entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
| pytorch_code
stringlengths 200
4.05k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
network | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 32), (32, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (4, 32), (32, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 2048, grid=grid(2048), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 2048, grid=grid(2048), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class network(nn.Module):
def __init__(self, state_size, action_size, seed=0):
super(network, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = self.fc1(state)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 32), (32, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (4, 32), (32, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1,
primals_2, buf6, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf3,
primals_5, buf5, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32),
(32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(
buf3, (64, 32), (32, 1), 0), primals_6, buf5, primals_4, buf6
class networkNew(nn.Module):
def __init__(self, state_size, action_size, seed=0):
super(networkNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, action_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| akashkmr27089/ReinforcementLearning_Udacity_Deep_Reinforcemnt_Learning | network | false | 3,072 | [
"MIT"
] | 0 | b7dc13b0116898848d8d0b8a95b7af182982bd6b | https://github.com/akashkmr27089/ReinforcementLearning_Udacity_Deep_Reinforcemnt_Learning/tree/b7dc13b0116898848d8d0b8a95b7af182982bd6b | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, state_size, action_size, seed=0):
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = self.fc1(state)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
MultiLayeredConv1d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zt/cztfdbfdeuswkfmqcigzocsq5mos7eqthkdqr2u3uktw4kuq7d5w.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 3)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mh/cmhvpi42ibq2v7tidubg2uoo7emx6l6p4w5dmszccsffhaiuewi7.py
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze_1, %primals_4, %primals_5, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4), (16, 4, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 3), (12, 3, 1))
buf1 = reinterpret_tensor(buf0, (4, 3), (3, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 3), (3, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf4, 12, grid=grid(12), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 3), (0, 3, 1), 0), primals_4, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (1, 4, 2), (8, 2, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 8, grid=grid(8), stream=stream0)
del primals_5
return (reinterpret_tensor(buf3, (4, 2), (2, 1), 0), primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (1, 4, 3), (12, 3, 1), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class MultiLayeredConv1d(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network
in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
super(MultiLayeredConv1d, self).__init__()
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size,
stride=1, padding=(kernel_size - 1) // 2)
self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, kernel_size,
stride=1, padding=(kernel_size - 1) // 2)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, *, in_chans).
Returns:
Tensor: Batch of output tensors (B, *, hidden_chans)
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_chans': 4, 'hidden_chans': 4, 'kernel_size': 4,
'dropout_rate': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 3
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
4, 4), (16, 4, 1), 0), primals_2, stride=(1,), padding=(1,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 3), (12, 3, 1))
buf1 = reinterpret_tensor(buf0, (4, 3), (3, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 3), (3, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(12)](buf1,
primals_3, buf4, 12, XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 3
), (0, 3, 1), 0), primals_4, stride=(1,), padding=(1,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf2, (1, 4, 2), (8, 2, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(8)](buf3, primals_5, 8, XBLOCK=
8, num_warps=1, num_stages=1)
del primals_5
return reinterpret_tensor(buf3, (4, 2), (2, 1), 0
), primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4), (
16, 4, 1), 0), reinterpret_tensor(buf1, (1, 4, 3), (12, 3, 1), 0), buf4
class MultiLayeredConv1dNew(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network
in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
super(MultiLayeredConv1dNew, self).__init__()
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size,
stride=1, padding=(kernel_size - 1) // 2)
self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, kernel_size,
stride=1, padding=(kernel_size - 1) // 2)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, input_0):
primals_2 = self.w_1.weight
primals_3 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| akreal/end-to-end-slu-espnet | MultiLayeredConv1d | false | 3,073 | [
"Apache-2.0"
] | 0 | 0b16dc8b10b31a4567b3312678a753a94bb200da | https://github.com/akreal/end-to-end-slu-espnet/tree/0b16dc8b10b31a4567b3312678a753a94bb200da | import torch
class Model(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network
in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
super().__init__()
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size,
stride=1, padding=(kernel_size - 1) // 2)
self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, kernel_size,
stride=1, padding=(kernel_size - 1) // 2)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, *, in_chans).
Returns:
Tensor: Batch of output tensors (B, *, hidden_chans)
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_chans': 4, 'hidden_chans': 4, 'kernel_size': 4,
'dropout_rate': 0.5}]
|
ClassHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ga/cgae6rnuv2revrowjapjec2uhng2lyjotxut5ch2petu3jzrmmy6.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 24
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 6
y1 = (yindex // 6)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (6*x2) + (24576*y1)), ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (6, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 6, 64, 64), (24576, 1, 384, 6))
buf2 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf1, primals_2, buf2, 24, 4096, grid=grid(24, 4096), stream=stream0)
del buf1
del primals_2
return (buf2, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
class ClassHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(ClassHead, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
return out
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 24
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 6
y1 = yindex // 6
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 6 * x2 + 24576 * y1), ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (6, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 6, 64, 64), (24576, 1, 384, 6))
buf2 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_1[grid(24, 4096)](buf1, primals_2,
buf2, 24, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf1
del primals_2
return buf2, primals_1, buf0
class ClassHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(ClassHeadNew, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ZongqingHou/Pytorch_Retinaface | ClassHead | false | 3,074 | [
"MIT"
] | 0 | 6284b7158a0d9d3d4a2cc267a393c21863a1b938 | https://github.com/ZongqingHou/Pytorch_Retinaface/tree/6284b7158a0d9d3d4a2cc267a393c21863a1b938 | import torch
from torch import nn
import torch.nn
class Model(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super().__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
return out
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return []
|
Intensity | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/lk/clkbhybz5co43qwvfrxkfmujngifheo44nwsshjahzcecmib4mnb.py
# Topologically Sorted Source Nodes: [clamp, mul, noise, mul_1], Original ATen: [aten.clamp, aten.mul, aten.add]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# mul => mul
# mul_1 => mul_1
# noise => add
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%randn, -2.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_clamp_mul_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = -2.0
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 2.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = tmp7 + tmp6
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.randn]
buf0 = torch.ops.aten.randn.default([4, 1, 1, 1], device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp, mul, noise, mul_1], Original ATen: [aten.clamp, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_clamp_mul_0.run(arg0_1, buf1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Intensity(nn.Module):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x):
r = torch.randn((x.size(0), 1, 1, 1), device=x.device)
noise = 1.0 + self.scale * r.clamp(-2.0, 2.0)
return x * noise
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
| import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_clamp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = -2.0
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 2.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = tmp7 + tmp6
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + x2, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.randn.default([4, 1, 1, 1], device=device(
type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_clamp_mul_0[grid(256)](arg0_1, buf1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del buf1
return buf2,
class IntensityNew(nn.Module):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| alcinos/SPR | Intensity | false | 3,075 | [
"MIT"
] | 0 | dec8df83eeaa25a1d75ecff0cf4ce4bfae9cab4c | https://github.com/alcinos/SPR/tree/dec8df83eeaa25a1d75ecff0cf4ce4bfae9cab4c | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x):
r = torch.randn((x.size(0), 1, 1, 1), device=x.device)
noise = 1.0 + self.scale * r.clamp(-2.0, 2.0)
return x * noise
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [1.0]
|
Entropy | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/tj/ctjbmwt35tocrsjintgle62gzxqejpbz23aqczfhtpow3xiuftzn.py
# Topologically Sorted Source Nodes: [softmax, log_softmax, softmax_1, log_softmax_1], Original ATen: [aten._softmax, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax_1, sub_1
# log_softmax_1 => amax_3, sub_4
# softmax => amax, exp, sub
# softmax_1 => amax_2, exp_2, sub_3
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_1), kwargs = {})
# %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [2], True), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_2), kwargs = {})
# %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [2], True), kwargs = {})
# %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_3), kwargs = {})
triton_poi_fused__log_softmax__softmax_0 = async_compile.triton('triton_poi_fused__log_softmax__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tmp17 = tmp0 - tmp16
tmp18 = tl_math.exp(tmp17)
tl.store(out_ptr0 + (x4), tmp9, xmask)
tl.store(out_ptr1 + (x4), tmp8, xmask)
tl.store(out_ptr2 + (x4), tmp18, xmask)
tl.store(out_ptr3 + (x4), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ke/ckeb46iywnlf3z4xue26e2sw5c7wrwfgojpznlicmcgvsg4fowy2.py
# Topologically Sorted Source Nodes: [softmax, log_softmax, ent_p2g, sum_1, mul_2, softmax_1, log_softmax_1, ent_g2p, sum_2, ent_sum, truediv], Original ATen: [aten._softmax, aten._log_softmax, aten.mul, aten.sum, aten.sub, aten.div]
# Source node to ATen node mapping:
# ent_g2p => mul_1
# ent_p2g => mul
# ent_sum => sub_6
# log_softmax => exp_1, log, sub_2, sum_2
# log_softmax_1 => exp_3, log_1, sub_5, sum_4
# mul_2 => mul_2
# softmax => div, sum_1
# softmax_1 => div_1, sum_3
# sum_1 => sum_5
# sum_2 => sum_6
# truediv => div_2
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_5, -1.0), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [2], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {})
# %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [2], True), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_4,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sub_5), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %sum_6), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_6, 16), kwargs = {})
triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1 = async_compile.triton('triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 4
r2 = (rindex // 16)
r4 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (16*r2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + r0 + (16*r2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + r0 + (16*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + r0 + (16*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (r3), None)
tmp10 = tl.load(in_ptr1 + (r0 + (16*r2)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (4 + r0 + (16*r2)), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (8 + r0 + (16*r2)), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (12 + r0 + (16*r2)), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + (r3), None)
tmp28 = tl.load(in_ptr2 + (4*r4), None, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (1 + (4*r4)), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr2 + (2 + (4*r4)), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + (3 + (4*r4)), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr3 + (r3), None)
tmp37 = tl.load(in_ptr3 + (4*r4), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr3 + (1 + (4*r4)), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr3 + (2 + (4*r4)), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (3 + (4*r4)), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp11 = tl_math.exp(tmp10)
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp14 + tmp16
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tl_math.log(tmp20)
tmp22 = tmp9 - tmp21
tmp23 = tmp8 * tmp22
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp34 = tmp32 + tmp33
tmp35 = tmp27 / tmp34
tmp38 = tl_math.exp(tmp37)
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp38 + tmp40
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp41 + tmp43
tmp46 = tl_math.exp(tmp45)
tmp47 = tmp44 + tmp46
tmp48 = tl_math.log(tmp47)
tmp49 = tmp36 - tmp48
tmp50 = tmp35 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = tl.sum(tmp51, 1)[:, None]
tmp54 = -1.0
tmp55 = tmp26 * tmp54
tmp56 = tmp55 - tmp53
tmp57 = 0.0625
tmp58 = tmp56 * tmp57
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp58, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax, log_softmax, softmax_1, log_softmax_1], Original ATen: [aten._softmax, aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0.run(arg0_1, buf0, buf1, buf4, buf5, 64, grid=grid(64), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf8 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax, log_softmax, ent_p2g, sum_1, mul_2, softmax_1, log_softmax_1, ent_g2p, sum_2, ent_sum, truediv], Original ATen: [aten._softmax, aten._log_softmax, aten.mul, aten.sum, aten.sub, aten.div]
triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1.run(buf8, buf0, buf1, buf4, buf5, 1, 64, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf4
del buf5
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class Entropy(nn.Module):
def __init__(self):
super(Entropy, self).__init__()
def forward(self, x):
num, ms1, ms2 = x.size()
ent_p2g = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
ent_g2p = F.softmax(x, dim=2) * F.log_softmax(x, dim=2)
ent_sum = -1.0 * ent_p2g.view(num, -1).sum() - ent_g2p.view(num, -1
).sum()
return ent_sum / (ms1 * ms2)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tmp17 = tmp0 - tmp16
tmp18 = tl_math.exp(tmp17)
tl.store(out_ptr0 + x4, tmp9, xmask)
tl.store(out_ptr1 + x4, tmp8, xmask)
tl.store(out_ptr2 + x4, tmp18, xmask)
tl.store(out_ptr3 + x4, tmp17, xmask)
@triton.jit
def triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 4
r2 = rindex // 16
r4 = rindex // 4
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 16 * r2), None, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr0 + (4 + r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + r3, None)
tmp10 = tl.load(in_ptr1 + (r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (4 + r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr1 + (8 + r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr1 + (12 + r0 + 16 * r2), None, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr2 + r3, None)
tmp28 = tl.load(in_ptr2 + 4 * r4, None, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (1 + 4 * r4), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr2 + (2 + 4 * r4), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + (3 + 4 * r4), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr3 + r3, None)
tmp37 = tl.load(in_ptr3 + 4 * r4, None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr3 + (1 + 4 * r4), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr3 + (2 + 4 * r4), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (3 + 4 * r4), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp11 = tl_math.exp(tmp10)
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp14 + tmp16
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tl_math.log(tmp20)
tmp22 = tmp9 - tmp21
tmp23 = tmp8 * tmp22
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp34 = tmp32 + tmp33
tmp35 = tmp27 / tmp34
tmp38 = tl_math.exp(tmp37)
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp38 + tmp40
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp41 + tmp43
tmp46 = tl_math.exp(tmp45)
tmp47 = tmp44 + tmp46
tmp48 = tl_math.log(tmp47)
tmp49 = tmp36 - tmp48
tmp50 = tmp35 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = tl.sum(tmp51, 1)[:, None]
tmp54 = -1.0
tmp55 = tmp26 * tmp54
tmp56 = tmp55 - tmp53
tmp57 = 0.0625
tmp58 = tmp56 * tmp57
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp58, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0[grid(64)](arg0_1, buf0,
buf1, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf8 = buf3
del buf3
triton_per_fused__log_softmax__softmax_div_mul_sub_sum_1[grid(1)](buf8,
buf0, buf1, buf4, buf5, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf4
del buf5
return buf8,
class EntropyNew(nn.Module):
def __init__(self):
super(EntropyNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| akira-l/online_mmdetection | Entropy | false | 3,076 | [
"Apache-2.0"
] | 0 | 10c60467a57a605b783486b7fbc508776394ea79 | https://github.com/akira-l/online_mmdetection/tree/10c60467a57a605b783486b7fbc508776394ea79 | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
num, ms1, ms2 = x.size()
ent_p2g = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
ent_g2p = F.softmax(x, dim=2) * F.log_softmax(x, dim=2)
ent_sum = -1.0 * ent_p2g.view(num, -1).sum() - ent_g2p.view(num, -1
).sum()
return ent_sum / (ms1 * ms2)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return []
|
CifarDownsampling | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/rf/crfk3gc6xui3eq5qwqwlv4vqt3zrph5hbf76zxtthwio4k44wyjq.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_4, [0, 0, 0, 0, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 4) % 6
x0 = xindex % 2
x3 = (xindex // 24)
x5 = (xindex // 2) % 12
x6 = xindex
tmp0 = (-1) + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + ((-16) + (2*x0) + (8*x5) + (64*x3)), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x6), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 2, 2), (24, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 96, grid=grid(96), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CifarDownsampling(nn.Module):
def __init__(self, planes):
super(CifarDownsampling, self).__init__()
self.planes = planes
def forward(self, x):
return F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, self.planes // 4, self
.planes // 4), 'constant', 0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'planes': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 4 % 6
x0 = xindex % 2
x3 = xindex // 24
x5 = xindex // 2 % 12
x6 = xindex
tmp0 = -1 + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-16 + 2 * x0 + 8 * x5 + 64 * x3), tmp5 &
xmask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + x6, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 2, 2), (24, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(96)](arg0_1, buf0, 96,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class CifarDownsamplingNew(nn.Module):
def __init__(self, planes):
super(CifarDownsamplingNew, self).__init__()
self.planes = planes
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| alechat/PLCiL | CifarDownsampling | false | 3,077 | [
"Apache-2.0"
] | 0 | f71fe92cb7781097d3320c28601e06add70f64f9 | https://github.com/alechat/PLCiL/tree/f71fe92cb7781097d3320c28601e06add70f64f9 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, planes):
super().__init__()
self.planes = planes
def forward(self, x):
return F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, self.planes // 4, self
.planes // 4), 'constant', 0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ModulatedToRGB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/sr/csrvuu3ij7ffjialtfbzxloffj4ibh54xghkpxfw6spkwver6dc5.py
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# sqrt => full_default_1
# weight => mul_2
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %full_default_1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_0 = async_compile.triton('triton_poi_fused_mul_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bf/cbfu2sd3446jjdimn3bzgkb5uzjci2fpr7jzqru5ljty6r24kzjc.py
# Topologically Sorted Source Nodes: [sqrt, mul_4, weight_1], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_4 => mul_4
# sqrt => full_default_1
# weight_1 => mul_5
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %full_default_1), kwargs = {})
# %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_1 = async_compile.triton('triton_poi_fused_mul_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xh/cxhhbqk3s6iqrz6tqomrot2zckdii7iarr3pj5stdt3ds6rbfufc.py
# Topologically Sorted Source Nodes: [style, weight_2], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# style => add_1
# weight_2 => mul_7
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, 0.0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %add_1), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp1 + tmp4
tmp6 = 0.0
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tl.store(out_ptr0 + (x4), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sqrt_0.run(primals_1, buf0, 12, grid=grid(12), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_4, weight_1], Original ATen: [aten.sqrt, aten.mul]
triton_poi_fused_mul_sqrt_1.run(primals_4, buf1, 16, grid=grid(16), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [style, weight_2], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_2.run(buf0, buf2, primals_5, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, buf0, buf1, primals_3, primals_5, buf0, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from copy import deepcopy
from functools import partial
from torch.nn import functional as F
from torch.nn.init import _calculate_correct_fan
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super(EqualizedLRLinearModule, self).__init__(*args, **kwargs)
self.with_equlized_lr = equalized_lr_cfg is not None
if self.with_equlized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equlized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
Args:
nn ([type]): [description]
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super(EqualLinearActModule, self).__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super(Blur, self).__init__()
kernel = _make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, x):
return upfirdn2d(x, self.kernel, pad=self.pad)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d in StyleGANv2.
Attention:
#. ``style_bias`` is provided to check the difference between official TF
implementation and other PyTorch implementation.
In TF, Tero explicitly add the ``1.`` after style code, while unofficial
implementation adopts bias initialization with ``1.``.
Details can be found in:
https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py#L214
https://github.com/NVlabs/stylegan2/blob/master/training/networks_stylegan2.py#L99
"""
def __init__(self, in_channels, out_channels, kernel_size,
style_channels, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1], equalized_lr_cfg=dict(mode='fan_in',
lr_mul=1.0, gain=1.0), style_mod_cfg=dict(bias_init=1.0),
style_bias=0.0, eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.style_channels = style_channels
self.demodulate = demodulate
assert isinstance(self.kernel_size, int) and (self.kernel_size >= 1 and
self.kernel_size % 2 == 1)
self.upsample = upsample
self.downsample = downsample
self.style_bias = style_bias
self.eps = eps
style_mod_cfg = dict() if style_mod_cfg is None else style_mod_cfg
self.style_modulation = EqualLinearActModule(style_channels,
in_channels, **style_mod_cfg)
lr_mul_ = 1.0
if equalized_lr_cfg is not None:
lr_mul_ = equalized_lr_cfg.get('lr_mul', 1.0)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size).div_(lr_mul_))
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, (pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
if equalized_lr_cfg is not None:
equalized_lr(self, **equalized_lr_cfg)
self.padding = kernel_size // 2
def forward(self, x, style):
n, c, h, w = x.shape
style = self.style_modulation(style).view(n, 1, c, 1, 1
) + self.style_bias
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(n, self.out_channels, 1, 1, 1)
weight = weight.view(n * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.upsample:
x = x.reshape(1, n * c, h, w)
weight = weight.view(n, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(n * c, self.
out_channels, self.kernel_size, self.kernel_size)
x = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=n)
x = x.reshape(n, self.out_channels, *x.shape[-2:])
x = self.blur(x)
elif self.downsample:
x = self.blur(x)
x = x.view(1, n * self.in_channels, *x.shape[-2:])
x = F.conv2d(x, weight, stride=2, padding=0, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
else:
x = x.view(1, n * c, h, w)
x = F.conv2d(x, weight, stride=1, padding=self.padding, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
return x
class UpsampleUpFIRDn(nn.Module):
def __init__(self, kernel, factor=2):
super(UpsampleUpFIRDn, self).__init__()
self.factor = factor
kernel = _make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, x):
out = upfirdn2d(x, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class ModulatedToRGB(nn.Module):
def __init__(self, in_channels, style_channels, out_channels=3,
upsample=True, blur_kernel=[1, 3, 3, 1], style_mod_cfg=dict(
bias_init=1.0), style_bias=0.0):
super(ModulatedToRGB, self).__init__()
if upsample:
self.upsample = UpsampleUpFIRDn(blur_kernel)
self.conv = ModulatedConv2d(in_channels, out_channels=out_channels,
kernel_size=1, style_channels=style_channels, demodulate=False,
style_mod_cfg=style_mod_cfg, style_bias=style_bias)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
out = self.conv(x, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'style_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from copy import deepcopy
from functools import partial
from torch.nn import functional as F
from torch.nn.init import _calculate_correct_fan
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp1 + tmp4
tmp6 = 0.0
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tl.store(out_ptr0 + x4, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_mul_sqrt_0[grid(12)](primals_1, buf0, 12, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_sqrt_1[grid(16)](primals_4, buf1, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(buf1, (4, 4), (1, 4
), 0), out=buf2)
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_add_mul_2[grid(48)](buf0, buf2, primals_5, buf3,
48, XBLOCK=64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_6
return (buf5, buf0, buf1, primals_3, primals_5, buf0, buf2,
reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0),
reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0))
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super(EqualizedLRLinearModule, self).__init__(*args, **kwargs)
self.with_equlized_lr = equalized_lr_cfg is not None
if self.with_equlized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equlized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
Args:
nn ([type]): [description]
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super(EqualLinearActModule, self).__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super(Blur, self).__init__()
kernel = _make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, x):
return upfirdn2d(x, self.kernel, pad=self.pad)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d in StyleGANv2.
Attention:
#. ``style_bias`` is provided to check the difference between official TF
implementation and other PyTorch implementation.
In TF, Tero explicitly add the ``1.`` after style code, while unofficial
implementation adopts bias initialization with ``1.``.
Details can be found in:
https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py#L214
https://github.com/NVlabs/stylegan2/blob/master/training/networks_stylegan2.py#L99
"""
def __init__(self, in_channels, out_channels, kernel_size,
style_channels, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1], equalized_lr_cfg=dict(mode='fan_in',
lr_mul=1.0, gain=1.0), style_mod_cfg=dict(bias_init=1.0),
style_bias=0.0, eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.style_channels = style_channels
self.demodulate = demodulate
assert isinstance(self.kernel_size, int) and (self.kernel_size >= 1 and
self.kernel_size % 2 == 1)
self.upsample = upsample
self.downsample = downsample
self.style_bias = style_bias
self.eps = eps
style_mod_cfg = dict() if style_mod_cfg is None else style_mod_cfg
self.style_modulation = EqualLinearActModule(style_channels,
in_channels, **style_mod_cfg)
lr_mul_ = 1.0
if equalized_lr_cfg is not None:
lr_mul_ = equalized_lr_cfg.get('lr_mul', 1.0)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size).div_(lr_mul_))
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, (pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
if equalized_lr_cfg is not None:
equalized_lr(self, **equalized_lr_cfg)
self.padding = kernel_size // 2
def forward(self, x, style):
n, c, h, w = x.shape
style = self.style_modulation(style).view(n, 1, c, 1, 1
) + self.style_bias
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(n, self.out_channels, 1, 1, 1)
weight = weight.view(n * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.upsample:
x = x.reshape(1, n * c, h, w)
weight = weight.view(n, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(n * c, self.
out_channels, self.kernel_size, self.kernel_size)
x = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=n)
x = x.reshape(n, self.out_channels, *x.shape[-2:])
x = self.blur(x)
elif self.downsample:
x = self.blur(x)
x = x.view(1, n * self.in_channels, *x.shape[-2:])
x = F.conv2d(x, weight, stride=2, padding=0, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
else:
x = x.view(1, n * c, h, w)
x = F.conv2d(x, weight, stride=1, padding=self.padding, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
return x
class UpsampleUpFIRDn(nn.Module):
def __init__(self, kernel, factor=2):
super(UpsampleUpFIRDn, self).__init__()
self.factor = factor
kernel = _make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, x):
out = upfirdn2d(x, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class ModulatedToRGBNew(nn.Module):
def __init__(self, in_channels, style_channels, out_channels=3,
upsample=True, blur_kernel=[1, 3, 3, 1], style_mod_cfg=dict(
bias_init=1.0), style_bias=0.0):
super(ModulatedToRGBNew, self).__init__()
if upsample:
self.upsample = UpsampleUpFIRDn(blur_kernel)
self.conv = ModulatedConv2d(in_channels, out_channels=out_channels,
kernel_size=1, style_channels=style_channels, demodulate=False,
style_mod_cfg=style_mod_cfg, style_bias=style_bias)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_1 = self.conv.weight_orig
primals_5 = self.conv.style_modulation.bias
primals_3 = self.conv.style_modulation.linear.weight_orig
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| akimotty877/mmediting | ModulatedToRGB | false | 3,078 | [
"Apache-2.0"
] | 0 | cae872d6f3e867ba144c7c0dbc29a0ee1a29e5a6 | https://github.com/akimotty877/mmediting/tree/cae872d6f3e867ba144c7c0dbc29a0ee1a29e5a6 | import torch
import torch.nn as nn
from copy import deepcopy
from functools import partial
from torch.nn import functional as F
from torch.nn.init import _calculate_correct_fan
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forwa
# ... truncated (>4000 chars) for memory efficiency |
MLP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_6, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from scipy.sparse import *
class MLP(Module):
def __init__(self, features_dim, hidden_dim, out_dim, bias=True,
dropout=0.3):
super(MLP, self).__init__()
self.features_dim = features_dim
self.out_dim = out_dim
self.dropout = dropout
self.linear = torch.nn.Linear(features_dim, hidden_dim)
self.z_mean = torch.nn.Linear(hidden_dim, out_dim)
self.z_log_std = torch.nn.Linear(hidden_dim, out_dim)
def forward(self, input):
hidden = F.relu(self.linear(input))
z_mean = F.dropout(self.z_mean(hidden), self.dropout, training=self
.training)
z_log_std = F.dropout(self.z_log_std(hidden), self.dropout,
training=self.training)
return z_mean, z_log_std
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'features_dim': 4, 'hidden_dim': 4, 'out_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
from torch.nn.modules.module import Module
from scipy.sparse import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_7
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), primals_6, primals_4, buf4
class MLPNew(Module):
def __init__(self, features_dim, hidden_dim, out_dim, bias=True,
dropout=0.3):
super(MLPNew, self).__init__()
self.features_dim = features_dim
self.out_dim = out_dim
self.dropout = dropout
self.linear = torch.nn.Linear(features_dim, hidden_dim)
self.z_mean = torch.nn.Linear(hidden_dim, out_dim)
self.z_log_std = torch.nn.Linear(hidden_dim, out_dim)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_4 = self.z_mean.weight
primals_5 = self.z_mean.bias
primals_6 = self.z_log_std.weight
primals_7 = self.z_log_std.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| TTomatoZhang/GHGCN | MLP | false | 3,079 | [
"Apache-2.0"
] | 0 | 09a07ff9e29e5889b912ca5feff74bb9308eda55 | https://github.com/TTomatoZhang/GHGCN/tree/09a07ff9e29e5889b912ca5feff74bb9308eda55 | from torch.nn import Module
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from scipy.sparse import *
class Model(Module):
def __init__(self, features_dim, hidden_dim, out_dim, bias=True,
dropout=0.3):
super().__init__()
self.features_dim = features_dim
self.out_dim = out_dim
self.dropout = dropout
self.linear = torch.nn.Linear(features_dim, hidden_dim)
self.z_mean = torch.nn.Linear(hidden_dim, out_dim)
self.z_log_std = torch.nn.Linear(hidden_dim, out_dim)
def forward(self, input):
hidden = F.relu(self.linear(input))
z_mean = F.dropout(self.z_mean(hidden), self.dropout, training=self
.training)
z_log_std = F.dropout(self.z_log_std(hidden), self.dropout,
training=self.training)
return z_mean, z_log_std
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
SRCNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/7a/c7a2sqxnc6bi7sq5fihvseqxlvh33ljnmvvaziqhjhuxequqirct.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.floor, aten.clamp, aten.rsub, aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index, _unsafe_index_1, _unsafe_index_10, _unsafe_index_11, _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, _unsafe_index_2, _unsafe_index_3, _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, _unsafe_index_8, _unsafe_index_9, add, add_10, add_11, add_12, add_13, add_14, add_15, add_16, add_17, add_18, add_19, add_20, add_21, add_22, add_23, add_24, add_25, add_26, add_27, add_28, add_29, add_30, add_6, add_7, add_8, add_9, clamp_max, clamp_max_1, clamp_min, clamp_min_1, convert_element_type, floor, floor_1, iota, mul, mul_10, mul_11, mul_12, mul_13, mul_14, mul_15, mul_16, mul_17, mul_18, mul_19, mul_2, mul_20, mul_21, mul_22, mul_23, mul_24, mul_25, mul_26, mul_27, mul_28, mul_29, mul_3, mul_30, mul_31, mul_32, mul_33, mul_34, mul_35, mul_36, mul_37, mul_38, mul_39, mul_4, mul_40, mul_41, mul_42, mul_43, mul_44, mul_45, mul_5, mul_6, mul_7, mul_8, mul_9, sub, sub_10, sub_11, sub_12, sub_13, sub_14, sub_15, sub_16, sub_17, sub_18, sub_19, sub_2, sub_20, sub_21, sub_3, sub_6, sub_7, sub_8, sub_9
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.25), kwargs = {})
# %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {})
# %floor : [num_users=2] = call_function[target=torch.ops.aten.floor.default](args = (%sub,), kwargs = {})
# %floor_1 : [num_users=2] = call_function[target=torch.ops.aten.floor.default](args = (%unsqueeze,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %floor_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max : [num_users=6] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %floor), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {})
# %clamp_max_1 : [num_users=6] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {})
# %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max_1, 1.0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, -0.75), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, -3.75), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %add_6), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, -6.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %add_6), kwargs = {})
# %sub_7 : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, -3.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_1, 1.25), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 2.25), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %clamp_max_1), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %clamp_max_1), kwargs = {})
# %add_8 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, 1), kwargs = {})
# %sub_9 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %clamp_max_1), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, 1.25), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_8, 2.25), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %sub_9), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_9, %sub_9), kwargs = {})
# %add_9 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, 1), kwargs = {})
# %sub_11 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %clamp_max_1), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, -0.75), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_11, -3.75), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %sub_11), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, -6.0), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, %sub_11), kwargs = {})
# %sub_13 : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_13, -3.0), kwargs = {})
# %add_11 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max, 1.0), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_11, -0.75), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_14, -3.75), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %add_11), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_15, -6.0), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, %add_11), kwargs = {})
# %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_16, -3.0), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1.25), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_17, 2.25), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_18, %clamp_max), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_19, 1), kwargs = {})
# %sub_17 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %clamp_max), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, 1.25), kwargs = {})
# %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_20, 2.25), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %sub_17), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_21, %sub_17), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_22, 1), kwargs = {})
# %sub_19 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %clamp_max), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, -0.75), kwargs = {})
# %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_23, -3.75), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %sub_19), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_24, -6.0), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_15, %sub_19), kwargs = {})
# %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_25, -3.0), kwargs = {})
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_5]), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_7]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_9]), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index, %sub_7), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %add_8), kwargs = {})
# %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %mul_27), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_2, %add_9), kwargs = {})
# %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_16, %mul_28), kwargs = {})
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_3, %sub_13), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %mul_29), kwargs = {})
# %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_3]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_9]), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_4, %sub_7), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_5, %add_8), kwargs = {})
# %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_30, %mul_31), kwargs = {})
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_6, %add_9), kwargs = {})
# %add_20 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_19, %mul_32), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_7, %sub_13), kwargs = {})
# %add_21 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_20, %mul_33), kwargs = {})
# %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_3]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_5]), kwargs = {})
# %_unsafe_index_10 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_7]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_9]), kwargs = {})
# %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_8, %sub_7), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_9, %add_8), kwargs = {})
# %add_22 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_34, %mul_35), kwargs = {})
# %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_10, %add_9), kwargs = {})
# %add_23 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_22, %mul_36), kwargs = {})
# %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_11, %sub_13), kwargs = {})
# %add_24 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_23, %mul_37), kwargs = {})
# %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_3]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_5]), kwargs = {})
# %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_7]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_9]), kwargs = {})
# %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_12, %sub_7), kwargs = {})
# %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_13, %add_8), kwargs = {})
# %add_25 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_38, %mul_39), kwargs = {})
# %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_14, %add_9), kwargs = {})
# %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_25, %mul_40), kwargs = {})
# %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_15, %sub_13), kwargs = {})
# %add_27 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_26, %mul_41), kwargs = {})
# %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_18, %sub_15), kwargs = {})
# %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_21, %add_13), kwargs = {})
# %add_28 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_42, %mul_43), kwargs = {})
# %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_24, %add_14), kwargs = {})
# %add_29 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_28, %mul_44), kwargs = {})
# %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_27, %sub_21), kwargs = {})
# %add_30 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_29, %mul_45), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0(in_out_ptr1, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 16
x0 = xindex % 16
x2 = (xindex // 256)
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = libdevice.floor(tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 - tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tl.full([1], 3, tl.int64)
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tmp15 = x0
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp16 + tmp2
tmp18 = tmp17 * tmp4
tmp19 = tmp18 - tmp2
tmp20 = libdevice.floor(tmp19)
tmp21 = tmp20.to(tl.int32)
tmp22 = tmp21 - tmp9
tmp23 = triton_helpers.maximum(tmp22, tmp11)
tmp24 = triton_helpers.minimum(tmp23, tmp13)
tmp25 = tl.load(in_ptr0 + (tmp24 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last')
tmp26 = tmp19 - tmp20
tmp27 = 0.0
tmp28 = triton_helpers.maximum(tmp26, tmp27)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp30 + tmp29
tmp32 = -0.75
tmp33 = tmp31 * tmp32
tmp34 = -3.75
tmp35 = tmp33 - tmp34
tmp36 = tmp35 * tmp31
tmp37 = -6.0
tmp38 = tmp36 + tmp37
tmp39 = tmp38 * tmp31
tmp40 = -3.0
tmp41 = tmp39 - tmp40
tmp42 = tmp25 * tmp41
tmp43 = triton_helpers.maximum(tmp21, tmp11)
tmp44 = triton_helpers.minimum(tmp43, tmp13)
tmp45 = tl.load(in_ptr0 + (tmp44 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last')
tmp46 = 1.25
tmp47 = tmp30 * tmp46
tmp48 = 2.25
tmp49 = tmp47 - tmp48
tmp50 = tmp49 * tmp30
tmp51 = tmp50 * tmp30
tmp52 = tmp51 + tmp29
tmp53 = tmp45 * tmp52
tmp54 = tmp21 + tmp9
tmp55 = triton_helpers.maximum(tmp54, tmp11)
tmp56 = triton_helpers.minimum(tmp55, tmp13)
tmp57 = tl.load(in_ptr0 + (tmp56 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last')
tmp58 = tmp29 - tmp30
tmp59 = tmp58 * tmp46
tmp60 = tmp59 - tmp48
tmp61 = tmp60 * tmp58
tmp62 = tmp61 * tmp58
tmp63 = tmp62 + tmp29
tmp64 = tmp57 * tmp63
tmp65 = triton_helpers.maximum(tmp8, tmp11)
tmp66 = triton_helpers.minimum(tmp65, tmp13)
tmp67 = tl.load(in_ptr0 + (tmp24 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last')
tmp68 = tmp67 * tmp41
tmp69 = tl.full([1], 2, tl.int64)
tmp70 = tmp21 + tmp69
tmp71 = triton_helpers.maximum(tmp70, tmp11)
tmp72 = triton_helpers.minimum(tmp71, tmp13)
tmp73 = tl.load(in_ptr0 + (tmp72 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last')
tmp74 = 2.0
tmp75 = tmp74 - tmp30
tmp76 = tmp75 * tmp32
tmp77 = tmp76 - tmp34
tmp78 = tmp77 * tmp75
tmp79 = tmp78 + tmp37
tmp80 = tmp79 * tmp75
tmp81 = tmp80 - tmp40
tmp82 = tmp73 * tmp81
tmp83 = tl.load(in_ptr0 + (tmp44 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last')
tmp84 = tmp83 * tmp52
tmp85 = tl.load(in_ptr0 + (tmp56 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last')
tmp86 = tmp85 * tmp63
tmp87 = tmp8 + tmp9
tmp88 = triton_helpers.maximum(tmp87, tmp11)
tmp89 = triton_helpers.minimum(tmp88, tmp13)
tmp90 = tl.load(in_ptr0 + (tmp24 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last')
tmp91 = tmp90 * tmp41
tmp92 = tl.load(in_ptr0 + (tmp72 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last')
tmp93 = tmp92 * tmp81
tmp94 = tl.load(in_ptr0 + (tmp44 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last')
tmp95 = tmp94 * tmp52
tmp96 = tl.load(in_ptr0 + (tmp56 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last')
tmp97 = tmp96 * tmp63
tmp98 = tmp8 + tmp69
tmp99 = triton_helpers.maximum(tmp98, tmp11)
tmp100 = triton_helpers.minimum(tmp99, tmp13)
tmp101 = tl.load(in_ptr0 + (tmp24 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last')
tmp102 = tmp101 * tmp41
tmp103 = tl.load(in_ptr0 + (tmp72 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last')
tmp104 = tmp103 * tmp81
tmp105 = tl.load(in_ptr0 + (tmp44 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last')
tmp106 = tmp105 * tmp52
tmp107 = tl.load(in_ptr0 + (tmp56 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last')
tmp108 = tmp107 * tmp63
tmp109 = tl.load(in_ptr0 + (tmp72 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last')
tmp110 = tmp109 * tmp81
tmp111 = tmp42 + tmp53
tmp112 = tmp111 + tmp64
tmp113 = tmp112 + tmp82
tmp114 = tmp6 - tmp7
tmp115 = triton_helpers.maximum(tmp114, tmp27)
tmp116 = triton_helpers.minimum(tmp115, tmp29)
tmp117 = tmp116 + tmp29
tmp118 = tmp117 * tmp32
tmp119 = tmp118 - tmp34
tmp120 = tmp119 * tmp117
tmp121 = tmp120 + tmp37
tmp122 = tmp121 * tmp117
tmp123 = tmp122 - tmp40
tmp124 = tmp113 * tmp123
tmp125 = tmp68 + tmp84
tmp126 = tmp125 + tmp86
tmp127 = tmp126 + tmp93
tmp128 = tmp116 * tmp46
tmp129 = tmp128 - tmp48
tmp130 = tmp129 * tmp116
tmp131 = tmp130 * tmp116
tmp132 = tmp131 + tmp29
tmp133 = tmp127 * tmp132
tmp134 = tmp124 + tmp133
tmp135 = tmp91 + tmp95
tmp136 = tmp135 + tmp97
tmp137 = tmp136 + tmp104
tmp138 = tmp29 - tmp116
tmp139 = tmp138 * tmp46
tmp140 = tmp139 - tmp48
tmp141 = tmp140 * tmp138
tmp142 = tmp141 * tmp138
tmp143 = tmp142 + tmp29
tmp144 = tmp137 * tmp143
tmp145 = tmp134 + tmp144
tmp146 = tmp102 + tmp106
tmp147 = tmp146 + tmp108
tmp148 = tmp147 + tmp110
tmp149 = tmp74 - tmp116
tmp150 = tmp149 * tmp32
tmp151 = tmp150 - tmp34
tmp152 = tmp151 * tmp149
tmp153 = tmp152 + tmp37
tmp154 = tmp153 * tmp149
tmp155 = tmp154 - tmp40
tmp156 = tmp148 * tmp155
tmp157 = tmp145 + tmp156
tl.store(in_out_ptr1 + (x3), tmp157, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/f4/cf4q74veoggsxdgdkl43ap6cyqfylpfk3qs7wdqoebyfzzb36dvw.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_30, %primals_2, %primals_3, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bj/cbjysb56yh4ggfzb72c3xdhbbnmqhfc3pvpexw6rfp2nme2jhyyl.py
# Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# out_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7x/c7xnwtrjfqhdkxhfsdsjlkr7ml5ojqmtd2lrl7npuiczn7woxe2e.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 256) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_2, (64, 3, 9, 9), (243, 81, 9, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (3, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_7, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((4, 3, 16, 16), (768, 256, 16, 1), torch.float32)
buf18 = buf10; del buf10 # reuse
buf20 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.floor, aten.clamp, aten.rsub, aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0.run(buf20, primals_1, 3072, grid=grid(3072), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf20, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 64, 16, 16), (16384, 256, 16, 1))
buf22 = buf21; del buf21 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf22, primals_3, 65536, grid=grid(65536), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 32, 16, 16), (8192, 256, 16, 1))
buf24 = buf23; del buf23 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf24, primals_5, 32768, grid=grid(32768), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 3, 16, 16), (768, 256, 16, 1))
buf26 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf26, primals_7, 3072, grid=grid(3072), stream=stream0)
del primals_7
return (buf26, primals_2, primals_4, primals_6, buf20, buf22, buf24, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 3, 9, 9), (243, 81, 9, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import logging
import torch
import torch.nn as nn
def get_root_logger(log_file=None, log_level=logging.INFO):
"""Get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added. The name of the root logger is the top-level package name,
e.g., "mmedit".
Args:
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger.
log_level (int): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time.
Returns:
logging.Logger: The root logger.
"""
logger = get_logger(__name__.split('.')[0], log_file, log_level)
return logger
class SRCNN(nn.Module):
"""SRCNN network structure for image super resolution.
SRCNN has three conv layers. For each layer, we can define the
`in_channels`, `out_channels` and `kernel_size`.
The input image will first be upsampled with a bicubic upsampler, and then
super-resolved in the HR spatial size.
Paper: Learning a Deep Convolutional Network for Image Super-Resolution.
Args:
channels (tuple[int]): A tuple of channel numbers for each layer
including channels of input and output . Default: (3, 64, 32, 3).
kernel_sizes (tuple[int]): A tuple of kernel sizes for each conv layer.
Default: (9, 1, 5).
upscale_factor (int): Upsampling factor. Default: 4.
"""
def __init__(self, channels=(3, 64, 32, 3), kernel_sizes=(9, 1, 5),
upscale_factor=4):
super().__init__()
assert len(channels
) == 4, f'The length of channel tuple should be 4, but got {len(channels)}'
assert len(kernel_sizes
) == 3, f'The length of kernel tuple should be 3, but got {len(kernel_sizes)}'
self.upscale_factor = upscale_factor
self.img_upsampler = nn.Upsample(scale_factor=self.upscale_factor,
mode='bicubic', align_corners=False)
self.conv1 = nn.Conv2d(channels[0], channels[1], kernel_size=
kernel_sizes[0], padding=kernel_sizes[0] // 2)
self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size=
kernel_sizes[1], padding=kernel_sizes[1] // 2)
self.conv3 = nn.Conv2d(channels[2], channels[3], kernel_size=
kernel_sizes[2], padding=kernel_sizes[2] // 2)
self.relu = nn.ReLU()
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
x = self.img_upsampler(x)
out = self.relu(self.conv1(x))
out = self.relu(self.conv2(out))
out = self.conv3(out)
return out
def init_weights(self, pretrained=None, strict=True):
"""Init weights for models.
Args:
pretrained (str, optional): Path for pretrained weights. If given
None, pretrained weights will not be loaded. Defaults to None.
strict (boo, optional): Whether strictly load the pretrained model.
Defaults to True.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=strict, logger=logger)
elif pretrained is None:
pass
else:
raise TypeError(
f'"pretrained" must be a str or None. But received {type(pretrained)}.'
)
def get_inputs():
return [torch.rand([4, 3, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import logging
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0(
in_out_ptr1, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 16
x0 = xindex % 16
x2 = xindex // 256
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = libdevice.floor(tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 - tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tl.full([1], 3, tl.int64)
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tmp15 = x0
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp16 + tmp2
tmp18 = tmp17 * tmp4
tmp19 = tmp18 - tmp2
tmp20 = libdevice.floor(tmp19)
tmp21 = tmp20.to(tl.int32)
tmp22 = tmp21 - tmp9
tmp23 = triton_helpers.maximum(tmp22, tmp11)
tmp24 = triton_helpers.minimum(tmp23, tmp13)
tmp25 = tl.load(in_ptr0 + (tmp24 + 4 * tmp14 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp26 = tmp19 - tmp20
tmp27 = 0.0
tmp28 = triton_helpers.maximum(tmp26, tmp27)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp30 + tmp29
tmp32 = -0.75
tmp33 = tmp31 * tmp32
tmp34 = -3.75
tmp35 = tmp33 - tmp34
tmp36 = tmp35 * tmp31
tmp37 = -6.0
tmp38 = tmp36 + tmp37
tmp39 = tmp38 * tmp31
tmp40 = -3.0
tmp41 = tmp39 - tmp40
tmp42 = tmp25 * tmp41
tmp43 = triton_helpers.maximum(tmp21, tmp11)
tmp44 = triton_helpers.minimum(tmp43, tmp13)
tmp45 = tl.load(in_ptr0 + (tmp44 + 4 * tmp14 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp46 = 1.25
tmp47 = tmp30 * tmp46
tmp48 = 2.25
tmp49 = tmp47 - tmp48
tmp50 = tmp49 * tmp30
tmp51 = tmp50 * tmp30
tmp52 = tmp51 + tmp29
tmp53 = tmp45 * tmp52
tmp54 = tmp21 + tmp9
tmp55 = triton_helpers.maximum(tmp54, tmp11)
tmp56 = triton_helpers.minimum(tmp55, tmp13)
tmp57 = tl.load(in_ptr0 + (tmp56 + 4 * tmp14 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp58 = tmp29 - tmp30
tmp59 = tmp58 * tmp46
tmp60 = tmp59 - tmp48
tmp61 = tmp60 * tmp58
tmp62 = tmp61 * tmp58
tmp63 = tmp62 + tmp29
tmp64 = tmp57 * tmp63
tmp65 = triton_helpers.maximum(tmp8, tmp11)
tmp66 = triton_helpers.minimum(tmp65, tmp13)
tmp67 = tl.load(in_ptr0 + (tmp24 + 4 * tmp66 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp68 = tmp67 * tmp41
tmp69 = tl.full([1], 2, tl.int64)
tmp70 = tmp21 + tmp69
tmp71 = triton_helpers.maximum(tmp70, tmp11)
tmp72 = triton_helpers.minimum(tmp71, tmp13)
tmp73 = tl.load(in_ptr0 + (tmp72 + 4 * tmp14 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp74 = 2.0
tmp75 = tmp74 - tmp30
tmp76 = tmp75 * tmp32
tmp77 = tmp76 - tmp34
tmp78 = tmp77 * tmp75
tmp79 = tmp78 + tmp37
tmp80 = tmp79 * tmp75
tmp81 = tmp80 - tmp40
tmp82 = tmp73 * tmp81
tmp83 = tl.load(in_ptr0 + (tmp44 + 4 * tmp66 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp84 = tmp83 * tmp52
tmp85 = tl.load(in_ptr0 + (tmp56 + 4 * tmp66 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp86 = tmp85 * tmp63
tmp87 = tmp8 + tmp9
tmp88 = triton_helpers.maximum(tmp87, tmp11)
tmp89 = triton_helpers.minimum(tmp88, tmp13)
tmp90 = tl.load(in_ptr0 + (tmp24 + 4 * tmp89 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp91 = tmp90 * tmp41
tmp92 = tl.load(in_ptr0 + (tmp72 + 4 * tmp66 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp93 = tmp92 * tmp81
tmp94 = tl.load(in_ptr0 + (tmp44 + 4 * tmp89 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp95 = tmp94 * tmp52
tmp96 = tl.load(in_ptr0 + (tmp56 + 4 * tmp89 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp97 = tmp96 * tmp63
tmp98 = tmp8 + tmp69
tmp99 = triton_helpers.maximum(tmp98, tmp11)
tmp100 = triton_helpers.minimum(tmp99, tmp13)
tmp101 = tl.load(in_ptr0 + (tmp24 + 4 * tmp100 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp102 = tmp101 * tmp41
tmp103 = tl.load(in_ptr0 + (tmp72 + 4 * tmp89 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp104 = tmp103 * tmp81
tmp105 = tl.load(in_ptr0 + (tmp44 + 4 * tmp100 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp106 = tmp105 * tmp52
tmp107 = tl.load(in_ptr0 + (tmp56 + 4 * tmp100 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp108 = tmp107 * tmp63
tmp109 = tl.load(in_ptr0 + (tmp72 + 4 * tmp100 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp110 = tmp109 * tmp81
tmp111 = tmp42 + tmp53
tmp112 = tmp111 + tmp64
tmp113 = tmp112 + tmp82
tmp114 = tmp6 - tmp7
tmp115 = triton_helpers.maximum(tmp114, tmp27)
tmp116 = triton_helpers.minimum(tmp115, tmp29)
tmp117 = tmp116 + tmp29
tmp118 = tmp117 * tmp32
tmp119 = tmp118 - tmp34
tmp120 = tmp119 * tmp117
tmp121 = tmp120 + tmp37
tmp122 = tmp121 * tmp117
tmp123 = tmp122 - tmp40
tmp124 = tmp113 * tmp123
tmp125 = tmp68 + tmp84
tmp126 = tmp125 + tmp86
tmp127 = tmp126 + tmp93
tmp128 = tmp116 * tmp46
tmp129 = tmp128 - tmp48
tmp130 = tmp129 * tmp116
tmp131 = tmp130 * tmp116
tmp132 = tmp131 + tmp29
tmp133 = tmp127 * tmp132
tmp134 = tmp124 + tmp133
tmp135 = tmp91 + tmp95
tmp136 = tmp135 + tmp97
tmp137 = tmp136 + tmp104
tmp138 = tmp29 - tmp116
tmp139 = tmp138 * tmp46
tmp140 = tmp139 - tmp48
tmp141 = tmp140 * tmp138
tmp142 = tmp141 * tmp138
tmp143 = tmp142 + tmp29
tmp144 = tmp137 * tmp143
tmp145 = tmp134 + tmp144
tmp146 = tmp102 + tmp106
tmp147 = tmp146 + tmp108
tmp148 = tmp147 + tmp110
tmp149 = tmp74 - tmp116
tmp150 = tmp149 * tmp32
tmp151 = tmp150 - tmp34
tmp152 = tmp151 * tmp149
tmp153 = tmp152 + tmp37
tmp154 = tmp153 * tmp149
tmp155 = tmp154 - tmp40
tmp156 = tmp148 * tmp155
tmp157 = tmp145 + tmp156
tl.store(in_out_ptr1 + x3, tmp157, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 256 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_2, (64, 3, 9, 9), (243, 81, 9, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (32, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (3, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_7, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((4, 3, 16, 16), (768, 256, 16, 1), torch
.float32)
buf18 = buf10
del buf10
buf20 = buf18
del buf18
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0[
grid(3072)](buf20, primals_1, 3072, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_1
buf21 = extern_kernels.convolution(buf20, primals_2, stride=(1, 1),
padding=(4, 4), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 64, 16, 16), (16384, 256, 16, 1))
buf22 = buf21
del buf21
triton_poi_fused_convolution_relu_1[grid(65536)](buf22, primals_3,
65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf23 = extern_kernels.convolution(buf22, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 32, 16, 16), (8192, 256, 16, 1))
buf24 = buf23
del buf23
triton_poi_fused_convolution_relu_2[grid(32768)](buf24, primals_5,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 3, 16, 16), (768, 256, 16, 1))
buf26 = buf25
del buf25
triton_poi_fused_convolution_3[grid(3072)](buf26, primals_7, 3072,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return buf26, primals_2, primals_4, primals_6, buf20, buf22, buf24
def get_root_logger(log_file=None, log_level=logging.INFO):
"""Get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added. The name of the root logger is the top-level package name,
e.g., "mmedit".
Args:
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger.
log_level (int): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time.
Returns:
logging.Logger: The root logger.
"""
logger = get_logger(__name__.split('.')[0], log_file, log_level)
return logger
class SRCNNNew(nn.Module):
"""SRCNN network structure for image super resolution.
SRCNN has three conv layers. For each layer, we can define the
`in_channels`, `out_channels` and `kernel_size`.
The input image will first be upsampled with a bicubic upsampler, and then
super-resolved in the HR spatial size.
Paper: Learning a Deep Convolutional Network for Image Super-Resolution.
Args:
channels (tuple[int]): A tuple of channel numbers for each layer
including channels of input and output . Default: (3, 64, 32, 3).
kernel_sizes (tuple[int]): A tuple of kernel sizes for each conv layer.
Default: (9, 1, 5).
upscale_factor (int): Upsampling factor. Default: 4.
"""
def __init__(self, channels=(3, 64, 32, 3), kernel_sizes=(9, 1, 5),
upscale_factor=4):
super().__init__()
assert len(channels
) == 4, f'The length of channel tuple should be 4, but got {len(channels)}'
assert len(kernel_sizes
) == 3, f'The length of kernel tuple should be 3, but got {len(kernel_sizes)}'
self.upscale_factor = upscale_factor
self.img_upsampler = nn.Upsample(scale_factor=self.upscale_factor,
mode='bicubic', align_corners=False)
self.conv1 = nn.Conv2d(channels[0], channels[1], kernel_size=
kernel_sizes[0], padding=kernel_sizes[0] // 2)
self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size=
kernel_sizes[1], padding=kernel_sizes[1] // 2)
self.conv3 = nn.Conv2d(channels[2], channels[3], kernel_size=
kernel_sizes[2], padding=kernel_sizes[2] // 2)
self.relu = nn.ReLU()
def init_weights(self, pretrained=None, strict=True):
"""Init weights for models.
Args:
pretrained (str, optional): Path for pretrained weights. If given
None, pretrained weights will not be loaded. Defaults to None.
strict (boo, optional): Whether strictly load the pretrained model.
Defaults to True.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=strict, logger=logger)
elif pretrained is None:
pass
else:
raise TypeError(
f'"pretrained" must be a str or None. But received {type(pretrained)}.'
)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| akimotty877/mmediting | SRCNN | false | 3,080 | [
"Apache-2.0"
] | 0 | cae872d6f3e867ba144c7c0dbc29a0ee1a29e5a6 | https://github.com/akimotty877/mmediting/tree/cae872d6f3e867ba144c7c0dbc29a0ee1a29e5a6 | import logging
import torch
import torch.nn as nn
def get_root_logger(log_file=None, log_level=logging.INFO):
"""Get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added. The name of the root logger is the top-level package name,
e.g., "mmedit".
Args:
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger.
log_level (int): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time.
Returns:
logging.Logger: The root logger.
"""
logger = get_logger(__name__.split('.')[0], log_file, log_level)
return logger
class Model(nn.Module):
"""SRCNN network structure for image super resolution.
SRCNN has three conv layers. For each layer, we can define the
`in_channels`, `out_channels` and `kernel_size`.
The input image will first be upsampled with a bicubic upsampler, and then
super-resolved in the HR spatial size.
Paper: Learning a Deep Convolutional Network for Image Super-Resolution.
Args:
channels (tuple[int]): A tuple of channel numbers for each layer
including channels of input and output . Default: (3, 64, 32, 3).
kernel_sizes (tuple[int]): A tuple of kernel sizes for each conv layer.
Default: (9, 1, 5).
upscale_factor (int): Upsampling factor. Default: 4.
"""
def __init__(self, channels=(3, 64, 32, 3), kernel_sizes=(9, 1, 5),
upscale_factor=4):
super().__init__()
assert len(channels
) == 4, f'The length of channel tuple should be 4, but got {len(channels)}'
assert len(kernel_sizes
) == 3, f'The length of kernel tuple should be 3, but got {len(kernel_sizes)}'
self.upscale_factor = upscale_factor
self.img_upsampler = nn.Upsample(scale_factor=self.upscale_factor,
mode='bicubic', align_corners=False)
self.conv1 = nn.Conv2d(channels[0], channels[1], kernel_size=
kernel_sizes[0], padding=kernel_sizes[0] // 2)
self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size=
kernel_sizes[1], padding=kernel_sizes[1] // 2)
self.conv3 = nn.Conv2d(channels[2], channels[3], kernel_size=
kernel_sizes[2], padding=kernel_sizes[2] // 2)
self.relu = nn.ReLU()
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
x = self.img_upsampler(x)
out = self.relu(self.conv1(x))
out = self.relu(self.conv2(out))
out = self.conv3(out)
return out
def init_weights(self, pretrained=None, strict=True):
"""Init weights for models.
Args:
pretrained (str, optional): Path for pretrained weights. If given
None, pretrained weights will not be loaded. Defaults to None.
strict (boo, optional): Whether strictly load the pretrained model.
Defaults to True.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=strict, logger=logger)
elif pretrained is None:
pass
else:
raise TypeError(
f'"pretrained" must be a str or None. But received {type(pretrained)}.'
