(self, in_features, hidden_features, hidden_features2,
out_features=102, drop_prob=0.25):
"""
Function to create the classifier architecture with arbitrary hidden layers.
Parameters:
in_features: integer, pre-defined input for the network.
hidden_features: integer, arbitrary hidden units decided by the user.
hidden_features2: integer, pre-defined hidden units.
out_features: integer, 102 classified output.
drop_prob: float, dropout probability.
"""
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, hidden_features2)
self.fc3 = nn.Linear(hidden_features2, out_features)
self.drop = nn.Dropout(drop_prob)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| carlosmertens/Flowers-Classifier | ModelClassifier | false | 3,274 | [
"MIT"
] | 0 | d454348e3f6eba4e0c176f5e8e05c8a4f6fe9ba2 | https://github.com/carlosmertens/Flowers-Classifier/tree/d454348e3f6eba4e0c176f5e8e05c8a4f6fe9ba2 | import torch
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
"""
This class creates new classifier to update the pre-trained Neural Network.
"""
def __init__(self, in_features, hidden_features, hidden_features2,
out_features=102, drop_prob=0.25):
"""
Function to create the classifier architecture with arbitrary hidden layers.
Parameters:
in_features: integer, pre-defined input for the network.
hidden_features: integer, arbitrary hidden units decided by the user.
hidden_features2: integer, pre-defined hidden units.
out_features: integer, 102 classified output.
drop_prob: float, dropout probability.
"""
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, hidden_features2)
self.fc3 = nn.Linear(hidden_features2, out_features)
self.drop = nn.Dropout(drop_prob)
def forward(self, x):
"""
Function to forward pass through the network.
Parameters:
x: tensor to pass through the network.
Returns:
x: output logits.
"""
x = self.drop(F.relu(self.fc1(x)))
x = self.drop(F.relu(self.fc2(x)))
x = self.fc3(x)
x = F.log_softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'hidden_features': 4, 'hidden_features2': 4}
]
|
AddReadout | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r4/cr4a3opn2ix4j3amxdcxkqnab45qfmf7qraskl3lfiz2nl6gd6rl.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_3, %unsqueeze), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 48)
x3 = xindex % 48
x0 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 192, grid=grid(192), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class AddReadout(nn.Module):
def __init__(self, start_index=1):
super(AddReadout, self).__init__()
self.start_index = start_index
def forward(self, x):
if self.start_index == 2:
readout = (x[:, 0] + x[:, 1]) / 2
else:
readout = x[:, 0]
return x[:, self.start_index:] + readout.unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 48
x3 = xindex % 48
x0 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(192)](arg0_1, buf0, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class AddReadoutNew(nn.Module):
def __init__(self, start_index=1):
super(AddReadoutNew, self).__init__()
self.start_index = start_index
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| blguweb/Tap-Tap-computer | AddReadout | false | 3,275 | [
"MIT"
] | 0 | 4e2007b5a31e6d5f902b1e3ca58206870331ef07 | https://github.com/blguweb/Tap-Tap-computer/tree/4e2007b5a31e6d5f902b1e3ca58206870331ef07 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, start_index=1):
super().__init__()
self.start_index = start_index
def forward(self, x):
if self.start_index == 2:
readout = (x[:, 0] + x[:, 1]) / 2
else:
readout = x[:, 0]
return x[:, self.start_index:] + readout.unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Network | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/pr/cprthrqz6iotcmrjfcrj7taqntzxisdcjtr54gsuz2ck2kf6kbsr.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/f4/cf4n4twxm5q5eh5lcjfpxlmjdbgr6xfkpjnkedxdctexycbqar7w.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 1), (1, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (1, 16), (16, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 64, grid=grid(64), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1), (1, 0), 0), reinterpret_tensor(primals_4, (1, 16), (1, 1), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Network(nn.Module):
def __init__(self):
super().__init__()
self.hidden1 = nn.Linear(4, 1)
self.hidden2 = nn.Linear(1, 16)
self.output = nn.Linear(16, 1)
def forward(self, x):
x = F.relu(self.hidden1(x))
x = F.relu(self.hidden2(x))
x = self.output(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 1), (1, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (1, 16), (16, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1,
primals_2, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1), (1, 0), 0),
reinterpret_tensor(primals_4, (1, 16), (1, 1), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(1024)](buf3,
primals_5, buf6, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 1), (1, 16), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), reinterpret_tensor(
buf3, (64, 16), (16, 1), 0), primals_6, buf6, primals_4, buf7
class NetworkNew(nn.Module):
def __init__(self):
super().__init__()
self.hidden1 = nn.Linear(4, 1)
self.hidden2 = nn.Linear(1, 16)
self.output = nn.Linear(16, 1)
def forward(self, input_0):
primals_1 = self.hidden1.weight
primals_2 = self.hidden1.bias
primals_4 = self.hidden2.weight
primals_5 = self.hidden2.bias
primals_6 = self.output.weight
primals_7 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| chathurawidanage/cylon | Network | false | 3,276 | [
"Apache-2.0"
] | 0 | ac61b7a50880138fe67de21adee208016a94979a | https://github.com/chathurawidanage/cylon/tree/ac61b7a50880138fe67de21adee208016a94979a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.hidden1 = nn.Linear(4, 1)
self.hidden2 = nn.Linear(1, 16)
self.output = nn.Linear(16, 1)
def forward(self, x):
x = F.relu(self.hidden1(x))
x = F.relu(self.hidden2(x))
x = self.output(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yn/cynkq6wyjv7523fpzsg3fegcbi2ai3v57hyj24ad4pyj3m7vwy2b.py
# Topologically Sorted Source Nodes: [z, mul, sub, mul_1, add], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# sub => sub
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z, mul, sub, mul_1, add], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.cuda
import torch.distributed
class SimpleGate(torch.nn.Module):
def __init__(self, dim):
super(SimpleGate, self).__init__()
self.gate = torch.nn.Linear(2 * dim, dim, bias=True)
self.sig = torch.nn.Sigmoid()
def forward(self, in1, in2):
z = self.sig(self.gate(torch.cat((in1, in2), dim=-1)))
return z * in1 + (1.0 - z) * in2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_1[grid(256)](buf1, primals_1,
primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
return buf2, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8,
1), 0), buf1
class SimpleGateNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleGateNew, self).__init__()
self.gate = torch.nn.Linear(2 * dim, dim, bias=True)
self.sig = torch.nn.Sigmoid()
def forward(self, input_0, input_1):
primals_3 = self.gate.weight
primals_4 = self.gate.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| chardmeier/OpenNMT-py | SimpleGate | false | 3,277 | [
"MIT"
] | 0 | 8ef64d10c507418102af42551c0f335270cb5b51 | https://github.com/chardmeier/OpenNMT-py/tree/8ef64d10c507418102af42551c0f335270cb5b51 | import torch
import torch.cuda
import torch.distributed
class Model(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.gate = torch.nn.Linear(2 * dim, dim, bias=True)
self.sig = torch.nn.Sigmoid()
def forward(self, in1, in2):
z = self.sig(self.gate(torch.cat((in1, in2), dim=-1)))
return z * in1 + (1.0 - z) * in2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
EALSTM | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/pc/cpcr3623cktnc2724ttepfbk25u5ng32io6u3pxmpjwbdpi5psaw.py
# Topologically Sorted Source Nodes: [h_0], Original ATen: [aten.zero]
# Source node to ATen node mapping:
# h_0 => full
# Graph fragment:
# %full : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zero_0 = async_compile.triton('triton_poi_fused_zero_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zero_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zero_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/g4/cg4o5gjny3k72i2nzpwyrk5uosksnmkgjljkkkxdjlxtab5kkwfc.py
# Topologically Sorted Source Nodes: [i, sigmoid_1, mul, tanh, mul_1, c_1, sigmoid_2, tanh_1, h_1], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add, aten.sigmoid_backward]
# Source node to ATen node mapping:
# c_1 => add_1
# h_1 => mul_2
# i => sigmoid
# mul => mul
# mul_1 => mul_1
# sigmoid_1 => sigmoid_1
# sigmoid_2 => sigmoid_2
# tanh => tanh
# tanh_1 => tanh_1
# Graph fragment:
# %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %full), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {})
# %add_1 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sigmoid_2 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {})
# %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {})
# %mul_2 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %tanh_1), kwargs = {})
# %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {})
# %mul_65 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub_15), kwargs = {})
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask)
tmp14 = tl.load(in_ptr3 + (x2), xmask)
tmp21 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask)
tmp22 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (4 + x0 + (12*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = libdevice.tanh(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = tl.sigmoid(tmp10)
tmp12 = 0.0
tmp13 = tmp11 * tmp12
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp15 * tmp5
tmp17 = tmp13 + tmp16
tmp18 = 1.0
tmp19 = tmp18 - tmp11
tmp20 = tmp11 * tmp19
tmp23 = tmp21 + tmp22
tmp25 = tmp23 + tmp24
tmp26 = tl.sigmoid(tmp25)
tmp27 = libdevice.tanh(tmp17)
tmp28 = tmp26 * tmp27
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp17, xmask)
tl.store(out_ptr2 + (x2), tmp20, xmask)
tl.store(out_ptr3 + (x2), tmp26, xmask)
tl.store(out_ptr4 + (x2), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/p4/cp4wygqdedsof2jdfj6rmpsnu4jdgqwk3nlpiazkevshiyhw2hwa.py
# Topologically Sorted Source Nodes: [i, sigmoid_3, mul_3, tanh_2, mul_4, c_2, sigmoid_4, tanh_3, h_2], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add]
# Source node to ATen node mapping:
# c_2 => add_3
# h_2 => mul_5
# i => sigmoid
# mul_3 => mul_3
# mul_4 => mul_4
# sigmoid_3 => sigmoid_3
# sigmoid_4 => sigmoid_4
# tanh_2 => tanh_2
# tanh_3 => tanh_3
# Graph fragment:
# %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %sigmoid_3 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_3,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_3, %add_1), kwargs = {})
# %tanh_2 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_5,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh_2), kwargs = {})
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %mul_4), kwargs = {})
# %sigmoid_4 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_4,), kwargs = {})
# %tanh_3 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_3,), kwargs = {})
# %mul_5 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_4, %tanh_3), kwargs = {})
triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask)
tmp12 = tl.load(in_ptr3 + (x2), xmask)
tmp14 = tl.load(in_ptr4 + (x2), xmask)
tmp18 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask)
tmp19 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (4 + x0 + (12*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = libdevice.tanh(tmp10)
tmp13 = tmp5 * tmp12
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp15 * tmp11
tmp17 = tmp13 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tl.sigmoid(tmp22)
tmp24 = libdevice.tanh(tmp17)
tmp25 = tmp23 * tmp24
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp11, xmask)
tl.store(out_ptr2 + (x2), tmp17, xmask)
tl.store(out_ptr3 + (x2), tmp23, xmask)
tl.store(out_ptr4 + (x2), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2w/c2wa5tlelwq2czrn3trabgz7lu7yi4egl6cdkvai6twtfo6xajyh.py
# Topologically Sorted Source Nodes: [i, sigmoid_7, mul_9, tanh_6, mul_10, c_4, tanh_7], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add]
# Source node to ATen node mapping:
# c_4 => add_7
# i => sigmoid
# mul_10 => mul_10
# mul_9 => mul_9
# sigmoid_7 => sigmoid_7
# tanh_6 => tanh_6
# tanh_7 => tanh_7
# Graph fragment:
# %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %sigmoid_7 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_9,), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_7, %add_5), kwargs = {})
# %tanh_6 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_11,), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh_6), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, %mul_10), kwargs = {})
# %tanh_7 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_7,), kwargs = {})
triton_poi_fused_add_mul_sigmoid_tanh_3 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask)
tmp12 = tl.load(in_ptr3 + (x2), xmask)
tmp14 = tl.load(in_ptr4 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = libdevice.tanh(tmp10)
tmp13 = tmp5 * tmp12
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp15 * tmp11
tmp17 = tmp13 + tmp16
tmp18 = libdevice.tanh(tmp17)
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp11, xmask)
tl.store(out_ptr2 + (x2), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/u7/cu75wdxs4ehpgxtyx6nb7kbcn276exsymegvoyw4nua5mllpmipl.py
# Topologically Sorted Source Nodes: [sigmoid_8], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid_8 => sigmoid_8
# Graph fragment:
# %sigmoid_8 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_10,), kwargs = {})
triton_poi_fused_sigmoid_4 = async_compile.triton('triton_poi_fused_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4 + x0 + (12*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2b/c2bnwodkn3ggi3up2ygnpwziyrjmzsq67pvnsaqaijzgjqkn3l2f.py
# Topologically Sorted Source Nodes: [c_n], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# c_n => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_1, %add_3, %add_5, %add_7],), kwargs = {})
triton_poi_fused_stack_5 = async_compile.triton('triton_poi_fused_stack_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1))), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1))), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr3 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0)
tmp20 = tl.load(in_ptr2 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0)
tmp21 = tmp19 * tmp20
tmp22 = tl.load(in_ptr4 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0)
tmp23 = tl.sigmoid(tmp22)
tmp24 = tl.load(in_ptr5 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0)
tmp25 = tmp23 * tmp24
tmp26 = tmp21 + tmp25
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp16, tmp26, tmp27)
tmp29 = tl.where(tmp14, tmp15, tmp28)
tmp30 = tl.where(tmp9, tmp10, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7v/c7vzfzfugsasaoi62cwx45au5eeuftkul3wi2lpzxsy6petydqdo.py
# Topologically Sorted Source Nodes: [h_n], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# h_n => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mul_2, %mul_5, %mul_8, %mul_11],), kwargs = {})
triton_poi_fused_stack_6 = async_compile.triton('triton_poi_fused_stack_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1))), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1))), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr3 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0)
tmp20 = tl.load(in_ptr4 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0)
tmp21 = tmp19 * tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp16, tmp21, tmp22)
tmp24 = tl.where(tmp14, tmp15, tmp23)
tmp25 = tl.where(tmp9, tmp10, tmp24)
tmp26 = tl.where(tmp4, tmp5, tmp25)
tl.store(out_ptr0 + (x2), tmp26, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (12, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4, 12), (12, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_0], Original ATen: [aten.zero]
stream0 = get_raw_stream(0)
triton_poi_fused_zero_0.run(buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [addmm], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, 4), (0, 1), 0), primals_5, primals_4, alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, primals_6, out=buf2)
buf3 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 0), primals_7, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [i, sigmoid_1, mul, tanh, mul_1, c_1, sigmoid_2, tanh_1, h_1], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add, aten.sigmoid_backward]
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1.run(buf2, primals_2, buf3, buf1, buf4, buf5, buf30, buf6, buf7, 16, grid=grid(16), stream=stream0)
buf8 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf7, primals_6, out=buf8)
buf9 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [mm_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 4), primals_7, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [i, sigmoid_3, mul_3, tanh_2, mul_4, c_2, sigmoid_4, tanh_3, h_2], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add]
triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf8, primals_2, buf9, buf5, buf1, buf10, buf11, buf12, buf13, buf14, 16, grid=grid(16), stream=stream0)
buf15 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf14, primals_6, out=buf15)
buf16 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [mm_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 8), primals_7, out=buf16)
buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf20 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf21 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [i, sigmoid_5, mul_6, tanh_4, mul_7, c_3, sigmoid_6, tanh_5, h_3], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add]
triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf15, primals_2, buf16, buf12, buf1, buf17, buf18, buf19, buf20, buf21, 16, grid=grid(16), stream=stream0)
buf22 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf21, primals_6, out=buf22)
buf23 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [mm_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 12), primals_7, out=buf23)
del primals_7
buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf27 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [i, sigmoid_7, mul_9, tanh_6, mul_10, c_4, tanh_7], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add]
triton_poi_fused_add_mul_sigmoid_tanh_3.run(buf22, primals_2, buf23, buf19, buf1, buf24, buf25, buf27, 16, grid=grid(16), stream=stream0)
buf26 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid_8], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_4.run(buf22, primals_2, buf23, buf26, 16, grid=grid(16), stream=stream0)
del buf22
del buf23
del primals_2
buf28 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c_n], Original ATen: [aten.stack]
triton_poi_fused_stack_5.run(buf5, buf12, buf19, buf24, buf1, buf25, buf28, 64, grid=grid(64), stream=stream0)
buf29 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_n], Original ATen: [aten.stack]
triton_poi_fused_stack_6.run(buf7, buf14, buf21, buf26, buf27, buf29, 64, grid=grid(64), stream=stream0)
return (reinterpret_tensor(buf29, (4, 4, 4), (4, 16, 1), 0), reinterpret_tensor(buf28, (4, 4, 4), (4, 16, 1), 0), buf0, buf1, buf4, buf5, buf6, buf10, buf11, buf12, buf13, buf17, buf18, buf19, buf20, buf24, buf25, buf26, buf27, reinterpret_tensor(primals_1, (4, 4), (1, 16), 12), reinterpret_tensor(primals_6, (12, 4), (1, 12), 0), reinterpret_tensor(buf21, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 16), 8), reinterpret_tensor(buf14, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 16), 4), reinterpret_tensor(buf7, (4, 4), (1, 4), 0), buf30, reinterpret_tensor(primals_1, (4, 4), (1, 16), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import Tuple
import torch.nn as nn
class EALSTM(nn.Module):
"""Implementation of the Entity-Aware-LSTM (EA-LSTM)
TODO: Include paper ref and latex equations
Parameters
----------
input_size_dyn : int
Number of dynamic features, which are those, passed to the LSTM at each time step.
input_size_stat : int
Number of static features, which are those that are used to modulate the input gate.
hidden_size : int
Number of hidden/memory cells.
batch_first : bool, optional
If True, expects the batch inputs to be of shape [batch, seq, features] otherwise, the
shape has to be [seq, batch, features], by default True.
initial_forget_bias : int, optional
Value of the initial forget gate bias, by default 0
"""
def __init__(self, input_size_dyn: 'int', input_size_stat: 'int',
hidden_size: 'int', batch_first: 'bool'=True, initial_forget_bias:
'int'=0):
super(EALSTM, self).__init__()
self.input_size_dyn = input_size_dyn
self.input_size_stat = input_size_stat
self.hidden_size = hidden_size
self.batch_first = batch_first
self.initial_forget_bias = initial_forget_bias
self.weight_ih = nn.Parameter(torch.FloatTensor(input_size_dyn, 3 *
hidden_size))
self.weight_hh = nn.Parameter(torch.FloatTensor(hidden_size, 3 *
hidden_size))
self.weight_sh = nn.Parameter(torch.FloatTensor(input_size_stat,
hidden_size))
self.bias = nn.Parameter(torch.FloatTensor(3 * hidden_size))
self.bias_s = nn.Parameter(torch.FloatTensor(hidden_size))
self.reset_parameters()
def reset_parameters(self):
"""Initialize all learnable parameters of the LSTM"""
nn.init.orthogonal_(self.weight_ih.data)
nn.init.orthogonal_(self.weight_sh)
weight_hh_data = torch.eye(self.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, 3)
self.weight_hh.data = weight_hh_data
nn.init.constant_(self.bias.data, val=0)
nn.init.constant_(self.bias_s.data, val=0)
if self.initial_forget_bias != 0:
self.bias.data[:self.hidden_size] = self.initial_forget_bias
def forward(self, x_d: 'torch.Tensor', x_s: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""[summary]
Parameters
----------
x_d : torch.Tensor
Tensor, containing a batch of sequences of the dynamic features. Shape has to match
the format specified with batch_first.
x_s : torch.Tensor
Tensor, containing a batch of static features.
Returns
-------
h_n : torch.Tensor
The hidden states of each time step of each sample in the batch.
c_n : torch.Tensor]
The cell states of each time step of each sample in the batch.
"""
if self.batch_first:
x_d = x_d.transpose(0, 1)
seq_len, batch_size, _ = x_d.size()
h_0 = x_d.data.new(batch_size, self.hidden_size).zero_()
c_0 = x_d.data.new(batch_size, self.hidden_size).zero_()
h_x = h_0, c_0
h_n, c_n = [], []
bias_batch = self.bias.unsqueeze(0).expand(batch_size, *self.bias.
size())
bias_s_batch = self.bias_s.unsqueeze(0).expand(batch_size, *self.
bias_s.size())
i = torch.sigmoid(torch.addmm(bias_s_batch, x_s, self.weight_sh))
for t in range(seq_len):
h_0, c_0 = h_x
gates = torch.addmm(bias_batch, h_0, self.weight_hh) + torch.mm(x_d
[t], self.weight_ih)
f, o, g = gates.chunk(3, 1)
c_1 = torch.sigmoid(f) * c_0 + i * torch.tanh(g)
h_1 = torch.sigmoid(o) * torch.tanh(c_1)
h_n.append(h_1)
c_n.append(c_1)
h_x = h_1, c_1
h_n = torch.stack(h_n, 0)
c_n = torch.stack(c_n, 0)
if self.batch_first:
h_n = h_n.transpose(0, 1)
c_n = c_n.transpose(0, 1)
return h_n, c_n
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size_dyn': 4, 'input_size_stat': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_zero_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3,
out_ptr4, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask)
tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask)
tmp14 = tl.load(in_ptr3 + x2, xmask)
tmp21 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask)
tmp22 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (4 + x0 + 12 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = libdevice.tanh(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = tl.sigmoid(tmp10)
tmp12 = 0.0
tmp13 = tmp11 * tmp12
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp15 * tmp5
tmp17 = tmp13 + tmp16
tmp18 = 1.0
tmp19 = tmp18 - tmp11
tmp20 = tmp11 * tmp19
tmp23 = tmp21 + tmp22
tmp25 = tmp23 + tmp24
tmp26 = tl.sigmoid(tmp25)
tmp27 = libdevice.tanh(tmp17)
tmp28 = tmp26 * tmp27
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp17, xmask)
tl.store(out_ptr2 + x2, tmp20, xmask)
tl.store(out_ptr3 + x2, tmp26, xmask)
tl.store(out_ptr4 + x2, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask)
tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask)
tmp12 = tl.load(in_ptr3 + x2, xmask)
tmp14 = tl.load(in_ptr4 + x2, xmask)
tmp18 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask)
tmp19 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (4 + x0 + 12 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = libdevice.tanh(tmp10)
tmp13 = tmp5 * tmp12
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp15 * tmp11
tmp17 = tmp13 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tl.sigmoid(tmp22)
tmp24 = libdevice.tanh(tmp17)
tmp25 = tmp23 * tmp24
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp11, xmask)
tl.store(out_ptr2 + x2, tmp17, xmask)
tl.store(out_ptr3 + x2, tmp23, xmask)
tl.store(out_ptr4 + x2, tmp25, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_3(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask)
tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask)
tmp12 = tl.load(in_ptr3 + x2, xmask)
tmp14 = tl.load(in_ptr4 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = libdevice.tanh(tmp10)
tmp13 = tmp5 * tmp12
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp15 * tmp11
tmp17 = tmp13 + tmp16
tmp18 = libdevice.tanh(tmp17)
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp11, xmask)
tl.store(out_ptr2 + x2, tmp18, xmask)
@triton.jit
def triton_poi_fused_sigmoid_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4 + x0 + 12 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_stack_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1)), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr3 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0)
tmp20 = tl.load(in_ptr2 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0)
tmp21 = tmp19 * tmp20
tmp22 = tl.load(in_ptr4 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0)
tmp23 = tl.sigmoid(tmp22)
tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0)
tmp25 = tmp23 * tmp24
tmp26 = tmp21 + tmp25
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp16, tmp26, tmp27)
tmp29 = tl.where(tmp14, tmp15, tmp28)
tmp30 = tl.where(tmp9, tmp10, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_stack_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1)), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr3 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0)
tmp20 = tl.load(in_ptr4 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0)
tmp21 = tmp19 * tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp16, tmp21, tmp22)
tmp24 = tl.where(tmp14, tmp15, tmp23)
tmp25 = tl.where(tmp9, tmp10, tmp24)
tmp26 = tl.where(tmp4, tmp5, tmp25)
tl.store(out_ptr0 + x2, tmp26, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (12,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4, 12), (12, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_zero_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, 4), (0, 1),
0), primals_5, primals_4, alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
extern_kernels.mm(buf0, primals_6, out=buf2)
buf3 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 0),
primals_7, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_1[grid(16)](buf2
, primals_2, buf3, buf1, buf4, buf5, buf30, buf6, buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf8 = buf3
del buf3
extern_kernels.mm(buf7, primals_6, out=buf8)
buf9 = buf2
del buf2
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 4),
primals_7, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf8, primals_2,
buf9, buf5, buf1, buf10, buf11, buf12, buf13, buf14, 16, XBLOCK
=16, num_warps=1, num_stages=1)
buf15 = buf9
del buf9
extern_kernels.mm(buf14, primals_6, out=buf15)
buf16 = buf8
del buf8
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 8),
primals_7, out=buf16)
buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf20 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf21 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf15, primals_2,
buf16, buf12, buf1, buf17, buf18, buf19, buf20, buf21, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf22 = buf16
del buf16
extern_kernels.mm(buf21, primals_6, out=buf22)
buf23 = buf15
del buf15
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 12
), primals_7, out=buf23)
del primals_7
buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf27 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_tanh_3[grid(16)](buf22, primals_2,
buf23, buf19, buf1, buf24, buf25, buf27, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf26 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_sigmoid_4[grid(16)](buf22, primals_2, buf23, buf26,
16, XBLOCK=16, num_warps=1, num_stages=1)
del buf22
del buf23
del primals_2
buf28 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_stack_5[grid(64)](buf5, buf12, buf19, buf24, buf1,
buf25, buf28, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf29 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_stack_6[grid(64)](buf7, buf14, buf21, buf26, buf27,
buf29, 64, XBLOCK=64, num_warps=1, num_stages=1)
return (reinterpret_tensor(buf29, (4, 4, 4), (4, 16, 1), 0),
reinterpret_tensor(buf28, (4, 4, 4), (4, 16, 1), 0), buf0, buf1,
buf4, buf5, buf6, buf10, buf11, buf12, buf13, buf17, buf18, buf19,
buf20, buf24, buf25, buf26, buf27, reinterpret_tensor(primals_1, (4,
4), (1, 16), 12), reinterpret_tensor(primals_6, (12, 4), (1, 12), 0
), reinterpret_tensor(buf21, (4, 4), (1, 4), 0), reinterpret_tensor
(primals_1, (4, 4), (1, 16), 8), reinterpret_tensor(buf14, (4, 4),
(1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 16), 4),
reinterpret_tensor(buf7, (4, 4), (1, 4), 0), buf30,
reinterpret_tensor(primals_1, (4, 4), (1, 16), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0))
class EALSTMNew(nn.Module):
"""Implementation of the Entity-Aware-LSTM (EA-LSTM)
TODO: Include paper ref and latex equations
Parameters
----------
input_size_dyn : int
Number of dynamic features, which are those, passed to the LSTM at each time step.
input_size_stat : int
Number of static features, which are those that are used to modulate the input gate.
hidden_size : int
Number of hidden/memory cells.
batch_first : bool, optional
If True, expects the batch inputs to be of shape [batch, seq, features] otherwise, the
shape has to be [seq, batch, features], by default True.
initial_forget_bias : int, optional
Value of the initial forget gate bias, by default 0
"""
def __init__(self, input_size_dyn: 'int', input_size_stat: 'int',
hidden_size: 'int', batch_first: 'bool'=True, initial_forget_bias:
'int'=0):
super(EALSTMNew, self).__init__()
self.input_size_dyn = input_size_dyn
self.input_size_stat = input_size_stat
self.hidden_size = hidden_size
self.batch_first = batch_first
self.initial_forget_bias = initial_forget_bias
self.weight_ih = nn.Parameter(torch.FloatTensor(input_size_dyn, 3 *
hidden_size))
self.weight_hh = nn.Parameter(torch.FloatTensor(hidden_size, 3 *
hidden_size))
self.weight_sh = nn.Parameter(torch.FloatTensor(input_size_stat,
hidden_size))
self.bias = nn.Parameter(torch.FloatTensor(3 * hidden_size))
self.bias_s = nn.Parameter(torch.FloatTensor(hidden_size))
self.reset_parameters()
def reset_parameters(self):
"""Initialize all learnable parameters of the LSTM"""
nn.init.orthogonal_(self.weight_ih.data)
nn.init.orthogonal_(self.weight_sh)
weight_hh_data = torch.eye(self.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, 3)
self.weight_hh.data = weight_hh_data
nn.init.constant_(self.bias.data, val=0)
nn.init.constant_(self.bias_s.data, val=0)
if self.initial_forget_bias != 0:
self.bias.data[:self.hidden_size] = self.initial_forget_bias
def forward(self, input_0, input_1):
primals_6 = self.weight_ih
primals_7 = self.weight_hh
primals_4 = self.weight_sh
primals_2 = self.bias
primals_3 = self.bias_s
primals_1 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| bernharl/CamelsML | EALSTM | false | 3,278 | [
"Apache-2.0"
] | 0 | 4ec3ea231ba6ed8c9db68f0aa61aba8da32652b8 | https://github.com/bernharl/CamelsML/tree/4ec3ea231ba6ed8c9db68f0aa61aba8da32652b8 | import torch
from typing import Tuple
import torch.nn as nn
class Model(nn.Module):
"""Implementation of the Entity-Aware-LSTM (EA-LSTM)
TODO: Include paper ref and latex equations
Parameters
----------
input_size_dyn : int
Number of dynamic features, which are those, passed to the LSTM at each time step.
input_size_stat : int
Number of static features, which are those that are used to modulate the input gate.
hidden_size : int
Number of hidden/memory cells.
batch_first : bool, optional
If True, expects the batch inputs to be of shape [batch, seq, features] otherwise, the
shape has to be [seq, batch, features], by default True.
initial_forget_bias : int, optional
Value of the initial forget gate bias, by default 0
"""
def __init__(self, input_size_dyn: 'int', input_size_stat: 'int',
hidden_size: 'int', batch_first: 'bool'=True, initial_forget_bias:
'int'=0):
super().__init__()
self.input_size_dyn = input_size_dyn
self.input_size_stat = input_size_stat
self.hidden_size = hidden_size
self.batch_first = batch_first
self.initial_forget_bias = initial_forget_bias
self.weight_ih = nn.Parameter(torch.FloatTensor(input_size_dyn, 3 *
hidden_size))
self.weight_hh = nn.Parameter(torch.FloatTensor(hidden_size, 3 *
hidden_size))
self.weight_sh = nn.Parameter(torch.FloatTensor(input_size_stat,
hidden_size))
self.bias = nn.Parameter(torch.FloatTensor(3 * hidden_size))
self.bias_s = nn.Parameter(torch.FloatTensor(hidden_size))
self.reset_parameters()
def reset_parameters(self):
"""Initialize all learnable parameters of the LSTM"""
nn.init.orthogonal_(self.weight_ih.data)
nn.init.orthogonal_(self.weight_sh)
weight_hh_data = torch.eye(self.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, 3)
self.weight_hh.data = weight_hh_data
nn.init.constant_(self.bias.data, val=0)
nn.init.constant_(self.bias_s.data, val=0)
if self.initial_forget_bias != 0:
self.bias.data[:self.hidden_size] = self.initial_forget_bias
def forward(self, x_d: 'torch.Tensor', x_s: 'torch.Tensor') ->Tuple[
torch.Tensor, torch.Tensor]:
"""[summary]
Parameters
----------
x_d : torch.Tensor
Tensor, containing a batch of sequences of the dynamic features. Shape has to match
the format specified with batch_first.
x_s : torch.Tensor
Tensor, containing a batch of static features.
Returns
-------
h_n : torch.Tensor
The hidden states of each time step of each sample in the batch.
c_n : torch.Tensor]
The cell states of each time step of each sample in the batch.
"""
if self.batch_first:
x_d = x_d.transpose(0, 1)
seq_len, batch_size, _ = x_d.size()
h_0 = x_d.data.new(batch_size, self.hidden_size).zero_()
c_0 = x_d.data.new(batch_size, self.hidden_size).zero_()
h_x = h_0, c_0
h_n, c_n = [], []
bias_batch = self.bias.unsqueeze(0).expand(batch_size, *self.bias.
size())
bias_s_batch = self.bias_s.unsqueeze(0).expand(batch_size, *self.
bias_s.size())
i = torch.sigmoid(torch.addmm(bias_s_batch, x_s, self.weight_sh))
for t in range(seq_len):
h_0, c_0 = h_x
gates = torch.addmm(bias_batch, h_0, self.weight_hh) + torch.mm(x_d
[t], self.weight_ih)
f, o, g = gates.chunk(3, 1)
c_1 = torch.sigmoid(f) * c_0 + i * torch.tanh(g)
h_1 = torch.sigmoid(o) * torch.tanh(c_1)
h_n.append(h_1)
c_n.append(c_1)
h_x = h_1, c_1
h_n = torch.stack(h_n, 0)
c_n = torch.stack(c_n, 0)
if self.
# ... truncated (>4000 chars) for memory efficiency |
GeneralizedMeanPoolingFpn | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/j7/cj7jnbbcowhq5xuagl6ugt5zsfwb3swq64c7nqre6icopgmtu5wv.py
# Topologically Sorted Source Nodes: [clamp, x_1, adaptive_avg_pool2d, out], Original ATen: [aten.clamp, aten.pow, aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# clamp => clamp_min
# out => pow_2
# x_1 => pow_1
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select, 1e-06), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 4.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1, -2], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean, 0.25), kwargs = {})
triton_per_fused_clamp_mean_pow_0 = async_compile.triton('triton_per_fused_clamp_mean_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_pow_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + (4*x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/43/c4327mzfjy2uas35tpwf3tyxgulovxmxdyivpxsb4fthochyq34f.py
# Topologically Sorted Source Nodes: [clamp_1, x_3, adaptive_avg_pool2d_1, out_1], Original ATen: [aten.clamp, aten.pow, aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d_1 => mean_1
# clamp_1 => clamp_min_1
# out_1 => pow_4
# x_3 => pow_3
# Graph fragment:
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_1, 1e-06), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 4.0), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_3, [-1, -2], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean_1, 0.25), kwargs = {})
triton_per_fused_clamp_mean_pow_1 = async_compile.triton('triton_per_fused_clamp_mean_pow_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_pow_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_pow_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (64 + r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + (4*x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/of/cof6j4wfapxo7uaoyslizznudotsoeuzzyxpcio73dtzo4ovfoa3.py
# Topologically Sorted Source Nodes: [clamp_2, x_5, adaptive_avg_pool2d_2, out_2], Original ATen: [aten.clamp, aten.pow, aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d_2 => mean_2
# clamp_2 => clamp_min_2
# out_2 => pow_6
# x_5 => pow_5
# Graph fragment:
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_2, 1e-06), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_2, 4.0), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_5, [-1, -2], True), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean_2, 0.25), kwargs = {})
triton_per_fused_clamp_mean_pow_2 = async_compile.triton('triton_per_fused_clamp_mean_pow_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_pow_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_pow_2(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (128 + r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + (4*x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/aj/cajjplpzap6jycp3ublef5jpd7mrazosfryqv7hm2xf3cie2xonh.py
# Topologically Sorted Source Nodes: [clamp_3, x_7, adaptive_avg_pool2d_3, out_3], Original ATen: [aten.clamp, aten.pow, aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d_3 => mean_3
# clamp_3 => clamp_min_3
# out_3 => pow_8
# x_7 => pow_7
# Graph fragment:
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_3, 1e-06), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_3, 4.0), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_7, [-1, -2], True), kwargs = {})
# %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean_3, 0.25), kwargs = {})
triton_per_fused_clamp_mean_pow_3 = async_compile.triton('triton_per_fused_clamp_mean_pow_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_pow_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_pow_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (192 + r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + (4*x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
buf4 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 0) # alias
# Topologically Sorted Source Nodes: [clamp, x_1, adaptive_avg_pool2d, out], Original ATen: [aten.clamp, aten.pow, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_clamp_mean_pow_0.run(arg0_1, buf4, 4, 16, grid=grid(4), stream=stream0)
buf5 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 1) # alias
# Topologically Sorted Source Nodes: [clamp_1, x_3, adaptive_avg_pool2d_1, out_1], Original ATen: [aten.clamp, aten.pow, aten.mean]
triton_per_fused_clamp_mean_pow_1.run(arg0_1, buf5, 4, 16, grid=grid(4), stream=stream0)
buf6 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 2) # alias
# Topologically Sorted Source Nodes: [clamp_2, x_5, adaptive_avg_pool2d_2, out_2], Original ATen: [aten.clamp, aten.pow, aten.mean]
triton_per_fused_clamp_mean_pow_2.run(arg0_1, buf6, 4, 16, grid=grid(4), stream=stream0)
buf7 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 3) # alias
# Topologically Sorted Source Nodes: [clamp_3, x_7, adaptive_avg_pool2d_3, out_3], Original ATen: [aten.clamp, aten.pow, aten.mean]
triton_per_fused_clamp_mean_pow_3.run(arg0_1, buf7, 4, 16, grid=grid(4), stream=stream0)
del arg0_1
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from abc import ABC
from torch import nn
class GeneralizedMeanPoolingFpn(nn.Module, ABC):
"""Applies a 2D power-average adaptive pooling over an input signal composed of
several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size
will be the same as that of the input.
"""
def __init__(self, norm, output_size=1, eps=1e-06):
super(GeneralizedMeanPoolingFpn, self).__init__()
assert norm > 0
self.p = float(norm)
self.output_size = output_size
self.eps = eps
def forward(self, x_lists):
outs = []
for x in x_lists:
x = x.clamp(min=self.eps).pow(self.p)
out = torch.nn.functional.adaptive_avg_pool2d(x, self.output_size
).pow(1.0 / self.p)
outs.append(out)
return torch.cat(outs, 1)
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.p
) + ', ' + 'output_size=' + str(self.output_size) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'norm': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from abc import ABC
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_clamp_mean_pow_0(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + 4 * x0, tmp12, xmask)
@triton.jit
def triton_per_fused_clamp_mean_pow_1(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (64 + r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + 4 * x0, tmp12, xmask)
@triton.jit
def triton_per_fused_clamp_mean_pow_2(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (128 + r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + 4 * x0, tmp12, xmask)
@triton.jit
def triton_per_fused_clamp_mean_pow_3(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (192 + r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tmp11 = 0.25
tmp12 = libdevice.pow(tmp10, tmp11)
tl.store(out_ptr1 + 4 * x0, tmp12, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
buf4 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 0)
get_raw_stream(0)
triton_per_fused_clamp_mean_pow_0[grid(4)](arg0_1, buf4, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf5 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 1)
triton_per_fused_clamp_mean_pow_1[grid(4)](arg0_1, buf5, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf6 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 2)
triton_per_fused_clamp_mean_pow_2[grid(4)](arg0_1, buf6, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf7 = reinterpret_tensor(buf8, (4, 1, 1), (4, 1, 1), 3)
triton_per_fused_clamp_mean_pow_3[grid(4)](arg0_1, buf7, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf8,
class GeneralizedMeanPoolingFpnNew(nn.Module, ABC):
"""Applies a 2D power-average adaptive pooling over an input signal composed of
several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size
will be the same as that of the input.
"""
def __init__(self, norm, output_size=1, eps=1e-06):
super(GeneralizedMeanPoolingFpnNew, self).__init__()
assert norm > 0
self.p = float(norm)
self.output_size = output_size
self.eps = eps
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.p
) + ', ' + 'output_size=' + str(self.output_size) + ')'
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| catcodee/cluster-contrast-reid | GeneralizedMeanPoolingFpn | false | 3,279 | [
"MIT"
] | 0 | f6359990a4326375f23c3fd654df3fc6dcc9c579 | https://github.com/catcodee/cluster-contrast-reid/tree/f6359990a4326375f23c3fd654df3fc6dcc9c579 | import torch
from abc import ABC
from torch import nn
class Model(nn.Module, ABC):
"""Applies a 2D power-average adaptive pooling over an input signal composed of
several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size
will be the same as that of the input.