)
def get_inputs():
return [torch.rand([4, 3, 4, 4])]
def get_init_inputs():
return []
|
IOU_Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2p/c2pd7klqw6kfkiwgluh72afy6ra3mmjl5stwoyukklcqn4dv5tv6.py
# Topologically Sorted Source Nodes: [sum_1, sum_2], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tmp0 + tmp1
tmp8 = tmp7 - tmp2
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr1 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/pl/cplhkvxkhayr42ezznowt6la2glwfwfgujugw65cnzedm26w2hf4.py
# Topologically Sorted Source Nodes: [truediv, mean_iou, iou_loss], Original ATen: [aten.div, aten.mean, aten.rsub]
# Source node to ATen node mapping:
# iou_loss => sub_1
# mean_iou => mean
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mean), kwargs = {})
triton_per_fused_div_mean_rsub_1 = async_compile.triton('triton_per_fused_div_mean_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 / tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = 4.0
tmp7 = tmp5 / tmp6
tmp8 = 1.0
tmp9 = tmp8 - tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [sum_1, sum_2], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(arg0_1, arg1_1, buf0, buf1, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [truediv, mean_iou, iou_loss], Original ATen: [aten.div, aten.mean, aten.rsub]
triton_per_fused_div_mean_rsub_1.run(buf3, buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class IOU_Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, y_pred, y):
i = y_pred.mul(y)
u = y_pred + y - i
mean_iou = torch.mean(i.view(i.shape[0], -1).sum(1) / u.view(i.
shape[0], -1).sum(1))
iou_loss = 1 - mean_iou
return iou_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tmp0 + tmp1
tmp8 = tmp7 - tmp2
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr1 + x0, tmp12, xmask)
@triton.jit
def triton_per_fused_div_mean_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 / tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = 4.0
tmp7 = tmp5 / tmp6
tmp8 = 1.0
tmp9 = tmp8 - tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(4)](arg0_1, arg1_1, buf0, buf1, 4, 64,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_div_mean_rsub_1[grid(1)](buf3, buf0, buf1, 1, 4,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
return buf3,
class IOU_LossNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| allen-q/pytorch | IOU_Loss | false | 3,081 | [
"MIT"
] | 0 | 76947f8d6f0bcee04425ad69f93b9a5e3a5060ae | https://github.com/allen-q/pytorch/tree/76947f8d6f0bcee04425ad69f93b9a5e3a5060ae | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, y_pred, y):
i = y_pred.mul(y)
u = y_pred + y - i
mean_iou = torch.mean(i.view(i.shape[0], -1).sum(1) / u.view(i.
shape[0], -1).sum(1))
iou_loss = 1 - mean_iou
return iou_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
GraphVae | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3e/c3erdulc5lbtjqqbcyrrgu3bwfeeytakutc2vgjvsrukeu732uvz.py
# Topologically Sorted Source Nodes: [hidden, input_4], Original ATen: [aten.relu, aten.squeeze, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden => relu
# input_4 => squeeze_1
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mm_1,), kwargs = {})
# %squeeze_1 : [num_users=3] = call_function[target=torch.ops.aten.squeeze.default](args = (%relu,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_squeeze_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_squeeze_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_squeeze_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_squeeze_threshold_backward_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_1, primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf0; del buf0 # reuse
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden, input_4], Original ATen: [aten.relu, aten.squeeze, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_squeeze_threshold_backward_0.run(buf1, buf2, buf7, 16, grid=grid(16), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_4, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [support_2], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf5)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf5, out=buf6)
del buf5
return (buf4, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), buf7, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from scipy.sparse import *
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False, act=lambda x:
x, dropout=0.0):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.act = act
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
input = F.dropout(input, self.dropout, training=self.training)
input = torch.squeeze(input)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
output = output + self.bias
return self.act(output)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GraphVae(Module):
def __init__(self, features_dim, hidden_dim, out_dim, bias=False,
dropout=0.3):
super(GraphVae, self).__init__()
self.features_dim = features_dim
self.out_dim = out_dim
self.dropout = dropout
self.gc1 = GraphConvolution(features_dim, hidden_dim, bias=bias,
dropout=dropout, act=F.relu)
self.gc_mean = GraphConvolution(hidden_dim, out_dim, bias=bias,
dropout=dropout)
self.gc_log_std = GraphConvolution(hidden_dim, out_dim, bias=bias,
dropout=dropout)
def forward(self, adj, input):
hidden = self.gc1(input, adj)
z_mean = self.gc_mean(hidden, adj)
z_log_std = self.gc_log_std(hidden, adj)
return z_mean, z_log_std
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'features_dim': 4, 'hidden_dim': 4, 'out_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
import math
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from scipy.sparse import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_squeeze_threshold_backward_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf0
del buf0
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_squeeze_threshold_backward_0[grid(16)](buf1,
buf2, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.mm(buf2, primals_4, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf3
del buf3
extern_kernels.mm(buf2, primals_5, out=buf5)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf5, out=buf6)
del buf5
return buf4, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), reinterpret_tensor(
primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4),
(1, 4), 0), buf7, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0)
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False, act=lambda x:
x, dropout=0.0):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.act = act
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
input = F.dropout(input, self.dropout, training=self.training)
input = torch.squeeze(input)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
output = output + self.bias
return self.act(output)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GraphVaeNew(Module):
def __init__(self, features_dim, hidden_dim, out_dim, bias=False,
dropout=0.3):
super(GraphVaeNew, self).__init__()
self.features_dim = features_dim
self.out_dim = out_dim
self.dropout = dropout
self.gc1 = GraphConvolution(features_dim, hidden_dim, bias=bias,
dropout=dropout, act=F.relu)
self.gc_mean = GraphConvolution(hidden_dim, out_dim, bias=bias,
dropout=dropout)
self.gc_log_std = GraphConvolution(hidden_dim, out_dim, bias=bias,
dropout=dropout)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_2 = self.gc_mean.weight
primals_3 = self.gc_log_std.weight
primals_4 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
| TTomatoZhang/GHGCN | GraphVae | false | 3,082 | [
"Apache-2.0"
] | 0 | 09a07ff9e29e5889b912ca5feff74bb9308eda55 | https://github.com/TTomatoZhang/GHGCN/tree/09a07ff9e29e5889b912ca5feff74bb9308eda55 | from torch.nn import Module
import math
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from scipy.sparse import *
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False, act=lambda x:
x, dropout=0.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.act = act
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
input = F.dropout(input, self.dropout, training=self.training)
input = torch.squeeze(input)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
output = output + self.bias
return self.act(output)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class Model(Module):
def __init__(self, features_dim, hidden_dim, out_dim, bias=False,
dropout=0.3):
super().__init__()
self.features_dim = features_dim
self.out_dim = out_dim
self.dropout = dropout
self.gc1 = GraphConvolution(features_dim, hidden_dim, bias=bias,
dropout=dropout, act=F.relu)
self.gc_mean = GraphConvolution(hidden_dim, out_dim, bias=bias,
dropout=dropout)
self.gc_log_std = GraphConvolution(hidden_dim, out_dim, bias=bias,
dropout=dropout)
def forward(self, adj, input):
hidden = self.gc1(input, adj)
z_mean = self.gc_mean(hidden, adj)
z_log_std = self.gc_log_std(hidden, adj)
return z_mean, z_log_std
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Policy | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wj/cwjhqtccibtjmvk6idu2u5cqmpyduromw4a6pzioh3adfwjeh5mj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 23104
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/il/cil55xjuwkqyzxjlhvd4kizvr326ffq3shsi7xhiipir6ovlmzzy.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_3, %primals_4, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 5184
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 81) % 16
x2 = (xindex // 1296)
x3 = xindex % 1296
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + (1312*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3 + (1408*x2)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2b/c2bujjyeji7nhf4gfgxav4unhmpugynzwx2v63uhk7lp4nn5exsa.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_2
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rh/crhvyy3w3uejbzndu7qftnyc25sndrfzlmb3i2bzpyadobz7z7bm.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 2, 6, 6), (72, 36, 6, 1))
assert_size_stride(primals_2, (4, 2, 81, 81), (13122, 6561, 81, 1))
assert_size_stride(primals_3, (16, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_4, (16, ), (1, ))
assert_size_stride(primals_5, (256, 1296), (1296, 1))
assert_size_stride(primals_6, (256, ), (1, ))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 38, 38), (5776, 1444, 38, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, 23104, grid=grid(23104), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 9, 9), (1296, 81, 9, 1))
buf3 = empty_strided_cuda((4, 16, 9, 9), (1312, 81, 9, 1), torch.float32)
buf8 = empty_strided_cuda((4, 16, 9, 9), (1408, 81, 9, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_4, buf3, buf8, 5184, grid=grid(5184), stream=stream0)
del buf2
del primals_4
buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (4, 1296), (1312, 1), 0), reinterpret_tensor(primals_5, (1296, 256), (1, 1296), 0), out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_2.run(buf5, primals_6, 1024, grid=grid(1024), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf7, primals_8, 4, grid=grid(4), stream=stream0)
del primals_8
return (buf7, primals_1, primals_2, primals_3, buf1, reinterpret_tensor(buf3, (4, 1296), (1312, 1), 0), buf5, buf7, primals_7, primals_5, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 2, 6, 6), (72, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 2, 81, 81), (13122, 6561, 81, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, 1296), (1296, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.conv1 = nn.Conv2d(2, 4, kernel_size=6, stride=2, bias=False)
self.conv2 = nn.Conv2d(4, 16, kernel_size=6, stride=4)
self.size = 9 * 9 * 16
self.fc1 = nn.Linear(self.size, 256)
self.fc2 = nn.Linear(256, 1)
self.sig = nn.Sigmoid()
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = x.view(-1, self.size)
x = F.relu(self.fc1(x))
return self.sig(self.fc2(x))
def get_inputs():
return [torch.rand([4, 2, 81, 81])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 23104
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 5184
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 81 % 16
x2 = xindex // 1296
x3 = xindex % 1296
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + 1312 * x2), tmp4, xmask)
tl.store(out_ptr1 + (x3 + 1408 * x2), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 2, 6, 6), (72, 36, 6, 1))
assert_size_stride(primals_2, (4, 2, 81, 81), (13122, 6561, 81, 1))
assert_size_stride(primals_3, (16, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_4, (16,), (1,))
assert_size_stride(primals_5, (256, 1296), (1296, 1))
assert_size_stride(primals_6, (256,), (1,))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 38, 38), (5776, 1444, 38, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(23104)](buf1, 23104, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(4, 4),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 9, 9), (1296, 81, 9, 1))
buf3 = empty_strided_cuda((4, 16, 9, 9), (1312, 81, 9, 1), torch.
float32)
buf8 = empty_strided_cuda((4, 16, 9, 9), (1408, 81, 9, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(5184)](buf2
, primals_4, buf3, buf8, 5184, XBLOCK=128, num_warps=4,
num_stages=1)
del buf2
del primals_4
buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (4, 1296), (1312, 1), 0),
reinterpret_tensor(primals_5, (1296, 256), (1, 1296), 0), out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_relu_2[grid(1024)](buf5, primals_6, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (256, 1), (1,
256), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_sigmoid_3[grid(4)](buf7, primals_8, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_8
return buf7, primals_1, primals_2, primals_3, buf1, reinterpret_tensor(buf3
, (4, 1296), (1312, 1), 0), buf5, buf7, primals_7, primals_5, buf8
class PolicyNew(nn.Module):
def __init__(self):
super(PolicyNew, self).__init__()
self.conv1 = nn.Conv2d(2, 4, kernel_size=6, stride=2, bias=False)
self.conv2 = nn.Conv2d(4, 16, kernel_size=6, stride=4)
self.size = 9 * 9 * 16
self.fc1 = nn.Linear(self.size, 256)
self.fc2 = nn.Linear(256, 1)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_3 = self.conv2.weight
primals_4 = self.conv2.bias
primals_5 = self.fc1.weight
primals_6 = self.fc1.bias
primals_7 = self.fc2.weight
primals_8 = self.fc2.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| akashkmr27089/ReinforcementLearning_Udacity_Deep_Reinforcemnt_Learning | Policy | false | 3,083 | [
"MIT"
] | 0 | b7dc13b0116898848d8d0b8a95b7af182982bd6b | https://github.com/akashkmr27089/ReinforcementLearning_Udacity_Deep_Reinforcemnt_Learning/tree/b7dc13b0116898848d8d0b8a95b7af182982bd6b | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(2, 4, kernel_size=6, stride=2, bias=False)
self.conv2 = nn.Conv2d(4, 16, kernel_size=6, stride=4)
self.size = 9 * 9 * 16
self.fc1 = nn.Linear(self.size, 256)
self.fc2 = nn.Linear(256, 1)
self.sig = nn.Sigmoid()
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = x.view(-1, self.size)
x = F.relu(self.fc1(x))
return self.sig(self.fc2(x))
def get_inputs():
return [torch.rand([4, 2, 81, 81])]
def get_init_inputs():
return []
|
Ranking | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/5w/c5wy7alx7e5owhtfp6ota3wame7epa6zkjbxpg6qqemgphbrcq4v.py
# Topologically Sorted Source Nodes: [v_1, v], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# v => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# v_1 => clamp_min_2, clamp_min_3, div_2, div_3, mul_1, pow_5, pow_6, pow_7, pow_8, sum_4, sum_5
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand_3, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [-1], True), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_6, 1e-08), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand_3, %clamp_min_2), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand_2, 2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [-1], True), kwargs = {})
# %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_8, 1e-08), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand_2, %clamp_min_3), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, %div_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 256)
x4 = xindex % 64
x1 = (xindex // 4) % 16
x5 = xindex % 256
x6 = (xindex // 4) % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + (64*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + ((4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (4*x6), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x6)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2 + (4*x6)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3 + (4*x6)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (x4 + (64*x3)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + ((4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr2 + (1 + (4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2 + (4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr2 + (3 + (4*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tmp34 = tmp33 * tmp33
tmp36 = tmp35 * tmp35
tmp37 = tmp34 + tmp36
tmp39 = tmp38 * tmp38
tmp40 = tmp37 + tmp39
tmp42 = tmp41 * tmp41
tmp43 = tmp40 + tmp42
tmp44 = libdevice.sqrt(tmp43)
tmp45 = triton_helpers.maximum(tmp44, tmp13)
tmp46 = tmp32 / tmp45
tmp47 = tmp46 * tmp30
tl.store(out_ptr0 + (x7), tmp31, xmask)
tl.store(out_ptr1 + (x7), tmp47, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3d/c3dnukmozczmayojzle4gatks4t7phc7odxvgyecf443evnworoa.py
# Topologically Sorted Source Nodes: [v_1, v, sub, add, margin, loss], Original ATen: [aten.sum, aten.sub, aten.add, aten.clamp, aten.mse_loss]
# Source node to ATen node mapping:
# add => add
# loss => clamp_max, pow_9, sum_7
# margin => clamp_min_4
# sub => sub
# v => sum_3
# v_1 => sum_6
# Graph fragment:
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_6, %sum_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 4), kwargs = {})
# %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_4, 1.0), kwargs = {})
# %pow_9 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_max, 2), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_9,), kwargs = {})
triton_per_fused_add_clamp_mse_loss_sub_sum_1 = async_compile.triton('triton_per_fused_add_clamp_mse_loss_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mse_loss_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_mse_loss_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp14 = tmp6 - tmp13
tmp15 = 4.0
tmp16 = tmp14 + tmp15
tmp17 = 0.0
tmp18 = triton_helpers.maximum(tmp16, tmp17)
tmp19 = 1.0
tmp20 = triton_helpers.minimum(tmp18, tmp19)
tmp21 = tmp20 * tmp20
tmp22 = tl.broadcast_to(tmp21, [RBLOCK])
tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp24, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [v_1, v], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg2_1, arg1_1, arg0_1, buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [v_1, v, sub, add, margin, loss], Original ATen: [aten.sum, aten.sub, aten.add, aten.clamp, aten.mse_loss]
triton_per_fused_add_clamp_mse_loss_sub_sum_1.run(buf0, buf1, buf2, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class Ranking(torch.nn.Module):
def __init__(self, delta, use_cosine_similarity):
super(Ranking, self).__init__()
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
self.measure_similarity = self._get_similarity_function(
use_cosine_similarity)
self.delta = delta
self.criterion = torch.nn.MSELoss(reduction='sum')
if not use_cosine_similarity:
dim = 64
self.projector = torch.nn.Linear(dim, dim, bias=False)
def _get_similarity_function(self, use_cosine_similarity):
if use_cosine_similarity:
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
return self._cosine_simililarity
else:
return self._metrics_similarity
def _metrics_similarity(self, x, y):
return torch.sum(torch.square(self.projector(x) - self.projector(y)
), dim=1)
def _cosine_simililarity(self, x, y):
v = self._cosine_similarity(x.unsqueeze(1), y.unsqueeze(0))
return v
def forward(self, zis, zjs, z_anchor):
"""
:param zis: similar to anchor
:param zjs: dissimilar to anchor
:param z_anchor: anchor image
:return:
"""
s1 = self.measure_similarity(zis, z_anchor)
s2 = self.measure_similarity(zjs, z_anchor)
margin = torch.clamp(s2 - s1 + self.delta, min=0, max=1.0)
loss = self.criterion(margin, torch.zeros_like(margin))
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'delta': 4, 'use_cosine_similarity': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 256
x4 = xindex % 64
x1 = xindex // 4 % 16
x5 = xindex % 256
x6 = xindex // 4 % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (4 * x1 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1 + 64 * x3), xmask, eviction_policy
='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1 + 64 * x3), xmask, eviction_policy
='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1 + 64 * x3), xmask, eviction_policy
='evict_last')
tmp16 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + 4 * x6, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x6), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x6), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x6), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr2 + (x4 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp33 = tl.load(in_ptr2 + (4 * x1 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp35 = tl.load(in_ptr2 + (1 + 4 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2 + 4 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp41 = tl.load(in_ptr2 + (3 + 4 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tmp34 = tmp33 * tmp33
tmp36 = tmp35 * tmp35
tmp37 = tmp34 + tmp36
tmp39 = tmp38 * tmp38
tmp40 = tmp37 + tmp39
tmp42 = tmp41 * tmp41
tmp43 = tmp40 + tmp42
tmp44 = libdevice.sqrt(tmp43)
tmp45 = triton_helpers.maximum(tmp44, tmp13)
tmp46 = tmp32 / tmp45
tmp47 = tmp46 * tmp30
tl.store(out_ptr0 + x7, tmp31, xmask)
tl.store(out_ptr1 + x7, tmp47, xmask)
@triton.jit
def triton_per_fused_add_clamp_mse_loss_sub_sum_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp14 = tmp6 - tmp13
tmp15 = 4.0
tmp16 = tmp14 + tmp15
tmp17 = 0.0
tmp18 = triton_helpers.maximum(tmp16, tmp17)
tmp19 = 1.0
tmp20 = triton_helpers.minimum(tmp18, tmp19)
tmp21 = tmp20 * tmp20
tmp22 = tl.broadcast_to(tmp21, [RBLOCK])
tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp24, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(1024)](
arg2_1, arg1_1, arg0_1, buf0, buf1, 1024, XBLOCK=128, num_warps
=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_add_clamp_mse_loss_sub_sum_1[grid(1)](buf0, buf1,
buf2, 1, 256, num_warps=2, num_stages=1)
del buf0
del buf1
return buf2,
class RankingNew(torch.nn.Module):
def __init__(self, delta, use_cosine_similarity):
super(RankingNew, self).__init__()
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
self.measure_similarity = self._get_similarity_function(
use_cosine_similarity)
self.delta = delta
self.criterion = torch.nn.MSELoss(reduction='sum')
if not use_cosine_similarity:
dim = 64
self.projector = torch.nn.Linear(dim, dim, bias=False)
def _get_similarity_function(self, use_cosine_similarity):
if use_cosine_similarity:
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
return self._cosine_simililarity
else:
return self._metrics_similarity
def _metrics_similarity(self, x, y):
return torch.sum(torch.square(self.projector(x) - self.projector(y)
), dim=1)
def _cosine_simililarity(self, x, y):
v = self._cosine_similarity(x.unsqueeze(1), y.unsqueeze(0))
return v
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| alexcapstick/minder_utils | Ranking | false | 3,084 | [
"MIT"
] | 0 | 3bb9380b7796b5dd5b995ce1839ea6a94321021d | https://github.com/alexcapstick/minder_utils/tree/3bb9380b7796b5dd5b995ce1839ea6a94321021d | import torch
class Model(torch.nn.Module):
def __init__(self, delta, use_cosine_similarity):
super().__init__()
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
self.measure_similarity = self._get_similarity_function(
use_cosine_similarity)
self.delta = delta
self.criterion = torch.nn.MSELoss(reduction='sum')
if not use_cosine_similarity:
dim = 64
self.projector = torch.nn.Linear(dim, dim, bias=False)
def _get_similarity_function(self, use_cosine_similarity):
if use_cosine_similarity:
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
return self._cosine_simililarity
else:
return self._metrics_similarity
def _metrics_similarity(self, x, y):
return torch.sum(torch.square(self.projector(x) - self.projector(y)
), dim=1)
def _cosine_simililarity(self, x, y):
v = self._cosine_similarity(x.unsqueeze(1), y.unsqueeze(0))
return v
def forward(self, zis, zjs, z_anchor):
"""
:param zis: similar to anchor
:param zjs: dissimilar to anchor
:param z_anchor: anchor image
:return:
"""
s1 = self.measure_similarity(zis, z_anchor)
s2 = self.measure_similarity(zjs, z_anchor)
margin = torch.clamp(s2 - s1 + self.delta, min=0, max=1.0)
loss = self.criterion(margin, torch.zeros_like(margin))
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
outconv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/77/c772vkmnzb3ryyr3h2gprzfmnpd2cprhhcelglpwug7pdl24isvb.py
# Topologically Sorted Source Nodes: [x_conv, x], Original ATen: [aten.convolution, aten.sigmoid, aten.sigmoid_backward]
# Source node to ATen node mapping:
# x => sigmoid
# x_conv => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {})
triton_poi_fused_convolution_sigmoid_sigmoid_backward_0 = async_compile.triton('triton_poi_fused_convolution_sigmoid_sigmoid_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_sigmoid_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(in_out_ptr0 + (x3), tmp3, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x_conv], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_conv, x], Original ATen: [aten.convolution, aten.sigmoid, aten.sigmoid_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_sigmoid_sigmoid_backward_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class outconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconv, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
self.sig = nn.Sigmoid()
def forward(self, x):
x_conv = self.conv(x)
x = self.sig(x_conv)
return x[:, :, :101, :101].squeeze()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_sigmoid_sigmoid_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(in_out_ptr0 + x3, tmp3, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_sigmoid_sigmoid_backward_0[grid(256)](buf1
, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3, buf2
class outconvNew(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconvNew, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| allen-q/pytorch | outconv | false | 3,085 | [
"MIT"
] | 0 | 76947f8d6f0bcee04425ad69f93b9a5e3a5060ae | https://github.com/allen-q/pytorch/tree/76947f8d6f0bcee04425ad69f93b9a5e3a5060ae | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
self.sig = nn.Sigmoid()
def forward(self, x):
x_conv = self.conv(x)
x = self.sig(x_conv)
return x[:, :, :101, :101].squeeze()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
DurationPredictorLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hw/chwuesadj2btsih4b62udzpqfogubf5ofjztuczxw2tuhmwsh3ei.py
# Topologically Sorted Source Nodes: [add, targets, loss], Original ATen: [aten.add, aten.log, aten.mse_loss]
# Source node to ATen node mapping:
# add => add
# loss => mean, pow_1, sub
# targets => log
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %log), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
triton_per_fused_add_log_mse_loss_0 = async_compile.triton('triton_per_fused_add_log_mse_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mse_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_log_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = tl_math.log(tmp3)
tmp5 = tmp0 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, targets, loss], Original ATen: [aten.add, aten.log, aten.mse_loss]
stream0 = get_raw_stream(0)
triton_per_fused_add_log_mse_loss_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class DurationPredictorLoss(torch.nn.Module):
"""Loss function module for duration predictor.
The loss value is Calculated in log domain to make it Gaussian.
Args:
offset (float, optional): Offset value to avoid nan in log domain.
"""
def __init__(self, offset=1.0):
super(DurationPredictorLoss, self).__init__()
self.criterion = torch.nn.MSELoss()
self.offset = offset
def forward(self, outputs, targets):
"""Calculate forward propagation.
Args:
outputs (Tensor): Batch of prediction durations in log domain (B, T)
targets (LongTensor): Batch of groundtruth durations in linear domain (B, T)
Returns:
Tensor: Mean squared error loss value.
Note:
`outputs` is in log domain but `targets` is in linear domain.
"""
targets = torch.log(targets.float() + self.offset)
loss = self.criterion(outputs, targets)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_log_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = tl_math.log(tmp3)
tmp5 = tmp0 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_log_mse_loss_0[grid(1)](buf1, arg1_1, arg0_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class DurationPredictorLossNew(torch.nn.Module):
"""Loss function module for duration predictor.
The loss value is Calculated in log domain to make it Gaussian.
Args:
offset (float, optional): Offset value to avoid nan in log domain.
"""
def __init__(self, offset=1.0):
super(DurationPredictorLossNew, self).__init__()
self.criterion = torch.nn.MSELoss()
self.offset = offset
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| akreal/end-to-end-slu-espnet | DurationPredictorLoss | false | 3,086 | [
"Apache-2.0"
] | 0 | 0b16dc8b10b31a4567b3312678a753a94bb200da | https://github.com/akreal/end-to-end-slu-espnet/tree/0b16dc8b10b31a4567b3312678a753a94bb200da | import torch
class Model(torch.nn.Module):
"""Loss function module for duration predictor.
The loss value is Calculated in log domain to make it Gaussian.
Args:
offset (float, optional): Offset value to avoid nan in log domain.
"""
def __init__(self, offset=1.0):
super().__init__()
self.criterion = torch.nn.MSELoss()
self.offset = offset
def forward(self, outputs, targets):
"""Calculate forward propagation.
Args:
outputs (Tensor): Batch of prediction durations in log domain (B, T)
targets (LongTensor): Batch of groundtruth durations in linear domain (B, T)
Returns:
Tensor: Mean squared error loss value.
Note:
`outputs` is in log domain but `targets` is in linear domain.
"""
targets = torch.log(targets.float() + self.offset)
loss = self.criterion(outputs, targets)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
RankingLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/n3/cn3xpf35zpoqzkocj4ldtzmkmz4mgun5y3arzp5fmziqmoi2sjkk.py
# Topologically Sorted Source Nodes: [mul, sub, y_pred, mul_2, y_pred_neg, sub_4, logit_n, logsumexp, sub_2, mul_3, y_pred_pos, logit_p, logsumexp_1, add_3, loss, mean], Original ATen: [aten.mul, aten.rsub, aten.sub, aten.logsumexp, aten.add, aten.softplus, aten.mean]
# Source node to ATen node mapping:
# add_3 => add_5
# logit_n => mul_5
# logit_p => mul_4
# logsumexp => abs_1, add_3, amax, eq, exp, full_default, log, sub_5, sum_1, where
# logsumexp_1 => abs_2, add_4, amax_1, eq_1, exp_1, full_default_1, log_1, sub_6, sum_2, where_1
# loss => div, exp_2, gt, log1p, mul_6, where_2
# mean => mean
# mul => mul
# mul_2 => mul_2
# mul_3 => mul_3
# sub => sub
# sub_2 => sub_2
# sub_4 => sub_4
# y_pred => mul_1
# y_pred_neg => sub_1
# y_pred_pos => sub_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1000000000000.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 4), kwargs = {})
# %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, 4), kwargs = {})
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul_5, [-1], True), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%amax,), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_1, inf), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %amax), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, %where), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1]), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, %squeeze), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 1000000000000.0), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mul_3), kwargs = {})
# %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 4), kwargs = {})
# %amax_1 : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul_4, [-1], True), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%amax_1,), kwargs = {})
# %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_2, inf), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_1, %amax_1), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %where_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_6,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1]), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log_1, %squeeze_1), kwargs = {})
# %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %add_4), kwargs = {})
# %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 1.0), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_6, 20.0), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_6,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_5, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where_2,), kwargs = {})
triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0 = async_compile.triton('triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp2
tmp6 = tmp4 * tmp5
tmp7 = 1000000000000.0
tmp8 = tmp0 * tmp7
tmp9 = tmp6 - tmp8
tmp10 = 4.0
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp10
tmp14 = tmp13 * tmp1
tmp15 = tmp3 - tmp14
tmp17 = tmp15 * tmp16
tmp18 = tmp13 * tmp7
tmp19 = tmp17 - tmp18
tmp20 = tmp19 - tmp10
tmp21 = tmp20 * tmp10
tmp22 = triton_helpers.maximum(tmp12, tmp21)
tmp24 = tmp23 * tmp1
tmp25 = tmp3 - tmp24
tmp27 = tmp25 * tmp26
tmp28 = tmp23 * tmp7
tmp29 = tmp27 - tmp28
tmp30 = tmp29 - tmp10
tmp31 = tmp30 * tmp10
tmp32 = triton_helpers.maximum(tmp22, tmp31)
tmp34 = tmp33 * tmp1
tmp35 = tmp3 - tmp34
tmp37 = tmp35 * tmp36
tmp38 = tmp33 * tmp7
tmp39 = tmp37 - tmp38
tmp40 = tmp39 - tmp10
tmp41 = tmp40 * tmp10
tmp42 = triton_helpers.maximum(tmp32, tmp41)
tmp43 = tl_math.abs(tmp42)
tmp44 = float("inf")
tmp45 = tmp43 == tmp44
tmp46 = 0.0
tmp47 = tl.where(tmp45, tmp46, tmp42)
tmp48 = tmp12 - tmp47
tmp49 = tl_math.exp(tmp48)
tmp50 = tmp21 - tmp47
tmp51 = tl_math.exp(tmp50)
tmp52 = tmp49 + tmp51
tmp53 = tmp31 - tmp47
tmp54 = tl_math.exp(tmp53)
tmp55 = tmp52 + tmp54
tmp56 = tmp41 - tmp47
tmp57 = tl_math.exp(tmp56)
tmp58 = tmp55 + tmp57
tmp59 = tmp3 - tmp0
tmp60 = tmp59 * tmp7
tmp61 = tmp6 - tmp60
tmp62 = tmp61 * tmp10
tmp63 = tmp3 - tmp13
tmp64 = tmp63 * tmp7
tmp65 = tmp17 - tmp64
tmp66 = tmp65 * tmp10
tmp67 = triton_helpers.maximum(tmp62, tmp66)
tmp68 = tmp3 - tmp23
tmp69 = tmp68 * tmp7
tmp70 = tmp27 - tmp69
tmp71 = tmp70 * tmp10
tmp72 = triton_helpers.maximum(tmp67, tmp71)
tmp73 = tmp3 - tmp33
tmp74 = tmp73 * tmp7
tmp75 = tmp37 - tmp74
tmp76 = tmp75 * tmp10
tmp77 = triton_helpers.maximum(tmp72, tmp76)
tmp78 = tl_math.abs(tmp77)
tmp79 = tmp78 == tmp44
tmp80 = tl.where(tmp79, tmp46, tmp77)
tmp81 = tmp62 - tmp80
tmp82 = tl_math.exp(tmp81)
tmp83 = tmp66 - tmp80
tmp84 = tl_math.exp(tmp83)
tmp85 = tmp82 + tmp84
tmp86 = tmp71 - tmp80
tmp87 = tl_math.exp(tmp86)
tmp88 = tmp85 + tmp87
tmp89 = tmp76 - tmp80
tmp90 = tl_math.exp(tmp89)
tmp91 = tmp88 + tmp90
tmp92 = tl_math.log(tmp58)
tmp93 = tmp92 + tmp47
tmp94 = tl_math.log(tmp91)
tmp95 = tmp94 + tmp80
tmp96 = tmp93 + tmp95
tmp97 = tmp96 * tmp3
tmp98 = 20.0
tmp99 = tmp97 > tmp98
tmp100 = tl_math.exp(tmp97)
tmp101 = libdevice.log1p(tmp100)
tmp102 = tmp101 * tmp3
tmp103 = tl.where(tmp99, tmp96, tmp102)
tmp104 = tl.broadcast_to(tmp103, [XBLOCK, RBLOCK])
tmp106 = tl.sum(tmp104, 1)[:, None]
tmp107 = 64.0
tmp108 = tmp106 / tmp107
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp108, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [mul, sub, y_pred, mul_2, y_pred_neg, sub_4, logit_n, logsumexp, sub_2, mul_3, y_pred_pos, logit_p, logsumexp_1, add_3, loss, mean], Original ATen: [aten.mul, aten.rsub, aten.sub, aten.logsumexp, aten.add, aten.softplus, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0.run(buf5, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class RankingLoss(nn.Module):
"""
ref: https://arxiv.org/abs/2002.10857
"""
def __init__(self, m: 'float', gamma: 'float') ->None:
super(RankingLoss, self).__init__()
self.m = m
self.gamma = gamma
self.soft_plus = nn.Softplus()
def forward(self, y_pred, y_true):
y_pred = (1 - 2 * y_true) * y_pred
y_pred_neg = y_pred - y_true * 1000000000000.0
y_pred_pos = y_pred - (1 - y_true) * 1000000000000.0
torch.clamp_min(y_pred_pos.detach() + 1 + self.m, min=0.0)
torch.clamp_min(y_pred_neg.detach() + self.m, min=0.0)
logit_p = y_pred_pos * self.gamma
logit_n = (y_pred_neg - self.m) * self.gamma
loss = self.soft_plus(torch.logsumexp(logit_n, dim=-1) + torch.
logsumexp(logit_p, dim=-1))
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'m': 4, 'gamma': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp2
tmp6 = tmp4 * tmp5
tmp7 = 1000000000000.0
tmp8 = tmp0 * tmp7
tmp9 = tmp6 - tmp8
tmp10 = 4.0
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp10
tmp14 = tmp13 * tmp1
tmp15 = tmp3 - tmp14
tmp17 = tmp15 * tmp16
tmp18 = tmp13 * tmp7
tmp19 = tmp17 - tmp18
tmp20 = tmp19 - tmp10
tmp21 = tmp20 * tmp10
tmp22 = triton_helpers.maximum(tmp12, tmp21)
tmp24 = tmp23 * tmp1
tmp25 = tmp3 - tmp24
tmp27 = tmp25 * tmp26
tmp28 = tmp23 * tmp7
tmp29 = tmp27 - tmp28
tmp30 = tmp29 - tmp10
tmp31 = tmp30 * tmp10
tmp32 = triton_helpers.maximum(tmp22, tmp31)
tmp34 = tmp33 * tmp1
tmp35 = tmp3 - tmp34
tmp37 = tmp35 * tmp36
tmp38 = tmp33 * tmp7
tmp39 = tmp37 - tmp38
tmp40 = tmp39 - tmp10
tmp41 = tmp40 * tmp10
tmp42 = triton_helpers.maximum(tmp32, tmp41)
tmp43 = tl_math.abs(tmp42)
tmp44 = float('inf')
tmp45 = tmp43 == tmp44
tmp46 = 0.0
tmp47 = tl.where(tmp45, tmp46, tmp42)
tmp48 = tmp12 - tmp47
tmp49 = tl_math.exp(tmp48)
tmp50 = tmp21 - tmp47
tmp51 = tl_math.exp(tmp50)
tmp52 = tmp49 + tmp51
tmp53 = tmp31 - tmp47
tmp54 = tl_math.exp(tmp53)
tmp55 = tmp52 + tmp54
tmp56 = tmp41 - tmp47
tmp57 = tl_math.exp(tmp56)
tmp58 = tmp55 + tmp57
tmp59 = tmp3 - tmp0
tmp60 = tmp59 * tmp7
tmp61 = tmp6 - tmp60
tmp62 = tmp61 * tmp10
tmp63 = tmp3 - tmp13
tmp64 = tmp63 * tmp7
tmp65 = tmp17 - tmp64
tmp66 = tmp65 * tmp10
tmp67 = triton_helpers.maximum(tmp62, tmp66)
tmp68 = tmp3 - tmp23
tmp69 = tmp68 * tmp7
tmp70 = tmp27 - tmp69
tmp71 = tmp70 * tmp10
tmp72 = triton_helpers.maximum(tmp67, tmp71)
tmp73 = tmp3 - tmp33
tmp74 = tmp73 * tmp7
tmp75 = tmp37 - tmp74
tmp76 = tmp75 * tmp10
tmp77 = triton_helpers.maximum(tmp72, tmp76)
tmp78 = tl_math.abs(tmp77)
tmp79 = tmp78 == tmp44
tmp80 = tl.where(tmp79, tmp46, tmp77)
tmp81 = tmp62 - tmp80
tmp82 = tl_math.exp(tmp81)
tmp83 = tmp66 - tmp80
tmp84 = tl_math.exp(tmp83)
tmp85 = tmp82 + tmp84
tmp86 = tmp71 - tmp80
tmp87 = tl_math.exp(tmp86)
tmp88 = tmp85 + tmp87
tmp89 = tmp76 - tmp80
tmp90 = tl_math.exp(tmp89)
tmp91 = tmp88 + tmp90
tmp92 = tl_math.log(tmp58)
tmp93 = tmp92 + tmp47
tmp94 = tl_math.log(tmp91)
tmp95 = tmp94 + tmp80
tmp96 = tmp93 + tmp95
tmp97 = tmp96 * tmp3
tmp98 = 20.0
tmp99 = tmp97 > tmp98
tmp100 = tl_math.exp(tmp97)
tmp101 = libdevice.log1p(tmp100)
tmp102 = tmp101 * tmp3
tmp103 = tl.where(tmp99, tmp96, tmp102)
tmp104 = tl.broadcast_to(tmp103, [XBLOCK, RBLOCK])
tmp106 = tl.sum(tmp104, 1)[:, None]
tmp107 = 64.0
tmp108 = tmp106 / tmp107
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp108, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4
del buf4
get_raw_stream(0)
triton_per_fused_add_logsumexp_mean_mul_rsub_softplus_sub_0[grid(1)](
buf5, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf5,
class RankingLossNew(nn.Module):
"""
ref: https://arxiv.org/abs/2002.10857
"""
def __init__(self, m: 'float', gamma: 'float') ->None:
super(RankingLossNew, self).__init__()
self.m = m
self.gamma = gamma
self.soft_plus = nn.Softplus()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| alipay/Parameter_Inference_Efficient_PIE | RankingLoss | false | 3,087 | [
"Apache-2.0"
] | 0 | 660add7705432a526aa3335fff3d8cf1c7d015a4 | https://github.com/alipay/Parameter_Inference_Efficient_PIE/tree/660add7705432a526aa3335fff3d8cf1c7d015a4 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
ref: https://arxiv.org/abs/2002.10857
"""
def __init__(self, m: 'float', gamma: 'float') ->None:
super().__init__()
self.m = m
self.gamma = gamma
self.soft_plus = nn.Softplus()
def forward(self, y_pred, y_true):
y_pred = (1 - 2 * y_true) * y_pred
y_pred_neg = y_pred - y_true * 1000000000000.0
y_pred_pos = y_pred - (1 - y_true) * 1000000000000.0
torch.clamp_min(y_pred_pos.detach() + 1 + self.m, min=0.0)
torch.clamp_min(y_pred_neg.detach() + self.m, min=0.0)
logit_p = y_pred_pos * self.gamma
logit_n = (y_pred_neg - self.m) * self.gamma
loss = self.soft_plus(torch.logsumexp(logit_n, dim=-1) + torch.
logsumexp(logit_p, dim=-1))
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
CNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/h2/ch2qmvn2pnakfb2rmi27soi6fdit5okdksuuroqly6h4mehoukws.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 23040
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 576) % 10
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lr/clr4dqzywalbootuyerjzaulln46meffyy4s6x4ufxgovhz3vvt3.py
# Topologically Sorted Source Nodes: [max_pool2d, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1
# x_1 => relu
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 5760
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x3 = (xindex // 12)
x2 = (xindex // 1440)
x4 = xindex % 1440
x5 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (24 + (2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (25 + (2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x4 + (1536*x2)), tmp15, xmask)
tl.store(out_ptr1 + (x5), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kv/ckvxoo67wykkix56guvhafnmoj7ybofi4256vgkv6dblf6kd6f57.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 20
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3v/c3vjs7cwub6yw4cpmxvqbzjabjh3xu4qeeml6jobk35deiu6msr5.py
# Topologically Sorted Source Nodes: [max_pool2d_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# x_2 => relu_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp19 = 0.0
tmp20 = tmp18 <= tmp19
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp18, xmask)
tl.store(out_ptr2 + (x2), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xi/cxiouqdy3aqmwg2p7remcu57ny7vnw4f263cpqtavvo5sya77u64.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/o6/co6n536llbyco6224ibxbzlfmaiqllxxrqu5kmiayzqfqzlllscb.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_5 = async_compile.triton('triton_per_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (10*x0)), tmp11, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 28, 28), (784, 784, 28, 1))
assert_size_stride(primals_2, (10, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_3, (10, ), (1, ))
assert_size_stride(primals_4, (20, 10, 5, 5), (250, 25, 5, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (50, 320), (320, 1))
assert_size_stride(primals_7, (50, ), (1, ))
assert_size_stride(primals_8, (10, 50), (50, 1))
assert_size_stride(primals_9, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 24, 24), (5760, 576, 24, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 23040, grid=grid(23040), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 10, 12, 12), (1536, 144, 12, 1), torch.int8)
buf3 = empty_strided_cuda((4, 10, 12, 12), (1440, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, 5760, grid=grid(5760), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 20, 8, 8), (1280, 64, 8, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 5120, grid=grid(5120), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.int8)
buf7 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [max_pool2d_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward]
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3.run(buf5, buf6, buf7, buf14, 1280, grid=grid(1280), stream=stream0)
buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (4, 320), (320, 1), 0), reinterpret_tensor(primals_6, (320, 50), (1, 320), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_7, 200, grid=grid(200), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (50, 10), (1, 50), 0), alpha=1, beta=1, out=buf10)
del primals_9
buf13 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_5.run(buf10, buf13, 4, 10, grid=grid(4), stream=stream0)
del buf10
return (buf13, primals_2, primals_4, primals_1, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 320), (320, 1), 0), buf9, buf13, primals_8, primals_6, buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 28, 28), (784, 784, 28, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 10, 5, 5), (250, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((50, 320), (320, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((10, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = x.view(-1, 1, 28, 28)
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 1, 28, 28])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 23040
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 576 % 10
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 5760
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x3 = xindex // 12
x2 = xindex // 1440
x4 = xindex % 1440
x5 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 48 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 48 * x3), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (24 + 2 * x0 + 48 * x3), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (25 + 2 * x0 + 48 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x4 + 1536 * x2), tmp15, xmask)
tl.store(out_ptr1 + x5, tmp18, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 20
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0,
out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp19 = 0.0
tmp20 = tmp18 <= tmp19
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp18, xmask)
tl.store(out_ptr2 + x2, tmp20, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 10 * x0), tmp11, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 28, 28), (784, 784, 28, 1))
assert_size_stride(primals_2, (10, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_3, (10,), (1,))
assert_size_stride(primals_4, (20, 10, 5, 5), (250, 25, 5, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (50, 320), (320, 1))
assert_size_stride(primals_7, (50,), (1,))
assert_size_stride(primals_8, (10, 50), (50, 1))
assert_size_stride(primals_9, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 24, 24), (5760, 576, 24, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(23040)](buf1, primals_3, 23040,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 10, 12, 12), (1536, 144, 12, 1),
torch.int8)
buf3 = empty_strided_cuda((4, 10, 12, 12), (1440, 144, 12, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_1[grid(5760)](buf1,
buf2, buf3, 5760, XBLOCK=256, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 20, 8, 8), (1280, 64, 8, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(5120)](buf5, primals_5, 5120,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.int8)
buf7 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.float32
)
buf14 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.bool)
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3[grid
(1280)](buf5, buf6, buf7, buf14, 1280, XBLOCK=256, num_warps=4,
num_stages=1)
buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (4, 320), (320, 1), 0),
reinterpret_tensor(primals_6, (320, 50), (1, 320), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(200)](buf9, primals_7, 200, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8,
(50, 10), (1, 50), 0), alpha=1, beta=1, out=buf10)
del primals_9
buf13 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
triton_per_fused__softmax_5[grid(4)](buf10, buf13, 4, 10, XBLOCK=1,
num_warps=2, num_stages=1)
del buf10
return (buf13, primals_2, primals_4, primals_1, buf1, buf2, buf3, buf5,
buf6, reinterpret_tensor(buf7, (4, 320), (320, 1), 0), buf9, buf13,
primals_8, primals_6, buf14)
class CNNNew(nn.Module):
def __init__(self):
super(CNNNew, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| alexandergg/Deep-Learning-with-Pytorch-and-Azure | CNN | false | 3,088 | [
"MIT"
] | 0 | 8999ce815469ecaf9fb61998372a6e7507c15943 | https://github.com/alexandergg/Deep-Learning-with-Pytorch-and-Azure/tree/8999ce815469ecaf9fb61998372a6e7507c15943 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = x.view(-1, 1, 28, 28)
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 1, 28, 28])]
def get_init_inputs():
return []
|
NetVLAD | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/tb/ctbeeotfqzbneeewwh2aiay5657nsb5gfe5znphkkjrpdvh7ojsn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# x => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
triton_red_fused_linalg_vector_norm_0 = async_compile.triton('triton_red_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16384, 128],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = (xindex // 4096)
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (524288*x1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ef/cefdzljppvz2lfunb6uf63d2oi3ptkpnhsxqbeffjopee5fas75z.py
# Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub]
# Source node to ATen node mapping:
# residual_10 => sub_6
# residual_100 => sub_51
# residual_102 => sub_52
# residual_104 => sub_53
# residual_106 => sub_54
# residual_108 => sub_55
# residual_110 => sub_56
# residual_112 => sub_57
# residual_114 => sub_58
# residual_116 => sub_59
# residual_118 => sub_60
# residual_12 => sub_7
# residual_120 => sub_61
# residual_122 => sub_62
# residual_124 => sub_63
# residual_126 => sub_64
# residual_14 => sub_8
# residual_16 => sub_9
# residual_18 => sub_10
# residual_2 => sub_2
# residual_20 => sub_11
# residual_22 => sub_12
# residual_24 => sub_13
# residual_26 => sub_14
# residual_28 => sub_15
# residual_30 => sub_16
# residual_32 => sub_17
# residual_34 => sub_18
# residual_36 => sub_19
# residual_38 => sub_20
# residual_4 => sub_3
# residual_40 => sub_21
# residual_42 => sub_22
# residual_44 => sub_23
# residual_46 => sub_24
# residual_48 => sub_25
# residual_50 => sub_26
# residual_52 => sub_27
# residual_54 => sub_28
# residual_56 => sub_29
# residual_58 => sub_30
# residual_6 => sub_4
# residual_60 => sub_31
# residual_62 => sub_32
# residual_64 => sub_33
# residual_66 => sub_34
# residual_68 => sub_35
# residual_70 => sub_36
# residual_72 => sub_37
# residual_74 => sub_38
# residual_76 => sub_39
# residual_78 => sub_40
# residual_8 => sub_5
# residual_80 => sub_41
# residual_82 => sub_42
# residual_84 => sub_43
# residual_86 => sub_44
# residual_88 => sub_45
# residual_90 => sub_46
# residual_92 => sub_47
# residual_94 => sub_48
# residual_96 => sub_49
# residual_98 => sub_50
# x => div
# Graph fragment:
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_4), kwargs = {})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_7), kwargs = {})
# %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_10), kwargs = {})
# %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_13), kwargs = {})
# %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_16), kwargs = {})
# %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_19), kwargs = {})
# %sub_8 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_22), kwargs = {})
# %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_25), kwargs = {})
# %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_28), kwargs = {})
# %sub_11 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_31), kwargs = {})
# %sub_12 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_34), kwargs = {})
# %sub_13 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_37), kwargs = {})
# %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_40), kwargs = {})
# %sub_15 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_43), kwargs = {})
# %sub_16 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_46), kwargs = {})
# %sub_17 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_49), kwargs = {})
# %sub_18 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_52), kwargs = {})
# %sub_19 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_55), kwargs = {})
# %sub_20 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_58), kwargs = {})
# %sub_21 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_61), kwargs = {})
# %sub_22 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_64), kwargs = {})
# %sub_23 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_67), kwargs = {})
# %sub_24 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_70), kwargs = {})
# %sub_25 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_73), kwargs = {})
# %sub_26 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_76), kwargs = {})
# %sub_27 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_79), kwargs = {})
# %sub_28 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_82), kwargs = {})
# %sub_29 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_85), kwargs = {})
# %sub_30 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_88), kwargs = {})
# %sub_31 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_91), kwargs = {})
# %sub_32 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_94), kwargs = {})
# %sub_33 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_97), kwargs = {})
# %sub_34 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_100), kwargs = {})
# %sub_35 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_103), kwargs = {})
# %sub_36 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_106), kwargs = {})
# %sub_37 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_109), kwargs = {})
# %sub_38 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_112), kwargs = {})
# %sub_39 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_115), kwargs = {})
# %sub_40 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_118), kwargs = {})
# %sub_41 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_121), kwargs = {})
# %sub_42 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_124), kwargs = {})
# %sub_43 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_127), kwargs = {})
# %sub_44 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_130), kwargs = {})
# %sub_45 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_133), kwargs = {})
# %sub_46 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_136), kwargs = {})
# %sub_47 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_139), kwargs = {})
# %sub_48 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_142), kwargs = {})
# %sub_49 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_145), kwargs = {})
# %sub_50 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_148), kwargs = {})
# %sub_51 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_151), kwargs = {})
# %sub_52 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_154), kwargs = {})
# %sub_53 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_157), kwargs = {})
# %sub_54 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_160), kwargs = {})
# %sub_55 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_163), kwargs = {})
# %sub_56 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_166), kwargs = {})
# %sub_57 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_169), kwargs = {})
# %sub_58 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_172), kwargs = {})
# %sub_59 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_175), kwargs = {})
# %sub_60 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_178), kwargs = {})
# %sub_61 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_181), kwargs = {})
# %sub_62 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_184), kwargs = {})
# %sub_63 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_187), kwargs = {})
# %sub_64 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_190), kwargs = {})
triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: '*fp32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 65, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61, out_ptr62, out_ptr63, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 524288)
x1 = (xindex // 4096) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last')
tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last')
tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last')
tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last')
tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last')
tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last')
tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last')
tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last')
tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last')
tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last')
tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last')
tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last')
tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last')
tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last')
tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last')
tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last')
tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp7 = tmp5 - tmp6
tmp9 = tmp5 - tmp8
tmp11 = tmp5 - tmp10
tmp13 = tmp5 - tmp12
tmp15 = tmp5 - tmp14
tmp17 = tmp5 - tmp16
tmp19 = tmp5 - tmp18
tmp21 = tmp5 - tmp20
tmp23 = tmp5 - tmp22
tmp25 = tmp5 - tmp24
tmp27 = tmp5 - tmp26
tmp29 = tmp5 - tmp28
tmp31 = tmp5 - tmp30
tmp33 = tmp5 - tmp32
tmp35 = tmp5 - tmp34
tmp37 = tmp5 - tmp36
tmp39 = tmp5 - tmp38
tmp41 = tmp5 - tmp40
tmp43 = tmp5 - tmp42
tmp45 = tmp5 - tmp44
tmp47 = tmp5 - tmp46
tmp49 = tmp5 - tmp48
tmp51 = tmp5 - tmp50
tmp53 = tmp5 - tmp52
tmp55 = tmp5 - tmp54
tmp57 = tmp5 - tmp56
tmp59 = tmp5 - tmp58
tmp61 = tmp5 - tmp60
tmp63 = tmp5 - tmp62
tmp65 = tmp5 - tmp64
tmp67 = tmp5 - tmp66
tmp69 = tmp5 - tmp68
tmp71 = tmp5 - tmp70
tmp73 = tmp5 - tmp72
tmp75 = tmp5 - tmp74
tmp77 = tmp5 - tmp76
tmp79 = tmp5 - tmp78
tmp81 = tmp5 - tmp80
tmp83 = tmp5 - tmp82
tmp85 = tmp5 - tmp84
tmp87 = tmp5 - tmp86
tmp89 = tmp5 - tmp88
tmp91 = tmp5 - tmp90
tmp93 = tmp5 - tmp92
tmp95 = tmp5 - tmp94
tmp97 = tmp5 - tmp96
tmp99 = tmp5 - tmp98
tmp101 = tmp5 - tmp100
tmp103 = tmp5 - tmp102
tmp105 = tmp5 - tmp104
tmp107 = tmp5 - tmp106
tmp109 = tmp5 - tmp108
tmp111 = tmp5 - tmp110
tmp113 = tmp5 - tmp112
tmp115 = tmp5 - tmp114
tmp117 = tmp5 - tmp116
tmp119 = tmp5 - tmp118
tmp121 = tmp5 - tmp120
tmp123 = tmp5 - tmp122
tmp125 = tmp5 - tmp124
tmp127 = tmp5 - tmp126
tmp129 = tmp5 - tmp128
tmp131 = tmp5 - tmp130
tl.store(out_ptr0 + (x3), tmp5, None)
tl.store(out_ptr1 + (x3), tmp7, None)
tl.store(out_ptr2 + (x3), tmp9, None)
tl.store(out_ptr3 + (x3), tmp11, None)
tl.store(out_ptr4 + (x3), tmp13, None)
tl.store(out_ptr5 + (x3), tmp15, None)
tl.store(out_ptr6 + (x3), tmp17, None)
tl.store(out_ptr7 + (x3), tmp19, None)
tl.store(out_ptr8 + (x3), tmp21, None)
tl.store(out_ptr9 + (x3), tmp23, None)
tl.store(out_ptr10 + (x3), tmp25, None)
tl.store(out_ptr11 + (x3), tmp27, None)
tl.store(out_ptr12 + (x3), tmp29, None)
tl.store(out_ptr13 + (x3), tmp31, None)
tl.store(out_ptr14 + (x3), tmp33, None)
tl.store(out_ptr15 + (x3), tmp35, None)
tl.store(out_ptr16 + (x3), tmp37, None)
tl.store(out_ptr17 + (x3), tmp39, None)
tl.store(out_ptr18 + (x3), tmp41, None)
tl.store(out_ptr19 + (x3), tmp43, None)
tl.store(out_ptr20 + (x3), tmp45, None)
tl.store(out_ptr21 + (x3), tmp47, None)
tl.store(out_ptr22 + (x3), tmp49, None)
tl.store(out_ptr23 + (x3), tmp51, None)
tl.store(out_ptr24 + (x3), tmp53, None)
tl.store(out_ptr25 + (x3), tmp55, None)
tl.store(out_ptr26 + (x3), tmp57, None)
tl.store(out_ptr27 + (x3), tmp59, None)
tl.store(out_ptr28 + (x3), tmp61, None)
tl.store(out_ptr29 + (x3), tmp63, None)
tl.store(out_ptr30 + (x3), tmp65, None)
tl.store(out_ptr31 + (x3), tmp67, None)
tl.store(out_ptr32 + (x3), tmp69, None)
tl.store(out_ptr33 + (x3), tmp71, None)
tl.store(out_ptr34 + (x3), tmp73, None)
tl.store(out_ptr35 + (x3), tmp75, None)
tl.store(out_ptr36 + (x3), tmp77, None)
tl.store(out_ptr37 + (x3), tmp79, None)
tl.store(out_ptr38 + (x3), tmp81, None)
tl.store(out_ptr39 + (x3), tmp83, None)
tl.store(out_ptr40 + (x3), tmp85, None)
tl.store(out_ptr41 + (x3), tmp87, None)
tl.store(out_ptr42 + (x3), tmp89, None)
tl.store(out_ptr43 + (x3), tmp91, None)
tl.store(out_ptr44 + (x3), tmp93, None)
tl.store(out_ptr45 + (x3), tmp95, None)
tl.store(out_ptr46 + (x3), tmp97, None)
tl.store(out_ptr47 + (x3), tmp99, None)
tl.store(out_ptr48 + (x3), tmp101, None)
tl.store(out_ptr49 + (x3), tmp103, None)
tl.store(out_ptr50 + (x3), tmp105, None)
tl.store(out_ptr51 + (x3), tmp107, None)
tl.store(out_ptr52 + (x3), tmp109, None)
tl.store(out_ptr53 + (x3), tmp111, None)
tl.store(out_ptr54 + (x3), tmp113, None)
tl.store(out_ptr55 + (x3), tmp115, None)
tl.store(out_ptr56 + (x3), tmp117, None)
tl.store(out_ptr57 + (x3), tmp119, None)
tl.store(out_ptr58 + (x3), tmp121, None)
tl.store(out_ptr59 + (x3), tmp123, None)
tl.store(out_ptr60 + (x3), tmp125, None)
tl.store(out_ptr61 + (x3), tmp127, None)
tl.store(out_ptr62 + (x3), tmp129, None)
tl.store(out_ptr63 + (x3), tmp131, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/u6/cu6dgbkwo4zyodk2zqiay4hwrwemkqpxzmixog3qipqaqcevgo7u.py
# Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# soft_assign_1 => amax, exp, sub, sum_2
# Graph fragment:
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16384, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (262144*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
tl.store(out_ptr1 + (x3), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/46/c465fdmmhrzvuvb7xjrad46zallycaofrdeajo4ox533uv52dzji.py
# Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual => sub_1
# residual_1 => mul
# residual_11 => mul_5
# residual_13 => mul_6
# residual_15 => mul_7
# residual_17 => mul_8
# residual_19 => mul_9
# residual_21 => mul_10
# residual_23 => mul_11
# residual_25 => mul_12
# residual_27 => mul_13
# residual_29 => mul_14
# residual_3 => mul_1
# residual_31 => mul_15
# residual_33 => mul_16
# residual_35 => mul_17
# residual_37 => mul_18
# residual_39 => mul_19
# residual_41 => mul_20
# residual_43 => mul_21
# residual_45 => mul_22
# residual_47 => mul_23
# residual_49 => mul_24
# residual_5 => mul_2
# residual_51 => mul_25
# residual_53 => mul_26
# residual_55 => mul_27
# residual_57 => mul_28
# residual_7 => mul_3
# residual_9 => mul_4
# sum_1 => sum_3
# sum_10 => sum_12
# sum_11 => sum_13
# sum_12 => sum_14
# sum_13 => sum_15
# sum_14 => sum_16
# sum_15 => sum_17
# sum_16 => sum_18
# sum_17 => sum_19
# sum_18 => sum_20
# sum_19 => sum_21
# sum_2 => sum_4
# sum_20 => sum_22
# sum_21 => sum_23
# sum_22 => sum_24
# sum_23 => sum_25
# sum_24 => sum_26
# sum_25 => sum_27
# sum_26 => sum_28
# sum_27 => sum_29
# sum_28 => sum_30
# sum_29 => sum_31
# sum_3 => sum_5
# sum_4 => sum_6
# sum_5 => sum_7
# sum_6 => sum_8
# sum_7 => sum_9
# sum_8 => sum_10
# sum_9 => sum_11
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %unsqueeze_5), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %unsqueeze_8), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %unsqueeze_11), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %unsqueeze_14), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [-1]), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %unsqueeze_17), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %unsqueeze_20), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [-1]), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %unsqueeze_23), kwargs = {})
# %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_7, [-1]), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %unsqueeze_26), kwargs = {})
# %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1]), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %unsqueeze_29), kwargs = {})
# %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_9, [-1]), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %unsqueeze_32), kwargs = {})
# %sum_13 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_10, [-1]), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %unsqueeze_35), kwargs = {})
# %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_11, [-1]), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %unsqueeze_38), kwargs = {})
# %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_12, [-1]), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %unsqueeze_41), kwargs = {})
# %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_13, [-1]), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_15, %unsqueeze_44), kwargs = {})
# %sum_17 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_14, [-1]), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %unsqueeze_47), kwargs = {})
# %sum_18 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_15, [-1]), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %unsqueeze_50), kwargs = {})
# %sum_19 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_16, [-1]), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %unsqueeze_53), kwargs = {})
# %sum_20 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_17, [-1]), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %unsqueeze_56), kwargs = {})
# %sum_21 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_18, [-1]), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %unsqueeze_59), kwargs = {})
# %sum_22 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_19, [-1]), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %unsqueeze_62), kwargs = {})
# %sum_23 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_20, [-1]), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %unsqueeze_65), kwargs = {})
# %sum_24 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_21, [-1]), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_23, %unsqueeze_68), kwargs = {})
# %sum_25 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_22, [-1]), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %unsqueeze_71), kwargs = {})
# %sum_26 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_23, [-1]), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %unsqueeze_74), kwargs = {})
# %sum_27 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_24, [-1]), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_26, %unsqueeze_77), kwargs = {})
# %sum_28 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_25, [-1]), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %unsqueeze_80), kwargs = {})
# %sum_29 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_26, [-1]), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_28, %unsqueeze_83), kwargs = {})
# %sum_30 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_27, [-1]), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_29, %unsqueeze_86), kwargs = {})
# %sum_31 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_28, [-1]), kwargs = {})
triton_red_fused_mul_sub_sum_3 = async_compile.triton('triton_red_fused_mul_sub_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: 'i32', 63: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 61, 'num_reduction': 29, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 128
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
x1 = (xindex // 128)
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp3 = tl.load(in_ptr2 + (r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp14 = tl.load(in_ptr2 + (4096 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp23 = tl.load(in_ptr2 + (8192 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp32 = tl.load(in_ptr2 + (12288 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp41 = tl.load(in_ptr2 + (16384 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp49 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp50 = tl.load(in_ptr2 + (20480 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp58 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp59 = tl.load(in_ptr2 + (24576 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp67 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp68 = tl.load(in_ptr2 + (28672 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr2 + (32768 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp86 = tl.load(in_ptr2 + (36864 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp94 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp95 = tl.load(in_ptr2 + (40960 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp103 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp104 = tl.load(in_ptr2 + (45056 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp112 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp113 = tl.load(in_ptr2 + (49152 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp121 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp122 = tl.load(in_ptr2 + (53248 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp130 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp131 = tl.load(in_ptr2 + (57344 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp139 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp140 = tl.load(in_ptr2 + (61440 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp148 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp149 = tl.load(in_ptr2 + (65536 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp157 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp158 = tl.load(in_ptr2 + (69632 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp167 = tl.load(in_ptr2 + (73728 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp175 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp176 = tl.load(in_ptr2 + (77824 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp184 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp185 = tl.load(in_ptr2 + (81920 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp193 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp194 = tl.load(in_ptr2 + (86016 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp202 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp203 = tl.load(in_ptr2 + (90112 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp211 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp212 = tl.load(in_ptr2 + (94208 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp220 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp221 = tl.load(in_ptr2 + (98304 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp229 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp230 = tl.load(in_ptr2 + (102400 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp239 = tl.load(in_ptr2 + (106496 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp247 = tl.load(in_ptr31 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp248 = tl.load(in_ptr2 + (110592 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp256 = tl.load(in_ptr32 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp257 = tl.load(in_ptr2 + (114688 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask & xmask, tmp12, _tmp11)
tmp15 = tmp14 - tmp4
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp16 / tmp7
tmp18 = tmp13 * tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp7
tmp27 = tmp22 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp33 = tmp32 - tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp34 / tmp7
tmp36 = tmp31 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = _tmp38 + tmp37
_tmp38 = tl.where(rmask & xmask, tmp39, _tmp38)
tmp42 = tmp41 - tmp4
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp43 / tmp7
tmp45 = tmp40 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = _tmp47 + tmp46
_tmp47 = tl.where(rmask & xmask, tmp48, _tmp47)
tmp51 = tmp50 - tmp4
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp7
tmp54 = tmp49 * tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = _tmp56 + tmp55
_tmp56 = tl.where(rmask & xmask, tmp57, _tmp56)
tmp60 = tmp59 - tmp4
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp61 / tmp7
tmp63 = tmp58 * tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask & xmask, tmp66, _tmp65)
tmp69 = tmp68 - tmp4
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 / tmp7
tmp72 = tmp67 * tmp71
tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK])
tmp75 = _tmp74 + tmp73
_tmp74 = tl.where(rmask & xmask, tmp75, _tmp74)
tmp78 = tmp77 - tmp4
tmp79 = tl_math.exp(tmp78)
tmp80 = tmp79 / tmp7
tmp81 = tmp76 * tmp80
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK])
tmp84 = _tmp83 + tmp82
_tmp83 = tl.where(rmask & xmask, tmp84, _tmp83)
tmp87 = tmp86 - tmp4
tmp88 = tl_math.exp(tmp87)
tmp89 = tmp88 / tmp7
tmp90 = tmp85 * tmp89
tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK])
tmp93 = _tmp92 + tmp91
_tmp92 = tl.where(rmask & xmask, tmp93, _tmp92)
tmp96 = tmp95 - tmp4
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp97 / tmp7
tmp99 = tmp94 * tmp98
tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK])
tmp102 = _tmp101 + tmp100
_tmp101 = tl.where(rmask & xmask, tmp102, _tmp101)
tmp105 = tmp104 - tmp4
tmp106 = tl_math.exp(tmp105)
tmp107 = tmp106 / tmp7
tmp108 = tmp103 * tmp107
tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK])
tmp111 = _tmp110 + tmp109
_tmp110 = tl.where(rmask & xmask, tmp111, _tmp110)
tmp114 = tmp113 - tmp4
tmp115 = tl_math.exp(tmp114)
tmp116 = tmp115 / tmp7
tmp117 = tmp112 * tmp116
tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK])
tmp120 = _tmp119 + tmp118
_tmp119 = tl.where(rmask & xmask, tmp120, _tmp119)
tmp123 = tmp122 - tmp4
tmp124 = tl_math.exp(tmp123)
tmp125 = tmp124 / tmp7
tmp126 = tmp121 * tmp125
tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK])
tmp129 = _tmp128 + tmp127
_tmp128 = tl.where(rmask & xmask, tmp129, _tmp128)
tmp132 = tmp131 - tmp4
tmp133 = tl_math.exp(tmp132)
tmp134 = tmp133 / tmp7
tmp135 = tmp130 * tmp134
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp138 = _tmp137 + tmp136
_tmp137 = tl.where(rmask & xmask, tmp138, _tmp137)
tmp141 = tmp140 - tmp4
tmp142 = tl_math.exp(tmp141)
tmp143 = tmp142 / tmp7
tmp144 = tmp139 * tmp143
tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK])
tmp147 = _tmp146 + tmp145
_tmp146 = tl.where(rmask & xmask, tmp147, _tmp146)
tmp150 = tmp149 - tmp4
tmp151 = tl_math.exp(tmp150)
tmp152 = tmp151 / tmp7
tmp153 = tmp148 * tmp152
tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK])
tmp156 = _tmp155 + tmp154
_tmp155 = tl.where(rmask & xmask, tmp156, _tmp155)
tmp159 = tmp158 - tmp4
tmp160 = tl_math.exp(tmp159)
tmp161 = tmp160 / tmp7
tmp162 = tmp157 * tmp161
tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK])
tmp165 = _tmp164 + tmp163
_tmp164 = tl.where(rmask & xmask, tmp165, _tmp164)
tmp168 = tmp167 - tmp4
tmp169 = tl_math.exp(tmp168)
tmp170 = tmp169 / tmp7
tmp171 = tmp166 * tmp170
tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK])
tmp174 = _tmp173 + tmp172
_tmp173 = tl.where(rmask & xmask, tmp174, _tmp173)
tmp177 = tmp176 - tmp4
tmp178 = tl_math.exp(tmp177)
tmp179 = tmp178 / tmp7
tmp180 = tmp175 * tmp179
tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK])
tmp183 = _tmp182 + tmp181
_tmp182 = tl.where(rmask & xmask, tmp183, _tmp182)
tmp186 = tmp185 - tmp4
tmp187 = tl_math.exp(tmp186)
tmp188 = tmp187 / tmp7
tmp189 = tmp184 * tmp188
tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK])
tmp192 = _tmp191 + tmp190
_tmp191 = tl.where(rmask & xmask, tmp192, _tmp191)
tmp195 = tmp194 - tmp4
tmp196 = tl_math.exp(tmp195)
tmp197 = tmp196 / tmp7
tmp198 = tmp193 * tmp197
tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK])
tmp201 = _tmp200 + tmp199
_tmp200 = tl.where(rmask & xmask, tmp201, _tmp200)
tmp204 = tmp203 - tmp4
tmp205 = tl_math.exp(tmp204)
tmp206 = tmp205 / tmp7
tmp207 = tmp202 * tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = _tmp209 + tmp208
_tmp209 = tl.where(rmask & xmask, tmp210, _tmp209)
tmp213 = tmp212 - tmp4
tmp214 = tl_math.exp(tmp213)
tmp215 = tmp214 / tmp7
tmp216 = tmp211 * tmp215
tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK])
tmp219 = _tmp218 + tmp217
_tmp218 = tl.where(rmask & xmask, tmp219, _tmp218)
tmp222 = tmp221 - tmp4
tmp223 = tl_math.exp(tmp222)
tmp224 = tmp223 / tmp7
tmp225 = tmp220 * tmp224
tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK])
tmp228 = _tmp227 + tmp226
_tmp227 = tl.where(rmask & xmask, tmp228, _tmp227)
tmp231 = tmp230 - tmp4
tmp232 = tl_math.exp(tmp231)
tmp233 = tmp232 / tmp7
tmp234 = tmp229 * tmp233
tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK])
tmp237 = _tmp236 + tmp235
_tmp236 = tl.where(rmask & xmask, tmp237, _tmp236)
tmp240 = tmp239 - tmp4
tmp241 = tl_math.exp(tmp240)
tmp242 = tmp241 / tmp7
tmp243 = tmp238 * tmp242
tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK])
tmp246 = _tmp245 + tmp244
_tmp245 = tl.where(rmask & xmask, tmp246, _tmp245)
tmp249 = tmp248 - tmp4
tmp250 = tl_math.exp(tmp249)
tmp251 = tmp250 / tmp7
tmp252 = tmp247 * tmp251
tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK])
tmp255 = _tmp254 + tmp253
_tmp254 = tl.where(rmask & xmask, tmp255, _tmp254)
tmp258 = tmp257 - tmp4
tmp259 = tl_math.exp(tmp258)
tmp260 = tmp259 / tmp7
tmp261 = tmp256 * tmp260
tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK])
tmp264 = _tmp263 + tmp262
_tmp263 = tl.where(rmask & xmask, tmp264, _tmp263)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp11, xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp20, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp29, xmask)
tmp38 = tl.sum(_tmp38, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp38, xmask)
tmp47 = tl.sum(_tmp47, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp47, xmask)
tmp56 = tl.sum(_tmp56, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp56, xmask)
tmp65 = tl.sum(_tmp65, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp65, xmask)
tmp74 = tl.sum(_tmp74, 1)[:, None]
tl.store(out_ptr7 + (x3), tmp74, xmask)
tmp83 = tl.sum(_tmp83, 1)[:, None]
tl.store(out_ptr8 + (x3), tmp83, xmask)
tmp92 = tl.sum(_tmp92, 1)[:, None]
tl.store(out_ptr9 + (x3), tmp92, xmask)
tmp101 = tl.sum(_tmp101, 1)[:, None]
tl.store(out_ptr10 + (x3), tmp101, xmask)
tmp110 = tl.sum(_tmp110, 1)[:, None]
tl.store(out_ptr11 + (x3), tmp110, xmask)
tmp119 = tl.sum(_tmp119, 1)[:, None]
tl.store(out_ptr12 + (x3), tmp119, xmask)
tmp128 = tl.sum(_tmp128, 1)[:, None]
tl.store(out_ptr13 + (x3), tmp128, xmask)
tmp137 = tl.sum(_tmp137, 1)[:, None]
tl.store(out_ptr14 + (x3), tmp137, xmask)
tmp146 = tl.sum(_tmp146, 1)[:, None]
tl.store(out_ptr15 + (x3), tmp146, xmask)
tmp155 = tl.sum(_tmp155, 1)[:, None]
tl.store(out_ptr16 + (x3), tmp155, xmask)
tmp164 = tl.sum(_tmp164, 1)[:, None]
tl.store(out_ptr17 + (x3), tmp164, xmask)
tmp173 = tl.sum(_tmp173, 1)[:, None]
tl.store(out_ptr18 + (x3), tmp173, xmask)
tmp182 = tl.sum(_tmp182, 1)[:, None]
tl.store(out_ptr19 + (x3), tmp182, xmask)
tmp191 = tl.sum(_tmp191, 1)[:, None]
tl.store(out_ptr20 + (x3), tmp191, xmask)
tmp200 = tl.sum(_tmp200, 1)[:, None]
tl.store(out_ptr21 + (x3), tmp200, xmask)
tmp209 = tl.sum(_tmp209, 1)[:, None]
tl.store(out_ptr22 + (x3), tmp209, xmask)
tmp218 = tl.sum(_tmp218, 1)[:, None]
tl.store(out_ptr23 + (x3), tmp218, xmask)
tmp227 = tl.sum(_tmp227, 1)[:, None]
tl.store(out_ptr24 + (x3), tmp227, xmask)
tmp236 = tl.sum(_tmp236, 1)[:, None]
tl.store(out_ptr25 + (x3), tmp236, xmask)
tmp245 = tl.sum(_tmp245, 1)[:, None]
tl.store(out_ptr26 + (x3), tmp245, xmask)
tmp254 = tl.sum(_tmp254, 1)[:, None]
tl.store(out_ptr27 + (x3), tmp254, xmask)
tmp263 = tl.sum(_tmp263, 1)[:, None]
tl.store(out_ptr28 + (x3), tmp263, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7g/c7gpcb637ns46u6bq6sgchjaxn4thmkzjpeoxhjhn2ws6dc2fyq4.py
# Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual_101 => mul_50
# residual_103 => mul_51
# residual_105 => mul_52
# residual_107 => mul_53
# residual_109 => mul_54
# residual_111 => mul_55
# residual_113 => mul_56
# residual_59 => mul_29
# residual_61 => mul_30
# residual_63 => mul_31
# residual_65 => mul_32
# residual_67 => mul_33
# residual_69 => mul_34
# residual_71 => mul_35
# residual_73 => mul_36
# residual_75 => mul_37
# residual_77 => mul_38
# residual_79 => mul_39
# residual_81 => mul_40
# residual_83 => mul_41
# residual_85 => mul_42
# residual_87 => mul_43
# residual_89 => mul_44
# residual_91 => mul_45
# residual_93 => mul_46
# residual_95 => mul_47
# residual_97 => mul_48
# residual_99 => mul_49
# sum_30 => sum_32
# sum_31 => sum_33
# sum_32 => sum_34
# sum_33 => sum_35
# sum_34 => sum_36
# sum_35 => sum_37
# sum_36 => sum_38
# sum_37 => sum_39
# sum_38 => sum_40
# sum_39 => sum_41
# sum_40 => sum_42
# sum_41 => sum_43
# sum_42 => sum_44
# sum_43 => sum_45
# sum_44 => sum_46
# sum_45 => sum_47
# sum_46 => sum_48
# sum_47 => sum_49
# sum_48 => sum_50
# sum_49 => sum_51
# sum_50 => sum_52
# sum_51 => sum_53
# sum_52 => sum_54
# sum_53 => sum_55
# sum_54 => sum_56
# sum_55 => sum_57
# sum_56 => sum_58
# sum_57 => sum_59
# Graph fragment:
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_30, %unsqueeze_89), kwargs = {})
# %sum_32 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_29, [-1]), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_31, %unsqueeze_92), kwargs = {})
# %sum_33 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_30, [-1]), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_32, %unsqueeze_95), kwargs = {})
# %sum_34 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_31, [-1]), kwargs = {})
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_33, %unsqueeze_98), kwargs = {})
# %sum_35 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_32, [-1]), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_34, %unsqueeze_101), kwargs = {})
# %sum_36 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_33, [-1]), kwargs = {})
# %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_35, %unsqueeze_104), kwargs = {})
# %sum_37 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_34, [-1]), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_36, %unsqueeze_107), kwargs = {})
# %sum_38 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_35, [-1]), kwargs = {})
# %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_37, %unsqueeze_110), kwargs = {})
# %sum_39 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_36, [-1]), kwargs = {})
# %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_38, %unsqueeze_113), kwargs = {})
# %sum_40 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_37, [-1]), kwargs = {})
# %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_39, %unsqueeze_116), kwargs = {})
# %sum_41 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_38, [-1]), kwargs = {})
# %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_40, %unsqueeze_119), kwargs = {})
# %sum_42 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_39, [-1]), kwargs = {})
# %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_41, %unsqueeze_122), kwargs = {})
# %sum_43 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_40, [-1]), kwargs = {})
# %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_42, %unsqueeze_125), kwargs = {})
# %sum_44 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_41, [-1]), kwargs = {})
# %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_43, %unsqueeze_128), kwargs = {})
# %sum_45 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_42, [-1]), kwargs = {})
# %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_44, %unsqueeze_131), kwargs = {})
# %sum_46 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_43, [-1]), kwargs = {})
# %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_45, %unsqueeze_134), kwargs = {})
# %sum_47 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_44, [-1]), kwargs = {})
# %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_46, %unsqueeze_137), kwargs = {})
# %sum_48 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_45, [-1]), kwargs = {})
# %mul_46 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_47, %unsqueeze_140), kwargs = {})
# %sum_49 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_46, [-1]), kwargs = {})
# %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_48, %unsqueeze_143), kwargs = {})
# %sum_50 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_47, [-1]), kwargs = {})
# %mul_48 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_49, %unsqueeze_146), kwargs = {})
# %sum_51 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_48, [-1]), kwargs = {})
# %mul_49 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_50, %unsqueeze_149), kwargs = {})
# %sum_52 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_49, [-1]), kwargs = {})
# %mul_50 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_51, %unsqueeze_152), kwargs = {})
# %sum_53 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_50, [-1]), kwargs = {})
# %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_52, %unsqueeze_155), kwargs = {})
# %sum_54 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_51, [-1]), kwargs = {})
# %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_53, %unsqueeze_158), kwargs = {})
# %sum_55 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_52, [-1]), kwargs = {})
# %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_54, %unsqueeze_161), kwargs = {})
# %sum_56 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_53, [-1]), kwargs = {})
# %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_55, %unsqueeze_164), kwargs = {})
# %sum_57 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_54, [-1]), kwargs = {})
# %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_56, %unsqueeze_167), kwargs = {})
# %sum_58 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_55, [-1]), kwargs = {})
# %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_57, %unsqueeze_170), kwargs = {})
# %sum_59 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_56, [-1]), kwargs = {})
triton_red_fused_mul_sum_4 = async_compile.triton('triton_red_fused_mul_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: 'i32', 60: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 58, 'num_reduction': 28, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = (xindex // 128)
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (118784 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (122880 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (126976 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (131072 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (135168 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (139264 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (143360 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp66 = tl.load(in_ptr1 + (147456 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp75 = tl.load(in_ptr1 + (151552 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp84 = tl.load(in_ptr1 + (155648 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp92 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp93 = tl.load(in_ptr1 + (159744 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp101 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp102 = tl.load(in_ptr1 + (163840 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp110 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp111 = tl.load(in_ptr1 + (167936 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp119 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp120 = tl.load(in_ptr1 + (172032 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp128 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp129 = tl.load(in_ptr1 + (176128 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp138 = tl.load(in_ptr1 + (180224 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp147 = tl.load(in_ptr1 + (184320 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp155 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp156 = tl.load(in_ptr1 + (188416 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp164 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp165 = tl.load(in_ptr1 + (192512 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp173 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp174 = tl.load(in_ptr1 + (196608 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp182 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp183 = tl.load(in_ptr1 + (200704 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp191 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp192 = tl.load(in_ptr1 + (204800 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp200 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp201 = tl.load(in_ptr1 + (208896 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp210 = tl.load(in_ptr1 + (212992 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp219 = tl.load(in_ptr1 + (217088 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp227 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp228 = tl.load(in_ptr1 + (221184 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp236 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp237 = tl.load(in_ptr1 + (225280 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp245 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp246 = tl.load(in_ptr1 + (229376 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp67 = tmp66 - tmp2
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 / tmp5
tmp70 = tmp65 * tmp69
tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK])
tmp73 = _tmp72 + tmp71
_tmp72 = tl.where(rmask & xmask, tmp73, _tmp72)
tmp76 = tmp75 - tmp2
tmp77 = tl_math.exp(tmp76)
tmp78 = tmp77 / tmp5
tmp79 = tmp74 * tmp78
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK])
tmp82 = _tmp81 + tmp80
_tmp81 = tl.where(rmask & xmask, tmp82, _tmp81)
tmp85 = tmp84 - tmp2
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp5
tmp88 = tmp83 * tmp87
tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK])
tmp91 = _tmp90 + tmp89
_tmp90 = tl.where(rmask & xmask, tmp91, _tmp90)
tmp94 = tmp93 - tmp2
tmp95 = tl_math.exp(tmp94)
tmp96 = tmp95 / tmp5
tmp97 = tmp92 * tmp96
tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK])
tmp100 = _tmp99 + tmp98
_tmp99 = tl.where(rmask & xmask, tmp100, _tmp99)
tmp103 = tmp102 - tmp2
tmp104 = tl_math.exp(tmp103)
tmp105 = tmp104 / tmp5
tmp106 = tmp101 * tmp105
tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK])
tmp109 = _tmp108 + tmp107
_tmp108 = tl.where(rmask & xmask, tmp109, _tmp108)
tmp112 = tmp111 - tmp2
tmp113 = tl_math.exp(tmp112)
tmp114 = tmp113 / tmp5
tmp115 = tmp110 * tmp114
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp118 = _tmp117 + tmp116
_tmp117 = tl.where(rmask & xmask, tmp118, _tmp117)
tmp121 = tmp120 - tmp2
tmp122 = tl_math.exp(tmp121)
tmp123 = tmp122 / tmp5
tmp124 = tmp119 * tmp123
tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK])
tmp127 = _tmp126 + tmp125
_tmp126 = tl.where(rmask & xmask, tmp127, _tmp126)
tmp130 = tmp129 - tmp2
tmp131 = tl_math.exp(tmp130)
tmp132 = tmp131 / tmp5
tmp133 = tmp128 * tmp132
tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK])
tmp136 = _tmp135 + tmp134
_tmp135 = tl.where(rmask & xmask, tmp136, _tmp135)
tmp139 = tmp138 - tmp2
tmp140 = tl_math.exp(tmp139)
tmp141 = tmp140 / tmp5
tmp142 = tmp137 * tmp141
tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK])
tmp145 = _tmp144 + tmp143
_tmp144 = tl.where(rmask & xmask, tmp145, _tmp144)
tmp148 = tmp147 - tmp2
tmp149 = tl_math.exp(tmp148)
tmp150 = tmp149 / tmp5
tmp151 = tmp146 * tmp150
tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK])
tmp154 = _tmp153 + tmp152
_tmp153 = tl.where(rmask & xmask, tmp154, _tmp153)
tmp157 = tmp156 - tmp2
tmp158 = tl_math.exp(tmp157)
tmp159 = tmp158 / tmp5
tmp160 = tmp155 * tmp159
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = _tmp162 + tmp161
_tmp162 = tl.where(rmask & xmask, tmp163, _tmp162)
tmp166 = tmp165 - tmp2
tmp167 = tl_math.exp(tmp166)
tmp168 = tmp167 / tmp5
tmp169 = tmp164 * tmp168
tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK])
tmp172 = _tmp171 + tmp170
_tmp171 = tl.where(rmask & xmask, tmp172, _tmp171)
tmp175 = tmp174 - tmp2
tmp176 = tl_math.exp(tmp175)
tmp177 = tmp176 / tmp5
tmp178 = tmp173 * tmp177
tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK])
tmp181 = _tmp180 + tmp179
_tmp180 = tl.where(rmask & xmask, tmp181, _tmp180)
tmp184 = tmp183 - tmp2
tmp185 = tl_math.exp(tmp184)
tmp186 = tmp185 / tmp5
tmp187 = tmp182 * tmp186
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp190 = _tmp189 + tmp188
_tmp189 = tl.where(rmask & xmask, tmp190, _tmp189)
tmp193 = tmp192 - tmp2
tmp194 = tl_math.exp(tmp193)
tmp195 = tmp194 / tmp5
tmp196 = tmp191 * tmp195
tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK])
tmp199 = _tmp198 + tmp197
_tmp198 = tl.where(rmask & xmask, tmp199, _tmp198)
tmp202 = tmp201 - tmp2
tmp203 = tl_math.exp(tmp202)
tmp204 = tmp203 / tmp5
tmp205 = tmp200 * tmp204
tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK])
tmp208 = _tmp207 + tmp206
_tmp207 = tl.where(rmask & xmask, tmp208, _tmp207)
tmp211 = tmp210 - tmp2
tmp212 = tl_math.exp(tmp211)
tmp213 = tmp212 / tmp5
tmp214 = tmp209 * tmp213
tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK])
tmp217 = _tmp216 + tmp215
_tmp216 = tl.where(rmask & xmask, tmp217, _tmp216)
tmp220 = tmp219 - tmp2
tmp221 = tl_math.exp(tmp220)
tmp222 = tmp221 / tmp5
tmp223 = tmp218 * tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = _tmp225 + tmp224
_tmp225 = tl.where(rmask & xmask, tmp226, _tmp225)
tmp229 = tmp228 - tmp2
tmp230 = tl_math.exp(tmp229)
tmp231 = tmp230 / tmp5
tmp232 = tmp227 * tmp231
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp235 = _tmp234 + tmp233
_tmp234 = tl.where(rmask & xmask, tmp235, _tmp234)
tmp238 = tmp237 - tmp2
tmp239 = tl_math.exp(tmp238)
tmp240 = tmp239 / tmp5
tmp241 = tmp236 * tmp240
tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK])
tmp244 = _tmp243 + tmp242
_tmp243 = tl.where(rmask & xmask, tmp244, _tmp243)
tmp247 = tmp246 - tmp2
tmp248 = tl_math.exp(tmp247)
tmp249 = tmp248 / tmp5
tmp250 = tmp245 * tmp249
tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK])
tmp253 = _tmp252 + tmp251
_tmp252 = tl.where(rmask & xmask, tmp253, _tmp252)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp63, xmask)
tmp72 = tl.sum(_tmp72, 1)[:, None]
tl.store(out_ptr7 + (x3), tmp72, xmask)
tmp81 = tl.sum(_tmp81, 1)[:, None]
tl.store(out_ptr8 + (x3), tmp81, xmask)
tmp90 = tl.sum(_tmp90, 1)[:, None]
tl.store(out_ptr9 + (x3), tmp90, xmask)
tmp99 = tl.sum(_tmp99, 1)[:, None]
tl.store(out_ptr10 + (x3), tmp99, xmask)
tmp108 = tl.sum(_tmp108, 1)[:, None]
tl.store(out_ptr11 + (x3), tmp108, xmask)
tmp117 = tl.sum(_tmp117, 1)[:, None]
tl.store(out_ptr12 + (x3), tmp117, xmask)
tmp126 = tl.sum(_tmp126, 1)[:, None]
tl.store(out_ptr13 + (x3), tmp126, xmask)
tmp135 = tl.sum(_tmp135, 1)[:, None]
tl.store(out_ptr14 + (x3), tmp135, xmask)
tmp144 = tl.sum(_tmp144, 1)[:, None]
tl.store(out_ptr15 + (x3), tmp144, xmask)
tmp153 = tl.sum(_tmp153, 1)[:, None]
tl.store(out_ptr16 + (x3), tmp153, xmask)
tmp162 = tl.sum(_tmp162, 1)[:, None]
tl.store(out_ptr17 + (x3), tmp162, xmask)
tmp171 = tl.sum(_tmp171, 1)[:, None]
tl.store(out_ptr18 + (x3), tmp171, xmask)
tmp180 = tl.sum(_tmp180, 1)[:, None]
tl.store(out_ptr19 + (x3), tmp180, xmask)
tmp189 = tl.sum(_tmp189, 1)[:, None]
tl.store(out_ptr20 + (x3), tmp189, xmask)
tmp198 = tl.sum(_tmp198, 1)[:, None]
tl.store(out_ptr21 + (x3), tmp198, xmask)
tmp207 = tl.sum(_tmp207, 1)[:, None]
tl.store(out_ptr22 + (x3), tmp207, xmask)
tmp216 = tl.sum(_tmp216, 1)[:, None]
tl.store(out_ptr23 + (x3), tmp216, xmask)
tmp225 = tl.sum(_tmp225, 1)[:, None]
tl.store(out_ptr24 + (x3), tmp225, xmask)
tmp234 = tl.sum(_tmp234, 1)[:, None]
tl.store(out_ptr25 + (x3), tmp234, xmask)
tmp243 = tl.sum(_tmp243, 1)[:, None]
tl.store(out_ptr26 + (x3), tmp243, xmask)
tmp252 = tl.sum(_tmp252, 1)[:, None]
tl.store(out_ptr27 + (x3), tmp252, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/m5/cm5hatbwewijgqsezz7mpghb6gtaqevomtlc673msign42fqnq42.py
# Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual_115 => mul_57
# residual_117 => mul_58
# residual_119 => mul_59
# residual_121 => mul_60
# residual_123 => mul_61
# residual_125 => mul_62
# residual_127 => mul_63
# sum_58 => sum_60
# sum_59 => sum_61
# sum_60 => sum_62
# sum_61 => sum_63
# sum_62 => sum_64
# sum_63 => sum_65
# sum_64 => sum_66
# Graph fragment:
# %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_58, %unsqueeze_173), kwargs = {})
# %sum_60 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_57, [-1]), kwargs = {})
# %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_59, %unsqueeze_176), kwargs = {})
# %sum_61 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_58, [-1]), kwargs = {})
# %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_60, %unsqueeze_179), kwargs = {})
# %sum_62 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_59, [-1]), kwargs = {})
# %mul_60 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_61, %unsqueeze_182), kwargs = {})
# %sum_63 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_60, [-1]), kwargs = {})
# %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_62, %unsqueeze_185), kwargs = {})
# %sum_64 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_61, [-1]), kwargs = {})
# %mul_62 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_63, %unsqueeze_188), kwargs = {})
# %sum_65 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_62, [-1]), kwargs = {})
# %mul_63 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_64, %unsqueeze_191), kwargs = {})
# %sum_66 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_63, [-1]), kwargs = {})
triton_red_fused_mul_sum_5 = async_compile.triton('triton_red_fused_mul_sum_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32', 18: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 7, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = (xindex // 128)
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (233472 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (237568 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (241664 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (245760 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (249856 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (253952 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (258048 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp63, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ew/cewrqjskzvue6r2kcna4men3gingd3ajhrksiyyptwu2fliqalf7.py
# Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# setitem => copy
# setitem_1 => copy_1
# setitem_10 => copy_10
# setitem_11 => copy_11
# setitem_12 => copy_12
# setitem_13 => copy_13
# setitem_14 => copy_14
# setitem_15 => copy_15
# setitem_16 => copy_16
# setitem_17 => copy_17
# setitem_18 => copy_18
# setitem_19 => copy_19
# setitem_2 => copy_2
# setitem_20 => copy_20
# setitem_21 => copy_21
# setitem_22 => copy_22
# setitem_23 => copy_23
# setitem_24 => copy_24
# setitem_25 => copy_25
# setitem_26 => copy_26
# setitem_27 => copy_27
# setitem_28 => copy_28
# setitem_29 => copy_29
# setitem_3 => copy_3
# setitem_30 => copy_30
# setitem_31 => copy_31
# setitem_32 => copy_32
# setitem_33 => copy_33
# setitem_34 => copy_34
# setitem_35 => copy_35
# setitem_36 => copy_36
# setitem_37 => copy_37
# setitem_38 => copy_38
# setitem_39 => copy_39
# setitem_4 => copy_4
# setitem_40 => copy_40
# setitem_41 => copy_41
# setitem_42 => copy_42
# setitem_43 => copy_43
# setitem_44 => copy_44
# setitem_45 => copy_45
# setitem_46 => copy_46
# setitem_47 => copy_47
# setitem_48 => copy_48
# setitem_49 => copy_49
# setitem_5 => copy_5
# setitem_50 => copy_50
# setitem_51 => copy_51
# setitem_52 => copy_52
# setitem_53 => copy_53
# setitem_54 => copy_54
# setitem_55 => copy_55
# setitem_56 => copy_56
# setitem_57 => copy_57
# setitem_58 => copy_58
# setitem_59 => copy_59
# setitem_6 => copy_6
# setitem_60 => copy_60
# setitem_61 => copy_61
# setitem_62 => copy_62
# setitem_63 => copy_63
# setitem_7 => copy_7
# setitem_8 => copy_8
# setitem_9 => copy_9
# vlad => full
# vlad_1 => pow_3, pow_4, sum_67
# Graph fragment:
# %full : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 64, 128], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_7, %sum_3), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%full, %copy, 1, 0, 1), kwargs = {})
# %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_26, %sum_4), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %copy_1, 1, 1, 2), kwargs = {})
# %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_45, %sum_5), kwargs = {})
# %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %copy_2, 1, 2, 3), kwargs = {})
# %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_64, %sum_6), kwargs = {})
# %slice_scatter_default_3 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %copy_3, 1, 3, 4), kwargs = {})
# %copy_4 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_83, %sum_7), kwargs = {})
# %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_3, %copy_4, 1, 4, 5), kwargs = {})
# %copy_5 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_102, %sum_8), kwargs = {})
# %slice_scatter_default_5 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %copy_5, 1, 5, 6), kwargs = {})
# %copy_6 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_121, %sum_9), kwargs = {})
# %slice_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_5, %copy_6, 1, 6, 7), kwargs = {})
# %copy_7 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_140, %sum_10), kwargs = {})
# %slice_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_6, %copy_7, 1, 7, 8), kwargs = {})
# %copy_8 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_159, %sum_11), kwargs = {})
# %slice_scatter_default_8 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %copy_8, 1, 8, 9), kwargs = {})
# %copy_9 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_178, %sum_12), kwargs = {})
# %slice_scatter_default_9 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_8, %copy_9, 1, 9, 10), kwargs = {})
# %copy_10 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_197, %sum_13), kwargs = {})
# %slice_scatter_default_10 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_9, %copy_10, 1, 10, 11), kwargs = {})
# %copy_11 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_216, %sum_14), kwargs = {})
# %slice_scatter_default_11 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_10, %copy_11, 1, 11, 12), kwargs = {})
# %copy_12 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_235, %sum_15), kwargs = {})
# %slice_scatter_default_12 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_11, %copy_12, 1, 12, 13), kwargs = {})
# %copy_13 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_254, %sum_16), kwargs = {})
# %slice_scatter_default_13 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_12, %copy_13, 1, 13, 14), kwargs = {})
# %copy_14 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_273, %sum_17), kwargs = {})
# %slice_scatter_default_14 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_13, %copy_14, 1, 14, 15), kwargs = {})
# %copy_15 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_292, %sum_18), kwargs = {})
# %slice_scatter_default_15 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_14, %copy_15, 1, 15, 16), kwargs = {})
# %copy_16 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_311, %sum_19), kwargs = {})
# %slice_scatter_default_16 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_15, %copy_16, 1, 16, 17), kwargs = {})
# %copy_17 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_330, %sum_20), kwargs = {})
# %slice_scatter_default_17 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_16, %copy_17, 1, 17, 18), kwargs = {})
# %copy_18 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_349, %sum_21), kwargs = {})
# %slice_scatter_default_18 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_17, %copy_18, 1, 18, 19), kwargs = {})
# %copy_19 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_368, %sum_22), kwargs = {})
# %slice_scatter_default_19 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_18, %copy_19, 1, 19, 20), kwargs = {})
# %copy_20 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_387, %sum_23), kwargs = {})
# %slice_scatter_default_20 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_19, %copy_20, 1, 20, 21), kwargs = {})
# %copy_21 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_406, %sum_24), kwargs = {})
# %slice_scatter_default_21 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_20, %copy_21, 1, 21, 22), kwargs = {})
# %copy_22 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_425, %sum_25), kwargs = {})
# %slice_scatter_default_22 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_21, %copy_22, 1, 22, 23), kwargs = {})
# %copy_23 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_444, %sum_26), kwargs = {})
# %slice_scatter_default_23 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_22, %copy_23, 1, 23, 24), kwargs = {})
# %copy_24 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_463, %sum_27), kwargs = {})
# %slice_scatter_default_24 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_23, %copy_24, 1, 24, 25), kwargs = {})
# %copy_25 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_482, %sum_28), kwargs = {})
# %slice_scatter_default_25 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_24, %copy_25, 1, 25, 26), kwargs = {})
# %copy_26 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_501, %sum_29), kwargs = {})
# %slice_scatter_default_26 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_25, %copy_26, 1, 26, 27), kwargs = {})
# %copy_27 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_520, %sum_30), kwargs = {})
# %slice_scatter_default_27 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_26, %copy_27, 1, 27, 28), kwargs = {})
# %copy_28 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_539, %sum_31), kwargs = {})
# %slice_scatter_default_28 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_27, %copy_28, 1, 28, 29), kwargs = {})
# %copy_29 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_558, %sum_32), kwargs = {})
# %slice_scatter_default_29 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_28, %copy_29, 1, 29, 30), kwargs = {})
# %copy_30 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_577, %sum_33), kwargs = {})
# %slice_scatter_default_30 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_29, %copy_30, 1, 30, 31), kwargs = {})
# %copy_31 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_596, %sum_34), kwargs = {})
# %slice_scatter_default_31 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_30, %copy_31, 1, 31, 32), kwargs = {})
# %copy_32 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_615, %sum_35), kwargs = {})
# %slice_scatter_default_32 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_31, %copy_32, 1, 32, 33), kwargs = {})
# %copy_33 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_634, %sum_36), kwargs = {})
# %slice_scatter_default_33 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_32, %copy_33, 1, 33, 34), kwargs = {})
# %copy_34 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_653, %sum_37), kwargs = {})
# %slice_scatter_default_34 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_33, %copy_34, 1, 34, 35), kwargs = {})
# %copy_35 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_672, %sum_38), kwargs = {})
# %slice_scatter_default_35 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_34, %copy_35, 1, 35, 36), kwargs = {})
# %copy_36 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_691, %sum_39), kwargs = {})
# %slice_scatter_default_36 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_35, %copy_36, 1, 36, 37), kwargs = {})
# %copy_37 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_710, %sum_40), kwargs = {})
# %slice_scatter_default_37 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_36, %copy_37, 1, 37, 38), kwargs = {})
# %copy_38 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_729, %sum_41), kwargs = {})
# %slice_scatter_default_38 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_37, %copy_38, 1, 38, 39), kwargs = {})
# %copy_39 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_748, %sum_42), kwargs = {})
# %slice_scatter_default_39 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_38, %copy_39, 1, 39, 40), kwargs = {})
# %copy_40 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_767, %sum_43), kwargs = {})
# %slice_scatter_default_40 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_39, %copy_40, 1, 40, 41), kwargs = {})
# %copy_41 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_786, %sum_44), kwargs = {})
# %slice_scatter_default_41 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_40, %copy_41, 1, 41, 42), kwargs = {})
# %copy_42 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_805, %sum_45), kwargs = {})
# %slice_scatter_default_42 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_41, %copy_42, 1, 42, 43), kwargs = {})
# %copy_43 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_824, %sum_46), kwargs = {})
# %slice_scatter_default_43 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_42, %copy_43, 1, 43, 44), kwargs = {})
# %copy_44 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_843, %sum_47), kwargs = {})
# %slice_scatter_default_44 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_43, %copy_44, 1, 44, 45), kwargs = {})
# %copy_45 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_862, %sum_48), kwargs = {})
# %slice_scatter_default_45 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_44, %copy_45, 1, 45, 46), kwargs = {})
# %copy_46 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_881, %sum_49), kwargs = {})
# %slice_scatter_default_46 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_45, %copy_46, 1, 46, 47), kwargs = {})
# %copy_47 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_900, %sum_50), kwargs = {})
# %slice_scatter_default_47 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_46, %copy_47, 1, 47, 48), kwargs = {})
# %copy_48 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_919, %sum_51), kwargs = {})
# %slice_scatter_default_48 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_47, %copy_48, 1, 48, 49), kwargs = {})
# %copy_49 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_938, %sum_52), kwargs = {})
# %slice_scatter_default_49 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_48, %copy_49, 1, 49, 50), kwargs = {})
# %copy_50 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_957, %sum_53), kwargs = {})
# %slice_scatter_default_50 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_49, %copy_50, 1, 50, 51), kwargs = {})
# %copy_51 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_976, %sum_54), kwargs = {})
# %slice_scatter_default_51 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_50, %copy_51, 1, 51, 52), kwargs = {})
# %copy_52 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_995, %sum_55), kwargs = {})
# %slice_scatter_default_52 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_51, %copy_52, 1, 52, 53), kwargs = {})
# %copy_53 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1014, %sum_56), kwargs = {})
# %slice_scatter_default_53 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_52, %copy_53, 1, 53, 54), kwargs = {})
# %copy_54 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1033, %sum_57), kwargs = {})
# %slice_scatter_default_54 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_53, %copy_54, 1, 54, 55), kwargs = {})
# %copy_55 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1052, %sum_58), kwargs = {})
# %slice_scatter_default_55 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_54, %copy_55, 1, 55, 56), kwargs = {})
# %copy_56 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1071, %sum_59), kwargs = {})
# %slice_scatter_default_56 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_55, %copy_56, 1, 56, 57), kwargs = {})
# %copy_57 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1090, %sum_60), kwargs = {})
# %slice_scatter_default_57 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_56, %copy_57, 1, 57, 58), kwargs = {})
# %copy_58 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1109, %sum_61), kwargs = {})
# %slice_scatter_default_58 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_57, %copy_58, 1, 58, 59), kwargs = {})
# %copy_59 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1128, %sum_62), kwargs = {})
# %slice_scatter_default_59 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_58, %copy_59, 1, 59, 60), kwargs = {})
# %copy_60 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1147, %sum_63), kwargs = {})
# %slice_scatter_default_60 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_59, %copy_60, 1, 60, 61), kwargs = {})
# %copy_61 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1166, %sum_64), kwargs = {})
# %slice_scatter_default_61 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_60, %copy_61, 1, 61, 62), kwargs = {})
# %copy_62 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1185, %sum_65), kwargs = {})
# %slice_scatter_default_62 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_61, %copy_62, 1, 62, 63), kwargs = {})
# %copy_63 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1204, %sum_66), kwargs = {})
# %slice_scatter_default_63 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_62, %copy_63, 1, 63, 64), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_scatter_default_63, 2), kwargs = {})
# %sum_67 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {})
# %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_67, 0.5), kwargs = {})
triton_per_fused_copy_linalg_vector_norm_zeros_6 = async_compile.triton('triton_per_fused_copy_linalg_vector_norm_zeros_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: 'i32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_copy_linalg_vector_norm_zeros_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 64, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 128
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 64
r2 = rindex
x1 = (xindex // 64)
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1, 1], 4, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (r2 + (128*x1)), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 >= tmp7
tmp9 = tmp0 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tl.load(in_ptr1 + (r2 + (128*x1)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 2, tl.int64)
tmp13 = tmp0 >= tmp12
tmp14 = tmp0 < tmp7
tmp15 = tmp13 & tmp14
tmp16 = tl.load(in_ptr2 + (r2 + (128*x1)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.full([1, 1], 1, tl.int64)
tmp18 = tmp0 >= tmp17
tmp19 = tmp0 < tmp12
tmp20 = tmp18 & tmp19
tmp21 = tl.load(in_ptr3 + (r2 + (128*x1)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tmp0 < tmp17
tmp23 = tl.load(in_ptr4 + (r2 + (128*x1)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = 0.0
tmp25 = tl.where(tmp22, tmp23, tmp24)
tmp26 = tl.where(tmp20, tmp21, tmp25)
tmp27 = tl.where(tmp15, tmp16, tmp26)
tmp28 = tl.where(tmp10, tmp11, tmp27)
tmp29 = tl.where(tmp5, tmp6, tmp28)
tmp30 = tl.full([1, 1], 8, tl.int64)
tmp31 = tmp0 >= tmp30
tmp32 = tl.full([1, 1], 9, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr5 + (r2 + (128*x1)), tmp34 & xmask, eviction_policy='evict_last', other=0.0)
tmp36 = tl.full([1, 1], 7, tl.int64)
tmp37 = tmp0 >= tmp36
tmp38 = tmp0 < tmp30
tmp39 = tmp37 & tmp38
tmp40 = tl.load(in_ptr6 + (r2 + (128*x1)), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp41 = tl.full([1, 1], 6, tl.int64)
tmp42 = tmp0 >= tmp41
tmp43 = tmp0 < tmp36
tmp44 = tmp42 & tmp43
tmp45 = tl.load(in_ptr7 + (r2 + (128*x1)), tmp44 & xmask, eviction_policy='evict_last', other=0.0)
tmp46 = tmp0 >= tmp3
tmp47 = tmp0 < tmp41
tmp48 = tmp46 & tmp47
tmp49 = tl.load(in_ptr8 + (r2 + (128*x1)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp48, tmp49, tmp29)
tmp51 = tl.where(tmp44, tmp45, tmp50)
tmp52 = tl.where(tmp39, tmp40, tmp51)
tmp53 = tl.where(tmp34, tmp35, tmp52)
tmp54 = tl.full([1, 1], 12, tl.int64)
tmp55 = tmp0 >= tmp54
tmp56 = tl.full([1, 1], 13, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tmp55 & tmp57
tmp59 = tl.load(in_ptr9 + (r2 + (128*x1)), tmp58 & xmask, eviction_policy='evict_last', other=0.0)
tmp60 = tl.full([1, 1], 11, tl.int64)
tmp61 = tmp0 >= tmp60
tmp62 = tmp0 < tmp54
tmp63 = tmp61 & tmp62
tmp64 = tl.load(in_ptr10 + (r2 + (128*x1)), tmp63 & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.full([1, 1], 10, tl.int64)
tmp66 = tmp0 >= tmp65
tmp67 = tmp0 < tmp60
tmp68 = tmp66 & tmp67
tmp69 = tl.load(in_ptr11 + (r2 + (128*x1)), tmp68 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp0 >= tmp32
tmp71 = tmp0 < tmp65
tmp72 = tmp70 & tmp71
tmp73 = tl.load(in_ptr12 + (r2 + (128*x1)), tmp72 & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.where(tmp72, tmp73, tmp53)
tmp75 = tl.where(tmp68, tmp69, tmp74)
tmp76 = tl.where(tmp63, tmp64, tmp75)
tmp77 = tl.where(tmp58, tmp59, tmp76)
tmp78 = tl.full([1, 1], 16, tl.int64)
tmp79 = tmp0 >= tmp78
tmp80 = tl.full([1, 1], 17, tl.int64)
tmp81 = tmp0 < tmp80
tmp82 = tmp79 & tmp81
tmp83 = tl.load(in_ptr13 + (r2 + (128*x1)), tmp82 & xmask, eviction_policy='evict_last', other=0.0)
tmp84 = tl.full([1, 1], 15, tl.int64)
tmp85 = tmp0 >= tmp84
tmp86 = tmp0 < tmp78
tmp87 = tmp85 & tmp86
tmp88 = tl.load(in_ptr14 + (r2 + (128*x1)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full([1, 1], 14, tl.int64)
tmp90 = tmp0 >= tmp89
tmp91 = tmp0 < tmp84
tmp92 = tmp90 & tmp91
tmp93 = tl.load(in_ptr15 + (r2 + (128*x1)), tmp92 & xmask, eviction_policy='evict_last', other=0.0)
tmp94 = tmp0 >= tmp56
tmp95 = tmp0 < tmp89
tmp96 = tmp94 & tmp95
tmp97 = tl.load(in_ptr16 + (r2 + (128*x1)), tmp96 & xmask, eviction_policy='evict_last', other=0.0)
tmp98 = tl.where(tmp96, tmp97, tmp77)
tmp99 = tl.where(tmp92, tmp93, tmp98)
tmp100 = tl.where(tmp87, tmp88, tmp99)
tmp101 = tl.where(tmp82, tmp83, tmp100)
tmp102 = tl.full([1, 1], 20, tl.int64)
tmp103 = tmp0 >= tmp102
tmp104 = tl.full([1, 1], 21, tl.int64)
tmp105 = tmp0 < tmp104
tmp106 = tmp103 & tmp105
tmp107 = tl.load(in_ptr17 + (r2 + (128*x1)), tmp106 & xmask, eviction_policy='evict_last', other=0.0)
tmp108 = tl.full([1, 1], 19, tl.int64)
tmp109 = tmp0 >= tmp108
tmp110 = tmp0 < tmp102
tmp111 = tmp109 & tmp110
tmp112 = tl.load(in_ptr18 + (r2 + (128*x1)), tmp111 & xmask, eviction_policy='evict_last', other=0.0)
tmp113 = tl.full([1, 1], 18, tl.int64)
tmp114 = tmp0 >= tmp113
tmp115 = tmp0 < tmp108
tmp116 = tmp114 & tmp115
tmp117 = tl.load(in_ptr19 + (r2 + (128*x1)), tmp116 & xmask, eviction_policy='evict_last', other=0.0)
tmp118 = tmp0 >= tmp80
tmp119 = tmp0 < tmp113
tmp120 = tmp118 & tmp119
tmp121 = tl.load(in_ptr20 + (r2 + (128*x1)), tmp120 & xmask, eviction_policy='evict_last', other=0.0)
tmp122 = tl.where(tmp120, tmp121, tmp101)
tmp123 = tl.where(tmp116, tmp117, tmp122)
tmp124 = tl.where(tmp111, tmp112, tmp123)
tmp125 = tl.where(tmp106, tmp107, tmp124)
tmp126 = tl.full([1, 1], 24, tl.int64)
tmp127 = tmp0 >= tmp126
tmp128 = tl.full([1, 1], 25, tl.int64)
tmp129 = tmp0 < tmp128
tmp130 = tmp127 & tmp129
tmp131 = tl.load(in_ptr21 + (r2 + (128*x1)), tmp130 & xmask, eviction_policy='evict_last', other=0.0)
tmp132 = tl.full([1, 1], 23, tl.int64)
tmp133 = tmp0 >= tmp132
tmp134 = tmp0 < tmp126
tmp135 = tmp133 & tmp134
tmp136 = tl.load(in_ptr22 + (r2 + (128*x1)), tmp135 & xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.full([1, 1], 22, tl.int64)
tmp138 = tmp0 >= tmp137
tmp139 = tmp0 < tmp132
tmp140 = tmp138 & tmp139
tmp141 = tl.load(in_ptr23 + (r2 + (128*x1)), tmp140 & xmask, eviction_policy='evict_last', other=0.0)
tmp142 = tmp0 >= tmp104
tmp143 = tmp0 < tmp137
tmp144 = tmp142 & tmp143
tmp145 = tl.load(in_ptr24 + (r2 + (128*x1)), tmp144 & xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.where(tmp144, tmp145, tmp125)
tmp147 = tl.where(tmp140, tmp141, tmp146)
tmp148 = tl.where(tmp135, tmp136, tmp147)
tmp149 = tl.where(tmp130, tmp131, tmp148)
tmp150 = tl.full([1, 1], 28, tl.int64)
tmp151 = tmp0 >= tmp150
tmp152 = tl.full([1, 1], 29, tl.int64)
tmp153 = tmp0 < tmp152
tmp154 = tmp151 & tmp153
tmp155 = tl.load(in_ptr25 + (r2 + (128*x1)), tmp154 & xmask, eviction_policy='evict_last', other=0.0)
tmp156 = tl.full([1, 1], 27, tl.int64)
tmp157 = tmp0 >= tmp156
tmp158 = tmp0 < tmp150
tmp159 = tmp157 & tmp158
tmp160 = tl.load(in_ptr26 + (r2 + (128*x1)), tmp159 & xmask, eviction_policy='evict_last', other=0.0)
tmp161 = tl.full([1, 1], 26, tl.int64)
tmp162 = tmp0 >= tmp161
tmp163 = tmp0 < tmp156
tmp164 = tmp162 & tmp163
tmp165 = tl.load(in_ptr27 + (r2 + (128*x1)), tmp164 & xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tmp0 >= tmp128
tmp167 = tmp0 < tmp161
tmp168 = tmp166 & tmp167
tmp169 = tl.load(in_ptr28 + (r2 + (128*x1)), tmp168 & xmask, eviction_policy='evict_last', other=0.0)
tmp170 = tl.where(tmp168, tmp169, tmp149)
tmp171 = tl.where(tmp164, tmp165, tmp170)
tmp172 = tl.where(tmp159, tmp160, tmp171)
tmp173 = tl.where(tmp154, tmp155, tmp172)
tmp174 = tl.full([1, 1], 32, tl.int64)
tmp175 = tmp0 >= tmp174
tmp176 = tl.full([1, 1], 33, tl.int64)
tmp177 = tmp0 < tmp176
tmp178 = tmp175 & tmp177
tmp179 = tl.load(in_ptr29 + (r2 + (128*x1)), tmp178 & xmask, eviction_policy='evict_last', other=0.0)
tmp180 = tl.full([1, 1], 31, tl.int64)
tmp181 = tmp0 >= tmp180
tmp182 = tmp0 < tmp174
tmp183 = tmp181 & tmp182
tmp184 = tl.load(in_ptr30 + (r2 + (128*x1)), tmp183 & xmask, eviction_policy='evict_last', other=0.0)
tmp185 = tl.full([1, 1], 30, tl.int64)
tmp186 = tmp0 >= tmp185
tmp187 = tmp0 < tmp180
tmp188 = tmp186 & tmp187
tmp189 = tl.load(in_ptr31 + (r2 + (128*x1)), tmp188 & xmask, eviction_policy='evict_last', other=0.0)
tmp190 = tmp0 >= tmp152
tmp191 = tmp0 < tmp185
tmp192 = tmp190 & tmp191
tmp193 = tl.load(in_ptr32 + (r2 + (128*x1)), tmp192 & xmask, eviction_policy='evict_last', other=0.0)
tmp194 = tl.where(tmp192, tmp193, tmp173)
tmp195 = tl.where(tmp188, tmp189, tmp194)
tmp196 = tl.where(tmp183, tmp184, tmp195)
tmp197 = tl.where(tmp178, tmp179, tmp196)
tmp198 = tl.full([1, 1], 36, tl.int64)
tmp199 = tmp0 >= tmp198
tmp200 = tl.full([1, 1], 37, tl.int64)
tmp201 = tmp0 < tmp200
tmp202 = tmp199 & tmp201
tmp203 = tl.load(in_ptr33 + (r2 + (128*x1)), tmp202 & xmask, eviction_policy='evict_last', other=0.0)
tmp204 = tl.full([1, 1], 35, tl.int64)
tmp205 = tmp0 >= tmp204
tmp206 = tmp0 < tmp198
tmp207 = tmp205 & tmp206
tmp208 = tl.load(in_ptr34 + (r2 + (128*x1)), tmp207 & xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.full([1, 1], 34, tl.int64)
tmp210 = tmp0 >= tmp209
tmp211 = tmp0 < tmp204
tmp212 = tmp210 & tmp211
tmp213 = tl.load(in_ptr35 + (r2 + (128*x1)), tmp212 & xmask, eviction_policy='evict_last', other=0.0)
tmp214 = tmp0 >= tmp176
tmp215 = tmp0 < tmp209
tmp216 = tmp214 & tmp215
tmp217 = tl.load(in_ptr36 + (r2 + (128*x1)), tmp216 & xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.where(tmp216, tmp217, tmp197)
tmp219 = tl.where(tmp212, tmp213, tmp218)
tmp220 = tl.where(tmp207, tmp208, tmp219)
tmp221 = tl.where(tmp202, tmp203, tmp220)
tmp222 = tl.full([1, 1], 40, tl.int64)
tmp223 = tmp0 >= tmp222
tmp224 = tl.full([1, 1], 41, tl.int64)
tmp225 = tmp0 < tmp224
tmp226 = tmp223 & tmp225
tmp227 = tl.load(in_ptr37 + (r2 + (128*x1)), tmp226 & xmask, eviction_policy='evict_last', other=0.0)
tmp228 = tl.full([1, 1], 39, tl.int64)
tmp229 = tmp0 >= tmp228
tmp230 = tmp0 < tmp222
tmp231 = tmp229 & tmp230
tmp232 = tl.load(in_ptr38 + (r2 + (128*x1)), tmp231 & xmask, eviction_policy='evict_last', other=0.0)
tmp233 = tl.full([1, 1], 38, tl.int64)
tmp234 = tmp0 >= tmp233
tmp235 = tmp0 < tmp228
tmp236 = tmp234 & tmp235
tmp237 = tl.load(in_ptr39 + (r2 + (128*x1)), tmp236 & xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tmp0 >= tmp200
tmp239 = tmp0 < tmp233
tmp240 = tmp238 & tmp239
tmp241 = tl.load(in_ptr40 + (r2 + (128*x1)), tmp240 & xmask, eviction_policy='evict_last', other=0.0)
tmp242 = tl.where(tmp240, tmp241, tmp221)
tmp243 = tl.where(tmp236, tmp237, tmp242)
tmp244 = tl.where(tmp231, tmp232, tmp243)
tmp245 = tl.where(tmp226, tmp227, tmp244)
tmp246 = tl.full([1, 1], 44, tl.int64)
tmp247 = tmp0 >= tmp246
tmp248 = tl.full([1, 1], 45, tl.int64)
tmp249 = tmp0 < tmp248
tmp250 = tmp247 & tmp249
tmp251 = tl.load(in_ptr41 + (r2 + (128*x1)), tmp250 & xmask, eviction_policy='evict_last', other=0.0)
tmp252 = tl.full([1, 1], 43, tl.int64)
tmp253 = tmp0 >= tmp252
tmp254 = tmp0 < tmp246
tmp255 = tmp253 & tmp254
tmp256 = tl.load(in_ptr42 + (r2 + (128*x1)), tmp255 & xmask, eviction_policy='evict_last', other=0.0)
tmp257 = tl.full([1, 1], 42, tl.int64)
tmp258 = tmp0 >= tmp257
tmp259 = tmp0 < tmp252
tmp260 = tmp258 & tmp259
tmp261 = tl.load(in_ptr43 + (r2 + (128*x1)), tmp260 & xmask, eviction_policy='evict_last', other=0.0)
tmp262 = tmp0 >= tmp224
tmp263 = tmp0 < tmp257
tmp264 = tmp262 & tmp263
tmp265 = tl.load(in_ptr44 + (r2 + (128*x1)), tmp264 & xmask, eviction_policy='evict_last', other=0.0)
tmp266 = tl.where(tmp264, tmp265, tmp245)
tmp267 = tl.where(tmp260, tmp261, tmp266)
tmp268 = tl.where(tmp255, tmp256, tmp267)
tmp269 = tl.where(tmp250, tmp251, tmp268)
tmp270 = tl.full([1, 1], 48, tl.int64)
tmp271 = tmp0 >= tmp270
tmp272 = tl.full([1, 1], 49, tl.int64)
tmp273 = tmp0 < tmp272
tmp274 = tmp271 & tmp273
tmp275 = tl.load(in_ptr45 + (r2 + (128*x1)), tmp274 & xmask, eviction_policy='evict_last', other=0.0)
tmp276 = tl.full([1, 1], 47, tl.int64)
tmp277 = tmp0 >= tmp276
tmp278 = tmp0 < tmp270
tmp279 = tmp277 & tmp278
tmp280 = tl.load(in_ptr46 + (r2 + (128*x1)), tmp279 & xmask, eviction_policy='evict_last', other=0.0)
tmp281 = tl.full([1, 1], 46, tl.int64)
tmp282 = tmp0 >= tmp281
tmp283 = tmp0 < tmp276
tmp284 = tmp282 & tmp283
tmp285 = tl.load(in_ptr47 + (r2 + (128*x1)), tmp284 & xmask, eviction_policy='evict_last', other=0.0)
tmp286 = tmp0 >= tmp248
tmp287 = tmp0 < tmp281
tmp288 = tmp286 & tmp287
tmp289 = tl.load(in_ptr48 + (r2 + (128*x1)), tmp288 & xmask, eviction_policy='evict_last', other=0.0)
tmp290 = tl.where(tmp288, tmp289, tmp269)
tmp291 = tl.where(tmp284, tmp285, tmp290)
tmp292 = tl.where(tmp279, tmp280, tmp291)
tmp293 = tl.where(tmp274, tmp275, tmp292)
tmp294 = tl.full([1, 1], 52, tl.int64)
tmp295 = tmp0 >= tmp294
tmp296 = tl.full([1, 1], 53, tl.int64)
tmp297 = tmp0 < tmp296
tmp298 = tmp295 & tmp297
tmp299 = tl.load(in_ptr49 + (r2 + (128*x1)), tmp298 & xmask, eviction_policy='evict_last', other=0.0)
tmp300 = tl.full([1, 1], 51, tl.int64)
tmp301 = tmp0 >= tmp300
tmp302 = tmp0 < tmp294
tmp303 = tmp301 & tmp302
tmp304 = tl.load(in_ptr50 + (r2 + (128*x1)), tmp303 & xmask, eviction_policy='evict_last', other=0.0)
tmp305 = tl.full([1, 1], 50, tl.int64)
tmp306 = tmp0 >= tmp305
tmp307 = tmp0 < tmp300
tmp308 = tmp306 & tmp307
tmp309 = tl.load(in_ptr51 + (r2 + (128*x1)), tmp308 & xmask, eviction_policy='evict_last', other=0.0)
tmp310 = tmp0 >= tmp272
tmp311 = tmp0 < tmp305
tmp312 = tmp310 & tmp311
tmp313 = tl.load(in_ptr52 + (r2 + (128*x1)), tmp312 & xmask, eviction_policy='evict_last', other=0.0)
tmp314 = tl.where(tmp312, tmp313, tmp293)
tmp315 = tl.where(tmp308, tmp309, tmp314)
tmp316 = tl.where(tmp303, tmp304, tmp315)
tmp317 = tl.where(tmp298, tmp299, tmp316)
tmp318 = tl.full([1, 1], 56, tl.int64)
tmp319 = tmp0 >= tmp318
tmp320 = tl.full([1, 1], 57, tl.int64)
tmp321 = tmp0 < tmp320
tmp322 = tmp319 & tmp321
tmp323 = tl.load(in_ptr53 + (r2 + (128*x1)), tmp322 & xmask, eviction_policy='evict_last', other=0.0)
tmp324 = tl.full([1, 1], 55, tl.int64)
tmp325 = tmp0 >= tmp324
tmp326 = tmp0 < tmp318
tmp327 = tmp325 & tmp326
tmp328 = tl.load(in_ptr54 + (r2 + (128*x1)), tmp327 & xmask, eviction_policy='evict_last', other=0.0)
tmp329 = tl.full([1, 1], 54, tl.int64)
tmp330 = tmp0 >= tmp329
tmp331 = tmp0 < tmp324
tmp332 = tmp330 & tmp331
tmp333 = tl.load(in_ptr55 + (r2 + (128*x1)), tmp332 & xmask, eviction_policy='evict_last', other=0.0)
tmp334 = tmp0 >= tmp296
tmp335 = tmp0 < tmp329
tmp336 = tmp334 & tmp335
tmp337 = tl.load(in_ptr56 + (r2 + (128*x1)), tmp336 & xmask, eviction_policy='evict_last', other=0.0)
tmp338 = tl.where(tmp336, tmp337, tmp317)
tmp339 = tl.where(tmp332, tmp333, tmp338)
tmp340 = tl.where(tmp327, tmp328, tmp339)
tmp341 = tl.where(tmp322, tmp323, tmp340)
tmp342 = tl.full([1, 1], 60, tl.int64)
tmp343 = tmp0 >= tmp342
tmp344 = tl.full([1, 1], 61, tl.int64)
tmp345 = tmp0 < tmp344
tmp346 = tmp343 & tmp345
tmp347 = tl.load(in_ptr57 + (r2 + (128*x1)), tmp346 & xmask, eviction_policy='evict_last', other=0.0)
tmp348 = tl.full([1, 1], 59, tl.int64)
tmp349 = tmp0 >= tmp348
tmp350 = tmp0 < tmp342
tmp351 = tmp349 & tmp350
tmp352 = tl.load(in_ptr58 + (r2 + (128*x1)), tmp351 & xmask, eviction_policy='evict_last', other=0.0)
tmp353 = tl.full([1, 1], 58, tl.int64)
tmp354 = tmp0 >= tmp353
tmp355 = tmp0 < tmp348
tmp356 = tmp354 & tmp355
tmp357 = tl.load(in_ptr59 + (r2 + (128*x1)), tmp356 & xmask, eviction_policy='evict_last', other=0.0)
tmp358 = tmp0 >= tmp320
tmp359 = tmp0 < tmp353
tmp360 = tmp358 & tmp359
tmp361 = tl.load(in_ptr60 + (r2 + (128*x1)), tmp360 & xmask, eviction_policy='evict_last', other=0.0)
tmp362 = tl.where(tmp360, tmp361, tmp341)
tmp363 = tl.where(tmp356, tmp357, tmp362)
tmp364 = tl.where(tmp351, tmp352, tmp363)
tmp365 = tl.where(tmp346, tmp347, tmp364)
tmp366 = tl.full([1, 1], 63, tl.int64)
tmp367 = tmp0 >= tmp366
tmp368 = tl.load(in_ptr61 + (r2 + (128*x1)), tmp367 & xmask, eviction_policy='evict_last', other=0.0)
tmp369 = tl.full([1, 1], 62, tl.int64)
tmp370 = tmp0 >= tmp369
tmp371 = tmp0 < tmp366
tmp372 = tmp370 & tmp371
tmp373 = tl.load(in_ptr62 + (r2 + (128*x1)), tmp372 & xmask, eviction_policy='evict_last', other=0.0)
tmp374 = tmp0 >= tmp344
tmp375 = tmp0 < tmp369
tmp376 = tmp374 & tmp375
tmp377 = tl.load(in_ptr63 + (r2 + (128*x1)), tmp376 & xmask, eviction_policy='evict_last', other=0.0)
tmp378 = tl.where(tmp376, tmp377, tmp365)
tmp379 = tl.where(tmp372, tmp373, tmp378)
tmp380 = tl.where(tmp367, tmp368, tmp379)
tmp381 = tmp380 * tmp380
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp384 = tl.where(xmask, tmp382, 0)
tmp385 = tl.sum(tmp384, 1)[:, None]
tmp386 = libdevice.sqrt(tmp385)
tl.store(in_out_ptr0 + (r2 + (128*x3)), tmp380, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp386, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/t2/ct2f2hshheqz3ic3c445uhobgzuy7jfkonekptjcv4yqglojftmh.py
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# vlad_3 => div_3, pow_5, pow_6, sum_68
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {})
# %sum_68 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {})
# %pow_6 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_68, 0.5), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_66), kwargs = {})
triton_red_fused_div_linalg_vector_norm_7 = async_compile.triton('triton_red_fused_div_linalg_vector_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_div_linalg_vector_norm_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tmp9 = libdevice.sqrt(tmp7)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = 1e-12
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = tmp10 / tmp13
tmp15 = triton_helpers.maximum(tmp9, tmp12)
tmp16 = tmp14 / tmp15
tl.store(out_ptr0 + (r1 + (8192*x0)), tmp16, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_3, (64, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0.run(primals_1, buf0, 16384, 128, grid=grid(16384), stream=stream0)
buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub]
triton_poi_fused_div_sub_1.run(primals_1, buf0, primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, 2097152, grid=grid(2097152), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf2, buf3, buf4, 16384, 64, grid=grid(16384), stream=stream0)
buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum]
triton_red_fused_mul_sub_sum_3.run(buf1, primals_3, buf2, buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16, buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36, buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56, buf58, buf61, buf63, buf65, buf67, 512, 4096, grid=grid(512), stream=stream0)
buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum]
triton_red_fused_mul_sum_4.run(buf69, buf2, buf3, buf4, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83, buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103, buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121, buf124, buf126, buf128, buf130, 512, 4096, grid=grid(512), stream=stream0)
buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum]
triton_red_fused_mul_sum_5.run(buf132, buf2, buf3, buf4, buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135, buf137, buf139, buf142, buf144, buf146, 512, 4096, grid=grid(512), stream=stream0)
buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32)
buf23 = buf14; del buf14 # reuse
buf32 = buf23; del buf23 # reuse
buf41 = buf32; del buf32 # reuse
buf50 = buf41; del buf41 # reuse
buf59 = buf50; del buf50 # reuse
buf68 = buf59; del buf59 # reuse
buf77 = buf68; del buf68 # reuse
buf86 = buf77; del buf77 # reuse
buf95 = buf86; del buf86 # reuse
buf104 = buf95; del buf95 # reuse
buf113 = buf104; del buf104 # reuse
buf122 = buf113; del buf113 # reuse
buf131 = buf122; del buf122 # reuse
buf140 = buf131; del buf131 # reuse
buf147 = buf140; del buf140 # reuse
buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32)
buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0); del buf148 # reuse
# Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm]
triton_per_fused_copy_linalg_vector_norm_zeros_6.run(buf147, buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18, buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34, buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67, buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83, buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99, buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117, buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135, buf133, buf146, buf144, buf142, 256, 128, grid=grid(256), stream=stream0)
del buf101
del buf103
del buf106
del buf108
del buf11
del buf110
del buf112
del buf115
del buf117
del buf119
del buf121
del buf124
del buf126
del buf128
del buf13
del buf130
del buf133
del buf135
del buf137
del buf139
del buf142
del buf144
del buf146
del buf16
del buf18
del buf20
del buf22
del buf25
del buf27
del buf29
del buf31
del buf34
del buf36
del buf38
del buf40
del buf43
del buf45
del buf47
del buf49
del buf5
del buf52
del buf54
del buf56
del buf58
del buf61
del buf63
del buf65
del buf67
del buf7
del buf70
del buf72
del buf74
del buf76
del buf79
del buf81
del buf83
del buf85
del buf88
del buf9
del buf90
del buf92
del buf94
del buf97
del buf99
buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0); del buf150 # reuse
buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32)
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div]
triton_red_fused_div_linalg_vector_norm_7.run(buf151, buf147, buf149, buf152, 4, 8192, grid=grid(4), stream=stream0)
return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from sklearn.neighbors import NearestNeighbors
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super(NetVLAD, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
def init_params(self, clsts, traindescs):
if self.vladv2 is False:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
dsSq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
self.alpha = (-np.log(0.01) / np.mean(dsSq[:, 1] - dsSq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, dsSq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1)
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout
=x.layout, device=x.device)
for C in range(self.num_clusters):
residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3
) - self.centroids[C:C + 1, :].expand(x_flatten.size(-1), -
1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign[:, C:C + 1, :].unsqueeze(2)
vlad[:, C:C + 1, :] = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2)
vlad = vlad.view(x.size(0), -1)
vlad = F.normalize(vlad, p=2, dim=1)
return vlad
def get_inputs():
return [torch.rand([4, 128, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
from sklearn.neighbors import NearestNeighbors
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = xindex // 4096
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 524288 * x1), rmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7,
out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13,
out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19,
out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25,
out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31,
out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37,
out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43,
out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49,
out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55,
out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61,
out_ptr62, out_ptr63, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 524288
x1 = xindex // 4096 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last')
tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last')
tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last')
tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last')
tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last')
tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last')
tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last')
tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last')
tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last')
tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last')
tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last')
tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last')
tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last')
tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last')
tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last')
tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last')
tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp7 = tmp5 - tmp6
tmp9 = tmp5 - tmp8
tmp11 = tmp5 - tmp10
tmp13 = tmp5 - tmp12
tmp15 = tmp5 - tmp14
tmp17 = tmp5 - tmp16
tmp19 = tmp5 - tmp18
tmp21 = tmp5 - tmp20
tmp23 = tmp5 - tmp22
tmp25 = tmp5 - tmp24
tmp27 = tmp5 - tmp26
tmp29 = tmp5 - tmp28
tmp31 = tmp5 - tmp30
tmp33 = tmp5 - tmp32
tmp35 = tmp5 - tmp34
tmp37 = tmp5 - tmp36
tmp39 = tmp5 - tmp38
tmp41 = tmp5 - tmp40
tmp43 = tmp5 - tmp42
tmp45 = tmp5 - tmp44
tmp47 = tmp5 - tmp46
tmp49 = tmp5 - tmp48
tmp51 = tmp5 - tmp50
tmp53 = tmp5 - tmp52
tmp55 = tmp5 - tmp54
tmp57 = tmp5 - tmp56
tmp59 = tmp5 - tmp58
tmp61 = tmp5 - tmp60
tmp63 = tmp5 - tmp62
tmp65 = tmp5 - tmp64
tmp67 = tmp5 - tmp66
tmp69 = tmp5 - tmp68
tmp71 = tmp5 - tmp70
tmp73 = tmp5 - tmp72
tmp75 = tmp5 - tmp74
tmp77 = tmp5 - tmp76
tmp79 = tmp5 - tmp78
tmp81 = tmp5 - tmp80
tmp83 = tmp5 - tmp82
tmp85 = tmp5 - tmp84
tmp87 = tmp5 - tmp86
tmp89 = tmp5 - tmp88
tmp91 = tmp5 - tmp90
tmp93 = tmp5 - tmp92
tmp95 = tmp5 - tmp94
tmp97 = tmp5 - tmp96
tmp99 = tmp5 - tmp98
tmp101 = tmp5 - tmp100
tmp103 = tmp5 - tmp102
tmp105 = tmp5 - tmp104
tmp107 = tmp5 - tmp106
tmp109 = tmp5 - tmp108
tmp111 = tmp5 - tmp110
tmp113 = tmp5 - tmp112
tmp115 = tmp5 - tmp114
tmp117 = tmp5 - tmp116
tmp119 = tmp5 - tmp118
tmp121 = tmp5 - tmp120
tmp123 = tmp5 - tmp122
tmp125 = tmp5 - tmp124
tmp127 = tmp5 - tmp126
tmp129 = tmp5 - tmp128
tmp131 = tmp5 - tmp130
tl.store(out_ptr0 + x3, tmp5, None)
tl.store(out_ptr1 + x3, tmp7, None)
tl.store(out_ptr2 + x3, tmp9, None)
tl.store(out_ptr3 + x3, tmp11, None)
tl.store(out_ptr4 + x3, tmp13, None)
tl.store(out_ptr5 + x3, tmp15, None)
tl.store(out_ptr6 + x3, tmp17, None)
tl.store(out_ptr7 + x3, tmp19, None)
tl.store(out_ptr8 + x3, tmp21, None)
tl.store(out_ptr9 + x3, tmp23, None)
tl.store(out_ptr10 + x3, tmp25, None)
tl.store(out_ptr11 + x3, tmp27, None)
tl.store(out_ptr12 + x3, tmp29, None)
tl.store(out_ptr13 + x3, tmp31, None)
tl.store(out_ptr14 + x3, tmp33, None)
tl.store(out_ptr15 + x3, tmp35, None)
tl.store(out_ptr16 + x3, tmp37, None)
tl.store(out_ptr17 + x3, tmp39, None)
tl.store(out_ptr18 + x3, tmp41, None)
tl.store(out_ptr19 + x3, tmp43, None)
tl.store(out_ptr20 + x3, tmp45, None)
tl.store(out_ptr21 + x3, tmp47, None)
tl.store(out_ptr22 + x3, tmp49, None)
tl.store(out_ptr23 + x3, tmp51, None)
tl.store(out_ptr24 + x3, tmp53, None)
tl.store(out_ptr25 + x3, tmp55, None)
tl.store(out_ptr26 + x3, tmp57, None)
tl.store(out_ptr27 + x3, tmp59, None)
tl.store(out_ptr28 + x3, tmp61, None)
tl.store(out_ptr29 + x3, tmp63, None)
tl.store(out_ptr30 + x3, tmp65, None)
tl.store(out_ptr31 + x3, tmp67, None)
tl.store(out_ptr32 + x3, tmp69, None)
tl.store(out_ptr33 + x3, tmp71, None)
tl.store(out_ptr34 + x3, tmp73, None)
tl.store(out_ptr35 + x3, tmp75, None)
tl.store(out_ptr36 + x3, tmp77, None)
tl.store(out_ptr37 + x3, tmp79, None)
tl.store(out_ptr38 + x3, tmp81, None)
tl.store(out_ptr39 + x3, tmp83, None)
tl.store(out_ptr40 + x3, tmp85, None)
tl.store(out_ptr41 + x3, tmp87, None)
tl.store(out_ptr42 + x3, tmp89, None)
tl.store(out_ptr43 + x3, tmp91, None)
tl.store(out_ptr44 + x3, tmp93, None)
tl.store(out_ptr45 + x3, tmp95, None)
tl.store(out_ptr46 + x3, tmp97, None)
tl.store(out_ptr47 + x3, tmp99, None)
tl.store(out_ptr48 + x3, tmp101, None)
tl.store(out_ptr49 + x3, tmp103, None)
tl.store(out_ptr50 + x3, tmp105, None)
tl.store(out_ptr51 + x3, tmp107, None)
tl.store(out_ptr52 + x3, tmp109, None)
tl.store(out_ptr53 + x3, tmp111, None)
tl.store(out_ptr54 + x3, tmp113, None)
tl.store(out_ptr55 + x3, tmp115, None)
tl.store(out_ptr56 + x3, tmp117, None)
tl.store(out_ptr57 + x3, tmp119, None)
tl.store(out_ptr58 + x3, tmp121, None)
tl.store(out_ptr59 + x3, tmp123, None)
tl.store(out_ptr60 + x3, tmp125, None)
tl.store(out_ptr61 + x3, tmp127, None)
tl.store(out_ptr62 + x3, tmp129, None)
tl.store(out_ptr63 + x3, tmp131, None)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 262144 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
tl.store(out_ptr1 + x3, tmp8, None)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17,
in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24,
in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31,
in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5,
out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12,
out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18,
out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24,
out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK: tl.
constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 128
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
x1 = xindex // 128
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp3 = tl.load(in_ptr2 + (r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp14 = tl.load(in_ptr2 + (4096 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp23 = tl.load(in_ptr2 + (8192 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp32 = tl.load(in_ptr2 + (12288 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp41 = tl.load(in_ptr2 + (16384 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp49 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp50 = tl.load(in_ptr2 + (20480 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp58 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp59 = tl.load(in_ptr2 + (24576 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp67 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp68 = tl.load(in_ptr2 + (28672 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr2 + (32768 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp86 = tl.load(in_ptr2 + (36864 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp94 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp95 = tl.load(in_ptr2 + (40960 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp103 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp104 = tl.load(in_ptr2 + (45056 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp112 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp113 = tl.load(in_ptr2 + (49152 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp121 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp122 = tl.load(in_ptr2 + (53248 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp130 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp131 = tl.load(in_ptr2 + (57344 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp139 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp140 = tl.load(in_ptr2 + (61440 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp148 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp149 = tl.load(in_ptr2 + (65536 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp157 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp158 = tl.load(in_ptr2 + (69632 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp167 = tl.load(in_ptr2 + (73728 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp175 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp176 = tl.load(in_ptr2 + (77824 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp184 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp185 = tl.load(in_ptr2 + (81920 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp193 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp194 = tl.load(in_ptr2 + (86016 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp202 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp203 = tl.load(in_ptr2 + (90112 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp211 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp212 = tl.load(in_ptr2 + (94208 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp220 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp221 = tl.load(in_ptr2 + (98304 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp229 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp230 = tl.load(in_ptr2 + (102400 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp239 = tl.load(in_ptr2 + (106496 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp247 = tl.load(in_ptr31 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp248 = tl.load(in_ptr2 + (110592 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp256 = tl.load(in_ptr32 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp257 = tl.load(in_ptr2 + (114688 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask & xmask, tmp12, _tmp11)
tmp15 = tmp14 - tmp4
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp16 / tmp7
tmp18 = tmp13 * tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp7
tmp27 = tmp22 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp33 = tmp32 - tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp34 / tmp7
tmp36 = tmp31 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = _tmp38 + tmp37
_tmp38 = tl.where(rmask & xmask, tmp39, _tmp38)
tmp42 = tmp41 - tmp4
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp43 / tmp7
tmp45 = tmp40 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = _tmp47 + tmp46
_tmp47 = tl.where(rmask & xmask, tmp48, _tmp47)
tmp51 = tmp50 - tmp4
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp7
tmp54 = tmp49 * tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = _tmp56 + tmp55
_tmp56 = tl.where(rmask & xmask, tmp57, _tmp56)
tmp60 = tmp59 - tmp4
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp61 / tmp7
tmp63 = tmp58 * tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask & xmask, tmp66, _tmp65)
tmp69 = tmp68 - tmp4
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 / tmp7
tmp72 = tmp67 * tmp71
tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK])
tmp75 = _tmp74 + tmp73
_tmp74 = tl.where(rmask & xmask, tmp75, _tmp74)
tmp78 = tmp77 - tmp4
tmp79 = tl_math.exp(tmp78)
tmp80 = tmp79 / tmp7
tmp81 = tmp76 * tmp80
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK])
tmp84 = _tmp83 + tmp82
_tmp83 = tl.where(rmask & xmask, tmp84, _tmp83)
tmp87 = tmp86 - tmp4
tmp88 = tl_math.exp(tmp87)
tmp89 = tmp88 / tmp7
tmp90 = tmp85 * tmp89
tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK])
tmp93 = _tmp92 + tmp91
_tmp92 = tl.where(rmask & xmask, tmp93, _tmp92)
tmp96 = tmp95 - tmp4
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp97 / tmp7
tmp99 = tmp94 * tmp98
tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK])
tmp102 = _tmp101 + tmp100
_tmp101 = tl.where(rmask & xmask, tmp102, _tmp101)
tmp105 = tmp104 - tmp4
tmp106 = tl_math.exp(tmp105)
tmp107 = tmp106 / tmp7
tmp108 = tmp103 * tmp107
tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK])
tmp111 = _tmp110 + tmp109
_tmp110 = tl.where(rmask & xmask, tmp111, _tmp110)
tmp114 = tmp113 - tmp4
tmp115 = tl_math.exp(tmp114)
tmp116 = tmp115 / tmp7
tmp117 = tmp112 * tmp116
tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK])
tmp120 = _tmp119 + tmp118
_tmp119 = tl.where(rmask & xmask, tmp120, _tmp119)
tmp123 = tmp122 - tmp4
tmp124 = tl_math.exp(tmp123)
tmp125 = tmp124 / tmp7
tmp126 = tmp121 * tmp125
tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK])
tmp129 = _tmp128 + tmp127
_tmp128 = tl.where(rmask & xmask, tmp129, _tmp128)
tmp132 = tmp131 - tmp4
tmp133 = tl_math.exp(tmp132)
tmp134 = tmp133 / tmp7
tmp135 = tmp130 * tmp134
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp138 = _tmp137 + tmp136
_tmp137 = tl.where(rmask & xmask, tmp138, _tmp137)
tmp141 = tmp140 - tmp4
tmp142 = tl_math.exp(tmp141)
tmp143 = tmp142 / tmp7
tmp144 = tmp139 * tmp143
tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK])
tmp147 = _tmp146 + tmp145
_tmp146 = tl.where(rmask & xmask, tmp147, _tmp146)
tmp150 = tmp149 - tmp4
tmp151 = tl_math.exp(tmp150)
tmp152 = tmp151 / tmp7
tmp153 = tmp148 * tmp152
tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK])
tmp156 = _tmp155 + tmp154
_tmp155 = tl.where(rmask & xmask, tmp156, _tmp155)
tmp159 = tmp158 - tmp4
tmp160 = tl_math.exp(tmp159)
tmp161 = tmp160 / tmp7
tmp162 = tmp157 * tmp161
tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK])
tmp165 = _tmp164 + tmp163
_tmp164 = tl.where(rmask & xmask, tmp165, _tmp164)
tmp168 = tmp167 - tmp4
tmp169 = tl_math.exp(tmp168)
tmp170 = tmp169 / tmp7
tmp171 = tmp166 * tmp170
tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK])
tmp174 = _tmp173 + tmp172
_tmp173 = tl.where(rmask & xmask, tmp174, _tmp173)
tmp177 = tmp176 - tmp4
tmp178 = tl_math.exp(tmp177)
tmp179 = tmp178 / tmp7
tmp180 = tmp175 * tmp179
tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK])
tmp183 = _tmp182 + tmp181
_tmp182 = tl.where(rmask & xmask, tmp183, _tmp182)
tmp186 = tmp185 - tmp4
tmp187 = tl_math.exp(tmp186)
tmp188 = tmp187 / tmp7
tmp189 = tmp184 * tmp188
tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK])
tmp192 = _tmp191 + tmp190
_tmp191 = tl.where(rmask & xmask, tmp192, _tmp191)
tmp195 = tmp194 - tmp4
tmp196 = tl_math.exp(tmp195)
tmp197 = tmp196 / tmp7
tmp198 = tmp193 * tmp197
tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK])
tmp201 = _tmp200 + tmp199
_tmp200 = tl.where(rmask & xmask, tmp201, _tmp200)
tmp204 = tmp203 - tmp4
tmp205 = tl_math.exp(tmp204)
tmp206 = tmp205 / tmp7
tmp207 = tmp202 * tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = _tmp209 + tmp208
_tmp209 = tl.where(rmask & xmask, tmp210, _tmp209)
tmp213 = tmp212 - tmp4
tmp214 = tl_math.exp(tmp213)
tmp215 = tmp214 / tmp7
tmp216 = tmp211 * tmp215
tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK])
tmp219 = _tmp218 + tmp217
_tmp218 = tl.where(rmask & xmask, tmp219, _tmp218)
tmp222 = tmp221 - tmp4
tmp223 = tl_math.exp(tmp222)
tmp224 = tmp223 / tmp7
tmp225 = tmp220 * tmp224
tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK])
tmp228 = _tmp227 + tmp226
_tmp227 = tl.where(rmask & xmask, tmp228, _tmp227)
tmp231 = tmp230 - tmp4
tmp232 = tl_math.exp(tmp231)
tmp233 = tmp232 / tmp7
tmp234 = tmp229 * tmp233
tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK])
tmp237 = _tmp236 + tmp235
_tmp236 = tl.where(rmask & xmask, tmp237, _tmp236)
tmp240 = tmp239 - tmp4
tmp241 = tl_math.exp(tmp240)
tmp242 = tmp241 / tmp7
tmp243 = tmp238 * tmp242
tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK])
tmp246 = _tmp245 + tmp244
_tmp245 = tl.where(rmask & xmask, tmp246, _tmp245)
tmp249 = tmp248 - tmp4
tmp250 = tl_math.exp(tmp249)
tmp251 = tmp250 / tmp7
tmp252 = tmp247 * tmp251
tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK])
tmp255 = _tmp254 + tmp253
_tmp254 = tl.where(rmask & xmask, tmp255, _tmp254)
tmp258 = tmp257 - tmp4
tmp259 = tl_math.exp(tmp258)
tmp260 = tmp259 / tmp7
tmp261 = tmp256 * tmp260
tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK])
tmp264 = _tmp263 + tmp262
_tmp263 = tl.where(rmask & xmask, tmp264, _tmp263)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + x3, tmp11, xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr1 + x3, tmp20, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr2 + x3, tmp29, xmask)
tmp38 = tl.sum(_tmp38, 1)[:, None]
tl.store(out_ptr3 + x3, tmp38, xmask)
tmp47 = tl.sum(_tmp47, 1)[:, None]
tl.store(out_ptr4 + x3, tmp47, xmask)
tmp56 = tl.sum(_tmp56, 1)[:, None]
tl.store(out_ptr5 + x3, tmp56, xmask)
tmp65 = tl.sum(_tmp65, 1)[:, None]
tl.store(out_ptr6 + x3, tmp65, xmask)
tmp74 = tl.sum(_tmp74, 1)[:, None]
tl.store(out_ptr7 + x3, tmp74, xmask)
tmp83 = tl.sum(_tmp83, 1)[:, None]
tl.store(out_ptr8 + x3, tmp83, xmask)
tmp92 = tl.sum(_tmp92, 1)[:, None]
tl.store(out_ptr9 + x3, tmp92, xmask)
tmp101 = tl.sum(_tmp101, 1)[:, None]
tl.store(out_ptr10 + x3, tmp101, xmask)
tmp110 = tl.sum(_tmp110, 1)[:, None]
tl.store(out_ptr11 + x3, tmp110, xmask)
tmp119 = tl.sum(_tmp119, 1)[:, None]
tl.store(out_ptr12 + x3, tmp119, xmask)
tmp128 = tl.sum(_tmp128, 1)[:, None]
tl.store(out_ptr13 + x3, tmp128, xmask)
tmp137 = tl.sum(_tmp137, 1)[:, None]
tl.store(out_ptr14 + x3, tmp137, xmask)
tmp146 = tl.sum(_tmp146, 1)[:, None]
tl.store(out_ptr15 + x3, tmp146, xmask)
tmp155 = tl.sum(_tmp155, 1)[:, None]
tl.store(out_ptr16 + x3, tmp155, xmask)
tmp164 = tl.sum(_tmp164, 1)[:, None]
tl.store(out_ptr17 + x3, tmp164, xmask)
tmp173 = tl.sum(_tmp173, 1)[:, None]
tl.store(out_ptr18 + x3, tmp173, xmask)
tmp182 = tl.sum(_tmp182, 1)[:, None]
tl.store(out_ptr19 + x3, tmp182, xmask)
tmp191 = tl.sum(_tmp191, 1)[:, None]
tl.store(out_ptr20 + x3, tmp191, xmask)
tmp200 = tl.sum(_tmp200, 1)[:, None]
tl.store(out_ptr21 + x3, tmp200, xmask)
tmp209 = tl.sum(_tmp209, 1)[:, None]
tl.store(out_ptr22 + x3, tmp209, xmask)
tmp218 = tl.sum(_tmp218, 1)[:, None]
tl.store(out_ptr23 + x3, tmp218, xmask)
tmp227 = tl.sum(_tmp227, 1)[:, None]
tl.store(out_ptr24 + x3, tmp227, xmask)
tmp236 = tl.sum(_tmp236, 1)[:, None]
tl.store(out_ptr25 + x3, tmp236, xmask)
tmp245 = tl.sum(_tmp245, 1)[:, None]
tl.store(out_ptr26 + x3, tmp245, xmask)
tmp254 = tl.sum(_tmp254, 1)[:, None]
tl.store(out_ptr27 + x3, tmp254, xmask)
tmp263 = tl.sum(_tmp263, 1)[:, None]
tl.store(out_ptr28 + x3, tmp263, xmask)
@triton.jit
def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18,
in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25,
in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8,
out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14,
out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20,
out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26,
out_ptr27, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = xindex // 128
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (118784 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (122880 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (126976 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (131072 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (135168 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (139264 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (143360 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp66 = tl.load(in_ptr1 + (147456 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp75 = tl.load(in_ptr1 + (151552 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp84 = tl.load(in_ptr1 + (155648 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp92 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp93 = tl.load(in_ptr1 + (159744 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp101 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp102 = tl.load(in_ptr1 + (163840 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp110 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp111 = tl.load(in_ptr1 + (167936 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp119 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp120 = tl.load(in_ptr1 + (172032 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp128 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp129 = tl.load(in_ptr1 + (176128 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp138 = tl.load(in_ptr1 + (180224 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp147 = tl.load(in_ptr1 + (184320 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp155 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp156 = tl.load(in_ptr1 + (188416 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp164 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp165 = tl.load(in_ptr1 + (192512 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp173 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp174 = tl.load(in_ptr1 + (196608 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp182 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp183 = tl.load(in_ptr1 + (200704 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp191 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp192 = tl.load(in_ptr1 + (204800 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp200 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp201 = tl.load(in_ptr1 + (208896 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp210 = tl.load(in_ptr1 + (212992 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp219 = tl.load(in_ptr1 + (217088 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp227 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp228 = tl.load(in_ptr1 + (221184 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp236 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp237 = tl.load(in_ptr1 + (225280 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp245 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp246 = tl.load(in_ptr1 + (229376 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp67 = tmp66 - tmp2
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 / tmp5
tmp70 = tmp65 * tmp69
tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK])
tmp73 = _tmp72 + tmp71
_tmp72 = tl.where(rmask & xmask, tmp73, _tmp72)
tmp76 = tmp75 - tmp2
tmp77 = tl_math.exp(tmp76)
tmp78 = tmp77 / tmp5
tmp79 = tmp74 * tmp78
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK])
tmp82 = _tmp81 + tmp80
_tmp81 = tl.where(rmask & xmask, tmp82, _tmp81)
tmp85 = tmp84 - tmp2
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp5
tmp88 = tmp83 * tmp87
tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK])
tmp91 = _tmp90 + tmp89
_tmp90 = tl.where(rmask & xmask, tmp91, _tmp90)
tmp94 = tmp93 - tmp2
tmp95 = tl_math.exp(tmp94)
tmp96 = tmp95 / tmp5
tmp97 = tmp92 * tmp96
tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK])
tmp100 = _tmp99 + tmp98
_tmp99 = tl.where(rmask & xmask, tmp100, _tmp99)
tmp103 = tmp102 - tmp2
tmp104 = tl_math.exp(tmp103)
tmp105 = tmp104 / tmp5
tmp106 = tmp101 * tmp105
tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK])
tmp109 = _tmp108 + tmp107
_tmp108 = tl.where(rmask & xmask, tmp109, _tmp108)
tmp112 = tmp111 - tmp2
tmp113 = tl_math.exp(tmp112)
tmp114 = tmp113 / tmp5
tmp115 = tmp110 * tmp114
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp118 = _tmp117 + tmp116
_tmp117 = tl.where(rmask & xmask, tmp118, _tmp117)
tmp121 = tmp120 - tmp2
tmp122 = tl_math.exp(tmp121)
tmp123 = tmp122 / tmp5
tmp124 = tmp119 * tmp123
tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK])
tmp127 = _tmp126 + tmp125
_tmp126 = tl.where(rmask & xmask, tmp127, _tmp126)
tmp130 = tmp129 - tmp2
tmp131 = tl_math.exp(tmp130)
tmp132 = tmp131 / tmp5
tmp133 = tmp128 * tmp132
tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK])
tmp136 = _tmp135 + tmp134
_tmp135 = tl.where(rmask & xmask, tmp136, _tmp135)
tmp139 = tmp138 - tmp2
tmp140 = tl_math.exp(tmp139)
tmp141 = tmp140 / tmp5
tmp142 = tmp137 * tmp141
tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK])
tmp145 = _tmp144 + tmp143
_tmp144 = tl.where(rmask & xmask, tmp145, _tmp144)
tmp148 = tmp147 - tmp2
tmp149 = tl_math.exp(tmp148)
tmp150 = tmp149 / tmp5
tmp151 = tmp146 * tmp150
tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK])
tmp154 = _tmp153 + tmp152
_tmp153 = tl.where(rmask & xmask, tmp154, _tmp153)
tmp157 = tmp156 - tmp2
tmp158 = tl_math.exp(tmp157)
tmp159 = tmp158 / tmp5
tmp160 = tmp155 * tmp159
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = _tmp162 + tmp161
_tmp162 = tl.where(rmask & xmask, tmp163, _tmp162)
tmp166 = tmp165 - tmp2
tmp167 = tl_math.exp(tmp166)
tmp168 = tmp167 / tmp5
tmp169 = tmp164 * tmp168
tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK])
tmp172 = _tmp171 + tmp170
_tmp171 = tl.where(rmask & xmask, tmp172, _tmp171)
tmp175 = tmp174 - tmp2
tmp176 = tl_math.exp(tmp175)
tmp177 = tmp176 / tmp5
tmp178 = tmp173 * tmp177
tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK])
tmp181 = _tmp180 + tmp179
_tmp180 = tl.where(rmask & xmask, tmp181, _tmp180)
tmp184 = tmp183 - tmp2
tmp185 = tl_math.exp(tmp184)
tmp186 = tmp185 / tmp5
tmp187 = tmp182 * tmp186
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp190 = _tmp189 + tmp188
_tmp189 = tl.where(rmask & xmask, tmp190, _tmp189)
tmp193 = tmp192 - tmp2
tmp194 = tl_math.exp(tmp193)
tmp195 = tmp194 / tmp5
tmp196 = tmp191 * tmp195
tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK])
tmp199 = _tmp198 + tmp197
_tmp198 = tl.where(rmask & xmask, tmp199, _tmp198)
tmp202 = tmp201 - tmp2
tmp203 = tl_math.exp(tmp202)
tmp204 = tmp203 / tmp5
tmp205 = tmp200 * tmp204
tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK])
tmp208 = _tmp207 + tmp206
_tmp207 = tl.where(rmask & xmask, tmp208, _tmp207)
tmp211 = tmp210 - tmp2
tmp212 = tl_math.exp(tmp211)
tmp213 = tmp212 / tmp5
tmp214 = tmp209 * tmp213
tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK])
tmp217 = _tmp216 + tmp215
_tmp216 = tl.where(rmask & xmask, tmp217, _tmp216)
tmp220 = tmp219 - tmp2
tmp221 = tl_math.exp(tmp220)
tmp222 = tmp221 / tmp5
tmp223 = tmp218 * tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = _tmp225 + tmp224
_tmp225 = tl.where(rmask & xmask, tmp226, _tmp225)
tmp229 = tmp228 - tmp2
tmp230 = tl_math.exp(tmp229)
tmp231 = tmp230 / tmp5
tmp232 = tmp227 * tmp231
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp235 = _tmp234 + tmp233
_tmp234 = tl.where(rmask & xmask, tmp235, _tmp234)
tmp238 = tmp237 - tmp2
tmp239 = tl_math.exp(tmp238)
tmp240 = tmp239 / tmp5
tmp241 = tmp236 * tmp240
tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK])
tmp244 = _tmp243 + tmp242
_tmp243 = tl.where(rmask & xmask, tmp244, _tmp243)
tmp247 = tmp246 - tmp2
tmp248 = tl_math.exp(tmp247)
tmp249 = tmp248 / tmp5
tmp250 = tmp245 * tmp249
tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK])
tmp253 = _tmp252 + tmp251
_tmp252 = tl.where(rmask & xmask, tmp253, _tmp252)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + x3, tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + x3, tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + x3, tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + x3, tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + x3, tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + x3, tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + x3, tmp63, xmask)
tmp72 = tl.sum(_tmp72, 1)[:, None]
tl.store(out_ptr7 + x3, tmp72, xmask)
tmp81 = tl.sum(_tmp81, 1)[:, None]
tl.store(out_ptr8 + x3, tmp81, xmask)
tmp90 = tl.sum(_tmp90, 1)[:, None]
tl.store(out_ptr9 + x3, tmp90, xmask)
tmp99 = tl.sum(_tmp99, 1)[:, None]
tl.store(out_ptr10 + x3, tmp99, xmask)
tmp108 = tl.sum(_tmp108, 1)[:, None]
tl.store(out_ptr11 + x3, tmp108, xmask)
tmp117 = tl.sum(_tmp117, 1)[:, None]
tl.store(out_ptr12 + x3, tmp117, xmask)
tmp126 = tl.sum(_tmp126, 1)[:, None]
tl.store(out_ptr13 + x3, tmp126, xmask)
tmp135 = tl.sum(_tmp135, 1)[:, None]
tl.store(out_ptr14 + x3, tmp135, xmask)
tmp144 = tl.sum(_tmp144, 1)[:, None]
tl.store(out_ptr15 + x3, tmp144, xmask)
tmp153 = tl.sum(_tmp153, 1)[:, None]
tl.store(out_ptr16 + x3, tmp153, xmask)
tmp162 = tl.sum(_tmp162, 1)[:, None]
tl.store(out_ptr17 + x3, tmp162, xmask)
tmp171 = tl.sum(_tmp171, 1)[:, None]
tl.store(out_ptr18 + x3, tmp171, xmask)
tmp180 = tl.sum(_tmp180, 1)[:, None]
tl.store(out_ptr19 + x3, tmp180, xmask)
tmp189 = tl.sum(_tmp189, 1)[:, None]
tl.store(out_ptr20 + x3, tmp189, xmask)
tmp198 = tl.sum(_tmp198, 1)[:, None]
tl.store(out_ptr21 + x3, tmp198, xmask)
tmp207 = tl.sum(_tmp207, 1)[:, None]
tl.store(out_ptr22 + x3, tmp207, xmask)
tmp216 = tl.sum(_tmp216, 1)[:, None]
tl.store(out_ptr23 + x3, tmp216, xmask)
tmp225 = tl.sum(_tmp225, 1)[:, None]
tl.store(out_ptr24 + x3, tmp225, xmask)
tmp234 = tl.sum(_tmp234, 1)[:, None]
tl.store(out_ptr25 + x3, tmp234, xmask)
tmp243 = tl.sum(_tmp243, 1)[:, None]
tl.store(out_ptr26 + x3, tmp243, xmask)
tmp252 = tl.sum(_tmp252, 1)[:, None]
tl.store(out_ptr27 + x3, tmp252, xmask)
@triton.jit
def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = xindex // 128
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (233472 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (237568 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (241664 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (245760 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (249856 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (253952 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (258048 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + x3, tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + x3, tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + x3, tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + x3, tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + x3, tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + x3, tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + x3, tmp63, xmask)
@triton.jit
def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12,
in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19,
in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26,
in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33,
in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40,
in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47,
in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54,
in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61,
in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 64
r2 = rindex
x1 = xindex // 64
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1, 1], 4, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (r2 + 128 * x1), tmp5 & xmask, eviction_policy
='evict_last', other=0.0)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 >= tmp7
tmp9 = tmp0 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tl.load(in_ptr1 + (r2 + 128 * x1), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 2, tl.int64)
tmp13 = tmp0 >= tmp12
tmp14 = tmp0 < tmp7
tmp15 = tmp13 & tmp14
tmp16 = tl.load(in_ptr2 + (r2 + 128 * x1), tmp15 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tl.full([1, 1], 1, tl.int64)
tmp18 = tmp0 >= tmp17
tmp19 = tmp0 < tmp12
tmp20 = tmp18 & tmp19
tmp21 = tl.load(in_ptr3 + (r2 + 128 * x1), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp22 = tmp0 < tmp17
tmp23 = tl.load(in_ptr4 + (r2 + 128 * x1), tmp22 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = 0.0
tmp25 = tl.where(tmp22, tmp23, tmp24)
tmp26 = tl.where(tmp20, tmp21, tmp25)
tmp27 = tl.where(tmp15, tmp16, tmp26)
tmp28 = tl.where(tmp10, tmp11, tmp27)
tmp29 = tl.where(tmp5, tmp6, tmp28)
tmp30 = tl.full([1, 1], 8, tl.int64)
tmp31 = tmp0 >= tmp30
tmp32 = tl.full([1, 1], 9, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr5 + (r2 + 128 * x1), tmp34 & xmask,
eviction_policy='evict_last', other=0.0)
tmp36 = tl.full([1, 1], 7, tl.int64)
tmp37 = tmp0 >= tmp36
tmp38 = tmp0 < tmp30
tmp39 = tmp37 & tmp38
tmp40 = tl.load(in_ptr6 + (r2 + 128 * x1), tmp39 & xmask,
eviction_policy='evict_last', other=0.0)
tmp41 = tl.full([1, 1], 6, tl.int64)
tmp42 = tmp0 >= tmp41
tmp43 = tmp0 < tmp36
tmp44 = tmp42 & tmp43
tmp45 = tl.load(in_ptr7 + (r2 + 128 * x1), tmp44 & xmask,
eviction_policy='evict_last', other=0.0)
tmp46 = tmp0 >= tmp3
tmp47 = tmp0 < tmp41
tmp48 = tmp46 & tmp47
tmp49 = tl.load(in_ptr8 + (r2 + 128 * x1), tmp48 & xmask,
eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp48, tmp49, tmp29)
tmp51 = tl.where(tmp44, tmp45, tmp50)
tmp52 = tl.where(tmp39, tmp40, tmp51)
tmp53 = tl.where(tmp34, tmp35, tmp52)
tmp54 = tl.full([1, 1], 12, tl.int64)
tmp55 = tmp0 >= tmp54
tmp56 = tl.full([1, 1], 13, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tmp55 & tmp57
tmp59 = tl.load(in_ptr9 + (r2 + 128 * x1), tmp58 & xmask,
eviction_policy='evict_last', other=0.0)
tmp60 = tl.full([1, 1], 11, tl.int64)
tmp61 = tmp0 >= tmp60
tmp62 = tmp0 < tmp54
tmp63 = tmp61 & tmp62
tmp64 = tl.load(in_ptr10 + (r2 + 128 * x1), tmp63 & xmask,
eviction_policy='evict_last', other=0.0)
tmp65 = tl.full([1, 1], 10, tl.int64)
tmp66 = tmp0 >= tmp65
tmp67 = tmp0 < tmp60
tmp68 = tmp66 & tmp67
tmp69 = tl.load(in_ptr11 + (r2 + 128 * x1), tmp68 & xmask,
eviction_policy='evict_last', other=0.0)
tmp70 = tmp0 >= tmp32
tmp71 = tmp0 < tmp65
tmp72 = tmp70 & tmp71
tmp73 = tl.load(in_ptr12 + (r2 + 128 * x1), tmp72 & xmask,
eviction_policy='evict_last', other=0.0)
tmp74 = tl.where(tmp72, tmp73, tmp53)
tmp75 = tl.where(tmp68, tmp69, tmp74)
tmp76 = tl.where(tmp63, tmp64, tmp75)
tmp77 = tl.where(tmp58, tmp59, tmp76)
tmp78 = tl.full([1, 1], 16, tl.int64)
tmp79 = tmp0 >= tmp78
tmp80 = tl.full([1, 1], 17, tl.int64)
tmp81 = tmp0 < tmp80
tmp82 = tmp79 & tmp81
tmp83 = tl.load(in_ptr13 + (r2 + 128 * x1), tmp82 & xmask,
eviction_policy='evict_last', other=0.0)
tmp84 = tl.full([1, 1], 15, tl.int64)
tmp85 = tmp0 >= tmp84
tmp86 = tmp0 < tmp78
tmp87 = tmp85 & tmp86
tmp88 = tl.load(in_ptr14 + (r2 + 128 * x1), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full([1, 1], 14, tl.int64)
tmp90 = tmp0 >= tmp89
tmp91 = tmp0 < tmp84
tmp92 = tmp90 & tmp91
tmp93 = tl.load(in_ptr15 + (r2 + 128 * x1), tmp92 & xmask,
eviction_policy='evict_last', other=0.0)
tmp94 = tmp0 >= tmp56
tmp95 = tmp0 < tmp89
tmp96 = tmp94 & tmp95
tmp97 = tl.load(in_ptr16 + (r2 + 128 * x1), tmp96 & xmask,
eviction_policy='evict_last', other=0.0)
tmp98 = tl.where(tmp96, tmp97, tmp77)
tmp99 = tl.where(tmp92, tmp93, tmp98)
tmp100 = tl.where(tmp87, tmp88, tmp99)
tmp101 = tl.where(tmp82, tmp83, tmp100)
tmp102 = tl.full([1, 1], 20, tl.int64)
tmp103 = tmp0 >= tmp102
tmp104 = tl.full([1, 1], 21, tl.int64)
tmp105 = tmp0 < tmp104
tmp106 = tmp103 & tmp105
tmp107 = tl.load(in_ptr17 + (r2 + 128 * x1), tmp106 & xmask,
eviction_policy='evict_last', other=0.0)
tmp108 = tl.full([1, 1], 19, tl.int64)
tmp109 = tmp0 >= tmp108
tmp110 = tmp0 < tmp102
tmp111 = tmp109 & tmp110
tmp112 = tl.load(in_ptr18 + (r2 + 128 * x1), tmp111 & xmask,
eviction_policy='evict_last', other=0.0)
tmp113 = tl.full([1, 1], 18, tl.int64)
tmp114 = tmp0 >= tmp113
tmp115 = tmp0 < tmp108
tmp116 = tmp114 & tmp115
tmp117 = tl.load(in_ptr19 + (r2 + 128 * x1), tmp116 & xmask,
eviction_policy='evict_last', other=0.0)
tmp118 = tmp0 >= tmp80
tmp119 = tmp0 < tmp113
tmp120 = tmp118 & tmp119
tmp121 = tl.load(in_ptr20 + (r2 + 128 * x1), tmp120 & xmask,
eviction_policy='evict_last', other=0.0)
tmp122 = tl.where(tmp120, tmp121, tmp101)
tmp123 = tl.where(tmp116, tmp117, tmp122)
tmp124 = tl.where(tmp111, tmp112, tmp123)
tmp125 = tl.where(tmp106, tmp107, tmp124)
tmp126 = tl.full([1, 1], 24, tl.int64)
tmp127 = tmp0 >= tmp126
tmp128 = tl.full([1, 1], 25, tl.int64)
tmp129 = tmp0 < tmp128
tmp130 = tmp127 & tmp129
tmp131 = tl.load(in_ptr21 + (r2 + 128 * x1), tmp130 & xmask,
eviction_policy='evict_last', other=0.0)
tmp132 = tl.full([1, 1], 23, tl.int64)
tmp133 = tmp0 >= tmp132
tmp134 = tmp0 < tmp126
tmp135 = tmp133 & tmp134
tmp136 = tl.load(in_ptr22 + (r2 + 128 * x1), tmp135 & xmask,
eviction_policy='evict_last', other=0.0)
tmp137 = tl.full([1, 1], 22, tl.int64)
tmp138 = tmp0 >= tmp137
tmp139 = tmp0 < tmp132
tmp140 = tmp138 & tmp139
tmp141 = tl.load(in_ptr23 + (r2 + 128 * x1), tmp140 & xmask,
eviction_policy='evict_last', other=0.0)
tmp142 = tmp0 >= tmp104
tmp143 = tmp0 < tmp137
tmp144 = tmp142 & tmp143
tmp145 = tl.load(in_ptr24 + (r2 + 128 * x1), tmp144 & xmask,
eviction_policy='evict_last', other=0.0)
tmp146 = tl.where(tmp144, tmp145, tmp125)
tmp147 = tl.where(tmp140, tmp141, tmp146)
tmp148 = tl.where(tmp135, tmp136, tmp147)
tmp149 = tl.where(tmp130, tmp131, tmp148)
tmp150 = tl.full([1, 1], 28, tl.int64)
tmp151 = tmp0 >= tmp150
tmp152 = tl.full([1, 1], 29, tl.int64)
tmp153 = tmp0 < tmp152
tmp154 = tmp151 & tmp153
tmp155 = tl.load(in_ptr25 + (r2 + 128 * x1), tmp154 & xmask,
eviction_policy='evict_last', other=0.0)
tmp156 = tl.full([1, 1], 27, tl.int64)
tmp157 = tmp0 >= tmp156
tmp158 = tmp0 < tmp150
tmp159 = tmp157 & tmp158
tmp160 = tl.load(in_ptr26 + (r2 + 128 * x1), tmp159 & xmask,
eviction_policy='evict_last', other=0.0)
tmp161 = tl.full([1, 1], 26, tl.int64)
tmp162 = tmp0 >= tmp161
tmp163 = tmp0 < tmp156
tmp164 = tmp162 & tmp163
tmp165 = tl.load(in_ptr27 + (r2 + 128 * x1), tmp164 & xmask,
eviction_policy='evict_last', other=0.0)
tmp166 = tmp0 >= tmp128
tmp167 = tmp0 < tmp161
tmp168 = tmp166 & tmp167
tmp169 = tl.load(in_ptr28 + (r2 + 128 * x1), tmp168 & xmask,
eviction_policy='evict_last', other=0.0)
tmp170 = tl.where(tmp168, tmp169, tmp149)
tmp171 = tl.where(tmp164, tmp165, tmp170)
tmp172 = tl.where(tmp159, tmp160, tmp171)
tmp173 = tl.where(tmp154, tmp155, tmp172)
tmp174 = tl.full([1, 1], 32, tl.int64)
tmp175 = tmp0 >= tmp174
tmp176 = tl.full([1, 1], 33, tl.int64)
tmp177 = tmp0 < tmp176
tmp178 = tmp175 & tmp177
tmp179 = tl.load(in_ptr29 + (r2 + 128 * x1), tmp178 & xmask,
eviction_policy='evict_last', other=0.0)
tmp180 = tl.full([1, 1], 31, tl.int64)
tmp181 = tmp0 >= tmp180
tmp182 = tmp0 < tmp174
tmp183 = tmp181 & tmp182
tmp184 = tl.load(in_ptr30 + (r2 + 128 * x1), tmp183 & xmask,
eviction_policy='evict_last', other=0.0)
tmp185 = tl.full([1, 1], 30, tl.int64)
tmp186 = tmp0 >= tmp185
tmp187 = tmp0 < tmp180
tmp188 = tmp186 & tmp187
tmp189 = tl.load(in_ptr31 + (r2 + 128 * x1), tmp188 & xmask,
eviction_policy='evict_last', other=0.0)
tmp190 = tmp0 >= tmp152
tmp191 = tmp0 < tmp185
tmp192 = tmp190 & tmp191
tmp193 = tl.load(in_ptr32 + (r2 + 128 * x1), tmp192 & xmask,
eviction_policy='evict_last', other=0.0)
tmp194 = tl.where(tmp192, tmp193, tmp173)
tmp195 = tl.where(tmp188, tmp189, tmp194)
tmp196 = tl.where(tmp183, tmp184, tmp195)
tmp197 = tl.where(tmp178, tmp179, tmp196)
tmp198 = tl.full([1, 1], 36, tl.int64)
tmp199 = tmp0 >= tmp198
tmp200 = tl.full([1, 1], 37, tl.int64)
tmp201 = tmp0 < tmp200
tmp202 = tmp199 & tmp201
tmp203 = tl.load(in_ptr33 + (r2 + 128 * x1), tmp202 & xmask,
eviction_policy='evict_last', other=0.0)
tmp204 = tl.full([1, 1], 35, tl.int64)
tmp205 = tmp0 >= tmp204
tmp206 = tmp0 < tmp198
tmp207 = tmp205 & tmp206
tmp208 = tl.load(in_ptr34 + (r2 + 128 * x1), tmp207 & xmask,
eviction_policy='evict_last', other=0.0)
tmp209 = tl.full([1, 1], 34, tl.int64)
tmp210 = tmp0 >= tmp209
tmp211 = tmp0 < tmp204
tmp212 = tmp210 & tmp211
tmp213 = tl.load(in_ptr35 + (r2 + 128 * x1), tmp212 & xmask,
eviction_policy='evict_last', other=0.0)
tmp214 = tmp0 >= tmp176
tmp215 = tmp0 < tmp209
tmp216 = tmp214 & tmp215
tmp217 = tl.load(in_ptr36 + (r2 + 128 * x1), tmp216 & xmask,
eviction_policy='evict_last', other=0.0)
tmp218 = tl.where(tmp216, tmp217, tmp197)
tmp219 = tl.where(tmp212, tmp213, tmp218)
tmp220 = tl.where(tmp207, tmp208, tmp219)
tmp221 = tl.where(tmp202, tmp203, tmp220)
tmp222 = tl.full([1, 1], 40, tl.int64)
tmp223 = tmp0 >= tmp222
tmp224 = tl.full([1, 1], 41, tl.int64)
tmp225 = tmp0 < tmp224
tmp226 = tmp223 & tmp225
tmp227 = tl.load(in_ptr37 + (r2 + 128 * x1), tmp226 & xmask,
eviction_policy='evict_last', other=0.0)
tmp228 = tl.full([1, 1], 39, tl.int64)
tmp229 = tmp0 >= tmp228
tmp230 = tmp0 < tmp222
tmp231 = tmp229 & tmp230
tmp232 = tl.load(in_ptr38 + (r2 + 128 * x1), tmp231 & xmask,
eviction_policy='evict_last', other=0.0)
tmp233 = tl.full([1, 1], 38, tl.int64)
tmp234 = tmp0 >= tmp233
tmp235 = tmp0 < tmp228
tmp236 = tmp234 & tmp235
tmp237 = tl.load(in_ptr39 + (r2 + 128 * x1), tmp236 & xmask,
eviction_policy='evict_last', other=0.0)
tmp238 = tmp0 >= tmp200
tmp239 = tmp0 < tmp233
tmp240 = tmp238 & tmp239
tmp241 = tl.load(in_ptr40 + (r2 + 128 * x1), tmp240 & xmask,
eviction_policy='evict_last', other=0.0)
tmp242 = tl.where(tmp240, tmp241, tmp221)
tmp243 = tl.where(tmp236, tmp237, tmp242)
tmp244 = tl.where(tmp231, tmp232, tmp243)
tmp245 = tl.where(tmp226, tmp227, tmp244)
tmp246 = tl.full([1, 1], 44, tl.int64)
tmp247 = tmp0 >= tmp246
tmp248 = tl.full([1, 1], 45, tl.int64)
tmp249 = tmp0 < tmp248
tmp250 = tmp247 & tmp249
tmp251 = tl.load(in_ptr41 + (r2 + 128 * x1), tmp250 & xmask,
eviction_policy='evict_last', other=0.0)
tmp252 = tl.full([1, 1], 43, tl.int64)
tmp253 = tmp0 >= tmp252
tmp254 = tmp0 < tmp246
tmp255 = tmp253 & tmp254
tmp256 = tl.load(in_ptr42 + (r2 + 128 * x1), tmp255 & xmask,
eviction_policy='evict_last', other=0.0)
tmp257 = tl.full([1, 1], 42, tl.int64)
tmp258 = tmp0 >= tmp257
tmp259 = tmp0 < tmp252
tmp260 = tmp258 & tmp259
tmp261 = tl.load(in_ptr43 + (r2 + 128 * x1), tmp260 & xmask,
eviction_policy='evict_last', other=0.0)
tmp262 = tmp0 >= tmp224
tmp263 = tmp0 < tmp257
tmp264 = tmp262 & tmp263
tmp265 = tl.load(in_ptr44 + (r2 + 128 * x1), tmp264 & xmask,
eviction_policy='evict_last', other=0.0)
tmp266 = tl.where(tmp264, tmp265, tmp245)
tmp267 = tl.where(tmp260, tmp261, tmp266)
tmp268 = tl.where(tmp255, tmp256, tmp267)
tmp269 = tl.where(tmp250, tmp251, tmp268)
tmp270 = tl.full([1, 1], 48, tl.int64)
tmp271 = tmp0 >= tmp270
tmp272 = tl.full([1, 1], 49, tl.int64)
tmp273 = tmp0 < tmp272
tmp274 = tmp271 & tmp273
tmp275 = tl.load(in_ptr45 + (r2 + 128 * x1), tmp274 & xmask,
eviction_policy='evict_last', other=0.0)
tmp276 = tl.full([1, 1], 47, tl.int64)
tmp277 = tmp0 >= tmp276
tmp278 = tmp0 < tmp270
tmp279 = tmp277 & tmp278
tmp280 = tl.load(in_ptr46 + (r2 + 128 * x1), tmp279 & xmask,
eviction_policy='evict_last', other=0.0)
tmp281 = tl.full([1, 1], 46, tl.int64)
tmp282 = tmp0 >= tmp281
tmp283 = tmp0 < tmp276
tmp284 = tmp282 & tmp283
tmp285 = tl.load(in_ptr47 + (r2 + 128 * x1), tmp284 & xmask,
eviction_policy='evict_last', other=0.0)
tmp286 = tmp0 >= tmp248
tmp287 = tmp0 < tmp281
tmp288 = tmp286 & tmp287
tmp289 = tl.load(in_ptr48 + (r2 + 128 * x1), tmp288 & xmask,
eviction_policy='evict_last', other=0.0)
tmp290 = tl.where(tmp288, tmp289, tmp269)
tmp291 = tl.where(tmp284, tmp285, tmp290)
tmp292 = tl.where(tmp279, tmp280, tmp291)
tmp293 = tl.where(tmp274, tmp275, tmp292)
tmp294 = tl.full([1, 1], 52, tl.int64)
tmp295 = tmp0 >= tmp294
tmp296 = tl.full([1, 1], 53, tl.int64)
tmp297 = tmp0 < tmp296
tmp298 = tmp295 & tmp297
tmp299 = tl.load(in_ptr49 + (r2 + 128 * x1), tmp298 & xmask,
eviction_policy='evict_last', other=0.0)
tmp300 = tl.full([1, 1], 51, tl.int64)
tmp301 = tmp0 >= tmp300
tmp302 = tmp0 < tmp294
tmp303 = tmp301 & tmp302
tmp304 = tl.load(in_ptr50 + (r2 + 128 * x1), tmp303 & xmask,
eviction_policy='evict_last', other=0.0)
tmp305 = tl.full([1, 1], 50, tl.int64)
tmp306 = tmp0 >= tmp305
tmp307 = tmp0 < tmp300
tmp308 = tmp306 & tmp307
tmp309 = tl.load(in_ptr51 + (r2 + 128 * x1), tmp308 & xmask,
eviction_policy='evict_last', other=0.0)
tmp310 = tmp0 >= tmp272
tmp311 = tmp0 < tmp305
tmp312 = tmp310 & tmp311
tmp313 = tl.load(in_ptr52 + (r2 + 128 * x1), tmp312 & xmask,
eviction_policy='evict_last', other=0.0)
tmp314 = tl.where(tmp312, tmp313, tmp293)
tmp315 = tl.where(tmp308, tmp309, tmp314)
tmp316 = tl.where(tmp303, tmp304, tmp315)
tmp317 = tl.where(tmp298, tmp299, tmp316)
tmp318 = tl.full([1, 1], 56, tl.int64)
tmp319 = tmp0 >= tmp318
tmp320 = tl.full([1, 1], 57, tl.int64)
tmp321 = tmp0 < tmp320
tmp322 = tmp319 & tmp321
tmp323 = tl.load(in_ptr53 + (r2 + 128 * x1), tmp322 & xmask,
eviction_policy='evict_last', other=0.0)
tmp324 = tl.full([1, 1], 55, tl.int64)
tmp325 = tmp0 >= tmp324
tmp326 = tmp0 < tmp318
tmp327 = tmp325 & tmp326
tmp328 = tl.load(in_ptr54 + (r2 + 128 * x1), tmp327 & xmask,
eviction_policy='evict_last', other=0.0)
tmp329 = tl.full([1, 1], 54, tl.int64)
tmp330 = tmp0 >= tmp329
tmp331 = tmp0 < tmp324
tmp332 = tmp330 & tmp331
tmp333 = tl.load(in_ptr55 + (r2 + 128 * x1), tmp332 & xmask,
eviction_policy='evict_last', other=0.0)
tmp334 = tmp0 >= tmp296
tmp335 = tmp0 < tmp329
tmp336 = tmp334 & tmp335
tmp337 = tl.load(in_ptr56 + (r2 + 128 * x1), tmp336 & xmask,
eviction_policy='evict_last', other=0.0)
tmp338 = tl.where(tmp336, tmp337, tmp317)
tmp339 = tl.where(tmp332, tmp333, tmp338)
tmp340 = tl.where(tmp327, tmp328, tmp339)
tmp341 = tl.where(tmp322, tmp323, tmp340)
tmp342 = tl.full([1, 1], 60, tl.int64)
tmp343 = tmp0 >= tmp342
tmp344 = tl.full([1, 1], 61, tl.int64)
tmp345 = tmp0 < tmp344
tmp346 = tmp343 & tmp345
tmp347 = tl.load(in_ptr57 + (r2 + 128 * x1), tmp346 & xmask,
eviction_policy='evict_last', other=0.0)
tmp348 = tl.full([1, 1], 59, tl.int64)
tmp349 = tmp0 >= tmp348
tmp350 = tmp0 < tmp342
tmp351 = tmp349 & tmp350
tmp352 = tl.load(in_ptr58 + (r2 + 128 * x1), tmp351 & xmask,
eviction_policy='evict_last', other=0.0)
tmp353 = tl.full([1, 1], 58, tl.int64)
tmp354 = tmp0 >= tmp353
tmp355 = tmp0 < tmp348
tmp356 = tmp354 & tmp355
tmp357 = tl.load(in_ptr59 + (r2 + 128 * x1), tmp356 & xmask,
eviction_policy='evict_last', other=0.0)
tmp358 = tmp0 >= tmp320
tmp359 = tmp0 < tmp353
tmp360 = tmp358 & tmp359
tmp361 = tl.load(in_ptr60 + (r2 + 128 * x1), tmp360 & xmask,
eviction_policy='evict_last', other=0.0)
tmp362 = tl.where(tmp360, tmp361, tmp341)
tmp363 = tl.where(tmp356, tmp357, tmp362)
tmp364 = tl.where(tmp351, tmp352, tmp363)
tmp365 = tl.where(tmp346, tmp347, tmp364)
tmp366 = tl.full([1, 1], 63, tl.int64)
tmp367 = tmp0 >= tmp366
tmp368 = tl.load(in_ptr61 + (r2 + 128 * x1), tmp367 & xmask,
eviction_policy='evict_last', other=0.0)
tmp369 = tl.full([1, 1], 62, tl.int64)
tmp370 = tmp0 >= tmp369
tmp371 = tmp0 < tmp366
tmp372 = tmp370 & tmp371
tmp373 = tl.load(in_ptr62 + (r2 + 128 * x1), tmp372 & xmask,
eviction_policy='evict_last', other=0.0)
tmp374 = tmp0 >= tmp344
tmp375 = tmp0 < tmp369
tmp376 = tmp374 & tmp375
tmp377 = tl.load(in_ptr63 + (r2 + 128 * x1), tmp376 & xmask,
eviction_policy='evict_last', other=0.0)
tmp378 = tl.where(tmp376, tmp377, tmp365)
tmp379 = tl.where(tmp372, tmp373, tmp378)
tmp380 = tl.where(tmp367, tmp368, tmp379)
tmp381 = tmp380 * tmp380
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp384 = tl.where(xmask, tmp382, 0)
tmp385 = tl.sum(tmp384, 1)[:, None]
tmp386 = libdevice.sqrt(tmp385)
tl.store(in_out_ptr0 + (r2 + 128 * x3), tmp380, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp386, xmask)
@triton.jit
def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tmp9 = libdevice.sqrt(tmp7)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = 1e-12
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = tmp10 / tmp13
tmp15 = triton_helpers.maximum(tmp9, tmp12)
tmp16 = tmp14 / tmp15
tl.store(out_ptr0 + (r1 + 8192 * x0), tmp16, rmask & xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_3, (64, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0[grid(16384)](primals_1, buf0,
16384, 128, XBLOCK=64, RBLOCK=4, num_warps=8, num_stages=1)
buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1),
torch.float32)
buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096,
1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096,
1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
triton_poi_fused_div_sub_1[grid(2097152)](primals_1, buf0,
primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19,
buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39,
buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60,
buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80,
buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100,
buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118,
buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136,
buf138, buf141, buf143, buf145, 2097152, XBLOCK=512, num_warps=
8, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
triton_per_fused__softmax_2[grid(16384)](buf2, buf3, buf4, 16384,
64, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sub_sum_3[grid(512)](buf1, primals_3, buf2,
buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19,
buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39,
buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60,
buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16,
buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36,
buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56,
buf58, buf61, buf63, buf65, buf67, 512, 4096, XBLOCK=1, RBLOCK=
1024, num_warps=16, num_stages=1)
buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sum_4[grid(512)](buf69, buf2, buf3, buf4,
buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89,
buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107,
buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125,
buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83,
buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103,
buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121,
buf124, buf126, buf128, buf130, 512, 4096, XBLOCK=1, RBLOCK=
1024, num_warps=16, num_stages=1)
buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sum_5[grid(512)](buf132, buf2, buf3, buf4,
buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135,
buf137, buf139, buf142, buf144, buf146, 512, 4096, XBLOCK=1,
RBLOCK=1024, num_warps=16, num_stages=1)
buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32)
buf23 = buf14
del buf14
buf32 = buf23
del buf23
buf41 = buf32
del buf32
buf50 = buf41
del buf41
buf59 = buf50
del buf50
buf68 = buf59
del buf59
buf77 = buf68
del buf68
buf86 = buf77
del buf77
buf95 = buf86
del buf86
buf104 = buf95
del buf95
buf113 = buf104
del buf104
buf122 = buf113
del buf113
buf131 = buf122
del buf122
buf140 = buf131
del buf131
buf147 = buf140
del buf140
buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32)
buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0)
del buf148
triton_per_fused_copy_linalg_vector_norm_zeros_6[grid(256)](buf147,
buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18,
buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34,
buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67,
buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83,
buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99,
buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117,
buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135,
buf133, buf146, buf144, buf142, 256, 128, XBLOCK=1, num_warps=2,
num_stages=1)
del buf101
del buf103
del buf106
del buf108
del buf11
del buf110
del buf112
del buf115
del buf117
del buf119
del buf121
del buf124
del buf126
del buf128
del buf13
del buf130
del buf133
del buf135
del buf137
del buf139
del buf142
del buf144
del buf146
del buf16
del buf18
del buf20
del buf22
del buf25
del buf27
del buf29
del buf31
del buf34
del buf36
del buf38
del buf40
del buf43
del buf45
del buf47
del buf49
del buf5
del buf52
del buf54
del buf56
del buf58
del buf61
del buf63
del buf65
del buf67
del buf7
del buf70
del buf72
del buf74
del buf76
del buf79
del buf81
del buf83
del buf85
del buf88
del buf9
del buf90
del buf92
del buf94
del buf97
del buf99
buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0)
del buf150
buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32)
triton_red_fused_div_linalg_vector_norm_7[grid(4)](buf151, buf147,
buf149, buf152, 4, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(
primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15,
buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35,
buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55,
buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75,
buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96,
buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114,
buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132,
buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151)
class NetVLADNew(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super(NetVLADNew, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
def init_params(self, clsts, traindescs):
if self.vladv2 is False:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
dsSq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
self.alpha = (-np.log(0.01) / np.mean(dsSq[:, 1] - dsSq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, dsSq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, input_0):
primals_3 = self.centroids
primals_2 = self.conv.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Rick0514/VPR_SMCN | NetVLAD | false | 3,089 | [
"MIT"
] | 0 | 7a00dc8e4de0c21438474c05a4a7be18d05367fa | https://github.com/Rick0514/VPR_SMCN/tree/7a00dc8e4de0c21438474c05a4a7be18d05367fa | import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from sklearn.neighbors import NearestNeighbors
class Model(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super().__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
def init_params(self, clsts, traindescs):
if self.vladv2 is False:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
dsSq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
self.alpha = (-np.log(0.01) / np.mean(dsSq[:, 1] - dsSq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, dsSq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1)
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout
=x.layout, device=x.device)
for C in range(self.num_clusters):
residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3
) - self.centroids[C:C + 1, :].expand(x_flatten.size(-1), -
1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign[:, C:C + 1, :].unsqueeze(2)
vlad[:, C:C + 1, :] = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2)
vlad = vlad.view(x.size(0), -1)
vlad = F.normalize(vlad, p=2, dim=1)
return vlad
def get_inputs():
return [torch.rand([4, 128, 64, 64])]
def get_init_inputs():
return []
|
wTransitionLinearUnit | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ub/cub3xn45cqxalmbnxe4sf6l66wmg5tqwsthpjxa6j7tc4r4u4ugi.py
# Topologically Sorted Source Nodes: [mean, sub, std, z_cov], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
# Source node to ATen node mapping:
# mean => mean
# std => sqrt, var
# sub => sub
# z_cov => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%primals_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1,), kwargs = {correction: 1.0})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_per_fused_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp5 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.sum(tmp13, 1)[:, None]
tmp16 = 16.0
tmp17 = tmp3 / tmp16
tmp18 = tmp0 - tmp17
tmp19 = 15.0
tmp20 = tmp15 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp18 / tmp21
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp22, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# hidden => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/km/ckmfeimdfxz47uw5enned4orpdmheovv6yjilomrxzv4aqufy645.py
# Topologically Sorted Source Nodes: [update_gate, w_update_1, sub_1, mul, mul_1, add], Original ATen: [aten.sigmoid, aten.clamp, aten.rsub, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# sub_1 => sub_1
# update_gate => sigmoid
# w_update_1 => clamp_max, clamp_min
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm_2,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%addmm_1, -0.1), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 0.1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_8), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %sigmoid), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_clamp_mul_rsub_sigmoid_2 = async_compile.triton('triton_poi_fused_add_clamp_mul_rsub_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_rsub_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x2), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = -0.1
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = 0.1
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = tmp10 * tmp1
tmp12 = tmp5 + tmp11
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, std, z_cov], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mean_std_sub_0.run(primals_1, buf4, 1, 16, grid=grid(1), stream=stream0)
del primals_1
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf4, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf5)
del primals_2
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf6, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [w_update], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf6, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_5
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf6, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_7
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [update_gate, w_update_1, sub_1, mul, mul_1, add], Original ATen: [aten.sigmoid, aten.clamp, aten.rsub, aten.mul, aten.add]
triton_poi_fused_add_clamp_mul_rsub_sigmoid_2.run(buf8, primals_8, buf7, buf9, 256, grid=grid(256), stream=stream0)
return (buf9, primals_8, reinterpret_tensor(buf4, (4, 4), (1, 4), 0), buf6, buf7, buf8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from scipy.sparse import *
class wTransitionLinearUnit(Module):
def __init__(self, ori_dim, tar_dim):
super(wTransitionLinearUnit, self).__init__()
self.linear_1 = torch.nn.Linear(tar_dim, ori_dim)
self.linear_2 = torch.nn.Linear(tar_dim, tar_dim)
self.linear_3 = torch.nn.Linear(tar_dim, tar_dim)
self.ori_dim = ori_dim
self.tar_dim = tar_dim
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, last_w, z_cov):
z_cov = (z_cov - z_cov.mean()) / z_cov.std()
hidden = F.relu(self.linear_1(z_cov.t()))
w_update = self.linear_2(hidden)
update_gate = torch.sigmoid(self.linear_3(hidden))
w_update = torch.clamp(w_update, min=-0.1, max=0.1)
return (1 - update_gate) * last_w + w_update * update_gate
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'ori_dim': 4, 'tar_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
from torch.nn.modules.module import Module
from scipy.sparse import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp5 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.sum(tmp13, 1)[:, None]
tmp16 = 16.0
tmp17 = tmp3 / tmp16
tmp18 = tmp0 - tmp17
tmp19 = 15.0
tmp20 = tmp15 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp18 / tmp21
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp22, None)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_clamp_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x2, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = -0.1
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = 0.1
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = tmp10 * tmp1
tmp12 = tmp5 + tmp11
tl.store(out_ptr0 + x2, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mean_std_sub_0[grid(1)](primals_1, buf4, 1, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_1
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf5)
del primals_2
buf6 = buf5
del buf5
triton_poi_fused_relu_1[grid(16)](buf6, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf6, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_5
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, buf6, reinterpret_tensor(primals_6,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_7
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_clamp_mul_rsub_sigmoid_2[grid(256)](buf8,
primals_8, buf7, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
return buf9, primals_8, reinterpret_tensor(buf4, (4, 4), (1, 4), 0
), buf6, buf7, buf8, primals_6, primals_4
class wTransitionLinearUnitNew(Module):
def __init__(self, ori_dim, tar_dim):
super(wTransitionLinearUnitNew, self).__init__()
self.linear_1 = torch.nn.Linear(tar_dim, ori_dim)
self.linear_2 = torch.nn.Linear(tar_dim, tar_dim)
self.linear_3 = torch.nn.Linear(tar_dim, tar_dim)
self.ori_dim = ori_dim
self.tar_dim = tar_dim
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, input_0, input_1):
primals_1 = self.linear_1.weight
primals_3 = self.linear_1.bias
primals_2 = self.linear_2.weight
primals_5 = self.linear_2.bias
primals_4 = self.linear_3.weight
primals_7 = self.linear_3.bias
primals_8 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| TTomatoZhang/GHGCN | wTransitionLinearUnit | false | 3,090 | [
"Apache-2.0"
] | 0 | 09a07ff9e29e5889b912ca5feff74bb9308eda55 | https://github.com/TTomatoZhang/GHGCN/tree/09a07ff9e29e5889b912ca5feff74bb9308eda55 | from torch.nn import Module
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from scipy.sparse import *
class Model(Module):
def __init__(self, ori_dim, tar_dim):
super().__init__()
self.linear_1 = torch.nn.Linear(tar_dim, ori_dim)
self.linear_2 = torch.nn.Linear(tar_dim, tar_dim)
self.linear_3 = torch.nn.Linear(tar_dim, tar_dim)
self.ori_dim = ori_dim
self.tar_dim = tar_dim
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, last_w, z_cov):
z_cov = (z_cov - z_cov.mean()) / z_cov.std()
hidden = F.relu(self.linear_1(z_cov.t()))
w_update = self.linear_2(hidden)
update_gate = torch.sigmoid(self.linear_3(hidden))
w_update = torch.clamp(w_update, min=-0.1, max=0.1)
return (1 - update_gate) * last_w + w_update * update_gate
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
ModMBStddevLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mi/cmi24qb25fs7ygfa5sk324jr6btb27kyh56k3h4duigwphd56khs.py
# Topologically Sorted Source Nodes: [y_1, add, y_2, mean, y_4], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.repeat]
# Source node to ATen node mapping:
# add => add
# mean => mean
# y_1 => var
# y_2 => sqrt
# y_4 => repeat
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [0]), kwargs = {correction: 0})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [2, 3, 4], True), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%squeeze, [4, 1, 4, 4]), kwargs = {})
triton_per_fused_add_mean_repeat_sqrt_var_0 = async_compile.triton('triton_per_fused_add_mean_repeat_sqrt_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_repeat_sqrt_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_repeat_sqrt_var_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp28, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [y_1, add, y_2, mean, y_4], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.repeat]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_repeat_sqrt_var_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ModMBStddevLayer(nn.Module):
"""Modified MiniBatch Stddev Layer.