"""
def __init__(self, norm, output_size=1, eps=1e-06):
super().__init__()
assert norm > 0
self.p = float(norm)
self.output_size = output_size
self.eps = eps
def forward(self, x_lists):
outs = []
for x in x_lists:
x = x.clamp(min=self.eps).pow(self.p)
out = torch.nn.functional.adaptive_avg_pool2d(x, self.output_size
).pow(1.0 / self.p)
outs.append(out)
return torch.cat(outs, 1)
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.p
) + ', ' + 'output_size=' + str(self.output_size) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
HeatmapLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/j2/cj2fuoriecywpqfpirtvfrrmhvdesdfz5ycsvka6dsuyyjauwrf7.py
# Topologically Sorted Source Nodes: [sub, pow_1, loss, mean], Original ATen: [aten.sub, aten.pow, aten.mul, aten.mean]
# Source node to ATen node mapping:
# loss => mul
# mean => mean
# pow_1 => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %arg2_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [3]), kwargs = {})
triton_poi_fused_mean_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_mean_mul_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp3 * tmp4
tmp8 = tmp6 - tmp7
tmp9 = tmp8 * tmp8
tmp11 = tmp9 * tmp10
tmp12 = tmp5 + tmp11
tmp15 = tmp13 - tmp14
tmp16 = tmp15 * tmp15
tmp18 = tmp16 * tmp17
tmp19 = tmp12 + tmp18
tmp22 = tmp20 - tmp21
tmp23 = tmp22 * tmp22
tmp25 = tmp23 * tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr0 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rg/crgbfrd325b2jyt7n224p7wcsrbjltzbudomd63mgt3onyx64v3f.py
# Topologically Sorted Source Nodes: [mean_1, mean_2, loss_1], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# loss_1 => mean_3
# mean_1 => mean_1
# mean_2 => mean_2
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2]), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_1, [1]), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_2, [0]), kwargs = {})
triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (16*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*r0)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + (16*r0)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (5 + (16*r0)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (6 + (16*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (7 + (16*r0)), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (8 + (16*r0)), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (9 + (16*r0)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (10 + (16*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (11 + (16*r0)), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (12 + (16*r0)), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (13 + (16*r0)), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (14 + (16*r0)), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (15 + (16*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = tmp39 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp40, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, pow_1, loss, mean], Original ATen: [aten.sub, aten.pow, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_mul_pow_sub_0.run(arg0_1, arg1_1, arg2_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [mean_1, mean_2, loss_1], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(buf3, buf0, 1, 4, grid=grid(1), stream=stream0)
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torch.multiprocessing
class HeatmapLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, pred, gt, mask):
assert pred.size() == gt.size()
loss = (pred - gt) ** 2 * mask
loss = loss.mean(dim=3).mean(dim=2).mean(dim=1).mean(dim=0)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp3 * tmp4
tmp8 = tmp6 - tmp7
tmp9 = tmp8 * tmp8
tmp11 = tmp9 * tmp10
tmp12 = tmp5 + tmp11
tmp15 = tmp13 - tmp14
tmp16 = tmp15 * tmp15
tmp18 = tmp16 * tmp17
tmp19 = tmp12 + tmp18
tmp22 = tmp20 - tmp21
tmp23 = tmp22 * tmp22
tmp25 = tmp23 * tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr0 + x0, tmp28, xmask)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 16 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 16 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 16 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + 16 * r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (5 + 16 * r0), None, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr0 + (6 + 16 * r0), None, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (7 + 16 * r0), None, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (8 + 16 * r0), None, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr0 + (9 + 16 * r0), None, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr0 + (10 + 16 * r0), None, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (11 + 16 * r0), None, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (12 + 16 * r0), None, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (13 + 16 * r0), None, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr0 + (14 + 16 * r0), None, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (15 + 16 * r0), None, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = tmp39 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp40, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_mul_pow_sub_0[grid(64)](arg0_1, arg1_1,
arg2_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_mean_1[grid(1)](buf3, buf0, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf0
return buf3,
class HeatmapLossNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| chaowentao/DEKRv2 | HeatmapLoss | false | 3,280 | [
"MIT"
] | 0 | e092c3eb10766b099a8a9681dc26f9eb781ec070 | https://github.com/chaowentao/DEKRv2/tree/e092c3eb10766b099a8a9681dc26f9eb781ec070 | import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torch.multiprocessing
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, pred, gt, mask):
assert pred.size() == gt.size()
loss = (pred - gt) ** 2 * mask
loss = loss.mean(dim=3).mean(dim=2).mean(dim=1).mean(dim=0)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
Linear_QNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_1 => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_5 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0)
del primals_5
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf7, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf7, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Linear_QNet(nn.Module):
def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size_1)
self.leakyrelu = nn.LeakyReLU()
self.linear2 = nn.Linear(hidden_size_1, hidden_size_2)
self.linear3 = nn.Linear(hidden_size_2, output_size)
self.sigmaoid = nn.Sigmoid()
def forward(self, x):
x = self.linear1(x)
x = self.leakyrelu(x)
x = self.linear2(x)
x = self.leakyrelu(x)
x = self.linear3(x)
x = self.sigmaoid(x)
return x
def save(self, file_name='model.pth'):
model_folder_path = './model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name = os.path.join(model_folder_path, file_name)
torch.save(self.state_dict(), file_name)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size_1': 4, 'hidden_size_2': 4,
'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1,
buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_leaky_relu_0[grid(256)](buf3, primals_5, buf4,
buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf6 = buf3
del buf3
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_sigmoid_1[grid(256)](buf7, primals_7, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_7
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0
), buf7, primals_6, primals_4
class Linear_QNetNew(nn.Module):
def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size_1)
self.leakyrelu = nn.LeakyReLU()
self.linear2 = nn.Linear(hidden_size_1, hidden_size_2)
self.linear3 = nn.Linear(hidden_size_2, output_size)
self.sigmaoid = nn.Sigmoid()
def save(self, file_name='model.pth'):
model_folder_path = './model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name = os.path.join(model_folder_path, file_name)
torch.save(self.state_dict(), file_name)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.linear3.weight
primals_7 = self.linear3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| cheapmouse94/Machine-Learning-tank1990-python | Linear_QNet | false | 3,281 | [
"MIT"
] | 0 | 8b75983289c7bc0831827561cec12d4ad2addee2 | https://github.com/cheapmouse94/Machine-Learning-tank1990-python/tree/8b75983289c7bc0831827561cec12d4ad2addee2 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size_1)
self.leakyrelu = nn.LeakyReLU()
self.linear2 = nn.Linear(hidden_size_1, hidden_size_2)
self.linear3 = nn.Linear(hidden_size_2, output_size)
self.sigmaoid = nn.Sigmoid()
def forward(self, x):
x = self.linear1(x)
x = self.leakyrelu(x)
x = self.linear2(x)
x = self.leakyrelu(x)
x = self.linear3(x)
x = self.sigmaoid(x)
return x
def save(self, file_name='model.pth'):
model_folder_path = './model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name = os.path.join(model_folder_path, file_name)
torch.save(self.state_dict(), file_name)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size_1': 4, 'hidden_size_2': 4,
'output_size': 4}]
|
Actor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qm/cqm32b4r723u4ibsqxvdhjqhsdbcayp6em7pn3dkn4e3qvsnckvg.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/u6/cu62imfondqfajpnptwl4nuwcz5224e5lsdippcmnc4mv7ofevxy.py
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (50, 4), (4, 1))
assert_size_stride(primals_3, (50, ), (1, ))
assert_size_stride(primals_4, (20, 50), (50, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 50), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 3200, grid=grid(3200), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 20), (1, 50), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 1280, grid=grid(1280), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 20), (20, 1), 0), reinterpret_tensor(primals_6, (20, 4), (1, 20), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3, buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class Actor(torch.nn.Module):
"""Defines custom model
Inherits from torch.nn.Module
"""
def __init__(self, dim_input, dim_output):
super(Actor, self).__init__()
self._dim_input = dim_input
self._dim_output = dim_output
SIZE_H1 = 50
SIZE_H2 = 20
"""Initialize nnet layers"""
self._l1 = torch.nn.Linear(self._dim_input, SIZE_H1)
self._l2 = torch.nn.Linear(SIZE_H1, SIZE_H2)
self._l3 = torch.nn.Linear(SIZE_H2, self._dim_output)
def forward(self, s_t):
x = s_t
self._l1_out = F.relu(self._l1(x))
self._l2_out = F.relu(self._l2(self._l1_out))
self._out = self._l3(self._l2_out)
return self._out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_input': 4, 'dim_output': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (50, 4), (4, 1))
assert_size_stride(primals_3, (50,), (1,))
assert_size_stride(primals_4, (20, 50), (50, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 50), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(3200)](buf1, primals_3, 3200, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 50), (50, 1), 0),
reinterpret_tensor(primals_4, (50, 20), (1, 50), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 20), (320, 80, 20, 1), 0)
del buf2
triton_poi_fused_relu_1[grid(1280)](buf3, primals_5, 1280, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 20),
(20, 1), 0), reinterpret_tensor(primals_6, (20, 4), (1, 20), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf3, buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf1, buf3, primals_6, primals_4
class ActorNew(torch.nn.Module):
"""Defines custom model
Inherits from torch.nn.Module
"""
def __init__(self, dim_input, dim_output):
super(ActorNew, self).__init__()
self._dim_input = dim_input
self._dim_output = dim_output
SIZE_H1 = 50
SIZE_H2 = 20
"""Initialize nnet layers"""
self._l1 = torch.nn.Linear(self._dim_input, SIZE_H1)
self._l2 = torch.nn.Linear(SIZE_H1, SIZE_H2)
self._l3 = torch.nn.Linear(SIZE_H2, self._dim_output)
def forward(self, input_0):
primals_2 = self._l1.weight
primals_3 = self._l1.bias
primals_4 = self._l2.weight
primals_5 = self._l2.bias
primals_6 = self._l3.weight
primals_7 = self._l3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| cheng-xie/dpgfddagger | Actor | false | 3,282 | [
"MIT"
] | 0 | 5264d5b9e0ab76fc9620da63bcfd78b25dadcbec | https://github.com/cheng-xie/dpgfddagger/tree/5264d5b9e0ab76fc9620da63bcfd78b25dadcbec | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
"""Defines custom model
Inherits from torch.nn.Module
"""
def __init__(self, dim_input, dim_output):
super().__init__()
self._dim_input = dim_input
self._dim_output = dim_output
SIZE_H1 = 50
SIZE_H2 = 20
"""Initialize nnet layers"""
self._l1 = torch.nn.Linear(self._dim_input, SIZE_H1)
self._l2 = torch.nn.Linear(SIZE_H1, SIZE_H2)
self._l3 = torch.nn.Linear(SIZE_H2, self._dim_output)
def forward(self, s_t):
x = s_t
self._l1_out = F.relu(self._l1(x))
self._l2_out = F.relu(self._l2(self._l1_out))
self._out = self._l3(self._l2_out)
return self._out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ie/ciettq2a3562jfpgfe75iig4ki2hbm6pmbwujlvp6mw26i2odufm.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ft/cfth72bgfpeszc67kuz3vbgceoxtinoavq3ejzp3mh3lr3ee3qj5.py
# Topologically Sorted Source Nodes: [a1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 50
x2 = xindex % 1600
x3 = (xindex // 1600)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hz/chzvoinelfssy4oy3nllcy6jgnwwr7qyhgabd2wvghactzfjityy.py
# Topologically Sorted Source Nodes: [a2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2560
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (50, 4), (4, 1))
assert_size_stride(primals_4, (50, ), (1, ))
assert_size_stride(primals_5, (20, 50), (50, 1))
assert_size_stride(primals_6, (20, ), (1, ))
assert_size_stride(primals_7, (4, 20), (20, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 50), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 8, 4, 50), (1600, 200, 50, 1), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 8, 4, 50), (1664, 200, 50, 1), torch.bool)
# Topologically Sorted Source Nodes: [a1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf7, 6400, grid=grid(6400), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (128, 50), (50, 1), 0), reinterpret_tensor(primals_5, (50, 20), (1, 50), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 8, 4, 20), (640, 80, 20, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 8, 4, 20), (640, 80, 20, 1), torch.bool)
# Topologically Sorted Source Nodes: [a2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_6, buf6, 2560, grid=grid(2560), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (128, 20), (20, 1), 0), reinterpret_tensor(primals_7, (20, 4), (1, 20), 0), alpha=1, beta=1, out=buf5)
del primals_8
return (reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0), reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(buf2, (128, 50), (50, 1), 0), reinterpret_tensor(buf4, (128, 20), (20, 1), 0), primals_7, buf6, primals_5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Critic(nn.Module):
def __init__(self, dim_input, dim_output):
super(Critic, self).__init__()
self._dim_input = dim_input
self._dim_output = dim_output
H_LAYER1 = 50
H_LAYER2 = 20
self.linear1 = nn.Linear(self._dim_input, H_LAYER1)
self.linear2 = nn.Linear(H_LAYER1, H_LAYER2)
self.linear3 = nn.Linear(H_LAYER2, self._dim_output)
def forward(self, s, a):
"""
s = Variable(torch.FloatTensor(np.array(s,dtype=np.float32)))
if(type(a)!=type(s)):
a = Variable(torch.FloatTensor(np.array(a,dtype=np.float32)))
"""
x = torch.cat([s, a], 1)
a1 = F.relu(self.linear1(x))
a2 = F.relu(self.linear2(a1))
y = self.linear3(a2)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_input': 4, 'dim_output': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 50
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2560
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (50, 4), (4, 1))
assert_size_stride(primals_4, (50,), (1,))
assert_size_stride(primals_5, (20, 50), (50, 1))
assert_size_stride(primals_6, (20,), (1,))
assert_size_stride(primals_7, (4, 20), (20, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 50), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 8, 4, 50), (1600, 200, 50, 1), 0)
del buf1
buf7 = empty_strided_cuda((4, 8, 4, 50), (1664, 200, 50, 1), torch.bool
)
triton_poi_fused_relu_threshold_backward_1[grid(6400)](buf2,
primals_4, buf7, 6400, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 20), (20, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (128, 50), (50, 1), 0),
reinterpret_tensor(primals_5, (50, 20), (1, 50), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 8, 4, 20), (640, 80, 20, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 8, 4, 20), (640, 80, 20, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(2560)](buf4,
primals_6, buf6, 2560, XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (128, 20),
(20, 1), 0), reinterpret_tensor(primals_7, (20, 4), (1, 20), 0),
alpha=1, beta=1, out=buf5)
del primals_8
return reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0
), reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(
buf2, (128, 50), (50, 1), 0), reinterpret_tensor(buf4, (128, 20), (
20, 1), 0), primals_7, buf6, primals_5, buf7
class CriticNew(nn.Module):
def __init__(self, dim_input, dim_output):
super(CriticNew, self).__init__()
self._dim_input = dim_input
self._dim_output = dim_output
H_LAYER1 = 50
H_LAYER2 = 20
self.linear1 = nn.Linear(self._dim_input, H_LAYER1)
self.linear2 = nn.Linear(H_LAYER1, H_LAYER2)
self.linear3 = nn.Linear(H_LAYER2, self._dim_output)
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_5 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.linear3.weight
primals_8 = self.linear3.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| cheng-xie/dpgfddagger | Critic | false | 3,283 | [
"MIT"
] | 0 | 5264d5b9e0ab76fc9620da63bcfd78b25dadcbec | https://github.com/cheng-xie/dpgfddagger/tree/5264d5b9e0ab76fc9620da63bcfd78b25dadcbec | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, dim_input, dim_output):
super().__init__()
self._dim_input = dim_input
self._dim_output = dim_output
H_LAYER1 = 50
H_LAYER2 = 20
self.linear1 = nn.Linear(self._dim_input, H_LAYER1)
self.linear2 = nn.Linear(H_LAYER1, H_LAYER2)
self.linear3 = nn.Linear(H_LAYER2, self._dim_output)
def forward(self, s, a):
"""
s = Variable(torch.FloatTensor(np.array(s,dtype=np.float32)))
if(type(a)!=type(s)):
a = Variable(torch.FloatTensor(np.array(a,dtype=np.float32)))
"""
x = torch.cat([s, a], 1)
a1 = F.relu(self.linear1(x))
a2 = F.relu(self.linear2(a1))
y = self.linear3(a2)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
# Source node to ATen node mapping:
# model_input => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out1_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out1_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_6
return (buf3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency(torch.
nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency,
self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.softmax = torch.nn.Softmax(dim=1)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out1 = self.softmax(out1)
out2 = self.fc2(out1)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0)
del buf2
extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_6
return buf3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, primals_5
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew(torch
.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew
, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.softmax = torch.nn.Softmax(dim=1)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
| carefreekk/onnxruntime | NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency | false | 3,284 | [
"MIT"
] | 0 | 484e9de55c109dadbeb552cd6ede21bbdd63b830 | https://github.com/carefreekk/onnxruntime/tree/484e9de55c109dadbeb552cd6ede21bbdd63b830 | import torch
import torch.nn
import torch.onnx
class Model(torch.
nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.softmax = torch.nn.Softmax(dim=1)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out1 = self.softmax(out1)
out2 = self.fc2(out1)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ResidualBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zj/czjbomcj7alq7d2rpyq5jovfb4r4f7jmlbscailane6tzp5bclsn.py
# Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten._native_batch_norm_legit, aten.elu]
# Source node to ATen node mapping:
# output => var_mean
# output_1 => expm1, gt, mul_1, mul_3, where
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_1, %mul_3), kwargs = {})
triton_per_fused__native_batch_norm_legit_elu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_elu_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = 0.0
tmp25 = tmp23 > tmp24
tmp26 = 1.0
tmp27 = tmp23 * tmp26
tmp28 = libdevice.expm1(tmp27)
tmp29 = tmp28 * tmp26
tmp30 = tl.where(tmp25, tmp27, tmp29)
tl.store(out_ptr2 + (r1 + (16*x0)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/at/catgmbzwhox3nc2xeo6zs6mzasfybxlwxttgaih7j6pjgsp6x4l5.py
# Topologically Sorted Source Nodes: [output_2, output_3, output_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.elu]
# Source node to ATen node mapping:
# output_2 => convolution
# output_3 => add_1, rsqrt_1, var_mean_1
# output_4 => expm1_1, gt_1, mul_5, mul_7, where_1
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {})
# %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_5,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_5, %mul_7), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_elu_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_elu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_elu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_elu_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = 0.0
tmp27 = tmp25 > tmp26
tmp28 = 1.0
tmp29 = tmp25 * tmp28
tmp30 = libdevice.expm1(tmp29)
tmp31 = tmp30 * tmp28
tmp32 = tl.where(tmp27, tmp29, tmp31)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp23, xmask)
tl.store(out_ptr1 + (r2 + (16*x3)), tmp32, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rb/crbiu4u5ytzqglii4fqbg7tcmfshrvsdjcxspfuroyibunmibr5i.py
# Topologically Sorted Source Nodes: [output_5, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add_2
# output_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {})
triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten._native_batch_norm_legit, aten.elu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_elu_0.run(primals_1, buf3, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf9 = reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf7 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2, output_3, output_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.elu]
triton_per_fused__native_batch_norm_legit_convolution_elu_1.run(buf5, buf9, primals_3, buf6, buf10, 16, 16, grid=grid(16), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [output_5], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [output_5, add], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_2.run(buf12, primals_1, primals_5, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_5
return (buf12, primals_2, primals_4, buf3, buf5, buf6, buf9, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from functools import partial
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=1):
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
init_scale = 1e-10 if init_scale == 0 else init_scale
conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
dilation=dilation, padding=padding, kernel_size=3)
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=0):
"""1x1 convolution. Same as NCSNv1/v2."""
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=bias, dilation=dilation, padding=padding)
init_scale = 1e-10 if init_scale == 0 else init_scale
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True,
adjust_padding=False):
super().__init__()
if not adjust_padding:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = conv
else:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = nn.Sequential(nn.ZeroPad2d((1, 0, 1, 0)), conv)
def forward(self, inputs):
output = self.conv(inputs)
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.0
return output
class ResidualBlock(nn.Module):
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=
dilation)
self.normalize2 = normalization(input_dim)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3,
adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1,
adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=
dilation)
else:
conv_shortcut = partial(ncsn_conv1x1)
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim)
def forward(self, x):
output = self.normalize1(x)
output = self.non_linearity(output)
output = self.conv1(output)
output = self.normalize2(output)
output = self.non_linearity(output)
output = self.conv2(output)
if self.output_dim == self.input_dim and self.resample is None:
shortcut = x
else:
shortcut = self.shortcut(x)
return shortcut + output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from functools import partial
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_elu_0(in_ptr0, out_ptr2,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = 0.0
tmp25 = tmp23 > tmp24
tmp26 = 1.0
tmp27 = tmp23 * tmp26
tmp28 = libdevice.expm1(tmp27)
tmp29 = tmp28 * tmp26
tmp30 = tl.where(tmp25, tmp27, tmp29)
tl.store(out_ptr2 + (r1 + 16 * x0), tmp30, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_elu_1(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = 0.0
tmp27 = tmp25 > tmp26
tmp28 = 1.0
tmp29 = tmp25 * tmp28
tmp30 = libdevice.expm1(tmp29)
tmp31 = tmp30 * tmp28
tmp32 = tl.where(tmp27, tmp29, tmp31)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp23, xmask)
tl.store(out_ptr1 + (r2 + 16 * x3), tmp32, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_elu_0[grid(16)](primals_1,
buf3, 16, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf9 = reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf7
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused__native_batch_norm_legit_convolution_elu_1[grid(16)](
buf5, buf9, primals_3, buf6, buf10, 16, 16, XBLOCK=8, num_warps
=2, num_stages=1)
del primals_3
buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = buf11
del buf11
triton_poi_fused_add_convolution_2[grid(256)](buf12, primals_1,
primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_5
return buf12, primals_2, primals_4, buf3, buf5, buf6, buf9, buf10
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=1):
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
init_scale = 1e-10 if init_scale == 0 else init_scale
conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
dilation=dilation, padding=padding, kernel_size=3)
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=0):
"""1x1 convolution. Same as NCSNv1/v2."""
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=bias, dilation=dilation, padding=padding)
init_scale = 1e-10 if init_scale == 0 else init_scale
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True,
adjust_padding=False):
super().__init__()
if not adjust_padding:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = conv
else:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = nn.Sequential(nn.ZeroPad2d((1, 0, 1, 0)), conv)
def forward(self, inputs):
output = self.conv(inputs)
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.0
return output
class ResidualBlockNew(nn.Module):
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=
dilation)
self.normalize2 = normalization(input_dim)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3,
adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1,
adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=
dilation)
else:
conv_shortcut = partial(ncsn_conv1x1)
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| chen-hao-chao/dlsm | ResidualBlock | false | 3,285 | [
"Apache-2.0"
] | 0 | aea88aa7e59a02fe44f25f4de9d6f2eaf044093b | https://github.com/chen-hao-chao/dlsm/tree/aea88aa7e59a02fe44f25f4de9d6f2eaf044093b | import torch
import torch.nn as nn
from functools import partial
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=1):
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
init_scale = 1e-10 if init_scale == 0 else init_scale
conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
dilation=dilation, padding=padding, kernel_size=3)
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=0):
"""1x1 convolution. Same as NCSNv1/v2."""
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=bias, dilation=dilation, padding=padding)
init_scale = 1e-10 if init_scale == 0 else init_scale
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True,
adjust_padding=False):
super().__init__()
if not adjust_padding:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = conv
else:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = nn.Sequential(nn.ZeroPad2d((1, 0, 1, 0)), conv)
def forward(self, inputs):
output = self.conv(inputs)
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.0
return output
class Model(nn.Module):
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=
dilation)
self.normalize2 = normalization(input_dim)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3,
adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1,
adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=
dilation)
else:
conv_shortcut = partial(ncsn_conv1x1)
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim)
def forward(self, x):
output = self.normalize1(x)
output = self.non_linearity(output)
output = self.conv1(output)
output = self.normalize2
# ... truncated (>4000 chars) for memory efficiency |
Attention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nu/cnuc7ivckuuly7yn2763pwt3sw72jd6vuwpeeu4sfespm5iz7fq4.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fj/cfjl47pvhwbpfbvh6rfehwy5ijxc5p3zgkld2lwf3mw5bl6pbkak.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3)
del arg2_1
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.functional import F
import torch.nn.functional as F
class Attention(nn.Module):
"""
Scaled Dot-Product Attention proposed in "Attention Is All You Need"
Compute the dot products of the query with all keys, divide each by sqrt(dim),
and apply a softmax function to obtain the weights on the values
Args: dim, mask
dim (int): dimention of attention
mask (torch.Tensor): tensor containing indices to be masked
Inputs: query, key, value, mask
- **query** (batch, ..., q_len, q_dim): tensor containing projection vector for decoder.
- **key** (batch, ..., k_len, k_dim): tensor containing features of the encoded input sequence.
- **value** (batch, ..., v_len, v_dim): tensor containing features of the encoded input sequence.
- **mask** (batch, ..., q_len, k_len): tensor containing indices to be masked
- satisfy: q_dim = k_dim, v_len = k_len
Returns: context, attn
- **context**: tensor containing the context vector from attention mechanism.
- **attn**: tensor containing the attention (alignment) from the encoder outputs.
"""
def __init__(self):
super(Attention, self).__init__()
def forward(self, query, key, value, mask=None):
q_dim = query.size()[-1]
k_dim = key.size()[-1]
assert q_dim == k_dim
score = torch.matmul(query, key.transpose(-2, -1))
score = score / math.sqrt(k_dim)
if mask is not None:
score.masked_fill_(mask == 0, -float('Inf'))
attn = F.softmax(score, -1)
context = torch.matmul(attn, value)
return context, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0),
out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3
)
del arg2_1
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2
class AttentionNew(nn.Module):
"""
Scaled Dot-Product Attention proposed in "Attention Is All You Need"
Compute the dot products of the query with all keys, divide each by sqrt(dim),
and apply a softmax function to obtain the weights on the values
Args: dim, mask
dim (int): dimention of attention
mask (torch.Tensor): tensor containing indices to be masked
Inputs: query, key, value, mask
- **query** (batch, ..., q_len, q_dim): tensor containing projection vector for decoder.
- **key** (batch, ..., k_len, k_dim): tensor containing features of the encoded input sequence.
- **value** (batch, ..., v_len, v_dim): tensor containing features of the encoded input sequence.
- **mask** (batch, ..., q_len, k_len): tensor containing indices to be masked
- satisfy: q_dim = k_dim, v_len = k_len
Returns: context, attn
- **context**: tensor containing the context vector from attention mechanism.
- **attn**: tensor containing the attention (alignment) from the encoder outputs.
"""
def __init__(self):
super(AttentionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| chentuochao/Learn_attention_and_transformer | Attention | false | 3,286 | [
"MIT"
] | 0 | 3934ea3b700c6b8c0709057700372c531f43345f | https://github.com/chentuochao/Learn_attention_and_transformer/tree/3934ea3b700c6b8c0709057700372c531f43345f | import math
import torch
from torch import nn
from torch.functional import F
import torch.nn.functional as F
class Model(nn.Module):
"""
Scaled Dot-Product Attention proposed in "Attention Is All You Need"
Compute the dot products of the query with all keys, divide each by sqrt(dim),
and apply a softmax function to obtain the weights on the values
Args: dim, mask
dim (int): dimention of attention
mask (torch.Tensor): tensor containing indices to be masked
Inputs: query, key, value, mask
- **query** (batch, ..., q_len, q_dim): tensor containing projection vector for decoder.
- **key** (batch, ..., k_len, k_dim): tensor containing features of the encoded input sequence.
- **value** (batch, ..., v_len, v_dim): tensor containing features of the encoded input sequence.
- **mask** (batch, ..., q_len, k_len): tensor containing indices to be masked
- satisfy: q_dim = k_dim, v_len = k_len
Returns: context, attn
- **context**: tensor containing the context vector from attention mechanism.
- **attn**: tensor containing the attention (alignment) from the encoder outputs.
"""
def __init__(self):
super().__init__()
def forward(self, query, key, value, mask=None):
q_dim = query.size()[-1]
k_dim = key.size()[-1]
assert q_dim == k_dim
score = torch.matmul(query, key.transpose(-2, -1))
score = score / math.sqrt(k_dim)
if mask is not None:
score.masked_fill_(mask == 0, -float('Inf'))
attn = F.softmax(score, -1)
context = torch.matmul(attn, value)
return context, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
LateralBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/el/celbaz4uvhyeochedfza75npw4glfc6kathr7lity42oxpsbhui3.py
# Topologically Sorted Source Nodes: [c, p_1], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# c => convolution
# p_1 => add_4
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %convolution), kwargs = {})
triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x5 = (xindex // 16)
x6 = xindex
x2 = (xindex // 16) % 4
tmp10 = tl.load(in_out_ptr0 + (x6), xmask)
tmp11 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x5)), xmask, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = tmp9 + tmp12
tl.store(in_out_ptr0 + (x6), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# p_2 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [c], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [c, p_1], Original ATen: [aten.convolution, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_0.run(buf1, primals_4, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
del primals_4
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
return (buf3, primals_1, primals_2, primals_5, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LateralBlock(nn.Module):
def __init__(self, c_planes, p_planes, out_planes):
super(LateralBlock, self).__init__()
self.lateral = nn.Conv2d(c_planes, p_planes, kernel_size=1, padding
=0, stride=1)
self.top = nn.Conv2d(p_planes, out_planes, kernel_size=3, padding=1,
stride=1)
def forward(self, c, p):
_, _, H, W = c.size()
c = self.lateral(c)
p = F.upsample(p, scale_factor=2, mode='nearest')
p = p[:, :, :H, :W] + c
p = self.top(p)
return p
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'c_planes': 4, 'p_planes': 4, 'out_planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x5 = xindex // 16
x6 = xindex
x2 = xindex // 16 % 4
tmp10 = tl.load(in_out_ptr0 + x6, xmask)
tmp11 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x5), xmask,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = tmp9 + tmp12
tl.store(in_out_ptr0 + x6, tmp13, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_convolution_0[grid(256)](buf1, primals_4,
primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
del primals_4
buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(256)](buf3, primals_6, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
return buf3, primals_1, primals_2, primals_5, buf1
class LateralBlockNew(nn.Module):
def __init__(self, c_planes, p_planes, out_planes):
super(LateralBlockNew, self).__init__()
self.lateral = nn.Conv2d(c_planes, p_planes, kernel_size=1, padding
=0, stride=1)
self.top = nn.Conv2d(p_planes, out_planes, kernel_size=3, padding=1,
stride=1)
def forward(self, input_0, input_1):
primals_2 = self.lateral.weight
primals_3 = self.lateral.bias
primals_5 = self.top.weight
primals_6 = self.top.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| chicm/detect | LateralBlock | false | 3,287 | [
"Apache-2.0"
] | 0 | c1b611344d102fd7e94d94c678a44339e18ddd21 | https://github.com/chicm/detect/tree/c1b611344d102fd7e94d94c678a44339e18ddd21 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, c_planes, p_planes, out_planes):
super().__init__()
self.lateral = nn.Conv2d(c_planes, p_planes, kernel_size=1, padding
=0, stride=1)
self.top = nn.Conv2d(p_planes, out_planes, kernel_size=3, padding=1,
stride=1)
def forward(self, c, p):
_, _, H, W = c.size()
c = self.lateral(c)
p = F.upsample(p, scale_factor=2, mode='nearest')
p = p[:, :, :H, :W] + c
p = self.top(p)
return p
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
AvgPool | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zq/czqfmg777ealk33qrsycp75avovdrerzwzdnewn6ychzmettrp5u.py
# Topologically Sorted Source Nodes: [x_avg, x_avg_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d]
# Source node to ATen node mapping:
# x_avg => constant_pad_nd
# x_avg_1 => avg_pool2d
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 1, 1, 1], 0.0), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%constant_pad_nd, [3, 3], [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_avg_pool2d_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x3 = (xindex // 2)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + (2*x0)
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp8 & tmp13
tmp16 = tmp15 & tmp14
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp8 & tmp20
tmp23 = tmp22 & tmp21
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x3)), tmp23 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp6
tmp31 = tmp30 & tmp7
tmp32 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x3)), tmp31 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp32 + tmp25
tmp34 = tmp29 & tmp13
tmp35 = tmp34 & tmp14
tmp36 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), tmp35 & xmask, eviction_policy='evict_last', other=0.0)
tmp37 = tmp36 + tmp33
tmp38 = tmp29 & tmp20
tmp39 = tmp38 & tmp21
tmp40 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp41 = tmp40 + tmp37
tmp42 = 1 + (2*x1)
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp6
tmp47 = tmp46 & tmp7
tmp48 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x3)), tmp47 & xmask, eviction_policy='evict_last', other=0.0)
tmp49 = tmp48 + tmp41
tmp50 = tmp45 & tmp13
tmp51 = tmp50 & tmp14
tmp52 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x3)), tmp51 & xmask, eviction_policy='evict_last', other=0.0)
tmp53 = tmp52 + tmp49
tmp54 = tmp45 & tmp20
tmp55 = tmp54 & tmp21
tmp56 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x3)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tmp56 + tmp53
tmp58 = 0.1111111111111111
tmp59 = tmp57 * tmp58
tl.store(out_ptr0 + (x4), tmp59, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_avg, x_avg_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_constant_pad_nd_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
import torch.nn.functional as F
import torch.utils
import torch.cuda
class AvgPool(nn.Module):
def __init__(self, in_channels, reduction, save_device=torch.device('cpu')
):
super(AvgPool, self).__init__()
self.save_device = save_device
self.reduction = reduction
if self.reduction:
stride = 2
else:
stride = 1
self.stride = stride
self.Avg_Pool = nn.AvgPool2d(3, stride=stride)
def forward(self, x):
x_avg = F.pad(x, [1] * 4)
x_avg = self.Avg_Pool(x_avg)
return x_avg
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'reduction': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
import torch.utils
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x3 = xindex // 2
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + 2 * x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x3), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp8 & tmp13
tmp16 = tmp15 & tmp14
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x3), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp8 & tmp20
tmp23 = tmp22 & tmp21
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x3), tmp23 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp6
tmp31 = tmp30 & tmp7
tmp32 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x3), tmp31 & xmask,
eviction_policy='evict_last', other=0.0)
tmp33 = tmp32 + tmp25
tmp34 = tmp29 & tmp13
tmp35 = tmp34 & tmp14
tmp36 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), tmp35 & xmask,
eviction_policy='evict_last', other=0.0)
tmp37 = tmp36 + tmp33
tmp38 = tmp29 & tmp20
tmp39 = tmp38 & tmp21
tmp40 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), tmp39 & xmask,
eviction_policy='evict_last', other=0.0)
tmp41 = tmp40 + tmp37
tmp42 = 1 + 2 * x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp6
tmp47 = tmp46 & tmp7
tmp48 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x3), tmp47 & xmask,
eviction_policy='evict_last', other=0.0)
tmp49 = tmp48 + tmp41
tmp50 = tmp45 & tmp13
tmp51 = tmp50 & tmp14
tmp52 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x3), tmp51 & xmask,
eviction_policy='evict_last', other=0.0)
tmp53 = tmp52 + tmp49
tmp54 = tmp45 & tmp20
tmp55 = tmp54 & tmp21
tmp56 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x3), tmp55 & xmask,
eviction_policy='evict_last', other=0.0)
tmp57 = tmp56 + tmp53
tmp58 = 0.1111111111111111
tmp59 = tmp57 * tmp58
tl.store(out_ptr0 + x4, tmp59, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_constant_pad_nd_0[grid(64)](arg0_1,
buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class AvgPoolNew(nn.Module):
def __init__(self, in_channels, reduction, save_device=torch.device('cpu')
):
super(AvgPoolNew, self).__init__()
self.save_device = save_device
self.reduction = reduction
if self.reduction:
stride = 2
else:
stride = 1
self.stride = stride
self.Avg_Pool = nn.AvgPool2d(3, stride=stride)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| chomin/BayesNAS | AvgPool | false | 3,288 | [
"Apache-2.0"
] | 0 | 7b1d991d1e10213fa999eab513d1e12fe4bb571b | https://github.com/chomin/BayesNAS/tree/7b1d991d1e10213fa999eab513d1e12fe4bb571b | import torch
from torch import nn
import torch.utils.data
import torch.nn.functional as F
import torch.utils
import torch.cuda
class Model(nn.Module):
def __init__(self, in_channels, reduction, save_device=torch.device('cpu')
):
super().__init__()
self.save_device = save_device
self.reduction = reduction
if self.reduction:
stride = 2
else:
stride = 1
self.stride = stride
self.Avg_Pool = nn.AvgPool2d(3, stride=stride)
def forward(self, x):
x_avg = F.pad(x, [1] * 4)
x_avg = self.Avg_Pool(x_avg)
return x_avg
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Conv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dj/cdjv22ecg2fa3vl42zmofymqajhwcoeyhd4zdqtxfjt47oopzskx.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_1 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %view), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def _setup_kernel(k):
k = np.asarray(k, dtype=np.float32)
if k.ndim == 1:
k = np.outer(k, k)
k /= np.sum(k)
assert k.ndim == 2
assert k.shape[0] == k.shape[1]
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def conv_downsample_2d(x, w, k=None, factor=2, gain=1):
"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
Padding is performed only once at the beginning, not between the operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]` or
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
_outC, _inC, convH, convW = w.shape
assert convW == convH
if k is None:
k = [1] * factor
k = _setup_kernel(k) * gain
p = k.shape[0] - factor + (convW - 1)
s = [factor, factor]
x = upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2, p //
2))
return F.conv2d(x, w, stride=s, padding=0)
def _shape(x, dim):
return x.shape[dim]
def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
Padding is performed only once at the beginning, not between the
operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]` or
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
assert len(w.shape) == 4
convH = w.shape[2]
convW = w.shape[3]
inC = w.shape[1]
w.shape[0]
assert convW == convH
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * factor ** 2)
p = k.shape[0] - factor - (convW - 1)
stride = factor, factor
stride = [1, 1, factor, factor]
output_shape = (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1
) * factor + convW
output_padding = output_shape[0] - (_shape(x, 2) - 1) * stride[0
] - convH, output_shape[1] - (_shape(x, 3) - 1) * stride[1] - convW
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = _shape(x, 1) // inC
w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
w = torch.reshape(w, (num_groups * inC, -1, convH, convW))
x = F.conv_transpose2d(x, w, stride=stride, output_padding=
output_padding, padding=0)
return upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 +
factor - 1, p // 2 + 1))
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Conv2d(nn.Module):
"""Conv2d layer with optimal upsampling and downsampling (StyleGAN2)."""
def __init__(self, in_ch, out_ch, kernel, up=False, down=False,
resample_kernel=(1, 3, 3, 1), use_bias=True, kernel_init=None):
super().__init__()
assert not (up and down)
assert kernel >= 1 and kernel % 2 == 1
self.weight = nn.Parameter(torch.zeros(out_ch, in_ch, kernel, kernel))
if kernel_init is not None:
self.weight.data = kernel_init(self.weight.data.shape)
if use_bias:
self.bias = nn.Parameter(torch.zeros(out_ch))
self.up = up
self.down = down
self.resample_kernel = resample_kernel
self.kernel = kernel
self.use_bias = use_bias
def forward(self, x):
if self.up:
x = upsample_conv_2d(x, self.weight, k=self.resample_kernel)
elif self.down:
x = conv_downsample_2d(x, self.weight, k=self.resample_kernel)
else:
x = F.conv2d(x, self.weight, stride=1, padding=self.kernel // 2)
if self.use_bias:
x = x + self.bias.reshape(1, -1, 1, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4, 'kernel': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_3
return buf1, primals_1, primals_2
def _setup_kernel(k):
k = np.asarray(k, dtype=np.float32)
if k.ndim == 1:
k = np.outer(k, k)
k /= np.sum(k)
assert k.ndim == 2
assert k.shape[0] == k.shape[1]
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def conv_downsample_2d(x, w, k=None, factor=2, gain=1):
"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
Padding is performed only once at the beginning, not between the operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]` or
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
_outC, _inC, convH, convW = w.shape
assert convW == convH
if k is None:
k = [1] * factor
k = _setup_kernel(k) * gain
p = k.shape[0] - factor + (convW - 1)
s = [factor, factor]
x = upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2, p //
2))
return F.conv2d(x, w, stride=s, padding=0)
def _shape(x, dim):
return x.shape[dim]
def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
Padding is performed only once at the beginning, not between the
operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]` or
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
assert len(w.shape) == 4
convH = w.shape[2]
convW = w.shape[3]
inC = w.shape[1]
w.shape[0]
assert convW == convH
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * factor ** 2)
p = k.shape[0] - factor - (convW - 1)
stride = factor, factor
stride = [1, 1, factor, factor]
output_shape = (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1
) * factor + convW
output_padding = output_shape[0] - (_shape(x, 2) - 1) * stride[0
] - convH, output_shape[1] - (_shape(x, 3) - 1) * stride[1] - convW
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = _shape(x, 1) // inC
w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
w = torch.reshape(w, (num_groups * inC, -1, convH, convW))
x = F.conv_transpose2d(x, w, stride=stride, output_padding=
output_padding, padding=0)
return upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 +
factor - 1, p // 2 + 1))
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Conv2dNew(nn.Module):
"""Conv2d layer with optimal upsampling and downsampling (StyleGAN2)."""
def __init__(self, in_ch, out_ch, kernel, up=False, down=False,
resample_kernel=(1, 3, 3, 1), use_bias=True, kernel_init=None):
super().__init__()
assert not (up and down)
assert kernel >= 1 and kernel % 2 == 1
self.weight = nn.Parameter(torch.zeros(out_ch, in_ch, kernel, kernel))
if kernel_init is not None:
self.weight.data = kernel_init(self.weight.data.shape)
if use_bias:
self.bias = nn.Parameter(torch.zeros(out_ch))
self.up = up
self.down = down
self.resample_kernel = resample_kernel
self.kernel = kernel
self.use_bias = use_bias
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| chen-hao-chao/dlsm | Conv2d | false | 3,289 | [
"Apache-2.0"
] | 0 | aea88aa7e59a02fe44f25f4de9d6f2eaf044093b | https://github.com/chen-hao-chao/dlsm/tree/aea88aa7e59a02fe44f25f4de9d6f2eaf044093b | from torch.autograd import Function
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def _setup_kernel(k):
k = np.asarray(k, dtype=np.float32)
if k.ndim == 1:
k = np.outer(k, k)
k /= np.sum(k)
assert k.ndim == 2
assert k.shape[0] == k.shape[1]
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def conv_downsample_2d(x, w, k=None, factor=2, gain=1):
"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
Padding is performed only once at the beginning, not between the operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]` or
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
_outC, _inC, convH, convW = w.shape
assert convW == convH
if k is None:
k = [1] * factor
k = _setup_kernel(k) * gain
p = k.shape[0] - factor + (convW - 1)
s = [factor, factor]
x = upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2, p //
2))
return F.conv2d(x, w, stride=s, padding=0)
def _shape(x, dim):
return x.shape[dim]
def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
Padding is performed only once at the beginning, not between the
operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
# ... truncated (>4000 chars) for memory efficiency |
MiniBatchAverageLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bc/cbcebs6veq3jcchg2s5hkpwbnyxvsyj4d2tmg22tn336tutpb46n.py
# Topologically Sorted Source Nodes: [mean, sub, pow_1, mean_1, add, stddev, inject], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add => add
# inject => mean_2
# mean => mean
# mean_1 => mean_1
# pow_1 => pow_1
# stddev => sqrt
# sub => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [1], True), kwargs = {})
triton_poi_fused_add_mean_pow_sqrt_sub_0 = async_compile.triton('triton_poi_fused_add_mean_pow_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_pow_sqrt_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp24 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp25 = tl.load(in_ptr0 + (80 + x0), xmask)
tmp27 = tl.load(in_ptr0 + (144 + x0), xmask)
tmp29 = tl.load(in_ptr0 + (208 + x0), xmask)
tmp47 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp48 = tl.load(in_ptr0 + (96 + x0), xmask)
tmp50 = tl.load(in_ptr0 + (160 + x0), xmask)
tmp52 = tl.load(in_ptr0 + (224 + x0), xmask)
tmp70 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp71 = tl.load(in_ptr0 + (112 + x0), xmask)
tmp73 = tl.load(in_ptr0 + (176 + x0), xmask)
tmp75 = tl.load(in_ptr0 + (240 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp26 = tmp24 + tmp25
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp31 = tmp30 / tmp7
tmp32 = tmp24 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tmp25 - tmp31
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp27 - tmp31
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp29 - tmp31
tmp41 = tmp40 * tmp40
tmp42 = tmp39 + tmp41
tmp43 = tmp42 / tmp7
tmp44 = tmp43 + tmp21
tmp45 = libdevice.sqrt(tmp44)
tmp46 = tmp23 + tmp45
tmp49 = tmp47 + tmp48
tmp51 = tmp49 + tmp50
tmp53 = tmp51 + tmp52
tmp54 = tmp53 / tmp7
tmp55 = tmp47 - tmp54
tmp56 = tmp55 * tmp55
tmp57 = tmp48 - tmp54
tmp58 = tmp57 * tmp57
tmp59 = tmp56 + tmp58
tmp60 = tmp50 - tmp54
tmp61 = tmp60 * tmp60
tmp62 = tmp59 + tmp61
tmp63 = tmp52 - tmp54
tmp64 = tmp63 * tmp63
tmp65 = tmp62 + tmp64
tmp66 = tmp65 / tmp7
tmp67 = tmp66 + tmp21
tmp68 = libdevice.sqrt(tmp67)
tmp69 = tmp46 + tmp68
tmp72 = tmp70 + tmp71
tmp74 = tmp72 + tmp73
tmp76 = tmp74 + tmp75
tmp77 = tmp76 / tmp7
tmp78 = tmp70 - tmp77
tmp79 = tmp78 * tmp78
tmp80 = tmp71 - tmp77
tmp81 = tmp80 * tmp80
tmp82 = tmp79 + tmp81
tmp83 = tmp73 - tmp77
tmp84 = tmp83 * tmp83
tmp85 = tmp82 + tmp84
tmp86 = tmp75 - tmp77
tmp87 = tmp86 * tmp86
tmp88 = tmp85 + tmp87
tmp89 = tmp88 / tmp7
tmp90 = tmp89 + tmp21
tmp91 = libdevice.sqrt(tmp90)
tmp92 = tmp69 + tmp91
tmp93 = tmp92 / tmp7
tl.store(out_ptr0 + (x0), tmp93, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fc/cfcpnsijfdjlkqlxyjsxpa4wd2v5qtfunr2guhqosjmgxykzzohf.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %expand], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 5
x0 = xindex % 16
x2 = (xindex // 80)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, pow_1, mean_1, add, stddev, inject], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_pow_sqrt_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf0, buf1, 320, grid=grid(320), stream=stream0)
del arg0_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.fft
class MiniBatchAverageLayer(nn.Module):
"""Minibatch stat concatenation layer. Implementation is from https://github.com/shanexn/pytorch-pggan."""
def __init__(self, offset=1e-08):
super().__init__()
self.offset = offset
def forward(self, x):
stddev = torch.sqrt(torch.mean((x - torch.mean(x, dim=0, keepdim=
True)) ** 2, dim=0, keepdim=True) + self.offset)
inject_shape = list(x.size())[:]
inject_shape[1] = 1
inject = torch.mean(stddev, dim=1, keepdim=True)
inject = inject.expand(inject_shape)
return torch.cat((x, inject), dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.fft
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mean_pow_sqrt_sub_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp24 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp25 = tl.load(in_ptr0 + (80 + x0), xmask)
tmp27 = tl.load(in_ptr0 + (144 + x0), xmask)
tmp29 = tl.load(in_ptr0 + (208 + x0), xmask)
tmp47 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp48 = tl.load(in_ptr0 + (96 + x0), xmask)
tmp50 = tl.load(in_ptr0 + (160 + x0), xmask)
tmp52 = tl.load(in_ptr0 + (224 + x0), xmask)
tmp70 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp71 = tl.load(in_ptr0 + (112 + x0), xmask)
tmp73 = tl.load(in_ptr0 + (176 + x0), xmask)
tmp75 = tl.load(in_ptr0 + (240 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp26 = tmp24 + tmp25
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp31 = tmp30 / tmp7
tmp32 = tmp24 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tmp25 - tmp31
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp27 - tmp31
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp29 - tmp31
tmp41 = tmp40 * tmp40
tmp42 = tmp39 + tmp41
tmp43 = tmp42 / tmp7
tmp44 = tmp43 + tmp21
tmp45 = libdevice.sqrt(tmp44)
tmp46 = tmp23 + tmp45
tmp49 = tmp47 + tmp48
tmp51 = tmp49 + tmp50
tmp53 = tmp51 + tmp52
tmp54 = tmp53 / tmp7
tmp55 = tmp47 - tmp54
tmp56 = tmp55 * tmp55
tmp57 = tmp48 - tmp54
tmp58 = tmp57 * tmp57
tmp59 = tmp56 + tmp58
tmp60 = tmp50 - tmp54
tmp61 = tmp60 * tmp60
tmp62 = tmp59 + tmp61
tmp63 = tmp52 - tmp54
tmp64 = tmp63 * tmp63
tmp65 = tmp62 + tmp64
tmp66 = tmp65 / tmp7
tmp67 = tmp66 + tmp21
tmp68 = libdevice.sqrt(tmp67)
tmp69 = tmp46 + tmp68
tmp72 = tmp70 + tmp71
tmp74 = tmp72 + tmp73
tmp76 = tmp74 + tmp75
tmp77 = tmp76 / tmp7
tmp78 = tmp70 - tmp77
tmp79 = tmp78 * tmp78
tmp80 = tmp71 - tmp77
tmp81 = tmp80 * tmp80
tmp82 = tmp79 + tmp81
tmp83 = tmp73 - tmp77
tmp84 = tmp83 * tmp83
tmp85 = tmp82 + tmp84
tmp86 = tmp75 - tmp77
tmp87 = tmp86 * tmp86
tmp88 = tmp85 + tmp87
tmp89 = tmp88 / tmp7
tmp90 = tmp89 + tmp21
tmp91 = libdevice.sqrt(tmp90)
tmp92 = tmp69 + tmp91
tmp93 = tmp92 / tmp7
tl.store(out_ptr0 + x0, tmp93, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 5
x0 = xindex % 16
x2 = xindex // 80
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_pow_sqrt_sub_0[grid(16)](arg0_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(320)](arg0_1, buf0, buf1, 320, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
del buf0
return buf1,
class MiniBatchAverageLayerNew(nn.Module):
"""Minibatch stat concatenation layer. Implementation is from https://github.com/shanexn/pytorch-pggan."""