This layer is modified from ``MiniBatchStddevLayer`` used in PGGAN. In
StyleGAN2, the authors add a new feature, `channel_groups`, into this
layer.
"""
def __init__(self, group_size=4, channel_groups=1, sync_groups=None,
eps=1e-08):
super(ModMBStddevLayer, self).__init__()
self.group_size = group_size
self.eps = eps
self.channel_groups = channel_groups
self.sync_groups = group_size if sync_groups is None else sync_groups
def forward(self, x):
assert x.shape[0] <= self.group_size or x.shape[0
] % self.group_size == 0, f'Batch size be smaller than or equal to group size. Otherwise, batch size should be divisible by the group size.But got batch size {x.shape[0]}, group size {self.group_size}'
assert x.shape[1
] % self.channel_groups == 0, f'"channel_groups" must be divided by the feature channels. channel_groups: {self.channel_groups}, feature channels: {x.shape[1]}'
n, c, h, w = x.shape
group_size = min(n, self.group_size)
y = torch.reshape(x, (group_size, -1, self.channel_groups, c //
self.channel_groups, h, w))
y = torch.var(y, dim=0, unbiased=False)
y = torch.sqrt(y + self.eps)
y = y.mean(dim=(2, 3, 4), keepdim=True).squeeze(2)
y = y.repeat(group_size, 1, h, w)
return torch.cat([x, y], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_repeat_sqrt_var_0(in_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = rindex // 16
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]),
tmp28, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64)
get_raw_stream(0)
triton_per_fused_add_mean_repeat_sqrt_var_0[grid(1)](arg0_1, buf2,
1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf3,
class ModMBStddevLayerNew(nn.Module):
"""Modified MiniBatch Stddev Layer.
This layer is modified from ``MiniBatchStddevLayer`` used in PGGAN. In
StyleGAN2, the authors add a new feature, `channel_groups`, into this
layer.
"""
def __init__(self, group_size=4, channel_groups=1, sync_groups=None,
eps=1e-08):
super(ModMBStddevLayerNew, self).__init__()
self.group_size = group_size
self.eps = eps
self.channel_groups = channel_groups
self.sync_groups = group_size if sync_groups is None else sync_groups
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| akimotty877/mmediting | ModMBStddevLayer | false | 3,091 | [
"Apache-2.0"
] | 0 | cae872d6f3e867ba144c7c0dbc29a0ee1a29e5a6 | https://github.com/akimotty877/mmediting/tree/cae872d6f3e867ba144c7c0dbc29a0ee1a29e5a6 | import torch
import torch.nn as nn
class Model(nn.Module):
"""Modified MiniBatch Stddev Layer.
This layer is modified from ``MiniBatchStddevLayer`` used in PGGAN. In
StyleGAN2, the authors add a new feature, `channel_groups`, into this
layer.
"""
def __init__(self, group_size=4, channel_groups=1, sync_groups=None,
eps=1e-08):
super().__init__()
self.group_size = group_size
self.eps = eps
self.channel_groups = channel_groups
self.sync_groups = group_size if sync_groups is None else sync_groups
def forward(self, x):
assert x.shape[0] <= self.group_size or x.shape[0
] % self.group_size == 0, f'Batch size be smaller than or equal to group size. Otherwise, batch size should be divisible by the group size.But got batch size {x.shape[0]}, group size {self.group_size}'
assert x.shape[1
] % self.channel_groups == 0, f'"channel_groups" must be divided by the feature channels. channel_groups: {self.channel_groups}, feature channels: {x.shape[1]}'
n, c, h, w = x.shape
group_size = min(n, self.group_size)
y = torch.reshape(x, (group_size, -1, self.channel_groups, c //
self.channel_groups, h, w))
y = torch.var(y, dim=0, unbiased=False)
y = torch.sqrt(y + self.eps)
y = y.mean(dim=(2, 3, 4), keepdim=True).squeeze(2)
y = y.repeat(group_size, 1, h, w)
return torch.cat([x, y], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
RegModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ff/cffi7vxidma5gei4f6wznc3qzapljmsv5w6dvkcys2pj7dzl4a37.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yr/cyrkpaui6u3a2etleqs5zvydgg77e6mybur4ulxqq3a34hikevdx.py
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten._prelu_kernel]
# Source node to ATen node mapping:
# h2 => gt, mul, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %view_3), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_1 = async_compile.triton('triton_poi_fused__prelu_kernel_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 50), (50, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (1, ), (1, ))
assert_size_stride(primals_7, (1, 100), (100, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 3200, grid=grid(3200), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [a2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 100), (1, 50), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1), torch.float32)
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten._prelu_kernel]
triton_poi_fused__prelu_kernel_1.run(buf2, primals_6, buf3, 6400, grid=grid(6400), stream=stream0)
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_7, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf5)
del primals_8
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), buf2, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), primals_7, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class RegModel(nn.Module):
def __init__(self, input_size):
super(RegModel, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.relu1 = nn.ReLU()
self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 100)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(100, 1)
def forward(self, input_):
a1 = self.fc1(input_)
h1 = self.relu1(a1)
dout = self.dout(h1)
a2 = self.fc2(dout)
h2 = self.prelu(a2)
y = self.out(h2)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 50), (50, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (1,), (1,))
assert_size_stride(primals_7, (1, 100), (100, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf1,
primals_2, buf6, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 50),
(50, 1), 0), reinterpret_tensor(primals_4, (50, 100), (1, 50),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1),
torch.float32)
triton_poi_fused__prelu_kernel_1[grid(6400)](buf2, primals_6, buf3,
6400, XBLOCK=128, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf3, (64, 100),
(100, 1), 0), reinterpret_tensor(primals_7, (100, 1), (1, 100),
0), alpha=1, beta=1, out=buf5)
del primals_8
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 50), (50, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 100), (100, 1), 0
), primals_7, primals_4, buf6
class RegModelNew(nn.Module):
def __init__(self, input_size):
super(RegModelNew, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.relu1 = nn.ReLU()
self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 100)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(100, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.prelu.weight
primals_7 = self.out.weight
primals_8 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| amperie/user-models | RegModel | false | 3,092 | [
"Apache-2.0"
] | 0 | 5236c50d0f20a7bac81acc5d1936a3502de2f5f3 | https://github.com/amperie/user-models/tree/5236c50d0f20a7bac81acc5d1936a3502de2f5f3 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.relu1 = nn.ReLU()
self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 100)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(100, 1)
def forward(self, input_):
a1 = self.fc1(input_)
h1 = self.relu1(a1)
dout = self.dout(h1)
a2 = self.fc2(dout)
h2 = self.prelu(a2)
y = self.out(h2)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ConvEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/53/c53345w2ogarycgzyrcothtqrrb7taubpprhokfthwhic4knqepc.py
# Topologically Sorted Source Nodes: [conv_out], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv_out => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 5)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 5), (20, 5, 1))
buf1 = reinterpret_tensor(buf0, (4, 5), (5, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 5), (5, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv_out], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf2, 20, grid=grid(20), stream=stream0)
del primals_2
return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.autograd
def pytorch_activation(name='relu'):
if name == 'tanh':
return nn.Tanh()
if name == 'identity':
return nn.Identity()
if name == 'hardtanh':
return nn.Hardtanh()
if name == 'prelu':
return nn.PReLU()
if name == 'sigmoid':
return nn.Sigmoid()
if name == 'log_sigmoid':
return nn.LogSigmoid()
return nn.ReLU()
class ConvEncoder(nn.Module):
def __init__(self, insz, outsz, filtsz, pdrop, activation_type='relu'):
super(ConvEncoder, self).__init__()
self.outsz = outsz
pad = filtsz // 2
self.conv = nn.Conv1d(insz, outsz, filtsz, padding=pad)
self.act = pytorch_activation(activation_type)
self.dropout = nn.Dropout(pdrop)
def forward(self, input_bct):
conv_out = self.act(self.conv(input_bct))
return self.dropout(conv_out)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'insz': 4, 'outsz': 4, 'filtsz': 4, 'pdrop': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 5), (20, 5, 1))
buf1 = reinterpret_tensor(buf0, (4, 5), (5, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 5), (5, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(20)](buf1,
primals_2, buf2, 20, XBLOCK=32, num_warps=1, num_stages=1)
del primals_2
return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4,
1), 0), buf2
def pytorch_activation(name='relu'):
if name == 'tanh':
return nn.Tanh()
if name == 'identity':
return nn.Identity()
if name == 'hardtanh':
return nn.Hardtanh()
if name == 'prelu':
return nn.PReLU()
if name == 'sigmoid':
return nn.Sigmoid()
if name == 'log_sigmoid':
return nn.LogSigmoid()
return nn.ReLU()
class ConvEncoderNew(nn.Module):
def __init__(self, insz, outsz, filtsz, pdrop, activation_type='relu'):
super(ConvEncoderNew, self).__init__()
self.outsz = outsz
pad = filtsz // 2
self.conv = nn.Conv1d(insz, outsz, filtsz, padding=pad)
self.act = pytorch_activation(activation_type)
self.dropout = nn.Dropout(pdrop)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| amyhemmeter/baseline | ConvEncoder | false | 3,093 | [
"Apache-2.0"
] | 0 | 101a393398570747d14a32eb3af72664e2774c8b | https://github.com/amyhemmeter/baseline/tree/101a393398570747d14a32eb3af72664e2774c8b | import torch
import torch.nn as nn
import torch.autograd
def pytorch_activation(name='relu'):
if name == 'tanh':
return nn.Tanh()
if name == 'identity':
return nn.Identity()
if name == 'hardtanh':
return nn.Hardtanh()
if name == 'prelu':
return nn.PReLU()
if name == 'sigmoid':
return nn.Sigmoid()
if name == 'log_sigmoid':
return nn.LogSigmoid()
return nn.ReLU()
class Model(nn.Module):
def __init__(self, insz, outsz, filtsz, pdrop, activation_type='relu'):
super().__init__()
self.outsz = outsz
pad = filtsz // 2
self.conv = nn.Conv1d(insz, outsz, filtsz, padding=pad)
self.act = pytorch_activation(activation_type)
self.dropout = nn.Dropout(pdrop)
def forward(self, input_bct):
conv_out = self.act(self.conv(input_bct))
return self.dropout(conv_out)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4, 0.5]
|
Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ng/cngvzplofyftirlce6wgvl6d2ybeiey5cq45amwn6rbqwhjkxhgf.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25856
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 404
x3 = (xindex // 404)
x2 = (xindex // 1616)
x4 = xindex % 1616
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 400, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((400*x3) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 404, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x3) + ((-400) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x4 + (1632*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/no/cnow27emanngqsy4wb42xbglwflrb6labosyjkk7rx3bkfwq6yxv.py
# Topologically Sorted Source Nodes: [x, linear_1], Original ATen: [aten.cat, aten.view]
# Source node to ATen node mapping:
# linear_1 => view_2
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], -1), kwargs = {})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%cat, [64, 404]), kwargs = {})
triton_poi_fused_cat_view_1 = async_compile.triton('triton_poi_fused_cat_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25856
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 404
x1 = (xindex // 404)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (404*(x1 % 4)) + (1632*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/64/c64g5uxk2a5hbzuhd6oikla2gb5eyfjjb6kbh7btzswha52gl5ex.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 300
x2 = (xindex // 1200)
x3 = xindex % 1200
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4h/c4h6r6vefoeuinm5eqv2d6wqmfj2mnjacalp633y3m6bnseb2bnk.py
# Topologically Sorted Source Nodes: [x_1, linear_2], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# linear_2 => view_4
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {})
triton_poi_fused_relu_view_3 = async_compile.triton('triton_poi_fused_relu_view_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 300
x1 = (xindex // 300)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/up/cupbblc2dmuu3ceobuvwfh32tcjnxamunpzjavcigdyeq24st7r7.py
# Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# xs => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 400
x2 = (xindex // 1600)
x4 = xindex % 1600
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x4 + (1664*x2)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (400, 4), (4, 1))
assert_size_stride(primals_2, (400, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (300, 404), (404, 1))
assert_size_stride(primals_6, (300, ), (1, ))
assert_size_stride(primals_7, (1, 300), (300, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 404), (6528, 1632, 404, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 25856, grid=grid(25856), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((64, 404), (404, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, linear_1], Original ATen: [aten.cat, aten.view]
triton_poi_fused_cat_view_1.run(buf1, buf2, 25856, grid=grid(25856), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 300), (300, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (404, 300), (1, 404), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf3, primals_6, buf4, buf8, 19200, grid=grid(19200), stream=stream0)
del primals_6
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_1, linear_2], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_3.run(buf4, buf5, 19200, grid=grid(19200), stream=stream0)
del buf4
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf5, reinterpret_tensor(primals_7, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf7)
del primals_8
buf9 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool)
# Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf0, primals_2, buf9, 25600, grid=grid(25600), stream=stream0)
del buf0
del primals_2
return (reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf5, primals_7, buf8, primals_5, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((300, 404), (404, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 300), (300, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=400,
fc2_units=300):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.relu(self.fcs1(state))
x = torch.cat((xs, action), dim=-1)
x = F.relu(self.fc2(x))
return self.fc3(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 25856
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 404
x3 = xindex // 404
x2 = xindex // 1616
x4 = xindex % 1616
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 400, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (400 * x3 + x0), tmp4 & xmask, eviction_policy
='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 404, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x3 + (-400 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x4 + 1632 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 25856
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 404
x1 = xindex // 404
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 404 * (x1 % 4) + 1632 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 300
x2 = xindex // 1200
x3 = xindex % 1200
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask)
tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 300
x1 = xindex // 300
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 400
x2 = xindex // 1600
x4 = xindex % 1600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x4 + 1664 * x2), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (400, 4), (4, 1))
assert_size_stride(primals_2, (400,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (300, 404), (404, 1))
assert_size_stride(primals_6, (300,), (1,))
assert_size_stride(primals_7, (1, 300), (300, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 404), (6528, 1632, 404, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(25856)](buf0, primals_2, primals_4,
buf1, 25856, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((64, 404), (404, 1), torch.float32)
triton_poi_fused_cat_view_1[grid(25856)](buf1, buf2, 25856, XBLOCK=
256, num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 300), (300, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (404, 300), (
1, 404), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1),
torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(19200)](buf3,
primals_6, buf4, buf8, 19200, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_6
buf5 = buf3
del buf3
triton_poi_fused_relu_view_3[grid(19200)](buf4, buf5, 19200, XBLOCK
=256, num_warps=4, num_stages=1)
del buf4
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf5, reinterpret_tensor(primals_7,
(300, 1), (1, 300), 0), alpha=1, beta=1, out=buf7)
del primals_8
buf9 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(25600)](buf0,
primals_2, buf9, 25600, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf5, primals_7, buf8, primals_5, buf9
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class CriticNew(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=400,
fc2_units=300):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(CriticNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, input_0, input_1):
primals_1 = self.fcs1.weight
primals_2 = self.fcs1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.fc3.weight
primals_8 = self.fc3.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| akashkmr27089/ReinforcementLearning_Udacity_Deep_Reinforcemnt_Learning | Critic | false | 3,094 | [
"MIT"
] | 0 | b7dc13b0116898848d8d0b8a95b7af182982bd6b | https://github.com/akashkmr27089/ReinforcementLearning_Udacity_Deep_Reinforcemnt_Learning/tree/b7dc13b0116898848d8d0b8a95b7af182982bd6b | import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Model(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=400,
fc2_units=300):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.relu(self.fcs1(state))
x = torch.cat((xs, action), dim=-1)
x = F.relu(self.fc2(x))
return self.fc3(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
AttentionPooling | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ao/caoovxtqrx42gvkmjirowqmmbh6kppvfh5ebrzzv4kzkgwm2umii.py
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# k => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lf/clf5acxlse7yqe66s7u7cyrbhkpscofwebl6d43yfbur2rdw6p5o.py
# Topologically Sorted Source Nodes: [wrapped_sqrt, score_1, score_2], Original ATen: [aten.sqrt, aten.div, aten._softmax]
# Source node to ATen node mapping:
# score_1 => div
# score_2 => amax, clone_2, exp, sub
# wrapped_sqrt => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, %full_default), kwargs = {})
# %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%div,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_2, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_div_sqrt_1 = async_compile.triton('triton_poi_fused__softmax_div_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 2.0
tmp2 = tmp0 / tmp1
tmp4 = tmp3 / tmp1
tmp6 = tmp5 / tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 / tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 / tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tl_math.exp(tmp14)
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rt/crtm5gfjyuw546ak5rgrpwtnj2wdkq3kywvagvk6j7nfa525eeeo.py
# Topologically Sorted Source Nodes: [score_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# score_2 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 4)
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (4*x4), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x4)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x4)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x4)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1)), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ux/cuxassbjnmkzkx7m7a4xbbu275w26x6fo6z4nknfmgsuxsko7ehv.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_18,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_22,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf0, (1, 4, 16), (0, 16, 1), 0), out=buf1)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_3, buf2, 64, grid=grid(64), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 16), (0, 16, 1), 0), out=buf3)
buf4 = reinterpret_tensor(buf2, (4, 1, 16), (16, 16, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_4, reinterpret_tensor(buf1, (4, 4, 16), (4, 1, 16), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 1, 4), (4, 16, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt, score_1, score_2], Original ATen: [aten.sqrt, aten.div, aten._softmax]
triton_poi_fused__softmax_div_sqrt_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [score_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 1, 4), (64, 16, 4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf3, buf7, 256, grid=grid(256), stream=stream0)
del buf3
buf8 = reinterpret_tensor(buf5, (16, 1, 4), (4, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4, 1, 4, 1), (16, 4, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_5, buf10, 64, grid=grid(64), stream=stream0)
del primals_5
buf11 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf9, (1, 4, 16), (0, 16, 1), 0), reinterpret_tensor(buf10, (1, 16, 4), (0, 4, 1), 0), out=buf11)
return (reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf6, reinterpret_tensor(buf9, (1, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf10, (1, 4, 16), (64, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_4, (4, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf1, (4, 16, 4), (4, 16, 1), 0), reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.distributed
import torch.distributions
def compute_attention(q, k, v, dropout=None, mask=None):
"""
:param q: Query [B, NH, NQ, EL] or [NH, 1, EL] (in this case NQ=1)
:param k: Key [B, NH, NK, EL]
:param v: Value [B, NH, NK, EL]
:param mask: [B, NQ, NK]
:param dropout:
:return:
"""
if q.ndim + 1 == k.ndim:
score = torch.einsum('nij,bnkj->bnik', q, k)
elif q.ndim == k.ndim:
score = torch.einsum('bnij,bnkj->bnik', q, k)
score = score / np.sqrt(q.shape[-1])
if mask is not None:
mask = mask[:, None]
score = score * mask + -100000000.0 * (1 - mask)
score = F.softmax(score, dim=-1)
if dropout is not None:
score = dropout(score)
return torch.einsum('bnij,bnjk->bnik', score, v)
class MultiHeadedAttentionBase(nn.Module):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
"""
:param embed_dim: The dimension of feature in each entity.
:param num_heads: The number of attention heads.
:param latent_dim:
:param dropout:
"""
super().__init__()
self.w_k = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_v = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_o = nn.Parameter(torch.empty(num_heads, latent_dim, embed_dim))
self.dropout = nn.Dropout(dropout) if dropout else nn.Identity()
def _reset_parameters(self):
nn.init.xavier_normal_(self.w_k)
nn.init.xavier_normal_(self.w_v)
nn.init.xavier_normal_(self.w_o)
if hasattr(self, 'q'):
nn.init.xavier_normal_(self.q)
if hasattr(self, 'w_q'):
nn.init.xavier_normal_(self.w_q)
class AttentionPooling(MultiHeadedAttentionBase):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
super().__init__(embed_dim, num_heads, latent_dim, dropout)
self.q = nn.Parameter(torch.empty(num_heads, 1, latent_dim))
self._reset_parameters()
def forward(self, x, mask=None):
"""
:param x: [B, N, E] [batch size, length, embed_dim] the input to the layer, a tensor of shape
:param mask: [B, 1, N] [batch size, 1, length]
:return: [B, E] [batch_size, embed_dim] one feature with size
"""
k = torch.einsum('blj,njd->bnld', x, self.w_k)
v = torch.einsum('blj,njd->bnld', x, self.w_v)
out = compute_attention(self.q, k, v, self.dropout, mask)
out = torch.einsum('bnlj,njk->blk', out, self.w_o)
out = out[:, 0]
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4, 'num_heads': 4, 'latent_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.distributed
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused__softmax_div_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 2.0
tmp2 = tmp0 / tmp1
tmp4 = tmp3 / tmp1
tmp6 = tmp5 / tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 / tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 / tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tl_math.exp(tmp14)
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 4
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x4, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x4), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x4), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1), tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4,
1), 0), reinterpret_tensor(buf0, (1, 4, 16), (0, 16, 1), 0),
out=buf1)
buf2 = buf0
del buf0
triton_poi_fused_clone_0[grid(64)](primals_3, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4,
1), 0), reinterpret_tensor(buf2, (1, 4, 16), (0, 16, 1), 0),
out=buf3)
buf4 = reinterpret_tensor(buf2, (4, 1, 16), (16, 16, 1), 0)
del buf2
extern_kernels.bmm(primals_4, reinterpret_tensor(buf1, (4, 4, 16),
(4, 1, 16), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 1, 4), (4, 16, 64, 1), torch.float32)
triton_poi_fused__softmax_div_sqrt_1[grid(64)](buf4, buf5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 1, 4), (64, 16, 4, 4, 1), torch
.float32)
triton_poi_fused_clone_3[grid(256)](buf3, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf3
buf8 = reinterpret_tensor(buf5, (16, 1, 4), (4, 4, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 1, 4), (4, 4, 1),
0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_clone_4[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4, 1, 4, 1), (16, 4, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_0[grid(64)](primals_5, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
buf11 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf9, (1, 4, 16), (0, 16, 1),
0), reinterpret_tensor(buf10, (1, 16, 4), (0, 4, 1), 0), out=buf11)
return reinterpret_tensor(buf11, (4, 4), (4, 1), 0
), buf6, reinterpret_tensor(buf9, (1, 16, 4), (64, 1, 16), 0
), reinterpret_tensor(buf10, (1, 4, 16), (64, 1, 4), 0
), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(primals_4, (4, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf1, (4, 16, 4), (4, 16, 1), 0
), reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0)
def compute_attention(q, k, v, dropout=None, mask=None):
"""
:param q: Query [B, NH, NQ, EL] or [NH, 1, EL] (in this case NQ=1)
:param k: Key [B, NH, NK, EL]
:param v: Value [B, NH, NK, EL]
:param mask: [B, NQ, NK]
:param dropout:
:return:
"""
if q.ndim + 1 == k.ndim:
score = torch.einsum('nij,bnkj->bnik', q, k)
elif q.ndim == k.ndim:
score = torch.einsum('bnij,bnkj->bnik', q, k)
score = score / np.sqrt(q.shape[-1])
if mask is not None:
mask = mask[:, None]
score = score * mask + -100000000.0 * (1 - mask)
score = F.softmax(score, dim=-1)
if dropout is not None:
score = dropout(score)
return torch.einsum('bnij,bnjk->bnik', score, v)
class MultiHeadedAttentionBase(nn.Module):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
"""
:param embed_dim: The dimension of feature in each entity.
:param num_heads: The number of attention heads.
:param latent_dim:
:param dropout:
"""
super().__init__()
self.w_k = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_v = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_o = nn.Parameter(torch.empty(num_heads, latent_dim, embed_dim))
self.dropout = nn.Dropout(dropout) if dropout else nn.Identity()
def _reset_parameters(self):
nn.init.xavier_normal_(self.w_k)
nn.init.xavier_normal_(self.w_v)
nn.init.xavier_normal_(self.w_o)
if hasattr(self, 'q'):
nn.init.xavier_normal_(self.q)
if hasattr(self, 'w_q'):
nn.init.xavier_normal_(self.w_q)
class AttentionPoolingNew(MultiHeadedAttentionBase):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
super().__init__(embed_dim, num_heads, latent_dim, dropout)
self.q = nn.Parameter(torch.empty(num_heads, 1, latent_dim))
self._reset_parameters()
def forward(self, input_0):
primals_1 = self.w_k
primals_2 = self.w_v
primals_3 = self.w_o
primals_4 = self.q
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Zed-Wu/ManiSkill-Learn | AttentionPooling | false | 3,095 | [
"Apache-2.0"
] | 0 | 8056fe327752cd0863f8730672fe62bd85a0ec12 | https://github.com/Zed-Wu/ManiSkill-Learn/tree/8056fe327752cd0863f8730672fe62bd85a0ec12 | import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.distributed
import torch.distributions
def compute_attention(q, k, v, dropout=None, mask=None):
"""
:param q: Query [B, NH, NQ, EL] or [NH, 1, EL] (in this case NQ=1)
:param k: Key [B, NH, NK, EL]
:param v: Value [B, NH, NK, EL]
:param mask: [B, NQ, NK]
:param dropout:
:return:
"""
if q.ndim + 1 == k.ndim:
score = torch.einsum('nij,bnkj->bnik', q, k)
elif q.ndim == k.ndim:
score = torch.einsum('bnij,bnkj->bnik', q, k)
score = score / np.sqrt(q.shape[-1])
if mask is not None:
mask = mask[:, None]
score = score * mask + -100000000.0 * (1 - mask)
score = F.softmax(score, dim=-1)
if dropout is not None:
score = dropout(score)
return torch.einsum('bnij,bnjk->bnik', score, v)
class MultiHeadedAttentionBase(nn.Module):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
"""
:param embed_dim: The dimension of feature in each entity.
:param num_heads: The number of attention heads.
:param latent_dim:
:param dropout:
"""
super().__init__()
self.w_k = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_v = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_o = nn.Parameter(torch.empty(num_heads, latent_dim, embed_dim))
self.dropout = nn.Dropout(dropout) if dropout else nn.Identity()
def _reset_parameters(self):
nn.init.xavier_normal_(self.w_k)
nn.init.xavier_normal_(self.w_v)
nn.init.xavier_normal_(self.w_o)
if hasattr(self, 'q'):
nn.init.xavier_normal_(self.q)
if hasattr(self, 'w_q'):
nn.init.xavier_normal_(self.w_q)
class Model(MultiHeadedAttentionBase):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
super().__init__(embed_dim, num_heads, latent_dim, dropout)
self.q = nn.Parameter(torch.empty(num_heads, 1, latent_dim))
self._reset_parameters()
def forward(self, x, mask=None):
"""
:param x: [B, N, E] [batch size, length, embed_dim] the input to the layer, a tensor of shape
:param mask: [B, 1, N] [batch size, 1, length]
:return: [B, E] [batch_size, embed_dim] one feature with size
"""
k = torch.einsum('blj,njd->bnld', x, self.w_k)
v = torch.einsum('blj,njd->bnld', x, self.w_v)
out = compute_attention(self.q, k, v, self.dropout, mask)
out = torch.einsum('bnlj,njk->blk', out, self.w_o)
out = out[:, 0]
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
MultiModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/pd/cpdu37l3bj63bjibgjk2ueagf7o3e26iukuvw6axiaa2bjb2e6op.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out_3 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out_3 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (8, 4), (4, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 512, grid=grid(512), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf3
return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 8), (8, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MultiModel(nn.Module):
def __init__(self, input_size, output_size):
super(MultiModel, self).__init__()
self.layer1 = nn.Linear(input_size, 8)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(8, output_size)
self.out = nn.Softmax()
def forward(self, input_):
out = self.layer1(input_)
out = self.relu(out)
out = self.layer2(out)
out = self.out(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (8, 4), (4, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(512)](buf1,
primals_2, buf5, 512, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 8), (8, 1), 0), buf4, primals_4, buf5
class MultiModelNew(nn.Module):
def __init__(self, input_size, output_size):
super(MultiModelNew, self).__init__()
self.layer1 = nn.Linear(input_size, 8)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(8, output_size)
self.out = nn.Softmax()
def forward(self, input_0):
primals_1 = self.layer1.weight
primals_2 = self.layer1.bias
primals_4 = self.layer2.weight
primals_5 = self.layer2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| amperie/user-models | MultiModel | false | 3,096 | [
"Apache-2.0"
] | 0 | 5236c50d0f20a7bac81acc5d1936a3502de2f5f3 | https://github.com/amperie/user-models/tree/5236c50d0f20a7bac81acc5d1936a3502de2f5f3 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.layer1 = nn.Linear(input_size, 8)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(8, output_size)
self.out = nn.Softmax()
def forward(self, input_):
out = self.layer1(input_)
out = self.relu(out)
out = self.layer2(out)
out = self.out(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
LandmarkHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/no/cno3yf3ndajuh3wcxbdsch2tffqc6tumuweig5txjqdra6kn3pdi.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 480
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 120
y1 = (yindex // 120)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (120*x2) + (491520*y1)), ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (120, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (120, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 120, 64, 64), (491520, 1, 7680, 120))
buf2 = empty_strided_cuda((4, 120, 64, 64), (491520, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf1, primals_2, buf2, 480, 4096, grid=grid(480, 4096), stream=stream0)
del buf1
del primals_2
return (buf2, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((120, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
class LandmarkHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(LandmarkHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 40, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
return out
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 480
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 120
y1 = yindex // 120
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 120 * x2 + 491520 * y1), ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (120, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (120,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 120, 64, 64), (491520, 1, 7680, 120))
buf2 = empty_strided_cuda((4, 120, 64, 64), (491520, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_1[grid(480, 4096)](buf1, primals_2,
buf2, 480, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf1
del primals_2
return buf2, primals_1, buf0
class LandmarkHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(LandmarkHeadNew, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 40, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ZongqingHou/Pytorch_Retinaface | LandmarkHead | false | 3,097 | [
"MIT"
] | 0 | 6284b7158a0d9d3d4a2cc267a393c21863a1b938 | https://github.com/ZongqingHou/Pytorch_Retinaface/tree/6284b7158a0d9d3d4a2cc267a393c21863a1b938 | import torch
from torch import nn
import torch.nn
class Model(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super().__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 40, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
return out
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return []
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hv/chvc25wy6j3j5a3u4ftzbjunfad2snt7mihkwdcp6ilzxzipobhu.py
# Topologically Sorted Source Nodes: [sub, add, truediv, mul, add_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 0.0001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {})
triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 0.0001
tmp26 = tmp24 + tmp25
tmp27 = tmp10 / tmp26
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x3), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, add, truediv, mul, add_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.optim.lr_scheduler import *
from torch.nn import Parameter
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=0.0001):
super(LayerNorm, self).__init__()
self.alpha = Parameter(torch.ones(1, 1, hidden_size))
self.beta = Parameter(torch.zeros(1, 1, hidden_size))
self.eps = eps
def forward(self, x):
"""
Args:
:param x: batch * len * input_size
Returns:
normalized x
"""
mu = torch.mean(x, 2, keepdim=True).expand_as(x)
sigma = torch.std(x, 2, keepdim=True).expand_as(x)
return (x - mu) / (sigma + self.eps) * self.alpha.expand_as(x
) + self.beta.expand_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.optim.lr_scheduler import *
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 0.0001
tmp26 = tmp24 + tmp25
tmp27 = tmp10 / tmp26
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x3, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_1, primals_2,
primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class LayerNormNew(nn.Module):
def __init__(self, hidden_size, eps=0.0001):
super(LayerNormNew, self).__init__()
self.alpha = Parameter(torch.ones(1, 1, hidden_size))
self.beta = Parameter(torch.zeros(1, 1, hidden_size))
self.eps = eps
def forward(self, input_0):
primals_2 = self.alpha
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| aerinkim/squad_2018 | LayerNorm | false | 3,098 | [
"BSD-3-Clause"
] | 0 | 4479fa7ce92d8ab2f2eeb1823991d416924d8561 | https://github.com/aerinkim/squad_2018/tree/4479fa7ce92d8ab2f2eeb1823991d416924d8561 | import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.optim.lr_scheduler import *
from torch.nn import Parameter
class Model(nn.Module):
def __init__(self, hidden_size, eps=0.0001):
super().__init__()
self.alpha = Parameter(torch.ones(1, 1, hidden_size))
self.beta = Parameter(torch.zeros(1, 1, hidden_size))
self.eps = eps
def forward(self, x):
"""
Args:
:param x: batch * len * input_size
Returns:
normalized x
"""
mu = torch.mean(x, 2, keepdim=True).expand_as(x)
sigma = torch.std(x, 2, keepdim=True).expand_as(x)
return (x - mu) / (sigma + self.eps) * self.alpha.expand_as(x
) + self.beta.expand_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Clamp | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3q/c3qtyl7lvt37d52m2dsdfeigvr3l6mynpk5tvb2v2rpxbeo6cn2q.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -1.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -1.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.distributed
import torch.distributions
class Clamp(nn.Module):
def __init__(self, min=-1.0, max=1.0):
super(Clamp, self).__init__()
self.min = min
self.max = max
def forward(self, x):
return torch.clamp(x, min=self.min, max=self.max)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.distributed
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -1.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ClampNew(nn.Module):
def __init__(self, min=-1.0, max=1.0):
super(ClampNew, self).__init__()
self.min = min
self.max = max
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Zed-Wu/ManiSkill-Learn | Clamp | false | 3,099 | [
"Apache-2.0"
] | 0 | 8056fe327752cd0863f8730672fe62bd85a0ec12 | https://github.com/Zed-Wu/ManiSkill-Learn/tree/8056fe327752cd0863f8730672fe62bd85a0ec12 | import torch
import torch.nn as nn
import torch.distributed
import torch.distributions
class Model(nn.Module):
def __init__(self, min=-1.0, max=1.0):
super().__init__()
self.min = min
self.max = max
def forward(self, x):
return torch.clamp(x, min=self.min, max=self.max)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BinModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ff/cffi7vxidma5gei4f6wznc3qzapljmsv5w6dvkcys2pj7dzl4a37.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yr/cyrkpaui6u3a2etleqs5zvydgg77e6mybur4ulxqq3a34hikevdx.py
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten._prelu_kernel]
# Source node to ATen node mapping:
# h2 => gt, mul, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %view_3), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_1 = async_compile.triton('triton_poi_fused__prelu_kernel_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xr/cxrxf4nkydknjv7xhdecpyrprhviagsqwicrk4lpp64qv2hkzaxp.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# y => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_6,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 50), (50, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (1, ), (1, ))
assert_size_stride(primals_7, (1, 100), (100, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 3200, grid=grid(3200), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [a2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 100), (1, 50), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1), torch.float32)
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten._prelu_kernel]
triton_poi_fused__prelu_kernel_1.run(buf2, primals_6, buf3, 6400, grid=grid(6400), stream=stream0)
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_7, (100, 1), (1, 100), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf5, primals_8, 64, grid=grid(64), stream=stream0)
del primals_8
return (buf5, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), buf2, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), buf5, primals_7, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class BinModel(nn.Module):
def __init__(self, input_size):
super(BinModel, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.relu1 = nn.ReLU()
self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 100)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(100, 1)
self.out_act = nn.Sigmoid()
def forward(self, input_):
a1 = self.fc1(input_)
h1 = self.relu1(a1)
dout = self.dout(h1)
a2 = self.fc2(dout)
h2 = self.prelu(a2)
a3 = self.out(h2)
y = self.out_act(a3)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 50), (50, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (1,), (1,))
assert_size_stride(primals_7, (1, 100), (100, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf1,
primals_2, buf6, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 50),
(50, 1), 0), reinterpret_tensor(primals_4, (50, 100), (1, 50),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1),
torch.float32)
triton_poi_fused__prelu_kernel_1[grid(6400)](buf2, primals_6, buf3,
6400, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_7, (100, 1), (1, 100), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf4
triton_poi_fused_sigmoid_2[grid(64)](buf5, primals_8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_8
return buf5, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 50), (50, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 100), (100, 1), 0
), buf5, primals_7, primals_4, buf6
class BinModelNew(nn.Module):
def __init__(self, input_size):
super(BinModelNew, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.relu1 = nn.ReLU()
self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 100)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(100, 1)
self.out_act = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.prelu.weight
primals_7 = self.out.weight
primals_8 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| amperie/user-models | BinModel | false | 3,100 | [
"Apache-2.0"
] | 0 | 5236c50d0f20a7bac81acc5d1936a3502de2f5f3 | https://github.com/amperie/user-models/tree/5236c50d0f20a7bac81acc5d1936a3502de2f5f3 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.relu1 = nn.ReLU()
self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 100)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(100, 1)
self.out_act = nn.Sigmoid()
def forward(self, input_):
a1 = self.fc1(input_)
h1 = self.relu1(a1)
dout = self.dout(h1)
a2 = self.fc2(dout)
h2 = self.prelu(a2)
a3 = self.out(h2)
y = self.out_act(a3)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
MultiHeadedAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/rh/crhy6nilvaajphuuoyup37xl4ncuiyrcb3fnt5aboux6wyvcg7ie.py
# Topologically Sorted Source Nodes: [scores], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# scores => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xl/cxldlhjpfliyaeswhsohcdhtqevqxjlvece7kkxd6sy4o7gkfgo3.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [scores], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [scores], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5)
buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf5, buf8, 256, 16, grid=grid(256), stream=stream0)
del buf5
buf9 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_8, buf9, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_8
buf10 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf9, (16, 16, 1), (16, 1, 0), 0), out=buf10)
buf11 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf10, buf11, 64, 4, grid=grid(64, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (64, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_11
return (reinterpret_tensor(buf12, (4, 16, 4), (64, 4, 1), 0), buf8, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf9, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
def pytorch_linear(in_sz, out_sz, unif=0, initializer=None):
l = nn.Linear(in_sz, out_sz)
if unif > 0:
l.weight.data.uniform_(-unif, unif)
elif initializer == 'ortho':
nn.init.orthogonal(l.weight)
elif initializer == 'he' or initializer == 'kaiming':
nn.init.kaiming_uniform(l.weight)
else:
nn.init.xavier_uniform_(l.weight)
l.bias.data.zero_()
return l
def dot_product_attention(query, key, value, mask=None, dropout=None):
scores = torch.matmul(query, key.transpose(-2, -1))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def scaled_dot_product_attention(query, key, value, mask=None, dropout=None):
"""Scaled dot product attention, as defined in https://arxiv.org/abs/1706.03762
We apply the query to the keys to recieve our weights via softmax, which are then applied
for each value, but in a series of efficient matrix operations. In the case of self-attention,
the key, query and values are all low order projections of the same input.
:param query: a query for alignment. Can come from self in case of self-attn or decoder in case of E/D
:param key: a set of keys from encoder or self
:param value: a set of values from encoder or self
:param mask: masking (for destination) to prevent seeing what we shouldnt
:param dropout: apply dropout operator post-attention (this is not a float)
:return: A tensor that is (BxHxTxT)
"""
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
weights = F.softmax(scores, dim=-1)
if dropout is not None:
weights = dropout(weights)
return torch.matmul(weights, value), weights
class MultiHeadedAttention(nn.Module):
"""
Multi-headed attention from https://arxiv.org/abs/1706.03762 via http://nlp.seas.harvard.edu/2018/04/03/attention.html
Multi-headed attention provides multiple looks of low-order projections K, Q and V using an attention function
(specifically `scaled_dot_product_attention` in the paper. This allows multiple relationships to be illuminated
via attention on different positional and representational information from each head.
The number of heads `h` times the low-order projection dim `d_k` is equal to `d_model` (which is asserted upfront).
This means that each weight matrix can be simply represented as a linear transformation from `d_model` to `d_model`,
and partitioned into heads after the fact.
Finally, an output projection is applied which brings the output space back to `d_model`, in preparation for the
sub-sequent `FFN` sub-layer.
There are 3 uses of multi-head attention in the Transformer.
For encoder-decoder layers, the queries come from the previous decoder layer, and the memory keys come from
the encoder. For encoder layers, the K, Q and V all come from the output of the previous layer of the encoder.
And for self-attention in the decoder, K, Q and V all come from the decoder, but here it is masked to prevent using
future values
"""
def __init__(self, h, d_model, dropout=0.1, scale=False):
"""Constructor for multi-headed attention
:param h: The number of heads
:param d_model: The model hidden size
:param dropout (``float``): The amount of dropout to use
:param attn_fn: A function to apply attention, defaults to SDP
"""
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.w_Q = pytorch_linear(d_model, d_model)
self.w_K = pytorch_linear(d_model, d_model)
self.w_V = pytorch_linear(d_model, d_model)
self.w_O = pytorch_linear(d_model, d_model)
self.attn_fn = (scaled_dot_product_attention if scale else
dot_product_attention)
self.attn = None
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
"""Low-order projections of query, key and value into multiple heads, then attention application and dropout
:param query: a query for alignment. Can come from self in case of self-attn or decoder in case of E/D
:param key: a set of keys from encoder or self
:param value: a set of values from encoder or self
:param mask: masking (for destination) to prevent seeing what we shouldnt
:return: Multi-head attention output, result of attention application to sequence (B, T, d_model)
"""
batchsz = query.size(0)
query = self.w_Q(query).view(batchsz, -1, self.h, self.d_k).transpose(
1, 2)
key = self.w_K(key).view(batchsz, -1, self.h, self.d_k).transpose(1, 2)
value = self.w_V(value).view(batchsz, -1, self.h, self.d_k).transpose(
1, 2)
x, self.attn = self.attn_fn(query, key, value, mask=mask, dropout=
self.dropout)
x = x.transpose(1, 2).contiguous().view(batchsz, -1, self.h * self.d_k)
return self.w_O(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'h': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf3, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_5, buf4, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5)
buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_per_fused__softmax_1[grid(256)](buf5, buf8, 256, 16, XBLOCK=
8, num_warps=2, num_stages=1)
del buf5
buf9 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(16, 16)](buf2, primals_8, buf9, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_8
buf10 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 16, 16), (256, 16,
1), 0), reinterpret_tensor(buf9, (16, 16, 1), (16, 1, 0), 0),
out=buf10)
buf11 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32)
triton_poi_fused_clone_2[grid(64, 4)](buf10, buf11, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf12 = reinterpret_tensor(buf10, (64, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_11
return reinterpret_tensor(buf12, (4, 16, 4), (64, 4, 1), 0
), buf8, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0
), primals_10, reinterpret_tensor(buf9, (16, 1, 16), (16, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0
), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0)
def pytorch_linear(in_sz, out_sz, unif=0, initializer=None):
l = nn.Linear(in_sz, out_sz)
if unif > 0:
l.weight.data.uniform_(-unif, unif)
elif initializer == 'ortho':
nn.init.orthogonal(l.weight)
elif initializer == 'he' or initializer == 'kaiming':
nn.init.kaiming_uniform(l.weight)
else:
nn.init.xavier_uniform_(l.weight)
l.bias.data.zero_()
return l
def dot_product_attention(query, key, value, mask=None, dropout=None):
scores = torch.matmul(query, key.transpose(-2, -1))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def scaled_dot_product_attention(query, key, value, mask=None, dropout=None):
"""Scaled dot product attention, as defined in https://arxiv.org/abs/1706.03762
We apply the query to the keys to recieve our weights via softmax, which are then applied
for each value, but in a series of efficient matrix operations. In the case of self-attention,
the key, query and values are all low order projections of the same input.
:param query: a query for alignment. Can come from self in case of self-attn or decoder in case of E/D
:param key: a set of keys from encoder or self
:param value: a set of values from encoder or self
:param mask: masking (for destination) to prevent seeing what we shouldnt
:param dropout: apply dropout operator post-attention (this is not a float)
:return: A tensor that is (BxHxTxT)
"""
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
weights = F.softmax(scores, dim=-1)
if dropout is not None:
weights = dropout(weights)
return torch.matmul(weights, value), weights
class MultiHeadedAttentionNew(nn.Module):
"""
Multi-headed attention from https://arxiv.org/abs/1706.03762 via http://nlp.seas.harvard.edu/2018/04/03/attention.html
Multi-headed attention provides multiple looks of low-order projections K, Q and V using an attention function
(specifically `scaled_dot_product_attention` in the paper. This allows multiple relationships to be illuminated
via attention on different positional and representational information from each head.
The number of heads `h` times the low-order projection dim `d_k` is equal to `d_model` (which is asserted upfront).
This means that each weight matrix can be simply represented as a linear transformation from `d_model` to `d_model`,
and partitioned into heads after the fact.
Finally, an output projection is applied which brings the output space back to `d_model`, in preparation for the
sub-sequent `FFN` sub-layer.
There are 3 uses of multi-head attention in the Transformer.
For encoder-decoder layers, the queries come from the previous decoder layer, and the memory keys come from
the encoder. For encoder layers, the K, Q and V all come from the output of the previous layer of the encoder.