def __init__(self, offset=1e-08):
super().__init__()
self.offset = offset
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| catherine-qian/image2reverb | MiniBatchAverageLayer | false | 3,290 | [
"MIT"
] | 0 | 0fbcb35d6252dc8652cf98af0e64371cb81967e4 | https://github.com/catherine-qian/image2reverb/tree/0fbcb35d6252dc8652cf98af0e64371cb81967e4 | import torch
import torch.nn as nn
import torch.fft
class Model(nn.Module):
"""Minibatch stat concatenation layer. Implementation is from https://github.com/shanexn/pytorch-pggan."""
def __init__(self, offset=1e-08):
super().__init__()
self.offset = offset
def forward(self, x):
stddev = torch.sqrt(torch.mean((x - torch.mean(x, dim=0, keepdim=
True)) ** 2, dim=0, keepdim=True) + self.offset)
inject_shape = list(x.size())[:]
inject_shape[1] = 1
inject = torch.mean(stddev, dim=1, keepdim=True)
inject = inject.expand(inject_shape)
return torch.cat((x, inject), dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
InnerProductDecoder | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mb/cmb72vxh36b4k6lvmt4562lj3nrqtpyzst2qbon2yqx22gdjfa7x.py
# Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# adj => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.native_dropout]
buf0 = torch.ops.aten.native_dropout.default(arg0_1, 0.1, True)
del arg0_1
buf1 = buf0[0]
del buf0
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3)
del buf1
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf4, 16, grid=grid(16), stream=stream0)
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class InnerProductDecoder(nn.Module):
"""
Description of InnerProductDecoder
Inheritance:
nn.Module:
"""
def __init__(self, activation=torch.sigmoid, dropout=0.1):
super(InnerProductDecoder, self).__init__()
self.dropout = dropout
self.activation = activation
def forward(self, z):
z = F.dropout(z, self.dropout)
adj = self.activation(torch.mm(z, z.t()))
return adj
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.native_dropout.default(arg0_1, 0.1, True)
del arg0_1
buf1 = buf0[0]
del buf0
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
out=buf3)
del buf1
buf4 = buf3
del buf3
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(16)](buf4, 16, XBLOCK=16, num_warps
=1, num_stages=1)
return buf4,
class InnerProductDecoderNew(nn.Module):
"""
Description of InnerProductDecoder
Inheritance:
nn.Module:
"""
def __init__(self, activation=torch.sigmoid, dropout=0.1):
super(InnerProductDecoderNew, self).__init__()
self.dropout = dropout
self.activation = activation
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ciortanmadalina/graph-sc-package | InnerProductDecoder | false | 3,291 | [
"MIT"
] | 0 | df920f0acfa7b596a4d677df011e8ece51136949 | https://github.com/ciortanmadalina/graph-sc-package/tree/df920f0acfa7b596a4d677df011e8ece51136949 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Description of InnerProductDecoder
Inheritance:
nn.Module:
"""
def __init__(self, activation=torch.sigmoid, dropout=0.1):
super().__init__()
self.dropout = dropout
self.activation = activation
def forward(self, z):
z = F.dropout(z, self.dropout)
adj = self.activation(torch.mm(z, z.t()))
return adj
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return []
|
WeightedFeatureFusion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/fs/cfs4xkoaiu25wxx5ko6j355loos24sadbddfu2644hsgmchy36go.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x => add
# x_1 => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %select), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %select_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (256 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 + tmp1
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (5, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((5, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class WeightedFeatureFusion(nn.Module):
def __init__(self, layers, weight=False):
super(WeightedFeatureFusion, self).__init__()
self.layers = layers
self.weight = weight
self.n = len(layers) + 1
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True)
def forward(self, x, outputs):
if self.weight:
w = torch.sigmoid(self.w) * (2 / self.n)
x = x * w[0]
nx = x.shape[1]
for i in range(self.n - 1):
a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[
self.layers[i]]
na = a.shape[1]
if nx == na:
x = x + a
elif nx > na:
x[:, :na] = x[:, :na] + a
else:
x = x + a[:, :nx]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([5, 4, 4, 4])]
def get_init_inputs():
return [[], {'layers': [4, 4]}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + (256 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 + tmp1
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (5, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class WeightedFeatureFusionNew(nn.Module):
def __init__(self, layers, weight=False):
super(WeightedFeatureFusionNew, self).__init__()
self.layers = layers
self.weight = weight
self.n = len(layers) + 1
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| cititude/Media-and-Cognition-Homework | WeightedFeatureFusion | false | 3,292 | [
"MIT"
] | 0 | dabaaef6d8ec115171e7115731c5f76b518d9bde | https://github.com/cititude/Media-and-Cognition-Homework/tree/dabaaef6d8ec115171e7115731c5f76b518d9bde | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, layers, weight=False):
super().__init__()
self.layers = layers
self.weight = weight
self.n = len(layers) + 1
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True)
def forward(self, x, outputs):
if self.weight:
w = torch.sigmoid(self.w) * (2 / self.n)
x = x * w[0]
nx = x.shape[1]
for i in range(self.n - 1):
a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[
self.layers[i]]
na = a.shape[1]
if nx == na:
x = x + a
elif nx > na:
x[:, :na] = x[:, :na] + a
else:
x = x + a[:, :nx]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([5, 4, 4, 4])]
def get_init_inputs():
return []
|
MaxPool | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/sn/csn2dbp7vks6ijsgweukdpqocijd6zqfbkynllhql6hsady7yvkp.py
# Topologically Sorted Source Nodes: [x_max, max_pool2d], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_offsets_to_indices, _low_memory_max_pool2d_with_offsets, getitem
# x_max => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 1, 1, 1], 0.0), kwargs = {})
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%constant_pad_nd, [3, 3], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %_low_memory_max_pool2d_offsets_to_indices : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_offsets_to_indices.default](args = (%getitem_1, 3, 6, [2, 2], [0, 0]), kwargs = {})
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x3 = (xindex // 2)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + (2*x0)
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp8 & tmp13
tmp16 = tmp15 & tmp14
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp8 & tmp20
tmp23 = tmp22 & tmp21
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x3)), tmp23 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp6
tmp31 = tmp30 & tmp7
tmp32 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x3)), tmp31 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = triton_helpers.maximum(tmp32, tmp25)
tmp34 = tmp29 & tmp13
tmp35 = tmp34 & tmp14
tmp36 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), tmp35 & xmask, eviction_policy='evict_last', other=0.0)
tmp37 = triton_helpers.maximum(tmp36, tmp33)
tmp38 = tmp29 & tmp20
tmp39 = tmp38 & tmp21
tmp40 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp41 = triton_helpers.maximum(tmp40, tmp37)
tmp42 = 1 + (2*x1)
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp6
tmp47 = tmp46 & tmp7
tmp48 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x3)), tmp47 & xmask, eviction_policy='evict_last', other=0.0)
tmp49 = triton_helpers.maximum(tmp48, tmp41)
tmp50 = tmp45 & tmp13
tmp51 = tmp50 & tmp14
tmp52 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x3)), tmp51 & xmask, eviction_policy='evict_last', other=0.0)
tmp53 = triton_helpers.maximum(tmp52, tmp49)
tmp54 = tmp45 & tmp20
tmp55 = tmp54 & tmp21
tmp56 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x3)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = triton_helpers.maximum(tmp56, tmp53)
tmp58 = tmp17 > tmp11
tmp59 = tl.full([1], 1, tl.int8)
tmp60 = tl.full([1], 0, tl.int8)
tmp61 = tl.where(tmp58, tmp59, tmp60)
tmp62 = tmp24 > tmp18
tmp63 = tl.full([1], 2, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp32 > tmp25
tmp66 = tl.full([1], 3, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp36 > tmp33
tmp69 = tl.full([1], 4, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp40 > tmp37
tmp72 = tl.full([1], 5, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp48 > tmp41
tmp75 = tl.full([1], 6, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tmp52 > tmp49
tmp78 = tl.full([1], 7, tl.int8)
tmp79 = tl.where(tmp77, tmp78, tmp76)
tmp80 = tmp56 > tmp53
tmp81 = tl.full([1], 8, tl.int8)
tmp82 = tl.where(tmp80, tmp81, tmp79)
tmp83 = tl.full([1], 3, tl.int32)
tmp84 = tl.where((tmp82 < 0) != (tmp83 < 0), tl.where(tmp82 % tmp83 != 0, tmp82 // tmp83 - 1, tmp82 // tmp83), tmp82 // tmp83)
tmp85 = tmp84 * tmp83
tmp86 = tmp82 - tmp85
tmp87 = tmp26 + tmp84
tmp88 = tmp12 + tmp86
tmp89 = tl.full([1], 6, tl.int64)
tmp90 = tmp87 * tmp89
tmp91 = tmp90 + tmp88
tl.store(out_ptr0 + (x4), tmp57, xmask)
tl.store(out_ptr2 + (x4), tmp91, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_max, max_pool2d], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0.run(arg0_1, buf0, buf2, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
import torch.nn.functional as F
import torch.utils
import torch.cuda
class MaxPool(nn.Module):
def __init__(self, in_channels, reduction, save_device=torch.device('cpu')
):
super(MaxPool, self).__init__()
self.save_device = save_device
self.reduction = reduction
if self.reduction:
stride = 2
else:
stride = 1
self.stride = stride
self.Max_Pool = nn.MaxPool2d(3, stride=stride, return_indices=True)
self.pool_indices = None
def forward(self, x):
x_max = F.pad(x, [1] * 4)
x_max, self.pool_indices = self.Max_Pool(x_max)
return x_max
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'reduction': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.utils.data
import torch.utils
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0,
out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x3 = xindex // 2
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + 2 * x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x3), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp8 & tmp13
tmp16 = tmp15 & tmp14
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x3), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp8 & tmp20
tmp23 = tmp22 & tmp21
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x3), tmp23 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp6
tmp31 = tmp30 & tmp7
tmp32 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x3), tmp31 & xmask,
eviction_policy='evict_last', other=0.0)
tmp33 = triton_helpers.maximum(tmp32, tmp25)
tmp34 = tmp29 & tmp13
tmp35 = tmp34 & tmp14
tmp36 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), tmp35 & xmask,
eviction_policy='evict_last', other=0.0)
tmp37 = triton_helpers.maximum(tmp36, tmp33)
tmp38 = tmp29 & tmp20
tmp39 = tmp38 & tmp21
tmp40 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), tmp39 & xmask,
eviction_policy='evict_last', other=0.0)
tmp41 = triton_helpers.maximum(tmp40, tmp37)
tmp42 = 1 + 2 * x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp6
tmp47 = tmp46 & tmp7
tmp48 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x3), tmp47 & xmask,
eviction_policy='evict_last', other=0.0)
tmp49 = triton_helpers.maximum(tmp48, tmp41)
tmp50 = tmp45 & tmp13
tmp51 = tmp50 & tmp14
tmp52 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x3), tmp51 & xmask,
eviction_policy='evict_last', other=0.0)
tmp53 = triton_helpers.maximum(tmp52, tmp49)
tmp54 = tmp45 & tmp20
tmp55 = tmp54 & tmp21
tmp56 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x3), tmp55 & xmask,
eviction_policy='evict_last', other=0.0)
tmp57 = triton_helpers.maximum(tmp56, tmp53)
tmp58 = tmp17 > tmp11
tmp59 = tl.full([1], 1, tl.int8)
tmp60 = tl.full([1], 0, tl.int8)
tmp61 = tl.where(tmp58, tmp59, tmp60)
tmp62 = tmp24 > tmp18
tmp63 = tl.full([1], 2, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp32 > tmp25
tmp66 = tl.full([1], 3, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp36 > tmp33
tmp69 = tl.full([1], 4, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp40 > tmp37
tmp72 = tl.full([1], 5, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp48 > tmp41
tmp75 = tl.full([1], 6, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tmp52 > tmp49
tmp78 = tl.full([1], 7, tl.int8)
tmp79 = tl.where(tmp77, tmp78, tmp76)
tmp80 = tmp56 > tmp53
tmp81 = tl.full([1], 8, tl.int8)
tmp82 = tl.where(tmp80, tmp81, tmp79)
tmp83 = tl.full([1], 3, tl.int32)
tmp84 = tl.where((tmp82 < 0) != (tmp83 < 0), tl.where(tmp82 % tmp83 !=
0, tmp82 // tmp83 - 1, tmp82 // tmp83), tmp82 // tmp83)
tmp85 = tmp84 * tmp83
tmp86 = tmp82 - tmp85
tmp87 = tmp26 + tmp84
tmp88 = tmp12 + tmp86
tmp89 = tl.full([1], 6, tl.int64)
tmp90 = tmp87 * tmp89
tmp91 = tmp90 + tmp88
tl.store(out_ptr0 + x4, tmp57, xmask)
tl.store(out_ptr2 + x4, tmp91, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0[grid(64)](
arg0_1, buf0, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0, buf2
class MaxPoolNew(nn.Module):
def __init__(self, in_channels, reduction, save_device=torch.device('cpu')
):
super(MaxPoolNew, self).__init__()
self.save_device = save_device
self.reduction = reduction
if self.reduction:
stride = 2
else:
stride = 1
self.stride = stride
self.Max_Pool = nn.MaxPool2d(3, stride=stride, return_indices=True)
self.pool_indices = None
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| chomin/BayesNAS | MaxPool | false | 3,293 | [
"Apache-2.0"
] | 0 | 7b1d991d1e10213fa999eab513d1e12fe4bb571b | https://github.com/chomin/BayesNAS/tree/7b1d991d1e10213fa999eab513d1e12fe4bb571b | import torch
from torch import nn
import torch.utils.data
import torch.nn.functional as F
import torch.utils
import torch.cuda
class Model(nn.Module):
def __init__(self, in_channels, reduction, save_device=torch.device('cpu')
):
super().__init__()
self.save_device = save_device
self.reduction = reduction
if self.reduction:
stride = 2
else:
stride = 1
self.stride = stride
self.Max_Pool = nn.MaxPool2d(3, stride=stride, return_indices=True)
self.pool_indices = None
def forward(self, x):
x_max = F.pad(x, [1] * 4)
x_max, self.pool_indices = self.Max_Pool(x_max)
return x_max
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
StochasticGate | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dx/cdxpudcrzxrgg4wlqegvmfzkar6rgaas4r65walw7ugnjqbemff5.py
# Topologically Sorted Source Nodes: [mul, mul_1, x], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# x => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.7), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 0.7
tmp2 = tmp0 * tmp1
tmp4 = 0.3
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, x], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
class StochasticGate(nn.Module):
"""Stochastically merges features from two levels
with varying size of the receptive field
"""
def __init__(self):
super(StochasticGate, self).__init__()
self._mask_drop = None
def forward(self, x1, x2, alpha_rate=0.3):
"""Stochastic Gate (SG)
SG stochastically mixes deep and shallow features
at training time and deterministically combines
them at test time with a hyperparam. alpha
"""
if self.training:
if self._mask_drop is None:
_bs, c, _h, _w = x1.size()
assert c == x2.size(1), 'Number of features is different'
self._mask_drop = torch.ones_like(x1)
mask_drop = (1 - alpha_rate) * F.dropout(self._mask_drop,
alpha_rate)
x1 = (x1 - alpha_rate * x2) / max(1e-08, 1 - alpha_rate)
x = mask_drop * x1 + (1 - mask_drop) * x2
else:
x = (1 - alpha_rate) * x1 + alpha_rate * x2
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 0.7
tmp2 = tmp0 * tmp1
tmp4 = 0.3
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class StochasticGateNew(nn.Module):
"""Stochastically merges features from two levels
with varying size of the receptive field
"""
def __init__(self):
super(StochasticGateNew, self).__init__()
self._mask_drop = None
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| candacelax/1-stage-wseg | StochasticGate | false | 3,294 | [
"Apache-2.0"
] | 0 | 7a24791a3a78454e6611399ba55a808491551543 | https://github.com/candacelax/1-stage-wseg/tree/7a24791a3a78454e6611399ba55a808491551543 | import torch
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""Stochastically merges features from two levels
with varying size of the receptive field
"""
def __init__(self):
super().__init__()
self._mask_drop = None
def forward(self, x1, x2, alpha_rate=0.3):
"""Stochastic Gate (SG)
SG stochastically mixes deep and shallow features
at training time and deterministically combines
them at test time with a hyperparam. alpha
"""
if self.training:
if self._mask_drop is None:
_bs, c, _h, _w = x1.size()
assert c == x2.size(1), 'Number of features is different'
self._mask_drop = torch.ones_like(x1)
mask_drop = (1 - alpha_rate) * F.dropout(self._mask_drop,
alpha_rate)
x1 = (x1 - alpha_rate * x2) / max(1e-08, 1 - alpha_rate)
x = mask_drop * x1 + (1 - mask_drop) * x2
else:
x = (1 - alpha_rate) * x1 + alpha_rate * x2
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
HingeLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zb/czbaqw3fomitugonrjoilaqhsayirixogubby3of6px57pdaq4lk.py
# Topologically Sorted Source Nodes: [gt, y_binary, mul, y_new, mul_1, sub_1, loss, loss_1, mul_2, sub_2, mul_3, add, loss_2, mean], Original ATen: [aten.gt, aten._to_copy, aten.mul, aten.sub, aten.rsub, aten.relu, aten.pow, aten.add, aten.mean]
# Source node to ATen node mapping:
# add => add
# gt => gt
# loss => relu
# loss_1 => pow_1
# loss_2 => mul_4
# mean => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# sub_1 => sub_1
# sub_2 => sub_2
# y_binary => convert_element_type
# y_new => sub
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0), kwargs = {})
# %convert_element_type : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 2.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %mul_1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_1,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 1.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 1.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %add), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_4, [1]), kwargs = {})
triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0 = async_compile.triton('triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp19 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp24 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp35 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp40 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp51 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp56 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = 2.0
tmp5 = tmp3 * tmp4
tmp6 = 1.0
tmp7 = tmp5 - tmp6
tmp9 = tmp7 * tmp8
tmp10 = tmp6 - tmp9
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = tmp12 * tmp12
tmp14 = tmp3 * tmp6
tmp15 = tmp6 - tmp3
tmp16 = tmp15 * tmp6
tmp17 = tmp14 + tmp16
tmp18 = tmp13 * tmp17
tmp20 = tmp19 > tmp1
tmp21 = tmp20.to(tl.float32)
tmp22 = tmp21 * tmp4
tmp23 = tmp22 - tmp6
tmp25 = tmp23 * tmp24
tmp26 = tmp6 - tmp25
tmp27 = triton_helpers.maximum(tmp11, tmp26)
tmp28 = tmp27 * tmp27
tmp29 = tmp21 * tmp6
tmp30 = tmp6 - tmp21
tmp31 = tmp30 * tmp6
tmp32 = tmp29 + tmp31
tmp33 = tmp28 * tmp32
tmp34 = tmp18 + tmp33
tmp36 = tmp35 > tmp1
tmp37 = tmp36.to(tl.float32)
tmp38 = tmp37 * tmp4
tmp39 = tmp38 - tmp6
tmp41 = tmp39 * tmp40
tmp42 = tmp6 - tmp41
tmp43 = triton_helpers.maximum(tmp11, tmp42)
tmp44 = tmp43 * tmp43
tmp45 = tmp37 * tmp6
tmp46 = tmp6 - tmp37
tmp47 = tmp46 * tmp6
tmp48 = tmp45 + tmp47
tmp49 = tmp44 * tmp48
tmp50 = tmp34 + tmp49
tmp52 = tmp51 > tmp1
tmp53 = tmp52.to(tl.float32)
tmp54 = tmp53 * tmp4
tmp55 = tmp54 - tmp6
tmp57 = tmp55 * tmp56
tmp58 = tmp6 - tmp57
tmp59 = triton_helpers.maximum(tmp11, tmp58)
tmp60 = tmp59 * tmp59
tmp61 = tmp53 * tmp6
tmp62 = tmp6 - tmp53
tmp63 = tmp62 * tmp6
tmp64 = tmp61 + tmp63
tmp65 = tmp60 * tmp64
tmp66 = tmp50 + tmp65
tmp67 = 4.0
tmp68 = tmp66 / tmp67
tl.store(out_ptr0 + (x2), tmp68, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gt, y_binary, mul, y_new, mul_1, sub_1, loss, loss_1, mul_2, sub_2, mul_3, add, loss_2, mean], Original ATen: [aten.gt, aten._to_copy, aten.mul, aten.sub, aten.rsub, aten.relu, aten.pow, aten.add, aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class HingeLoss(nn.Module):
"""Hinge loss function module for multi-label classification"""
def __init__(self, margin=1.0, power=2, cost_weighted=False):
"""
Args:
margin (float, optional): margin for the hinge loss. Default 1.0
power (int, optional): exponent for the hinge loss. Default to 2 for squared-hinge
cost_weighted (bool, optional): whether to use label value as weight. Default False
"""
super(HingeLoss, self).__init__()
self.margin = margin
self.power = power
self.cost_weighted = cost_weighted
def forward(self, z, y, C_pos=1.0, C_neg=1.0):
"""Compute the hinge loss
Args:
z (torch.tensor): predicted matrix of size: (batch_size * output_size)
y (torch.tensor): 0/1 ground truth of size: (batch_size * output_size)
C_pos (float, optional): positive penalty for the hinge loss. Default 1.0
C_neg (float, optional): negative penalty for the hinge loss. Default 1.0
Returns:
loss (torch.tensor): the tensor of average loss
"""
y_binary = (y > 0).float()
y_new = 2.0 * y_binary - 1.0
loss = F.relu(self.margin - y_new * z)
loss = loss ** self.power
if self.cost_weighted:
loss = loss * (C_pos * y + C_neg * (1.0 - y_binary))
else:
loss = loss * (C_pos * y_binary + C_neg * (1.0 - y_binary))
return loss.mean(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp24 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp35 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp40 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp51 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp56 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = 2.0
tmp5 = tmp3 * tmp4
tmp6 = 1.0
tmp7 = tmp5 - tmp6
tmp9 = tmp7 * tmp8
tmp10 = tmp6 - tmp9
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = tmp12 * tmp12
tmp14 = tmp3 * tmp6
tmp15 = tmp6 - tmp3
tmp16 = tmp15 * tmp6
tmp17 = tmp14 + tmp16
tmp18 = tmp13 * tmp17
tmp20 = tmp19 > tmp1
tmp21 = tmp20.to(tl.float32)
tmp22 = tmp21 * tmp4
tmp23 = tmp22 - tmp6
tmp25 = tmp23 * tmp24
tmp26 = tmp6 - tmp25
tmp27 = triton_helpers.maximum(tmp11, tmp26)
tmp28 = tmp27 * tmp27
tmp29 = tmp21 * tmp6
tmp30 = tmp6 - tmp21
tmp31 = tmp30 * tmp6
tmp32 = tmp29 + tmp31
tmp33 = tmp28 * tmp32
tmp34 = tmp18 + tmp33
tmp36 = tmp35 > tmp1
tmp37 = tmp36.to(tl.float32)
tmp38 = tmp37 * tmp4
tmp39 = tmp38 - tmp6
tmp41 = tmp39 * tmp40
tmp42 = tmp6 - tmp41
tmp43 = triton_helpers.maximum(tmp11, tmp42)
tmp44 = tmp43 * tmp43
tmp45 = tmp37 * tmp6
tmp46 = tmp6 - tmp37
tmp47 = tmp46 * tmp6
tmp48 = tmp45 + tmp47
tmp49 = tmp44 * tmp48
tmp50 = tmp34 + tmp49
tmp52 = tmp51 > tmp1
tmp53 = tmp52.to(tl.float32)
tmp54 = tmp53 * tmp4
tmp55 = tmp54 - tmp6
tmp57 = tmp55 * tmp56
tmp58 = tmp6 - tmp57
tmp59 = triton_helpers.maximum(tmp11, tmp58)
tmp60 = tmp59 * tmp59
tmp61 = tmp53 * tmp6
tmp62 = tmp6 - tmp53
tmp63 = tmp62 * tmp6
tmp64 = tmp61 + tmp63
tmp65 = tmp60 * tmp64
tmp66 = tmp50 + tmp65
tmp67 = 4.0
tmp68 = tmp66 / tmp67
tl.store(out_ptr0 + x2, tmp68, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__to_copy_add_gt_mean_mul_pow_relu_rsub_sub_0[grid(64)
](arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class HingeLossNew(nn.Module):
"""Hinge loss function module for multi-label classification"""
def __init__(self, margin=1.0, power=2, cost_weighted=False):
"""
Args:
margin (float, optional): margin for the hinge loss. Default 1.0
power (int, optional): exponent for the hinge loss. Default to 2 for squared-hinge
cost_weighted (bool, optional): whether to use label value as weight. Default False
"""
super(HingeLossNew, self).__init__()
self.margin = margin
self.power = power
self.cost_weighted = cost_weighted
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| cjhsieh/pecos | HingeLoss | false | 3,295 | [
"Apache-2.0",
"BSD-3-Clause"
] | 0 | 22e88ee544d5a5e891a1d23a578881fdf26dfcf7 | https://github.com/cjhsieh/pecos/tree/22e88ee544d5a5e891a1d23a578881fdf26dfcf7 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""Hinge loss function module for multi-label classification"""
def __init__(self, margin=1.0, power=2, cost_weighted=False):
"""
Args:
margin (float, optional): margin for the hinge loss. Default 1.0
power (int, optional): exponent for the hinge loss. Default to 2 for squared-hinge
cost_weighted (bool, optional): whether to use label value as weight. Default False
"""
super().__init__()
self.margin = margin
self.power = power
self.cost_weighted = cost_weighted
def forward(self, z, y, C_pos=1.0, C_neg=1.0):
"""Compute the hinge loss
Args:
z (torch.tensor): predicted matrix of size: (batch_size * output_size)
y (torch.tensor): 0/1 ground truth of size: (batch_size * output_size)
C_pos (float, optional): positive penalty for the hinge loss. Default 1.0
C_neg (float, optional): negative penalty for the hinge loss. Default 1.0
Returns:
loss (torch.tensor): the tensor of average loss
"""
y_binary = (y > 0).float()
y_new = 2.0 * y_binary - 1.0
loss = F.relu(self.margin - y_new * z)
loss = loss ** self.power
if self.cost_weighted:
loss = loss * (C_pos * y + C_neg * (1.0 - y_binary))
else:
loss = loss * (C_pos * y_binary + C_neg * (1.0 - y_binary))
return loss.mean(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FCLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dn/cdnhr6ixjduuhci57kobqjnehjrl22mcyjqzuuhvtxxshy437diy.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_1 => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
import torch.nn as nn
class FCLayer(nn.Module):
def __init__(self, input_dim: 'int', output_dim: 'int', dropout_rate:
'float'=0.0, use_activation: 'bool'=True) ->None:
super(FCLayer, self).__init__()
self.use_activation = use_activation
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(input_dim, output_dim)
self.tanh = nn.Tanh()
def forward(self, x: 'Tensor') ->Tensor:
x = self.dropout(x)
if self.use_activation:
x = self.tanh(x)
return self.linear(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class FCLayerNew(nn.Module):
def __init__(self, input_dim: 'int', output_dim: 'int', dropout_rate:
'float'=0.0, use_activation: 'bool'=True) ->None:
super(FCLayerNew, self).__init__()
self.use_activation = use_activation
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(input_dim, output_dim)
self.tanh = nn.Tanh()
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| cjber/georelations | FCLayer | false | 3,296 | [
"MIT"
] | 0 | fe97e62a950b556c88be6e43fc67a55a16a65938 | https://github.com/cjber/georelations/tree/fe97e62a950b556c88be6e43fc67a55a16a65938 | import torch
from torch import Tensor
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim: 'int', output_dim: 'int', dropout_rate:
'float'=0.0, use_activation: 'bool'=True) ->None:
super().__init__()
self.use_activation = use_activation
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(input_dim, output_dim)
self.tanh = nn.Tanh()
def forward(self, x: 'Tensor') ->Tensor:
x = self.dropout(x)
if self.use_activation:
x = self.tanh(x)
return self.linear(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GeneralizedMeanPoolingList | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/y2/cy2pcyx66rxs2wwckvv7x4gla44m6vborgfrhdvksz42uti7umfn.py
# Topologically Sorted Source Nodes: [x_1, out, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
# Source node to ATen node mapping:
# out => mean
# stack => cat
# x_1 => clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select, 1e-06), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%clamp_min, [-1, -2], True), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3], -1), kwargs = {})
triton_per_fused_clamp_mean_stack_0 = async_compile.triton('triton_per_fused_clamp_mean_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_stack_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + (4*x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ah/cah4r2es7znxbnbyf7e2tyats7whspxsakhd3kuu4rswpxgicdgn.py
# Topologically Sorted Source Nodes: [x_3, out_1, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
# Source node to ATen node mapping:
# out_1 => mean_1
# stack => cat
# x_3 => clamp_min_1
# Graph fragment:
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_1, 1e-06), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%clamp_min_1, [-1, -2], True), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3], -1), kwargs = {})
triton_per_fused_clamp_mean_stack_1 = async_compile.triton('triton_per_fused_clamp_mean_stack_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_stack_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_stack_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (64 + r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + (4*x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tk/ctkzijacmyr43ul3jpgbfklpjgybhwklsqqf7scnzcsep26ma7pc.py
# Topologically Sorted Source Nodes: [x_5, out_2, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
# Source node to ATen node mapping:
# out_2 => mean_2
# stack => cat
# x_5 => clamp_min_2
# Graph fragment:
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_2, 1e-06), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%clamp_min_2, [-1, -2], True), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3], -1), kwargs = {})
triton_per_fused_clamp_mean_stack_2 = async_compile.triton('triton_per_fused_clamp_mean_stack_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_stack_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_stack_2(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (128 + r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + (4*x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kr/ckrojh66cyov6a633x2h75zkfrededsm5xiaitzcnjpb2rfngray.py
# Topologically Sorted Source Nodes: [x_7, out_3, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
# Source node to ATen node mapping:
# out_3 => mean_3
# stack => cat
# x_7 => clamp_min_3
# Graph fragment:
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%select_3, 1e-06), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%clamp_min_3, [-1, -2], True), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3], -1), kwargs = {})
triton_per_fused_clamp_mean_stack_3 = async_compile.triton('triton_per_fused_clamp_mean_stack_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_clamp_mean_stack_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (192 + r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + (4*x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wh/cwhxbfiwupyonsvovyyfzdkju6jcj5dqyz7ftctyky6tdljojqc6.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean_4
# Graph fragment:
# %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%cat, [-1]), kwargs = {})
triton_poi_fused_mean_4 = async_compile.triton('triton_poi_fused_mean_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 1, 1, 4), (4, 1, 4, 1), torch.float32)
buf4 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [x_1, out, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
stream0 = get_raw_stream(0)
triton_per_fused_clamp_mean_stack_0.run(arg0_1, buf4, 4, 16, grid=grid(4), stream=stream0)
buf5 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 1) # alias
# Topologically Sorted Source Nodes: [x_3, out_1, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
triton_per_fused_clamp_mean_stack_1.run(arg0_1, buf5, 4, 16, grid=grid(4), stream=stream0)
buf6 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 2) # alias
# Topologically Sorted Source Nodes: [x_5, out_2, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
triton_per_fused_clamp_mean_stack_2.run(arg0_1, buf6, 4, 16, grid=grid(4), stream=stream0)
buf7 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 3) # alias
# Topologically Sorted Source Nodes: [x_7, out_3, stack], Original ATen: [aten.clamp, aten.mean, aten.stack]
triton_per_fused_clamp_mean_stack_3.run(arg0_1, buf7, 4, 16, grid=grid(4), stream=stream0)
del arg0_1
buf9 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
triton_poi_fused_mean_4.run(buf8, buf9, 4, grid=grid(4), stream=stream0)
del buf4
del buf5
del buf6
del buf7
del buf8
return (buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from abc import ABC
from torch import nn
class GeneralizedMeanPoolingList(nn.Module, ABC):
"""Applies a 2D power-average adaptive pooling over an input signal composed of
several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size
will be the same as that of the input.
"""
def __init__(self, output_size=1, eps=1e-06):
super(GeneralizedMeanPoolingList, self).__init__()
self.output_size = output_size
self.eps = eps
def forward(self, x_list):
outs = []
for x in x_list:
x = x.clamp(min=self.eps)
out = torch.nn.functional.adaptive_avg_pool2d(x, self.output_size)
outs.append(out)
return torch.stack(outs, -1).mean(-1)
def __repr__(self):
return self.__class__.__name__ + '(' + 'output_size=' + str(self.
output_size) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from abc import ABC
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_clamp_mean_stack_0(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + 4 * x0, tmp8, xmask)
@triton.jit
def triton_per_fused_clamp_mean_stack_1(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (64 + r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + 4 * x0, tmp8, xmask)
@triton.jit
def triton_per_fused_clamp_mean_stack_2(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (128 + r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + 4 * x0, tmp8, xmask)
@triton.jit
def triton_per_fused_clamp_mean_stack_3(in_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (192 + r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr1 + 4 * x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_mean_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 1, 1, 4), (4, 1, 4, 1), torch.float32)
buf4 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 0)
get_raw_stream(0)
triton_per_fused_clamp_mean_stack_0[grid(4)](arg0_1, buf4, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf5 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 1)
triton_per_fused_clamp_mean_stack_1[grid(4)](arg0_1, buf5, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf6 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 2)
triton_per_fused_clamp_mean_stack_2[grid(4)](arg0_1, buf6, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf7 = reinterpret_tensor(buf8, (4, 1, 1, 1), (4, 1, 4, 1), 3)
triton_per_fused_clamp_mean_stack_3[grid(4)](arg0_1, buf7, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
buf9 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
triton_poi_fused_mean_4[grid(4)](buf8, buf9, 4, XBLOCK=4, num_warps
=1, num_stages=1)
del buf4
del buf5
del buf6
del buf7
del buf8
return buf9,
class GeneralizedMeanPoolingListNew(nn.Module, ABC):
"""Applies a 2D power-average adaptive pooling over an input signal composed of
several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size
will be the same as that of the input.
"""
def __init__(self, output_size=1, eps=1e-06):
super(GeneralizedMeanPoolingListNew, self).__init__()
self.output_size = output_size
self.eps = eps
def __repr__(self):
return self.__class__.__name__ + '(' + 'output_size=' + str(self.
output_size) + ')'
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| catcodee/cluster-contrast-reid | GeneralizedMeanPoolingList | false | 3,297 | [
"MIT"
] | 0 | f6359990a4326375f23c3fd654df3fc6dcc9c579 | https://github.com/catcodee/cluster-contrast-reid/tree/f6359990a4326375f23c3fd654df3fc6dcc9c579 | import torch
from abc import ABC
from torch import nn
class Model(nn.Module, ABC):
"""Applies a 2D power-average adaptive pooling over an input signal composed of
several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size
will be the same as that of the input.
"""
def __init__(self, output_size=1, eps=1e-06):
super().__init__()
self.output_size = output_size
self.eps = eps
def forward(self, x_list):
outs = []
for x in x_list:
x = x.clamp(min=self.eps)
out = torch.nn.functional.adaptive_avg_pool2d(x, self.output_size)
outs.append(out)
return torch.stack(outs, -1).mean(-1)
def __repr__(self):
return self.__class__.__name__ + '(' + 'output_size=' + str(self.
output_size) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Model | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ff/cffi7vxidma5gei4f6wznc3qzapljmsv5w6dvkcys2pj7dzl4a37.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tz/ctzengiku4fpyacmhgujhvarriu4wwirpgay5u6a5wsrq2v75w32.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_2 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 12
x2 = (xindex // 48)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (12 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (24 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (36 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bv/cbvhs2xxondnsndwd2fomugf22ux53yglufxq4ntkf3shlcw366c.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_2 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 12
x2 = (xindex // 48)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (12 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (24 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (36 + x0 + (48*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (50, 50), (50, 1))
assert_size_stride(primals_5, (50, ), (1, ))
assert_size_stride(primals_6, (3, 50), (50, 1))
assert_size_stride(primals_7, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 3200, grid=grid(3200), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 50), (1, 50), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 3200, grid=grid(3200), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 50), (50, 1), 0), reinterpret_tensor(primals_6, (50, 3), (1, 50), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 192, grid=grid(192), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 3), (48, 12, 3, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 192, grid=grid(192), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(buf3, (64, 50), (50, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((50, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
"""
An example pytorch model for classifying iris flower
"""
def __init__(self, input_dim=4, output_dim=3):
super(Model, self).__init__()
self.layer1 = nn.Linear(input_dim, 50)
self.layer2 = nn.Linear(50, 50)
self.layer3 = nn.Linear(50, output_dim)
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = F.softmax(self.layer3(x), dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 12
x2 = xindex // 48
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (12 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (24 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (36 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 12
x2 = xindex // 48
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (12 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (24 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (36 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (50, 50), (50, 1))
assert_size_stride(primals_5, (50,), (1,))
assert_size_stride(primals_6, (3, 50), (50, 1))
assert_size_stride(primals_7, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf1,
primals_2, buf8, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 50), (50, 1), 0),
reinterpret_tensor(primals_4, (50, 50), (1, 50), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 50), (800, 200, 50, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf3,
primals_5, buf7, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 50),
(50, 1), 0), reinterpret_tensor(primals_6, (50, 3), (1, 50), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
triton_poi_fused__softmax_1[grid(192)](buf4, buf5, 192, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 3), (48, 12, 3, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(192)](buf5, buf6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(
buf3, (64, 50), (50, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class ModelNew(nn.Module):
"""
An example pytorch model for classifying iris flower
"""
def __init__(self, input_dim=4, output_dim=3):
super(ModelNew, self).__init__()
self.layer1 = nn.Linear(input_dim, 50)
self.layer2 = nn.Linear(50, 50)
self.layer3 = nn.Linear(50, output_dim)
def forward(self, input_0):
primals_1 = self.layer1.weight
primals_2 = self.layer1.bias
primals_4 = self.layer2.weight
primals_5 = self.layer2.bias
primals_6 = self.layer3.weight
primals_7 = self.layer3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| clam004/docker-pytorch-api | Model | false | 3,298 | [
"MIT"
] | 0 | 2ba390ea581c774e8bdfa1ad434b42181376430f | https://github.com/clam004/docker-pytorch-api/tree/2ba390ea581c774e8bdfa1ad434b42181376430f | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
"""
An example pytorch model for classifying iris flower
"""
def __init__(self, input_dim=4, output_dim=3):
super(Model, self).__init__()
self.layer1 = nn.Linear(input_dim, 50)
self.layer2 = nn.Linear(50, 50)
self.layer3 = nn.Linear(50, output_dim)
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = F.softmax(self.layer3(x), dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FCDiscriminator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/fl/cflskeukqjcpn5pfynzkpwyovblowpewl3lyqiwirncoqacxcylo.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fi/cfik3ekgqfui53hs3oovko4x7tlh4b2wbgnht32gjrarwmhugyng.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_2 => convolution_1
# x_3 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ed/cedb4xkhtn35e7lnqetrdwsyqvpftp56fehphd4yymgaavex4aka.py
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_4 => convolution_2
# x_5 => gt_2, mul_2, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7q/c7qkey6xgen6g4in6j4xxwlisrmnbat37t62h6ukhjyafaazep4c.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_6 => convolution_3
# x_7 => gt_3, mul_3, where_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ik/cik5pyqifucbhblhkx6wygggufrollappejam67g5gl4ncmmv2wh.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_8 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (512, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (1, 512, 4, 4), (8192, 16, 4, 1))
assert_size_stride(primals_11, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf5, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 512, 4, 4), (8192, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_3.run(buf7, primals_9, 32768, grid=grid(32768), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 1, 2, 2), (4, 4, 2, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_4.run(buf9, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FCDiscriminator(nn.Module):
def __init__(self, num_classes, ndf=64):
super().__init__()
self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2,
padding=1)
self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1
)
self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2,
padding=1)
self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2,
padding=1)
self.classifier = nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2,
padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.conv4(x)
x = self.leaky_relu(x)
x = self.classifier(x)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (512, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (1, 512, 4, 4), (8192, 16, 4, 1))
assert_size_stride(primals_11, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(262144)](buf1,
primals_2, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_leaky_relu_1[grid(131072)](buf3,
primals_5, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_leaky_relu_2[grid(65536)](buf5,
primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 512, 4, 4), (8192, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_leaky_relu_3[grid(32768)](buf7,
primals_9, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 1, 2, 2), (4, 4, 2, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_4[grid(16)](buf9, primals_11, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_11
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7)
class FCDiscriminatorNew(nn.Module):
def __init__(self, num_classes, ndf=64):
super().__init__()
self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2,
padding=1)
self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1
)
self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2,
padding=1)
self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2,
padding=1)
self.classifier = nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2,
padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.classifier.weight
primals_11 = self.classifier.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| ciampluca/unsupervised_counting | FCDiscriminator | false | 3,299 | [
"MIT"
] | 0 | 4445d48f68da75359643bcf3003e90ef61d817e3 | https://github.com/ciampluca/unsupervised_counting/tree/4445d48f68da75359643bcf3003e90ef61d817e3 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, num_classes, ndf=64):
super().__init__()
self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2,
padding=1)
self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1
)
self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2,
padding=1)
self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2,
padding=1)
self.classifier = nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2,
padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.conv4(x)
x = self.leaky_relu(x)
x = self.classifier(x)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [4]
|
TransformerLinearXMCHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/us/cusgaoeq6tgjqeybtofnrkxq3rybigqcxz23tjeddnbyaohmsz26.py
# Topologically Sorted Source Nodes: [W_act], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# W_act => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%slice_1, [1, 1, 1]), kwargs = {})
triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yj/cyjcqb7cevhaw23pwt3vwv2joobqvxvro7xbjpawpb6fndoft2ip.py
# Topologically Sorted Source Nodes: [b_act], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# b_act => repeat_1
# Graph fragment:
# %repeat_1 : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%slice_3, [1, 1, 1]), kwargs = {})
triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (5, 4), (4, 1))
assert_size_stride(primals_2, (5, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [W_act], Original ATen: [aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_repeat_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((1, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [b_act], Original ATen: [aten.repeat]
triton_poi_fused_repeat_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((5, 1), (1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
class TransformerLinearXMCHead(nn.Module):
"""XMC head for Transformers
Containing label weight embeddings and label bias embeddings
"""
def __init__(self, hidden_size, num_labels):
super().__init__()
self.label_pad = num_labels
self.num_labels = num_labels
self.W = nn.Embedding(num_labels + 1, hidden_size, padding_idx=self
.label_pad)
self.b = nn.Embedding(num_labels + 1, 1, padding_idx=self.label_pad)
self.random_init()
@property
def device(self):
return self.W.weight.device
def random_init(self):
"""Initialize the weight and bias embeddings
Initialize label weight embedding with N(0, 0.02) while keeping PAD
column to be 0. Initialize label bias embedding with 0.
"""
mat = 0.02 * np.random.randn(self.label_pad, self.W.weight.shape[1])
mat = np.hstack([mat, np.zeros([mat.shape[0], 1])])
self.init_from(mat)
def inherit(self, prev_head, C):
prev_W = prev_head.W.weight[:-1, :].detach().numpy()
prev_b = prev_head.b.weight[:-1, :].detach().numpy()
cur_W = C * prev_W
cur_b = C * prev_b
mat = np.hstack([cur_W, cur_b])
self.init_from(mat)
def bootstrap(self, prob, **kwargs):
"""Initialize head with weights learned from linear model using transformer embeddings
Args:
prob (MLProblem): the multi-label problem to bootstrap with
kwargs:
Cp (float): the weight on positive samples. Default 100.0
Cn (float): the weight on negative samples. Default 100.0
threshold (float): the threshold to sparsify the model
"""
Cp = kwargs.get('Cp', 100.0)
Cn = kwargs.get('Cn', 100.0)
threshold = kwargs.get('threshold', 0)
mat = MLModel.train(prob, threshold=threshold, Cp=Cp, Cn=Cn)
mat = mat.W.toarray().T
self.init_from(mat)
def init_from(self, mat):
"""Initialize the weight and bias embeddings with given matrix
Args:
mat (ndarray): matrix used for initialize, shape = (nr_labels, hidden_size + 1)
"""
if not isinstance(mat, np.ndarray):
raise ValueError('Expect ndarray to initialize label embedding')
if mat.shape[0] != self.label_pad:
raise ValueError('nr_labels mismatch!')
mat = np.vstack([mat, np.zeros([1, mat.shape[1]])])
self.W = nn.Embedding.from_pretrained(torch.FloatTensor(mat[:, :-1]
), freeze=False, sparse=True, padding_idx=self.label_pad)
self.b = nn.Embedding.from_pretrained(torch.FloatTensor(mat[:, -1])
.view((self.label_pad + 1, 1)), freeze=False, sparse=True,
padding_idx=self.label_pad)
def forward(self, pooled_output=None, output_indices=None, num_device=1):
if output_indices is None:
W_act = self.W.weight[:-1, :].repeat(num_device, 1, 1)
b_act = self.b.weight[:-1].repeat(num_device, 1, 1)
else:
output_indices = output_indices
W_act = self.W(output_indices)
b_act = self.b(output_indices)
return W_act, b_act
def get_inputs():
return []
def get_init_inputs():
return [[], {'hidden_size': 4, 'num_labels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (5, 4), (4, 1))
assert_size_stride(primals_2, (5, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_repeat_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((1, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_repeat_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
return buf0, buf1
class TransformerLinearXMCHeadNew(nn.Module):
"""XMC head for Transformers
Containing label weight embeddings and label bias embeddings
"""
def __init__(self, hidden_size, num_labels):
super().__init__()
self.label_pad = num_labels
self.num_labels = num_labels
self.W = nn.Embedding(num_labels + 1, hidden_size, padding_idx=self
.label_pad)
self.b = nn.Embedding(num_labels + 1, 1, padding_idx=self.label_pad)
self.random_init()
@property
def device(self):
return self.W.weight.device
def random_init(self):
"""Initialize the weight and bias embeddings
Initialize label weight embedding with N(0, 0.02) while keeping PAD
column to be 0. Initialize label bias embedding with 0.
"""
mat = 0.02 * np.random.randn(self.label_pad, self.W.weight.shape[1])
mat = np.hstack([mat, np.zeros([mat.shape[0], 1])])
self.init_from(mat)
def inherit(self, prev_head, C):
prev_W = prev_head.W.weight[:-1, :].detach().numpy()
prev_b = prev_head.b.weight[:-1, :].detach().numpy()
cur_W = C * prev_W
cur_b = C * prev_b
mat = np.hstack([cur_W, cur_b])
self.init_from(mat)
def bootstrap(self, prob, **kwargs):
"""Initialize head with weights learned from linear model using transformer embeddings
Args:
prob (MLProblem): the multi-label problem to bootstrap with
kwargs:
Cp (float): the weight on positive samples. Default 100.0
Cn (float): the weight on negative samples. Default 100.0
threshold (float): the threshold to sparsify the model
"""
Cp = kwargs.get('Cp', 100.0)
Cn = kwargs.get('Cn', 100.0)
threshold = kwargs.get('threshold', 0)
mat = MLModel.train(prob, threshold=threshold, Cp=Cp, Cn=Cn)
mat = mat.W.toarray().T
self.init_from(mat)
def init_from(self, mat):
"""Initialize the weight and bias embeddings with given matrix
Args:
mat (ndarray): matrix used for initialize, shape = (nr_labels, hidden_size + 1)
"""
if not isinstance(mat, np.ndarray):
raise ValueError('Expect ndarray to initialize label embedding')
if mat.shape[0] != self.label_pad:
raise ValueError('nr_labels mismatch!')
mat = np.vstack([mat, np.zeros([1, mat.shape[1]])])
self.W = nn.Embedding.from_pretrained(torch.FloatTensor(mat[:, :-1]
), freeze=False, sparse=True, padding_idx=self.label_pad)
self.b = nn.Embedding.from_pretrained(torch.FloatTensor(mat[:, -1])
.view((self.label_pad + 1, 1)), freeze=False, sparse=True,
padding_idx=self.label_pad)
def forward(self):
primals_1 = self.W.weight
primals_2 = self.b.weight
output = call([primals_1, primals_2])
return output[0], output[1]
| cjhsieh/pecos | TransformerLinearXMCHead | false | 3,300 | [
"Apache-2.0",
"BSD-3-Clause"
] | 0 | 22e88ee544d5a5e891a1d23a578881fdf26dfcf7 | https://github.com/cjhsieh/pecos/tree/22e88ee544d5a5e891a1d23a578881fdf26dfcf7 | import torch
import numpy as np
import torch.nn as nn
class Model(nn.Module):
"""XMC head for Transformers
Containing label weight embeddings and label bias embeddings
"""
def __init__(self, hidden_size, num_labels):
super().__init__()
self.label_pad = num_labels
self.num_labels = num_labels
self.W = nn.Embedding(num_labels + 1, hidden_size, padding_idx=self
.label_pad)
self.b = nn.Embedding(num_labels + 1, 1, padding_idx=self.label_pad)
self.random_init()
@property
def device(self):
return self.W.weight.device
def random_init(self):
"""Initialize the weight and bias embeddings
Initialize label weight embedding with N(0, 0.02) while keeping PAD
column to be 0. Initialize label bias embedding with 0.
"""
mat = 0.02 * np.random.randn(self.label_pad, self.W.weight.shape[1])
mat = np.hstack([mat, np.zeros([mat.shape[0], 1])])
self.init_from(mat)
def inherit(self, prev_head, C):
prev_W = prev_head.W.weight[:-1, :].detach().numpy()
prev_b = prev_head.b.weight[:-1, :].detach().numpy()
cur_W = C * prev_W
cur_b = C * prev_b
mat = np.hstack([cur_W, cur_b])
self.init_from(mat)
def bootstrap(self, prob, **kwargs):
"""Initialize head with weights learned from linear model using transformer embeddings
Args:
prob (MLProblem): the multi-label problem to bootstrap with
kwargs:
Cp (float): the weight on positive samples. Default 100.0
Cn (float): the weight on negative samples. Default 100.0
threshold (float): the threshold to sparsify the model
"""
Cp = kwargs.get('Cp', 100.0)
Cn = kwargs.get('Cn', 100.0)
threshold = kwargs.get('threshold', 0)
mat = MLModel.train(prob, threshold=threshold, Cp=Cp, Cn=Cn)
mat = mat.W.toarray().T
self.init_from(mat)
def init_from(self, mat):
"""Initialize the weight and bias embeddings with given matrix
Args:
mat (ndarray): matrix used for initialize, shape = (nr_labels, hidden_size + 1)
"""
if not isinstance(mat, np.ndarray):
raise ValueError('Expect ndarray to initialize label embedding')
if mat.shape[0] != self.label_pad:
raise ValueError('nr_labels mismatch!')
mat = np.vstack([mat, np.zeros([1, mat.shape[1]])])
self.W = nn.Embedding.from_pretrained(torch.FloatTensor(mat[:, :-1]
), freeze=False, sparse=True, padding_idx=self.label_pad)
self.b = nn.Embedding.from_pretrained(torch.FloatTensor(mat[:, -1])
.view((self.label_pad + 1, 1)), freeze=False, sparse=True,
padding_idx=self.label_pad)
def forward(self, pooled_output=None, output_indices=None, num_device=1):
if output_indices is None:
W_act = self.W.weight[:-1, :].repeat(num_device, 1, 1)
b_act = self.b.weight[:-1].repeat(num_device, 1, 1)
else:
output_indices = output_indices
W_act = self.W(output_indices)
b_act = self.b(output_indices)
return W_act, b_act
def get_inputs():
return []
def get_init_inputs():
return [4, 4]
|
InitialSpanEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vp/cvpke7vqb5rcrpra7r6jl5ewicc4xljasp4hd4x25ttzukjdcria.py
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%squeeze, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/af/cafyajli6gchtbvyys5fplo4ie7xzhd7bzha7i5cv4ehjihoyozb.py
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add, add_1, mul_1, mul_2, rsqrt, sub_1, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%squeeze, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %getitem_7), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_6), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/od/cod7phlvthjbjrlnkoohuubyurn4lshuxh5mfkr4pfo6y6wto4h6.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3m/c3mh4ag5y7d2kfw4id5vjhn3zjt2ucu33pwtmgndlspt4gg5cawj.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %add_tensor), kwargs = {})
triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (2048, 4), (4, 1))
assert_size_stride(primals_9, (2048, ), (1, ))
assert_size_stride(primals_10, (4, 2048), (2048, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_5
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf9, buf10, buf11, 4, grid=grid(4), stream=stream0)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(buf9, buf10, buf11, primals_6, primals_7, buf12, 16, grid=grid(16), stream=stream0)
del primals_7
buf13 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (4, 2048), (1, 4), 0), out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf14, primals_9, 8192, grid=grid(8192), stream=stream0)
del primals_9
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf14, reinterpret_tensor(primals_10, (2048, 4), (1, 2048), 0), out=buf15)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_7.run(buf16, buf12, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
buf17 = buf11; del buf11 # reuse
buf18 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf16, buf17, buf18, 4, grid=grid(4), stream=stream0)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(buf16, buf17, buf18, primals_12, primals_13, buf19, 16, grid=grid(16), stream=stream0)
del buf17
del buf18
del primals_13
return (buf19, primals_6, primals_12, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf12, buf14, buf16, primals_10, primals_8, primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch.nn.modules.transformer import TransformerEncoderLayer
class InitialSpanEncoder(TransformerEncoderLayer):
"""
The initial layer for the Segmental Transformer Encoder. Representations of
the source sequence attend over all unmasked positions in the sequence
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
'Tensor'=None) ->Tensor:
src1 = self.self_attn(src, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
src = self.norm1(self.dropout1(src1))
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = self.norm2(src + self.dropout2(src2))
return src
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'nhead': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.transformer import TransformerEncoderLayer
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (2048, 4), (4, 1))
assert_size_stride(primals_9, (2048,), (1,))
assert_size_stride(primals_10, (4, 2048), (2048, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4,
1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf9)
del primals_5
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_native_layer_norm_4[grid(4)](buf9, buf10, buf11, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](buf9, buf10, buf11,
primals_6, primals_7, buf12, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_7
buf13 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (4, 2048), (
1, 4), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_relu_6[grid(8192)](buf14, primals_9, 8192, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf14, reinterpret_tensor(primals_10, (2048, 4),
(1, 2048), 0), out=buf15)
buf16 = buf15
del buf15
triton_poi_fused_add_7[grid(16)](buf16, buf12, primals_11, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_11
buf17 = buf11
del buf11
buf18 = buf10
del buf10
triton_poi_fused_native_layer_norm_4[grid(4)](buf16, buf17, buf18,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](buf16, buf17, buf18,
primals_12, primals_13, buf19, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf17
del buf18
del primals_13
return (buf19, primals_6, primals_12, primals_1, buf6,
reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf12, buf14,
buf16, primals_10, primals_8, primals_4, reinterpret_tensor(buf2, (
4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1,
4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0))
class InitialSpanEncoderNew(TransformerEncoderLayer):
"""
The initial layer for the Segmental Transformer Encoder. Representations of
the source sequence attend over all unmasked positions in the sequence
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, input_0):
primals_2 = self.self_attn.in_proj_weight
primals_3 = self.self_attn.in_proj_bias
primals_1 = self.self_attn.out_proj.weight
primals_5 = self.self_attn.out_proj.bias
primals_8 = self.linear1.weight
primals_9 = self.linear1.bias
primals_10 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.norm1.weight
primals_11 = self.norm1.bias
primals_12 = self.norm2.weight
primals_13 = self.norm2.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| cmdowney88/XLSLM | InitialSpanEncoder | false | 3,301 | [
"MIT"
] | 0 | 7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | https://github.com/cmdowney88/XLSLM/tree/7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | import torch
from torch import Tensor
from torch.nn.modules.transformer import TransformerEncoderLayer
class Model(TransformerEncoderLayer):
"""
The initial layer for the Segmental Transformer Encoder. Representations of
the source sequence attend over all unmasked positions in the sequence
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
'Tensor'=None) ->Tensor:
src1 = self.self_attn(src, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
src = self.norm1(self.dropout1(src1))
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = self.norm2(src + self.dropout2(src2))
return src
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
SegmentalTransformerEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vp/cvpke7vqb5rcrpra7r6jl5ewicc4xljasp4hd4x25ttzukjdcria.py
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%squeeze, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/af/cafyajli6gchtbvyys5fplo4ie7xzhd7bzha7i5cv4ehjihoyozb.py
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add, add_1, mul_1, mul_2, rsqrt, sub_1, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%squeeze, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %getitem_7), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_6), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tk/ctkpswuhya7ibz7scv2t54pzbcqqnzklumfcrudd5tdamub3j2at.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3m/c3mh4ag5y7d2kfw4id5vjhn3zjt2ucu33pwtmgndlspt4gg5cawj.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %add_tensor), kwargs = {})
triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mg/cmgbk4qkn6rsnokfo2alc2qc7w5ozobw4iegfplz3fed6txhn5d7.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# output => add_5, add_6, mul_5, mul_6, rsqrt_2, sub_3, var_mean_2
# Graph fragment:
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_4, [1]), kwargs = {correction: 0, keepdim: True})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_10, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_5,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_4, %getitem_11), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %rsqrt_2), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %primals_14), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, %primals_15), kwargs = {})
triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (256, 4), (4, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (4, 256), (256, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_5
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf9, buf10, buf11, 4, grid=grid(4), stream=stream0)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(buf9, buf10, buf11, primals_6, primals_7, buf12, 16, grid=grid(16), stream=stream0)
del primals_7
buf13 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (4, 256), (1, 4), 0), out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf14, primals_9, 1024, grid=grid(1024), stream=stream0)
del primals_9
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf14, reinterpret_tensor(primals_10, (256, 4), (1, 256), 0), out=buf15)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_7.run(buf16, buf12, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
buf17 = buf11; del buf11 # reuse
buf18 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf16, buf17, buf18, 4, grid=grid(4), stream=stream0)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(buf16, buf17, buf18, primals_12, primals_13, buf19, 16, grid=grid(16), stream=stream0)
buf20 = buf18; del buf18 # reuse
buf21 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf19, buf20, buf21, 4, grid=grid(4), stream=stream0)
buf22 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_8.run(buf22, buf20, buf21, primals_14, primals_15, 16, grid=grid(16), stream=stream0)
del buf20
del buf21
del primals_15
return (buf22, primals_6, primals_12, primals_13, primals_14, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf12, buf14, buf16, primals_10, primals_8, primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import Tensor
import torch.nn as nn
from torch.nn.modules.transformer import TransformerEncoderLayer
from torch.nn.modules.transformer import _get_clones
class InitialSpanEncoder(TransformerEncoderLayer):
"""
The initial layer for the Segmental Transformer Encoder. Representations of
the source sequence attend over all unmasked positions in the sequence
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
'Tensor'=None) ->Tensor:
src1 = self.self_attn(src, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
src = self.norm1(self.dropout1(src1))
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = self.norm2(src + self.dropout2(src2))
return src
class SubsequentSpanEncoder(TransformerEncoderLayer):
"""
The subsequent layers for the Segmental Transformer Encoder. The encoded
representations from previous layers attend over all unmasked positions of
the original source sequence (to prevent information leaks from "under" the
mask)
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
enc: The encoded representation from previous segmental encoder layers
src: The original input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, enc: 'Tensor', src: 'Tensor', attn_mask: 'Tensor'=
None, padding_mask: 'Tensor'=None) ->Tensor:
enc1 = self.self_attn(enc, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
enc = self.norm1(enc + self.dropout1(enc1))
enc2 = self.linear2(self.dropout(self.activation(self.linear1(enc))))
enc = self.norm2(enc + self.dropout2(enc2))
return enc
class SegmentalTransformerEncoder(nn.Module):
"""
A Transformer encoder for doing segmental cloze predictions over spans of
masked positions
Args:
d_model: The input and output dimension of the encoder
n_head: The number of attention heads
n_layers: The number of encoder layers in the block
ffwd_dim: The dimension of the two feedforward layers within each
Transformer encoder layer. Default: 256
dropout: The rate of dropout in the encoder. Default: 0.1
"""
def __init__(self, d_model: 'int', n_head: 'int', n_layers: 'int',
ffwd_dim: 'int'=256, dropout: 'float'=0.1, kv_feedforward: 'bool'=True
):
super().__init__()
self.ffwd_dim = ffwd_dim
self.kv_feedforward = kv_feedforward
self.primary_encoder = InitialSpanEncoder(d_model, n_head,
dim_feedforward=self.ffwd_dim, dropout=dropout)
self.n_layers = n_layers - 1
if self.n_layers > 0:
subsequent_encoder = SubsequentSpanEncoder(d_model, n_head,
dim_feedforward=self.ffwd_dim, dropout=dropout)
self.subsequent_layers = _get_clones(subsequent_encoder, self.
n_layers)
if self.kv_feedforward:
kv_ffwd = nn.Linear(d_model, d_model)
self.kv_ffwds = _get_clones(kv_ffwd, self.n_layers)
else:
self.subsequent_layers = None
self.norm = nn.LayerNorm(d_model)
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
'Tensor'=None) ->Tensor:
"""
Encode input with the Segmental Transformer Encoder
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
Shape:
- src: ``(S, B, E)``
- attn_mask: ``(S, S)``
- padding_mask: ``(S, B)``
- output: ``(S, B, E)``
where ``S`` is the src sequence length, ``B`` is the batch size,
and ``E`` is the embedding/model dimension
"""
output = self.primary_encoder(src, attn_mask=attn_mask,
padding_mask=padding_mask)
for i in range(self.n_layers):
if self.kv_feedforward:
src = torch.tanh(self.kv_ffwds[i](src))
output = self.subsequent_layers[i](output, src, attn_mask=
attn_mask, padding_mask=padding_mask)
if self.norm:
output = self.norm(output)
return output
@staticmethod
def get_mask(seq_len: 'int', shape: 'str'='cloze', seg_len: 'int'=None,
window: 'int'=None) ->Tensor:
"""
Generate the proper attention mask for use with the Segmental
Transformer Encoder, using either a Cloze or Causal/Subsequent modeling
assumption
Args:
seq_len: The sequence length for the input
shape: The mask shape/type. If ``cloze``, predicts a masked segment
based on a bidirectional context. If ``subsequent``, predicts a
segment based on its leftward context. Default: ``cloze``
seg_len: The maximum segment length to be masked and predicted.
Default: ``None``
window: The size of the attention window with which to predict the
masked segment. If the mask shape is ``cloze`` and the window
size is ``n``, this means ``n/2`` unmasked positions on either
side of the segment. If the mask shape is ``subsequent``, this
means ``n`` unmasked positions to the left of the segment.
Default: ``None``
Returns:
An attention mask for use in the Segmental Transformer Encoder
"""
if shape == 'cloze':
if window:
window = window // 2
mask = np.ones((seq_len, seq_len)) == 1
for i in range(seq_len):
for j in range(1, min(seg_len + 1, seq_len - i)):
mask[i, i + j] = False
if window:
for k in range(window, i + 1):
mask[i, i - k] = False
for k in range(seg_len + window + 1, seq_len - i):
mask[i, i + k] = False
elif shape == 'subsequent':
mask = (np.triu(np.ones((seq_len, seq_len))) == 1).transpose()
if window:
for i in range(seq_len):
for k in range(window, i + 1):
mask[i, i - k] = False
else:
raise TypeError(f'Transformer mask shape {shape} is not recognized'
)
mask = torch.tensor(mask)
mask = mask.float().masked_fill(mask == 0, float('-inf'))
mask = mask.masked_fill(mask == 1, float(0.0))
return mask
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'n_head': 4, 'n_layers': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
from torch import Tensor
import torch.nn as nn
from torch.nn.modules.transformer import TransformerEncoderLayer
from torch.nn.modules.transformer import _get_clones
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_8(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (256, 4), (4, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (4, 256), (256, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4,
1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf9)
del primals_5
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_native_layer_norm_4[grid(4)](buf9, buf10, buf11, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](buf9, buf10, buf11,
primals_6, primals_7, buf12, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_7
buf13 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (4, 256), (1,
4), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_relu_6[grid(1024)](buf14, primals_9, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf14, reinterpret_tensor(primals_10, (256, 4), (
1, 256), 0), out=buf15)
buf16 = buf15
del buf15
triton_poi_fused_add_7[grid(16)](buf16, buf12, primals_11, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_11
buf17 = buf11
del buf11
buf18 = buf10
del buf10
triton_poi_fused_native_layer_norm_4[grid(4)](buf16, buf17, buf18,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](buf16, buf17, buf18,
primals_12, primals_13, buf19, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf20 = buf18
del buf18
buf21 = buf17
del buf17
triton_poi_fused_native_layer_norm_4[grid(4)](buf19, buf20, buf21,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf22 = buf19
del buf19
triton_poi_fused_native_layer_norm_8[grid(16)](buf22, buf20, buf21,
primals_14, primals_15, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf20
del buf21
del primals_15
return (buf22, primals_6, primals_12, primals_13, primals_14, primals_1,
buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf12,
buf14, buf16, primals_10, primals_8, primals_4, reinterpret_tensor(
buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4),
(1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0))
class InitialSpanEncoder(TransformerEncoderLayer):
"""
The initial layer for the Segmental Transformer Encoder. Representations of
the source sequence attend over all unmasked positions in the sequence
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
'Tensor'=None) ->Tensor:
src1 = self.self_attn(src, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
src = self.norm1(self.dropout1(src1))
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = self.norm2(src + self.dropout2(src2))
return src
class SubsequentSpanEncoder(TransformerEncoderLayer):
"""
The subsequent layers for the Segmental Transformer Encoder. The encoded
representations from previous layers attend over all unmasked positions of
the original source sequence (to prevent information leaks from "under" the
mask)
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
enc: The encoded representation from previous segmental encoder layers
src: The original input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, enc: 'Tensor', src: 'Tensor', attn_mask: 'Tensor'=
None, padding_mask: 'Tensor'=None) ->Tensor:
enc1 = self.self_attn(enc, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
enc = self.norm1(enc + self.dropout1(enc1))
enc2 = self.linear2(self.dropout(self.activation(self.linear1(enc))))
enc = self.norm2(enc + self.dropout2(enc2))
return enc
class SegmentalTransformerEncoderNew(nn.Module):
"""
A Transformer encoder for doing segmental cloze predictions over spans of
masked positions
Args:
d_model: The input and output dimension of the encoder
n_head: The number of attention heads
n_layers: The number of encoder layers in the block
ffwd_dim: The dimension of the two feedforward layers within each
Transformer encoder layer. Default: 256
dropout: The rate of dropout in the encoder. Default: 0.1
"""
def __init__(self, d_model: 'int', n_head: 'int', n_layers: 'int',
ffwd_dim: 'int'=256, dropout: 'float'=0.1, kv_feedforward: 'bool'=True
):
super().__init__()
self.ffwd_dim = ffwd_dim
self.kv_feedforward = kv_feedforward
self.primary_encoder = InitialSpanEncoder(d_model, n_head,
dim_feedforward=self.ffwd_dim, dropout=dropout)
self.n_layers = n_layers - 1
if self.n_layers > 0:
subsequent_encoder = SubsequentSpanEncoder(d_model, n_head,
dim_feedforward=self.ffwd_dim, dropout=dropout)
self.subsequent_layers = _get_clones(subsequent_encoder, self.
n_layers)
if self.kv_feedforward:
kv_ffwd = nn.Linear(d_model, d_model)
self.kv_ffwds = _get_clones(kv_ffwd, self.n_layers)
else:
self.subsequent_layers = None
self.norm = nn.LayerNorm(d_model)
@staticmethod
def get_mask(seq_len: 'int', shape: 'str'='cloze', seg_len: 'int'=None,
window: 'int'=None) ->Tensor:
"""
Generate the proper attention mask for use with the Segmental
Transformer Encoder, using either a Cloze or Causal/Subsequent modeling
assumption
Args:
seq_len: The sequence length for the input
shape: The mask shape/type. If ``cloze``, predicts a masked segment
based on a bidirectional context. If ``subsequent``, predicts a
segment based on its leftward context. Default: ``cloze``
seg_len: The maximum segment length to be masked and predicted.
Default: ``None``
window: The size of the attention window with which to predict the
masked segment. If the mask shape is ``cloze`` and the window
size is ``n``, this means ``n/2`` unmasked positions on either
side of the segment. If the mask shape is ``subsequent``, this
means ``n`` unmasked positions to the left of the segment.
Default: ``None``
Returns:
An attention mask for use in the Segmental Transformer Encoder
"""
if shape == 'cloze':
if window:
window = window // 2
mask = np.ones((seq_len, seq_len)) == 1
for i in range(seq_len):
for j in range(1, min(seg_len + 1, seq_len - i)):
mask[i, i + j] = False
if window:
for k in range(window, i + 1):
mask[i, i - k] = False
for k in range(seg_len + window + 1, seq_len - i):
mask[i, i + k] = False
elif shape == 'subsequent':
mask = (np.triu(np.ones((seq_len, seq_len))) == 1).transpose()
if window:
for i in range(seq_len):
for k in range(window, i + 1):
mask[i, i - k] = False
else:
raise TypeError(f'Transformer mask shape {shape} is not recognized'
)
mask = torch.tensor(mask)
mask = mask.float().masked_fill(mask == 0, float('-inf'))
mask = mask.masked_fill(mask == 1, float(0.0))
return mask
def forward(self, input_0):
primals_2 = self.primary_encoder.self_attn.in_proj_weight
primals_3 = self.primary_encoder.self_attn.in_proj_bias
primals_1 = self.primary_encoder.self_attn.out_proj.weight
primals_5 = self.primary_encoder.self_attn.out_proj.bias
primals_8 = self.primary_encoder.linear1.weight
primals_9 = self.primary_encoder.linear1.bias
primals_10 = self.primary_encoder.linear2.weight
primals_6 = self.primary_encoder.linear2.bias
primals_7 = self.primary_encoder.norm1.weight
primals_11 = self.primary_encoder.norm1.bias
primals_12 = self.primary_encoder.norm2.weight
primals_13 = self.primary_encoder.norm2.bias
primals_14 = self.norm.weight
primals_15 = self.norm.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
| cmdowney88/XLSLM | SegmentalTransformerEncoder | false | 3,302 | [
"MIT"
] | 0 | 7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | https://github.com/cmdowney88/XLSLM/tree/7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | import torch
import numpy as np
from torch import Tensor
import torch.nn as nn
from torch.nn.modules.transformer import TransformerEncoderLayer
from torch.nn.modules.transformer import _get_clones
class InitialSpanEncoder(TransformerEncoderLayer):
"""
The initial layer for the Segmental Transformer Encoder. Representations of
the source sequence attend over all unmasked positions in the sequence
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
src: The input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
'Tensor'=None) ->Tensor:
src1 = self.self_attn(src, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
src = self.norm1(self.dropout1(src1))
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = self.norm2(src + self.dropout2(src2))
return src
class SubsequentSpanEncoder(TransformerEncoderLayer):
"""
The subsequent layers for the Segmental Transformer Encoder. The encoded
representations from previous layers attend over all unmasked positions of
the original source sequence (to prevent information leaks from "under" the
mask)
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
enc: The encoded representation from previous segmental encoder layers
src: The original input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, enc: 'Tensor', src: 'Tensor', attn_mask: 'Tensor'=
None, padding_mask: 'Tensor'=None) ->Tensor:
enc1 = self.self_attn(enc, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
enc = self.norm1(enc + self.dropout1(enc1))
enc2 = self.linear2(self.dropout(self.activation(self.linear1(enc))))
enc = self.norm2(enc + self.dropout2(enc2))
return enc
class Model(nn.Module):
"""
A Transformer encoder for doing segmental cloze predictions over spans of
masked positions
Args:
d_model: The input and output dimension of the encoder
n_head: The number of attention heads
n_layers: The number of encoder layers in the block
ffwd_dim: The dimension of the two feedforward layers within each
Transformer encoder layer. Default: 256
dropout: The rate of dropout in the encoder. Default: 0.1
"""
def __init__(self, d_model: 'int', n_head: 'int', n_layers: 'int',
ffwd_dim: 'int'=256, dropout: 'float'=0.1, kv_feedforward: 'bool'=True
):
super().__init__()
self.ffwd_dim = ffwd_dim
self.kv_feedforward = kv_feedforward
self.primary_encoder = InitialSpanEncoder(d_model, n_head,
dim_feedforward=self.ffwd_dim, dropout=dropout)
self.n_layers = n_layers - 1
if self.n_layers > 0:
subsequent_encoder = SubsequentSpanEncoder(d_model, n_head,
dim_feedforward=self.ffwd_dim, dropout=dropout)
self.subsequent_layers = _get_clones(subsequent_encoder, self.
n_layers)
if self.kv_feedforward:
kv_ffwd = nn.Linear(d_model, d_model)
self.kv_ffwds = _get_clones(kv_ffwd, self.n_layers)
else:
self.subsequent_layers = None
self.norm = nn.LayerNorm(d_model)
def forward(self, src: 'Tensor', attn_mask: 'Tensor'=None, padding_mask:
# ... truncated (>4000 chars) for memory efficiency |
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/lp/clp5td7lbqtje3pt7v6xbcp766swgazqemomz2nzsxtdtmjesxht.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wy/cwyx3wa4jndgnwzcjpr33hhlviahccyeckxfax46ztwjbjc22gd7.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/j6/cj6faeofhfnxsh5iuwazughjlau4igyajnmvjequyelq7apzs4qm.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6y/c6yx6oq7oo2cwoaop3iwu5iqfdckg6lycdtu4jjuiv3wdcf2o6p7.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/d4/cd4s5ogbgu46xbdaa3oicwxi7l6pnddrap26pxiqzcpei77ta53h.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_6 => convolution_2
# x_7 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/a4/ca43wvja2n3mesrfuj54dcwx324bk23dhpnatmpi7kjryanvrx2z.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_8 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/pw/cpwsgxngvwi42czirdy5mqcvlzqz5ddbdn3ytrocy4pgt7bp7hcr.py
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_10 => relu_3
# x_9 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nk/cnkzs5jmhhmrcpvb6zj5jqdidguxoz45pd7jrl3rxado6v5daf6k.py
# Topologically Sorted Source Nodes: [x_11, h], Original ATen: [aten.max_pool2d_with_indices, aten.mean]
# Source node to ATen node mapping:
# h => mean
# x_11 => _low_memory_max_pool2d_with_offsets_3, getitem_7
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%getitem_6, [2, 3]), kwargs = {})
triton_per_fused_max_pool2d_with_indices_mean_7 = async_compile.triton('triton_per_fused_max_pool2d_with_indices_mean_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_max_pool2d_with_indices_mean_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_max_pool2d_with_indices_mean_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = (rindex // 4)
x0 = xindex
r3 = rindex
tmp0 = tl.load(in_ptr0 + ((2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr0 + (8 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr0 + (9 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.store(out_ptr0 + (r3 + (16*x0)), tmp15, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nx/cnxa3vlwdljrqxm7y6obufkshm4wnjkxynv7ec3urwiscpmwzsfe.py
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_13 => relu_4
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, 64), (64, 1))
assert_size_stride(primals_13, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf13, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8)
buf15 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [x_11, h], Original ATen: [aten.max_pool2d_with_indices, aten.mean]
triton_per_fused_max_pool2d_with_indices_mean_7.run(buf16, buf13, buf14, 256, 16, grid=grid(256), stream=stream0)
buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_10, (64, 64), (1, 64), 0), out=buf17)
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.relu]
triton_poi_fused_relu_8.run(buf18, primals_11, 256, grid=grid(256), stream=stream0)
del primals_11
buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf18, reinterpret_tensor(primals_12, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf19)
del primals_13
return (buf16, buf19, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14, buf16, buf18, primals_12, primals_10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, out_dim=64):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv4(x)
x = F.relu(x)
x = self.pool(x)
h = torch.mean(x, dim=[2, 3])
x = self.l1(h)
x = F.relu(x)
x = self.l2(x)
return h, x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_per_fused_max_pool2d_with_indices_mean_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = rindex // 4
x0 = xindex
r3 = rindex
tmp0 = tl.load(in_ptr0 + (2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr0 + (8 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr0 + (9 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.store(out_ptr0 + (r3 + 16 * x0), tmp15, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64, 64), (64, 1))
assert_size_stride(primals_13, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf1, buf2,
buf3, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6,
buf7, 32768, XBLOCK=128, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(65536)](buf9, primals_7,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.
float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf9, buf10,
buf11, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_6[grid(16384)](buf13, primals_9,
16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8)
buf15 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
buf16 = buf15
del buf15
triton_per_fused_max_pool2d_with_indices_mean_7[grid(256)](buf16,
buf13, buf14, 256, 16, XBLOCK=8, num_warps=2, num_stages=1)
buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_10, (64, 64), (
1, 64), 0), out=buf17)
buf18 = buf17
del buf17
triton_poi_fused_relu_8[grid(256)](buf18, primals_11, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_11
buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_13, buf18, reinterpret_tensor(
primals_12, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf19)
del primals_13
return (buf16, buf19, primals_1, primals_3, primals_4, primals_6,
primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11,
buf13, buf14, buf16, buf18, primals_12, primals_10)
class EncoderNew(nn.Module):
def __init__(self, out_dim=64):
super(EncoderNew, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.l1.weight
primals_11 = self.l1.bias
primals_12 = self.l2.weight
primals_13 = self.l2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0], output[1]
| cloughurd/SimCLR | Encoder | false | 3,303 | [
"MIT"
] | 0 | 79029b6cb422aa16c939bcc550ca4acd495c2651 | https://github.com/cloughurd/SimCLR/tree/79029b6cb422aa16c939bcc550ca4acd495c2651 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, out_dim=64):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv4(x)
x = F.relu(x)
x = self.pool(x)
h = torch.mean(x, dim=[2, 3])
x = self.l1(h)
x = F.relu(x)
x = self.l2(x)
return h, x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
VarifocalLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ax/caxbx6i4bwtsbtfhik5fb25fzuvlc7qeuptufx227j5xebtapxg3.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, gt, float_1, mul, pred_sigmoid, sub, abs_1, pow_1, mul_1, le, float_2, mul_2, focal_weight, loss, loss_1, loss_cls], Original ATen: [aten.binary_cross_entropy_with_logits, aten.gt, aten._to_copy, aten.mul, aten.sigmoid, aten.sub, aten.abs, aten.pow, aten.le, aten.add, aten.mean]
# Source node to ATen node mapping:
# abs_1 => abs_1
# binary_cross_entropy_with_logits => abs_2, exp, full_default, log1p, minimum, mul_3, neg, sub_1, sub_2, sub_3
# float_1 => convert_element_type
# float_2 => convert_element_type_1
# focal_weight => add
# gt => gt
# le => le
# loss => mul_4
# loss_1 => mean
# loss_cls => mul_5
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pow_1 => pow_1
# pred_sigmoid => sigmoid
# sub => sub
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %sub_2), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, 0.0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %convert_element_type), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.75), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%arg1_1, 0.0), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%le, torch.float32), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %convert_element_type_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %add), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0 = async_compile.triton('triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tmp0 > tmp5
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp0 * tmp14
tmp16 = tl.sigmoid(tmp3)
tmp17 = tmp16 - tmp0
tmp18 = tl_math.abs(tmp17)
tmp19 = tmp18 * tmp18
tmp20 = 0.75
tmp21 = tmp19 * tmp20
tmp22 = tmp0 <= tmp5
tmp23 = tmp22.to(tl.float32)
tmp24 = tmp21 * tmp23
tmp25 = tmp15 + tmp24
tmp26 = tmp12 * tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tmp30 = 256.0
tmp31 = tmp29 / tmp30
tmp32 = tmp31 * tmp1
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp32, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, gt, float_1, mul, pred_sigmoid, sub, abs_1, pow_1, mul_1, le, float_2, mul_2, focal_weight, loss, loss_1, loss_cls], Original ATen: [aten.binary_cross_entropy_with_logits, aten.gt, aten._to_copy, aten.mul, aten.sigmoid, aten.sub, aten.abs, aten.pow, aten.le, aten.add, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data.distributed
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def varifocal_loss(pred, target, weight=None, alpha=0.75, gamma=2.0,
iou_weighted=True, reduction='mean', avg_factor=None):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the
number of classes
target (torch.Tensor): The learning target of the iou-aware
classification score with shape (N, C), C is the number of classes.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal Loss.
Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive example with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
assert pred.size() == target.size()
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
if iou_weighted:
focal_weight = target * (target > 0.0).float() + alpha * (pred_sigmoid
- target).abs().pow(gamma) * (target <= 0.0).float()
else:
focal_weight = (target > 0.0).float() + alpha * (pred_sigmoid - target
).abs().pow(gamma) * (target <= 0.0).float()
loss = F.binary_cross_entropy_with_logits(pred, target, reduction='none'
) * focal_weight
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
class VarifocalLoss(nn.Module):
def __init__(self, use_sigmoid=True, alpha=0.75, gamma=2.0,
iou_weighted=True, reduction='mean', loss_weight=1.0):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
use_sigmoid (bool, optional): Whether the prediction is
used for sigmoid or softmax. Defaults to True.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal
Loss. Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive examples with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
loss_weight (float, optional): Weight of loss. Defaults to 1.0.
"""
super(VarifocalLoss, self).__init__()
assert use_sigmoid is True, 'Only sigmoid varifocal loss supported now.'
assert alpha >= 0.0
self.use_sigmoid = use_sigmoid
self.alpha = alpha
self.gamma = gamma
self.iou_weighted = iou_weighted
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Options are "none", "mean" and "sum".
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
if self.use_sigmoid:
loss_cls = self.loss_weight * varifocal_loss(pred, target,
weight, alpha=self.alpha, gamma=self.gamma, iou_weighted=
self.iou_weighted, reduction=reduction, avg_factor=avg_factor)
else:
raise NotImplementedError
return loss_cls
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tmp0 > tmp5
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp0 * tmp14
tmp16 = tl.sigmoid(tmp3)
tmp17 = tmp16 - tmp0
tmp18 = tl_math.abs(tmp17)
tmp19 = tmp18 * tmp18
tmp20 = 0.75
tmp21 = tmp19 * tmp20
tmp22 = tmp0 <= tmp5
tmp23 = tmp22.to(tl.float32)
tmp24 = tmp21 * tmp23
tmp25 = tmp15 + tmp24
tmp26 = tmp12 * tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tmp30 = 256.0
tmp31 = tmp29 / tmp30
tmp32 = tmp31 * tmp1
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp32, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_gt_le_mean_mul_pow_sigmoid_sub_0[
grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def varifocal_loss(pred, target, weight=None, alpha=0.75, gamma=2.0,
iou_weighted=True, reduction='mean', avg_factor=None):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the
number of classes
target (torch.Tensor): The learning target of the iou-aware
classification score with shape (N, C), C is the number of classes.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal Loss.
Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive example with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
assert pred.size() == target.size()
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
if iou_weighted:
focal_weight = target * (target > 0.0).float() + alpha * (pred_sigmoid
- target).abs().pow(gamma) * (target <= 0.0).float()
else:
focal_weight = (target > 0.0).float() + alpha * (pred_sigmoid - target
).abs().pow(gamma) * (target <= 0.0).float()
loss = F.binary_cross_entropy_with_logits(pred, target, reduction='none'
) * focal_weight
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
class VarifocalLossNew(nn.Module):
def __init__(self, use_sigmoid=True, alpha=0.75, gamma=2.0,
iou_weighted=True, reduction='mean', loss_weight=1.0):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
use_sigmoid (bool, optional): Whether the prediction is
used for sigmoid or softmax. Defaults to True.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal
Loss. Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive examples with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
loss_weight (float, optional): Weight of loss. Defaults to 1.0.
"""
super(VarifocalLossNew, self).__init__()
assert use_sigmoid is True, 'Only sigmoid varifocal loss supported now.'
assert alpha >= 0.0
self.use_sigmoid = use_sigmoid
self.alpha = alpha
self.gamma = gamma
self.iou_weighted = iou_weighted
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| cocopambag/insightface | VarifocalLoss | false | 3,304 | [
"MIT"
] | 0 | c33102e4844520cda6c2b3df63278aed935e2f4e | https://github.com/cocopambag/insightface/tree/c33102e4844520cda6c2b3df63278aed935e2f4e | import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data.distributed
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def varifocal_loss(pred, target, weight=None, alpha=0.75, gamma=2.0,
iou_weighted=True, reduction='mean', avg_factor=None):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the
number of classes
target (torch.Tensor): The learning target of the iou-aware
classification score with shape (N, C), C is the number of classes.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal Loss.
Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive example with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
assert pred.size() == target.size()
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
if iou_weighted:
focal_weight = target * (target > 0.0).float() + alpha * (pred_sigmoid
- target).abs().pow(gamma) * (target <= 0.0).float()
else:
focal_weight = (target > 0.0).float() + alpha * (pred_sigmoid - target
).abs().pow(gamma) * (target <= 0.0).float()
loss = F.binary_cross_entropy_with_logits(pred, target, reduction='none'
) * focal_weight
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
class Model(nn.Module):
def __init__(self, use_sigmoid=True, alpha=0.75, gamma=2.0,
iou_weighted=True, reduction='mean', loss_weight=1.0):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
use_sigmoid (bool, optional): Whether the prediction is
used for sigmoid or softmax. Defaults to True.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal
Loss. Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive examples with t
# ... truncated (>4000 chars) for memory efficiency |
CReLU_IN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/de/cdevjdi7y6x3s4r3k3szbteg2ev2eakun5rtqomlfjaapyyqnqaf.py
# Topologically Sorted Source Nodes: [cat, x, leaky_relu], Original ATen: [aten.cat, aten._native_batch_norm_legit, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# cat => cat
# leaky_relu => gt, mul_2, where
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %neg], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %unsqueeze_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_3), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul_2), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_8, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[32, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*i1', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 32
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 8
r2 = rindex
x1 = (xindex // 8)
x3 = xindex
tmp37 = tl.load(in_ptr1 + (x3 % 8), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr2 + (x3 % 8), xmask, eviction_policy='evict_last')
tmp0 = x0
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (r2 + (16*x0) + (64*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1, 1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + (r2 + (16*((-4) + x0)) + (64*x1)), tmp6 & xmask, other=0.0)
tmp10 = -tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp20 / tmp22
tmp24 = tmp14 - tmp23
tmp25 = tmp24 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = tl.where(xmask, tmp26, 0)
tmp29 = tl.sum(tmp28, 1)[:, None]
tmp30 = tmp13 - tmp23
tmp31 = 16.0
tmp32 = tmp29 / tmp31
tmp33 = 1e-05
tmp34 = tmp32 + tmp33
tmp35 = libdevice.rsqrt(tmp34)
tmp36 = tmp30 * tmp35
tmp38 = tmp36 * tmp37
tmp40 = tmp38 + tmp39
tmp41 = 0.0
tmp42 = tmp40 > tmp41
tmp43 = 0.01
tmp44 = tmp40 * tmp43
tmp45 = tl.where(tmp42, tmp40, tmp44)
tmp46 = tmp45 > tmp41
tl.store(out_ptr0 + (r2 + (16*x3)), tmp13, xmask)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp45, xmask)
tl.store(out_ptr3 + (r2 + (16*x3)), tmp46, xmask)
tl.store(out_ptr4 + (x3), tmp35, xmask)
tl.store(out_ptr1 + (x3), tmp23, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32)
buf5 = empty_strided_cuda((1, 32, 4, 4), (512, 16, 4, 1), torch.float32)
buf6 = reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0); del buf5 # reuse
buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
buf4 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32)
# Topologically Sorted Source Nodes: [cat, x, leaky_relu], Original ATen: [aten.cat, aten._native_batch_norm_legit, aten.leaky_relu, aten.leaky_relu_backward]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0.run(buf6, primals_1, primals_2, primals_3, buf0, buf1, buf7, buf4, 32, 16, grid=grid(32), stream=stream0)
del primals_1
del primals_2
del primals_3
return (buf6, buf0, reinterpret_tensor(buf4, (32, ), (1, ), 0), buf7, reinterpret_tensor(buf1, (1, 32, 1, 1), (32, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CReLU_IN(nn.Module):
def __init__(self, channels):
super(CReLU_IN, self).__init__()
self.bn = nn.InstanceNorm2d(channels * 2, eps=1e-05, momentum=0.1,
affine=True)
def forward(self, x):
cat = torch.cat((x, -x), 1)
x = self.bn(cat)
return F.leaky_relu(x, 0.01, inplace=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3,
out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 32
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 8
r2 = rindex
x1 = xindex // 8
x3 = xindex
tmp37 = tl.load(in_ptr1 + x3 % 8, xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr2 + x3 % 8, xmask, eviction_policy='evict_last')
tmp0 = x0
tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (r2 + 16 * x0 + 64 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1, 1], 8, tl.int64)
tmp9 = tl.load(in_ptr0 + (r2 + 16 * (-4 + x0) + 64 * x1), tmp6 & xmask,
other=0.0)
tmp10 = -tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tl.where(xmask, tmp14, 0)
tmp17 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp20 / tmp22
tmp24 = tmp14 - tmp23
tmp25 = tmp24 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = tl.where(xmask, tmp26, 0)
tmp29 = tl.sum(tmp28, 1)[:, None]
tmp30 = tmp13 - tmp23
tmp31 = 16.0
tmp32 = tmp29 / tmp31
tmp33 = 1e-05
tmp34 = tmp32 + tmp33
tmp35 = libdevice.rsqrt(tmp34)
tmp36 = tmp30 * tmp35
tmp38 = tmp36 * tmp37
tmp40 = tmp38 + tmp39
tmp41 = 0.0
tmp42 = tmp40 > tmp41
tmp43 = 0.01
tmp44 = tmp40 * tmp43
tmp45 = tl.where(tmp42, tmp40, tmp44)
tmp46 = tmp45 > tmp41
tl.store(out_ptr0 + (r2 + 16 * x3), tmp13, xmask)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp45, xmask)
tl.store(out_ptr3 + (r2 + 16 * x3), tmp46, xmask)
tl.store(out_ptr4 + x3, tmp35, xmask)
tl.store(out_ptr1 + x3, tmp23, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32
)
buf5 = empty_strided_cuda((1, 32, 4, 4), (512, 16, 4, 1), torch.float32
)
buf6 = reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0)
del buf5
buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
buf4 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32
)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0[
grid(32)](buf6, primals_1, primals_2, primals_3, buf0, buf1,
buf7, buf4, 32, 16, XBLOCK=32, num_warps=4, num_stages=1)
del primals_1
del primals_2
del primals_3
return buf6, buf0, reinterpret_tensor(buf4, (32,), (1,), 0
), buf7, reinterpret_tensor(buf1, (1, 32, 1, 1), (32, 1, 1, 1), 0)
class CReLU_INNew(nn.Module):
def __init__(self, channels):
super(CReLU_INNew, self).__init__()
self.bn = nn.InstanceNorm2d(channels * 2, eps=1e-05, momentum=0.1,
affine=True)
def forward(self, input_0):
primals_2 = self.bn.weight
primals_3 = self.bn.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| cnzeki/PSENet | CReLU_IN | false | 3,305 | [
"Apache-2.0"
] | 0 | c7e0785404e12866171e9da678736abae9cdb8cb | https://github.com/cnzeki/PSENet/tree/c7e0785404e12866171e9da678736abae9cdb8cb | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, channels):
super().__init__()
self.bn = nn.InstanceNorm2d(channels * 2, eps=1e-05, momentum=0.1,
affine=True)
def forward(self, x):
cat = torch.cat((x, -x), 1)
x = self.bn(cat)
return F.leaky_relu(x, 0.01, inplace=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
CReLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/o3/co3lab6vjzwd5k7mdxlboknauftr7dmlghrc2dujibjcglnlpccf.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %where_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = 0.0
tmp7 = tmp5 > tmp6
tmp8 = 0.01
tmp9 = tmp5 * tmp8
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tmp14 = tl.full([1], 8, tl.int64)
tmp15 = tmp0 < tmp14
tmp16 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp13 & xmask, other=0.0)
tmp17 = tmp16 > tmp6
tmp18 = tmp16 * tmp8
tmp19 = tl.where(tmp17, tmp16, tmp18)
tmp20 = -tmp19
tmp21 = tmp20 > tmp6
tmp22 = tmp20 * tmp8
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp13, tmp23, tmp24)
tmp26 = tl.where(tmp4, tmp12, tmp25)
tl.store(out_ptr0 + (x3), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zt/cztrha3eswrw5wsxskayqbrpjfbwic3ptv7qe3d23e7bnagq33hu.py
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# leaky_relu => gt, mul, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.01), kwargs = {})
# %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %mul), kwargs = {})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %where), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.01
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr1 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(arg0_1, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CReLU(nn.Module):
def __init__(self):
super(CReLU, self).__init__()
def forward(self, x):
return torch.cat((F.leaky_relu(x, 0.01, inplace=True), F.leaky_relu
(-x, 0.01, inplace=True)), 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = 0.0
tmp7 = tmp5 > tmp6
tmp8 = 0.01
tmp9 = tmp5 * tmp8
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp16 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp13 &
xmask, other=0.0)
tmp17 = tmp16 > tmp6
tmp18 = tmp16 * tmp8
tmp19 = tl.where(tmp17, tmp16, tmp18)
tmp20 = -tmp19
tmp21 = tmp20 > tmp6
tmp22 = tmp20 * tmp8
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp13, tmp23, tmp24)
tmp26 = tl.where(tmp4, tmp12, tmp25)
tl.store(out_ptr0 + x3, tmp26, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.01
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr1 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, buf0, 512, XBLOCK=128,
num_warps=4, num_stages=1)
triton_poi_fused_leaky_relu_1[grid(256)](arg0_1, arg0_1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class CReLUNew(nn.Module):
def __init__(self):
super(CReLUNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| cnzeki/PSENet | CReLU | false | 3,306 | [
"Apache-2.0"
] | 0 | c7e0785404e12866171e9da678736abae9cdb8cb | https://github.com/cnzeki/PSENet/tree/c7e0785404e12866171e9da678736abae9cdb8cb | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.cat((F.leaky_relu(x, 0.01, inplace=True), F.leaky_relu
(-x, 0.01, inplace=True)), 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MultiheadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5z/c5zy7julai2lhuinuwjgyl62nx7cyws6ni5poe5jzp7qn532rcgh.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_4.run(buf10, primals_1, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data.distributed
class MultiheadAttention(nn.Module):
"""A warpper for torch.nn.MultiheadAttention.
This module implements MultiheadAttention with residual connection,
and positional encoding used in DETR is also passed as input.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
dropout (float): A Dropout layer on attn_output_weights. Default 0.0.
"""
def __init__(self, embed_dims, num_heads, dropout=0.0):
super(MultiheadAttention, self).__init__()
assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.'
self.embed_dims = embed_dims
self.num_heads = num_heads
self.dropout = dropout
self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, x, key=None, value=None, residual=None, query_pos=
None, key_pos=None, attn_mask=None, key_padding_mask=None):
"""Forward function for `MultiheadAttention`.
Args:
x (Tensor): The input query with shape [num_query, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
key (Tensor): The key tensor with shape [num_key, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
Default None. If None, the `query` will be used.
value (Tensor): The value tensor with same shape as `key`.
Same in `nn.MultiheadAttention.forward`. Default None.
If None, the `key` will be used.
residual (Tensor): The tensor used for addition, with the
same shape as `x`. Default None. If None, `x` will be used.
query_pos (Tensor): The positional encoding for query, with
the same shape as `x`. Default None. If not None, it will
be added to `x` before forward function.
key_pos (Tensor): The positional encoding for `key`, with the
same shape as `key`. Default None. If not None, it will
be added to `key` before forward function. If None, and
`query_pos` has the same shape as `key`, then `query_pos`
will be used for `key_pos`.
attn_mask (Tensor): ByteTensor mask with shape [num_query,
num_key]. Same in `nn.MultiheadAttention.forward`.
Default None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_key].
Same in `nn.MultiheadAttention.forward`. Default None.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
query = x
if key is None:
key = query
if value is None:
value = key
if residual is None:
residual = x
if key_pos is None:
if query_pos is not None and key is not None:
if query_pos.shape == key.shape:
key_pos = query_pos
if query_pos is not None:
query = query + query_pos
if key_pos is not None:
key = key + key_pos
out = self.attn(query, key, value=value, attn_mask=attn_mask,
key_padding_mask=key_padding_mask)[0]
return residual + self.dropout(out)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'dropout={self.dropout})'
return repr_str
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embed_dims': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_add_4[grid(16)](buf10, primals_1, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
return buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0
), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0)
class MultiheadAttentionNew(nn.Module):
"""A warpper for torch.nn.MultiheadAttention.
This module implements MultiheadAttention with residual connection,
and positional encoding used in DETR is also passed as input.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
dropout (float): A Dropout layer on attn_output_weights. Default 0.0.
"""
def __init__(self, embed_dims, num_heads, dropout=0.0):
super(MultiheadAttentionNew, self).__init__()
assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.'
self.embed_dims = embed_dims
self.num_heads = num_heads
self.dropout = dropout
self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout)
self.dropout = nn.Dropout(dropout)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'dropout={self.dropout})'
return repr_str
def forward(self, input_0):
primals_2 = self.attn.in_proj_weight
primals_3 = self.attn.in_proj_bias
primals_1 = self.attn.out_proj.weight
primals_5 = self.attn.out_proj.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| cocopambag/insightface | MultiheadAttention | false | 3,307 | [
"MIT"
] | 0 | c33102e4844520cda6c2b3df63278aed935e2f4e | https://github.com/cocopambag/insightface/tree/c33102e4844520cda6c2b3df63278aed935e2f4e | import torch
import torch.nn as nn
import torch.utils.data.distributed
class Model(nn.Module):
"""A warpper for torch.nn.MultiheadAttention.
This module implements MultiheadAttention with residual connection,
and positional encoding used in DETR is also passed as input.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
dropout (float): A Dropout layer on attn_output_weights. Default 0.0.
"""
def __init__(self, embed_dims, num_heads, dropout=0.0):
super().__init__()
assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.'
self.embed_dims = embed_dims
self.num_heads = num_heads
self.dropout = dropout
self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, x, key=None, value=None, residual=None, query_pos=
None, key_pos=None, attn_mask=None, key_padding_mask=None):
"""Forward function for `MultiheadAttention`.
Args:
x (Tensor): The input query with shape [num_query, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
key (Tensor): The key tensor with shape [num_key, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
Default None. If None, the `query` will be used.
value (Tensor): The value tensor with same shape as `key`.
Same in `nn.MultiheadAttention.forward`. Default None.
If None, the `key` will be used.
residual (Tensor): The tensor used for addition, with the
same shape as `x`. Default None. If None, `x` will be used.
query_pos (Tensor): The positional encoding for query, with
the same shape as `x`. Default None. If not None, it will
be added to `x` before forward function.
key_pos (Tensor): The positional encoding for `key`, with the
same shape as `key`. Default None. If not None, it will
be added to `key` before forward function. If None, and
`query_pos` has the same shape as `key`, then `query_pos`
will be used for `key_pos`.
attn_mask (Tensor): ByteTensor mask with shape [num_query,
num_key]. Same in `nn.MultiheadAttention.forward`.
Default None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_key].
Same in `nn.MultiheadAttention.forward`. Default None.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
query = x
if key is None:
key = query
if value is None:
value = key
if residual is None:
residual = x
if key_pos is None:
if query_pos is not None and key is not None:
if query_pos.shape == key.shape:
key_pos = query_pos
if query_pos is not None:
query = query + query_pos
if key_pos is not None:
key = key + key_pos
out = self.attn(query, key, value=value, attn_mask=attn_mask,
key_padding_mask=key_padding_mask)[0]
return residual + self.dropout(out)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'dropout={self.dropout})'
return repr_str
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
BasicBlockIn | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ye/cye7l2jaf362rrj43bugwtiqncxa3xnlfse2dg7bg4rqz2wqm2ew.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.relu]
# Source node to ATen node mapping:
# out_1 => add, repeat, rsqrt, var_mean
# out_2 => relu
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_3, [4]), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_per_fused__native_batch_norm_legit_relu_repeat_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_relu_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_relu_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_repeat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
x2 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tmp1 - tmp11
tmp19 = 16.0
tmp20 = tmp17 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 * tmp0
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.store(out_ptr0 + (x0), tmp0, xmask)
tl.store(out_ptr3 + (r1 + (16*x0)), tmp29, xmask)
tl.store(out_ptr4 + (x0), tmp23, xmask)
tl.store(out_ptr1 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2h/c2hr43dson36ajal2z3sa3dla4lduhw4ruutyvsztayuunp3pw53.py
# Topologically Sorted Source Nodes: [out_4, out_6], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_4 => add_2, repeat_2, rsqrt_1, var_mean_1
# out_6 => relu_1
# Graph fragment:
# %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_6, [4]), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_8,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_16, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
x2 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr3 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tmp1 - tmp11
tmp19 = 16.0
tmp20 = tmp17 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 * tmp0
tmp27 = tmp25 + tmp26
tmp29 = tmp27 + tmp28
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tmp32 = 0.0
tmp33 = tmp31 <= tmp32
tl.store(out_ptr0 + (x0), tmp0, xmask)
tl.store(out_ptr3 + (r1 + (16*x0)), tmp31, xmask)
tl.store(out_ptr4 + (r1 + (16*x0)), tmp33, xmask)
tl.store(out_ptr5 + (x0), tmp23, xmask)
tl.store(out_ptr1 + (x0), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((16, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_relu_repeat_0.run(primals_3, buf0, primals_4, buf1, buf2, buf6, buf5, 16, 16, grid=grid(16), stream=stream0)
del primals_3
del primals_4
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = empty_strided_cuda((16, ), (1, ), torch.float32)
buf9 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf12 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_4, out_6], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1.run(primals_6, buf7, primals_7, primals_1, buf8, buf9, buf13, buf14, buf12, 16, 16, grid=grid(16), stream=stream0)
del primals_6
del primals_7
return (buf13, primals_1, primals_2, primals_5, buf0, buf1, reinterpret_tensor(buf5, (16, ), (1, ), 0), buf6, buf7, buf8, reinterpret_tensor(buf12, (16, ), (1, ), 0), buf14, reinterpret_tensor(buf9, (1, 16, 1, 1), (16, 1, 1, 1), 0), reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import InstanceNorm2d
class BasicBlockIn(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlockIn, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=
stride, padding=1, bias=False)
self.bn1 = InstanceNorm2d(planes, eps=1e-05, momentum=0.1, affine=True)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.bn2 = InstanceNorm2d(planes, eps=1e-05, momentum=0.1, affine=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import InstanceNorm2d
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_repeat_0(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
x2 = xindex % 4
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tl.where(xmask, tmp2, 0)
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tmp1 - tmp11
tmp19 = 16.0
tmp20 = tmp17 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 * tmp0
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.store(out_ptr0 + x0, tmp0, xmask)
tl.store(out_ptr3 + (r1 + 16 * x0), tmp29, xmask)
tl.store(out_ptr4 + x0, tmp23, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1(
in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3,
out_ptr4, out_ptr5, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
x2 = xindex % 4
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr3 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tl.where(xmask, tmp2, 0)
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tmp1 - tmp11
tmp19 = 16.0
tmp20 = tmp17 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 * tmp0
tmp27 = tmp25 + tmp26
tmp29 = tmp27 + tmp28
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tmp32 = 0.0
tmp33 = tmp31 <= tmp32
tl.store(out_ptr0 + x0, tmp0, xmask)
tl.store(out_ptr3 + (r1 + 16 * x0), tmp31, xmask)
tl.store(out_ptr4 + (r1 + 16 * x0), tmp33, xmask)
tl.store(out_ptr5 + x0, tmp23, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((16,), (1,), torch.float32)
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_relu_repeat_0[grid(16)](
primals_3, buf0, primals_4, buf1, buf2, buf6, buf5, 16, 16,
XBLOCK=8, num_warps=2, num_stages=1)
del primals_3
del primals_4
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = empty_strided_cuda((16,), (1,), torch.float32)
buf9 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf12 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_relu_repeat_threshold_backward_1[
grid(16)](primals_6, buf7, primals_7, primals_1, buf8, buf9,
buf13, buf14, buf12, 16, 16, XBLOCK=1, num_warps=2, num_stages=1)
del primals_6
del primals_7
return (buf13, primals_1, primals_2, primals_5, buf0, buf1,
reinterpret_tensor(buf5, (16,), (1,), 0), buf6, buf7, buf8,
reinterpret_tensor(buf12, (16,), (1,), 0), buf14,
reinterpret_tensor(buf9, (1, 16, 1, 1), (16, 1, 1, 1), 0),
reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0))
class BasicBlockInNew(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlockInNew, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=
stride, padding=1, bias=False)
self.bn1 = InstanceNorm2d(planes, eps=1e-05, momentum=0.1, affine=True)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.bn2 = InstanceNorm2d(planes, eps=1e-05, momentum=0.1, affine=True)
self.downsample = downsample
self.stride = stride
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.bn1.weight
primals_4 = self.bn1.bias
primals_5 = self.conv2.weight
primals_6 = self.bn2.weight
primals_7 = self.bn2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| cnzeki/PSENet | BasicBlockIn | false | 3,308 | [
"Apache-2.0"
] | 0 | c7e0785404e12866171e9da678736abae9cdb8cb | https://github.com/cnzeki/PSENet/tree/c7e0785404e12866171e9da678736abae9cdb8cb | import torch
import torch.nn as nn
from torch.nn import InstanceNorm2d
class Model(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super().__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=
stride, padding=1, bias=False)
self.bn1 = InstanceNorm2d(planes, eps=1e-05, momentum=0.1, affine=True)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.bn2 = InstanceNorm2d(planes, eps=1e-05, momentum=0.1, affine=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SLMLexicon | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/u6/cu625esvbkfvv336pmysl2ifa42asx7z5ppu6qij424mhoqfpvwd.py
# Topologically Sorted Source Nodes: [subword_probs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# subword_probs => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [2], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wr/cwrdtcylf4rarxlnsmpmqe5v2ihundba4abc7pa2sitsreexe5tw.py
# Topologically Sorted Source Nodes: [subword_probs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# subword_probs => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2k/c2kxppdwrjhrnsxdvspyvbppardk6v3troxohx47zqnk2haa3fjg.py
# Topologically Sorted Source Nodes: [mixture_proportions], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# mixture_proportions => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [subword_encodings], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [subword_scores], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [subword_probs], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [subword_probs], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [mixture_encodings], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_6
del primals_7
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mixture_outputs], Original ATen: [aten.mm]
extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [mixture_proportions], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf6, 64, grid=grid(64), stream=stream0)
return (buf3, buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf3, buf4, buf6, primals_8, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from typing import Tuple
import torch.nn as nn
class SLMLexicon(nn.Module):
"""
The optional "Lexicon" or "Memory" component of the Segmental Language
Model. Decodes context/position encodings to logits over a segmental
vocabulary, as well as a mixture proportion for combining this loss with the
character-generation loss
Args:
d_enc: The dimension of the encodings returned from the encoder
d_model: The dimension of the hidden states used in the decoder and the
rest of the model
subword_vocab_size: The size of the vocabulary over subwords/segments
initrange: The positive end of the initialization range for the lexicon
layers. Default: 0.1
"""
def __init__(self, d_enc: 'int', d_model: 'int', subword_vocab_size:
'int', initrange: 'float'=0.1):
super().__init__()
self.encoding_to_subword_hidden = nn.Linear(d_enc, d_model)
self.subword_decoder = nn.Linear(d_model, subword_vocab_size)
self.encoding_to_mixture_hidden = nn.Linear(d_enc, d_model)
self.hidden_to_mixture_proportion = nn.Linear(d_model, 1, bias=False)
self.sigmoid = nn.Sigmoid()
self.log_softmax = nn.LogSoftmax(dim=2)
self.encoding_to_subword_hidden.weight.data.uniform_(-initrange,
initrange)
self.subword_decoder.weight.data.uniform_(-initrange, initrange)
self.encoding_to_mixture_hidden.weight.data.uniform_(-initrange,
initrange)
self.hidden_to_mixture_proportion.weight.data.uniform_(-initrange,
initrange)
self.encoding_to_subword_hidden.bias.data.zero_()
self.subword_decoder.bias.data.zero_()
self.encoding_to_mixture_hidden.bias.data.zero_()
def forward(self, encodings: 'Tensor') ->Tuple[Tensor, Tensor]:
"""
Decode the segment encodings to logits over the subword vocabulary and
mixture proportions for the Lexicon
Args:
encodings: The context/positional encodings output by the SLM
Encoder
"""
subword_encodings = self.encoding_to_subword_hidden(encodings)
subword_scores = self.subword_decoder(subword_encodings)
subword_probs = self.log_softmax(subword_scores)
mixture_encodings = self.encoding_to_mixture_hidden(encodings)
mixture_outputs = self.hidden_to_mixture_proportion(mixture_encodings)
mixture_proportions = self.sigmoid(mixture_outputs.squeeze(-1))
return subword_probs, mixture_proportions
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_enc': 4, 'd_model': 4, 'subword_vocab_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](buf1, buf2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused__log_softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0)
del buf2
extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf4)
del primals_6
del primals_7
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 1), (1, 4
), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0)
del buf5
triton_poi_fused_sigmoid_2[grid(64)](buf6, 64, XBLOCK=64, num_warps
=1, num_stages=1)
return buf3, buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, buf3, buf4, buf6, primals_8, primals_4
class SLMLexiconNew(nn.Module):
"""
The optional "Lexicon" or "Memory" component of the Segmental Language
Model. Decodes context/position encodings to logits over a segmental
vocabulary, as well as a mixture proportion for combining this loss with the
character-generation loss
Args:
d_enc: The dimension of the encodings returned from the encoder
d_model: The dimension of the hidden states used in the decoder and the
rest of the model
subword_vocab_size: The size of the vocabulary over subwords/segments
initrange: The positive end of the initialization range for the lexicon
layers. Default: 0.1
"""
def __init__(self, d_enc: 'int', d_model: 'int', subword_vocab_size:
'int', initrange: 'float'=0.1):
super().__init__()
self.encoding_to_subword_hidden = nn.Linear(d_enc, d_model)
self.subword_decoder = nn.Linear(d_model, subword_vocab_size)
self.encoding_to_mixture_hidden = nn.Linear(d_enc, d_model)
self.hidden_to_mixture_proportion = nn.Linear(d_model, 1, bias=False)
self.sigmoid = nn.Sigmoid()
self.log_softmax = nn.LogSoftmax(dim=2)
self.encoding_to_subword_hidden.weight.data.uniform_(-initrange,
initrange)
self.subword_decoder.weight.data.uniform_(-initrange, initrange)
self.encoding_to_mixture_hidden.weight.data.uniform_(-initrange,
initrange)
self.hidden_to_mixture_proportion.weight.data.uniform_(-initrange,
initrange)
self.encoding_to_subword_hidden.bias.data.zero_()
self.subword_decoder.bias.data.zero_()
self.encoding_to_mixture_hidden.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.encoding_to_subword_hidden.weight
primals_2 = self.encoding_to_subword_hidden.bias
primals_4 = self.subword_decoder.weight
primals_5 = self.subword_decoder.bias
primals_6 = self.encoding_to_mixture_hidden.weight
primals_7 = self.encoding_to_mixture_hidden.bias
primals_8 = self.hidden_to_mixture_proportion.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
| cmdowney88/XLSLM | SLMLexicon | false | 3,309 | [
"MIT"
] | 0 | 7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | https://github.com/cmdowney88/XLSLM/tree/7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | import torch
from torch import Tensor
from typing import Tuple
import torch.nn as nn
class Model(nn.Module):
"""
The optional "Lexicon" or "Memory" component of the Segmental Language
Model. Decodes context/position encodings to logits over a segmental
vocabulary, as well as a mixture proportion for combining this loss with the
character-generation loss
Args:
d_enc: The dimension of the encodings returned from the encoder
d_model: The dimension of the hidden states used in the decoder and the
rest of the model
subword_vocab_size: The size of the vocabulary over subwords/segments
initrange: The positive end of the initialization range for the lexicon
layers. Default: 0.1
"""
def __init__(self, d_enc: 'int', d_model: 'int', subword_vocab_size:
'int', initrange: 'float'=0.1):
super().__init__()
self.encoding_to_subword_hidden = nn.Linear(d_enc, d_model)
self.subword_decoder = nn.Linear(d_model, subword_vocab_size)
self.encoding_to_mixture_hidden = nn.Linear(d_enc, d_model)
self.hidden_to_mixture_proportion = nn.Linear(d_model, 1, bias=False)
self.sigmoid = nn.Sigmoid()
self.log_softmax = nn.LogSoftmax(dim=2)
self.encoding_to_subword_hidden.weight.data.uniform_(-initrange,
initrange)
self.subword_decoder.weight.data.uniform_(-initrange, initrange)
self.encoding_to_mixture_hidden.weight.data.uniform_(-initrange,
initrange)
self.hidden_to_mixture_proportion.weight.data.uniform_(-initrange,
initrange)
self.encoding_to_subword_hidden.bias.data.zero_()
self.subword_decoder.bias.data.zero_()
self.encoding_to_mixture_hidden.bias.data.zero_()
def forward(self, encodings: 'Tensor') ->Tuple[Tensor, Tensor]:
"""
Decode the segment encodings to logits over the subword vocabulary and
mixture proportions for the Lexicon
Args:
encodings: The context/positional encodings output by the SLM
Encoder
"""
subword_encodings = self.encoding_to_subword_hidden(encodings)
subword_scores = self.subword_decoder(subword_encodings)
subword_probs = self.log_softmax(subword_scores)
mixture_encodings = self.encoding_to_mixture_hidden(encodings)
mixture_outputs = self.hidden_to_mixture_proportion(mixture_encodings)
mixture_proportions = self.sigmoid(mixture_outputs.squeeze(-1))
return subword_probs, mixture_proportions
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
CrossEntropy | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5v/c5vftgonxejkoucmlc6b4i63pko5vnodypljvpbim3nawkor66zu.py
# Topologically Sorted Source Nodes: [target, loss], Original ATen: [aten.argmax, aten.nll_loss2d_forward]
# Source node to ATen node mapping:
# loss => convert_element_type, div, full_default_1, ne_1, ne_2, neg, sum_2, sum_3, where_1
# target => argmax
# Graph fragment:
# %argmax : [num_users=4] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, 1), kwargs = {})
# %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {})
# %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_2, torch.float32), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %convert_element_type), kwargs = {})
triton_per_fused_argmax_nll_loss2d_forward_1 = async_compile.triton('triton_per_fused_argmax_nll_loss2d_forward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_argmax_nll_loss2d_forward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_argmax_nll_loss2d_forward_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp32 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp56 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp58 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp61 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp64 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4), "index out of bounds: 0 <= tmp53 < 4")
tmp55 = tl.load(in_ptr1 + (r0 + (16*tmp53) + (64*r1)), None)
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp79 = tmp78.to(tl.float32)
tmp80 = tmp74 / tmp79
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp80, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf1, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [target, loss], Original ATen: [aten.argmax, aten.nll_loss2d_forward]
triton_per_fused_argmax_nll_loss2d_forward_1.run(buf4, arg0_1, buf1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del buf1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CrossEntropy(nn.Module):
def __init__(self, is_weight=False, weight=[]):
super(CrossEntropy, self).__init__()
self.is_weight = is_weight
self.weight = weight
def forward(self, input, target, batchsize=2):
target = torch.argmax(target, dim=1)
if self.is_weight is True:
loss = F.cross_entropy(input, target, torch.tensor(self.weight)
.float())
else:
loss = F.cross_entropy(input, target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused_argmax_nll_loss2d_forward_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp32 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp56 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp58 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp61 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp64 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4),
'index out of bounds: 0 <= tmp53 < 4')
tmp55 = tl.load(in_ptr1 + (r0 + 16 * tmp53 + 64 * r1), None)
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp79 = tmp78.to(tl.float32)
tmp80 = tmp74 / tmp79
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf4 = buf2
del buf2
triton_per_fused_argmax_nll_loss2d_forward_1[grid(1)](buf4, arg0_1,
buf1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf1
return buf4,
class CrossEntropyNew(nn.Module):
def __init__(self, is_weight=False, weight=[]):
super(CrossEntropyNew, self).__init__()
self.is_weight = is_weight
self.weight = weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| coolservices/rock-fracture-identification | CrossEntropy | false | 3,310 | [
"Apache-2.0"
] | 0 | 3e7349be7e76dc87800c630f53f8d1ad5673d28b | https://github.com/coolservices/rock-fracture-identification/tree/3e7349be7e76dc87800c630f53f8d1ad5673d28b | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, is_weight=False, weight=[]):
super().__init__()
self.is_weight = is_weight
self.weight = weight
def forward(self, input, target, batchsize=2):
target = torch.argmax(target, dim=1)
if self.is_weight is True:
loss = F.cross_entropy(input, target, torch.tensor(self.weight)
.float())
else:
loss = F.cross_entropy(input, target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleACosModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ku/ckuxvoxhmi6ercpm3zqehlfc3vctrl7fwhgkl4t7idy4tmzkn672.py
# Topologically Sorted Source Nodes: [add, acos], Original ATen: [aten.add, aten.acos]
# Source node to ATen node mapping:
# acos => acos
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %acos : [num_users=1] = call_function[target=torch.ops.aten.acos.default](args = (%add,), kwargs = {})
triton_poi_fused_acos_add_0 = async_compile.triton('triton_poi_fused_acos_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_acos_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_acos_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.acos(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, acos], Original ATen: [aten.add, aten.acos]
stream0 = get_raw_stream(0)
triton_poi_fused_acos_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleACosModule(torch.nn.Module):
def __init__(self):
super(SimpleACosModule, self).__init__()
def forward(self, a):
return torch.acos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_acos_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.acos(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_acos_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleACosModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleACosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleACosModule | false | 3,311 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.acos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleAbsModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/f4/cf4pkmxbqyp3rqsgl3bdbzsxemrohluent2vyggztgix67lsa757.py
# Topologically Sorted Source Nodes: [add, abs_1], Original ATen: [aten.add, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {})
triton_poi_fused_abs_add_0 = async_compile.triton('triton_poi_fused_abs_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.abs(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, abs_1], Original ATen: [aten.add, aten.abs]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAbsModule(torch.nn.Module):
def __init__(self):
super(SimpleAbsModule, self).__init__()
def forward(self, a):
return torch.abs(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.abs(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleAbsModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAbsModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleAbsModule | false | 3,312 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.abs(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
OneTupleModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/sd/csdfq3pwxme6skykh2xidrwr6t4ujkpebegmshqc4a6ptefksvl7.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# y => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class OneTupleModule(torch.nn.Module):
def __init__(self):
super(OneTupleModule, self).__init__()
def forward(self, x):
y = 2 * x
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class OneTupleModuleNew(torch.nn.Module):
def __init__(self):
super(OneTupleModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | OneTupleModule | false | 3,313 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
y = 2 * x
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleASinModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/po/cpoegfcicyuorm7m4kiifuei33mjylvd7jlimgcjbcyazqqbkuwv.py
# Topologically Sorted Source Nodes: [add, asin], Original ATen: [aten.add, aten.asin]
# Source node to ATen node mapping:
# add => add
# asin => asin
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %asin : [num_users=1] = call_function[target=torch.ops.aten.asin.default](args = (%add,), kwargs = {})
triton_poi_fused_add_asin_0 = async_compile.triton('triton_poi_fused_add_asin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_asin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_asin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.asin(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, asin], Original ATen: [aten.add, aten.asin]
stream0 = get_raw_stream(0)
triton_poi_fused_add_asin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleASinModule(torch.nn.Module):
def __init__(self):
super(SimpleASinModule, self).__init__()
def forward(self, a):
return torch.asin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_asin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.asin(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_asin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleASinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleASinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleASinModule | false | 3,314 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.asin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
RepeatModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/px/cpximxrunnn7xlivxg7ckdm4rpo2iaqrxs5ifae2ywvsmxn5yuti.py
# Topologically Sorted Source Nodes: [tensor, repeat], Original ATen: [aten.add, aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%add, [4]), kwargs = {})
triton_poi_fused_add_repeat_0 = async_compile.triton('triton_poi_fused_add_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [tensor, repeat], Original ATen: [aten.add, aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_add_repeat_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class RepeatModule(torch.nn.Module):
def __init__(self, repeats):
super(RepeatModule, self).__init__()
self.repeats = repeats
def forward(self, tensor):
tensor = tensor + tensor
return tensor.repeat(self.repeats)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [[], {'repeats': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_repeat_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class RepeatModuleNew(torch.nn.Module):
def __init__(self, repeats):
super(RepeatModuleNew, self).__init__()
self.repeats = repeats
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | RepeatModule | false | 3,315 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, repeats):
super().__init__()
self.repeats = repeats
def forward(self, tensor):
tensor = tensor + tensor
return tensor.repeat(self.repeats)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [4]
|
MLP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/tf/ctfobpckmiv3kkga3a6gzs6unuclcnxpb4xc2h5r3udgxgix4ip5.py
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# input_3 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, primals_1, buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from collections import OrderedDict
class MLP(nn.Module):
def __init__(self, input_dims, n_hiddens, n_class):
super(MLP, self).__init__()
assert isinstance(input_dims, int), 'Please provide int for input_dims'
self.input_dims = input_dims
current_dims = input_dims
layers = OrderedDict()
if isinstance(n_hiddens, int):
n_hiddens = [n_hiddens]
else:
n_hiddens = list(n_hiddens)
for i, n_hidden in enumerate(n_hiddens):
layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden)
layers['relu{}'.format(i + 1)] = nn.ReLU()
layers['drop{}'.format(i + 1)] = nn.Dropout(0.2)
current_dims = n_hidden
layers['out'] = nn.Linear(current_dims, n_class)
self.model = nn.Sequential(layers)
None
def forward(self, input):
input = input.view(input.size(0), -1)
assert input.size(1) == self.input_dims
return self.model.forward(input)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_dims': 4, 'n_hiddens': 4, 'n_class': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from collections import OrderedDict
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(16)](buf1, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, primals_1, buf1, primals_4
class MLPNew(nn.Module):
def __init__(self, input_dims, n_hiddens, n_class):
super(MLPNew, self).__init__()
assert isinstance(input_dims, int), 'Please provide int for input_dims'
self.input_dims = input_dims
current_dims = input_dims
layers = OrderedDict()
if isinstance(n_hiddens, int):
n_hiddens = [n_hiddens]
else:
n_hiddens = list(n_hiddens)
for i, n_hidden in enumerate(n_hiddens):
layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden)
layers['relu{}'.format(i + 1)] = nn.ReLU()
layers['drop{}'.format(i + 1)] = nn.Dropout(0.2)
current_dims = n_hidden
layers['out'] = nn.Linear(current_dims, n_class)
self.model = nn.Sequential(layers)
None
def forward(self, input_0):
primals_1 = self.model.fc1.weight
primals_3 = self.model.fc1.bias
primals_2 = self.model.out.weight
primals_5 = self.model.out.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| coreylammie/pytorch-playground | MLP | false | 3,316 | [
"MIT"
] | 0 | ff7dd3a6c40481326120895065e120b4fefa1c9e | https://github.com/coreylammie/pytorch-playground/tree/ff7dd3a6c40481326120895065e120b4fefa1c9e | import torch
import torch.nn as nn
from collections import OrderedDict
class Model(nn.Module):
def __init__(self, input_dims, n_hiddens, n_class):
super().__init__()
assert isinstance(input_dims, int), 'Please provide int for input_dims'
self.input_dims = input_dims
current_dims = input_dims
layers = OrderedDict()
if isinstance(n_hiddens, int):
n_hiddens = [n_hiddens]
else:
n_hiddens = list(n_hiddens)
for i, n_hidden in enumerate(n_hiddens):
layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden)
layers['relu{}'.format(i + 1)] = nn.ReLU()
layers['drop{}'.format(i + 1)] = nn.Dropout(0.2)
current_dims = n_hidden
layers['out'] = nn.Linear(current_dims, n_class)
self.model = nn.Sequential(layers)
None
def forward(self, input):
input = input.view(input.size(0), -1)
assert input.size(1) == self.input_dims
return self.model.forward(input)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
SimpleAvgPool1dModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xk/cxkmworteiawp27uz6szuij56323prklcytmzy4oalfulieyhlxw.py
# Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool1d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 1), (1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleAvgPool1dModule(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool1dModule, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, inputs):
return F.avg_pool1d(inputs, self.kernel_size, padding=self.padding,
stride=self.stride)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 1), (1, 1), 0),
class SimpleAvgPool1dModuleNew(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool1dModuleNew, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleAvgPool1dModule | false | 3,317 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super().__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, inputs):
return F.avg_pool1d(inputs, self.kernel_size, padding=self.padding,
stride=self.stride)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
SimpleATanModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ne/cnela3lyozhtiqn5hqe56wagkn5vzngrj3onlkngmltrgqlvhlwc.py
# Topologically Sorted Source Nodes: [add, atan], Original ATen: [aten.add, aten.atan]
# Source node to ATen node mapping:
# add => add
# atan => atan
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %atan : [num_users=1] = call_function[target=torch.ops.aten.atan.default](args = (%add,), kwargs = {})
triton_poi_fused_add_atan_0 = async_compile.triton('triton_poi_fused_add_atan_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_atan_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_atan_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.atan(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, atan], Original ATen: [aten.add, aten.atan]
stream0 = get_raw_stream(0)
triton_poi_fused_add_atan_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleATanModule(torch.nn.Module):
def __init__(self):
super(SimpleATanModule, self).__init__()
def forward(self, a):
return torch.atan(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_atan_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.atan(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_atan_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleATanModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleATanModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleATanModule | false | 3,318 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.atan(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleCumSumModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3c/c3cpu3wz3bo3cso4qi4ii34iyrr3niuqsvkxdjr6hbwpvju6c4oe.py
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# Graph fragment:
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%arg0_1, 4), kwargs = {})
triton_per_fused_cumsum_0 = async_compile.triton('triton_per_fused_cumsum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[256, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_cumsum_0.run(arg0_1, buf0, 256, 4, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCumSumModule(torch.nn.Module):
def __init__(self, dim):
super(SimpleCumSumModule, self).__init__()
self.dim = dim
def forward(self, tensor):
return torch.cumsum(tensor, self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl
.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_cumsum_0[grid(256)](arg0_1, buf0, 256, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del arg0_1
return buf0,
class SimpleCumSumModuleNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleCumSumModuleNew, self).__init__()
self.dim = dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleCumSumModule | false | 3,319 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, tensor):
return torch.cumsum(tensor, self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleAvgPool2dModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [4, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + (x0), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleAvgPool2dModule(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool2dModule, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, inputs):
return F.avg_pool2d(inputs, self.kernel_size, padding=self.padding,
stride=self.stride)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + x0, tmp32, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class SimpleAvgPool2dModuleNew(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool2dModuleNew, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleAvgPool2dModule | false | 3,320 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super().__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, inputs):
return F.avg_pool2d(inputs, self.kernel_size, padding=self.padding,
stride=self.stride)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleCeilModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ga/cgacbgfdnfffemaen3ot3b3225mehdgkmdv6g4yho2qdlicpwwlu.py
# Topologically Sorted Source Nodes: [c, ceil], Original ATen: [aten.add, aten.ceil]
# Source node to ATen node mapping:
# c => add
# ceil => ceil
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %ceil : [num_users=1] = call_function[target=torch.ops.aten.ceil.default](args = (%add,), kwargs = {})
triton_poi_fused_add_ceil_0 = async_compile.triton('triton_poi_fused_add_ceil_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_ceil_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.ceil(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, ceil], Original ATen: [aten.add, aten.ceil]
stream0 = get_raw_stream(0)
triton_poi_fused_add_ceil_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCeilModule(torch.nn.Module):
def forward(self, a, b):
c = a + b
return torch.ceil(c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.ceil(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_ceil_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleCeilModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleCeilModule | false | 3,321 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def forward(self, a, b):
c = a + b
return torch.ceil(c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleAndModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vq/cvqibjhky7ckcngwo5vx6iwslb3qukduvryszxa4md2bb7f76fpd.py
# Topologically Sorted Source Nodes: [c, logical_and_1], Original ATen: [aten.logical_and]
# Source node to ATen node mapping:
# c => logical_and
# logical_and_1 => logical_and_1
# Graph fragment:
# %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%logical_and, %logical_and), kwargs = {})
triton_poi_fused_logical_and_0 = async_compile.triton('triton_poi_fused_logical_and_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_and_1], Original ATen: [aten.logical_and]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_and_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAndModule(torch.nn.Module):
def __init__(self):
super(SimpleAndModule, self).__init__()
def forward(self, a, b):
c = torch.logical_and(a, b)
return torch.logical_and(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_and_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleAndModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAndModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleAndModule | false | 3,322 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
c = torch.logical_and(a, b)
return torch.logical_and(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleFmodModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/iu/ciuedv4oj5epb6bq36sca4tmg3x777o3yghi7exu4n6otp7lp34w.py
# Topologically Sorted Source Nodes: [c, fmod_1], Original ATen: [aten.fmod]
# Source node to ATen node mapping:
# c => fmod
# fmod_1 => fmod_1
# Graph fragment:
# %fmod : [num_users=1] = call_function[target=torch.ops.aten.fmod.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %fmod_1 : [num_users=1] = call_function[target=torch.ops.aten.fmod.Scalar](args = (%fmod, 1.0), kwargs = {})
triton_poi_fused_fmod_0 = async_compile.triton('triton_poi_fused_fmod_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fmod_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = libdevice.fmod(tmp0, tmp1)
tmp3 = 1.0
tmp4 = libdevice.fmod(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, fmod_1], Original ATen: [aten.fmod]
stream0 = get_raw_stream(0)
triton_poi_fused_fmod_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleFmodModule(torch.nn.Module):
def __init__(self):
super(SimpleFmodModule, self).__init__()
def forward(self, a, b):
if b.size() == torch.Size([]):
c = a.fmod(b.item())
else:
c = a.fmod(b)
return c.fmod(1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = libdevice.fmod(tmp0, tmp1)
tmp3 = 1.0
tmp4 = libdevice.fmod(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_fmod_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleFmodModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleFmodModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleFmodModule | false | 3,323 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
if b.size() == torch.Size([]):
c = a.fmod(b.item())
else:
c = a.fmod(b)
return c.fmod(1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleClampMinModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/gx/cgxeuyalbe255nl7kl2wupslogkj7sqz4dk77bpxwhn37372vatf.py
# Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min]
# Source node to ATen node mapping:
# clamp_min => clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_clamp_min_0 = async_compile.triton('triton_poi_fused_clamp_min_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleClampMinModel(torch.nn.Module):
def __init__(self, min):
super(SimpleClampMinModel, self).__init__()
self.min = min
def forward(self, input):
return torch.clamp_min(input, self.min)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'min': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleClampMinModelNew(torch.nn.Module):
def __init__(self, min):
super(SimpleClampMinModelNew, self).__init__()
self.min = min
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleClampMinModel | false | 3,324 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, min):
super().__init__()
self.min = min
def forward(self, input):
return torch.clamp_min(input, self.min)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleConvTranspose2dModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# convTranspose => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kt/ckt6gbx6lb7bibkgo7yxy7qvikxdttfdrwxhv4n3kzjb445guwpa.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (196*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2 + (49*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 1, 28, 4))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, buf3, 16, 49, grid=grid(16, 49), stream=stream0)
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleConvTranspose2dModule(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super(SimpleConvTranspose2dModule, self).__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, inputs, filters, bias=None):
convTranspose = F.conv_transpose2d(inputs, filters, bias=bias,
stride=self.stride, padding=self.padding, output_padding=self.
output_padding, groups=self.groups, dilation=self.dilation)
return F.relu(convTranspose)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 196 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2 + 49 * y3), tmp2, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 1, 28, 4))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
triton_poi_fused_relu_1[grid(16, 49)](buf2, buf3, 16, 49, XBLOCK=64,
YBLOCK=16, num_warps=4, num_stages=1)
del buf2
return buf3,
class SimpleConvTranspose2dModuleNew(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super(SimpleConvTranspose2dModuleNew, self).__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleConvTranspose2dModule | false | 3,325 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super().__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, inputs, filters, bias=None):
convTranspose = F.conv_transpose2d(inputs, filters, bias=bias,
stride=self.stride, padding=self.padding, output_padding=self.
output_padding, groups=self.groups, dilation=self.dilation)
return F.relu(convTranspose)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SubsequentSpanEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7m/c7my77j7miwq7j5yz26lhwtp4fyb6qiw2vuvksvbnxxhdrtuljuq.py
# Topologically Sorted Source Nodes: [add, enc], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# enc => var_mean
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/uy/cuyacfovgswdpyhlq2s2chxvljavfbdvz7wnuo2oaa6t6ewmxjgf.py
# Topologically Sorted Source Nodes: [add, enc], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# enc => add_1, add_2, mul_1, mul_2, rsqrt, sub_1
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_7), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_7), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_8), kwargs = {})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/od/cod7phlvthjbjrlnkoohuubyurn4lshuxh5mfkr4pfo6y6wto4h6.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_10), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3m/c3mh4ag5y7d2kfw4id5vjhn3zjt2ucu33pwtmgndlspt4gg5cawj.py
# Topologically Sorted Source Nodes: [add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_1 => add_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_12), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {})
triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5m/c5m2x4kwr66u6jzlkjcacrwhzqxhxsn3hv6ryzwol7bzp7uppnze.py
# Topologically Sorted Source Nodes: [enc_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# enc_1 => add_4, rsqrt_1, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/pg/cpgskb56mehof5k52uslszbldka4jbq52y6dhbe764xtjdj3lwxc.py
# Topologically Sorted Source Nodes: [enc_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# enc_1 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_9), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_13), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_14), kwargs = {})
triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (12, 4), (4, 1))
assert_size_stride(primals_4, (12, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (2048, 4), (4, 1))
assert_size_stride(primals_10, (2048, ), (1, ))
assert_size_stride(primals_11, (4, 2048), (2048, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_4, (4, ), (1, ), 4), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_4, (4, ), (1, ), 8), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_3
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_6
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [add, enc], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_4.run(primals_1, buf9, buf10, buf11, 4, grid=grid(4), stream=stream0)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, enc], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(primals_1, buf9, buf10, buf11, primals_7, primals_8, buf12, 16, grid=grid(16), stream=stream0)
del primals_8
buf13 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_9, (4, 2048), (1, 4), 0), out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf14, primals_10, 8192, grid=grid(8192), stream=stream0)
del primals_10
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf14, reinterpret_tensor(primals_11, (2048, 4), (1, 2048), 0), out=buf15)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [add_1], Original ATen: [aten.add]
triton_poi_fused_add_7.run(buf16, buf12, primals_12, 16, grid=grid(16), stream=stream0)
del primals_12
buf17 = buf11; del buf11 # reuse
buf18 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [enc_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_8.run(buf16, buf17, buf18, 4, grid=grid(4), stream=stream0)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [enc_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_9.run(buf16, buf17, buf18, primals_13, primals_14, buf19, 16, grid=grid(16), stream=stream0)
del buf17
del buf18
del primals_14
return (buf19, primals_1, primals_7, primals_13, primals_2, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf12, buf14, buf16, primals_11, primals_9, primals_5, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch.nn.modules.transformer import TransformerEncoderLayer
class SubsequentSpanEncoder(TransformerEncoderLayer):
"""
The subsequent layers for the Segmental Transformer Encoder. The encoded
representations from previous layers attend over all unmasked positions of
the original source sequence (to prevent information leaks from "under" the
mask)
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
enc: The encoded representation from previous segmental encoder layers
src: The original input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, enc: 'Tensor', src: 'Tensor', attn_mask: 'Tensor'=
None, padding_mask: 'Tensor'=None) ->Tensor:
enc1 = self.self_attn(enc, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
enc = self.norm1(enc + self.dropout1(enc1))
enc2 = self.linear2(self.dropout(self.activation(self.linear1(enc))))
enc = self.norm2(enc + self.dropout2(enc2))
return enc
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'nhead': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.transformer import TransformerEncoderLayer
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (12, 4), (4, 1))
assert_size_stride(primals_4, (12,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (2048, 4), (4, 1))
assert_size_stride(primals_10, (2048,), (1,))
assert_size_stride(primals_11, (4, 2048), (2048, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_4, (4,), (1,), 4),
primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_4, (4,), (1,), 8),
primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_3
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.addmm(primals_6, reinterpret_tensor(buf8, (4, 4), (4,
1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf9)
del primals_6
buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_add_native_layer_norm_4[grid(4)](primals_1, buf9,
buf10, buf11, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_1, buf9,
buf10, buf11, primals_7, primals_8, buf12, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
buf13 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_9, (4, 2048), (
1, 4), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_relu_6[grid(8192)](buf14, primals_10, 8192, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_10
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf14, reinterpret_tensor(primals_11, (2048, 4),
(1, 2048), 0), out=buf15)
buf16 = buf15
del buf15
triton_poi_fused_add_7[grid(16)](buf16, buf12, primals_12, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_12
buf17 = buf11
del buf11
buf18 = buf10
del buf10
triton_poi_fused_native_layer_norm_8[grid(4)](buf16, buf17, buf18,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_9[grid(16)](buf16, buf17, buf18,
primals_13, primals_14, buf19, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf17
del buf18
del primals_14
return (buf19, primals_1, primals_7, primals_13, primals_2, buf6,
reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf12, buf14,
buf16, primals_11, primals_9, primals_5, reinterpret_tensor(buf2, (
4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1,
4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0))
class SubsequentSpanEncoderNew(TransformerEncoderLayer):
"""
The subsequent layers for the Segmental Transformer Encoder. The encoded
representations from previous layers attend over all unmasked positions of
the original source sequence (to prevent information leaks from "under" the
mask)
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
enc: The encoded representation from previous segmental encoder layers
src: The original input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, input_0, input_1):
primals_3 = self.self_attn.in_proj_weight
primals_4 = self.self_attn.in_proj_bias
primals_1 = self.self_attn.out_proj.weight
primals_6 = self.self_attn.out_proj.bias
primals_9 = self.linear1.weight
primals_10 = self.linear1.bias
primals_11 = self.linear2.weight
primals_7 = self.linear2.bias
primals_8 = self.norm1.weight
primals_12 = self.norm1.bias
primals_13 = self.norm2.weight
primals_14 = self.norm2.bias
primals_2 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0]
| cmdowney88/XLSLM | SubsequentSpanEncoder | false | 3,326 | [
"MIT"
] | 0 | 7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | https://github.com/cmdowney88/XLSLM/tree/7fe266bd0f0ad8a79a30052a18104b974d1c32e8 | import torch
from torch import Tensor
from torch.nn.modules.transformer import TransformerEncoderLayer
class Model(TransformerEncoderLayer):
"""
The subsequent layers for the Segmental Transformer Encoder. The encoded
representations from previous layers attend over all unmasked positions of
the original source sequence (to prevent information leaks from "under" the
mask)
The encoding at position ``i`` represents the masked span starting at
position ``i+1``
Args:
enc: The encoded representation from previous segmental encoder layers
src: The original input sequence to encode
attn_mask: The additive attention mask with which to mask out the
span encoded at each position. Default: ``None``
padding_mask: The mask for the padded positions of each key.