And for self-attention in the decoder, K, Q and V all come from the decoder, but here it is masked to prevent using
future values
"""
def __init__(self, h, d_model, dropout=0.1, scale=False):
"""Constructor for multi-headed attention
:param h: The number of heads
:param d_model: The model hidden size
:param dropout (``float``): The amount of dropout to use
:param attn_fn: A function to apply attention, defaults to SDP
"""
super(MultiHeadedAttentionNew, self).__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.w_Q = pytorch_linear(d_model, d_model)
self.w_K = pytorch_linear(d_model, d_model)
self.w_V = pytorch_linear(d_model, d_model)
self.w_O = pytorch_linear(d_model, d_model)
self.attn_fn = (scaled_dot_product_attention if scale else
dot_product_attention)
self.attn = None
self.dropout = nn.Dropout(dropout)
def forward(self, input_0, input_1, input_2):
primals_2 = self.w_Q.weight
primals_3 = self.w_Q.bias
primals_4 = self.w_K.weight
primals_5 = self.w_K.bias
primals_7 = self.w_V.weight
primals_8 = self.w_V.bias
primals_10 = self.w_O.weight
primals_11 = self.w_O.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| amyhemmeter/baseline | MultiHeadedAttention | false | 3,101 | [
"Apache-2.0"
] | 0 | 101a393398570747d14a32eb3af72664e2774c8b | https://github.com/amyhemmeter/baseline/tree/101a393398570747d14a32eb3af72664e2774c8b | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
def pytorch_linear(in_sz, out_sz, unif=0, initializer=None):
l = nn.Linear(in_sz, out_sz)
if unif > 0:
l.weight.data.uniform_(-unif, unif)
elif initializer == 'ortho':
nn.init.orthogonal(l.weight)
elif initializer == 'he' or initializer == 'kaiming':
nn.init.kaiming_uniform(l.weight)
else:
nn.init.xavier_uniform_(l.weight)
l.bias.data.zero_()
return l
def dot_product_attention(query, key, value, mask=None, dropout=None):
scores = torch.matmul(query, key.transpose(-2, -1))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def scaled_dot_product_attention(query, key, value, mask=None, dropout=None):
"""Scaled dot product attention, as defined in https://arxiv.org/abs/1706.03762
We apply the query to the keys to recieve our weights via softmax, which are then applied
for each value, but in a series of efficient matrix operations. In the case of self-attention,
the key, query and values are all low order projections of the same input.
:param query: a query for alignment. Can come from self in case of self-attn or decoder in case of E/D
:param key: a set of keys from encoder or self
:param value: a set of values from encoder or self
:param mask: masking (for destination) to prevent seeing what we shouldnt
:param dropout: apply dropout operator post-attention (this is not a float)
:return: A tensor that is (BxHxTxT)
"""
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
weights = F.softmax(scores, dim=-1)
if dropout is not None:
weights = dropout(weights)
return torch.matmul(weights, value), weights
class Model(nn.Module):
"""
Multi-headed attention from https://arxiv.org/abs/1706.03762 via http://nlp.seas.harvard.edu/2018/04/03/attention.html
Multi-headed attention provides multiple looks of low-order projections K, Q and V using an attention function
(specifically `scaled_dot_product_attention` in the paper. This allows multiple relationships to be illuminated
via attention on different positional and representational information from each head.
The number of heads `h` times the low-order projection dim `d_k` is equal to `d_model` (which is asserted upfront).
This means that each weight matrix can be simply represented as a linear transformation from `d_model` to `d_model`,
and partitioned into heads after the fact.
Finally, an output projection is applied which brings the output space back to `d_model`, in preparation for the
sub-sequent `FFN` sub-layer.
There are 3 uses of multi-head attention in the Transformer.
For encoder-decoder layers, the queries come from the previous decoder layer, and the memory keys come from
the encoder. For encoder layers, the K, Q and V all come from the output of the previous layer of the encoder.
And for self-attention in the decoder, K, Q and V all come from the decoder, but here it is masked to prevent using
future values
"""
def __init__(self, h, d_model, dropout=0.1, scale=False):
"""Constructor for multi-headed attention
:param h: The number of heads
:param d_model: The model hidden size
:param dropout (``float``): The amount of dropout to use
:param attn_fn: A function to apply attention, defaults to SDP
"""
super().__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.w_Q = pytorch_linear(d_model, d_model)
self.w_K = pytorch_linear(d_model, d_model)
# ... truncated (>4000 chars) for memory efficiency |
ScaleToModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hy/chya2q4ib6ftrindfajd37rkm7puvcupvuze6gvif7ul5xvugkxz.py
# Topologically Sorted Source Nodes: [sub, img, mul, img_1], Original ATen: [aten.sub, aten.div, aten.mul, aten.add]
# Source node to ATen node mapping:
# img => div
# img_1 => add
# mul => mul
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 4), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 4), kwargs = {})
triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = tmp0 - tmp1
tmp3 = float("inf")
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = tmp4 * tmp5
tmp7 = tmp6 + tmp1
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, img, mul, img_1], Original ATen: [aten.sub, aten.div, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
from torch import linalg as linalg
class ScaleToModel(nn.Module):
def __init__(self, model_value_range, test_value_range):
super(ScaleToModel, self).__init__()
self.m_min, self.m_max = model_value_range
self.t_min, self.t_max = test_value_range
def forward(self, img: 'torch.Tensor'):
""" input: [test_val_min, test_val_max] """
img = (img - self.t_min) / (self.t_max - self.t_min)
img = img * (self.m_max - self.m_min) + self.m_min
return img
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'model_value_range': [4, 4], 'test_value_range': [4, 4]}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.cuda
from torch import linalg as linalg
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = tmp0 - tmp1
tmp3 = float('inf')
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = tmp4 * tmp5
tmp7 = tmp6 + tmp1
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ScaleToModelNew(nn.Module):
def __init__(self, model_value_range, test_value_range):
super(ScaleToModelNew, self).__init__()
self.m_min, self.m_max = model_value_range
self.t_min, self.t_max = test_value_range
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| angelvillar96/vp-suite | ScaleToModel | false | 3,102 | [
"MIT"
] | 0 | 3e7c7d852862bad09a771d754fc56a71abf0a25f | https://github.com/angelvillar96/vp-suite/tree/3e7c7d852862bad09a771d754fc56a71abf0a25f | import torch
import torch.nn as nn
import torch.cuda
from torch import linalg as linalg
class Model(nn.Module):
def __init__(self, model_value_range, test_value_range):
super().__init__()
self.m_min, self.m_max = model_value_range
self.t_min, self.t_max = test_value_range
def forward(self, img: 'torch.Tensor'):
""" input: [test_val_min, test_val_max] """
img = (img - self.t_min) / (self.t_max - self.t_min)
img = img * (self.m_max - self.m_min) + self.m_min
return img
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/45/c45kseiahg2pyc2i3fnpuo4uo4dk75vbormylc7ceqkbk6komm3x.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%repeat, %primals_1], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x2 = (xindex // 32)
x3 = (xindex // 8)
x4 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x2) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x3) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x4), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lz/clzc7c4rqtr7ky6jrepxpu2dlmeo4y66gzcis5bqhwixpt7ktopj.py
# Topologically Sorted Source Nodes: [energy], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# energy => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/i5/ci57psuuueutwfqpm57dmpddhnflxjjxpqzf6cwcsnd2zbemfstl.py
# Topologically Sorted Source Nodes: [repeat_1], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat_1 => repeat_1
# Graph fragment:
# %repeat_1 : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_5, [4, 1]), kwargs = {})
triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lt/cltwbpokq7b7gvah2tjf27qlzw6vpmwfuzs3xfk7mhbxym753kvi.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rr/crrmj7r54x5uk325xkhuskxp4m5prz3fpx53yc2st4o5pwbhq32p.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_2, primals_1, buf0, 128, grid=grid(128), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [energy], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat_1], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_5, buf3, 16, grid=grid(16), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf5, buf6, 16, grid=grid(16), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf2, buf6, reinterpret_tensor(buf3, (4, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class Attention(nn.Module):
"""Implements additive attention and return the attention vector used to weight the values.
Additive attention consists in concatenating key and query and then passing them trough a linear layer."""
def __init__(self, enc_hid_dim, dec_hid_dim):
super().__init__()
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.attn = nn.Linear(enc_hid_dim + dec_hid_dim, dec_hid_dim)
self.v = nn.Parameter(torch.rand(dec_hid_dim))
def forward(self, key, queries):
batch_size = queries.shape[0]
src_len = queries.shape[1]
key = key.unsqueeze(1).repeat(1, src_len, 1)
energy = torch.tanh(self.attn(torch.cat((key, queries), dim=2)))
energy = energy.permute(0, 2, 1)
v = self.v.repeat(batch_size, 1).unsqueeze(1)
attention = torch.bmm(v, energy).squeeze(1)
return F.softmax(attention, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'enc_hid_dim': 4, 'dec_hid_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x2 = xindex // 32
x3 = xindex // 8
x4 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x2 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x3 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x4, tmp10, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_2, primals_1, buf0, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused_tanh_1[grid(64)](buf2, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_repeat_2[grid(16)](primals_5, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 1, 4), (4, 0, 1), 0
), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0)
del buf4
triton_poi_fused__softmax_4[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf5
return buf6, reinterpret_tensor(buf0, (16, 8), (8, 1), 0
), buf2, buf6, reinterpret_tensor(buf3, (4, 4, 1), (4, 1, 4), 0)
class AttentionNew(nn.Module):
"""Implements additive attention and return the attention vector used to weight the values.
Additive attention consists in concatenating key and query and then passing them trough a linear layer."""
def __init__(self, enc_hid_dim, dec_hid_dim):
super().__init__()
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.attn = nn.Linear(enc_hid_dim + dec_hid_dim, dec_hid_dim)
self.v = nn.Parameter(torch.rand(dec_hid_dim))
def forward(self, input_0, input_1):
primals_4 = self.v
primals_3 = self.attn.weight
primals_5 = self.attn.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| alpgokcek/turkish-qg-model | Attention | false | 3,103 | [
"MIT"
] | 0 | e90050d869958325aeaf639a2b1ff5eb2856e318 | https://github.com/alpgokcek/turkish-qg-model/tree/e90050d869958325aeaf639a2b1ff5eb2856e318 | import torch
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
"""Implements additive attention and return the attention vector used to weight the values.
Additive attention consists in concatenating key and query and then passing them trough a linear layer."""
def __init__(self, enc_hid_dim, dec_hid_dim):
super().__init__()
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.attn = nn.Linear(enc_hid_dim + dec_hid_dim, dec_hid_dim)
self.v = nn.Parameter(torch.rand(dec_hid_dim))
def forward(self, key, queries):
batch_size = queries.shape[0]
src_len = queries.shape[1]
key = key.unsqueeze(1).repeat(1, src_len, 1)
energy = torch.tanh(self.attn(torch.cat((key, queries), dim=2)))
energy = energy.permute(0, 2, 1)
v = self.v.repeat(batch_size, 1).unsqueeze(1)
attention = torch.bmm(v, energy).squeeze(1)
return F.softmax(attention, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BayesLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/j5/cj5ctsoyfskkt54irtpcnjzgt6opocbga6u3hypkpfxeaijd4zsp.py
# Topologically Sorted Source Nodes: [exp, mul, weight], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# weight => add
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %randn), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {})
triton_poi_fused_add_exp_mul_0 = async_compile.triton('triton_poi_fused_add_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yl/cylfmjzneu3zf4iy7raije3cdgidyiljws7vhoply5hziwhg6bc3.py
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# bias => add_1
# exp_1 => exp_1
# mul_1 => mul_1
# Graph fragment:
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_4,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %randn_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_1), kwargs = {})
triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [randn_like], Original ATen: [aten.randn_like]
buf0 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
# Topologically Sorted Source Nodes: [randn_like_1], Original ATen: [aten.randn_like]
buf2 = torch.ops.aten.randn.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul, weight], Original ATen: [aten.exp, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_mul_0.run(primals_1, primals_2, buf1, buf4, 16, grid=grid(16), stream=stream0)
del primals_1
buf5 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias], Original ATen: [aten.exp, aten.mul, aten.add]
triton_poi_fused_add_exp_mul_1.run(primals_3, primals_4, buf3, buf5, 4, grid=grid(4), stream=stream0)
del primals_3
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias, linear], Original ATen: [aten.exp, aten.mul, aten.add, aten.addmm]
extern_kernels.addmm(buf5, reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del buf4
del buf5
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, primals_4, buf1, buf3, reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch.nn import Parameter
import torch.nn.functional as F
class BayesLinear(Module):
"""
Applies Bayesian Linear
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following linear of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
"""
__constants__ = ['prior_mu', 'prior_sigma', 'bias', 'in_features',
'out_features']
def __init__(self, prior_mu, prior_sigma, in_features, out_features,
bias=True):
super(BayesLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.prior_log_sigma = math.log(prior_sigma)
self.weight_mu = Parameter(torch.Tensor(out_features, in_features))
self.weight_log_sigma = Parameter(torch.Tensor(out_features,
in_features))
self.register_buffer('weight_eps', None)
if bias is None or bias is False:
self.bias = False
else:
self.bias = True
if self.bias:
self.bias_mu = Parameter(torch.Tensor(out_features))
self.bias_log_sigma = Parameter(torch.Tensor(out_features))
self.register_buffer('bias_eps', None)
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_log_sigma', None)
self.register_buffer('bias_eps', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight_mu.size(1))
self.weight_mu.data.uniform_(-stdv, stdv)
self.weight_log_sigma.data.fill_(self.prior_log_sigma)
if self.bias:
self.bias_mu.data.uniform_(-stdv, stdv)
self.bias_log_sigma.data.fill_(self.prior_log_sigma)
def freeze(self):
self.weight_eps = torch.randn_like(self.weight_log_sigma)
if self.bias:
self.bias_eps = torch.randn_like(self.bias_log_sigma)
def unfreeze(self):
self.weight_eps = None
if self.bias:
self.bias_eps = None
def forward(self, input):
"""
Overriden.
"""
if self.weight_eps is None:
weight = self.weight_mu + torch.exp(self.weight_log_sigma
) * torch.randn_like(self.weight_log_sigma)
else:
weight = self.weight_mu + torch.exp(self.weight_log_sigma
) * self.weight_eps
if self.bias:
if self.bias_eps is None:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * torch.randn_like(self.bias_log_sigma)
else:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * self.bias_eps
else:
bias = None
return F.linear(input, weight, bias)
def extra_repr(self):
"""
Overriden.
"""
return (
'prior_mu={}, prior_sigma={}, in_features={}, out_features={}, bias={}'
.format(self.prior_mu, self.prior_sigma, self.in_features, self
.out_features, self.bias is not None))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'prior_mu': 4, 'prior_sigma': 4, 'in_features': 4,
'out_features': 4}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = torch.ops.aten.randn.default([4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_mul_0[grid(16)](primals_1, primals_2, buf1,
buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf5 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_add_exp_mul_1[grid(4)](primals_3, primals_4, buf3,
buf5, 4, XBLOCK=4, num_warps=1, num_stages=1)
del primals_3
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf5, reinterpret_tensor(primals_5, (64, 4), (
4, 1), 0), reinterpret_tensor(buf4, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf6)
del buf4
del buf5
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_2, primals_4, buf1, buf3, reinterpret_tensor(primals_5,
(64, 4), (4, 1), 0)
class BayesLinearNew(Module):
"""
Applies Bayesian Linear
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following linear of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
"""
__constants__ = ['prior_mu', 'prior_sigma', 'bias', 'in_features',
'out_features']
def __init__(self, prior_mu, prior_sigma, in_features, out_features,
bias=True):
super(BayesLinearNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.prior_log_sigma = math.log(prior_sigma)
self.weight_mu = Parameter(torch.Tensor(out_features, in_features))
self.weight_log_sigma = Parameter(torch.Tensor(out_features,
in_features))
self.register_buffer('weight_eps', None)
if bias is None or bias is False:
self.bias = False
else:
self.bias = True
if self.bias:
self.bias_mu = Parameter(torch.Tensor(out_features))
self.bias_log_sigma = Parameter(torch.Tensor(out_features))
self.register_buffer('bias_eps', None)
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_log_sigma', None)
self.register_buffer('bias_eps', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight_mu.size(1))
self.weight_mu.data.uniform_(-stdv, stdv)
self.weight_log_sigma.data.fill_(self.prior_log_sigma)
if self.bias:
self.bias_mu.data.uniform_(-stdv, stdv)
self.bias_log_sigma.data.fill_(self.prior_log_sigma)
def freeze(self):
self.weight_eps = torch.randn_like(self.weight_log_sigma)
if self.bias:
self.bias_eps = torch.randn_like(self.bias_log_sigma)
def unfreeze(self):
self.weight_eps = None
if self.bias:
self.bias_eps = None
def extra_repr(self):
"""
Overriden.
"""
return (
'prior_mu={}, prior_sigma={}, in_features={}, out_features={}, bias={}'
.format(self.prior_mu, self.prior_sigma, self.in_features, self
.out_features, self.bias is not None))
def forward(self, input_0):
primals_1 = self.weight_mu
primals_2 = self.weight_log_sigma
primals_3 = self.bias_mu
primals_4 = self.bias_log_sigma
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| anaplasia29/Bayesian-Neural-Network | BayesLinear | false | 3,104 | [
"MIT"
] | 0 | d98df8039e52cd2505dc8a94ed3cd474c2056d9a | https://github.com/anaplasia29/Bayesian-Neural-Network/tree/d98df8039e52cd2505dc8a94ed3cd474c2056d9a | from torch.nn import Module
import math
import torch
from torch.nn import Parameter
import torch.nn.functional as F
class Model(Module):
"""
Applies Bayesian Linear
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following linear of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
"""
__constants__ = ['prior_mu', 'prior_sigma', 'bias', 'in_features',
'out_features']
def __init__(self, prior_mu, prior_sigma, in_features, out_features,
bias=True):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.prior_log_sigma = math.log(prior_sigma)
self.weight_mu = Parameter(torch.Tensor(out_features, in_features))
self.weight_log_sigma = Parameter(torch.Tensor(out_features,
in_features))
self.register_buffer('weight_eps', None)
if bias is None or bias is False:
self.bias = False
else:
self.bias = True
if self.bias:
self.bias_mu = Parameter(torch.Tensor(out_features))
self.bias_log_sigma = Parameter(torch.Tensor(out_features))
self.register_buffer('bias_eps', None)
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_log_sigma', None)
self.register_buffer('bias_eps', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight_mu.size(1))
self.weight_mu.data.uniform_(-stdv, stdv)
self.weight_log_sigma.data.fill_(self.prior_log_sigma)
if self.bias:
self.bias_mu.data.uniform_(-stdv, stdv)
self.bias_log_sigma.data.fill_(self.prior_log_sigma)
def freeze(self):
self.weight_eps = torch.randn_like(self.weight_log_sigma)
if self.bias:
self.bias_eps = torch.randn_like(self.bias_log_sigma)
def unfreeze(self):
self.weight_eps = None
if self.bias:
self.bias_eps = None
def forward(self, input):
"""
Overriden.
"""
if self.weight_eps is None:
weight = self.weight_mu + torch.exp(self.weight_log_sigma
) * torch.randn_like(self.weight_log_sigma)
else:
weight = self.weight_mu + torch.exp(self.weight_log_sigma
) * self.weight_eps
if self.bias:
if self.bias_eps is None:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * torch.randn_like(self.bias_log_sigma)
else:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * self.bias_eps
else:
bias = None
return F.linear(input, weight, bias)
def extra_repr(self):
"""
Overriden.
"""
return (
'prior_mu={}, prior_sigma={}, in_features={}, out_features={}, bias={}'
.format(self.prior_mu, self.prior_sigma, self.in_features, self
.out_features, self.bias is not None))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'prior_mu': 4, 'prior_sigma': 4, 'in_features': 4,
'out_features': 4}]
|
Normalize | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r4/cr4mrjmpuwhs6zziohqi5i3tw2asrreckngwxku64eqliwuxyvv2.py
# Topologically Sorted Source Nodes: [sub, truediv], Original ATen: [aten.sub, aten.div]
# Source node to ATen node mapping:
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.1307), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 0.3081), kwargs = {})
triton_poi_fused_div_sub_0 = async_compile.triton('triton_poi_fused_div_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1307
tmp2 = tmp0 - tmp1
tmp3 = 3.245699448231094
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, truediv], Original ATen: [aten.sub, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Normalize(nn.Module):
def forward(self, x):
return (x - 0.1307) / 0.3081
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1307
tmp2 = tmp0 - tmp1
tmp3 = 3.245699448231094
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NormalizeNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| anianruoss/RIAI | Normalize | false | 3,105 | [
"MIT"
] | 0 | 2ac4ddcfb73c9678b1c4fe94fdaae82baceac4ea | https://github.com/anianruoss/RIAI/tree/2ac4ddcfb73c9678b1c4fe94fdaae82baceac4ea | import torch
import torch.nn as nn
class Model(nn.Module):
def forward(self, x):
return (x - 0.1307) / 0.3081
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MultiHeadSelfAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ao/caoovxtqrx42gvkmjirowqmmbh6kppvfh5ebrzzv4kzkgwm2umii.py
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# q => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ah/cahcbdgzcypclgrmenrcgftl53kemvcm53v6yoxzwdqjyblrincb.py
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# score => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_17,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# score => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_18,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xk/cxkynbikahz2hisijkpmmcfv7nekqjhfkqpiktt76kla5eook3hc.py
# Topologically Sorted Source Nodes: [wrapped_sqrt, score_2], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# score_2 => exp
# wrapped_sqrt => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {})
# %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_15, %where_self), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_sqrt_3 = async_compile.triton('triton_poi_fused__softmax_sqrt_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_sqrt_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 2.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp13 * tmp6
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp17 = tmp16 * tmp6
tmp18 = triton_helpers.maximum(tmp15, tmp17)
tmp19 = tmp7 - tmp18
tmp20 = tmp6.to(tl.float64)
tmp21 = tmp20 * tmp1
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tl.store(out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zh/czh6tw7ngffcygnivwvcjex5edxy3ms4t27ymyn2hemxlpspxzq7.py
# Topologically Sorted Source Nodes: [score_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# score_2 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf0, (1, 4, 16), (0, 16, 1), 0), out=buf1)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_3, buf2, 64, grid=grid(64), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 16), (0, 16, 1), 0), out=buf3)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_4, buf4, 64, grid=grid(64), stream=stream0)
del primals_4
buf5 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf4, (1, 4, 16), (0, 16, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf3, buf7, 64, 4, grid=grid(64, 4), stream=stream0)
buf8 = reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt, score_2], Original ATen: [aten.sqrt, aten._softmax]
triton_poi_fused__softmax_sqrt_3.run(buf8, buf9, 256, grid=grid(256), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [score_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf9, buf10, 256, grid=grid(256), stream=stream0)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf5, buf11, 256, grid=grid(256), stream=stream0)
buf12 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (16, 4, 4), (16, 4, 1), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf12, buf13, 64, 4, grid=grid(64, 4), stream=stream0)
del buf12
buf14 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_5, buf14, 64, grid=grid(64), stream=stream0)
del primals_5
buf15 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (1, 16, 16), (0, 16, 1), 0), reinterpret_tensor(buf14, (1, 16, 4), (0, 4, 1), 0), out=buf15)
return (reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0), buf10, reinterpret_tensor(buf13, (1, 16, 16), (256, 1, 16), 0), reinterpret_tensor(buf14, (1, 4, 16), (64, 1, 4), 0), reinterpret_tensor(buf11, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.distributed
import torch.distributions
def compute_attention(q, k, v, dropout=None, mask=None):
"""
:param q: Query [B, NH, NQ, EL] or [NH, 1, EL] (in this case NQ=1)
:param k: Key [B, NH, NK, EL]
:param v: Value [B, NH, NK, EL]
:param mask: [B, NQ, NK]
:param dropout:
:return:
"""
if q.ndim + 1 == k.ndim:
score = torch.einsum('nij,bnkj->bnik', q, k)
elif q.ndim == k.ndim:
score = torch.einsum('bnij,bnkj->bnik', q, k)
score = score / np.sqrt(q.shape[-1])
if mask is not None:
mask = mask[:, None]
score = score * mask + -100000000.0 * (1 - mask)
score = F.softmax(score, dim=-1)
if dropout is not None:
score = dropout(score)
return torch.einsum('bnij,bnjk->bnik', score, v)
class MultiHeadedAttentionBase(nn.Module):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
"""
:param embed_dim: The dimension of feature in each entity.
:param num_heads: The number of attention heads.
:param latent_dim:
:param dropout:
"""
super().__init__()
self.w_k = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_v = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_o = nn.Parameter(torch.empty(num_heads, latent_dim, embed_dim))
self.dropout = nn.Dropout(dropout) if dropout else nn.Identity()
def _reset_parameters(self):
nn.init.xavier_normal_(self.w_k)
nn.init.xavier_normal_(self.w_v)
nn.init.xavier_normal_(self.w_o)
if hasattr(self, 'q'):
nn.init.xavier_normal_(self.q)
if hasattr(self, 'w_q'):
nn.init.xavier_normal_(self.w_q)
class MultiHeadSelfAttention(MultiHeadedAttentionBase):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
super().__init__(embed_dim, num_heads, latent_dim, dropout)
self.w_q = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self._reset_parameters()
def forward(self, x, mask=None):
"""
:param x: [B, N, E] [batch size, length, embed_dim] the input to the layer, a tensor of shape
:param mask: [B, N, N] [batch size, length, length]
:return: [B, N, E] [batch_size, length, embed_dim] Features after self attention
"""
q = torch.einsum('blj,njd->bnld', x, self.w_q)
k = torch.einsum('blj,njd->bnld', x, self.w_k)
v = torch.einsum('blj,njd->bnld', x, self.w_v)
out = compute_attention(q, k, v, self.dropout, mask)
out = torch.einsum('bnlj,njk->blk', out, self.w_o)
out = self.dropout(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4, 'num_heads': 4, 'latent_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.distributed
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_sqrt_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = tl.full([1], 2.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp13 * tmp6
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp17 = tmp16 * tmp6
tmp18 = triton_helpers.maximum(tmp15, tmp17)
tmp19 = tmp7 - tmp18
tmp20 = tmp6.to(tl.float64)
tmp21 = tmp20 * tmp1
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tl.store(out_ptr0 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4,
1), 0), reinterpret_tensor(buf0, (1, 4, 16), (0, 16, 1), 0),
out=buf1)
buf2 = buf0
del buf0
triton_poi_fused_clone_0[grid(64)](primals_3, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4,
1), 0), reinterpret_tensor(buf2, (1, 4, 16), (0, 16, 1), 0),
out=buf3)
buf4 = buf2
del buf2
triton_poi_fused_clone_0[grid(64)](primals_4, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
buf5 = empty_strided_cuda((1, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4,
1), 0), reinterpret_tensor(buf4, (1, 4, 16), (0, 16, 1), 0),
out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
triton_poi_fused_clone_1[grid(256)](buf1, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0)
del buf1
triton_poi_fused_clone_2[grid(64, 4)](buf3, buf7, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0)
del buf3
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_sqrt_3[grid(256)](buf8, buf9, 256, XBLOCK
=256, num_warps=4, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf8
triton_poi_fused__softmax_4[grid(256)](buf9, buf10, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0)
del buf9
triton_poi_fused_clone_1[grid(256)](buf5, buf11, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf12 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf11, (16, 4, 4), (16, 4, 1), 0), out=buf12
)
buf13 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1),
torch.float32)
triton_poi_fused_clone_2[grid(64, 4)](buf12, buf13, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del buf12
buf14 = buf4
del buf4
triton_poi_fused_clone_0[grid(64)](primals_5, buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
buf15 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf13, (1, 16, 16), (0, 16, 1
), 0), reinterpret_tensor(buf14, (1, 16, 4), (0, 4, 1), 0), out
=buf15)
return reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0
), buf10, reinterpret_tensor(buf13, (1, 16, 16), (256, 1, 16), 0
), reinterpret_tensor(buf14, (1, 4, 16), (64, 1, 4), 0
), reinterpret_tensor(buf11, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0)
def compute_attention(q, k, v, dropout=None, mask=None):
"""
:param q: Query [B, NH, NQ, EL] or [NH, 1, EL] (in this case NQ=1)
:param k: Key [B, NH, NK, EL]
:param v: Value [B, NH, NK, EL]
:param mask: [B, NQ, NK]
:param dropout:
:return:
"""
if q.ndim + 1 == k.ndim:
score = torch.einsum('nij,bnkj->bnik', q, k)
elif q.ndim == k.ndim:
score = torch.einsum('bnij,bnkj->bnik', q, k)
score = score / np.sqrt(q.shape[-1])
if mask is not None:
mask = mask[:, None]
score = score * mask + -100000000.0 * (1 - mask)
score = F.softmax(score, dim=-1)
if dropout is not None:
score = dropout(score)
return torch.einsum('bnij,bnjk->bnik', score, v)
class MultiHeadedAttentionBase(nn.Module):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
"""
:param embed_dim: The dimension of feature in each entity.
:param num_heads: The number of attention heads.
:param latent_dim:
:param dropout:
"""
super().__init__()
self.w_k = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_v = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_o = nn.Parameter(torch.empty(num_heads, latent_dim, embed_dim))
self.dropout = nn.Dropout(dropout) if dropout else nn.Identity()
def _reset_parameters(self):
nn.init.xavier_normal_(self.w_k)
nn.init.xavier_normal_(self.w_v)
nn.init.xavier_normal_(self.w_o)
if hasattr(self, 'q'):
nn.init.xavier_normal_(self.q)
if hasattr(self, 'w_q'):
nn.init.xavier_normal_(self.w_q)
class MultiHeadSelfAttentionNew(MultiHeadedAttentionBase):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
super().__init__(embed_dim, num_heads, latent_dim, dropout)
self.w_q = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self._reset_parameters()
def forward(self, input_0):
primals_1 = self.w_k
primals_2 = self.w_v
primals_3 = self.w_o
primals_4 = self.w_q
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Zed-Wu/ManiSkill-Learn | MultiHeadSelfAttention | false | 3,106 | [
"Apache-2.0"
] | 0 | 8056fe327752cd0863f8730672fe62bd85a0ec12 | https://github.com/Zed-Wu/ManiSkill-Learn/tree/8056fe327752cd0863f8730672fe62bd85a0ec12 | import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.distributed
import torch.distributions
def compute_attention(q, k, v, dropout=None, mask=None):
"""
:param q: Query [B, NH, NQ, EL] or [NH, 1, EL] (in this case NQ=1)
:param k: Key [B, NH, NK, EL]
:param v: Value [B, NH, NK, EL]
:param mask: [B, NQ, NK]
:param dropout:
:return:
"""
if q.ndim + 1 == k.ndim:
score = torch.einsum('nij,bnkj->bnik', q, k)
elif q.ndim == k.ndim:
score = torch.einsum('bnij,bnkj->bnik', q, k)
score = score / np.sqrt(q.shape[-1])
if mask is not None:
mask = mask[:, None]
score = score * mask + -100000000.0 * (1 - mask)
score = F.softmax(score, dim=-1)
if dropout is not None:
score = dropout(score)
return torch.einsum('bnij,bnjk->bnik', score, v)
class MultiHeadedAttentionBase(nn.Module):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
"""
:param embed_dim: The dimension of feature in each entity.
:param num_heads: The number of attention heads.
:param latent_dim:
:param dropout:
"""
super().__init__()
self.w_k = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_v = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self.w_o = nn.Parameter(torch.empty(num_heads, latent_dim, embed_dim))
self.dropout = nn.Dropout(dropout) if dropout else nn.Identity()
def _reset_parameters(self):
nn.init.xavier_normal_(self.w_k)
nn.init.xavier_normal_(self.w_v)
nn.init.xavier_normal_(self.w_o)
if hasattr(self, 'q'):
nn.init.xavier_normal_(self.q)
if hasattr(self, 'w_q'):
nn.init.xavier_normal_(self.w_q)
class Model(MultiHeadedAttentionBase):
def __init__(self, embed_dim, num_heads, latent_dim, dropout=None):
super().__init__(embed_dim, num_heads, latent_dim, dropout)
self.w_q = nn.Parameter(torch.empty(num_heads, embed_dim, latent_dim))
self._reset_parameters()
def forward(self, x, mask=None):
"""
:param x: [B, N, E] [batch size, length, embed_dim] the input to the layer, a tensor of shape
:param mask: [B, N, N] [batch size, length, length]
:return: [B, N, E] [batch_size, length, embed_dim] Features after self attention
"""
q = torch.einsum('blj,njd->bnld', x, self.w_q)
k = torch.einsum('blj,njd->bnld', x, self.w_k)
v = torch.einsum('blj,njd->bnld', x, self.w_v)
out = compute_attention(q, k, v, self.dropout, mask)
out = torch.einsum('bnlj,njk->blk', out, self.w_o)
out = self.dropout(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
KLLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bx/cbxzgkjsxqhvj5hh2fd7fd25u7ojweicme3rmrputqt42bdpmj2t.py
# Topologically Sorted Source Nodes: [mul_1, sigma2, mul, sigma1, truediv, log, exp_2, sub, pow_1, add, exp_3, mul_2, truediv_1, add_1, kld, sum_1, mean], Original ATen: [aten.mul, aten.exp, aten.div, aten.log, aten.sub, aten.pow, aten.add, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# exp_2 => exp_2
# exp_3 => exp_3
# kld => sub_1
# log => log
# mean => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pow_1 => pow_1
# sigma1 => exp
# sigma2 => exp_1
# sub => sub
# sum_1 => sum_1
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.5), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %exp), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg3_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_2, %pow_1), kwargs = {})
# %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg1_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_3, 2), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %mul_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, %div_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, 0.5), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_1, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr3 + (4*r0), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr3 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp51 = tl.load(in_ptr3 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr3 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp4 * tmp1
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp3 / tmp6
tmp8 = tl_math.log(tmp7)
tmp9 = tl_math.exp(tmp4)
tmp12 = tmp10 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tmp9 + tmp13
tmp15 = tl_math.exp(tmp0)
tmp16 = 2.0
tmp17 = tmp15 * tmp16
tmp18 = tmp14 / tmp17
tmp19 = tmp8 + tmp18
tmp20 = tmp19 - tmp1
tmp22 = tmp21 * tmp1
tmp23 = tl_math.exp(tmp22)
tmp25 = tmp24 * tmp1
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 / tmp26
tmp28 = tl_math.log(tmp27)
tmp29 = tl_math.exp(tmp24)
tmp32 = tmp30 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tmp29 + tmp33
tmp35 = tl_math.exp(tmp21)
tmp36 = tmp35 * tmp16
tmp37 = tmp34 / tmp36
tmp38 = tmp28 + tmp37
tmp39 = tmp38 - tmp1
tmp40 = tmp20 + tmp39
tmp42 = tmp41 * tmp1
tmp43 = tl_math.exp(tmp42)
tmp45 = tmp44 * tmp1
tmp46 = tl_math.exp(tmp45)
tmp47 = tmp43 / tmp46
tmp48 = tl_math.log(tmp47)
tmp49 = tl_math.exp(tmp44)
tmp52 = tmp50 - tmp51
tmp53 = tmp52 * tmp52
tmp54 = tmp49 + tmp53
tmp55 = tl_math.exp(tmp41)
tmp56 = tmp55 * tmp16
tmp57 = tmp54 / tmp56
tmp58 = tmp48 + tmp57
tmp59 = tmp58 - tmp1
tmp60 = tmp40 + tmp59
tmp62 = tmp61 * tmp1
tmp63 = tl_math.exp(tmp62)
tmp65 = tmp64 * tmp1
tmp66 = tl_math.exp(tmp65)
tmp67 = tmp63 / tmp66
tmp68 = tl_math.log(tmp67)
tmp69 = tl_math.exp(tmp64)
tmp72 = tmp70 - tmp71
tmp73 = tmp72 * tmp72
tmp74 = tmp69 + tmp73
tmp75 = tl_math.exp(tmp61)
tmp76 = tmp75 * tmp16
tmp77 = tmp74 / tmp76
tmp78 = tmp68 + tmp77
tmp79 = tmp78 - tmp1
tmp80 = tmp60 + tmp79
tmp81 = tl.broadcast_to(tmp80, [XBLOCK, RBLOCK])
tmp83 = tl.sum(tmp81, 1)[:, None]
tmp84 = 64.0
tmp85 = tmp83 / tmp84
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp85, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [mul_1, sigma2, mul, sigma1, truediv, log, exp_2, sub, pow_1, add, exp_3, mul_2, truediv_1, add_1, kld, sum_1, mean], Original ATen: [aten.mul, aten.exp, aten.div, aten.log, aten.sub, aten.pow, aten.add, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, arg3_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
from torch import linalg as linalg
class BaseMeasure(nn.Module):
"""
"""
NAME: 'str' = NotImplemented
REFERENCE: 'str' = None
BIGGER_IS_BETTER = False
OPT_VALUE = 0.0
def __init__(self, device):
"""
Args:
device ():
"""
super(BaseMeasure, self).__init__()
self.device = device
self
def forward(self, pred: 'torch.Tensor', target: 'torch.Tensor'):
"""
Args:
pred ():
target ():
Returns:
"""
if pred.ndim != 5 or target.ndim != 5:
raise ValueError(f'{self.NAME} expects 5-D inputs!')
value = self.criterion(pred, target)
return value.sum(dim=(4, 3, 2)).mean(dim=1).mean(dim=0)
def reshape_clamp(self, pred: 'torch.Tensor', target: 'torch.Tensor'):
"""
Args:
pred ():
target ():
Returns:
"""
if pred.ndim != 5 or target.ndim != 5:
raise ValueError(f'{self.NAME} expects 5-D inputs!')
pred = pred.reshape(-1, *pred.shape[2:])
pred = ((pred + 1) / 2).clamp_(min=0.0, max=1.0)
target = target.reshape(-1, *target.shape[2:])
target = ((target + 1) / 2).clamp_(min=0.0, max=1.0)
return pred, target
@classmethod
def to_display(cls, x):
"""
Args:
x ():
Returns:
"""
return x
class KLLoss(BaseMeasure):
"""
KL-Divergence loss function
"""
NAME = 'KL-Divergence (KL)'
def __init__(self, device):
super(KLLoss, self).__init__(device)
def criterion(self, mu1, logvar1, mu2, logvar2):
""" Computing the KL-Divergence between two Gaussian distributions """
sigma1 = logvar1.mul(0.5).exp()
sigma2 = logvar2.mul(0.5).exp()
kld = torch.log(sigma2 / sigma1) + (torch.exp(logvar1) + (mu1 - mu2
) ** 2) / (2 * torch.exp(logvar2)) - 1 / 2
return kld
def forward(self, mu1, logvar1, mu2, logvar2):
""" Computing the KL-Divergence between two Gaussian distributions """
value = self.criterion(mu1, logvar1, mu2, logvar2)
return value.sum(dim=-1).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'device': 0}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.cuda
from torch import linalg as linalg
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr3 + 4 * r0, None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr3 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp51 = tl.load(in_ptr3 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr3 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp4 * tmp1
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp3 / tmp6
tmp8 = tl_math.log(tmp7)
tmp9 = tl_math.exp(tmp4)
tmp12 = tmp10 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tmp9 + tmp13
tmp15 = tl_math.exp(tmp0)
tmp16 = 2.0
tmp17 = tmp15 * tmp16
tmp18 = tmp14 / tmp17
tmp19 = tmp8 + tmp18
tmp20 = tmp19 - tmp1
tmp22 = tmp21 * tmp1
tmp23 = tl_math.exp(tmp22)
tmp25 = tmp24 * tmp1
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 / tmp26
tmp28 = tl_math.log(tmp27)
tmp29 = tl_math.exp(tmp24)
tmp32 = tmp30 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tmp29 + tmp33
tmp35 = tl_math.exp(tmp21)
tmp36 = tmp35 * tmp16
tmp37 = tmp34 / tmp36
tmp38 = tmp28 + tmp37
tmp39 = tmp38 - tmp1
tmp40 = tmp20 + tmp39
tmp42 = tmp41 * tmp1
tmp43 = tl_math.exp(tmp42)
tmp45 = tmp44 * tmp1
tmp46 = tl_math.exp(tmp45)
tmp47 = tmp43 / tmp46
tmp48 = tl_math.log(tmp47)
tmp49 = tl_math.exp(tmp44)
tmp52 = tmp50 - tmp51
tmp53 = tmp52 * tmp52
tmp54 = tmp49 + tmp53
tmp55 = tl_math.exp(tmp41)
tmp56 = tmp55 * tmp16
tmp57 = tmp54 / tmp56
tmp58 = tmp48 + tmp57
tmp59 = tmp58 - tmp1
tmp60 = tmp40 + tmp59
tmp62 = tmp61 * tmp1
tmp63 = tl_math.exp(tmp62)
tmp65 = tmp64 * tmp1
tmp66 = tl_math.exp(tmp65)
tmp67 = tmp63 / tmp66
tmp68 = tl_math.log(tmp67)
tmp69 = tl_math.exp(tmp64)
tmp72 = tmp70 - tmp71
tmp73 = tmp72 * tmp72
tmp74 = tmp69 + tmp73
tmp75 = tl_math.exp(tmp61)
tmp76 = tmp75 * tmp16
tmp77 = tmp74 / tmp76
tmp78 = tmp68 + tmp77
tmp79 = tmp78 - tmp1
tmp80 = tmp60 + tmp79
tmp81 = tl.broadcast_to(tmp80, [XBLOCK, RBLOCK])
tmp83 = tl.sum(tmp81, 1)[:, None]
tmp84 = 64.0
tmp85 = tmp83 / tmp84
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp85, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0[grid(1)](buf2,
arg1_1, arg0_1, arg2_1, arg3_1, 1, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf2,
class BaseMeasure(nn.Module):
"""
"""
NAME: 'str' = NotImplemented
REFERENCE: 'str' = None
BIGGER_IS_BETTER = False
OPT_VALUE = 0.0
def __init__(self, device):
"""
Args:
device ():
"""
super(BaseMeasure, self).__init__()
self.device = device
self
def forward(self, pred: 'torch.Tensor', target: 'torch.Tensor'):
"""
Args:
pred ():
target ():
Returns:
"""
if pred.ndim != 5 or target.ndim != 5:
raise ValueError(f'{self.NAME} expects 5-D inputs!')
value = self.criterion(pred, target)
return value.sum(dim=(4, 3, 2)).mean(dim=1).mean(dim=0)
def reshape_clamp(self, pred: 'torch.Tensor', target: 'torch.Tensor'):
"""
Args:
pred ():
target ():
Returns:
"""
if pred.ndim != 5 or target.ndim != 5:
raise ValueError(f'{self.NAME} expects 5-D inputs!')
pred = pred.reshape(-1, *pred.shape[2:])
pred = ((pred + 1) / 2).clamp_(min=0.0, max=1.0)
target = target.reshape(-1, *target.shape[2:])
target = ((target + 1) / 2).clamp_(min=0.0, max=1.0)
return pred, target
@classmethod
def to_display(cls, x):
"""
Args:
x ():
Returns:
"""
return x
class KLLossNew(BaseMeasure):
"""
KL-Divergence loss function
"""
NAME = 'KL-Divergence (KL)'
def __init__(self, device):
super(KLLossNew, self).__init__(device)
def criterion(self, mu1, logvar1, mu2, logvar2):
""" Computing the KL-Divergence between two Gaussian distributions """
sigma1 = logvar1.mul(0.5).exp()
sigma2 = logvar2.mul(0.5).exp()
kld = torch.log(sigma2 / sigma1) + (torch.exp(logvar1) + (mu1 - mu2
) ** 2) / (2 * torch.exp(logvar2)) - 1 / 2
return kld
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| angelvillar96/vp-suite | KLLoss | false | 3,107 | [
"MIT"
] | 0 | 3e7c7d852862bad09a771d754fc56a71abf0a25f | https://github.com/angelvillar96/vp-suite/tree/3e7c7d852862bad09a771d754fc56a71abf0a25f | import torch
import torch.nn as nn
import torch.cuda
from torch import linalg as linalg
class BaseMeasure(nn.Module):
"""
"""
NAME: 'str' = NotImplemented
REFERENCE: 'str' = None
BIGGER_IS_BETTER = False
OPT_VALUE = 0.0
def __init__(self, device):
"""
Args:
device ():
"""
super().__init__()
self.device = device
self
def forward(self, pred: 'torch.Tensor', target: 'torch.Tensor'):
"""
Args:
pred ():
target ():
Returns:
"""
if pred.ndim != 5 or target.ndim != 5:
raise ValueError(f'{self.NAME} expects 5-D inputs!')
value = self.criterion(pred, target)
return value.sum(dim=(4, 3, 2)).mean(dim=1).mean(dim=0)
def reshape_clamp(self, pred: 'torch.Tensor', target: 'torch.Tensor'):
"""
Args:
pred ():
target ():
Returns:
"""
if pred.ndim != 5 or target.ndim != 5:
raise ValueError(f'{self.NAME} expects 5-D inputs!')
pred = pred.reshape(-1, *pred.shape[2:])
pred = ((pred + 1) / 2).clamp_(min=0.0, max=1.0)
target = target.reshape(-1, *target.shape[2:])
target = ((target + 1) / 2).clamp_(min=0.0, max=1.0)
return pred, target
@classmethod
def to_display(cls, x):
"""
Args:
x ():
Returns:
"""
return x
class Model(BaseMeasure):
"""
KL-Divergence loss function
"""
NAME = 'KL-Divergence (KL)'
def __init__(self, device):
super().__init__(device)
def criterion(self, mu1, logvar1, mu2, logvar2):
""" Computing the KL-Divergence between two Gaussian distributions """
sigma1 = logvar1.mul(0.5).exp()
sigma2 = logvar2.mul(0.5).exp()
kld = torch.log(sigma2 / sigma1) + (torch.exp(logvar1) + (mu1 - mu2
) ** 2) / (2 * torch.exp(logvar2)) - 1 / 2
return kld
def forward(self, mu1, logvar1, mu2, logvar2):
""" Computing the KL-Divergence between two Gaussian distributions """
value = self.criterion(mu1, logvar1, mu2, logvar2)
return value.sum(dim=-1).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [0]
|
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ss/cssias7s3ehnlf5rbtdbz25kwy6erpbr2ojzqub6i3hs3qwzke6g.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (200, 784), (784, 1))
assert_size_stride(primals_3, (200, ), (1, ))
assert_size_stride(primals_4, (10, 200), (200, 1))
assert_size_stride(primals_5, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 200), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 800, grid=grid(800), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (200, 10), (1, 200), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, primals_1, buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, 784), (784, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((10, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc = nn.Linear(28 * 28, 200)
self.fc2 = nn.Linear(200, 10)
def forward(self, x):
x = x.view((-1, 28 * 28))
x = F.relu(self.fc(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (200, 784), (784, 1))
assert_size_stride(primals_3, (200,), (1,))
assert_size_stride(primals_4, (10, 200), (200, 1))
assert_size_stride(primals_5, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784,
200), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(800)](buf1, primals_3, 800, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(200, 10), (1, 200), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, primals_1, buf1, primals_4
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.fc = nn.Linear(28 * 28, 200)
self.fc2 = nn.Linear(200, 10)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| anianruoss/RIAI | Net | false | 3,108 | [
"MIT"
] | 0 | 2ac4ddcfb73c9678b1c4fe94fdaae82baceac4ea | https://github.com/anianruoss/RIAI/tree/2ac4ddcfb73c9678b1c4fe94fdaae82baceac4ea | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(28 * 28, 200)
self.fc2 = nn.Linear(200, 10)
def forward(self, x):
x = x.view((-1, 28 * 28))
x = F.relu(self.fc(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return []
|
LocationLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/k2/ck2usl5fp3xepfv7a5s6fcwsspbyzdhjrzzin42xamawo2hslft3.py
# Topologically Sorted Source Nodes: [processed_attention_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# processed_attention_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 32
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 64
y1 = (yindex // 64)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (64*x2) + (2048*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (32*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (32, 2, 31), (62, 31, 1))
assert_size_stride(primals_2, (4, 2, 64), (128, 64, 1))
assert_size_stride(primals_3, (4, 32), (32, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [processed_attention], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,), padding=(15,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64), (2048, 64, 1))
buf1 = empty_strided_cuda((4, 64, 32), (2048, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [processed_attention_1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf1, 256, 32, grid=grid(256, 32), stream=stream0)
del buf0
buf2 = empty_strided_cuda((256, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [processed_attention_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (256, 32), (32, 1), 0), reinterpret_tensor(primals_3, (32, 4), (1, 32), 0), out=buf2)
return (reinterpret_tensor(buf2, (4, 64, 4), (256, 4, 1), 0), primals_1, primals_2, reinterpret_tensor(buf1, (256, 32), (32, 1), 0), primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 2, 31), (62, 31, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 2, 64), (128, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class Linear(nn.Module):
def __init__(self, in_features, out_features, bias=True, init_gain='linear'
):
super(Linear, self).__init__()
self.linear_layer = nn.Linear(in_features, out_features, bias=bias)
self._init_w(init_gain)
def _init_w(self, init_gain):
nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.
calculate_gain(init_gain))
def forward(self, x):
return self.linear_layer(x)
class LocationLayer(nn.Module):
def __init__(self, attention_dim, attention_n_filters=32,
attention_kernel_size=31):
super(LocationLayer, self).__init__()
self.location_conv = nn.Conv1d(in_channels=2, out_channels=
attention_n_filters, kernel_size=attention_kernel_size, stride=
1, padding=(attention_kernel_size - 1) // 2, bias=False)
self.location_dense = Linear(attention_n_filters, attention_dim,
bias=False, init_gain='tanh')
def forward(self, attention_cat):
processed_attention = self.location_conv(attention_cat)
processed_attention = self.location_dense(processed_attention.
transpose(1, 2))
return processed_attention
def get_inputs():
return [torch.rand([4, 2, 64])]
def get_init_inputs():
return [[], {'attention_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
xnumel = 32
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 64
y1 = yindex // 64
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 64 * x2 + 2048 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 32 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (32, 2, 31), (62, 31, 1))
assert_size_stride(primals_2, (4, 2, 64), (128, 64, 1))
assert_size_stride(primals_3, (4, 32), (32, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,),
padding=(15,), dilation=(1,), transposed=False, output_padding=
(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64), (2048, 64, 1))
buf1 = empty_strided_cuda((4, 64, 32), (2048, 32, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256, 32)](buf0, buf1, 256, 32, XBLOCK
=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((256, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (256, 32), (32, 1), 0),
reinterpret_tensor(primals_3, (32, 4), (1, 32), 0), out=buf2)
return reinterpret_tensor(buf2, (4, 64, 4), (256, 4, 1), 0
), primals_1, primals_2, reinterpret_tensor(buf1, (256, 32), (32, 1), 0
), primals_3
class Linear(nn.Module):
def __init__(self, in_features, out_features, bias=True, init_gain='linear'
):
super(Linear, self).__init__()
self.linear_layer = nn.Linear(in_features, out_features, bias=bias)
self._init_w(init_gain)
def _init_w(self, init_gain):
nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.
calculate_gain(init_gain))
def forward(self, x):
return self.linear_layer(x)
class LocationLayerNew(nn.Module):
def __init__(self, attention_dim, attention_n_filters=32,
attention_kernel_size=31):
super(LocationLayerNew, self).__init__()
self.location_conv = nn.Conv1d(in_channels=2, out_channels=
attention_n_filters, kernel_size=attention_kernel_size, stride=
1, padding=(attention_kernel_size - 1) // 2, bias=False)
self.location_dense = Linear(attention_n_filters, attention_dim,
bias=False, init_gain='tanh')
def forward(self, input_0):
primals_1 = self.location_conv.weight
primals_3 = self.location_dense.linear_layer.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| aidiary/tacotron-pytorch | LocationLayer | false | 3,109 | [
"MIT"
] | 0 | 8ea9b1bb61bf753a64ff611b441326ea8c001d20 | https://github.com/aidiary/tacotron-pytorch/tree/8ea9b1bb61bf753a64ff611b441326ea8c001d20 | import torch
import torch.utils.data
import torch
import torch.nn as nn
class Linear(nn.Module):
def __init__(self, in_features, out_features, bias=True, init_gain='linear'
):
super().__init__()
self.linear_layer = nn.Linear(in_features, out_features, bias=bias)
self._init_w(init_gain)
def _init_w(self, init_gain):
nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.
calculate_gain(init_gain))
def forward(self, x):
return self.linear_layer(x)
class Model(nn.Module):
def __init__(self, attention_dim, attention_n_filters=32,
attention_kernel_size=31):
super().__init__()
self.location_conv = nn.Conv1d(in_channels=2, out_channels=
attention_n_filters, kernel_size=attention_kernel_size, stride=
1, padding=(attention_kernel_size - 1) // 2, bias=False)
self.location_dense = Linear(attention_n_filters, attention_dim,
bias=False, init_gain='tanh')
def forward(self, attention_cat):
processed_attention = self.location_conv(attention_cat)
processed_attention = self.location_dense(processed_attention.
transpose(1, 2))
return processed_attention
def get_inputs():
return [torch.rand([4, 2, 64])]
def get_init_inputs():
return [4]
|
BayesConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/f7/cf7rz22aqis7umipylpjgcc5pa2x2dj7bkpg2w5kl52634qjvyzl.py
# Topologically Sorted Source Nodes: [exp, mul, weight], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# weight => add
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %randn), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {})
triton_poi_fused_add_exp_mul_0 = async_compile.triton('triton_poi_fused_add_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ex/cexx6sx6tmxabn4jt6yi2hcwlgi6alv2u73bmnxs57jfhli2nx43.py
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias, conv2d], Original ATen: [aten.exp, aten.mul, aten.add, aten.convolution]
# Source node to ATen node mapping:
# bias => add_1
# conv2d => convolution
# exp_1 => exp_1
# mul_1 => mul_1
# Graph fragment:
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_4,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %randn_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_1), kwargs = {})
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_5, %add, %add_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_add_convolution_exp_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tx/ctxzqevc6tkfvzdf6yuxhf2qk7dtxu5v2f2auzkqvdbvvzqjkyfv.py
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias, conv2d], Original ATen: [aten.exp, aten.mul, aten.add, aten.convolution]
# Source node to ATen node mapping:
# bias => add_1
# conv2d => convolution
# exp_1 => exp_1
# mul_1 => mul_1
# Graph fragment:
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_4,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %randn_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_1), kwargs = {})
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_5, %add, %add_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_add_convolution_exp_mul_2 = async_compile.triton('triton_poi_fused_add_convolution_exp_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_exp_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_exp_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [randn_like], Original ATen: [aten.randn_like]
buf0 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul, weight], Original ATen: [aten.exp, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_mul_0.run(primals_1, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [randn_like_1], Original ATen: [aten.randn_like]
buf3 = torch.ops.aten.randn.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias, conv2d], Original ATen: [aten.exp, aten.mul, aten.add, aten.convolution]
triton_poi_fused_add_convolution_exp_mul_1.run(primals_3, primals_4, buf4, buf5, 4, grid=grid(4), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias, conv2d], Original ATen: [aten.exp, aten.mul, aten.add, aten.convolution]
buf6 = extern_kernels.convolution(primals_5, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [exp_1, mul_1, bias, conv2d], Original ATen: [aten.exp, aten.mul, aten.add, aten.convolution]
triton_poi_fused_add_convolution_exp_mul_2.run(buf7, buf5, 16, grid=grid(16), stream=stream0)
del buf5
return (buf7, primals_2, primals_4, primals_5, buf1, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch.nn import Parameter
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
class _BayesConvNd(Module):
"""
Applies Bayesian Convolution
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following conv of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py
"""
__constants__ = ['prior_mu', 'prior_sigma', 'stride', 'padding',
'dilation', 'groups', 'bias', 'padding_mode', 'output_padding',
'in_channels', 'out_channels', 'kernel_size']
def __init__(self, prior_mu, prior_sigma, in_channels, out_channels,
kernel_size, stride, padding, dilation, transposed, output_padding,
groups, bias, padding_mode):
super(_BayesConvNd, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
self.padding_mode = padding_mode
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.prior_log_sigma = math.log(prior_sigma)
if transposed:
self.weight_mu = Parameter(torch.Tensor(in_channels,
out_channels // groups, *kernel_size))
self.weight_log_sigma = Parameter(torch.Tensor(in_channels,
out_channels // groups, *kernel_size))
self.register_buffer('weight_eps', None)
else:
self.weight_mu = Parameter(torch.Tensor(out_channels,
in_channels // groups, *kernel_size))
self.weight_log_sigma = Parameter(torch.Tensor(out_channels,
in_channels // groups, *kernel_size))
self.register_buffer('weight_eps', None)
if bias is None or bias is False:
self.bias = False
else:
self.bias = True
if self.bias:
self.bias_mu = Parameter(torch.Tensor(out_channels))
self.bias_log_sigma = Parameter(torch.Tensor(out_channels))
self.register_buffer('bias_eps', None)
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_log_sigma', None)
self.register_buffer('bias_eps', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
n *= self.kernel_size[0] ** 2
stdv = 1.0 / math.sqrt(n)
self.weight_mu.data.uniform_(-stdv, stdv)
self.weight_log_sigma.data.fill_(self.prior_log_sigma)
if self.bias:
self.bias_mu.data.uniform_(-stdv, stdv)
self.bias_log_sigma.data.fill_(self.prior_log_sigma)
def freeze(self):
self.weight_eps = torch.randn_like(self.weight_log_sigma)
if self.bias:
self.bias_eps = torch.randn_like(self.bias_log_sigma)
def unfreeze(self):
self.weight_eps = None
if self.bias:
self.bias_eps = None
def extra_repr(self):
s = (
'{prior_mu}, {prior_sigma}, {in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}'
)
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is False:
s += ', bias=False'
return s.format(**self.__dict__)
def __setstate__(self, state):
super(_BayesConvNd, self).__setstate__(state)
if not hasattr(self, 'padding_mode'):
self.padding_mode = 'zeros'
class BayesConv2d(_BayesConvNd):
"""
Applies Bayesian Convolution for 2D inputs
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following conv of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py
"""
def __init__(self, prior_mu, prior_sigma, in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros'):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(BayesConv2d, self).__init__(prior_mu, prior_sigma,
in_channels, out_channels, kernel_size, stride, padding,
dilation, False, _pair(0), groups, bias, padding_mode)
def conv2d_forward(self, input, weight):
if self.bias:
if self.bias_eps is None:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * torch.randn_like(self.bias_log_sigma)
else:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * self.bias_eps
else:
bias = None
if self.padding_mode == 'circular':
expanded_padding = (self.padding[1] + 1) // 2, self.padding[1
] // 2, (self.padding[0] + 1) // 2, self.padding[0] // 2
return F.conv2d(F.pad(input, expanded_padding, mode='circular'),
weight, bias, self.stride, _pair(0), self.dilation, self.groups
)
return F.conv2d(input, weight, bias, self.stride, self.padding,
self.dilation, self.groups)
def forward(self, input):
"""
Overriden.
"""
if self.weight_eps is None:
weight = self.weight_mu + torch.exp(self.weight_log_sigma
) * torch.randn_like(self.weight_log_sigma)
else:
weight = self.weight_mu + torch.exp(self.weight_log_sigma
) * self.weight_eps
return self.conv2d_forward(input, weight)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'prior_mu': 4, 'prior_sigma': 4, 'in_channels': 4,
'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
from torch.nn import Parameter
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_add_convolution_exp_mul_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_add_convolution_exp_mul_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_mul_0[grid(256)](primals_1, primals_2,
buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf3 = torch.ops.aten.randn.default([4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_add_convolution_exp_mul_1[grid(4)](primals_3,
primals_4, buf4, buf5, 4, XBLOCK=4, num_warps=1, num_stages=1)
del primals_3
buf6 = extern_kernels.convolution(primals_5, buf2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1))
buf7 = buf6
del buf6
triton_poi_fused_add_convolution_exp_mul_2[grid(16)](buf7, buf5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf5
return buf7, primals_2, primals_4, primals_5, buf1, buf2, buf4
class _BayesConvNd(Module):
"""
Applies Bayesian Convolution
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following conv of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py
"""
__constants__ = ['prior_mu', 'prior_sigma', 'stride', 'padding',
'dilation', 'groups', 'bias', 'padding_mode', 'output_padding',
'in_channels', 'out_channels', 'kernel_size']
def __init__(self, prior_mu, prior_sigma, in_channels, out_channels,
kernel_size, stride, padding, dilation, transposed, output_padding,
groups, bias, padding_mode):
super(_BayesConvNd, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
self.padding_mode = padding_mode
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.prior_log_sigma = math.log(prior_sigma)
if transposed:
self.weight_mu = Parameter(torch.Tensor(in_channels,
out_channels // groups, *kernel_size))
self.weight_log_sigma = Parameter(torch.Tensor(in_channels,
out_channels // groups, *kernel_size))
self.register_buffer('weight_eps', None)
else:
self.weight_mu = Parameter(torch.Tensor(out_channels,
in_channels // groups, *kernel_size))
self.weight_log_sigma = Parameter(torch.Tensor(out_channels,
in_channels // groups, *kernel_size))
self.register_buffer('weight_eps', None)
if bias is None or bias is False:
self.bias = False
else:
self.bias = True
if self.bias:
self.bias_mu = Parameter(torch.Tensor(out_channels))
self.bias_log_sigma = Parameter(torch.Tensor(out_channels))
self.register_buffer('bias_eps', None)
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_log_sigma', None)
self.register_buffer('bias_eps', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
n *= self.kernel_size[0] ** 2
stdv = 1.0 / math.sqrt(n)
self.weight_mu.data.uniform_(-stdv, stdv)
self.weight_log_sigma.data.fill_(self.prior_log_sigma)
if self.bias:
self.bias_mu.data.uniform_(-stdv, stdv)
self.bias_log_sigma.data.fill_(self.prior_log_sigma)
def freeze(self):
self.weight_eps = torch.randn_like(self.weight_log_sigma)
if self.bias:
self.bias_eps = torch.randn_like(self.bias_log_sigma)
def unfreeze(self):
self.weight_eps = None
if self.bias:
self.bias_eps = None
def extra_repr(self):
s = (
'{prior_mu}, {prior_sigma}, {in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}'
)
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is False:
s += ', bias=False'
return s.format(**self.__dict__)
def __setstate__(self, state):
super(_BayesConvNd, self).__setstate__(state)
if not hasattr(self, 'padding_mode'):
self.padding_mode = 'zeros'
class BayesConv2dNew(_BayesConvNd):
"""
Applies Bayesian Convolution for 2D inputs
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following conv of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py
"""
def __init__(self, prior_mu, prior_sigma, in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros'):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(BayesConv2dNew, self).__init__(prior_mu, prior_sigma,
in_channels, out_channels, kernel_size, stride, padding,
dilation, False, _pair(0), groups, bias, padding_mode)
def conv2d_forward(self, input, weight):
if self.bias:
if self.bias_eps is None:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * torch.randn_like(self.bias_log_sigma)
else:
bias = self.bias_mu + torch.exp(self.bias_log_sigma
) * self.bias_eps
else:
bias = None
if self.padding_mode == 'circular':
expanded_padding = (self.padding[1] + 1) // 2, self.padding[1
] // 2, (self.padding[0] + 1) // 2, self.padding[0] // 2
return F.conv2d(F.pad(input, expanded_padding, mode='circular'),
weight, bias, self.stride, _pair(0), self.dilation, self.groups
)
return F.conv2d(input, weight, bias, self.stride, self.padding,
self.dilation, self.groups)
def forward(self, input_0):
primals_1 = self.weight_mu
primals_2 = self.weight_log_sigma
primals_3 = self.bias_mu
primals_4 = self.bias_log_sigma
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| anaplasia29/Bayesian-Neural-Network | BayesConv2d | false | 3,110 | [
"MIT"
] | 0 | d98df8039e52cd2505dc8a94ed3cd474c2056d9a | https://github.com/anaplasia29/Bayesian-Neural-Network/tree/d98df8039e52cd2505dc8a94ed3cd474c2056d9a | from torch.nn import Module
import math
import torch
from torch.nn import Parameter
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
class _BayesConvNd(Module):
"""
Applies Bayesian Convolution
Arguments:
prior_mu (Float): mean of prior normal distribution.
prior_sigma (Float): sigma of prior normal distribution.
.. note:: other arguments are following conv of pytorch 1.2.0.
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py
"""
__constants__ = ['prior_mu', 'prior_sigma', 'stride', 'padding',
'dilation', 'groups', 'bias', 'padding_mode', 'output_padding',
'in_channels', 'out_channels', 'kernel_size']
def __init__(self, prior_mu, prior_sigma, in_channels, out_channels,
kernel_size, stride, padding, dilation, transposed, output_padding,
groups, bias, padding_mode):
super().__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
self.padding_mode = padding_mode
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.prior_log_sigma = math.log(prior_sigma)
if transposed:
self.weight_mu = Parameter(torch.Tensor(in_channels,
out_channels // groups, *kernel_size))
self.weight_log_sigma = Parameter(torch.Tensor(in_channels,
out_channels // groups, *kernel_size))
self.register_buffer('weight_eps', None)
else:
self.weight_mu = Parameter(torch.Tensor(out_channels,
in_channels // groups, *kernel_size))
self.weight_log_sigma = Parameter(torch.Tensor(out_channels,
in_channels // groups, *kernel_size))
self.register_buffer('weight_eps', None)
if bias is None or bias is False:
self.bias = False
else:
self.bias = True
if self.bias:
self.bias_mu = Parameter(torch.Tensor(out_channels))
self.bias_log_sigma = Parameter(torch.Tensor(out_channels))
self.register_buffer('bias_eps', None)
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_log_sigma', None)
self.register_buffer('bias_eps', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
n *= self.kernel_size[0] ** 2
stdv = 1.0 / math.sqrt(n)
self.weight_mu.data.uniform_(-stdv, stdv)
self.weight_log_sigma.data.fill_(self.prior_log_sigma)
if self.bias:
self.bias_mu.data.uniform_(-stdv, stdv)
self.bias_log_sigma.data.fill_(self.prior_log_sigma)
def freeze(self):
self.weight_eps = torch.randn_like(self.weight_log_sigma)
if self.bias:
self.bias_eps = torch.randn_like(self.bias_log_sigma)
def unfreeze(self):
self.weight_eps = None
if self.bias:
self.bias_eps = None
def extra_repr(self):
s = (
'{prior_mu}, {prior_sigma}, {in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}'
)
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
# ... truncated (>4000 chars) for memory efficiency |
QNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py
# Topologically Sorted Source Nodes: [state_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# state_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/54/c546inlectt6zvbpgn5qhxi6h2mqgwz227jurnrzfeistnsnjut6.py
# Topologically Sorted Source Nodes: [state_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# state_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/gz/cgz3rsgyyce7ybbfcrgzuaeusupxnsotqth5ok5vlppvfma4lyvv.py
# Topologically Sorted Source Nodes: [state_5], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# state_5 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 64), (64, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (16, 32), (32, 1))
assert_size_stride(primals_7, (16, ), (1, ))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [state_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 32), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [state_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf8, 2048, grid=grid(2048), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 16), (1, 32), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf4 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [state_5], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf7, 1024, grid=grid(1024), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(buf5, (64, 16), (16, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Actor (Policy) Model. Deep Net function approximator for q(s,a)"""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Parameters:
==========
state_size (int): This is the dimension of each state.
action_size (int): This is the dimension of each action.
seed (int): This gives the random seed.
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, action_size)
def forward(self, state):
"""This builds a network that maps a state to action values."""
state = self.fc1(state)
state = F.relu(state)
state = self.fc2(state)
state = F.relu(state)
state = self.fc3(state)
state = F.relu(state)
state = self.fc4(state)
return state
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 64), (64, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (16, 32), (32, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
buf9 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1,
primals_2, buf9, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 32), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(2048)](buf3,
primals_5, buf8, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_6, (32, 16), (1, 32), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf4
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(1024)](buf5,
primals_7, buf7, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(
buf3, (64, 32), (32, 1), 0), reinterpret_tensor(buf5, (64, 16), (16,
1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9
class QNetworkNew(nn.Module):
"""Actor (Policy) Model. Deep Net function approximator for q(s,a)"""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Parameters:
==========
state_size (int): This is the dimension of each state.
action_size (int): This is the dimension of each action.
seed (int): This gives the random seed.
"""
super(QNetworkNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, action_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| andreaspts/DRL_LUNAR_LANDER | QNetwork | false | 3,111 | [
"MIT"
] | 0 | 61f19b294ba7ed069795c70a3ceca4d9f7ff8a66 | https://github.com/andreaspts/DRL_LUNAR_LANDER/tree/61f19b294ba7ed069795c70a3ceca4d9f7ff8a66 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""Actor (Policy) Model. Deep Net function approximator for q(s,a)"""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Parameters:
==========
state_size (int): This is the dimension of each state.
action_size (int): This is the dimension of each action.
seed (int): This gives the random seed.
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, action_size)
def forward(self, state):
"""This builds a network that maps a state to action values."""
state = self.fc1(state)
state = F.relu(state)
state = self.fc2(state)
state = F.relu(state)
state = self.fc3(state)
state = F.relu(state)
state = self.fc4(state)
return state
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
PreNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_4 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf4, 8192, grid=grid(8192), stream=stream0)
del primals_5
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.optimizer
class PreNet(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=self.training)
x = self.fc2(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=self.training)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dims': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.optim.optimizer
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf5, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf4, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), buf4, primals_4, buf5
class PreNetNew(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| anh/ForwardTacotron | PreNet | false | 3,112 | [
"MIT"
] | 0 | a58d9244844b4512f5655e154f08f934760c88b3 | https://github.com/anh/ForwardTacotron/tree/a58d9244844b4512f5655e154f08f934760c88b3 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.optimizer
class Model(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=self.training)
x = self.fc2(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=self.training)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
RNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# combined => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_1 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_1 => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0)
del buf3
return (buf4, buf1, buf0, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size: 'int', hidden_size: 'int', output_size:
'int'):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softMax = nn.LogSoftmax(dim=1)
def forward(self, _input, _hidden):
combined = torch.cat((_input, _hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softMax(output)
return output, hidden
def init_hidden(self):
return torch.zeros(1, self.hidden_size)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused__log_softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf3
return buf4, buf1, buf0, buf4
class RNNNew(nn.Module):
def __init__(self, input_size: 'int', hidden_size: 'int', output_size:
'int'):
super(RNNNew, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softMax = nn.LogSoftmax(dim=1)
def init_hidden(self):
return torch.zeros(1, self.hidden_size)
def forward(self, input_0, input_1):
primals_3 = self.i2h.weight
primals_4 = self.i2h.bias
primals_5 = self.i2o.weight
primals_6 = self.i2o.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
| alimpk/names-classify | RNN | false | 3,113 | [
"MIT"
] | 0 | cfaff60cae504a8deceaa5b8641cbd9fc50ce705 | https://github.com/alimpk/names-classify/tree/cfaff60cae504a8deceaa5b8641cbd9fc50ce705 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size: 'int', hidden_size: 'int', output_size:
'int'):
super().__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softMax = nn.LogSoftmax(dim=1)
def forward(self, _input, _hidden):
combined = torch.cat((_input, _hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softMax(output)
return output, hidden
def init_hidden(self):
return torch.zeros(1, self.hidden_size)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
RewardCriterion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/jk/cjk4a6hzo7lmkian2zuwtbzbsa4v76s5vf3coi67m65hich66au5.py
# Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# mul => mul
# neg => neg
# output => mul_1
# output_1 => div
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %view_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = -tmp0
tmp3 = tmp1 * tmp2
tmp4 = r0 % 4
tmp5 = tl.full([1, 1], 0, tl.int64)
tmp6 = tmp4 >= tmp5
tmp7 = tl.full([1, 1], 1, tl.int64)
tmp8 = tmp4 < tmp7
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = tmp4 >= tmp7
tmp13 = tl.full([1, 1], 4, tl.int64)
tmp14 = tmp4 < tmp13
tmp15 = tl.load(in_ptr2 + (tl.broadcast_to((4*(r0 // 4)) + ((-1) + (r0 % 4)), [XBLOCK, RBLOCK])), tmp12, eviction_policy='evict_last', other=0.0)
tmp16 = 0.0
tmp17 = tmp15 > tmp16
tmp18 = tmp17.to(tl.float32)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp8, tmp11, tmp20)
tmp22 = tmp3 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.sum(tmp23, 1)[:, None]
tmp26 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp28 = tl.sum(tmp26, 1)[:, None]
tmp29 = tmp25 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import *
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class RewardCriterion(nn.Module):
def __init__(self):
super(RewardCriterion, self).__init__()
def forward(self, input, seq, reward):
input = to_contiguous(input).view(-1)
reward = to_contiguous(reward).view(-1)
mask = (seq > 0).float()
mask = to_contiguous(torch.cat([mask.new(mask.size(0), 1).fill_(1),
mask[:, :-1]], 1)).view(-1)
output = -input * reward * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = -tmp0
tmp3 = tmp1 * tmp2
tmp4 = r0 % 4
tl.full([1, 1], 0, tl.int64)
tmp7 = tl.full([1, 1], 1, tl.int64)
tmp8 = tmp4 < tmp7
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = tmp4 >= tmp7
tl.full([1, 1], 4, tl.int64)
tmp15 = tl.load(in_ptr2 + tl.broadcast_to(4 * (r0 // 4) + (-1 + r0 % 4),
[XBLOCK, RBLOCK]), tmp12, eviction_policy='evict_last', other=0.0)
tmp16 = 0.0
tmp17 = tmp15 > tmp16
tmp18 = tmp17.to(tl.float32)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp8, tmp11, tmp20)
tmp22 = tmp3 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.sum(tmp23, 1)[:, None]
tmp26 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp28 = tl.sum(tmp26, 1)[:, None]
tmp29 = tmp25 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg0_1, arg1_1,
arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class RewardCriterionNew(nn.Module):
def __init__(self):
super(RewardCriterionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| anonymous2021hello/transformer-cil | RewardCriterion | false | 3,114 | [
"MIT"
] | 0 | aed4017b61afaf4d9d21d40a078eefb4c7031cd1 | https://github.com/anonymous2021hello/transformer-cil/tree/aed4017b61afaf4d9d21d40a078eefb4c7031cd1 | import torch
import torch.nn as nn
from torch.autograd import *
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, seq, reward):
input = to_contiguous(input).view(-1)
reward = to_contiguous(reward).view(-1)
mask = (seq > 0).float()
mask = to_contiguous(torch.cat([mask.new(mask.size(0), 1).fill_(1),
mask[:, :-1]], 1)).view(-1)
output = -input * reward * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return []
|
PatchEmbedding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/5s/c5sni7dzheaodogr5chdb3cizynndekqs4ajsctpfcvi3r5v37oa.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 256], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2304
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (256*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (768*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4c/c4ckui43udehobca2kb3vy5stpaqfztmtjwrdinx2dhmcmh73fmo.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [16, 16], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 3072
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 768
y1 = (yindex // 768)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (768*x2) + (12288*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (768, 3, 16, 16), (768, 256, 16, 1))
assert_size_stride(primals_2, (768, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2304, 256, grid=grid(2304, 256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, buf0, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768))
buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf2, primals_2, buf3, 3072, 16, grid=grid(3072, 16), stream=stream0)
del buf2
del primals_2
return (reinterpret_tensor(buf3, (4, 16, 768), (12288, 1, 16), 0), buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((768, 3, 16, 16), (768, 256, 16, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PatchEmbedding(nn.Module):
"""PatchEmdedding class
Args:
image_size(int): size of the image. assume that image shape is square
in_channels(int): input channel of the image, 3 for RGB color channel
embed_size(int): output channel size. This is the latent vector size.
and is constant throughout the transformer
patch_size(int): size of the patch
Attributes:
n_patches(int): calculate the number of patches.
patcher: convert image into patches. Basically a convolution layer with
kernel size and stride as of the patch size
"""
def __init__(self, image_size=224, in_channels=3, embed_size=768,
patch_size=16):
super(PatchEmbedding, self).__init__()
self.n_patches = (image_size // patch_size) ** 2
self.patcher = nn.Conv2d(in_channels, embed_size, patch_size,
patch_size)
def forward(self, x):
out = self.patcher(x)
out = out.flatten(2)
out = out.transpose(1, 2)
return out
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 2304
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 256 * y3), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 768 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 768
y1 = yindex // 768
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 768 * x2 + 12288 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (768, 3, 16, 16), (768, 256, 16, 1))
assert_size_stride(primals_2, (768,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch.
float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2304, 256)](primals_1, buf0, 2304, 256,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, buf0, stride=(16, 16),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768))
buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch.
float32)
triton_poi_fused_convolution_2[grid(3072, 16)](buf2, primals_2,
buf3, 3072, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del buf2
del primals_2
return reinterpret_tensor(buf3, (4, 16, 768), (12288, 1, 16), 0
), buf0, buf1
class PatchEmbeddingNew(nn.Module):
"""PatchEmdedding class
Args:
image_size(int): size of the image. assume that image shape is square
in_channels(int): input channel of the image, 3 for RGB color channel
embed_size(int): output channel size. This is the latent vector size.
and is constant throughout the transformer
patch_size(int): size of the patch
Attributes:
n_patches(int): calculate the number of patches.
patcher: convert image into patches. Basically a convolution layer with
kernel size and stride as of the patch size
"""
def __init__(self, image_size=224, in_channels=3, embed_size=768,
patch_size=16):
super(PatchEmbeddingNew, self).__init__()
self.n_patches = (image_size // patch_size) ** 2
self.patcher = nn.Conv2d(in_channels, embed_size, patch_size,
patch_size)
def forward(self, input_0):
primals_1 = self.patcher.weight
primals_2 = self.patcher.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| aiwizzard/vision-transformer | PatchEmbedding | false | 3,115 | [
"Apache-2.0"
] | 0 | f9dd2f720a595f02543aa9720204d8f8c6f58193 | https://github.com/aiwizzard/vision-transformer/tree/f9dd2f720a595f02543aa9720204d8f8c6f58193 | import torch
import torch.nn as nn
class Model(nn.Module):
"""PatchEmdedding class
Args:
image_size(int): size of the image. assume that image shape is square
in_channels(int): input channel of the image, 3 for RGB color channel
embed_size(int): output channel size. This is the latent vector size.
and is constant throughout the transformer
patch_size(int): size of the patch
Attributes:
n_patches(int): calculate the number of patches.
patcher: convert image into patches. Basically a convolution layer with
kernel size and stride as of the patch size
"""
def __init__(self, image_size=224, in_channels=3, embed_size=768,
patch_size=16):
super().__init__()
self.n_patches = (image_size // patch_size) ** 2
self.patcher = nn.Conv2d(in_channels, embed_size, patch_size,
patch_size)
def forward(self, x):
out = self.patcher(x)
out = out.flatten(2)
out = out.transpose(1, 2)
return out
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
RnLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/p4/cp4wvaid5nhy4qhyozmkikygldcherqkx73jdv2fuas7vih2cydw.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 32],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 32
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp21 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp44 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp0 = (r1 // 16)
tmp1 = tl.full([1, 1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.broadcast_to((r1 // 16), [XBLOCK, RBLOCK])
tmp4 = tmp3 < tmp1
tmp5 = tmp4 & tmp2
tmp6 = tl.load(in_ptr0 + (r1 + (64*x0)), tmp5 & xmask, other=0.0)
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp5, tmp8, tmp9)
tmp11 = tl.load(in_ptr0 + (r1 + (64*x0)), tmp2 & xmask, other=0.0)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = triton_helpers.minimum(tmp12, tmp7)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp2, tmp13, tmp14)
tmp16 = tmp0 < tmp1
tmp17 = tl.load(in_ptr0 + (r1 + (64*x0)), tmp16 & xmask, other=0.0)
tmp18 = triton_helpers.maximum(tmp17, tmp7)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp16, tmp18, tmp19)
tmp22 = tl.where(tmp16, tmp20, tmp21)
tmp23 = tl.where(tmp2, tmp15, tmp22)
tmp24 = tmp23 + tmp7
tmp25 = 2 + (r1 // 16)
tmp26 = tmp25 >= tmp1
tmp27 = tl.broadcast_to(2 + (r1 // 16), [XBLOCK, RBLOCK])
tmp28 = tmp27 < tmp1
tmp29 = tmp28 & tmp26
tmp30 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), tmp29 & xmask, other=0.0)
tmp31 = triton_helpers.maximum(tmp30, tmp7)
tmp32 = tl.full(tmp31.shape, 0.0, tmp31.dtype)
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), tmp26 & xmask, other=0.0)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = triton_helpers.minimum(tmp35, tmp7)
tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype)
tmp38 = tl.where(tmp26, tmp36, tmp37)
tmp39 = tmp25 < tmp1
tmp40 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), tmp39 & xmask, other=0.0)
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp39, tmp41, tmp42)
tmp45 = tl.where(tmp39, tmp43, tmp44)
tmp46 = tl.where(tmp26, tmp38, tmp45)
tmp47 = tmp46 + tmp7
tmp48 = tmp24 - tmp47
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp51 = tl.where(xmask, tmp49, 0)
tmp52 = tl.sum(tmp51, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp52, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nx/cnxiu4g3dzrtvxcvolkvqt5kgh7kowusla5ptvodcl3nrg5qeq5h.py
# Topologically Sorted Source Nodes: [clamp_, clamp__1, truediv], Original ATen: [aten.clamp, aten.div]
# Source node to ATen node mapping:
# clamp_ => clamp_min
# clamp__1 => clamp_max
# truediv => div
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%getitem, 0), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%arg0_1, %clamp_min, 1, 0, 2), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%getitem_5, 0), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %clamp_max, 1, 2, 4), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_scatter_default_1, %view_1), kwargs = {})
triton_poi_fused_clamp_div_1 = async_compile.triton('triton_poi_fused_clamp_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
x2 = (xindex // 64)
tmp19 = tl.load(in_ptr0 + (x3), xmask)
tmp22 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tmp0 < tmp1
tmp4 = tmp3 & tmp2
tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, other=0.0)
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (x3), tmp2 & xmask, other=0.0)
tmp11 = tl.where(tmp3, tmp9, tmp10)
tmp12 = triton_helpers.minimum(tmp11, tmp6)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp2, tmp12, tmp13)
tmp15 = tl.load(in_ptr0 + (x3), tmp3 & xmask, other=0.0)
tmp16 = triton_helpers.maximum(tmp15, tmp6)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp3, tmp16, tmp17)
tmp20 = tl.where(tmp3, tmp18, tmp19)
tmp21 = tl.where(tmp2, tmp14, tmp20)
tmp23 = 32.0
tmp24 = tmp22 / tmp23
tmp25 = 1.2533141373155001
tmp26 = tmp24 * tmp25
tmp27 = 1e-08
tmp28 = tmp26 + tmp27
tmp29 = tmp21 / tmp28
tl.store(out_ptr0 + (x3), tmp29, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(arg0_1, buf0, 4, 32, grid=grid(4), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp_, clamp__1, truediv], Original ATen: [aten.clamp, aten.div]
triton_poi_fused_clamp_div_1.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
from torch.autograd.function import InplaceFunction
import torch.nn.parallel
import torch.utils.data
def birelu(x, inplace=False):
return BiReLUFunction().apply(x, inplace)
def rnlu(x, inplace=False, shift=0, scale_fix=(math.pi / 2) ** 0.5):
x = birelu(x, inplace=inplace)
pos, neg = (x + shift).chunk(2, dim=1)
scale = (pos - neg).view(pos.size(0), -1).mean(1) * scale_fix + 1e-08
return x / scale.view(scale.size(0), *([1] * (x.dim() - 1)))
class BiReLUFunction(InplaceFunction):
@classmethod
def forward(cls, ctx, input, inplace=False):
if input.size(1) % 2 != 0:
raise RuntimeError(
'dimension 1 of input must be multiple of 2, but got {}'.
format(input.size(1)))
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
pos, neg = output.chunk(2, dim=1)
pos.clamp_(min=0)
neg.clamp_(max=0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output, = ctx.saved_variables
grad_input = grad_output.masked_fill(output.eq(0), 0)
return grad_input, None
class RnLU(nn.Module):
"""docstring for RnLU."""
def __init__(self, inplace=False):
super(RnLU, self).__init__()
self.inplace = inplace
def forward(self, x):
return rnlu(x, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
import torch.nn as nn
from torch.autograd.function import InplaceFunction
import torch.nn.parallel
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp21 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp44 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp0 = r1 // 16
tmp1 = tl.full([1, 1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.broadcast_to(r1 // 16, [XBLOCK, RBLOCK])
tmp4 = tmp3 < tmp1
tmp5 = tmp4 & tmp2
tmp6 = tl.load(in_ptr0 + (r1 + 64 * x0), tmp5 & xmask, other=0.0)
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp5, tmp8, tmp9)
tmp11 = tl.load(in_ptr0 + (r1 + 64 * x0), tmp2 & xmask, other=0.0)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = triton_helpers.minimum(tmp12, tmp7)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp2, tmp13, tmp14)
tmp16 = tmp0 < tmp1
tmp17 = tl.load(in_ptr0 + (r1 + 64 * x0), tmp16 & xmask, other=0.0)
tmp18 = triton_helpers.maximum(tmp17, tmp7)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp16, tmp18, tmp19)
tmp22 = tl.where(tmp16, tmp20, tmp21)
tmp23 = tl.where(tmp2, tmp15, tmp22)
tmp24 = tmp23 + tmp7
tmp25 = 2 + r1 // 16
tmp26 = tmp25 >= tmp1
tmp27 = tl.broadcast_to(2 + r1 // 16, [XBLOCK, RBLOCK])
tmp28 = tmp27 < tmp1
tmp29 = tmp28 & tmp26
tmp30 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), tmp29 & xmask, other=0.0)
tmp31 = triton_helpers.maximum(tmp30, tmp7)
tmp32 = tl.full(tmp31.shape, 0.0, tmp31.dtype)
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), tmp26 & xmask, other=0.0)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = triton_helpers.minimum(tmp35, tmp7)
tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype)
tmp38 = tl.where(tmp26, tmp36, tmp37)
tmp39 = tmp25 < tmp1
tmp40 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), tmp39 & xmask, other=0.0)
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp39, tmp41, tmp42)
tmp45 = tl.where(tmp39, tmp43, tmp44)
tmp46 = tl.where(tmp26, tmp38, tmp45)
tmp47 = tmp46 + tmp7
tmp48 = tmp24 - tmp47
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp51 = tl.where(xmask, tmp49, 0)
tmp52 = tl.sum(tmp51, 1)[:, None]
tl.store(out_ptr0 + x0, tmp52, xmask)
@triton.jit
def triton_poi_fused_clamp_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
x2 = xindex // 64
tmp19 = tl.load(in_ptr0 + x3, xmask)
tmp22 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tmp0 < tmp1
tmp4 = tmp3 & tmp2
tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, other=0.0)
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + x3, tmp2 & xmask, other=0.0)
tmp11 = tl.where(tmp3, tmp9, tmp10)
tmp12 = triton_helpers.minimum(tmp11, tmp6)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp2, tmp12, tmp13)
tmp15 = tl.load(in_ptr0 + x3, tmp3 & xmask, other=0.0)
tmp16 = triton_helpers.maximum(tmp15, tmp6)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp3, tmp16, tmp17)
tmp20 = tl.where(tmp3, tmp18, tmp19)
tmp21 = tl.where(tmp2, tmp14, tmp20)
tmp23 = 32.0
tmp24 = tmp22 / tmp23
tmp25 = 1.2533141373155001
tmp26 = tmp24 * tmp25
tmp27 = 1e-08
tmp28 = tmp26 + tmp27
tmp29 = tmp21 / tmp28
tl.store(out_ptr0 + x3, tmp29, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_0[grid(4)](arg0_1, buf0, 4, 32, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_div_1[grid(256)](arg0_1, buf0, buf1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del buf0
return buf1,
def birelu(x, inplace=False):
return BiReLUFunction().apply(x, inplace)
def rnlu(x, inplace=False, shift=0, scale_fix=(math.pi / 2) ** 0.5):
x = birelu(x, inplace=inplace)
pos, neg = (x + shift).chunk(2, dim=1)
scale = (pos - neg).view(pos.size(0), -1).mean(1) * scale_fix + 1e-08
return x / scale.view(scale.size(0), *([1] * (x.dim() - 1)))
class BiReLUFunction(InplaceFunction):
@classmethod
def forward(cls, ctx, input, inplace=False):
if input.size(1) % 2 != 0:
raise RuntimeError(
'dimension 1 of input must be multiple of 2, but got {}'.
format(input.size(1)))
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
pos, neg = output.chunk(2, dim=1)
pos.clamp_(min=0)
neg.clamp_(max=0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output, = ctx.saved_variables
grad_input = grad_output.masked_fill(output.eq(0), 0)
return grad_input, None
class RnLUNew(nn.Module):
"""docstring for RnLU."""
def __init__(self, inplace=False):
super(RnLUNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| aparna-aketi/Low_Precision_DL | RnLU | false | 3,116 | [
"MIT"
] | 0 | 5a2489cac5da8f43dd8490a9d871f1ce17f8e7f8 | https://github.com/aparna-aketi/Low_Precision_DL/tree/5a2489cac5da8f43dd8490a9d871f1ce17f8e7f8 | import math
import torch
import torch.nn as nn
from torch.autograd.function import InplaceFunction
import torch.nn.parallel
import torch.utils.data
def birelu(x, inplace=False):
return BiReLUFunction().apply(x, inplace)
def rnlu(x, inplace=False, shift=0, scale_fix=(math.pi / 2) ** 0.5):
x = birelu(x, inplace=inplace)
pos, neg = (x + shift).chunk(2, dim=1)
scale = (pos - neg).view(pos.size(0), -1).mean(1) * scale_fix + 1e-08
return x / scale.view(scale.size(0), *([1] * (x.dim() - 1)))
class BiReLUFunction(InplaceFunction):
@classmethod
def forward(cls, ctx, input, inplace=False):
if input.size(1) % 2 != 0:
raise RuntimeError(
'dimension 1 of input must be multiple of 2, but got {}'.
format(input.size(1)))
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
pos, neg = output.chunk(2, dim=1)
pos.clamp_(min=0)
neg.clamp_(max=0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output, = ctx.saved_variables
grad_input = grad_output.masked_fill(output.eq(0), 0)
return grad_input, None
class Model(nn.Module):
"""docstring for RnLU."""
def __init__(self, inplace=False):
super().__init__()
self.inplace = inplace
def forward(self, x):
return rnlu(x, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LanguageModelCriterion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/y6/cy6c63inntzv3gk7tttvtntl47lyazeloek7emnkrhkhkqbx5kci.py
# Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# neg => neg
# output => mul
# output_1 => div
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg2_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr2 + (r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = tmp13 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import *
class LanguageModelCriterion(nn.Module):
def __init__(self):
super(LanguageModelCriterion, self).__init__()
def forward(self, input, target, mask):
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)]
output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr2 + r0, None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy=
'evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = tmp13 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg1_1, arg0_1,
arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class LanguageModelCriterionNew(nn.Module):
def __init__(self):
super(LanguageModelCriterionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| anonymous2021hello/transformer-cil | LanguageModelCriterion | false | 3,117 | [
"MIT"
] | 0 | aed4017b61afaf4d9d21d40a078eefb4c7031cd1 | https://github.com/anonymous2021hello/transformer-cil/tree/aed4017b61afaf4d9d21d40a078eefb4c7031cd1 | import torch
import torch.nn as nn
from torch.autograd import *
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, target, mask):
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)]
output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return []
|
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ji/cjie5bsxzeomob4vxtdvuorfgkv45g3e6ald74ae7a5x7vinedpt.py
# Topologically Sorted Source Nodes: [prediction, mul, sum_1, mul_1, sum_2, sum_3, add, add_1, truediv, sub], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# prediction => sigmoid
# sub => sub
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# truediv => div
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sigmoid,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
triton_per_fused_add_div_mul_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sigmoid_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tl.broadcast_to(tmp1, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.broadcast_to(tmp2, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 2.0
tmp14 = tmp6 * tmp13
tmp15 = tmp9 + tmp12
tmp16 = 1e-07
tmp17 = tmp15 + tmp16
tmp18 = tmp14 / tmp17
tmp19 = 1.0
tmp20 = tmp19 - tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [prediction, mul, sum_1, mul_1, sum_2, sum_3, add, add_1, truediv, sub], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sigmoid_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
self.sigmoid = nn.Sigmoid()
def forward(self, output, target):
prediction = self.sigmoid(output)
return 1 - 2 * torch.sum(prediction * target) / (torch.sum(
prediction) + torch.sum(target) + 1e-07)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tl.broadcast_to(tmp1, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.broadcast_to(tmp2, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 2.0
tmp14 = tmp6 * tmp13
tmp15 = tmp9 + tmp12
tmp16 = 1e-07
tmp17 = tmp15 + tmp16
tmp18 = tmp14 / tmp17
tmp19 = 1.0
tmp20 = tmp19 - tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sigmoid_sum_0[grid(1)](buf3,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class DiceLossNew(nn.Module):
def __init__(self):
super(DiceLossNew, self).__init__()
self.sigmoid = nn.Sigmoid()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| apyskir/steppy-toolkit | DiceLoss | false | 3,118 | [
"MIT"
] | 0 | 3190054954aeab043ced1c079d87bdd3582bb232 | https://github.com/apyskir/steppy-toolkit/tree/3190054954aeab043ced1c079d87bdd3582bb232 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
self.sigmoid = nn.Sigmoid()
def forward(self, output, target):
prediction = self.sigmoid(output)
return 1 - 2 * torch.sum(prediction * target) / (torch.sum(
prediction) + torch.sum(target) + 1e-07)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BiReLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ek/cekshwzk7zz42ek7xgl3dtsgq4znrrla62j3qv7m376hbzqy2ymt.py
# Topologically Sorted Source Nodes: [clamp_, clamp__1], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp_ => clamp_min
# clamp__1 => clamp_max
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%getitem, 0), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%arg0_1, %clamp_min, 1, 0, 2), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%getitem_5, 0), kwargs = {})
# %slice_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %clamp_max, 1, 2, 4), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
tmp19 = tl.load(in_ptr0 + (x3), xmask)
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tmp0 < tmp1
tmp4 = tmp3 & tmp2
tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, other=0.0)
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (x3), tmp2 & xmask, other=0.0)
tmp11 = tl.where(tmp3, tmp9, tmp10)
tmp12 = triton_helpers.minimum(tmp11, tmp6)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp2, tmp12, tmp13)
tmp15 = tl.load(in_ptr0 + (x3), tmp3 & xmask, other=0.0)
tmp16 = triton_helpers.maximum(tmp15, tmp6)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp3, tmp16, tmp17)
tmp20 = tl.where(tmp3, tmp18, tmp19)
tmp21 = tl.where(tmp2, tmp14, tmp20)
tl.store(out_ptr0 + (x3), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp_, clamp__1], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd.function import InplaceFunction
import torch.nn.parallel
import torch.utils.data
def birelu(x, inplace=False):
return BiReLUFunction().apply(x, inplace)
class BiReLUFunction(InplaceFunction):
@classmethod
def forward(cls, ctx, input, inplace=False):
if input.size(1) % 2 != 0:
raise RuntimeError(
'dimension 1 of input must be multiple of 2, but got {}'.
format(input.size(1)))
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
pos, neg = output.chunk(2, dim=1)
pos.clamp_(min=0)
neg.clamp_(max=0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output, = ctx.saved_variables
grad_input = grad_output.masked_fill(output.eq(0), 0)
return grad_input, None
class BiReLU(nn.Module):
"""docstring for BiReLU."""
def __init__(self, inplace=False):
super(BiReLU, self).__init__()
self.inplace = inplace
def forward(self, inputs):
return birelu(inputs, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from torch.autograd.function import InplaceFunction
import torch.nn.parallel
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
tmp19 = tl.load(in_ptr0 + x3, xmask)
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tmp0 < tmp1
tmp4 = tmp3 & tmp2
tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, other=0.0)
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + x3, tmp2 & xmask, other=0.0)
tmp11 = tl.where(tmp3, tmp9, tmp10)
tmp12 = triton_helpers.minimum(tmp11, tmp6)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp2, tmp12, tmp13)
tmp15 = tl.load(in_ptr0 + x3, tmp3 & xmask, other=0.0)
tmp16 = triton_helpers.maximum(tmp15, tmp6)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp3, tmp16, tmp17)
tmp20 = tl.where(tmp3, tmp18, tmp19)
tmp21 = tl.where(tmp2, tmp14, tmp20)
tl.store(out_ptr0 + x3, tmp21, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
def birelu(x, inplace=False):
return BiReLUFunction().apply(x, inplace)
class BiReLUFunction(InplaceFunction):
@classmethod
def forward(cls, ctx, input, inplace=False):
if input.size(1) % 2 != 0:
raise RuntimeError(
'dimension 1 of input must be multiple of 2, but got {}'.
format(input.size(1)))
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
pos, neg = output.chunk(2, dim=1)
pos.clamp_(min=0)
neg.clamp_(max=0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output, = ctx.saved_variables
grad_input = grad_output.masked_fill(output.eq(0), 0)
return grad_input, None
class BiReLUNew(nn.Module):
"""docstring for BiReLU."""
def __init__(self, inplace=False):
super(BiReLUNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| aparna-aketi/Low_Precision_DL | BiReLU | false | 3,119 | [
"MIT"
] | 0 | 5a2489cac5da8f43dd8490a9d871f1ce17f8e7f8 | https://github.com/aparna-aketi/Low_Precision_DL/tree/5a2489cac5da8f43dd8490a9d871f1ce17f8e7f8 | import torch
import torch.nn as nn
from torch.autograd.function import InplaceFunction
import torch.nn.parallel
import torch.utils.data
def birelu(x, inplace=False):
return BiReLUFunction().apply(x, inplace)
class BiReLUFunction(InplaceFunction):
@classmethod
def forward(cls, ctx, input, inplace=False):
if input.size(1) % 2 != 0:
raise RuntimeError(
'dimension 1 of input must be multiple of 2, but got {}'.
format(input.size(1)))
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
pos, neg = output.chunk(2, dim=1)
pos.clamp_(min=0)
neg.clamp_(max=0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output, = ctx.saved_variables
grad_input = grad_output.masked_fill(output.eq(0), 0)
return grad_input, None
class Model(nn.Module):
"""docstring for BiReLU."""
def __init__(self, inplace=False):
super().__init__()
self.inplace = inplace
def forward(self, inputs):
return birelu(inputs, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Network | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 64), (64, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pi], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [v_s], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), primals_8, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Network(nn.Module):
def __init__(self, lr, input_dims, n_hidden=64, output_dims=4):
super(Network, self).__init__()
self.fc1 = nn.Linear(input_dims, n_hidden)
self.fc2 = nn.Linear(n_hidden, n_hidden)
self.pi = nn.Linear(n_hidden, output_dims)
self.v = nn.Linear(n_hidden, 1)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
pi = self.pi(x)
v_s = self.v(x)
return pi, v_s
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'lr': 4, 'input_dims': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 64), (64, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1,
primals_2, buf8, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf3,
primals_5, buf7, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_8, (64, 1), (1, 64), 0),
alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(
buf3, (64, 64), (64, 1), 0
), primals_8, primals_6, buf7, primals_4, buf8
class NetworkNew(nn.Module):
def __init__(self, lr, input_dims, n_hidden=64, output_dims=4):
super(NetworkNew, self).__init__()
self.fc1 = nn.Linear(input_dims, n_hidden)
self.fc2 = nn.Linear(n_hidden, n_hidden)
self.pi = nn.Linear(n_hidden, output_dims)
self.v = nn.Linear(n_hidden, 1)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.pi.weight
primals_7 = self.pi.bias
primals_8 = self.v.weight
primals_9 = self.v.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| apoorvaish/mujoco-rl | Network | false | 3,120 | [
"MIT"
] | 0 | 234bd7689990cdd63db458d0367e14ccd1b62c1f | https://github.com/apoorvaish/mujoco-rl/tree/234bd7689990cdd63db458d0367e14ccd1b62c1f | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Model(nn.Module):
def __init__(self, lr, input_dims, n_hidden=64, output_dims=4):
super().__init__()
self.fc1 = nn.Linear(input_dims, n_hidden)
self.fc2 = nn.Linear(n_hidden, n_hidden)
self.pi = nn.Linear(n_hidden, output_dims)
self.v = nn.Linear(n_hidden, 1)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
pi = self.pi(x)
v_s = self.v(x)
return pi, v_s
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ConvertPointsToHomogeneous | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2o/c2ouwmbjvteb4nvr7vyvyz6jp657ga66uiadoicxwun5d3s4kog7.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [0, 1], 1.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp2 & xmask, other=1.0)
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 320, grid=grid(320), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def convert_points_to_homogeneous(points):
"""Function that converts points from Euclidean to homogeneous space.
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4
"""
if not torch.is_tensor(points):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(points)))
if len(points.shape) < 2:
raise ValueError('Input must be at least a 2D tensor. Got {}'.
format(points.shape))
return nn.functional.pad(points, (0, 1), 'constant', 1.0)
class ConvertPointsToHomogeneous(nn.Module):
"""Creates a transformation to convert points from Euclidean to
homogeneous space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N+1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsToHomogeneous()
>>> output = transform(input) # BxNx4
"""
def __init__(self):
super(ConvertPointsToHomogeneous, self).__init__()
def forward(self, input):
return convert_points_to_homogeneous(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp2 & xmask, other=1.0)
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(320)](arg0_1, buf0, 320,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def convert_points_to_homogeneous(points):
"""Function that converts points from Euclidean to homogeneous space.
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4
"""
if not torch.is_tensor(points):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(points)))
if len(points.shape) < 2:
raise ValueError('Input must be at least a 2D tensor. Got {}'.
format(points.shape))
return nn.functional.pad(points, (0, 1), 'constant', 1.0)
class ConvertPointsToHomogeneousNew(nn.Module):
"""Creates a transformation to convert points from Euclidean to
homogeneous space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N+1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsToHomogeneous()
>>> output = transform(input) # BxNx4
"""
def __init__(self):
super(ConvertPointsToHomogeneousNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| aravinho/frankmocap | ConvertPointsToHomogeneous | false | 3,121 | [
"BSD-3-Clause"
] | 0 | 6a150a9cb96e9b32a60d8047eaa84d0c37e471f5 | https://github.com/aravinho/frankmocap/tree/6a150a9cb96e9b32a60d8047eaa84d0c37e471f5 | import torch
import torch.nn as nn
def convert_points_to_homogeneous(points):
"""Function that converts points from Euclidean to homogeneous space.
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4
"""
if not torch.is_tensor(points):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(points)))
if len(points.shape) < 2:
raise ValueError('Input must be at least a 2D tensor. Got {}'.
format(points.shape))
return nn.functional.pad(points, (0, 1), 'constant', 1.0)
class Model(nn.Module):
"""Creates a transformation to convert points from Euclidean to
homogeneous space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N+1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsToHomogeneous()
>>> output = transform(input) # BxNx4
"""
def __init__(self):
super().__init__()
def forward(self, input):
return convert_points_to_homogeneous(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
pg_model | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2u/c2ugr235lp7hjoeji4mzlplxg2zvzygy2xvsjv2bvmzp6eggn7yk.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/z5/cz5xs7y3thsep5yn6qoths757rduuevog6mtea3nqr4nwnh2olnx.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_5 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nv/cnvo7i3x3dm4mdtrcmoddo2p4odl6hgahimnieftjxkqwe7ehw54.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_5 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 10), (10, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (2, 2), (2, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 640, grid=grid(640), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 2), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 128, grid=grid(128), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 2), (2, 1), 0), reinterpret_tensor(primals_6, (2, 2), (1, 2), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 128, grid=grid(128), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf5, buf6, 128, grid=grid(128), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(buf3, (64, 2), (2, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class pg_model(nn.Module):
def __init__(self):
super(pg_model, self).__init__()
self.l1 = nn.Linear(4, 10)
self.l2 = nn.Linear(10, 2)
self.l3 = nn.Linear(2, 2)
def forward(self, x):
x = self.l1(x)
x = F.relu(x)
x = self.l2(x)
x = F.relu(x)
x = self.l3(x)
x = F.softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 10), (10, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (2, 2), (2, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1,
primals_2, buf8, 640, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0),
reinterpret_tensor(primals_4, (10, 2), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(128)](buf3,
primals_5, buf7, 128, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 2), (
2, 1), 0), reinterpret_tensor(primals_6, (2, 2), (1, 2), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_2[grid(128)](buf4, buf5, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf4
triton_poi_fused__softmax_3[grid(128)](buf5, buf6, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(
buf3, (64, 2), (2, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class pg_modelNew(nn.Module):
def __init__(self):
super(pg_modelNew, self).__init__()
self.l1 = nn.Linear(4, 10)
self.l2 = nn.Linear(10, 2)
self.l3 = nn.Linear(2, 2)
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| anthonytec2/ssp-rl-final | pg_model | false | 3,122 | [
"MIT"
] | 0 | 4004678f7b820989d69824bd492307b3ed227b7a | https://github.com/anthonytec2/ssp-rl-final/tree/4004678f7b820989d69824bd492307b3ed227b7a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(4, 10)
self.l2 = nn.Linear(10, 2)
self.l3 = nn.Linear(2, 2)
def forward(self, x):
x = self.l1(x)
x = F.relu(x)
x = self.l2(x)
x = F.relu(x)
x = self.l3(x)
x = F.softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
DiagGaussian | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/sf/csftwll4atghxcbstukhqz22ldgctgbneow377ww7pr5wztahw63.py
# Topologically Sorted Source Nodes: [exp, mul, z, wrapped_mul, pow_1, mul_1, add_1, sum_1, log_p], Original ATen: [aten.exp, aten.mul, aten.add, aten.pow, aten.sum, aten.sub]
# Source node to ATen node mapping:
# add_1 => add_1
# exp => exp
# log_p => sub
# mul => mul
# mul_1 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# wrapped_mul => full_default
# z => add
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %randn), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -3.6757541328186907), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%randn, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %mul_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [1]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%full_default, %sum_1), kwargs = {})
triton_per_fused_add_exp_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_exp_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp3 = tl.load(in_ptr2 + (r0), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tmp1 + tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = -3.6757541328186907
tmp14 = tmp13 - tmp12
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp5, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn]
buf0 = torch.ops.aten.randn.default([1, 4], device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((1, ), (1, ), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [exp, mul, z, wrapped_mul, pow_1, mul_1, add_1, sum_1, log_p], Original ATen: [aten.exp, aten.mul, aten.add, aten.pow, aten.sum, aten.sub]
stream0 = get_raw_stream(0)
triton_per_fused_add_exp_mul_pow_sub_sum_0.run(buf4, primals_1, primals_2, buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
del primals_1
return (buf2, buf4, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
class BaseDistribution(nn.Module):
"""
Base distribution of a flow-based model
Parameters do not depend of target variable (as is the case for a VAE encoder)
"""
def __init__(self):
super().__init__()
def forward(self, num_samples=1):
"""
Samples from base distribution and calculates log probability
:param num_samples: Number of samples to draw from the distriubtion
:return: Samples drawn from the distribution, log probability
"""
raise NotImplementedError
def log_prob(self, z):
"""
Calculate log probability of batch of samples
:param z: Batch of random variables to determine log probability for
:return: log probability for each batch element
"""
raise NotImplementedError
class DiagGaussian(BaseDistribution):
"""
Multivariate Gaussian distribution with diagonal covariance matrix
"""
def __init__(self, d):
"""
Constructor
:param d: Dimension of Gaussian distribution
"""
super().__init__()
self.d = d
self.loc = nn.Parameter(torch.zeros(1, self.d))
self.log_scale = nn.Parameter(torch.zeros(1, self.d))
def forward(self, num_samples=1):
eps = torch.randn((num_samples, self.d), device=self.loc.device)
z = self.loc + torch.exp(self.log_scale) * eps
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(self.
log_scale + 0.5 * torch.pow(eps, 2), 1)
return z, log_p
def log_prob(self, z):
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(self.
log_scale + 0.5 * torch.pow((z - self.loc) / torch.exp(self.
log_scale), 2), 1)
return log_p
def get_inputs():
return []
def get_init_inputs():
return [[], {'d': 4}]
| import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp3 = tl.load(in_ptr2 + r0, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tmp1 + tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = -3.6757541328186907
tmp14 = tmp13 - tmp12
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp5, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp14, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.randn.default([1, 4], device=device(type=
'cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((1,), (1,), torch.float32)
buf4 = buf3
del buf3
get_raw_stream(0)
triton_per_fused_add_exp_mul_pow_sub_sum_0[grid(1)](buf4, primals_1,
primals_2, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del primals_1
return buf2, buf4, primals_2, buf1
class BaseDistribution(nn.Module):
"""
Base distribution of a flow-based model
Parameters do not depend of target variable (as is the case for a VAE encoder)
"""
def __init__(self):
super().__init__()
def forward(self, num_samples=1):
"""
Samples from base distribution and calculates log probability
:param num_samples: Number of samples to draw from the distriubtion
:return: Samples drawn from the distribution, log probability
"""
raise NotImplementedError
def log_prob(self, z):
"""
Calculate log probability of batch of samples
:param z: Batch of random variables to determine log probability for
:return: log probability for each batch element
"""
raise NotImplementedError
class DiagGaussianNew(BaseDistribution):
"""
Multivariate Gaussian distribution with diagonal covariance matrix
"""
def __init__(self, d):
"""
Constructor
:param d: Dimension of Gaussian distribution
"""
super().__init__()
self.d = d
self.loc = nn.Parameter(torch.zeros(1, self.d))
self.log_scale = nn.Parameter(torch.zeros(1, self.d))
def log_prob(self, z):
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(self.
log_scale + 0.5 * torch.pow((z - self.loc) / torch.exp(self.
log_scale), 2), 1)
return log_p
def forward(self):
primals_1 = self.loc
primals_2 = self.log_scale
output = call([primals_1, primals_2])
return output[0], output[1]
| arc82/normalizing-flows | DiagGaussian | false | 3,123 | [
"MIT"
] | 0 | f43df979267eb69b066606177c61d3b2bad0a5b5 | https://github.com/arc82/normalizing-flows/tree/f43df979267eb69b066606177c61d3b2bad0a5b5 | import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
class BaseDistribution(nn.Module):
"""
Base distribution of a flow-based model
Parameters do not depend of target variable (as is the case for a VAE encoder)
"""
def __init__(self):
super().__init__()
def forward(self, num_samples=1):
"""
Samples from base distribution and calculates log probability
:param num_samples: Number of samples to draw from the distriubtion
:return: Samples drawn from the distribution, log probability
"""
raise NotImplementedError
def log_prob(self, z):
"""
Calculate log probability of batch of samples
:param z: Batch of random variables to determine log probability for
:return: log probability for each batch element
"""
raise NotImplementedError
class Model(BaseDistribution):
"""
Multivariate Gaussian distribution with diagonal covariance matrix
"""
def __init__(self, d):
"""
Constructor
:param d: Dimension of Gaussian distribution
"""
super().__init__()
self.d = d
self.loc = nn.Parameter(torch.zeros(1, self.d))
self.log_scale = nn.Parameter(torch.zeros(1, self.d))
def forward(self, num_samples=1):
eps = torch.randn((num_samples, self.d), device=self.loc.device)
z = self.loc + torch.exp(self.log_scale) * eps
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(self.
log_scale + 0.5 * torch.pow(eps, 2), 1)
return z, log_p
def log_prob(self, z):
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(self.
log_scale + 0.5 * torch.pow((z - self.loc) / torch.exp(self.
log_scale), 2), 1)
return log_p
def get_inputs():
return []
def get_init_inputs():
return [4]
|
ConvertPointsFromHomogeneous | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/m7/cm7u2xidzfzafcfgds4g3sogyf6hfbowvehkuqc2rzfo2k3uufot.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_1, %slice_2), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, 192, grid=grid(192), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def convert_points_from_homogeneous(points):
"""Function that converts points from homogeneous to Euclidean space.
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2
"""
if not torch.is_tensor(points):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(points)))
if len(points.shape) < 2:
raise ValueError('Input must be at least a 2D tensor. Got {}'.
format(points.shape))
return points[..., :-1] / points[..., -1:]
class ConvertPointsFromHomogeneous(nn.Module):
"""Creates a transformation that converts points from homogeneous to
Euclidean space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N-1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsFromHomogeneous()
>>> output = transform(input) # BxNx2
"""
def __init__(self):
super(ConvertPointsFromHomogeneous, self).__init__()
def forward(self, input):
return convert_points_from_homogeneous(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(192)](arg0_1, buf0, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
def convert_points_from_homogeneous(points):
"""Function that converts points from homogeneous to Euclidean space.
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2
"""
if not torch.is_tensor(points):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(points)))
if len(points.shape) < 2:
raise ValueError('Input must be at least a 2D tensor. Got {}'.
format(points.shape))
return points[..., :-1] / points[..., -1:]
class ConvertPointsFromHomogeneousNew(nn.Module):
"""Creates a transformation that converts points from homogeneous to
Euclidean space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N-1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsFromHomogeneous()
>>> output = transform(input) # BxNx2
"""
def __init__(self):
super(ConvertPointsFromHomogeneousNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| aravinho/frankmocap | ConvertPointsFromHomogeneous | false | 3,124 | [
"BSD-3-Clause"
] | 0 | 6a150a9cb96e9b32a60d8047eaa84d0c37e471f5 | https://github.com/aravinho/frankmocap/tree/6a150a9cb96e9b32a60d8047eaa84d0c37e471f5 | import torch
import torch.nn as nn
def convert_points_from_homogeneous(points):
"""Function that converts points from homogeneous to Euclidean space.