Default: ``None``
"""
def forward(self, enc: 'Tensor', src: 'Tensor', attn_mask: 'Tensor'=
None, padding_mask: 'Tensor'=None) ->Tensor:
enc1 = self.self_attn(enc, src, src, attn_mask=attn_mask,
key_padding_mask=padding_mask)[0]
enc = self.norm1(enc + self.dropout1(enc1))
enc2 = self.linear2(self.dropout(self.activation(self.linear1(enc))))
enc = self.norm2(enc + self.dropout2(enc2))
return enc
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
SimpleBmmModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/h4/ch4e5ehu5tf4fxe3qcp5wtlsj4zjteppgjnu5d6xg564tkpvpxz6.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, bmm], Original ATen: [aten.add, aten.bmm]
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleBmmModule(torch.nn.Module):
def forward(self, a, b):
return (a + a).bmm(b)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
del buf0
return buf1,
class SimpleBmmModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleBmmModule | false | 3,327 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def forward(self, a, b):
return (a + a).bmm(b)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return []
|
SPPblock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hs/chsgbajkvlzt23dbj5auzazquzfdbhbhjrpqoczeg3opck4yocad.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => getitem
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dj/cdjpvf45m2gmwdpxqghwy3n7o5canbnu4ks6bxkuaf6ogy4u6mcz.py
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_1 = async_compile.triton('triton_poi_fused__to_copy_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ek/cektoo3xtedaewlh5uggdyf55krfjuty35h3vjq6vtyduxqrlkz4.py
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 31), kwargs = {})
triton_poi_fused_add_clamp_2 = async_compile.triton('triton_poi_fused_add_clamp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 31, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/a3/ca3np32wv5647cru4u4cskmo7z65jffrdabbplzceq4wcduwuwh7.py
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3i/c3i4svp5bjn25m4h4mozovf2gf77ztkp3ps4iaw6wj2bfxlz77ne.py
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_1 => getitem_2
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 21
x1 = (xindex // 21) % 21
x4 = (xindex // 441)
x3 = (xindex // 1764)
x5 = xindex % 1764
tmp0 = tl.load(in_ptr0 + ((3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (64 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (65 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (66 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (128 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (129 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (130 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x5 + (1792*x3)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/f4/cf4oomz2jxs2jmynidcxgsi4hc5a5g5w6e6mfoejtiygvx2ktoxm.py
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample_1 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_5 = async_compile.triton('triton_poi_fused__to_copy_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kb/ckbhvrchwnfddqo5mj7oyddllrqzc7dajgqmaztjfb4t45pz54ma.py
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample_1 => add_8, clamp_max_4
# Graph fragment:
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_8, 20), kwargs = {})
triton_poi_fused_add_clamp_6 = async_compile.triton('triton_poi_fused_add_clamp_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 20, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3b/c3b5xlygn2w35ktaemwgswb2qexnj6ytxz2jxvf3c4hb3qpx6hv4.py
# Topologically Sorted Source Nodes: [upsample, upsample_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, convert_element_type, iota
# upsample_1 => clamp_max_6, clamp_min_4, clamp_min_6, mul_5, sub_7, sub_9
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.328125), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 0.5), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/pf/cpfwuo7tucoqpsuoxs3ocdrmbokrprhchayywaz5gswuopkfmgsd.py
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_2 => getitem_4
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12) % 12
x2 = (xindex // 144)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (65 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (66 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (67 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (68 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (128 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (129 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (130 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (131 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (132 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (192 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (193 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (194 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr0 + (195 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (196 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (256 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (257 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (258 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr0 + (259 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (260 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = triton_helpers.maximum(tmp35, tmp34)
tmp38 = triton_helpers.maximum(tmp37, tmp36)
tmp40 = triton_helpers.maximum(tmp39, tmp38)
tmp42 = triton_helpers.maximum(tmp41, tmp40)
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tl.store(out_ptr0 + (x3), tmp48, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/l7/cl7p22pvafpcrmefx45kyqbanh4ld76op7eq5grjd2zzx2zlpwi3.py
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample_2 => convert_element_type_9
# Graph fragment:
# %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_9 = async_compile.triton('triton_poi_fused__to_copy_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_9(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qe/cqewu77x72ovzvlhbycbd53cqjkbyy7zdjjvtqgely7c6xo647u2.py
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample_2 => add_15, clamp_max_8
# Graph fragment:
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {})
# %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 11), kwargs = {})
triton_poi_fused_add_clamp_10 = async_compile.triton('triton_poi_fused_add_clamp_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 11, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/eh/ceh56lg3zkvoclsk7od77ns5p3v4jnvm5zcvn2233nis5q7wkit7.py
# Topologically Sorted Source Nodes: [upsample, upsample_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, convert_element_type, iota
# upsample_2 => clamp_max_10, clamp_min_10, clamp_min_8, mul_10, sub_14, sub_16
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.1875), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_10, 0.5), kwargs = {})
# %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_14, 0.0), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {})
# %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_16, 0.0), kwargs = {})
# %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jt/cjtnt6hjamm3vgjkpwzorbvktkzw6jrtwkljjwmzihzeqhu6sgk7.py
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample_3 => convert_element_type_13
# Graph fragment:
# %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ww/cwwsqvnexaz5z4zaqrm4l3223xywmpmnz3nd4sw3jgy7pqet5ewn.py
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample_3 => add_22, clamp_max_12
# Graph fragment:
# %add_22 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {})
# %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_22, 9), kwargs = {})
triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 9, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4d/c4dnqp23qes54gwuldfae6pd5dtfswfwyytxtquobu74catwihxm.py
# Topologically Sorted Source Nodes: [upsample, upsample_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, convert_element_type, iota
# upsample_3 => clamp_max_14, clamp_min_12, clamp_min_14, mul_15, sub_21, sub_23
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.15625), kwargs = {})
# %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_15, 0.5), kwargs = {})
# %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_21, 0.0), kwargs = {})
# %sub_23 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {})
# %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_23, 0.0), kwargs = {})
# %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/c4/cc4gbby2j4xsnyg53hb2ubfdlif6prlt7fohlcbiudyuu2bhws6j.py
# Topologically Sorted Source Nodes: [conv2d, upsample, conv2d_1, upsample_1, conv2d_2, upsample_2, conv2d_3, upsample_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# conv2d_3 => convolution_3
# upsample => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_2, mul_3, mul_4, sub_3, sub_4, sub_6
# upsample_1 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_11, add_12, add_13, mul_7, mul_8, mul_9, sub_10, sub_11, sub_13
# upsample_2 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_18, add_19, add_20, mul_12, mul_13, mul_14, sub_17, sub_18, sub_20
# upsample_3 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_25, add_26, add_27, mul_17, mul_18, mul_19, sub_24, sub_25, sub_27
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {})
# %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {})
# %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_7), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_8), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_12, %add_11), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {})
# %add_13 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %mul_9), kwargs = {})
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {})
# %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {})
# %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_10), kwargs = {})
# %add_18 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_12), kwargs = {})
# %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %clamp_max_10), kwargs = {})
# %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_13), kwargs = {})
# %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_19, %add_18), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %clamp_max_11), kwargs = {})
# %add_20 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_18, %mul_14), kwargs = {})
# %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {})
# %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {})
# %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %clamp_max_14), kwargs = {})
# %add_25 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_17), kwargs = {})
# %sub_25 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %clamp_max_14), kwargs = {})
# %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_18), kwargs = {})
# %sub_27 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_26, %add_25), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %clamp_max_15), kwargs = {})
# %add_27 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_25, %mul_19), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*i64', 9: '*fp32', 10: '*i64', 11: '*fp32', 12: '*i64', 13: '*i64', 14: '*fp32', 15: '*i64', 16: '*fp32', 17: '*i64', 18: '*fp32', 19: '*i64', 20: '*i64', 21: '*fp32', 22: '*i64', 23: '*fp32', 24: '*i64', 25: '*fp32', 26: '*i64', 27: '*i64', 28: '*fp32', 29: '*i64', 30: '*fp32', 31: '*i64', 32: '*fp32', 33: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_15', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_15(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x2 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (0))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr9 + (x0), None, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr11 + (x0), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr12 + (x0), None, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr13 + (x1), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr14 + (x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr15 + (x1), None, eviction_policy='evict_last')
tmp79 = tl.load(in_ptr16 + (x0), None, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr18 + (x0), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr19 + (x0), None, eviction_policy='evict_last')
tmp95 = tl.load(in_ptr20 + (x1), None, eviction_policy='evict_last')
tmp107 = tl.load(in_ptr21 + (x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr22 + (x1), None, eviction_policy='evict_last')
tmp115 = tl.load(in_ptr23 + (x0), None, eviction_policy='evict_last')
tmp121 = tl.load(in_ptr25 + (x0), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr26 + (x0), None, eviction_policy='evict_last')
tmp131 = tl.load(in_ptr27 + (x1), None, eviction_policy='evict_last')
tmp143 = tl.load(in_ptr28 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + (32*tmp26) + (1024*x2)), None, eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + (32*tmp26) + (1024*x2)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp39 = tl.full([XBLOCK], 21, tl.int32)
tmp40 = tmp38 + tmp39
tmp41 = tmp38 < 0
tmp42 = tl.where(tmp41, tmp40, tmp38)
tmp44 = tmp43 + tmp39
tmp45 = tmp43 < 0
tmp46 = tl.where(tmp45, tmp44, tmp43)
tmp47 = tl.load(in_ptr10 + (tmp46 + (21*tmp42) + (441*x2)), None, eviction_policy='evict_last')
tmp48 = tmp47 + tmp11
tmp50 = tmp49 + tmp39
tmp51 = tmp49 < 0
tmp52 = tl.where(tmp51, tmp50, tmp49)
tmp53 = tl.load(in_ptr10 + (tmp52 + (21*tmp42) + (441*x2)), None, eviction_policy='evict_last')
tmp54 = tmp53 + tmp11
tmp55 = tmp54 - tmp48
tmp57 = tmp55 * tmp56
tmp58 = tmp48 + tmp57
tmp60 = tmp59 + tmp39
tmp61 = tmp59 < 0
tmp62 = tl.where(tmp61, tmp60, tmp59)
tmp63 = tl.load(in_ptr10 + (tmp46 + (21*tmp62) + (441*x2)), None, eviction_policy='evict_last')
tmp64 = tmp63 + tmp11
tmp65 = tl.load(in_ptr10 + (tmp52 + (21*tmp62) + (441*x2)), None, eviction_policy='evict_last')
tmp66 = tmp65 + tmp11
tmp67 = tmp66 - tmp64
tmp68 = tmp67 * tmp56
tmp69 = tmp64 + tmp68
tmp70 = tmp69 - tmp58
tmp72 = tmp70 * tmp71
tmp73 = tmp58 + tmp72
tmp75 = tl.full([XBLOCK], 12, tl.int32)
tmp76 = tmp74 + tmp75
tmp77 = tmp74 < 0
tmp78 = tl.where(tmp77, tmp76, tmp74)
tmp80 = tmp79 + tmp75
tmp81 = tmp79 < 0
tmp82 = tl.where(tmp81, tmp80, tmp79)
tmp83 = tl.load(in_ptr17 + (tmp82 + (12*tmp78) + (144*x2)), None, eviction_policy='evict_last')
tmp84 = tmp83 + tmp11
tmp86 = tmp85 + tmp75
tmp87 = tmp85 < 0
tmp88 = tl.where(tmp87, tmp86, tmp85)
tmp89 = tl.load(in_ptr17 + (tmp88 + (12*tmp78) + (144*x2)), None, eviction_policy='evict_last')
tmp90 = tmp89 + tmp11
tmp91 = tmp90 - tmp84
tmp93 = tmp91 * tmp92
tmp94 = tmp84 + tmp93
tmp96 = tmp95 + tmp75
tmp97 = tmp95 < 0
tmp98 = tl.where(tmp97, tmp96, tmp95)
tmp99 = tl.load(in_ptr17 + (tmp82 + (12*tmp98) + (144*x2)), None, eviction_policy='evict_last')
tmp100 = tmp99 + tmp11
tmp101 = tl.load(in_ptr17 + (tmp88 + (12*tmp98) + (144*x2)), None, eviction_policy='evict_last')
tmp102 = tmp101 + tmp11
tmp103 = tmp102 - tmp100
tmp104 = tmp103 * tmp92
tmp105 = tmp100 + tmp104
tmp106 = tmp105 - tmp94
tmp108 = tmp106 * tmp107
tmp109 = tmp94 + tmp108
tmp111 = tl.full([XBLOCK], 10, tl.int32)
tmp112 = tmp110 + tmp111
tmp113 = tmp110 < 0
tmp114 = tl.where(tmp113, tmp112, tmp110)
tmp116 = tmp115 + tmp111
tmp117 = tmp115 < 0
tmp118 = tl.where(tmp117, tmp116, tmp115)
tmp119 = tl.load(in_ptr24 + (tmp118 + (10*tmp114) + (100*x2)), None, eviction_policy='evict_last')
tmp120 = tmp119 + tmp11
tmp122 = tmp121 + tmp111
tmp123 = tmp121 < 0
tmp124 = tl.where(tmp123, tmp122, tmp121)
tmp125 = tl.load(in_ptr24 + (tmp124 + (10*tmp114) + (100*x2)), None, eviction_policy='evict_last')
tmp126 = tmp125 + tmp11
tmp127 = tmp126 - tmp120
tmp129 = tmp127 * tmp128
tmp130 = tmp120 + tmp129
tmp132 = tmp131 + tmp111
tmp133 = tmp131 < 0
tmp134 = tl.where(tmp133, tmp132, tmp131)
tmp135 = tl.load(in_ptr24 + (tmp118 + (10*tmp134) + (100*x2)), None, eviction_policy='evict_last')
tmp136 = tmp135 + tmp11
tmp137 = tl.load(in_ptr24 + (tmp124 + (10*tmp134) + (100*x2)), None, eviction_policy='evict_last')
tmp138 = tmp137 + tmp11
tmp139 = tmp138 - tmp136
tmp140 = tmp139 * tmp128
tmp141 = tmp136 + tmp140
tmp142 = tmp141 - tmp130
tmp144 = tmp142 * tmp143
tmp145 = tmp130 + tmp144
tl.store(in_out_ptr0 + (x3), tmp37, None)
tl.store(in_out_ptr1 + (x3), tmp73, None)
tl.store(in_out_ptr2 + (x3), tmp109, None)
tl.store(in_out_ptr3 + (x3), tmp145, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ld/cld3befcx6mrznygcnfhl7k57tcgfua7ztzqqou5wkquttfw6ztp.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_6, %add_13, %add_20, %add_27, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_16 = async_compile.triton('triton_poi_fused_cat_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 8
x0 = xindex % 4096
x2 = (xindex // 32768)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp9, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4096*x2)), tmp14, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + (4096*x2)), tmp19, eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 8, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tl.load(in_ptr4 + (x0 + (4096*((-4) + x1)) + (16384*x2)), tmp21, other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + (x3), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 32, 32), (1024, 1024, 32, 1))
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_1.run(buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf3, 64, grid=grid(64), stream=stream0)
buf4 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_1.run(buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3.run(buf6, 64, grid=grid(64), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 21, 21), (1792, 441, 21, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_4.run(primals_1, buf11, 7056, grid=grid(7056), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 21, 21), (441, 441, 21, 1))
buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_5.run(buf13, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_6.run(buf14, 64, grid=grid(64), stream=stream0)
buf15 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample, upsample_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_5.run(buf15, 64, grid=grid(64), stream=stream0)
buf16 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_6.run(buf16, 64, grid=grid(64), stream=stream0)
buf17 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample, upsample_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7.run(buf17, 64, grid=grid(64), stream=stream0)
buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7.run(buf19, 64, grid=grid(64), stream=stream0)
buf22 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_8.run(primals_1, buf22, 2304, grid=grid(2304), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 1, 12, 12), (144, 144, 12, 1))
buf24 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_9.run(buf24, 64, grid=grid(64), stream=stream0)
buf25 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_10.run(buf25, 64, grid=grid(64), stream=stream0)
buf26 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample, upsample_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_9.run(buf26, 64, grid=grid(64), stream=stream0)
buf27 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_10.run(buf27, 64, grid=grid(64), stream=stream0)
buf28 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample, upsample_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11.run(buf28, 64, grid=grid(64), stream=stream0)
buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11.run(buf30, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [max_pool2d_3], Original ATen: [aten.max_pool2d_with_indices]
buf33 = torch.ops.aten.max_pool2d_with_indices.default(primals_1, [6, 6], [6, 6])
buf34 = buf33[0]
del buf33
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf34, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1, 10, 10), (100, 100, 10, 1))
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_12.run(buf37, 64, grid=grid(64), stream=stream0)
buf38 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf38, 64, grid=grid(64), stream=stream0)
buf39 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample, upsample_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_12.run(buf39, 64, grid=grid(64), stream=stream0)
buf40 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf40, 64, grid=grid(64), stream=stream0)
buf41 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample, upsample_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf41, 64, grid=grid(64), stream=stream0)
buf43 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf43, 64, grid=grid(64), stream=stream0)
buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3.run(buf8, 64, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf10 = reinterpret_tensor(buf9, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf9 # reuse
buf20 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf21 = reinterpret_tensor(buf20, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf20 # reuse
buf31 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf32 = reinterpret_tensor(buf31, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf31 # reuse
buf44 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf45 = reinterpret_tensor(buf44, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf44 # reuse
# Topologically Sorted Source Nodes: [conv2d, upsample, conv2d_1, upsample_1, conv2d_2, upsample_2, conv2d_3, upsample_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15.run(buf10, buf21, buf32, buf45, buf2, buf4, buf1, primals_3, buf5, buf6, buf3, buf8, buf13, buf15, buf12, buf16, buf17, buf14, buf19, buf24, buf26, buf23, buf27, buf28, buf25, buf30, buf37, buf39, buf36, buf40, buf41, buf38, buf43, 16384, grid=grid(16384), stream=stream0)
del buf1
del buf12
del buf23
del buf36
del primals_3
buf46 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_16.run(buf10, buf21, buf32, buf45, primals_1, buf46, 131072, grid=grid(131072), stream=stream0)
del primals_1
return (buf46, buf45, buf32, buf21, buf10, primals_2, buf0, buf2, buf3, buf4, buf5, buf6, buf8, buf11, buf13, buf14, buf15, buf16, buf17, buf19, buf22, buf24, buf25, buf26, buf27, buf28, buf30, buf34, buf37, buf38, buf39, buf40, buf41, buf43, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class SPPblock(nn.Module):
def __init__(self, in_channels):
super(SPPblock, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)
self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)
self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,
kernel_size=1, padding=0)
def forward(self, x):
self.in_channels, h, w = x.size(1), x.size(2), x.size(3)
self.layer1 = F.upsample(self.conv(self.pool1(x)), size=(h, w),
mode='bilinear')
self.layer2 = F.upsample(self.conv(self.pool2(x)), size=(h, w),
mode='bilinear')
self.layer3 = F.upsample(self.conv(self.pool3(x)), size=(h, w),
mode='bilinear')
self.layer4 = F.upsample(self.conv(self.pool4(x)), size=(h, w),
mode='bilinear')
out = torch.cat([self.layer1, self.layer2, self.layer3, self.layer4,
x], 1)
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 31, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 21
x1 = xindex // 21 % 21
x4 = xindex // 441
x3 = xindex // 1764
x5 = xindex % 1764
tmp0 = tl.load(in_ptr0 + (3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (64 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (65 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (66 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (128 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (129 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (130 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x5 + 1792 * x3), tmp16, xmask)
@triton.jit
def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 20, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12 % 12
x2 = xindex // 144
x3 = xindex
tmp0 = tl.load(in_ptr0 + (5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (65 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (66 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (67 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (68 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (128 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (129 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (130 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (131 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (132 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (192 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (193 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (194 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp35 = tl.load(in_ptr0 + (195 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (196 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (256 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (257 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (258 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp45 = tl.load(in_ptr0 + (259 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (260 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = triton_helpers.maximum(tmp35, tmp34)
tmp38 = triton_helpers.maximum(tmp37, tmp36)
tmp40 = triton_helpers.maximum(tmp39, tmp38)
tmp42 = triton_helpers.maximum(tmp41, tmp40)
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tl.store(out_ptr0 + x3, tmp48, xmask)
@triton.jit
def triton_poi_fused__to_copy_9(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 11, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 9, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_15(in_out_ptr0,
in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17,
in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24,
in_ptr25, in_ptr26, in_ptr27, in_ptr28, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x2 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + 0)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr9 + x0, None, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr11 + x0, None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr12 + x0, None, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr13 + x1, None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr14 + x1, None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr15 + x1, None, eviction_policy='evict_last')
tmp79 = tl.load(in_ptr16 + x0, None, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr18 + x0, None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr19 + x0, None, eviction_policy='evict_last')
tmp95 = tl.load(in_ptr20 + x1, None, eviction_policy='evict_last')
tmp107 = tl.load(in_ptr21 + x1, None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr22 + x1, None, eviction_policy='evict_last')
tmp115 = tl.load(in_ptr23 + x0, None, eviction_policy='evict_last')
tmp121 = tl.load(in_ptr25 + x0, None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr26 + x0, None, eviction_policy='evict_last')
tmp131 = tl.load(in_ptr27 + x1, None, eviction_policy='evict_last')
tmp143 = tl.load(in_ptr28 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x2), None,
eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + 32 * tmp4 + 1024 * x2), None,
eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + 32 * tmp26 + 1024 * x2), None,
eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + 32 * tmp26 + 1024 * x2), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp39 = tl.full([XBLOCK], 21, tl.int32)
tmp40 = tmp38 + tmp39
tmp41 = tmp38 < 0
tmp42 = tl.where(tmp41, tmp40, tmp38)
tmp44 = tmp43 + tmp39
tmp45 = tmp43 < 0
tmp46 = tl.where(tmp45, tmp44, tmp43)
tmp47 = tl.load(in_ptr10 + (tmp46 + 21 * tmp42 + 441 * x2), None,
eviction_policy='evict_last')
tmp48 = tmp47 + tmp11
tmp50 = tmp49 + tmp39
tmp51 = tmp49 < 0
tmp52 = tl.where(tmp51, tmp50, tmp49)
tmp53 = tl.load(in_ptr10 + (tmp52 + 21 * tmp42 + 441 * x2), None,
eviction_policy='evict_last')
tmp54 = tmp53 + tmp11
tmp55 = tmp54 - tmp48
tmp57 = tmp55 * tmp56
tmp58 = tmp48 + tmp57
tmp60 = tmp59 + tmp39
tmp61 = tmp59 < 0
tmp62 = tl.where(tmp61, tmp60, tmp59)
tmp63 = tl.load(in_ptr10 + (tmp46 + 21 * tmp62 + 441 * x2), None,
eviction_policy='evict_last')
tmp64 = tmp63 + tmp11
tmp65 = tl.load(in_ptr10 + (tmp52 + 21 * tmp62 + 441 * x2), None,
eviction_policy='evict_last')
tmp66 = tmp65 + tmp11
tmp67 = tmp66 - tmp64
tmp68 = tmp67 * tmp56
tmp69 = tmp64 + tmp68
tmp70 = tmp69 - tmp58
tmp72 = tmp70 * tmp71
tmp73 = tmp58 + tmp72
tmp75 = tl.full([XBLOCK], 12, tl.int32)
tmp76 = tmp74 + tmp75
tmp77 = tmp74 < 0
tmp78 = tl.where(tmp77, tmp76, tmp74)
tmp80 = tmp79 + tmp75
tmp81 = tmp79 < 0
tmp82 = tl.where(tmp81, tmp80, tmp79)
tmp83 = tl.load(in_ptr17 + (tmp82 + 12 * tmp78 + 144 * x2), None,
eviction_policy='evict_last')
tmp84 = tmp83 + tmp11
tmp86 = tmp85 + tmp75
tmp87 = tmp85 < 0
tmp88 = tl.where(tmp87, tmp86, tmp85)
tmp89 = tl.load(in_ptr17 + (tmp88 + 12 * tmp78 + 144 * x2), None,
eviction_policy='evict_last')
tmp90 = tmp89 + tmp11
tmp91 = tmp90 - tmp84
tmp93 = tmp91 * tmp92
tmp94 = tmp84 + tmp93
tmp96 = tmp95 + tmp75
tmp97 = tmp95 < 0
tmp98 = tl.where(tmp97, tmp96, tmp95)
tmp99 = tl.load(in_ptr17 + (tmp82 + 12 * tmp98 + 144 * x2), None,
eviction_policy='evict_last')
tmp100 = tmp99 + tmp11
tmp101 = tl.load(in_ptr17 + (tmp88 + 12 * tmp98 + 144 * x2), None,
eviction_policy='evict_last')
tmp102 = tmp101 + tmp11
tmp103 = tmp102 - tmp100
tmp104 = tmp103 * tmp92
tmp105 = tmp100 + tmp104
tmp106 = tmp105 - tmp94
tmp108 = tmp106 * tmp107
tmp109 = tmp94 + tmp108
tmp111 = tl.full([XBLOCK], 10, tl.int32)
tmp112 = tmp110 + tmp111
tmp113 = tmp110 < 0
tmp114 = tl.where(tmp113, tmp112, tmp110)
tmp116 = tmp115 + tmp111
tmp117 = tmp115 < 0
tmp118 = tl.where(tmp117, tmp116, tmp115)
tmp119 = tl.load(in_ptr24 + (tmp118 + 10 * tmp114 + 100 * x2), None,
eviction_policy='evict_last')
tmp120 = tmp119 + tmp11
tmp122 = tmp121 + tmp111
tmp123 = tmp121 < 0
tmp124 = tl.where(tmp123, tmp122, tmp121)
tmp125 = tl.load(in_ptr24 + (tmp124 + 10 * tmp114 + 100 * x2), None,
eviction_policy='evict_last')
tmp126 = tmp125 + tmp11
tmp127 = tmp126 - tmp120
tmp129 = tmp127 * tmp128
tmp130 = tmp120 + tmp129
tmp132 = tmp131 + tmp111
tmp133 = tmp131 < 0
tmp134 = tl.where(tmp133, tmp132, tmp131)
tmp135 = tl.load(in_ptr24 + (tmp118 + 10 * tmp134 + 100 * x2), None,
eviction_policy='evict_last')
tmp136 = tmp135 + tmp11
tmp137 = tl.load(in_ptr24 + (tmp124 + 10 * tmp134 + 100 * x2), None,
eviction_policy='evict_last')
tmp138 = tmp137 + tmp11
tmp139 = tmp138 - tmp136
tmp140 = tmp139 * tmp128
tmp141 = tmp136 + tmp140
tmp142 = tmp141 - tmp130
tmp144 = tmp142 * tmp143
tmp145 = tmp130 + tmp144
tl.store(in_out_ptr0 + x3, tmp37, None)
tl.store(in_out_ptr1 + x3, tmp73, None)
tl.store(in_out_ptr2 + x3, tmp109, None)
tl.store(in_out_ptr3 + x3, tmp145, None)
@triton.jit
def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 8
x0 = xindex % 4096
x2 = xindex // 32768
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4096 * x2), tmp14, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + 4096 * x2), tmp19, eviction_policy=
'evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tl.full([1], 8, tl.int64)
tmp24 = tl.load(in_ptr4 + (x0 + 4096 * (-4 + x1) + 16384 * x2), tmp21,
other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + x3, tmp28, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16384)](primals_1,
buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 32, 32), (1024, 1024, 32, 1))
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_1[grid(64)](buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_2[grid(64)](buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_1[grid(64)](buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_2[grid(64)](buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3[grid(64)](buf6,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 21, 21), (1792, 441, 21, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_4[grid(7056)](primals_1,
buf11, 7056, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 21, 21), (441, 441, 21, 1))
buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_5[grid(64)](buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_6[grid(64)](buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_5[grid(64)](buf15, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_6[grid(64)](buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7[grid(64)](buf17,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7[grid(64)](buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf22 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch
.float32)
triton_poi_fused_max_pool2d_with_indices_8[grid(2304)](primals_1,
buf22, 2304, XBLOCK=128, num_warps=4, num_stages=1)
buf23 = extern_kernels.convolution(buf22, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 1, 12, 12), (144, 144, 12, 1))
buf24 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_9[grid(64)](buf24, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf25 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_10[grid(64)](buf25, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf26 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_9[grid(64)](buf26, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf27 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_10[grid(64)](buf27, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf28 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11[grid(64)](buf28,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11[grid(64)](buf30,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf33 = torch.ops.aten.max_pool2d_with_indices.default(primals_1, [
6, 6], [6, 6])
buf34 = buf33[0]
del buf33
buf36 = extern_kernels.convolution(buf34, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1, 10, 10), (100, 100, 10, 1))
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf37, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf38, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf39 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf39, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf40, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf41 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(64)](buf41,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf43 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(64)](buf43,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3[grid(64)](buf8,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf10 = reinterpret_tensor(buf9, (4, 1, 64, 64), (4096, 4096, 64, 1), 0
)
del buf9
buf20 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf21 = reinterpret_tensor(buf20, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf20
buf31 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf32 = reinterpret_tensor(buf31, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf31
buf44 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf45 = reinterpret_tensor(buf44, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf44
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15[grid(16384)](
buf10, buf21, buf32, buf45, buf2, buf4, buf1, primals_3, buf5,
buf6, buf3, buf8, buf13, buf15, buf12, buf16, buf17, buf14,
buf19, buf24, buf26, buf23, buf27, buf28, buf25, buf30, buf37,
buf39, buf36, buf40, buf41, buf38, buf43, 16384, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
del buf12
del buf23
del buf36
del primals_3
buf46 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_16[grid(131072)](buf10, buf21, buf32, buf45,
primals_1, buf46, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_1
return (buf46, buf45, buf32, buf21, buf10, primals_2, buf0, buf2, buf3,
buf4, buf5, buf6, buf8, buf11, buf13, buf14, buf15, buf16, buf17,
buf19, buf22, buf24, buf25, buf26, buf27, buf28, buf30, buf34,
buf37, buf38, buf39, buf40, buf41, buf43)
class SPPblockNew(nn.Module):
def __init__(self, in_channels):
super(SPPblockNew, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)
self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)
self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,
kernel_size=1, padding=0)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| coolservices/rock-fracture-identification | SPPblock | false | 3,328 | [
"Apache-2.0"
] | 0 | 3e7349be7e76dc87800c630f53f8d1ad5673d28b | https://github.com/coolservices/rock-fracture-identification/tree/3e7349be7e76dc87800c630f53f8d1ad5673d28b | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)
self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)
self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,
kernel_size=1, padding=0)
def forward(self, x):
self.in_channels, h, w = x.size(1), x.size(2), x.size(3)
self.layer1 = F.upsample(self.conv(self.pool1(x)), size=(h, w),
mode='bilinear')
self.layer2 = F.upsample(self.conv(self.pool2(x)), size=(h, w),
mode='bilinear')
self.layer3 = F.upsample(self.conv(self.pool3(x)), size=(h, w),
mode='bilinear')
self.layer4 = F.upsample(self.conv(self.pool4(x)), size=(h, w),
mode='bilinear')
out = torch.cat([self.layer1, self.layer2, self.layer3, self.layer4,
x], 1)
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [4]
|
SimpleClampModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ym/cymkueyytwmyd6cqzabpgskqntypbctwgeke5274sffl2aogwlds.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 4), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 4), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = triton_helpers.minimum(tmp2, tmp1)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleClampModel(torch.nn.Module):
def __init__(self, min, max):
super(SimpleClampModel, self).__init__()
self.min = min
self.max = max
def forward(self, input):
return torch.clamp(input, self.min, self.max)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'min': 4, 'max': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = triton_helpers.minimum(tmp2, tmp1)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleClampModelNew(torch.nn.Module):
def __init__(self, min, max):
super(SimpleClampModelNew, self).__init__()
self.min = min
self.max = max
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleClampModel | false | 3,329 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, min, max):
super().__init__()
self.min = min
self.max = max
def forward(self, input):
return torch.clamp(input, self.min, self.max)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SimpleCosModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vy/cvykguexawt5en6rd6un27jr5ssgrr5nfe4fek2lsqgpfda2qjl2.py
# Topologically Sorted Source Nodes: [add, cos], Original ATen: [aten.add, aten.cos]
# Source node to ATen node mapping:
# add => add
# cos => cos
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%add,), kwargs = {})
triton_poi_fused_add_cos_0 = async_compile.triton('triton_poi_fused_add_cos_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cos_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.cos(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, cos], Original ATen: [aten.add, aten.cos]
stream0 = get_raw_stream(0)
triton_poi_fused_add_cos_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCosModule(torch.nn.Module):
def __init__(self):
super(SimpleCosModule, self).__init__()
def forward(self, a):
return torch.cos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.cos(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_cos_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleCosModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleCosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleCosModule | false | 3,330 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.cos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleLogModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xc/cxcdfiik5xgk7a7m5pmyyveyug5a3vuczvqoixbtd5nchlbaz5qr.py
# Topologically Sorted Source Nodes: [b, log_1], Original ATen: [aten.log]
# Source node to ATen node mapping:
# b => log
# log_1 => log_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%log,), kwargs = {})
triton_poi_fused_log_0 = async_compile.triton('triton_poi_fused_log_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.log(tmp0)
tmp2 = tl_math.log(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [b, log_1], Original ATen: [aten.log]
stream0 = get_raw_stream(0)
triton_poi_fused_log_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleLogModule(torch.nn.Module):
def __init__(self, *dimensions):
super(SimpleLogModule, self).__init__()
def forward(self, a):
b = torch.log(a)
return torch.log(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.log(tmp0)
tmp2 = tl_math.log(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_log_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleLogModuleNew(torch.nn.Module):
def __init__(self, *dimensions):
super(SimpleLogModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleLogModule | false | 3,331 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, *dimensions):
super().__init__()
def forward(self, a):
b = torch.log(a)
return torch.log(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleConv2dModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/p7/cp7mgrng2aoot3kokspvn2sifs3rykgl5mktnpxnmb7yc57vcvab.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4))
del buf0
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, 16, grid=grid(16), stream=stream0)
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleConv2dModule(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super(SimpleConv2dModule, self).__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, inputs, filters, bias=None):
conv = F.conv2d(inputs, filters, bias=bias, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=self.groups)
return F.relu(conv)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4))
del buf0
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf2
triton_poi_fused_relu_1[grid(16)](buf3, 16, XBLOCK=16, num_warps=1,
num_stages=1)
return buf3,
class SimpleConv2dModuleNew(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super(SimpleConv2dModuleNew, self).__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleConv2dModule | false | 3,332 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super().__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, inputs, filters, bias=None):
conv = F.conv2d(inputs, filters, bias=bias, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=self.groups)
return F.relu(conv)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleGeluModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/cz/cczz2aaz3xffbl7w5gnijw32l5h4gkl36ofwyvf646samygcfe5i.py
# Topologically Sorted Source Nodes: [add, gelu], Original ATen: [aten.add, aten.gelu]
# Source node to ATen node mapping:
# add => add
# gelu => add_1, erf, mul, mul_1, mul_2
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_gelu_0 = async_compile.triton('triton_poi_fused_add_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = 0.7071067811865476
tmp5 = tmp1 * tmp4
tmp6 = libdevice.erf(tmp5)
tmp7 = 1.0
tmp8 = tmp6 + tmp7
tmp9 = tmp3 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, gelu], Original ATen: [aten.add, aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_gelu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleGeluModule(torch.nn.Module):
def forward(self, tensor):
return F.gelu(tensor + tensor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = 0.7071067811865476
tmp5 = tmp1 * tmp4
tmp6 = libdevice.erf(tmp5)
tmp7 = 1.0
tmp8 = tmp6 + tmp7
tmp9 = tmp3 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_gelu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleGeluModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleGeluModule | false | 3,333 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def forward(self, tensor):
return F.gelu(tensor + tensor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleExpModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/7g/c7gyxvpvdujjipzswxbu5tactwghjfb7nrevdzajpm4fzclaifhf.py
# Topologically Sorted Source Nodes: [other, exp_1], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp_1 => exp_1
# other => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%exp,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, exp_1], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleExpModule(torch.nn.Module):
def forward(self, input):
other = torch.exp(input)
return torch.exp(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleExpModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleExpModule | false | 3,334 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def forward(self, input):
other = torch.exp(input)
return torch.exp(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
PositionalEncoding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/4a/c4ahsnqmjrdgmldp626n7wdjsoqnmtk76ym2g5ksmdsew6qm2mv4.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %slice_3), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 10000), (40000, 1, 4))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 10000), (40000, 1, 4), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
class PositionalEncoding(nn.Module):
"""Implement the PE function."""
def __init__(self, d_model, max_len=10000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(
10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).permute(0, 2, 1)
self.pe = nn.Parameter(pe, requires_grad=True)
def forward(self, x):
return x + self.pe[:, :, 0:x.shape[2]]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 10000), (40000, 1, 4))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf0,
class PositionalEncodingNew(nn.Module):
"""Implement the PE function."""
def __init__(self, d_model, max_len=10000):
super(PositionalEncodingNew, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(
10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).permute(0, 2, 1)
self.pe = nn.Parameter(pe, requires_grad=True)
def forward(self, input_0):
primals_1 = self.pe
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| cmiras/BSL-segmentation | PositionalEncoding | false | 3,335 | [
"MIT"
] | 0 | 35a66d6c758dcf4734adb0ebc5a40ea7238d7a1d | https://github.com/cmiras/BSL-segmentation/tree/35a66d6c758dcf4734adb0ebc5a40ea7238d7a1d | import math
import torch
import torch.nn as nn
class Model(nn.Module):
"""Implement the PE function."""
def __init__(self, d_model, max_len=10000):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(
10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).permute(0, 2, 1)
self.pe = nn.Parameter(pe, requires_grad=True)
def forward(self, x):
return x + self.pe[:, :, 0:x.shape[2]]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Foo | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qp/cqp7ueqlgbxahbgap5at7kbdkd7h2xxgbchrupcpkji4bdn4nejg.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 92256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 6
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rv/crvxf6xnscpjmln6astlfsozus7rnqpbhexgiojxcqezrzslczlf.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (16, 6, 3, 3), (54, 9, 3, 1))
assert_size_stride(primals_5, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 62, 62), (23064, 3844, 62, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 92256, grid=grid(92256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 230400, grid=grid(230400), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 6, 3, 3), (54, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
y = self.conv2(x)
return y
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 92256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 6
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (16, 6, 3, 3), (54, 9, 3, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 62, 62), (23064, 3844, 62, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(92256)](buf1, primals_2,
92256, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(230400)](buf3, primals_5,
230400, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class FooNew(torch.nn.Module):
def __init__(self):
super(FooNew, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| andreas-hommel/glow | Foo | false | 3,336 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
y = self.conv2(x)
return y
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
SimpleAddMmModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ph/cphyvqksaznjc5f5gstivhj5vszkuncctuzvaegazln3taw555sz.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, addmm], Original ATen: [aten.add, aten.addmm]
extern_kernels.addmm(buf0, arg1_1, arg2_1, alpha=1, beta=1, out=buf1)
del arg1_1
del arg2_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAddMmModule(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super(SimpleAddMmModule, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, a, b, c):
return (a + a).addmm(b, c)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf0, arg1_1, arg2_1, alpha=1, beta=1, out=buf1)
del arg1_1
del arg2_1
del buf0
return buf1,
class SimpleAddMmModuleNew(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super(SimpleAddMmModuleNew, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| andreas-hommel/glow | SimpleAddMmModule | false | 3,337 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super().__init__()
self.alpha = alpha
self.beta = beta
def forward(self, a, b, c):
return (a + a).addmm(b, c)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return []
|
SimpleMaxModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/6l/c6lid7didg6rn4ppoifz2te7odbgr6ljaae2lzzsff3c2lylgtyg.py
# Topologically Sorted Source Nodes: [add, add_1, max_1], Original ATen: [aten.add, aten.maximum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# max_1 => maximum
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_maximum_0 = async_compile.triton('triton_poi_fused_add_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, max_1], Original ATen: [aten.add, aten.maximum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_maximum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMaxModule(torch.nn.Module):
def __init__(self):
super(SimpleMaxModule, self).__init__()
def forward(self, a, b):
return torch.max(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_maximum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMaxModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMaxModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleMaxModule | false | 3,338 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
return torch.max(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleMatmulModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ng/cnggtmai2hzxc7e5creviqseyyf7qiy5pfpdjlp2pomqsserjuzj.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
del arg0_1
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMatmulModule(torch.nn.Module):
def __init__(self):
super(SimpleMatmulModule, self).__init__()
def forward(self, a, b):
return a.matmul(b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out
=buf1)
del arg0_1
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class SimpleMatmulModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMatmulModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleMatmulModule | false | 3,339 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
return a.matmul(b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleLogSoftmaxModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xe/cxeq77gbpevhf6jov7fs3c25pvswzi43xn2bxfthg2nvsuurswra.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nj/cnjj3kjcokm5rrbv6azeg2i2dkelsepqzurxngdhwjbc5vp6wfpj.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleLogSoftmaxModel(torch.nn.Module):
def __init__(self, dimension):
super(SimpleLogSoftmaxModel, self).__init__()
self.dimension = dimension
def forward(self, tensor):
return F.log_softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(1024)](arg0_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__log_softmax_1[grid(1024)](buf0, buf1, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del buf0
return buf1,
class SimpleLogSoftmaxModelNew(torch.nn.Module):
def __init__(self, dimension):
super(SimpleLogSoftmaxModelNew, self).__init__()
self.dimension = dimension
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleLogSoftmaxModel | false | 3,340 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, dimension):
super().__init__()
self.dimension = dimension
def forward(self, tensor):
return F.log_softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/5c/c5cxwjkcsrwxdkwyl5xu6pntbi2ziocsskrjseao5zedezwszwt2.py
# Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# y => add
# y_1 => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = 2.0
tmp3 = tmp1 + tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleModule(torch.nn.Module):
def __init__(self):
super(SimpleModule, self).__init__()
def forward(self, x):
y = x + x
y = y + 2
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = 2.0
tmp3 = tmp1 + tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleModule | false | 3,341 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
y = x + x
y = y + 2
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleMinModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/is/cisvhtrbgx7geszywb4tws4xgixibtohmtf6243rcq7k7rvlgexs.py
# Topologically Sorted Source Nodes: [add, add_1, min_1], Original ATen: [aten.add, aten.minimum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# min_1 => minimum
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_minimum_0 = async_compile.triton('triton_poi_fused_add_minimum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_minimum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.minimum(tmp1, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, min_1], Original ATen: [aten.add, aten.minimum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_minimum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMinModule(torch.nn.Module):
def __init__(self):
super(SimpleMinModule, self).__init__()
def forward(self, a, b):
return torch.min(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.minimum(tmp1, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_minimum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMinModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleMinModule | false | 3,342 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
return torch.min(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleMulModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/us/cusp54q34go4owlw52vntqwnfud2kj3mzyijjppr27wa7benuz7r.py
# Topologically Sorted Source Nodes: [other, mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# other => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %mul), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMulModule(torch.nn.Module):
def __init__(self):
super(SimpleMulModule, self).__init__()
def forward(self, left, right):
other = left.mul(right.item() if right.size() == torch.Size([]) else
right)
return other.mul(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMulModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMulModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleMulModule | false | 3,343 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, left, right):
other = left.mul(right.item() if right.size() == torch.Size([]) else
right)
return other.mul(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleSoftmaxModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ef/cef5jl2dffibrzdgvry2syqh3nv4y45hqkgzbp7rs7to3eijjxsa.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wx/cwx2kruo4gzyioj66hb76yw4vgc4lxjk7wwvv5hwx3fp7vkj4o6n.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleSoftmaxModel(torch.nn.Module):
def __init__(self, dimension):
super(SimpleSoftmaxModel, self).__init__()
self.dimension = dimension
def forward(self, tensor):
return F.softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__softmax_1[grid(1024)](buf0, buf1, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del buf0
return buf1,
class SimpleSoftmaxModelNew(torch.nn.Module):
def __init__(self, dimension):
super(SimpleSoftmaxModelNew, self).__init__()
self.dimension = dimension
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleSoftmaxModel | false | 3,344 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, dimension):
super().__init__()
self.dimension = dimension
def forward(self, tensor):
return F.softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleNormModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/k4/ck4kzjcxmvgsq33iwbwj5qw3beros4s2syh4khiprtffq6wpjiia.py
# Topologically Sorted Source Nodes: [norm], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# norm => pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
triton_per_fused_linalg_vector_norm_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = libdevice.sqrt(tmp4)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [norm], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleNormModule(torch.nn.Module):
def __init__(self, *args, **kwargs):
super(SimpleNormModule, self).__init__()
self.args = args
self.kwargs = kwargs
def forward(self, tensor):
return torch.norm(tensor, *self.args, **self.kwargs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_0(in_out_ptr0, in_ptr0, xnumel, rnumel
):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = libdevice.sqrt(tmp4)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_0[grid(1)](buf1, arg0_1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf1,
class SimpleNormModuleNew(torch.nn.Module):
def __init__(self, *args, **kwargs):
super(SimpleNormModuleNew, self).__init__()
self.args = args
self.kwargs = kwargs
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleNormModule | false | 3,345 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.args = args
self.kwargs = kwargs
def forward(self, tensor):
return torch.norm(tensor, *self.args, **self.kwargs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleOrModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/el/cel6bpplfk6uwqmcfj3bzthez5xrkrefn3chlle2rnmbe23xgscv.py
# Topologically Sorted Source Nodes: [c, logical_or_1], Original ATen: [aten.logical_or]
# Source node to ATen node mapping:
# c => logical_or
# logical_or_1 => logical_or_1
# Graph fragment:
# %logical_or : [num_users=1] = call_function[target=torch.ops.aten.logical_or.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_or_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_or.default](args = (%logical_or, %logical_or), kwargs = {})
triton_poi_fused_logical_or_0 = async_compile.triton('triton_poi_fused_logical_or_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_or_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_or_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = tmp1 | tmp3
tmp5 = tmp4 | tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_or_1], Original ATen: [aten.logical_or]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_or_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleOrModule(torch.nn.Module):
def __init__(self):
super(SimpleOrModule, self).__init__()
def forward(self, a, b):
c = torch.logical_or(a, b)
return torch.logical_or(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_or_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 | tmp3
tmp5 = tmp4 | tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_or_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleOrModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleOrModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleOrModule | false | 3,346 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
c = torch.logical_or(a, b)
return torch.logical_or(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BboxHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ff/cffqfrlow7duxa2a27d743tueqjmutkqtb36724h4w62beoddrug.py
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# out_1 => clone
# view => view
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 4]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 64, 64), (32768, 1, 512, 8))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 8), (32768, 512, 8, 1), 0); del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 8192, 4), (32768, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf3, primals_2, 131072, grid=grid(131072), stream=stream0)
del primals_2
return (buf3, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from itertools import product as product
class BboxHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(BboxHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(
1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 4)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 64, 64), (32768, 1, 512, 8))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 8), (32768, 512, 8, 1), 0)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 8192, 4), (32768, 4, 1), 0)
del buf2
triton_poi_fused_clone_view_1[grid(131072)](buf3, primals_2, 131072,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_1, buf0
class BboxHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(BboxHeadNew, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(
1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| chennnnnnnnn/face_detection | BboxHead | false | 3,347 | [
"MIT"
] | 0 | 77d5a9098d9e1a65ac5093a23620ed5d99dc0723 | https://github.com/chennnnnnnnn/face_detection/tree/77d5a9098d9e1a65ac5093a23620ed5d99dc0723 | import torch
import torch.nn as nn
from itertools import product as product
class Model(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super().__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(
1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 4)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return []
|
ClassHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xy/cxy5t3derdktibljcvhb4n4so7gljpvchrlgaqpvp5yr4i2tjqbi.py
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# out_1 => clone
# view => view
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 2]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 1, 256, 4))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 4), (16384, 256, 4, 1), 0); del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 8192, 2), (16384, 2, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf3, primals_2, 65536, grid=grid(65536), stream=stream0)
del primals_2
return (buf3, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from itertools import product as product
class ClassHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(ClassHead, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 2)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 1, 256, 4))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 4), (16384, 256, 4, 1), 0)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 8192, 2), (16384, 2, 1), 0)
del buf2
triton_poi_fused_clone_view_1[grid(65536)](buf3, primals_2, 65536,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_1, buf0
class ClassHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(ClassHeadNew, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| chennnnnnnnn/face_detection | ClassHead | false | 3,348 | [
"MIT"
] | 0 | 77d5a9098d9e1a65ac5093a23620ed5d99dc0723 | https://github.com/chennnnnnnnn/face_detection/tree/77d5a9098d9e1a65ac5093a23620ed5d99dc0723 | import torch
import torch.nn as nn
from itertools import product as product
class Model(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super().__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 2)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return []
|
SimpleNotModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/cd/ccdsblr3257brbmhrvhdeqget7q2gbkwwz35ze4s55arhkureuea.py
# Topologically Sorted Source Nodes: [b, logical_not_1], Original ATen: [aten.logical_not]
# Source node to ATen node mapping:
# b => logical_not
# logical_not_1 => logical_not_1
# Graph fragment:
# %logical_not : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%arg0_1,), kwargs = {})
# %logical_not_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%logical_not,), kwargs = {})
triton_poi_fused_logical_not_0 = async_compile.triton('triton_poi_fused_logical_not_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_not_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp2 = tmp1 == 0
tmp3 = tmp2 == 0
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [b, logical_not_1], Original ATen: [aten.logical_not]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_not_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleNotModule(torch.nn.Module):
def __init__(self):
super(SimpleNotModule, self).__init__()
def forward(self, a):
b = torch.logical_not(a)
return torch.logical_not(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 != 0
tmp2 = tmp1 == 0
tmp3 = tmp2 == 0
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_not_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleNotModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleNotModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleNotModule | false | 3,349 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
b = torch.logical_not(a)
return torch.logical_not(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleReshapeModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2j/c2ju6nxawlrauguem6bximg5swv34phnnk2hdvtnx2xovvh5goee.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.add]
# Source node to ATen node mapping:
# combined => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleReshapeModel(torch.nn.Module):
def __init__(self, shape):
super(SimpleReshapeModel, self).__init__()
self.shape = shape
def forward(self, tensor):
combined = tensor + tensor
return combined.reshape(self.shape)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [[], {'shape': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class SimpleReshapeModelNew(torch.nn.Module):
def __init__(self, shape):
super(SimpleReshapeModelNew, self).__init__()
self.shape = shape
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleReshapeModel | false | 3,350 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, shape):
super().__init__()
self.shape = shape
def forward(self, tensor):
combined = tensor + tensor
return combined.reshape(self.shape)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [4]
|
SimpleReluModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ll/cll4cjpzu6vsmy2t6yfmvdki2efgptzlcycbgoibjk65mj7ireqn.py
# Topologically Sorted Source Nodes: [other, relu_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# other => relu
# relu_1 => relu_1
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%relu,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, relu_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleReluModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReluModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
other = F.relu(tensor, inplace=self.inplace)
return F.relu(other, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleReluModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReluModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleReluModel | false | 3,351 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, inplace=False):
super().__init__()
self.inplace = inplace
def forward(self, tensor):
other = F.relu(tensor, inplace=self.inplace)
return F.relu(other, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimplePowModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/th/cthfcnqcrhqllimklewhtwlw3kynsejtajhc7eunrob3gyhbmsze.py
# Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow]
# Source node to ATen node mapping:
# pow_1 => pow_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = tmp1 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimplePowModule(torch.nn.Module):
def __init__(self, power):
super(SimplePowModule, self).__init__()
self.power = power
def forward(self, tensor):
return torch.pow(tensor, self.power)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'power': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = tmp1 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimplePowModuleNew(torch.nn.Module):
def __init__(self, power):
super(SimplePowModuleNew, self).__init__()
self.power = power
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimplePowModule | false | 3,352 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, power):
super().__init__()
self.power = power
def forward(self, tensor):
return torch.pow(tensor, self.power)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
OutputBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/4w/c4wimnb7vlxk5u7piuh5g7aw5vqpw73l2dqrk26tak7tuyghtgkf.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 64)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class OutputBlock(torch.nn.Module):
"""Flatten output channels using 1x1x1 convolutions"""
def __init__(self, ks, channels_in, channels_out):
super(OutputBlock, self).__init__()
self.convflat = torch.nn.Conv3d(in_channels=channels_in,
out_channels=channels_out, kernel_size=1, stride=1)
def forward(self, x):
x = self.convflat(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'ks': 4, 'channels_in': 4, 'channels_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1,
1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256,
64, 16, 4, 1), 0)
class OutputBlockNew(torch.nn.Module):
"""Flatten output channels using 1x1x1 convolutions"""
def __init__(self, ks, channels_in, channels_out):
super(OutputBlockNew, self).__init__()
self.convflat = torch.nn.Conv3d(in_channels=channels_in,
out_channels=channels_out, kernel_size=1, stride=1)
def forward(self, input_0):
primals_1 = self.convflat.weight
primals_2 = self.convflat.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| conlain-k/RLN_elasticity | OutputBlock | false | 3,353 | [
"MIT"
] | 0 | d8574c83d62f675960a7f8b86ddb553e9a7b1ca7 | https://github.com/conlain-k/RLN_elasticity/tree/d8574c83d62f675960a7f8b86ddb553e9a7b1ca7 | import torch
class Model(torch.nn.Module):
"""Flatten output channels using 1x1x1 convolutions"""
def __init__(self, ks, channels_in, channels_out):
super().__init__()
self.convflat = torch.nn.Conv3d(in_channels=channels_in,
out_channels=channels_out, kernel_size=1, stride=1)
def forward(self, x):
x = self.convflat(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
SimpleSumModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/rt/crtaa7jk7byqntpikbqibiqclpj3ph3k3g4gm3y22pcpf5wsrsn3.py
# Topologically Sorted Source Nodes: [b, sum_1], Original ATen: [aten.add, aten.sum]
# Source node to ATen node mapping:
# b => add
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {})
triton_per_fused_add_sum_0 = async_compile.triton('triton_per_fused_add_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 + tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [b, sum_1], Original ATen: [aten.add, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_sum_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleSumModule(torch.nn.Module):
def __init__(self, dtype=None):
super(SimpleSumModule, self).__init__()
self.dtype = dtype
def forward(self, a):
b = a + a
return torch.sum(b, dtype=self.dtype)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 + tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp4, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_sum_0[grid(1)](arg0_1, buf0, 1, 256, num_warps
=2, num_stages=1)
del arg0_1
return buf0,
class SimpleSumModuleNew(torch.nn.Module):
def __init__(self, dtype=None):
super(SimpleSumModuleNew, self).__init__()
self.dtype = dtype
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleSumModule | false | 3,354 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, dtype=None):
super().__init__()
self.dtype = dtype
def forward(self, a):
b = a + a
return torch.sum(b, dtype=self.dtype)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LandmarkHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7a/c7auqvqakf5iup6jxhpmvimbxgbhkwojsfkb4ydpzggudkwfecso.py
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# out_1 => clone
# view => view
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 10]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 327680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (20, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (20, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 20, 64, 64), (81920, 1, 1280, 20))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 20), (81920, 1280, 20, 1), 0); del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 8192, 10), (81920, 10, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf3, primals_2, 327680, grid=grid(327680), stream=stream0)
del primals_2
return (buf3, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((20, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from itertools import product as product
class LandmarkHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(LandmarkHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 10)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (20, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 20, 64, 64), (81920, 1, 1280, 20))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 20), (81920, 1280, 20,
1), 0)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 8192, 10), (81920, 10, 1), 0)
del buf2
triton_poi_fused_clone_view_1[grid(327680)](buf3, primals_2, 327680,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_1, buf0
class LandmarkHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(LandmarkHeadNew, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| chennnnnnnnn/face_detection | LandmarkHead | false | 3,355 | [
"MIT"
] | 0 | 77d5a9098d9e1a65ac5093a23620ed5d99dc0723 | https://github.com/chennnnnnnnn/face_detection/tree/77d5a9098d9e1a65ac5093a23620ed5d99dc0723 | import torch
import torch.nn as nn
from itertools import product as product
class Model(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super().__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 10)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return []
|
Qux | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bj/cbjesanz52gunefusavp3qpbw4kokz2sx2jddma7ulw6vhss425c.py
# Topologically Sorted Source Nodes: [sub, sub_1], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, 4), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 4.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, sub_1], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class Qux(torch.nn.Module):
def __init__(self, x):
super(Qux, self).__init__()
self.x = x
def forward(self, a, b):
return a - b - self.x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'x': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = 4.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class QuxNew(torch.nn.Module):
def __init__(self, x):
super(QuxNew, self).__init__()
self.x = x
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | Qux | false | 3,356 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, x):
super().__init__()
self.x = x
def forward(self, a, b):
return a - b - self.x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleTanhModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bv/cbvw7afmr2daqq3xv6rtsmbu5jcnt46e5lw3xedxgr4bybwozsyg.py
# Topologically Sorted Source Nodes: [tensor, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.tanh(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, tanh], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleTanhModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleTanhModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
tensor = tensor + tensor
return tensor.tanh_() if self.inplace else tensor.tanh()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.tanh(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleTanhModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleTanhModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleTanhModel | false | 3,357 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, inplace=False):
super().__init__()
self.inplace = inplace
def forward(self, tensor):
tensor = tensor + tensor
return tensor.tanh_() if self.inplace else tensor.tanh()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleSinModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/um/cumfo6xlwcf7gajmq7aavjn4b3q6favglcetyv2n73qurfxutgrk.py
# Topologically Sorted Source Nodes: [add, sin], Original ATen: [aten.add, aten.sin]
# Source node to ATen node mapping:
# add => add
# sin => sin
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%add,), kwargs = {})
triton_poi_fused_add_sin_0 = async_compile.triton('triton_poi_fused_add_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.sin(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, sin], Original ATen: [aten.add, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_add_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleSinModule(torch.nn.Module):
def __init__(self):
super(SimpleSinModule, self).__init__()
def forward(self, a):
return torch.sin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.sin(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleSinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleSinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleSinModule | false | 3,358 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.sin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
CircPad | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/33/c33l4glzlbdbibdludji3jij4pbi2id2whvicmkhdcltg4jiddkt.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.copy]
# Source node to ATen node mapping:
# x => copy
# Graph fragment:
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_5, %slice_6), kwargs = {})
# %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor_1, %copy, 1, 4, 8), kwargs = {})
# %slice_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor, %slice_scatter_default, 2, 4, 8), kwargs = {})
# %slice_scatter_default_2 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%empty, %slice_scatter_default_1, 3, 4, 8), kwargs = {})
# %slice_scatter_default_3 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %slice_15, 3, 0, 4), kwargs = {})
triton_poi_fused_copy_0 = async_compile.triton('triton_poi_fused_copy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_copy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12) % 12
x2 = (xindex // 144) % 12
x3 = (xindex // 1728)
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = 4 + x0
tmp4 = tmp3 >= tmp1
tmp5 = tl.full([1], 8, tl.int64)
tmp6 = tmp3 < tmp5
tmp7 = tmp4 & tmp6
tmp8 = tmp7 & tmp2
tmp9 = x1
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp5
tmp12 = tmp10 & tmp11
tmp13 = tmp12 & tmp8
tmp14 = x2
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp5
tmp17 = tmp15 & tmp16
tmp18 = tmp17 & tmp13
tmp19 = tl.load(in_ptr0 + ((-80) + x0 + (4*x1) + (16*x2) + (64*x3)), tmp18 & xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (4 + x5), tmp13 & xmask, other=0.0)
tmp21 = tl.where(tmp17, tmp19, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp13, tmp21, tmp22)
tmp24 = tl.load(in_ptr1 + (4 + x5), tmp8 & xmask, other=0.0)
tmp25 = tl.where(tmp12, tmp23, tmp24)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp8, tmp25, tmp26)
tmp28 = float("nan")
tmp29 = tl.where(tmp7, tmp27, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp2, tmp29, tmp30)
tmp32 = tmp0 >= tmp1
tmp33 = tmp0 < tmp5
tmp34 = tmp32 & tmp33
tmp35 = tmp12 & tmp34
tmp36 = tmp17 & tmp35
tmp37 = tl.load(in_ptr0 + ((-84) + x0 + (4*x1) + (16*x2) + (64*x3)), tmp36 & xmask, other=0.0)
tmp38 = tl.load(in_ptr1 + (x5), tmp35 & xmask, other=0.0)
tmp39 = tl.where(tmp17, tmp37, tmp38)
tmp40 = tl.full(tmp39.shape, 0.0, tmp39.dtype)
tmp41 = tl.where(tmp35, tmp39, tmp40)
tmp42 = tl.load(in_ptr1 + (x5), tmp34 & xmask, other=0.0)
tmp43 = tl.where(tmp12, tmp41, tmp42)
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp34, tmp43, tmp44)
tmp46 = tl.where(tmp34, tmp45, tmp28)
tmp47 = tl.where(tmp2, tmp31, tmp46)
tl.store(out_ptr0 + (x5), tmp47, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vr/cvrirndocqm44odkw66aqriqwnqh4d7fshix6rnqjqqv3la4zz34.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %slice_scatter_default_4 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_3, %slice_20, 3, 8, 12), kwargs = {})
# %slice_scatter_default_5 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %slice_25, 2, 0, 4), kwargs = {})
# %slice_scatter_default_6 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_5, %slice_30, 2, 8, 12), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 12) % 12
x0 = xindex % 12
x3 = xindex
tmp30 = tl.load(in_ptr0 + (x3), xmask)
tmp0 = x1
tmp1 = tl.full([1], 8, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = (-4) + x1
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = x0
tmp8 = tmp7 >= tmp1
tmp9 = tmp8 & tmp6
tmp10 = tl.load(in_ptr0 + ((-4) + x3), tmp9 & xmask, other=0.0)
tmp11 = tl.load(in_ptr0 + (x3), tmp6 & xmask, other=0.0)
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp6, tmp12, tmp13)
tmp15 = tmp8 & tmp2
tmp16 = tl.load(in_ptr0 + ((-52) + x3), tmp15 & xmask, other=0.0)
tmp17 = tl.load(in_ptr0 + ((-48) + x3), tmp2 & xmask, other=0.0)
tmp18 = tl.where(tmp8, tmp16, tmp17)
tmp19 = tl.where(tmp5, tmp14, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp2, tmp19, tmp20)
tmp22 = tmp0 < tmp4
tmp23 = tmp8 & tmp22
tmp24 = tl.load(in_ptr0 + (44 + x3), tmp23 & xmask, other=0.0)
tmp25 = tl.load(in_ptr0 + (48 + x3), tmp22 & xmask, other=0.0)
tmp26 = tl.where(tmp8, tmp24, tmp25)
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp22, tmp26, tmp27)
tmp29 = tl.load(in_ptr0 + ((-4) + x3), tmp8 & xmask, other=0.0)
tmp31 = tl.where(tmp8, tmp29, tmp30)
tmp32 = tl.where(tmp22, tmp28, tmp31)
tmp33 = tl.where(tmp2, tmp21, tmp32)
tl.store(out_ptr0 + (x3), tmp33, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/oe/coegkhgnxe5v6e6qj7k76tureqkbihw4mfmjfmkapt6kllycc4m3.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %slice_scatter_default_7 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_6, %slice_35, 1, 0, 4), kwargs = {})
# %slice_scatter_default_8 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %slice_40, 1, 8, 12), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 144) % 12
x3 = xindex
tmp14 = tl.load(in_ptr0 + (x3), xmask)
tmp0 = x1
tmp1 = tl.full([1], 8, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = (-4) + x1
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.load(in_ptr0 + (x3), tmp6 & xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + ((-576) + x3), tmp2 & xmask, other=0.0)
tmp9 = tl.where(tmp5, tmp7, tmp8)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp2, tmp9, tmp10)
tmp12 = tmp0 < tmp4
tmp13 = tl.load(in_ptr0 + (576 + x3), tmp12 & xmask, other=0.0)
tmp15 = tl.where(tmp12, tmp13, tmp14)
tmp16 = tl.where(tmp2, tmp11, tmp15)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
buf0 = empty_strided_cuda((4, 12, 12, 12), (1728, 144, 12, 1), torch.float32)
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 12, 12, 12), (1728, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.copy]
stream0 = get_raw_stream(0)
triton_poi_fused_copy_0.run(arg0_1, buf0, buf1, 6912, grid=grid(6912), stream=stream0)
del arg0_1
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf1, buf2, 6912, grid=grid(6912), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf2, buf3, 6912, grid=grid(6912), stream=stream0)
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class CircPad(torch.nn.Module):
def __init__(self, pad_size):
super(CircPad, self).__init__()
if type(pad_size) == tuple:
self.padding = pad_size
else:
self.padding = tuple(pad_size for i in range(6))
def forward(self, x):
x = F.pad(x, self.padding, mode='circular')
return x
def __repr__(self):
return f'{type(self).__name__}(pad_size={self.padding})'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'pad_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_copy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 6912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12 % 12
x2 = xindex // 144 % 12
x3 = xindex // 1728
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = 4 + x0
tmp4 = tmp3 >= tmp1
tmp5 = tl.full([1], 8, tl.int64)
tmp6 = tmp3 < tmp5
tmp7 = tmp4 & tmp6
tmp8 = tmp7 & tmp2
tmp9 = x1
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp5
tmp12 = tmp10 & tmp11
tmp13 = tmp12 & tmp8
tmp14 = x2
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp5
tmp17 = tmp15 & tmp16
tmp18 = tmp17 & tmp13
tmp19 = tl.load(in_ptr0 + (-80 + x0 + 4 * x1 + 16 * x2 + 64 * x3),
tmp18 & xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (4 + x5), tmp13 & xmask, other=0.0)
tmp21 = tl.where(tmp17, tmp19, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp13, tmp21, tmp22)
tmp24 = tl.load(in_ptr1 + (4 + x5), tmp8 & xmask, other=0.0)
tmp25 = tl.where(tmp12, tmp23, tmp24)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp8, tmp25, tmp26)
tmp28 = float('nan')
tmp29 = tl.where(tmp7, tmp27, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp2, tmp29, tmp30)
tmp32 = tmp0 >= tmp1
tmp33 = tmp0 < tmp5
tmp34 = tmp32 & tmp33
tmp35 = tmp12 & tmp34
tmp36 = tmp17 & tmp35
tmp37 = tl.load(in_ptr0 + (-84 + x0 + 4 * x1 + 16 * x2 + 64 * x3),
tmp36 & xmask, other=0.0)
tmp38 = tl.load(in_ptr1 + x5, tmp35 & xmask, other=0.0)
tmp39 = tl.where(tmp17, tmp37, tmp38)
tmp40 = tl.full(tmp39.shape, 0.0, tmp39.dtype)
tmp41 = tl.where(tmp35, tmp39, tmp40)
tmp42 = tl.load(in_ptr1 + x5, tmp34 & xmask, other=0.0)
tmp43 = tl.where(tmp12, tmp41, tmp42)
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp34, tmp43, tmp44)
tmp46 = tl.where(tmp34, tmp45, tmp28)
tmp47 = tl.where(tmp2, tmp31, tmp46)
tl.store(out_ptr0 + x5, tmp47, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 12 % 12
x0 = xindex % 12
x3 = xindex
tmp30 = tl.load(in_ptr0 + x3, xmask)
tmp0 = x1
tmp1 = tl.full([1], 8, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = -4 + x1
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = x0
tmp8 = tmp7 >= tmp1
tmp9 = tmp8 & tmp6
tmp10 = tl.load(in_ptr0 + (-4 + x3), tmp9 & xmask, other=0.0)
tmp11 = tl.load(in_ptr0 + x3, tmp6 & xmask, other=0.0)
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp6, tmp12, tmp13)
tmp15 = tmp8 & tmp2
tmp16 = tl.load(in_ptr0 + (-52 + x3), tmp15 & xmask, other=0.0)
tmp17 = tl.load(in_ptr0 + (-48 + x3), tmp2 & xmask, other=0.0)
tmp18 = tl.where(tmp8, tmp16, tmp17)
tmp19 = tl.where(tmp5, tmp14, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp2, tmp19, tmp20)
tmp22 = tmp0 < tmp4
tmp23 = tmp8 & tmp22
tmp24 = tl.load(in_ptr0 + (44 + x3), tmp23 & xmask, other=0.0)
tmp25 = tl.load(in_ptr0 + (48 + x3), tmp22 & xmask, other=0.0)
tmp26 = tl.where(tmp8, tmp24, tmp25)
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp22, tmp26, tmp27)
tmp29 = tl.load(in_ptr0 + (-4 + x3), tmp8 & xmask, other=0.0)
tmp31 = tl.where(tmp8, tmp29, tmp30)
tmp32 = tl.where(tmp22, tmp28, tmp31)
tmp33 = tl.where(tmp2, tmp21, tmp32)
tl.store(out_ptr0 + x3, tmp33, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 144 % 12
x3 = xindex
tmp14 = tl.load(in_ptr0 + x3, xmask)
tmp0 = x1
tmp1 = tl.full([1], 8, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = -4 + x1
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.load(in_ptr0 + x3, tmp6 & xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (-576 + x3), tmp2 & xmask, other=0.0)
tmp9 = tl.where(tmp5, tmp7, tmp8)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp2, tmp9, tmp10)
tmp12 = tmp0 < tmp4
tmp13 = tl.load(in_ptr0 + (576 + x3), tmp12 & xmask, other=0.0)
tmp15 = tl.where(tmp12, tmp13, tmp14)
tmp16 = tl.where(tmp2, tmp11, tmp15)
tl.store(out_ptr0 + x3, tmp16, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
buf0 = empty_strided_cuda((4, 12, 12, 12), (1728, 144, 12, 1), torch.
float32)
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 12, 12, 12), (1728, 144, 12, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_copy_0[grid(6912)](arg0_1, buf0, buf1, 6912,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf2 = buf0
del buf0
triton_poi_fused_1[grid(6912)](buf1, buf2, 6912, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = buf1
del buf1
triton_poi_fused_2[grid(6912)](buf2, buf3, 6912, XBLOCK=128,
num_warps=4, num_stages=1)
del buf2
return buf3,
class CircPadNew(torch.nn.Module):
def __init__(self, pad_size):
super(CircPadNew, self).__init__()
if type(pad_size) == tuple:
self.padding = pad_size
else:
self.padding = tuple(pad_size for i in range(6))
def __repr__(self):
return f'{type(self).__name__}(pad_size={self.padding})'
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| conlain-k/RLN_elasticity | CircPad | false | 3,359 | [
"MIT"
] | 0 | d8574c83d62f675960a7f8b86ddb553e9a7b1ca7 | https://github.com/conlain-k/RLN_elasticity/tree/d8574c83d62f675960a7f8b86ddb553e9a7b1ca7 | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self, pad_size):
super().__init__()
if type(pad_size) == tuple:
self.padding = pad_size
else:
self.padding = tuple(pad_size for i in range(6))
def forward(self, x):
x = F.pad(x, self.padding, mode='circular')
return x
def __repr__(self):
return f'{type(self).__name__}(pad_size={self.padding})'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleReciprocalModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mb/cmb22rikzfzsbog4swdz4yuwqyxobyyc7jycz5a5bbxu4fvunisq.py
# Topologically Sorted Source Nodes: [other, reciprocal], Original ATen: [aten.add, aten.reciprocal]
# Source node to ATen node mapping:
# other => add
# reciprocal => reciprocal
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
triton_poi_fused_add_reciprocal_0 = async_compile.triton('triton_poi_fused_add_reciprocal_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, reciprocal], Original ATen: [aten.add, aten.reciprocal]
stream0 = get_raw_stream(0)
triton_poi_fused_add_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleReciprocalModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReciprocalModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
other = tensor + tensor
return other.reciprocal_() if self.inplace else torch.reciprocal(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_reciprocal_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleReciprocalModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReciprocalModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleReciprocalModel | false | 3,360 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, inplace=False):
super().__init__()
self.inplace = inplace
def forward(self, tensor):
other = tensor + tensor
return other.reciprocal_() if self.inplace else torch.reciprocal(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SqueezeExcitation | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [scale], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# scale => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/sh/cshbgrlhlsuuebcz7jbje66sr2nkeng6kilqpqluwrr5ru2afxle.py
# Topologically Sorted Source Nodes: [scale_1, scale_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# scale_1 => convolution
# scale_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/22/c22ve3r4y5fft3g2xdkwnomz747tvayj57gf6zszmac5hjy65wgt.py
# Topologically Sorted Source Nodes: [scale_3, scale_4, mul], Original ATen: [aten.convolution, aten.hardsigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# scale_3 => convolution_1
# scale_4 => add, clamp_max, clamp_min, div
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_1), kwargs = {})
triton_poi_fused_convolution_hardsigmoid_mul_2 = async_compile.triton('triton_poi_fused_convolution_hardsigmoid_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardsigmoid_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_hardsigmoid_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 16)
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x4), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 6.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tmp12 = tmp10 * tmp11
tl.store(out_ptr0 + (x4), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hv/chvrs33e2wyvaktcs4kouk236tzwn7sho4sgx2yjf7sjc72okw6d.py
# Topologically Sorted Source Nodes: [scale_3], Original ATen: [aten.convolution, aten.hardsigmoid_backward]
# Source node to ATen node mapping:
# scale_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, -3.0), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%convolution_1, 3.0), kwargs = {})
# %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%gt, %lt), kwargs = {})
triton_poi_fused_convolution_hardsigmoid_backward_3 = async_compile.triton('triton_poi_fused_convolution_hardsigmoid_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardsigmoid_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_hardsigmoid_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = -3.0
tmp4 = tmp2 > tmp3
tmp5 = 3.0
tmp6 = tmp2 < tmp5
tmp7 = tmp4 & tmp6
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [scale], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [scale_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 1, 1), (8, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [scale_1, scale_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 32, grid=grid(32), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [scale_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [scale_3, scale_4, mul], Original ATen: [aten.convolution, aten.hardsigmoid, aten.mul]
triton_poi_fused_convolution_hardsigmoid_mul_2.run(buf4, primals_5, primals_1, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [scale_3], Original ATen: [aten.convolution, aten.hardsigmoid_backward]
triton_poi_fused_convolution_hardsigmoid_backward_3.run(buf4, primals_5, buf6, 16, grid=grid(16), stream=stream0)
del buf4
del primals_5
return (buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
from torch.nn import functional as F
from torchvision.models.mobilenetv2 import _make_divisible
class SqueezeExcitation(nn.Module):
def __init__(self, input_channels: 'int', squeeze_factor: 'int'=4):
super().__init__()
squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1)
def _scale(self, input: 'Tensor', inplace: 'bool') ->Tensor:
scale = F.adaptive_avg_pool2d(input, 1)
scale = self.fc1(scale)
scale = self.relu(scale)
scale = self.fc2(scale)
return F.hardsigmoid(scale, inplace=inplace)
def forward(self, input: 'Tensor') ->Tensor:
scale = self._scale(input, True)
return scale * input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import Tensor
from torch import nn
from torch.nn import functional as F
from torchvision.models.mobilenetv2 import _make_divisible
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_hardsigmoid_mul_2(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 16
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + x4, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 6.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tmp12 = tmp10 * tmp11
tl.store(out_ptr0 + x4, tmp12, xmask)
@triton.jit
def triton_poi_fused_convolution_hardsigmoid_backward_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = -3.0
tmp4 = tmp2 > tmp3
tmp5 = 3.0
tmp6 = tmp2 < tmp5
tmp7 = tmp4 & tmp6
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 1, 1), (8, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(32)](buf3, primals_3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_hardsigmoid_mul_2[grid(256)](buf4,
primals_5, primals_1, buf5, 256, XBLOCK=128, num_warps=4,
num_stages=1)
buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
triton_poi_fused_convolution_hardsigmoid_backward_3[grid(16)](buf4,
primals_5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf4
del primals_5
return buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6
class SqueezeExcitationNew(nn.Module):
def __init__(self, input_channels: 'int', squeeze_factor: 'int'=4):
super().__init__()
squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1)
def _scale(self, input: 'Tensor', inplace: 'bool') ->Tensor:
scale = F.adaptive_avg_pool2d(input, 1)
scale = self.fc1(scale)
scale = self.relu(scale)
scale = self.fc2(scale)
return F.hardsigmoid(scale, inplace=inplace)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| connernam/lightweight-human-pose-estimation.pytorch | SqueezeExcitation | false | 3,361 | [
"Apache-2.0"
] | 0 | ea30c43dce0d9439345e014e00a5cf7ef34db9e1 | https://github.com/connernam/lightweight-human-pose-estimation.pytorch/tree/ea30c43dce0d9439345e014e00a5cf7ef34db9e1 | import torch
from torch import Tensor
from torch import nn
from torch.nn import functional as F
from torchvision.models.mobilenetv2 import _make_divisible
class Model(nn.Module):
def __init__(self, input_channels: 'int', squeeze_factor: 'int'=4):
super().__init__()
squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1)
def _scale(self, input: 'Tensor', inplace: 'bool') ->Tensor:
scale = F.adaptive_avg_pool2d(input, 1)
scale = self.fc1(scale)
scale = self.relu(scale)
scale = self.fc2(scale)
return F.hardsigmoid(scale, inplace=inplace)
def forward(self, input: 'Tensor') ->Tensor:
scale = self._scale(input, True)
return scale * input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Conv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3i/c3iahaec5pb6sirkwkcomrpurca6kdwlbapwy7tphk7f3x443klh.py
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# inputs => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute, [2, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 8], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 7
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = (-2) + x2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + ((-8) + y0 + (4*x2) + (16*y1)), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x2 + (7*y3)), tmp6, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 16, 7, grid=grid(16, 7), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Conv(nn.Module):
def __init__(self, input_size, output_size, kernel_size, pad_type):
super(Conv, self).__init__()
padding = (kernel_size - 1, 0) if pad_type == 'left' else (
kernel_size // 2, (kernel_size - 1) // 2)
self.pad = nn.ConstantPad1d(padding, 0)
self.conv = nn.Conv1d(input_size, output_size, kernel_size=
kernel_size, padding=0)
def forward(self, inputs):
inputs = self.pad(inputs.permute(0, 2, 1))
outputs = self.conv(inputs).permute(0, 2, 1)
return outputs
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4, 'kernel_size': 4,
'pad_type': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 7
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = -2 + x2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-8 + y0 + 4 * x2 + 16 * y1), tmp5 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x2 + 7 * y3), tmp6, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(16, 7)](primals_1, buf0, 16,
7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0
class ConvNew(nn.Module):
def __init__(self, input_size, output_size, kernel_size, pad_type):
super(ConvNew, self).__init__()
padding = (kernel_size - 1, 0) if pad_type == 'left' else (
kernel_size // 2, (kernel_size - 1) // 2)
self.pad = nn.ConstantPad1d(padding, 0)
self.conv = nn.Conv1d(input_size, output_size, kernel_size=
kernel_size, padding=0)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_3 = self.conv.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| crazyofapple/bert | Conv | false | 3,362 | [
"Apache-2.0"
] | 0 | 09f6afffc064687f7ac85d847f082e1c8d1f3ffa | https://github.com/crazyofapple/bert/tree/09f6afffc064687f7ac85d847f082e1c8d1f3ffa | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size, output_size, kernel_size, pad_type):
super().__init__()
padding = (kernel_size - 1, 0) if pad_type == 'left' else (
kernel_size // 2, (kernel_size - 1) // 2)
self.pad = nn.ConstantPad1d(padding, 0)
self.conv = nn.Conv1d(input_size, output_size, kernel_size=
kernel_size, padding=0)
def forward(self, inputs):
inputs = self.pad(inputs.permute(0, 2, 1))
outputs = self.conv(inputs).permute(0, 2, 1)
return outputs
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4, 'kernel_size': 4,
'pad_type': 4}]
|
ResidualBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# y => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/iw/ciwss4s6mhbwjd3m3xz3w2xexrkpf6d4obqawfbiopqaqcnnlprt.py
# Topologically Sorted Source Nodes: [y_1, add, relu_1], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# relu_1 => relu_1
# y_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution_1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(in_out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [y_1, add, relu_1], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf3, primals_3, primals_5, buf4, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.channels = channels
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x + y)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(in_out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)](
buf3, primals_3, primals_5, buf4, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1, buf4
class ResidualBlockNew(nn.Module):
def __init__(self, channels):
super(ResidualBlockNew, self).__init__()
self.channels = channels
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| crisnyoung/awesome-DeepLearning | ResidualBlock | false | 3,363 | [
"Apache-2.0"
] | 0 | 0f4d0e8cc6f6c662c9a058d4af7610bf1d2a947d | https://github.com/crisnyoung/awesome-DeepLearning/tree/0f4d0e8cc6f6c662c9a058d4af7610bf1d2a947d | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x + y)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
L1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/5u/c5ugctirrdx7vwsb6vcdnsk3ju2zzivmjmo2w2s56lxqbfmgbhnh.py
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# l1_loss => abs_1, mean, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class L1Loss(torch.nn.Module):
def __init__(self):
super(L1Loss, self).__init__()
self.loss = torch.nn.L1Loss(reduction='mean')
def forward(self, cleaned_images, images):
return self.loss(cleaned_images, images)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L1LossNew(torch.nn.Module):
def __init__(self):
super(L1LossNew, self).__init__()
self.loss = torch.nn.L1Loss(reduction='mean')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| cviaai/MARL-NIR | L1Loss | false | 3,364 | [
"MIT"
] | 0 | f90f2353b03023546110c08ab1a24cf8edafb5fb | https://github.com/cviaai/MARL-NIR/tree/f90f2353b03023546110c08ab1a24cf8edafb5fb | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.loss = torch.nn.L1Loss(reduction='mean')
def forward(self, cleaned_images, images):
return self.loss(cleaned_images, images)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleXorModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2t/c2t7awkb47lv4n57sfx4u7jomyzx3q7qvtzhxrgvtwk3vcwxkfhp.py
# Topologically Sorted Source Nodes: [c, logical_xor_1], Original ATen: [aten.logical_xor]
# Source node to ATen node mapping:
# c => logical_xor
# logical_xor_1 => logical_xor_1
# Graph fragment:
# %logical_xor : [num_users=1] = call_function[target=torch.ops.aten.logical_xor.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_xor_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_xor.default](args = (%logical_xor, %logical_xor), kwargs = {})
triton_poi_fused_logical_xor_0 = async_compile.triton('triton_poi_fused_logical_xor_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_xor_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_xor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = (tmp1 ^ tmp3)
tmp5 = (tmp4 ^ tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_xor_1], Original ATen: [aten.logical_xor]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_xor_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleXorModule(torch.nn.Module):
def __init__(self):
super(SimpleXorModule, self).__init__()
def forward(self, a, b):
c = torch.logical_xor(a, b)
return torch.logical_xor(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_xor_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 ^ tmp3
tmp5 = tmp4 ^ tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_xor_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleXorModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleXorModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleXorModule | false | 3,365 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b):
c = torch.logical_xor(a, b)
return torch.logical_xor(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleTypeasModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oo/coo6fior4gtmedodyysb4cm6xgshrmes4qlz3fctq5hnz2fimegz.py
# Topologically Sorted Source Nodes: [tensor, add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_1 => add_1
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tmp1 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, add_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleTypeasModel(torch.nn.Module):
def __init__(self):
super(SimpleTypeasModel, self).__init__()
def forward(self, tensor, other=None):
other = tensor if other is None else other
if tensor.dtype != torch.bool:
tensor = tensor + tensor
typed = tensor.type_as(other)
return typed + typed
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tmp1 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleTypeasModelNew(torch.nn.Module):
def __init__(self):
super(SimpleTypeasModelNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| andreas-hommel/glow | SimpleTypeasModel | false | 3,366 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, tensor, other=None):
other = tensor if other is None else other
if tensor.dtype != torch.bool:
tensor = tensor + tensor
typed = tensor.type_as(other)
return typed + typed
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
VGG16 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/rn/crng7m5mguccwv3xvtgv4yl47k24ov5e26h7ejsq2geg3uuvz5og.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lf/clf45mspfcg7t5x4om2snxq42eoe4jywsisc72sbpggbkipki6jb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qn/cqnvlz36e5n74qbwjehi6cgr4dntmtxxsduqflrrittcgu3yf256.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rw/crwxihz2xdn6vknnrjr5if7hyms65a7dv6ub7vsls72ck5xfuwfz.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7v/c7vlmp4ptmjjinootrsb47fer72573dvgxb4w77hrarddids2b3i.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 131072
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yl/cylsyrzru64h3777bghq4brfo5xznorpgywpstgksyzpqwzecdey.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ge/cget5nqcqgmfplthkcx4uyh5p3254jiox3fz5gndtsq6x3tz7htc.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 524288
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/is/cisv67wbtayxvweq3zuup7vz5ggkyk7ogfqvdtcenxk32kuw2gah.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dh/cdhxbkfmhejdlidurhhj3sinjzrczc4tfowdrhosuvb6ilr3gfwp.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_8 = async_compile.triton('triton_poi_fused_convolution_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rv/crv3uzu52jbc4u62gio2klk6cj5xhjt7yazr75tq67kvtteddsn5.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ln/cln6ukrvrwq2yidze6n7xij67rihdsxpkkrbbuf6ni5zieakmtkx.py
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lu/clux7aevgdsnhtjtdkdp6pwanzhifldlf6muiuvqh227hizpvw4x.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 2048) % 32
x1 = (xindex // 64) % 32
x0 = xindex % 64
x5 = (xindex // 2048)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4160) + x0 + (128*x1) + (8192*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x0 + (128*x1) + (8192*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-4032) + x0 + (128*x1) + (8192*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-64) + x0 + (128*x1) + (8192*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (4032 + x0 + (128*x1) + (8192*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tl.store(out_ptr0 + (x6), tmp51, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/n3/cn34mbt2rtob3eeqb7butchvtwaa2lxs5ritiirymjwyzcwqeits.py
# Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xi/cxidc4r5nvzmgqw6uydniyux5jy6pcxtdrc4ndkkyvb55hucusew.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 2048) % 16
x1 = (xindex // 128) % 16
x0 = xindex % 128
x5 = (xindex // 2048)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4224) + x0 + (256*x1) + (8192*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x0 + (256*x1) + (8192*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3968) + x0 + (256*x1) + (8192*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-128) + x0 + (256*x1) + (8192*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (256*x1) + (8192*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (8192*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3968 + x0 + (256*x1) + (8192*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (8192*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4224 + x0 + (256*x1) + (8192*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/r4/cr4cxr5slxie5num5fkjya5y6p2mpesokrymomcbss4ipccdadwk.py
# Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_6 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fc/cfc56xho3taq6zxujkrbo5vrqblszxprdkpvj7o2qq5rmj57gmwd.py
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_9 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 2048) % 8
x1 = (xindex // 256) % 8
x0 = xindex % 256
x5 = (xindex // 2048)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4352) + x0 + (512*x1) + (8192*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x0 + (512*x1) + (8192*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3840) + x0 + (512*x1) + (8192*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-256) + x0 + (512*x1) + (8192*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3840 + x0 + (512*x1) + (8192*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/63/c63ymadmqa5pewt6lz2e5vbnqla654yqubhkwemi5viikn2tjwlb.py
# Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_7 => convolution_7
# x_10 => relu_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
triton_poi_fused_convolution_relu_16 = async_compile.triton('triton_poi_fused_convolution_relu_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hg/chg3owxajpnnkaztbgulow7nugph3ijagbis6kvfqyk742lqf6wt.py
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_13 => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_17 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_17(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 4096) % 8
x1 = (xindex // 512) % 8
x6 = xindex
tmp0 = (-1) + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 8, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4608) + x6), tmp10, other=float("-inf"))
tmp12 = x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x6), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3584) + x6), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-512) + x6), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3584 + x6), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x6), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4608 + x6), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4o/c4oe7fptqnoo5uqexm4ny5m22bxvkxe45quom2tjrbsipnjsg6vt.py
# Topologically Sorted Source Nodes: [conv2d_13, x_17], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_13 => convolution_13
# x_17 => relu_13
# Graph fragment:
# %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_12, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {})
triton_poi_fused_convolution_relu_18 = async_compile.triton('triton_poi_fused_convolution_relu_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/do/cdoh2i4r6c75ujuvztesjcjyisrddwubb2w27jifo7k5b5co2p7x.py
# Topologically Sorted Source Nodes: [conv2d_14, x_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_14 => convolution_14
# x_19 => relu_14
# Graph fragment:
# %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_13, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_14,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_14, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_19 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 64], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 1024
y1 = (yindex // 1024)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (1024*x2) + (65536*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (64*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (1024*x2) + (65536*y1)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31 = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512, ), (1, ))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512, ), (1, ))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512, ), (1, ))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512, ), (1, ))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512, ), (1, ))
assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (1024, ), (1, ))
assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_31, (1024, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_6, buf0, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_8, buf1, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_8
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_10, buf2, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_10
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_12, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_12
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_14, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_14
buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_16, buf5, 131072, 9, grid=grid(131072, 9), stream=stream0)
del primals_16
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_18, buf6, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_18
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_20, buf7, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_20
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_22, buf8, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_22
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_24, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_24
buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_26, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_26
buf11 = empty_strided_cuda((1024, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(primals_28, buf11, 524288, 9, grid=grid(524288, 9), stream=stream0)
del primals_28
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(primals_3, buf12, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_3
buf13 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_8.run(primals_1, buf13, 192, 9, grid=grid(192, 9), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf12, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf12
del buf13
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf15, primals_2, 1048576, grid=grid(1048576), stream=stream0)
del primals_2
buf16 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(primals_4, buf16, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1], Original ATen: [aten.convolution, aten.relu]
buf17 = extern_kernels.convolution(buf15, buf16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf15
del buf16
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf18, primals_5, 1048576, grid=grid(1048576), stream=stream0)
del primals_5
buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_11.run(buf18, buf19, 262144, grid=grid(262144), stream=stream0)
del buf18
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf21, primals_7, 524288, grid=grid(524288), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf23, primals_9, 524288, grid=grid(524288), stream=stream0)
del primals_9
buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32)
buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_13.run(buf23, buf24, buf25, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf24, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf27, primals_11, 262144, grid=grid(262144), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf29 = buf28; del buf28 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf29, primals_13, 262144, grid=grid(262144), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf30 = extern_kernels.convolution(buf29, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf31 = buf30; del buf30 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf31, primals_15, 262144, grid=grid(262144), stream=stream0)
del primals_15
buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32)
buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_15.run(buf31, buf32, buf33, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf34 = extern_kernels.convolution(buf32, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf35 = buf34; del buf34 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf35, primals_17, 131072, grid=grid(131072), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf35, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf37 = buf36; del buf36 # reuse
# Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf37, primals_19, 131072, grid=grid(131072), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf39 = buf38; del buf38 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, x_12], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf39, primals_21, 131072, grid=grid(131072), stream=stream0)
del primals_21
buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.int8)
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_17.run(buf39, buf40, buf41, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution]
buf42 = extern_kernels.convolution(buf40, buf8, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf43 = buf42; del buf42 # reuse
# Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf43, primals_23, 131072, grid=grid(131072), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf44 = extern_kernels.convolution(buf43, buf9, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf44, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf45 = buf44; del buf44 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf45, primals_25, 131072, grid=grid(131072), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf47 = buf46; del buf46 # reuse
# Topologically Sorted Source Nodes: [conv2d_12, x_16], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf47, primals_27, 131072, grid=grid(131072), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution]
buf48 = extern_kernels.convolution(buf47, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf49 = buf48; del buf48 # reuse
# Topologically Sorted Source Nodes: [conv2d_13, x_17], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_18.run(buf49, primals_29, 262144, grid=grid(262144), stream=stream0)
del primals_29
# Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution]
buf50 = extern_kernels.convolution(buf49, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf51 = empty_strided_cuda((4, 1024, 8, 8), (65536, 64, 8, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_14, x_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_19.run(buf50, primals_31, buf51, buf52, 4096, 64, grid=grid(4096, 64), stream=stream0)
del buf50
del primals_31
return (buf51, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, primals_30, buf19, buf21, buf23, buf24, buf25, buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40, buf41, buf43, buf45, buf47, buf49, buf52, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((1024, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((1024, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
class Normalize:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def undo(self, imgarr):
proc_img = imgarr.copy()
proc_img[..., 0] = (self.std[0] * imgarr[..., 0] + self.mean[0]
) * 255.0
proc_img[..., 1] = (self.std[1] * imgarr[..., 1] + self.mean[1]
) * 255.0
proc_img[..., 2] = (self.std[2] * imgarr[..., 2] + self.mean[2]
) * 255.0
return proc_img
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255.0 - self.mean[0]) / self.std[0
]
proc_img[..., 1] = (imgarr[..., 1] / 255.0 - self.mean[1]) / self.std[1
]
proc_img[..., 2] = (imgarr[..., 2] / 255.0 - self.mean[2]) / self.std[2
]
return proc_img
class BaseNet(nn.Module):
def __init__(self):
super().__init__()
self.normalize = Normalize()
self.NormLayer = nn.BatchNorm2d
self.not_training = []
self.bn_frozen = []
self.from_scratch_layers = []
def _init_weights(self, path_to_weights):
None
weights_dict = torch.load(path_to_weights)
self.load_state_dict(weights_dict, strict=False)
def fan_out(self):
raise NotImplementedError
def fixed_layers(self):
return self.not_training
def _fix_running_stats(self, layer, fix_params=False):
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
if fix_params and layer not in self.not_training:
self.not_training.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_running_stats(m, fix_params)
else:
for m in layer.children():
self._fix_running_stats(m, fix_params)
def _fix_params(self, layer):
if isinstance(layer, nn.Conv2d) or isinstance(layer, self.NormLayer
) or isinstance(layer, nn.Linear):
self.not_training.append(layer)
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_params(m)
elif isinstance(layer, nn.Module):
if hasattr(layer, 'weight') or hasattr(layer, 'bias'):
None
for m in layer.children():
self._fix_params(m)
def _freeze_bn(self, layer):
if isinstance(layer, self.NormLayer):
layer.eval()
elif isinstance(layer, nn.Module):
for m in layer.children():
self._freeze_bn(m)
def train(self, mode=True):
super().train(mode)
for layer in self.not_training:
if hasattr(layer, 'weight') and layer.weight is not None:
layer.weight.requires_grad = False
if hasattr(layer, 'bias') and layer.bias is not None:
layer.bias.requires_grad = False
elif isinstance(layer, torch.nn.Module):
None
for bn_layer in self.bn_frozen:
self._freeze_bn(bn_layer)
def _lr_mult(self):
return 1.0, 2.0, 10.0, 20
def parameter_groups(self, base_lr, wd):
w_old, b_old, w_new, b_new = self._lr_mult()
groups = {'params': [], 'weight_decay': wd, 'lr': w_old * base_lr}, {
'params': [], 'weight_decay': 0.0, 'lr': b_old * base_lr}, {
'params': [], 'weight_decay': wd, 'lr': w_new * base_lr}, {'params'
: [], 'weight_decay': 0.0, 'lr': b_new * base_lr}
fixed_layers = self.fixed_layers()
for m in self.modules():
if m in fixed_layers:
continue
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear
) or isinstance(m, self.NormLayer):
if m.weight is not None:
if m in self.from_scratch_layers:
groups[2]['params'].append(m.weight)
else:
groups[0]['params'].append(m.weight)
if m.bias is not None:
if m in self.from_scratch_layers:
groups[3]['params'].append(m.bias)
else:
groups[1]['params'].append(m.bias)
elif hasattr(m, 'weight'):
None
for i, g in enumerate(groups):
None
return groups
class VGG16(BaseNet):
def __init__(self, fc6_dilation=1):
super(VGG16, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.fc6 = nn.Conv2d(512, 1024, 3, padding=fc6_dilation, dilation=
fc6_dilation)
self.drop6 = nn.Dropout2d(p=0.5)
self.fc7 = nn.Conv2d(1024, 1024, 1)
self._fix_params([self.conv1_1, self.conv1_2])
def fan_out(self):
return 1024
def forward(self, x):
return self.forward_as_dict(x)['conv6']
def forward_as_dict(self, x):
x = F.relu(self.conv1_1(x), inplace=True)
x = F.relu(self.conv1_2(x), inplace=True)
x = self.pool1(x)
x = F.relu(self.conv2_1(x), inplace=True)
x = F.relu(self.conv2_2(x), inplace=True)
x = self.pool2(x)
x = F.relu(self.conv3_1(x), inplace=True)
x = F.relu(self.conv3_2(x), inplace=True)
x = F.relu(self.conv3_3(x), inplace=True)
conv3 = x
x = self.pool3(x)
x = F.relu(self.conv4_1(x), inplace=True)
x = F.relu(self.conv4_2(x), inplace=True)
x = F.relu(self.conv4_3(x), inplace=True)
x = self.pool4(x)
x = F.relu(self.conv5_1(x), inplace=True)
x = F.relu(self.conv5_2(x), inplace=True)
x = F.relu(self.conv5_3(x), inplace=True)
x = F.relu(self.fc6(x), inplace=True)
x = self.drop6(x)
x = F.relu(self.fc7(x), inplace=True)
conv6 = x
return dict({'conv3': conv3, 'conv6': conv6})
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_8(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 2048 % 32
x1 = xindex // 64 % 32
x0 = xindex % 64
x5 = xindex // 2048
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4160 + x0 + 128 * x1 + 8192 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x0 + 128 * x1 + 8192 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-4032 + x0 + 128 * x1 + 8192 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-64 + x0 + 128 * x1 + 8192 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (4032 + x0 + 128 * x1 + 8192 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tl.store(out_ptr0 + x6, tmp51, None)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 2048 % 16
x1 = xindex // 128 % 16
x0 = xindex % 128
x5 = xindex // 2048
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4224 + x0 + 256 * x1 + 8192 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x0 + 256 * x1 + 8192 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3968 + x0 + 256 * x1 + 8192 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-128 + x0 + 256 * x1 + 8192 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3968 + x0 + 256 * x1 + 8192 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 2048 % 8
x1 = xindex // 256 % 8
x0 = xindex % 256
x5 = xindex // 2048
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4352 + x0 + 512 * x1 + 8192 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x0 + 512 * x1 + 8192 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3840 + x0 + 512 * x1 + 8192 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-256 + x0 + 512 * x1 + 8192 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3840 + x0 + 512 * x1 + 8192 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_17(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 4096 % 8
x1 = xindex // 512 % 8
x6 = xindex
tmp0 = -1 + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 8, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4608 + x6), tmp10, other=float('-inf'))
tmp12 = x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x6), tmp16, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3584 + x6), tmp23, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-512 + x6), tmp30, other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3584 + x6), tmp43, other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x6), tmp46, other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4608 + x6), tmp49, other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 1024
y1 = yindex // 1024
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 1024 * x2 + 65536 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 64 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 1024 * x2 + 65536 * y1), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31) = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512,), (1,))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512,), (1,))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512,), (1,))
assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (1024,), (1,))
assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_31, (1024,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(8192, 9)](primals_6, buf0, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_1[grid(16384, 9)](primals_8, buf1, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_10, buf2, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_3[grid(65536, 9)](primals_12, buf3, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_3[grid(65536, 9)](primals_14, buf4, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_4[grid(131072, 9)](primals_16, buf5, 131072, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_16
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_18, buf6, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_18
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_20, buf7, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_20
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_22, buf8, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_22
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_24, buf9, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_24
buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_26, buf10, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_26
buf11 = empty_strided_cuda((1024, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_6[grid(524288, 9)](primals_28, buf11, 524288, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_28
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3),
torch.float32)
triton_poi_fused_convolution_7[grid(12, 4096)](primals_3, buf12, 12,
4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf13 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32)
triton_poi_fused_convolution_8[grid(192, 9)](primals_1, buf13, 192,
9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf14 = extern_kernels.convolution(buf12, buf13, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf12
del buf13
buf15 = buf14
del buf14
triton_poi_fused_convolution_relu_9[grid(1048576)](buf15, primals_2,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf16 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_convolution_relu_10[grid(4096, 9)](primals_4,
buf16, 4096, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf17 = extern_kernels.convolution(buf15, buf16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf15
del buf16
buf18 = buf17
del buf17
triton_poi_fused_convolution_relu_9[grid(1048576)](buf18, primals_5,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_11[grid(262144)](buf18,
buf19, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del buf18
buf20 = extern_kernels.convolution(buf19, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_12[grid(524288)](buf21, primals_7,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf22 = extern_kernels.convolution(buf21, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_12[grid(524288)](buf23, primals_9,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128),
torch.float32)
buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_13[grid(131072)](buf23,
buf24, buf25, 131072, XBLOCK=512, num_warps=8, num_stages=1)
buf26 = extern_kernels.convolution(buf24, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf27 = buf26
del buf26
triton_poi_fused_convolution_relu_14[grid(262144)](buf27,
primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf28 = extern_kernels.convolution(buf27, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf29 = buf28
del buf28
triton_poi_fused_convolution_relu_14[grid(262144)](buf29,
primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf30 = extern_kernels.convolution(buf29, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf31 = buf30
del buf30
triton_poi_fused_convolution_relu_14[grid(262144)](buf31,
primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256),
torch.float32)
buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_15[grid(65536)](buf31,
buf32, buf33, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf34 = extern_kernels.convolution(buf32, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf35 = buf34
del buf34
triton_poi_fused_convolution_relu_16[grid(131072)](buf35,
primals_17, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_17
buf36 = extern_kernels.convolution(buf35, buf6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf37 = buf36
del buf36
triton_poi_fused_convolution_relu_16[grid(131072)](buf37,
primals_19, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_19
buf38 = extern_kernels.convolution(buf37, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf39 = buf38
del buf38
triton_poi_fused_convolution_relu_16[grid(131072)](buf39,
primals_21, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_21
buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_17[grid(131072)](buf39,
buf40, buf41, 131072, XBLOCK=512, num_warps=8, num_stages=1)
buf42 = extern_kernels.convolution(buf40, buf8, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf43 = buf42
del buf42
triton_poi_fused_convolution_relu_16[grid(131072)](buf43,
primals_23, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_23
buf44 = extern_kernels.convolution(buf43, buf9, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf44, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf45 = buf44
del buf44
triton_poi_fused_convolution_relu_16[grid(131072)](buf45,
primals_25, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_25
buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf47 = buf46
del buf46
triton_poi_fused_convolution_relu_16[grid(131072)](buf47,
primals_27, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_27
buf48 = extern_kernels.convolution(buf47, buf11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf49 = buf48
del buf48
triton_poi_fused_convolution_relu_18[grid(262144)](buf49,
primals_29, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_29
buf50 = extern_kernels.convolution(buf49, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf51 = empty_strided_cuda((4, 1024, 8, 8), (65536, 64, 8, 1),
torch.float32)
buf52 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_19[grid(4096, 64)
](buf50, primals_31, buf51, buf52, 4096, 64, XBLOCK=32, YBLOCK=
32, num_warps=4, num_stages=1)
del buf50
del primals_31
return (buf51, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8,
buf9, buf10, buf11, primals_30, buf19, buf21, buf23, buf24, buf25,
buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40,
buf41, buf43, buf45, buf47, buf49, buf52)
class Normalize:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def undo(self, imgarr):
proc_img = imgarr.copy()
proc_img[..., 0] = (self.std[0] * imgarr[..., 0] + self.mean[0]
) * 255.0
proc_img[..., 1] = (self.std[1] * imgarr[..., 1] + self.mean[1]
) * 255.0
proc_img[..., 2] = (self.std[2] * imgarr[..., 2] + self.mean[2]
) * 255.0
return proc_img
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255.0 - self.mean[0]) / self.std[0
]
proc_img[..., 1] = (imgarr[..., 1] / 255.0 - self.mean[1]) / self.std[1
]
proc_img[..., 2] = (imgarr[..., 2] / 255.0 - self.mean[2]) / self.std[2
]
return proc_img
class BaseNet(nn.Module):
def __init__(self):
super().__init__()
self.normalize = Normalize()
self.NormLayer = nn.BatchNorm2d
self.not_training = []
self.bn_frozen = []
self.from_scratch_layers = []
def _init_weights(self, path_to_weights):
None
weights_dict = torch.load(path_to_weights)
self.load_state_dict(weights_dict, strict=False)
def fan_out(self):
raise NotImplementedError
def fixed_layers(self):
return self.not_training
def _fix_running_stats(self, layer, fix_params=False):
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
if fix_params and layer not in self.not_training:
self.not_training.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_running_stats(m, fix_params)
else:
for m in layer.children():
self._fix_running_stats(m, fix_params)
def _fix_params(self, layer):
if isinstance(layer, nn.Conv2d) or isinstance(layer, self.NormLayer
) or isinstance(layer, nn.Linear):
self.not_training.append(layer)
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_params(m)
elif isinstance(layer, nn.Module):
if hasattr(layer, 'weight') or hasattr(layer, 'bias'):
None
for m in layer.children():
self._fix_params(m)
def _freeze_bn(self, layer):
if isinstance(layer, self.NormLayer):
layer.eval()
elif isinstance(layer, nn.Module):
for m in layer.children():
self._freeze_bn(m)
def train(self, mode=True):
super().train(mode)
for layer in self.not_training:
if hasattr(layer, 'weight') and layer.weight is not None:
layer.weight.requires_grad = False
if hasattr(layer, 'bias') and layer.bias is not None:
layer.bias.requires_grad = False
elif isinstance(layer, torch.nn.Module):
None
for bn_layer in self.bn_frozen:
self._freeze_bn(bn_layer)
def _lr_mult(self):
return 1.0, 2.0, 10.0, 20
def parameter_groups(self, base_lr, wd):
w_old, b_old, w_new, b_new = self._lr_mult()
groups = {'params': [], 'weight_decay': wd, 'lr': w_old * base_lr}, {
'params': [], 'weight_decay': 0.0, 'lr': b_old * base_lr}, {
'params': [], 'weight_decay': wd, 'lr': w_new * base_lr}, {'params'
: [], 'weight_decay': 0.0, 'lr': b_new * base_lr}
fixed_layers = self.fixed_layers()
for m in self.modules():
if m in fixed_layers:
continue
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear
) or isinstance(m, self.NormLayer):
if m.weight is not None:
if m in self.from_scratch_layers:
groups[2]['params'].append(m.weight)
else:
groups[0]['params'].append(m.weight)
if m.bias is not None:
if m in self.from_scratch_layers:
groups[3]['params'].append(m.bias)
else:
groups[1]['params'].append(m.bias)
elif hasattr(m, 'weight'):
None
for i, g in enumerate(groups):
None
return groups
class VGG16New(BaseNet):
def __init__(self, fc6_dilation=1):
super(VGG16New, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.fc6 = nn.Conv2d(512, 1024, 3, padding=fc6_dilation, dilation=
fc6_dilation)
self.drop6 = nn.Dropout2d(p=0.5)
self.fc7 = nn.Conv2d(1024, 1024, 1)
self._fix_params([self.conv1_1, self.conv1_2])
def fan_out(self):
return 1024
def forward_as_dict(self, x):
x = F.relu(self.conv1_1(x), inplace=True)
x = F.relu(self.conv1_2(x), inplace=True)
x = self.pool1(x)
x = F.relu(self.conv2_1(x), inplace=True)
x = F.relu(self.conv2_2(x), inplace=True)
x = self.pool2(x)
x = F.relu(self.conv3_1(x), inplace=True)
x = F.relu(self.conv3_2(x), inplace=True)
x = F.relu(self.conv3_3(x), inplace=True)
conv3 = x
x = self.pool3(x)
x = F.relu(self.conv4_1(x), inplace=True)
x = F.relu(self.conv4_2(x), inplace=True)
x = F.relu(self.conv4_3(x), inplace=True)
x = self.pool4(x)
x = F.relu(self.conv5_1(x), inplace=True)
x = F.relu(self.conv5_2(x), inplace=True)
x = F.relu(self.conv5_3(x), inplace=True)
x = F.relu(self.fc6(x), inplace=True)
x = self.drop6(x)
x = F.relu(self.fc7(x), inplace=True)
conv6 = x
return dict({'conv3': conv3, 'conv6': conv6})
def forward(self, input_0):
primals_1 = self.conv1_1.weight
primals_2 = self.conv1_1.bias
primals_4 = self.conv1_2.weight
primals_5 = self.conv1_2.bias
primals_6 = self.conv2_1.weight
primals_7 = self.conv2_1.bias
primals_8 = self.conv2_2.weight
primals_9 = self.conv2_2.bias
primals_10 = self.conv3_1.weight
primals_11 = self.conv3_1.bias
primals_12 = self.conv3_2.weight
primals_13 = self.conv3_2.bias
primals_14 = self.conv3_3.weight
primals_15 = self.conv3_3.bias
primals_16 = self.conv4_1.weight
primals_17 = self.conv4_1.bias
primals_18 = self.conv4_2.weight
primals_19 = self.conv4_2.bias
primals_20 = self.conv4_3.weight
primals_21 = self.conv4_3.bias
primals_22 = self.conv5_1.weight
primals_23 = self.conv5_1.bias
primals_24 = self.conv5_2.weight
primals_25 = self.conv5_2.bias
primals_26 = self.conv5_3.weight
primals_27 = self.conv5_3.bias
primals_28 = self.fc6.weight
primals_29 = self.fc6.bias
primals_30 = self.fc7.weight
primals_31 = self.fc7.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31])
return output[0]
| candacelax/1-stage-wseg | VGG16 | false | 3,367 | [
"Apache-2.0"
] | 0 | 7a24791a3a78454e6611399ba55a808491551543 | https://github.com/candacelax/1-stage-wseg/tree/7a24791a3a78454e6611399ba55a808491551543 | import torch
import numpy as np
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
class Normalize:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def undo(self, imgarr):
proc_img = imgarr.copy()
proc_img[..., 0] = (self.std[0] * imgarr[..., 0] + self.mean[0]
) * 255.0
proc_img[..., 1] = (self.std[1] * imgarr[..., 1] + self.mean[1]
) * 255.0
proc_img[..., 2] = (self.std[2] * imgarr[..., 2] + self.mean[2]
) * 255.0
return proc_img
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255.0 - self.mean[0]) / self.std[0
]
proc_img[..., 1] = (imgarr[..., 1] / 255.0 - self.mean[1]) / self.std[1
]
proc_img[..., 2] = (imgarr[..., 2] / 255.0 - self.mean[2]) / self.std[2
]
return proc_img
class BaseNet(nn.Module):
def __init__(self):
super().__init__()
self.normalize = Normalize()
self.NormLayer = nn.BatchNorm2d
self.not_training = []
self.bn_frozen = []
self.from_scratch_layers = []
def _init_weights(self, path_to_weights):
None
weights_dict = torch.load(path_to_weights)
self.load_state_dict(weights_dict, strict=False)
def fan_out(self):
raise NotImplementedError
def fixed_layers(self):
return self.not_training
def _fix_running_stats(self, layer, fix_params=False):
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
if fix_params and layer not in self.not_training:
self.not_training.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_running_stats(m, fix_params)
else:
for m in layer.children():
self._fix_running_stats(m, fix_params)
def _fix_params(self, layer):
if isinstance(layer, nn.Conv2d) or isinstance(layer, self.NormLayer
) or isinstance(layer, nn.Linear):
self.not_training.append(layer)
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_params(m)
elif isinstance(layer, nn.Module):
if hasattr(layer, 'weight') or hasattr(layer, 'bias'):
None
for m in layer.children():
self._fix_params(m)
def _freeze_bn(self, layer):
if isinstance(layer, self.NormLayer):
layer.eval()
elif isinstance(layer, nn.Module):
for m in layer.children():
self._freeze_bn(m)
def train(self, mode=True):
super().train(mode)
for layer in self.not_training:
if hasattr(layer, 'weight') and layer.weight is not None:
layer.weight.requires_grad = False
if hasattr(layer, 'bias') and layer.bias is not None:
layer.bias.requires_grad = False
elif isinstance(layer, torch.nn.Module):
None
for bn_layer in self.bn_frozen:
self._freeze_bn(bn_layer)
def _lr_mult(self):
return 1.0, 2.0, 10.0, 20
def parameter_groups(self, base_lr, wd):
w_old, b_old, w_new, b_new = self._lr_mult()
groups = {'params': [], 'weight_decay': wd, 'lr': w_old * base_lr}, {
'params': [], 'weight_decay': 0.0, 'lr': b_old * base_lr}, {
'params': [], 'weight_decay': wd, 'lr': w_new * base_lr}, {'params'
: [], 'weight_decay': 0.0, 'lr': b_new * base_lr}
fixed_layers = self.fixed_layers()
for m in self.modules():
if m in fixed_layers:
co
# ... truncated (>4000 chars) for memory efficiency |
SimpleStackModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r2/cr2ft4qgpkoihvmquzfvb2qj2z7n5lsy5sfodvtjb5ijcg3hxzff.py
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], 4), kwargs = {})
triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp9 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
stream0 = get_raw_stream(0)
triton_poi_fused_stack_0.run(arg1_1, arg0_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleStackModel(torch.nn.Module):
def __init__(self, dim):
super(SimpleStackModel, self).__init__()
self.dim = dim
def forward(self, a, b):
c = b + b
return torch.stack((a, c), dim=self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp9 = tl.load(in_ptr1 + x1, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tmp9 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_stack_0[grid(512)](arg1_1, arg0_1, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleStackModelNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleStackModelNew, self).__init__()
self.dim = dim
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| andreas-hommel/glow | SimpleStackModel | false | 3,368 | [
"Apache-2.0"
] | 0 | 2bbbf8188a2a941e85677c83f2146bbd076a262e | https://github.com/andreas-hommel/glow/tree/2bbbf8188a2a941e85677c83f2146bbd076a262e | import torch
import torch.jit
import torch.onnx
import torch.nn
class Model(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, a, b):
c = b + b
return torch.stack((a, c), dim=self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ResidualBlock | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ba/cba3dn7beshdzv7hwacmgs5xk75nqsfksfqjj6tajh7uagenh3e5.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr1 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, arg0_1, 256, grid=grid(256), stream=stream0)
return (arg0_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.blocks = nn.Identity()
self.shortcut = nn.Identity()
def forward(self, x):
residual = x
if self.should_apply_shortcut:
residual = self.shortcut(x)
x = self.blocks(x)
x += residual
return x
@property
def should_apply_shortcut(self):
return self.in_channels != self.out_channels
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr1 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, arg0_1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return arg0_1,
class ResidualBlockNew(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.blocks = nn.Identity()
self.shortcut = nn.Identity()
@property
def should_apply_shortcut(self):
return self.in_channels != self.out_channels
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| d222nguy/gcn_research | ResidualBlock | false | 3,369 | [
"MIT"
] | 0 | 83ced4f7d9f7840e48900e62c1eabec0444c5fa2 | https://github.com/d222nguy/gcn_research/tree/83ced4f7d9f7840e48900e62c1eabec0444c5fa2 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.blocks = nn.Identity()
self.shortcut = nn.Identity()
def forward(self, x):
residual = x
if self.should_apply_shortcut:
residual = self.shortcut(x)
x = self.blocks(x)
x += residual
return x
@property
def should_apply_shortcut(self):
return self.in_channels != self.out_channels
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
TaylorNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wa/cwafldz3coi3nrteqzmtt3gtdl7tsh6cmjpzcc62autgo3t32xox.py
# Topologically Sorted Source Nodes: [mul, output, output_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# output => add
# output_1 => add_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_3), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = tmp2 + tmp1
tmp5 = tmp3 + tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Wx], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, output, output_1], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(buf1, primals_1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf1, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
class TaylorNet(nn.Module):
"""Applies a non-linear multiplicative transformation to the incoming data,
in order to generate output features that can be quadratic and linear in the
input features:
:math:`y = (x W_2^T) * (x W_1^T) + x W_1^T + b`
Note that if output size = input size, then W_2 is not used, and the
transformation becomes:
:math:`y = x * (x W^T) + x W^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, in\\_features)` where :math:`*` means any number of
additional dimensions
- Output: :math:`(N, *, out\\_features)` where :math:`*` means any number of
additional dimensions
Attributes:
weight_1: the learnable weights of the module of shape
`(out_features x in_features)`
weight_2: the learnable weights of the module of shape
`(out_features x in_features)`
If out_features = in_features, there is no weight_2 matrix
bias: the learnable bias of the module of shape `(in_features)`
Examples::
>>> m = nn.TaylorNet(5)
>>> input = torch.randn(128, 5)
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, in_features, out_features=None, bias=True):
super(TaylorNet, self).__init__()
if out_features is None:
out_features = in_features
self.in_features = in_features
self.out_features = out_features
self.weight1 = nn.Parameter(torch.Tensor(out_features, in_features))
if in_features != out_features:
self.weight2 = nn.Parameter(torch.Tensor(out_features, in_features)
)
else:
self.weight2 = None
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight1.size(1))
nn.init.xavier_normal_(self.weight1)
if self.weight2 is not None:
nn.init.xavier_normal_(self.weight2)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
Wx = input.matmul(self.weight1.t())
x = input
if self.weight2 is not None:
x = input.matmul(self.weight2.t())
output = x.mul(Wx) + Wx
if self.bias is not None:
output += self.bias
return output
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(self.
in_features, self.out_features, self.bias is not None)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = tmp2 + tmp1
tmp5 = tmp3 + tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](buf1, primals_1, primals_3,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf1, primals_1
class TaylorNetNew(nn.Module):
"""Applies a non-linear multiplicative transformation to the incoming data,
in order to generate output features that can be quadratic and linear in the
input features:
:math:`y = (x W_2^T) * (x W_1^T) + x W_1^T + b`
Note that if output size = input size, then W_2 is not used, and the
transformation becomes:
:math:`y = x * (x W^T) + x W^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, in\\_features)` where :math:`*` means any number of
additional dimensions
- Output: :math:`(N, *, out\\_features)` where :math:`*` means any number of
additional dimensions
Attributes:
weight_1: the learnable weights of the module of shape
`(out_features x in_features)`
weight_2: the learnable weights of the module of shape
`(out_features x in_features)`
If out_features = in_features, there is no weight_2 matrix
bias: the learnable bias of the module of shape `(in_features)`
Examples::
>>> m = nn.TaylorNet(5)
>>> input = torch.randn(128, 5)
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, in_features, out_features=None, bias=True):
super(TaylorNetNew, self).__init__()
if out_features is None:
out_features = in_features
self.in_features = in_features
self.out_features = out_features
self.weight1 = nn.Parameter(torch.Tensor(out_features, in_features))
if in_features != out_features:
self.weight2 = nn.Parameter(torch.Tensor(out_features, in_features)
)
else:
self.weight2 = None
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight1.size(1))
nn.init.xavier_normal_(self.weight1)
if self.weight2 is not None:
nn.init.xavier_normal_(self.weight2)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(self.
in_features, self.out_features, self.bias is not None)
def forward(self, input_0):
primals_2 = self.weight1
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| dalessioluca/TaylorNet | TaylorNet | false | 3,370 | [
"MIT"
] | 0 | 342bc0d9ee5dd81b7fe3baf9e457b56ef1df5879 | https://github.com/dalessioluca/TaylorNet/tree/342bc0d9ee5dd81b7fe3baf9e457b56ef1df5879 | import math
import torch
import torch.nn as nn
class Model(nn.Module):
"""Applies a non-linear multiplicative transformation to the incoming data,
in order to generate output features that can be quadratic and linear in the
input features:
:math:`y = (x W_2^T) * (x W_1^T) + x W_1^T + b`
Note that if output size = input size, then W_2 is not used, and the
transformation becomes:
:math:`y = x * (x W^T) + x W^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, in\\_features)` where :math:`*` means any number of
additional dimensions
- Output: :math:`(N, *, out\\_features)` where :math:`*` means any number of
additional dimensions
Attributes:
weight_1: the learnable weights of the module of shape
`(out_features x in_features)`
weight_2: the learnable weights of the module of shape
`(out_features x in_features)`
If out_features = in_features, there is no weight_2 matrix
bias: the learnable bias of the module of shape `(in_features)`
Examples::
>>> m = nn.TaylorNet(5)
>>> input = torch.randn(128, 5)
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, in_features, out_features=None, bias=True):
super().__init__()
if out_features is None:
out_features = in_features
self.in_features = in_features
self.out_features = out_features
self.weight1 = nn.Parameter(torch.Tensor(out_features, in_features))
if in_features != out_features:
self.weight2 = nn.Parameter(torch.Tensor(out_features, in_features)
)
else:
self.weight2 = None
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight1.size(1))
nn.init.xavier_normal_(self.weight1)
if self.weight2 is not None:
nn.init.xavier_normal_(self.weight2)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
Wx = input.matmul(self.weight1.t())
x = input
if self.weight2 is not None:
x = input.matmul(self.weight2.t())
output = x.mul(Wx) + Wx
if self.bias is not None:
output += self.bias
return output
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(self.
in_features, self.out_features, self.bias is not None)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Res | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/r6/cr63ze2s4nyibxhdooj7swbg2ctvwvuovkbl6agdnu2jyrtwlqos.py
# Topologically Sorted Source Nodes: [relu_1, y_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_1 => relu_1
# y_1 => add
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %relu_1), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf2, primals_5, buf12, 256, grid=grid(256), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1, y_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_1.run(buf0, buf3, primals_7, buf4, buf11, 256, grid=grid(256), stream=stream0)
del primals_7
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf6, primals_9, buf10, 256, grid=grid(256), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_3, add_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_1.run(buf4, buf7, primals_11, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf7
del primals_11
return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(buf6, (64, 4), (4, 1), 0), buf9, primals_10, buf10, primals_8, buf11, primals_6, buf12, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.distributions
class Res(nn.Module):
def __init__(self, H):
super().__init__()
self.u1 = nn.Linear(H, H)
self.u2 = nn.Linear(H, H)
self.v1 = nn.Linear(H, H)
self.v2 = nn.Linear(H, H)
self.w = nn.Linear(H, H)
def forward(self, y):
y = self.w(y)
y = y + torch.relu(self.v1(torch.relu(self.u1(y))))
return y + torch.relu(self.v2(torch.relu(self.u2(y))))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'H': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf1)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf2,
primals_5, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_1[grid(256)](buf0,
buf3, primals_7, buf4, buf11, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_7
buf5 = buf3
del buf3
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf6,
primals_9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_1[grid(256)](buf4,
buf7, primals_11, buf8, buf9, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf7
del primals_11
return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(
buf6, (64, 4), (4, 1), 0
), buf9, primals_10, buf10, primals_8, buf11, primals_6, buf12, primals_4
class ResNew(nn.Module):
def __init__(self, H):
super().__init__()
self.u1 = nn.Linear(H, H)
self.u2 = nn.Linear(H, H)
self.v1 = nn.Linear(H, H)
self.v2 = nn.Linear(H, H)
self.w = nn.Linear(H, H)
def forward(self, input_0):
primals_1 = self.u1.weight
primals_2 = self.u1.bias
primals_4 = self.u2.weight
primals_5 = self.u2.bias
primals_6 = self.v1.weight
primals_7 = self.v1.bias
primals_8 = self.v2.weight
primals_9 = self.v2.bias
primals_10 = self.w.weight
primals_11 = self.w.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| da03/torch_struct | Res | false | 3,371 | [
"MIT"
] | 0 | 08713b61b0cfe8438e52e82e07c88cf094feb73a | https://github.com/da03/torch_struct/tree/08713b61b0cfe8438e52e82e07c88cf094feb73a | import torch
from torch import nn
import torch.distributions
class Model(nn.Module):
def __init__(self, H):
super().__init__()
self.u1 = nn.Linear(H, H)
self.u2 = nn.Linear(H, H)
self.v1 = nn.Linear(H, H)
self.v2 = nn.Linear(H, H)
self.w = nn.Linear(H, H)
def forward(self, y):
y = self.w(y)
y = y + torch.relu(self.v1(torch.relu(self.u1(y))))
return y + torch.relu(self.v2(torch.relu(self.u2(y))))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
GCN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py
# Topologically Sorted Source Nodes: [add, relu], Original ATen: [aten.add, aten.relu]
# Source node to ATen node mapping:
# add => add
# relu => relu
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, relu], Original ATen: [aten.add, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [add_1, relu_1], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf5, primals_6, 16, grid=grid(16), stream=stream0)
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [support_2], Original ATen: [aten.mm]
extern_kernels.mm(buf5, primals_5, out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf6, out=buf7)
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [add_2, relu_2], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf8, primals_6, 16, grid=grid(16), stream=stream0)
buf9 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [support_3], Original ATen: [aten.mm]
extern_kernels.mm(buf8, primals_5, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf9, out=buf10)
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [add_3, relu_3], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf11, primals_6, 16, grid=grid(16), stream=stream0)
buf12 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [support_4], Original ATen: [aten.mm]
extern_kernels.mm(buf11, primals_5, out=buf12)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf12, out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [add_4, relu_4], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf14, primals_6, 16, grid=grid(16), stream=stream0)
buf15 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [support_5], Original ATen: [aten.mm]
extern_kernels.mm(buf14, primals_5, out=buf15)
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_5], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf15, out=buf16)
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [add_5, relu_5], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf17, primals_6, 16, grid=grid(16), stream=stream0)
buf18 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [support_6], Original ATen: [aten.mm]
extern_kernels.mm(buf17, primals_5, out=buf18)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_6], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf18, out=buf19)
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [add_6, relu_6], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf20, primals_6, 16, grid=grid(16), stream=stream0)
buf21 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [support_7], Original ATen: [aten.mm]
extern_kernels.mm(buf20, primals_5, out=buf21)
buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_7], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf21, out=buf22)
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [add_7, relu_7], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf23, primals_6, 16, grid=grid(16), stream=stream0)
buf24 = buf21; del buf21 # reuse
# Topologically Sorted Source Nodes: [support_8], Original ATen: [aten.mm]
extern_kernels.mm(buf23, primals_5, out=buf24)
buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_8], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf24, out=buf25)
buf26 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [add_8, relu_8], Original ATen: [aten.add, aten.relu]
triton_poi_fused_add_relu_0.run(buf26, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf27 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [support_9], Original ATen: [aten.mm]
extern_kernels.mm(buf26, primals_7, out=buf27)
buf28 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_8, primals_3, buf27, alpha=1, beta=1, out=buf28)
del primals_8
buf29 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf28, buf29, 16, grid=grid(16), stream=stream0)
buf30 = buf28; del buf28 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf29, buf30, 16, grid=grid(16), stream=stream0)
del buf29
return (buf30, buf2, buf5, buf8, buf11, buf14, buf17, buf20, buf23, buf26, buf30, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.gcx = GraphConvolution(nhid, nhid)
self.dropout = dropout
def forward(self, x, adj):
nlayers = 8
x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self
.training)
for i in range(nlayers):
x = F.dropout(F.relu(self.gcx(x, adj)), self.dropout, training=
self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_add_relu_0[grid(16)](buf5, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf6 = buf3
del buf3
extern_kernels.mm(buf5, primals_5, out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf6, out=buf7)
buf8 = buf7
del buf7
triton_poi_fused_add_relu_0[grid(16)](buf8, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf9 = buf6
del buf6
extern_kernels.mm(buf8, primals_5, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf9, out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_add_relu_0[grid(16)](buf11, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf12 = buf9
del buf9
extern_kernels.mm(buf11, primals_5, out=buf12)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf12, out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_add_relu_0[grid(16)](buf14, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf15 = buf12
del buf12
extern_kernels.mm(buf14, primals_5, out=buf15)
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf15, out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_add_relu_0[grid(16)](buf17, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf18 = buf15
del buf15
extern_kernels.mm(buf17, primals_5, out=buf18)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf18, out=buf19)
buf20 = buf19
del buf19
triton_poi_fused_add_relu_0[grid(16)](buf20, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf21 = buf18
del buf18
extern_kernels.mm(buf20, primals_5, out=buf21)
buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf21, out=buf22)
buf23 = buf22
del buf22
triton_poi_fused_add_relu_0[grid(16)](buf23, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf24 = buf21
del buf21
extern_kernels.mm(buf23, primals_5, out=buf24)
buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf24, out=buf25)
buf26 = buf25
del buf25
triton_poi_fused_add_relu_0[grid(16)](buf26, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_6
buf27 = buf24
del buf24
extern_kernels.mm(buf26, primals_7, out=buf27)
buf28 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, primals_3, buf27, alpha=1, beta=1,
out=buf28)
del primals_8
buf29 = buf27
del buf27
triton_poi_fused__log_softmax_1[grid(16)](buf28, buf29, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf30 = buf28
del buf28
triton_poi_fused__log_softmax_2[grid(16)](buf29, buf30, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del buf29
return (buf30, buf2, buf5, buf8, buf11, buf14, buf17, buf20, buf23,
buf26, buf30, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0))
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCNNew(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.gcx = GraphConvolution(nhid, nhid)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_2 = self.gc2.weight
primals_6 = self.gc2.bias
primals_3 = self.gcx.weight
primals_8 = self.gcx.bias
primals_5 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| d222nguy/gcn_research | GCN | false | 3,372 | [
"MIT"
] | 0 | 83ced4f7d9f7840e48900e62c1eabec0444c5fa2 | https://github.com/d222nguy/gcn_research/tree/83ced4f7d9f7840e48900e62c1eabec0444c5fa2 | from torch.nn import Module
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class Model(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super().__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.gcx = GraphConvolution(nhid, nhid)
self.dropout = dropout
def forward(self, x, adj):
nlayers = 8
x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self
.training)
for i in range(nlayers):
x = F.dropout(F.relu(self.gcx(x, adj)), self.dropout, training=
self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4, 0.5]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.