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2
"""
if not torch.is_tensor(points):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(points)))
if len(points.shape) < 2:
raise ValueError('Input must be at least a 2D tensor. Got {}'.
format(points.shape))
return points[..., :-1] / points[..., -1:]
class Model(nn.Module):
"""Creates a transformation that converts points from homogeneous to
Euclidean space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N-1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsFromHomogeneous()
>>> output = transform(input) # BxNx2
"""
def __init__(self):
super().__init__()
def forward(self, input):
return convert_points_from_homogeneous(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
value_model | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2u/c2ugr235lp7hjoeji4mzlplxg2zvzygy2xvsjv2bvmzp6eggn7yk.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wo/cwo7i4dcowaxozwnj57wqq4ba45uo7pev3igxxitkuqs52wnxctl.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_5 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vw/cvwwlf5hh74femiy52pxilo5w77x22ndrh7cd3nkkzhhazqhimhy.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_5 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 10), (10, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (1, 2), (2, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 640, grid=grid(640), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 2), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf8, 128, grid=grid(128), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 2), (2, 1), 0), reinterpret_tensor(primals_6, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 64, grid=grid(64), stream=stream0)
del buf6
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(buf3, (64, 2), (2, 1), 0), buf7, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class value_model(nn.Module):
def __init__(self):
super(value_model, self).__init__()
self.l1 = nn.Linear(4, 10)
self.l2 = nn.Linear(10, 2)
self.l3 = nn.Linear(2, 1)
def forward(self, x):
x = self.l1(x)
x = F.relu(x)
x = self.l2(x)
x = F.relu(x)
x = self.l3(x)
x = F.softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 10), (10, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (1, 2), (2, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf0
buf9 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1,
primals_2, buf9, 640, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0),
reinterpret_tensor(primals_4, (10, 2), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(128)](buf3,
primals_5, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 2), (
2, 1), 0), reinterpret_tensor(primals_6, (2, 1), (1, 2), 0),
alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(64)](buf6, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf6
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(
buf3, (64, 2), (2, 1), 0), buf7, primals_6, buf8, primals_4, buf9
class value_modelNew(nn.Module):
def __init__(self):
super(value_modelNew, self).__init__()
self.l1 = nn.Linear(4, 10)
self.l2 = nn.Linear(10, 2)
self.l3 = nn.Linear(2, 1)
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| anthonytec2/ssp-rl-final | value_model | false | 3,125 | [
"MIT"
] | 0 | 4004678f7b820989d69824bd492307b3ed227b7a | https://github.com/anthonytec2/ssp-rl-final/tree/4004678f7b820989d69824bd492307b3ed227b7a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(4, 10)
self.l2 = nn.Linear(10, 2)
self.l3 = nn.Linear(2, 1)
def forward(self, x):
x = self.l1(x)
x = F.relu(x)
x = self.l2(x)
x = F.relu(x)
x = self.l3(x)
x = F.softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
IntrinsicsModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ck/cck6zsxedo53nyj2po2pvkfjvrr75ansuu3rjjhu6zyrx6xzssqo.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x => expm1, gt, mul, mul_2, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zl/czltd3srnxxfnovp6qyjzcet7zkvh2cixoc7h7wqagxier3vylzh.py
# Topologically Sorted Source Nodes: [intrinsics], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# intrinsics => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mul_3, %mul_4, %mul_5, %mul_6], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 20) % 4
x0 = xindex % 20
x2 = (xindex // 80)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (80*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 20.0
tmp7 = tmp5 > tmp6
tmp8 = tl_math.exp(tmp5)
tmp9 = libdevice.log1p(tmp8)
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = 4.0
tmp12 = tmp10 * tmp11
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp4, tmp12, tmp13)
tmp15 = tmp0 >= tmp3
tmp16 = tl.full([1], 2, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = tmp15 & tmp17
tmp19 = tl.load(in_ptr0 + (20 + x0 + (80*x2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 > tmp6
tmp21 = tl_math.exp(tmp19)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tl.where(tmp20, tmp19, tmp22)
tmp24 = tmp23 * tmp11
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp18, tmp24, tmp25)
tmp27 = tmp0 >= tmp16
tmp28 = tl.full([1], 3, tl.int64)
tmp29 = tmp0 < tmp28
tmp30 = tmp27 & tmp29
tmp31 = tl.load(in_ptr0 + (40 + x0 + (80*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.sigmoid(tmp31)
tmp33 = tmp32 * tmp11
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp30, tmp33, tmp34)
tmp36 = tmp0 >= tmp28
tmp37 = tl.full([1], 4, tl.int64)
tmp38 = tmp0 < tmp37
tmp39 = tl.load(in_ptr0 + (60 + x0 + (80*x2)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.sigmoid(tmp39)
tmp41 = tmp40 * tmp11
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp36, tmp41, tmp42)
tmp44 = tl.where(tmp30, tmp35, tmp43)
tmp45 = tl.where(tmp18, tmp26, tmp44)
tmp46 = tl.where(tmp4, tmp14, tmp45)
tl.store(out_ptr0 + (x3), tmp46, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (5, 4), (4, 1))
assert_size_stride(primals_7, (5, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_elu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 5), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [intrinsics], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf4, buf5, 320, grid=grid(320), stream=stream0)
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, buf4, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class IntrinsicsModel(nn.Module):
def __init__(self, n, H, W):
super(IntrinsicsModel, self).__init__()
self.skew_scale = 0.001
self.fc1 = nn.Linear(n, n)
self.fc2 = nn.Linear(n, n)
self.fc3 = nn.Linear(n, 5)
self.H = H
self.W = W
def forward(self, x):
x = F.elu(self.fc1(x))
x = F.tanh(self.fc2(x))
x = self.fc3(x)
intrinsics = torch.cat((F.softplus(x[:, :1]) * self.W, F.softplus(x
[:, 1:2]) * self.H, F.sigmoid(x[:, 2:3]) * self.W, F.sigmoid(x[
:, 3:4]) * self.H, x[:, 4:] * self.skew_scale), dim=1)
return intrinsics
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n': 4, 'H': 4, 'W': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 20 % 4
x0 = xindex % 20
x2 = xindex // 80
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 80 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = 20.0
tmp7 = tmp5 > tmp6
tmp8 = tl_math.exp(tmp5)
tmp9 = libdevice.log1p(tmp8)
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = 4.0
tmp12 = tmp10 * tmp11
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp4, tmp12, tmp13)
tmp15 = tmp0 >= tmp3
tmp16 = tl.full([1], 2, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = tmp15 & tmp17
tmp19 = tl.load(in_ptr0 + (20 + x0 + 80 * x2), tmp18 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 > tmp6
tmp21 = tl_math.exp(tmp19)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tl.where(tmp20, tmp19, tmp22)
tmp24 = tmp23 * tmp11
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp18, tmp24, tmp25)
tmp27 = tmp0 >= tmp16
tmp28 = tl.full([1], 3, tl.int64)
tmp29 = tmp0 < tmp28
tmp30 = tmp27 & tmp29
tmp31 = tl.load(in_ptr0 + (40 + x0 + 80 * x2), tmp30 & xmask,
eviction_policy='evict_last', other=0.0)
tmp32 = tl.sigmoid(tmp31)
tmp33 = tmp32 * tmp11
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp30, tmp33, tmp34)
tmp36 = tmp0 >= tmp28
tl.full([1], 4, tl.int64)
tmp39 = tl.load(in_ptr0 + (60 + x0 + 80 * x2), tmp36 & xmask,
eviction_policy='evict_last', other=0.0)
tmp40 = tl.sigmoid(tmp39)
tmp41 = tmp40 * tmp11
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp36, tmp41, tmp42)
tmp44 = tl.where(tmp30, tmp35, tmp43)
tmp45 = tl.where(tmp18, tmp26, tmp44)
tmp46 = tl.where(tmp4, tmp14, tmp45)
tl.store(out_ptr0 + x3, tmp46, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (5, 4), (4, 1))
assert_size_stride(primals_7, (5,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_elu_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_1[grid(256)](buf3, primals_5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 5), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
triton_poi_fused_cat_2[grid(320)](buf4, buf5, 320, XBLOCK=128,
num_warps=4, num_stages=1)
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), buf3, buf4, primals_6, primals_4
class IntrinsicsModelNew(nn.Module):
def __init__(self, n, H, W):
super(IntrinsicsModelNew, self).__init__()
self.skew_scale = 0.001
self.fc1 = nn.Linear(n, n)
self.fc2 = nn.Linear(n, n)
self.fc3 = nn.Linear(n, 5)
self.H = H
self.W = W
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| apurvtwr/Jarvis | IntrinsicsModel | false | 3,126 | [
"Apache-2.0"
] | 0 | bdd25e059826a0403c6282a1ee206f9f4c3e9355 | https://github.com/apurvtwr/Jarvis/tree/bdd25e059826a0403c6282a1ee206f9f4c3e9355 | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n, H, W):
super().__init__()
self.skew_scale = 0.001
self.fc1 = nn.Linear(n, n)
self.fc2 = nn.Linear(n, n)
self.fc3 = nn.Linear(n, 5)
self.H = H
self.W = W
def forward(self, x):
x = F.elu(self.fc1(x))
x = F.tanh(self.fc2(x))
x = self.fc3(x)
intrinsics = torch.cat((F.softplus(x[:, :1]) * self.W, F.softplus(x
[:, 1:2]) * self.H, F.sigmoid(x[:, 2:3]) * self.W, F.sigmoid(x[
:, 3:4]) * self.H, x[:, 4:] * self.skew_scale), dim=1)
return intrinsics
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
MotionModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ck/cck6zsxedo53nyj2po2pvkfjvrr75ansuu3rjjhu6zyrx6xzssqo.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x => expm1, gt, mul, mul_2, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ic/cicp6bep75kdbpk256kvj45imidfalmxdtrx3xkhpsewy42kzoge.py
# Topologically Sorted Source Nodes: [translation], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# translation => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_2 => tanh_1
# Graph fragment:
# %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_7,), kwargs = {})
triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xn/cxnegwdjd4jxigpik7k2oz3byev3psp6aqtzp7exf2e7nl6b5zkm.py
# Topologically Sorted Source Nodes: [rotation], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# rotation => mul_6
# Graph fragment:
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 0.01), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.01
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (3, 4), (4, 1))
assert_size_stride(primals_5, (3, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (3, 4), (4, 1))
assert_size_stride(primals_11, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_elu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 3), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 3), (48, 12, 3, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [translation], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf3, primals_5, 192, grid=grid(192), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu]
triton_poi_fused_elu_0.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh]
triton_poi_fused_tanh_2.run(buf7, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 3), (1, 4), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 3), (48, 12, 3, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [rotation], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf9, primals_11, 192, grid=grid(192), stream=stream0)
del primals_11
return (buf9, buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf7, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class MotionModel(nn.Module):
def __init__(self, n):
super(MotionModel, self).__init__()
self.rotation_scale = 0.01
self.fc1 = nn.Linear(n, n)
self.fc2 = nn.Linear(n, n)
self.fc3 = nn.Linear(n, n)
self.rotation = nn.Linear(n, 3)
self.translation = nn.Linear(n, 3)
def forward(self, x):
x = F.elu(self.fc1(x))
translation = F.tanh(self.translation(x))
x = F.elu(self.fc2(x))
x = F.tanh(self.fc3(x))
rotation = self.rotation(x) * self.rotation_scale
return rotation, translation
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.01
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (3, 4), (4, 1))
assert_size_stride(primals_5, (3,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (3, 4), (4, 1))
assert_size_stride(primals_11, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_elu_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 3), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 3), (48, 12, 3, 1), 0)
del buf2
triton_poi_fused_tanh_1[grid(192)](buf3, primals_5, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_elu_0[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_tanh_2[grid(256)](buf7, primals_9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 3), (1, 4), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 3), (48, 12, 3, 1), 0)
del buf8
triton_poi_fused_mul_3[grid(192)](buf9, primals_11, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_11
return buf9, buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), buf3, buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0
), buf7, primals_10, primals_8, primals_6, primals_4
class MotionModelNew(nn.Module):
def __init__(self, n):
super(MotionModelNew, self).__init__()
self.rotation_scale = 0.01
self.fc1 = nn.Linear(n, n)
self.fc2 = nn.Linear(n, n)
self.fc3 = nn.Linear(n, n)
self.rotation = nn.Linear(n, 3)
self.translation = nn.Linear(n, 3)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_6 = self.fc2.weight
primals_7 = self.fc2.bias
primals_8 = self.fc3.weight
primals_9 = self.fc3.bias
primals_4 = self.rotation.weight
primals_5 = self.rotation.bias
primals_10 = self.translation.weight
primals_11 = self.translation.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0], output[1]
| apurvtwr/Jarvis | MotionModel | false | 3,127 | [
"Apache-2.0"
] | 0 | bdd25e059826a0403c6282a1ee206f9f4c3e9355 | https://github.com/apurvtwr/Jarvis/tree/bdd25e059826a0403c6282a1ee206f9f4c3e9355 | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n):
super().__init__()
self.rotation_scale = 0.01
self.fc1 = nn.Linear(n, n)
self.fc2 = nn.Linear(n, n)
self.fc3 = nn.Linear(n, n)
self.rotation = nn.Linear(n, 3)
self.translation = nn.Linear(n, 3)
def forward(self, x):
x = F.elu(self.fc1(x))
translation = F.tanh(self.translation(x))
x = F.elu(self.fc2(x))
x = F.tanh(self.fc3(x))
rotation = self.rotation(x) * self.rotation_scale
return rotation, translation
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
GraphEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/rg/crgn6c7kb7sfbc6ij3j5r2ufm7sb3lducxeabudnnzg6pgowubma.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# input_2 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py
# Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# input_8 => sigmoid_3
# Graph fragment:
# %sigmoid_3 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_0.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_0.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf7, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
return (buf7, reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from collections import OrderedDict
from sklearn.cluster import KMeans
class GraphEncoder(nn.Module):
def __init__(self, layers, clusters):
super(GraphEncoder, self).__init__()
self.layers = nn.Sequential(OrderedDict({'lin1': nn.Linear(layers[0
], layers[1]), 'sig1': nn.Sigmoid(), 'lin2': nn.Linear(layers[1
], layers[2]), 'sig2': nn.Sigmoid(), 'lin3': nn.Linear(layers[2
], layers[3]), 'sig3': nn.Sigmoid(), 'lin4': nn.Linear(layers[3
], layers[4]), 'sig4': nn.Sigmoid()}))
self.clusters = clusters
self.outputs = {}
self.layers[0].register_forward_hook(self.get_activation('lin1'))
self.layers[2].register_forward_hook(self.get_activation('lin2'))
self.layers[4].register_forward_hook(self.get_activation('lin3'))
def get_activation(self, name):
def hook(module, input, output):
self.outputs[name] = output
return hook
def forward(self, x):
output = self.layers(x)
return output
def layer_activations(self, layername):
return torch.mean(torch.sigmoid(self.outputs[layername]), dim=0)
def sparse_result(self, rho, layername):
rho_hat = self.layer_activations(layername)
return rho * np.log(rho) - rho * torch.log(rho_hat) + (1 - rho
) * np.log(1 - rho) - (1 - rho) * torch.log(1 - rho_hat)
def kl_div(self, rho):
first = torch.mean(self.sparse_result(rho, 'lin1'))
second = torch.mean(self.sparse_result(rho, 'lin2'))
return first + second
def get_index_by_name(self, name):
return list(dict(self.layers.named_children()).keys()).index(name)
def loss(self, x_hat, x, beta, rho):
loss = F.mse_loss(x_hat, x) + beta * self.kl_div(rho)
return loss
def get_cluster(self):
kmeans = KMeans(n_clusters=self.clusters).fit(self.outputs['lin2'].
detach().cpu().numpy())
self.centroids = kmeans.cluster_centers_
return kmeans.labels_
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'layers': [4, 4, 4, 4, 4], 'clusters': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn
import torch.nn.functional as F
from collections import OrderedDict
from sklearn.cluster import KMeans
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_sigmoid_0[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_sigmoid_0[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_sigmoid_1[grid(256)](buf7, primals_9, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
return buf7, reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4
class GraphEncoderNew(nn.Module):
def __init__(self, layers, clusters):
super(GraphEncoderNew, self).__init__()
self.layers = nn.Sequential(OrderedDict({'lin1': nn.Linear(layers[0
], layers[1]), 'sig1': nn.Sigmoid(), 'lin2': nn.Linear(layers[1
], layers[2]), 'sig2': nn.Sigmoid(), 'lin3': nn.Linear(layers[2
], layers[3]), 'sig3': nn.Sigmoid(), 'lin4': nn.Linear(layers[3
], layers[4]), 'sig4': nn.Sigmoid()}))
self.clusters = clusters
self.outputs = {}
self.layers[0].register_forward_hook(self.get_activation('lin1'))
self.layers[2].register_forward_hook(self.get_activation('lin2'))
self.layers[4].register_forward_hook(self.get_activation('lin3'))
def get_activation(self, name):
def hook(module, input, output):
self.outputs[name] = output
return hook
def layer_activations(self, layername):
return torch.mean(torch.sigmoid(self.outputs[layername]), dim=0)
def sparse_result(self, rho, layername):
rho_hat = self.layer_activations(layername)
return rho * np.log(rho) - rho * torch.log(rho_hat) + (1 - rho
) * np.log(1 - rho) - (1 - rho) * torch.log(1 - rho_hat)
def kl_div(self, rho):
first = torch.mean(self.sparse_result(rho, 'lin1'))
second = torch.mean(self.sparse_result(rho, 'lin2'))
return first + second
def get_index_by_name(self, name):
return list(dict(self.layers.named_children()).keys()).index(name)
def loss(self, x_hat, x, beta, rho):
loss = F.mse_loss(x_hat, x) + beta * self.kl_div(rho)
return loss
def get_cluster(self):
kmeans = KMeans(n_clusters=self.clusters).fit(self.outputs['lin2'].
detach().cpu().numpy())
self.centroids = kmeans.cluster_centers_
return kmeans.labels_
def forward(self, input_0):
primals_1 = self.layers.lin1.weight
primals_2 = self.layers.lin1.bias
primals_4 = self.layers.lin2.weight
primals_5 = self.layers.lin2.bias
primals_6 = self.layers.lin3.weight
primals_7 = self.layers.lin3.bias
primals_8 = self.layers.lin4.weight
primals_9 = self.layers.lin4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| SusheendharVijay/ClusterEncoder | GraphEncoder | false | 3,128 | [
"MIT"
] | 0 | 1ebdb4280027f88010cea2d3535b457cf648d311 | https://github.com/SusheendharVijay/ClusterEncoder/tree/1ebdb4280027f88010cea2d3535b457cf648d311 | import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from collections import OrderedDict
from sklearn.cluster import KMeans
class Model(nn.Module):
def __init__(self, layers, clusters):
super().__init__()
self.layers = nn.Sequential(OrderedDict({'lin1': nn.Linear(layers[0
], layers[1]), 'sig1': nn.Sigmoid(), 'lin2': nn.Linear(layers[1
], layers[2]), 'sig2': nn.Sigmoid(), 'lin3': nn.Linear(layers[2
], layers[3]), 'sig3': nn.Sigmoid(), 'lin4': nn.Linear(layers[3
], layers[4]), 'sig4': nn.Sigmoid()}))
self.clusters = clusters
self.outputs = {}
self.layers[0].register_forward_hook(self.get_activation('lin1'))
self.layers[2].register_forward_hook(self.get_activation('lin2'))
self.layers[4].register_forward_hook(self.get_activation('lin3'))
def get_activation(self, name):
def hook(module, input, output):
self.outputs[name] = output
return hook
def forward(self, x):
output = self.layers(x)
return output
def layer_activations(self, layername):
return torch.mean(torch.sigmoid(self.outputs[layername]), dim=0)
def sparse_result(self, rho, layername):
rho_hat = self.layer_activations(layername)
return rho * np.log(rho) - rho * torch.log(rho_hat) + (1 - rho
) * np.log(1 - rho) - (1 - rho) * torch.log(1 - rho_hat)
def kl_div(self, rho):
first = torch.mean(self.sparse_result(rho, 'lin1'))
second = torch.mean(self.sparse_result(rho, 'lin2'))
return first + second
def get_index_by_name(self, name):
return list(dict(self.layers.named_children()).keys()).index(name)
def loss(self, x_hat, x, beta, rho):
loss = F.mse_loss(x_hat, x) + beta * self.kl_div(rho)
return loss
def get_cluster(self):
kmeans = KMeans(n_clusters=self.clusters).fit(self.outputs['lin2'].
detach().cpu().numpy())
self.centroids = kmeans.cluster_centers_
return kmeans.labels_
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Tanh2 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/gy/cgya3aw4qvdn7u65ddx3hzcxo7cps3p536l46btftxxghv5myjts.py
# Topologically Sorted Source Nodes: [tanh, add, truediv], Original ATen: [aten.tanh, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# tanh => tanh
# truediv => div
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2), kwargs = {})
triton_poi_fused_add_div_tanh_0 = async_compile.triton('triton_poi_fused_add_div_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, add, truediv], Original ATen: [aten.tanh, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class Tanh2(nn.Module):
def __init__(self):
super(Tanh2, self).__init__()
self.tanh = nn.Tanh()
def forward(self, x):
return (self.tanh(x) + 1) / 2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class Tanh2New(nn.Module):
def __init__(self):
super(Tanh2New, self).__init__()
self.tanh = nn.Tanh()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ananiask8/FFWM | Tanh2 | false | 3,129 | [
"MIT"
] | 0 | 117f593783da67da9dc910a751910760497ef37f | https://github.com/ananiask8/FFWM/tree/117f593783da67da9dc910a751910760497ef37f | import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class Model(nn.Module):
def __init__(self):
super().__init__()
self.tanh = nn.Tanh()
def forward(self, x):
return (self.tanh(x) + 1) / 2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SimpleModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# cross_entropy => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/t2/ct2dbabladhyyceg2gmfqrslgo4edv7x6gs7iscumud7suileuje.py
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div]
# Source node to ATen node mapping:
# cross_entropy => div, exp, log, mul, neg, sub_1, sum_1, sum_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_4), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
triton_per_fused__log_softmax_div_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_dim], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div]
triton_per_fused__log_softmax_div_mul_neg_sum_1.run(buf3, buf1, primals_4, 1, 256, grid=grid(1), stream=stream0)
del buf1
return (buf3, primals_4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.cuda
from torch.nn.functional import *
class SimpleModel(torch.nn.Module):
def __init__(self, hidden_dim, empty_grad=False, rank=0):
super(SimpleModel, self).__init__()
self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
if empty_grad:
self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.rank = rank
self.empty_grad = empty_grad
def forward(self, x, y):
hidden_dim = x
if self.rank == 0 and self.empty_grad:
hidden_dim = self.linear(hidden_dim) + self.linear2(hidden_dim)
else:
hidden_dim = self.linear(hidden_dim)
return self.cross_entropy_loss(hidden_dim, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.cuda
from torch.nn.functional import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=
128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused__log_softmax_div_mul_neg_sum_1[grid(1)](buf3, buf1,
primals_4, 1, 256, num_warps=2, num_stages=1)
del buf1
return buf3, primals_4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf0
class SimpleModelNew(torch.nn.Module):
def __init__(self, hidden_dim, empty_grad=False, rank=0):
super(SimpleModelNew, self).__init__()
self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
if empty_grad:
self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.rank = rank
self.empty_grad = empty_grad
def forward(self, input_0, input_1):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| arashashari/DeepSpeed | SimpleModel | false | 3,130 | [
"MIT"
] | 0 | a2984d0a69640d4cfec4cf38fe22376dc8994a91 | https://github.com/arashashari/DeepSpeed/tree/a2984d0a69640d4cfec4cf38fe22376dc8994a91 | import torch
import torch.cuda
from torch.nn.functional import *
class Model(torch.nn.Module):
def __init__(self, hidden_dim, empty_grad=False, rank=0):
super().__init__()
self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
if empty_grad:
self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.rank = rank
self.empty_grad = empty_grad
def forward(self, x, y):
hidden_dim = x
if self.rank == 0 and self.empty_grad:
hidden_dim = self.linear(hidden_dim) + self.linear2(hidden_dim)
else:
hidden_dim = self.linear(hidden_dim)
return self.cross_entropy_loss(hidden_dim, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
resblock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# out => maximum
# Graph fragment:
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {})
# %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ab/cabrxc3mztaftcghxljcdmadm37r6mu5llu27nn63cpiczdivfe4.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.maximum, aten.add, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# out_1 => maximum_1
# out_2 => add
# Graph fragment:
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem_2, %getitem_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%maximum_1, %primals_1), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
triton_poi_fused_add_eq_gt_lt_maximum_1 = async_compile.triton('triton_poi_fused_add_eq_gt_lt_maximum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: '*i1', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_eq_gt_lt_maximum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (x4), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp8 = tmp6 + tmp7
tmp9 = tmp2 == tmp5
tmp10 = tmp2 > tmp5
tmp11 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp8, xmask)
tl.store(out_ptr1 + (x4), tmp9, xmask)
tl.store(out_ptr2 + (x4), tmp10, xmask)
tl.store(out_ptr3 + (x4), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_3, buf1, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf0
del primals_3
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.maximum, aten.add, aten.eq, aten.gt, aten.lt]
triton_poi_fused_add_eq_gt_lt_maximum_1.run(buf2, primals_5, primals_1, buf3, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf2
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class resblock(nn.Module):
def __init__(self, in_channels, out_channels):
super(resblock, self).__init__()
self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
self.conv2 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
def forward(self, x):
res = x
out = self.conv1(x)
out = self.conv2(out)
out = out + res
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + x4, xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp8 = tmp6 + tmp7
tmp9 = tmp2 == tmp5
tmp10 = tmp2 > tmp5
tmp11 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp8, xmask)
tl.store(out_ptr1 + x4, tmp9, xmask)
tl.store(out_ptr2 + x4, tmp10, xmask)
tl.store(out_ptr3 + x4, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_3,
buf1, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_eq_gt_lt_maximum_1[grid(256)](buf2, primals_5,
primals_1, buf3, buf4, buf5, buf6, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf2
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, buf4, buf5, buf6,
buf7, buf8, buf9)
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class resblockNew(nn.Module):
def __init__(self, in_channels, out_channels):
super(resblockNew, self).__init__()
self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
self.conv2 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
def forward(self, input_0):
primals_2 = self.conv1.filter.weight
primals_3 = self.conv1.filter.bias
primals_4 = self.conv2.filter.weight
primals_5 = self.conv2.filter.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ananiask8/FFWM | resblock | false | 3,131 | [
"MIT"
] | 0 | 117f593783da67da9dc910a751910760497ef37f | https://github.com/ananiask8/FFWM/tree/117f593783da67da9dc910a751910760497ef37f | import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super().__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class Model(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
self.conv2 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
def forward(self, x):
res = x
out = self.conv1(x)
out = self.conv2(out)
out = out + res
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GCN_classifier | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3e/c3erdulc5lbtjqqbcyrrgu3bwfeeytakutc2vgjvsrukeu732uvz.py
# Topologically Sorted Source Nodes: [hidden, input_4], Original ATen: [aten.relu, aten.squeeze, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden => relu
# input_4 => squeeze_1
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mm_1,), kwargs = {})
# %squeeze_1 : [num_users=2] = call_function[target=torch.ops.aten.squeeze.default](args = (%relu,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_squeeze_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_squeeze_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_squeeze_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_squeeze_threshold_backward_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mm_3, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm_3, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_1, primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf0; del buf0 # reuse
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden, input_4], Original ATen: [aten.relu, aten.squeeze, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_squeeze_threshold_backward_0.run(buf1, buf2, buf7, 16, grid=grid(16), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_4, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0)
del buf5
return (buf6, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), buf7, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from scipy.sparse import *
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False, act=lambda x:
x, dropout=0.0):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.act = act
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
input = F.dropout(input, self.dropout, training=self.training)
input = torch.squeeze(input)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
output = output + self.bias
return self.act(output)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCN_classifier(Module):
def __init__(self, feature_dim, hidden_dim, out_dim, dropout=0.2):
super(GCN_classifier, self).__init__()
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.dropout = dropout
self.gc1 = GraphConvolution(self.feature_dim, self.hidden_dim,
dropout=self.dropout, act=F.relu)
self.gc2 = GraphConvolution(self.hidden_dim, self.out_dim)
def forward(self, adj, X):
hidden = self.gc1(X, adj)
out = self.gc2(hidden, adj)
return F.log_softmax(out, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'feature_dim': 4, 'hidden_dim': 4, 'out_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from scipy.sparse import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_squeeze_threshold_backward_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf0
del buf0
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_squeeze_threshold_backward_0[grid(16)](buf1,
buf2, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.mm(buf2, primals_4, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf3
del buf3
triton_poi_fused__log_softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf5
return buf6, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), reinterpret_tensor(
primals_4, (4, 4), (1, 4), 0), buf7, reinterpret_tensor(primals_1,
(4, 4), (1, 4), 0)
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False, act=lambda x:
x, dropout=0.0):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.act = act
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
input = F.dropout(input, self.dropout, training=self.training)
input = torch.squeeze(input)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
output = output + self.bias
return self.act(output)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCN_classifierNew(Module):
def __init__(self, feature_dim, hidden_dim, out_dim, dropout=0.2):
super(GCN_classifierNew, self).__init__()
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.dropout = dropout
self.gc1 = GraphConvolution(self.feature_dim, self.hidden_dim,
dropout=self.dropout, act=F.relu)
self.gc2 = GraphConvolution(self.hidden_dim, self.out_dim)
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_2 = self.gc2.weight
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| TTomatoZhang/GHGCN | GCN_classifier | false | 3,132 | [
"Apache-2.0"
] | 0 | 09a07ff9e29e5889b912ca5feff74bb9308eda55 | https://github.com/TTomatoZhang/GHGCN/tree/09a07ff9e29e5889b912ca5feff74bb9308eda55 | from torch.nn import Module
import math
import torch
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from scipy.sparse import *
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False, act=lambda x:
x, dropout=0.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.act = act
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
input = F.dropout(input, self.dropout, training=self.training)
input = torch.squeeze(input)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
output = output + self.bias
return self.act(output)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class Model(Module):
def __init__(self, feature_dim, hidden_dim, out_dim, dropout=0.2):
super().__init__()
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.dropout = dropout
self.gc1 = GraphConvolution(self.feature_dim, self.hidden_dim,
dropout=self.dropout, act=F.relu)
self.gc2 = GraphConvolution(self.hidden_dim, self.out_dim)
def forward(self, adj, X):
hidden = self.gc1(X, adj)
out = self.gc2(hidden, adj)
return F.log_softmax(out, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Fuse | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/kj/ckj7dp7435hjyspn2f2ulzhnaivycwrgqgk2b5a4cqozhkq3arz7.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 32, 1, 1), (32, 1, 1, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 32, 64, 64), (131072, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, 262144, grid=grid(262144), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 32, 64, 64), (131072, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Fuse(nn.Module):
def __init__(self):
super(Fuse, self).__init__()
self.convolution = nn.Conv2d(32, 16, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.convolution(x)
x = self.relu(x)
return x
def get_inputs():
return [torch.rand([4, 32, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, None)
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 32, 1, 1), (32, 1, 1, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 32, 64, 64), (131072, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0[grid(262144)](
buf1, primals_2, buf2, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_2
return buf1, primals_1, primals_3, buf2
class FuseNew(nn.Module):
def __init__(self):
super(FuseNew, self).__init__()
self.convolution = nn.Conv2d(32, 16, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_1 = self.convolution.weight
primals_2 = self.convolution.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| arsalasif/SalAR | Fuse | false | 3,133 | [
"MIT"
] | 0 | eee0855199233177df0fce80f2a0612b8774ac1f | https://github.com/arsalasif/SalAR/tree/eee0855199233177df0fce80f2a0612b8774ac1f | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
self.convolution = nn.Conv2d(32, 16, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.convolution(x)
x = self.relu(x)
return x
def get_inputs():
return [torch.rand([4, 32, 64, 64])]
def get_init_inputs():
return []
|
group | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# x_1 => maximum
# Graph fragment:
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {})
# %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dx/cdxsiauqixxznc5upksv4k5qv54fs7gz2sgvr4qfd5yyu72syijl.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# x_3 => maximum_1
# Graph fragment:
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem_2, %getitem_3), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_1 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 324)
x3 = xindex % 324
x1 = (xindex // 81) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (648*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (324 + x3 + (648*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_2, buf1, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 9, 9), (648, 81, 9, 1))
buf3 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
triton_poi_fused_eq_gt_lt_maximum_1.run(buf2, primals_5, buf3, buf4, buf5, buf6, 1296, grid=grid(1296), stream=stream0)
del buf2
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class group(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, mid_channels=None):
super(group, self).__init__()
if mid_channels is None:
mid_channels = in_channels
self.conv_a = mfm(in_channels, mid_channels, 1, 1, 0)
self.conv = mfm(mid_channels, out_channels, kernel_size, stride,
padding)
def forward(self, x):
x = self.conv_a(x)
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1, 'padding': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 324
x3 = xindex % 324
x1 = xindex // 81 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 648 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (324 + x3 + 648 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_2,
buf1, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(4, 4), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 9, 9), (648, 81, 9, 1))
buf3 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
triton_poi_fused_eq_gt_lt_maximum_1[grid(1296)](buf2, primals_5,
buf3, buf4, buf5, buf6, 1296, XBLOCK=256, num_warps=4, num_stages=1
)
del buf2
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, buf6,
buf7, buf8, buf9)
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class groupNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, mid_channels=None):
super(groupNew, self).__init__()
if mid_channels is None:
mid_channels = in_channels
self.conv_a = mfm(in_channels, mid_channels, 1, 1, 0)
self.conv = mfm(mid_channels, out_channels, kernel_size, stride,
padding)
def forward(self, input_0):
primals_1 = self.conv_a.filter.weight
primals_2 = self.conv_a.filter.bias
primals_4 = self.conv.filter.weight
primals_5 = self.conv.filter.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ananiask8/FFWM | group | false | 3,134 | [
"MIT"
] | 0 | 117f593783da67da9dc910a751910760497ef37f | https://github.com/ananiask8/FFWM/tree/117f593783da67da9dc910a751910760497ef37f | import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super().__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class Model(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, mid_channels=None):
super().__init__()
if mid_channels is None:
mid_channels = in_channels
self.conv_a = mfm(in_channels, mid_channels, 1, 1, 0)
self.conv = mfm(mid_channels, out_channels, kernel_size, stride,
padding)
def forward(self, x):
x = self.conv_a(x)
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1, 'padding': 4}]
|
MyEntropy | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [logsoftmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logsoftmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/56/c56zvtoyao27obzv5t3wc5ghkyyf6yov7jqfbnej5tgl6xhbdwlv.py
# Topologically Sorted Source Nodes: [logsoftmax, getitem, loss, mean], Original ATen: [aten._log_softmax, aten.index, aten.neg, aten.mean]
# Source node to ATen node mapping:
# getitem => index
# logsoftmax => exp, log, sub_1, sum_1
# loss => neg
# mean => mean
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%sub_1, [%iota_default, %arg1_1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%index,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {})
triton_per_fused__log_softmax_index_mean_neg_1 = async_compile.triton('triton_per_fused__log_softmax_index_mean_neg_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_index_mean_neg_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_index_mean_neg_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = (rindex // 16)
r0 = rindex % 16
tmp0 = tl.load(in_ptr0 + (r1), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp9 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp12 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp15 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (r0 + (16*tmp4) + (64*r1)), None)
tmp8 = tl_math.exp(tmp7)
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp14 + tmp16
tmp18 = tl_math.log(tmp17)
tmp19 = tmp6 - tmp18
tmp20 = -tmp19
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.sum(tmp21, 1)[:, None]
tmp24 = 64.0
tmp25 = tmp23 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp25, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logsoftmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [logsoftmax, getitem, loss, mean], Original ATen: [aten._log_softmax, aten.index, aten.neg, aten.mean]
triton_per_fused__log_softmax_index_mean_neg_1.run(buf2, arg1_1, buf0, 1, 64, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MyEntropy(nn.Module):
def __init__(self):
super(MyEntropy, self).__init__()
def forward(self, predictions, target):
b_size = predictions.size(0)
lsm_func = nn.LogSoftmax(dim=1)
logsoftmax = lsm_func(predictions)
loss = -logsoftmax[torch.arange(b_size), target]
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_index_mean_neg_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex // 16
r0 = rindex % 16
tmp0 = tl.load(in_ptr0 + r1, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp9 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp12 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp15 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (r0 + 16 * tmp4 + 64 * r1), None)
tmp8 = tl_math.exp(tmp7)
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp14 + tmp16
tmp18 = tl_math.log(tmp17)
tmp19 = tmp6 - tmp18
tmp20 = -tmp19
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.sum(tmp21, 1)[:, None]
tmp24 = 64.0
tmp25 = tmp23 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp25, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_index_mean_neg_1[grid(1)](buf2,
arg1_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
class MyEntropyNew(nn.Module):
def __init__(self):
super(MyEntropyNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| atimashov/object_detection | MyEntropy | false | 3,135 | [
"MIT"
] | 0 | 922cd88f429156fa4668c7d718b2665e4ab875fd | https://github.com/atimashov/object_detection/tree/922cd88f429156fa4668c7d718b2665e4ab875fd | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, predictions, target):
b_size = predictions.size(0)
lsm_func = nn.LogSoftmax(dim=1)
logsoftmax = lsm_func(predictions)
loss = -logsoftmax[torch.arange(b_size), target]
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return []
|
CBAM_Module | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [avg], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# avg => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6u/c6uzjffqrxx4bjszg6uhyy5t5tfhkkqmlk6eohtz45is6ziwi2mw.py
# Topologically Sorted Source Nodes: [mx], Original ATen: [aten.adaptive_max_pool2d]
# Source node to ATen node mapping:
# mx => getitem
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%adaptive_max_pool2d, 0), kwargs = {})
triton_poi_fused_adaptive_max_pool2d_1 = async_compile.triton('triton_poi_fused_adaptive_max_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_adaptive_max_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x0), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5d/c5dttup2kbk6y5pv47sdvnj3su2dakjgqwz6j44rolm6aoirhkb2.py
# Topologically Sorted Source Nodes: [avg_1, mx_1, avg_2, mx_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# avg_1 => convolution
# avg_2 => relu
# mx_1 => convolution_1
# mx_2 => relu_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_out_ptr1 + (x0), xmask)
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp7 = tmp6 + tmp2
tmp8 = triton_helpers.maximum(tmp4, tmp7)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
tl.store(in_out_ptr1 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7u/c7ut4cc4hwwsmjxbxxe62bumwa7hbkwdqlqxzkui257ffeif4kwz.py
# Topologically Sorted Source Nodes: [avg_3, mx_3, x, x_1], Original ATen: [aten.convolution, aten.add, aten.sigmoid]
# Source node to ATen node mapping:
# avg_3 => convolution_2
# mx_3 => convolution_3
# x => add
# x_1 => sigmoid
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %convolution_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
triton_poi_fused_add_convolution_sigmoid_3 = async_compile.triton('triton_poi_fused_add_convolution_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_sigmoid_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp6 = tl.sigmoid(tmp5)
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/74/c74fagklfalcalyync4mnqdzcy2czrrzxz5c3g7m3ivnipi3tb7a.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_3 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean_1, %getitem_2], 1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (4*x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 * tmp6
tmp8 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + (1 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp8 * tmp9
tmp11 = tmp7 + tmp10
tmp12 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (2 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tmp12 * tmp13
tmp15 = tmp11 + tmp14
tmp16 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tmp16 * tmp17
tmp19 = tmp15 + tmp18
tmp20 = 4.0
tmp21 = tmp19 / tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp4, tmp21, tmp22)
tmp24 = tmp0 >= tmp3
tmp25 = tl.full([1], 2, tl.int64)
tmp26 = tmp0 < tmp25
tmp27 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tmp27 * tmp28
tmp30 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr1 + (1 + (4*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tmp30 * tmp31
tmp33 = triton_helpers.maximum(tmp29, tmp32)
tmp34 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp35 = tl.load(in_ptr1 + (2 + (4*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp36 = tmp34 * tmp35
tmp37 = triton_helpers.maximum(tmp33, tmp36)
tmp38 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.load(in_ptr1 + (3 + (4*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp40 = tmp38 * tmp39
tmp41 = triton_helpers.maximum(tmp37, tmp40)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp24, tmp41, tmp42)
tmp44 = tl.where(tmp4, tmp23, tmp43)
tl.store(out_ptr0 + (x4), tmp44, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/46/c46j4k5xzhvvivb6mrsreutlkj7ccrhiw73k5p4mgjdrndmf4zr3.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fz/cfz2j3t5hs5yvotxa4urqnvdlbmwwrg6eiqiufn67izyh4bgl6vk.py
# Topologically Sorted Source Nodes: [x_2, x_5, x_6], Original ATen: [aten.mul, aten.sigmoid]
# Source node to ATen node mapping:
# x_2 => mul
# x_5 => sigmoid_1
# x_6 => mul_1
# Graph fragment:
# %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sigmoid_1), kwargs = {})
triton_poi_fused_mul_sigmoid_6 = async_compile.triton('triton_poi_fused_mul_sigmoid_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 16)
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [avg], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mx], Original ATen: [aten.adaptive_max_pool2d]
triton_poi_fused_adaptive_max_pool2d_1.run(primals_1, buf2, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [avg_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 1, 1), (1, 1, 1, 1))
# Topologically Sorted Source Nodes: [mx_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 1, 1, 1), (1, 1, 1, 1))
buf5 = buf3; del buf3 # reuse
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [avg_1, mx_1, avg_2, mx_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, buf6, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [avg_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf5, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
# Topologically Sorted Source Nodes: [mx_3], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 1, 1), (4, 1, 1, 1))
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [avg_3, mx_3, x, x_1], Original ATen: [aten.convolution, aten.add, aten.sigmoid]
triton_poi_fused_add_convolution_sigmoid_3.run(buf9, primals_5, buf8, 16, grid=grid(16), stream=stream0)
del buf8
del primals_5
buf10 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(primals_1, buf9, buf10, 128, grid=grid(128), stream=stream0)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 1, 4, 4), (16, 16, 4, 1))
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf12, primals_7, 64, grid=grid(64), stream=stream0)
del primals_7
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_5, x_6], Original ATen: [aten.mul, aten.sigmoid]
triton_poi_fused_mul_sigmoid_6.run(primals_1, buf9, buf12, buf13, 256, grid=grid(256), stream=stream0)
return (buf13, primals_1, primals_2, primals_4, primals_6, buf1, buf2, buf5, buf6, buf9, buf10, buf12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import *
import torch.nn as nn
class CBAM_Module(nn.Module):
def __init__(self, channels, reduction):
super(CBAM_Module, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
padding=0)
self.sigmoid_channel = nn.Sigmoid()
self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=3, stride=1,
padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
module_input = x
avg = self.avg_pool(x)
mx = self.max_pool(x)
avg = self.fc1(avg)
mx = self.fc1(mx)
avg = self.relu(avg)
mx = self.relu(mx)
avg = self.fc2(avg)
mx = self.fc2(mx)
x = avg + mx
x = self.sigmoid_channel(x)
x = module_input * x
module_input = x
avg = torch.mean(x, 1, True)
mx, _ = torch.max(x, 1, True)
x = torch.cat((avg, mx), 1)
x = self.conv_after_concat(x)
x = self.sigmoid_spatial(x)
x = module_input * x
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'reduction': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from typing import *
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x0, tmp30, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_out_ptr1 + x0, xmask)
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp7 = tmp6 + tmp2
tmp8 = triton_helpers.maximum(tmp4, tmp7)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(in_out_ptr1 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_convolution_sigmoid_3(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp6 = tl.sigmoid(tmp5)
tl.store(in_out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x4 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + 4 * x2, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp5 * tmp6
tmp8 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + (1 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tmp8 * tmp9
tmp11 = tmp7 + tmp10
tmp12 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (2 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tmp12 * tmp13
tmp15 = tmp11 + tmp14
tmp16 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp18 = tmp16 * tmp17
tmp19 = tmp15 + tmp18
tmp20 = 4.0
tmp21 = tmp19 / tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp4, tmp21, tmp22)
tmp24 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp27 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp29 = tmp27 * tmp28
tmp30 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr1 + (1 + 4 * x2), tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tmp30 * tmp31
tmp33 = triton_helpers.maximum(tmp29, tmp32)
tmp34 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp35 = tl.load(in_ptr1 + (2 + 4 * x2), tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp36 = tmp34 * tmp35
tmp37 = triton_helpers.maximum(tmp33, tmp36)
tmp38 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp39 = tl.load(in_ptr1 + (3 + 4 * x2), tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp40 = tmp38 * tmp39
tmp41 = triton_helpers.maximum(tmp37, tmp40)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp24, tmp41, tmp42)
tmp44 = tl.where(tmp4, tmp23, tmp43)
tl.store(out_ptr0 + x4, tmp44, xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 16
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_adaptive_max_pool2d_1[grid(16)](primals_1, buf2,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 1, 1), (1, 1, 1, 1))
buf4 = extern_kernels.convolution(buf2, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 1, 1, 1), (1, 1, 1, 1))
buf5 = buf3
del buf3
buf6 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(4)](buf5, buf6, primals_3,
4, XBLOCK=4, num_warps=1, num_stages=1)
del primals_3
buf7 = extern_kernels.convolution(buf5, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 1, 1), (4, 1, 1, 1))
buf9 = buf7
del buf7
triton_poi_fused_add_convolution_sigmoid_3[grid(16)](buf9,
primals_5, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf8
del primals_5
buf10 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
triton_poi_fused_cat_4[grid(128)](primals_1, buf9, buf10, 128,
XBLOCK=128, num_warps=4, num_stages=1)
buf11 = extern_kernels.convolution(buf10, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 1, 4, 4), (16, 16, 4, 1))
buf12 = buf11
del buf11
triton_poi_fused_convolution_5[grid(64)](buf12, primals_7, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_7
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_6[grid(256)](primals_1, buf9, buf12,
buf13, 256, XBLOCK=256, num_warps=4, num_stages=1)
return (buf13, primals_1, primals_2, primals_4, primals_6, buf1, buf2,
buf5, buf6, buf9, buf10, buf12)
class CBAM_ModuleNew(nn.Module):
def __init__(self, channels, reduction):
super(CBAM_ModuleNew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
padding=0)
self.sigmoid_channel = nn.Sigmoid()
self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=3, stride=1,
padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.conv_after_concat.weight
primals_7 = self.conv_after_concat.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| artyompal/kaggle_quick_draw | CBAM_Module | false | 3,136 | [
"Apache-2.0"
] | 0 | 227e228295479cd5e1af8dcde773f5efdacd62b8 | https://github.com/artyompal/kaggle_quick_draw/tree/227e228295479cd5e1af8dcde773f5efdacd62b8 | import torch
from typing import *
import torch.nn as nn
class Model(nn.Module):
def __init__(self, channels, reduction):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
padding=0)
self.sigmoid_channel = nn.Sigmoid()
self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=3, stride=1,
padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
module_input = x
avg = self.avg_pool(x)
mx = self.max_pool(x)
avg = self.fc1(avg)
mx = self.fc1(mx)
avg = self.relu(avg)
mx = self.relu(mx)
avg = self.fc2(avg)
mx = self.fc2(mx)
x = avg + mx
x = self.sigmoid_channel(x)
x = module_input * x
module_input = x
avg = torch.mean(x, 1, True)
mx, _ = torch.max(x, 1, True)
x = torch.cat((avg, mx), 1)
x = self.conv_after_concat(x)
x = self.sigmoid_spatial(x)
x = module_input * x
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SeparableBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mu/cmu5ttts2hdvlceyfi5clqpgl6qqngyzjwbvur2iymh2lu5srqjt.py
# Topologically Sorted Source Nodes: [kernel_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# kernel_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vb/cvbebkbwqtzfbsixehaz4axca6thbasspzufvjiuomusl5mbpdpw.py
# Topologically Sorted Source Nodes: [kernel_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# kernel_2 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %primals_9), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (64, 4), (4, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 4), (4, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((1024, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [kernel], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (1024, 4, 1), (4, 1, 1), 0), reinterpret_tensor(buf0, (1024, 1, 4), (4, 4, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4096, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (4096, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((64, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [kernel_2], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf3, primals_7, buf4, 4096, 4, grid=grid(4096, 4), stream=stream0)
del primals_7
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [kernel_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (4096, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (64, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [kernel_2], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf6, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
return (reinterpret_tensor(buf6, (64, 4, 4, 4, 4), (256, 1, 4, 64, 16), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4096, 4), (4, 1), 0), reinterpret_tensor(buf4, (4096, 4), (4, 1), 0), primals_8, primals_6, reinterpret_tensor(buf1, (1024, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf0, (1024, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn import Linear
class SeparableBlock(Module):
def __init__(self, input_size, kernel_channels_in, kernel_channels_out,
kernel_size):
super(SeparableBlock, self).__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.kernel_channels_in = kernel_channels_in
self.kernel_channels_out = kernel_channels_out
self.make_kernel_in = Linear(input_size, kernel_size * kernel_size *
kernel_channels_in)
self.make_kernel_out = Linear(input_size, kernel_size * kernel_size *
kernel_channels_out)
self.kernel_linear_in = Linear(kernel_channels_in, kernel_channels_in)
self.kernel_linear_out = Linear(kernel_channels_out,
kernel_channels_out)
def forward(self, features):
features = features.view(-1, self.input_size)
kernel_in = self.make_kernel_in(features).view(-1, self.kernel_size,
self.kernel_size, 1, self.kernel_channels_in)
kernel_out = self.make_kernel_out(features).view(-1, self.
kernel_size, self.kernel_size, self.kernel_channels_out, 1)
kernel = torch.matmul(kernel_out, kernel_in)
kernel = self.kernel_linear_in(kernel).permute(0, 1, 2, 4, 3)
kernel = self.kernel_linear_out(kernel)
kernel = kernel.permute(0, 4, 3, 1, 2)
return kernel
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'kernel_channels_in': 4,
'kernel_channels_out': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch.nn import Linear
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (64, 4), (4, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 4), (4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 64), (1, 4),
0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((1024, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (1024, 4, 1), (4, 1, 1),
0), reinterpret_tensor(buf0, (1024, 1, 4), (4, 4, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4096, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (4096, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((64, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4096, 4)](buf3, primals_7, buf4, 4096,
4, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf5 = buf3
del buf3
extern_kernels.mm(reinterpret_tensor(buf4, (4096, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (64, 4, 4, 4, 4), (256, 64, 16, 4,
1), 0)
del buf5
triton_poi_fused_add_1[grid(16384)](buf6, primals_9, 16384, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
return reinterpret_tensor(buf6, (64, 4, 4, 4, 4), (256, 1, 4, 64, 16), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf2, (4096, 4), (4, 1), 0), reinterpret_tensor(
buf4, (4096, 4), (4, 1), 0), primals_8, primals_6, reinterpret_tensor(
buf1, (1024, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf0, (1024,
4, 1), (4, 1, 4), 0)
class SeparableBlockNew(Module):
def __init__(self, input_size, kernel_channels_in, kernel_channels_out,
kernel_size):
super(SeparableBlockNew, self).__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.kernel_channels_in = kernel_channels_in
self.kernel_channels_out = kernel_channels_out
self.make_kernel_in = Linear(input_size, kernel_size * kernel_size *
kernel_channels_in)
self.make_kernel_out = Linear(input_size, kernel_size * kernel_size *
kernel_channels_out)
self.kernel_linear_in = Linear(kernel_channels_in, kernel_channels_in)
self.kernel_linear_out = Linear(kernel_channels_out,
kernel_channels_out)
def forward(self, input_0):
primals_2 = self.make_kernel_in.weight
primals_3 = self.make_kernel_in.bias
primals_4 = self.make_kernel_out.weight
primals_5 = self.make_kernel_out.bias
primals_6 = self.kernel_linear_in.weight
primals_7 = self.kernel_linear_in.bias
primals_8 = self.kernel_linear_out.weight
primals_9 = self.kernel_linear_out.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| andreasjansson/hyperstyle | SeparableBlock | false | 3,137 | [
"MIT"
] | 0 | d9847c76dd75da129a60bf995534ff6e71cbbaa6 | https://github.com/andreasjansson/hyperstyle/tree/d9847c76dd75da129a60bf995534ff6e71cbbaa6 | from torch.nn import Module
import torch
from torch.nn import Linear
class Model(Module):
def __init__(self, input_size, kernel_channels_in, kernel_channels_out,
kernel_size):
super().__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.kernel_channels_in = kernel_channels_in
self.kernel_channels_out = kernel_channels_out
self.make_kernel_in = Linear(input_size, kernel_size * kernel_size *
kernel_channels_in)
self.make_kernel_out = Linear(input_size, kernel_size * kernel_size *
kernel_channels_out)
self.kernel_linear_in = Linear(kernel_channels_in, kernel_channels_in)
self.kernel_linear_out = Linear(kernel_channels_out,
kernel_channels_out)
def forward(self, features):
features = features.view(-1, self.input_size)
kernel_in = self.make_kernel_in(features).view(-1, self.kernel_size,
self.kernel_size, 1, self.kernel_channels_in)
kernel_out = self.make_kernel_out(features).view(-1, self.
kernel_size, self.kernel_size, self.kernel_channels_out, 1)
kernel = torch.matmul(kernel_out, kernel_in)
kernel = self.kernel_linear_in(kernel).permute(0, 1, 2, 4, 3)
kernel = self.kernel_linear_out(kernel)
kernel = kernel.permute(0, 4, 3, 1, 2)
return kernel
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'kernel_channels_in': 4,
'kernel_channels_out': 4, 'kernel_size': 4}]
|
IOUloss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/in/cinwj7sv5v7wr35grnxco6x2u333pkogkh4ixr63euwbqwyfjen7.py
# Topologically Sorted Source Nodes: [area_p, area_g, add_2, truediv_2, add, truediv_3, add_1, br, truediv, sub, truediv_1, sub_1, tl, sub_2, prod_3, lt, type_1, en, area_i, sub_3, add_3, iou, pow_1, loss], Original ATen: [aten.prod, aten.add, aten.div, aten.minimum, aten.sub, aten.maximum, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# area_g => prod_1
# area_i => mul
# area_p => prod
# br => minimum
# en => prod_2
# iou => div_4
# loss => sub_4
# lt => lt
# pow_1 => pow_1
# prod_3 => prod_3
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# tl => maximum
# truediv => div
# truediv_1 => div_1
# truediv_2 => div_2
# truediv_3 => div_3
# type_1 => convert_element_type
# Graph fragment:
# %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%slice_18, 1), kwargs = {})
# %prod_1 : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%slice_20, 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%prod, %prod_1), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_12, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_10, %div_2), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_16, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_14, %div_3), kwargs = {})
# %minimum : [num_users=2] = call_function[target=torch.ops.aten.minimum.default](args = (%add, %add_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_4, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_2, %div), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_8, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_6, %div_1), kwargs = {})
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%sub, %sub_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %maximum), kwargs = {})
# %prod_3 : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_2, 1), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%maximum, %minimum), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %prod_2 : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%convert_element_type, 1), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%prod_3, %prod_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mul), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_3, 1e-16), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_3), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_4, 2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %pow_1), kwargs = {})
triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0 = async_compile.triton('triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp6 * tmp2
tmp8 = tmp5 + tmp7
tmp9 = triton_helpers.minimum(tmp4, tmp8)
tmp10 = tmp0 - tmp3
tmp11 = tmp5 - tmp7
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp9 - tmp12
tmp16 = tmp15 * tmp2
tmp17 = tmp14 + tmp16
tmp20 = tmp19 * tmp2
tmp21 = tmp18 + tmp20
tmp22 = triton_helpers.minimum(tmp17, tmp21)
tmp23 = tmp14 - tmp16
tmp24 = tmp18 - tmp20
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tmp22 - tmp25
tmp27 = tmp13 * tmp26
tmp28 = tmp12 < tmp9
tmp29 = tmp28.to(tl.float32)
tmp30 = tmp25 < tmp22
tmp31 = tmp30.to(tl.float32)
tmp32 = tmp29 * tmp31
tmp33 = tmp27 * tmp32
tmp34 = tmp1 * tmp15
tmp35 = tmp6 * tmp19
tmp36 = tmp34 + tmp35
tmp37 = tmp36 - tmp33
tmp38 = 1e-16
tmp39 = tmp37 + tmp38
tmp40 = tmp33 / tmp39
tmp41 = tmp40 * tmp40
tmp42 = 1.0
tmp43 = tmp42 - tmp41
tl.store(in_out_ptr0 + (x0), tmp43, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, ), (1, ), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [area_p, area_g, add_2, truediv_2, add, truediv_3, add_1, br, truediv, sub, truediv_1, sub_1, tl, sub_2, prod_3, lt, type_1, en, area_i, sub_3, add_3, iou, pow_1, loss], Original ATen: [aten.prod, aten.add, aten.div, aten.minimum, aten.sub, aten.maximum, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.rsub]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0.run(buf1, arg0_1, arg1_1, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class IOUloss(nn.Module):
def __init__(self, reduction='none', loss_type='iou'):
super(IOUloss, self).__init__()
self.reduction = reduction
self.loss_type = loss_type
def forward(self, pred, target):
assert pred.shape[0] == target.shape[0]
pred = pred.view(-1, 4)
target = target.view(-1, 4)
tl = torch.max(pred[:, :2] - pred[:, 2:] / 2, target[:, :2] -
target[:, 2:] / 2)
br = torch.min(pred[:, :2] + pred[:, 2:] / 2, target[:, :2] +
target[:, 2:] / 2)
area_p = torch.prod(pred[:, 2:], 1)
area_g = torch.prod(target[:, 2:], 1)
en = (tl < br).type(tl.type()).prod(dim=1)
area_i = torch.prod(br - tl, 1) * en
iou = area_i / (area_p + area_g - area_i + 1e-16)
if self.loss_type == 'iou':
loss = 1 - iou ** 2
elif self.loss_type == 'giou':
c_tl = torch.min(pred[:, :2] - pred[:, 2:] / 2, target[:, :2] -
target[:, 2:] / 2)
c_br = torch.max(pred[:, :2] + pred[:, 2:] / 2, target[:, :2] +
target[:, 2:] / 2)
area_c = torch.prod(c_br - c_tl, 1)
giou = iou - (area_c - area_i) / area_c.clamp(1e-16)
loss = 1 - giou.clamp(min=-1.0, max=1.0)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp6 * tmp2
tmp8 = tmp5 + tmp7
tmp9 = triton_helpers.minimum(tmp4, tmp8)
tmp10 = tmp0 - tmp3
tmp11 = tmp5 - tmp7
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp9 - tmp12
tmp16 = tmp15 * tmp2
tmp17 = tmp14 + tmp16
tmp20 = tmp19 * tmp2
tmp21 = tmp18 + tmp20
tmp22 = triton_helpers.minimum(tmp17, tmp21)
tmp23 = tmp14 - tmp16
tmp24 = tmp18 - tmp20
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tmp22 - tmp25
tmp27 = tmp13 * tmp26
tmp28 = tmp12 < tmp9
tmp29 = tmp28.to(tl.float32)
tmp30 = tmp25 < tmp22
tmp31 = tmp30.to(tl.float32)
tmp32 = tmp29 * tmp31
tmp33 = tmp27 * tmp32
tmp34 = tmp1 * tmp15
tmp35 = tmp6 * tmp19
tmp36 = tmp34 + tmp35
tmp37 = tmp36 - tmp33
tmp38 = 1e-16
tmp39 = tmp37 + tmp38
tmp40 = tmp33 / tmp39
tmp41 = tmp40 * tmp40
tmp42 = 1.0
tmp43 = tmp42 - tmp41
tl.store(in_out_ptr0 + x0, tmp43, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64,), (1,), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0[
grid(64)](buf1, arg0_1, arg1_1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del arg0_1
del arg1_1
return buf1,
class IOUlossNew(nn.Module):
def __init__(self, reduction='none', loss_type='iou'):
super(IOUlossNew, self).__init__()
self.reduction = reduction
self.loss_type = loss_type
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| augmentedstartups/EmotionDetectionYoloX | IOUloss | false | 3,138 | [
"Apache-2.0"
] | 0 | 2b0e13b94486a0bd85628f1483a0b710503c2005 | https://github.com/augmentedstartups/EmotionDetectionYoloX/tree/2b0e13b94486a0bd85628f1483a0b710503c2005 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, reduction='none', loss_type='iou'):
super().__init__()
self.reduction = reduction
self.loss_type = loss_type
def forward(self, pred, target):
assert pred.shape[0] == target.shape[0]
pred = pred.view(-1, 4)
target = target.view(-1, 4)
tl = torch.max(pred[:, :2] - pred[:, 2:] / 2, target[:, :2] -
target[:, 2:] / 2)
br = torch.min(pred[:, :2] + pred[:, 2:] / 2, target[:, :2] +
target[:, 2:] / 2)
area_p = torch.prod(pred[:, 2:], 1)
area_g = torch.prod(target[:, 2:], 1)
en = (tl < br).type(tl.type()).prod(dim=1)
area_i = torch.prod(br - tl, 1) * en
iou = area_i / (area_p + area_g - area_i + 1e-16)
if self.loss_type == 'iou':
loss = 1 - iou ** 2
elif self.loss_type == 'giou':
c_tl = torch.min(pred[:, :2] - pred[:, 2:] / 2, target[:, :2] -
target[:, 2:] / 2)
c_br = torch.max(pred[:, :2] + pred[:, 2:] / 2, target[:, :2] +
target[:, 2:] / 2)
area_c = torch.prod(c_br - c_tl, 1)
giou = iou - (area_c - area_i) / area_c.clamp(1e-16)
loss = 1 - giou.clamp(min=-1.0, max=1.0)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
GaussianVAE2D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# mu => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jm/cjmvqqubrosqmk5lw7p6pi7ul37cframwqbcslo2mlnymyjuwkay.py
# Topologically Sorted Source Nodes: [conv2d_1, sd], Original ATen: [aten.convolution, aten.softplus]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# sd => div, exp, gt, log1p, mul, where
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 20.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_1, %div), kwargs = {})
triton_poi_fused_convolution_softplus_1 = async_compile.triton('triton_poi_fused_convolution_softplus_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_softplus_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_softplus_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = 20.0
tmp6 = tmp4 > tmp5
tmp7 = tl_math.exp(tmp4)
tmp8 = libdevice.log1p(tmp7)
tmp9 = tmp8 * tmp3
tmp10 = tl.where(tmp6, tmp2, tmp9)
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, sd], Original ATen: [aten.convolution, aten.softplus]
triton_poi_fused_convolution_softplus_1.run(buf3, primals_5, buf4, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf1, buf4, primals_1, primals_3, primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
from torch.autograd import Variable
class GaussianVAE2D(nn.Module):
def __init__(self, n_in, n_out, kernel_size, stride, padding=0):
super(GaussianVAE2D, self).__init__()
self.en_mu = nn.Conv2d(n_in, n_out, kernel_size, stride, padding)
self.en_sigma = nn.Conv2d(n_in, n_out, kernel_size, stride, padding)
self.softplus = nn.Softplus()
self.reset_parameters()
def reset_parameters(self):
self.en_mu.weight.data.normal_(0, 0.002)
self.en_mu.bias.data.normal_(0, 0.002)
self.en_sigma.weight.data.normal_(0, 0.002)
self.en_sigma.bias.data.normal_(0, 0.002)
def forward(self, x):
mu = self.en_mu(x)
sd = self.softplus(self.en_sigma(x))
return mu, sd
def sample(self, x):
mu = self.en_mu(x)
sd = self.softplus(self.en_sigma(x))
noise = Variable(torch.randn(mu.size(0), mu.size(1), mu.size(2), mu
.size(3)))
return mu + sd.mul(noise), mu, sd
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_in': 4, 'n_out': 4, 'kernel_size': 4, 'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_softplus_1(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = 20.0
tmp6 = tmp4 > tmp5
tmp7 = tl_math.exp(tmp4)
tmp8 = libdevice.log1p(tmp7)
tmp9 = tmp8 * tmp3
tmp10 = tl.where(tmp6, tmp2, tmp9)
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_convolution_softplus_1[grid(16)](buf3, primals_5,
buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
return buf1, buf4, primals_1, primals_3, primals_4, buf3
class GaussianVAE2DNew(nn.Module):
def __init__(self, n_in, n_out, kernel_size, stride, padding=0):
super(GaussianVAE2DNew, self).__init__()
self.en_mu = nn.Conv2d(n_in, n_out, kernel_size, stride, padding)
self.en_sigma = nn.Conv2d(n_in, n_out, kernel_size, stride, padding)
self.softplus = nn.Softplus()
self.reset_parameters()
def reset_parameters(self):
self.en_mu.weight.data.normal_(0, 0.002)
self.en_mu.bias.data.normal_(0, 0.002)
self.en_sigma.weight.data.normal_(0, 0.002)
self.en_sigma.bias.data.normal_(0, 0.002)
def sample(self, x):
mu = self.en_mu(x)
sd = self.softplus(self.en_sigma(x))
noise = Variable(torch.randn(mu.size(0), mu.size(1), mu.size(2), mu
.size(3)))
return mu + sd.mul(noise), mu, sd
def forward(self, input_0):
primals_1 = self.en_mu.weight
primals_2 = self.en_mu.bias
primals_3 = self.en_sigma.weight
primals_5 = self.en_sigma.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
| ast0414/semit | GaussianVAE2D | false | 3,139 | [
"MIT"
] | 0 | c221222ba06f14611e3d030969cdb9f7c17ff98f | https://github.com/ast0414/semit/tree/c221222ba06f14611e3d030969cdb9f7c17ff98f | import torch
import torch.utils.data
import torch
import torch.nn as nn
from torch.autograd import Variable
class Model(nn.Module):
def __init__(self, n_in, n_out, kernel_size, stride, padding=0):
super().__init__()
self.en_mu = nn.Conv2d(n_in, n_out, kernel_size, stride, padding)
self.en_sigma = nn.Conv2d(n_in, n_out, kernel_size, stride, padding)
self.softplus = nn.Softplus()
self.reset_parameters()
def reset_parameters(self):
self.en_mu.weight.data.normal_(0, 0.002)
self.en_mu.bias.data.normal_(0, 0.002)
self.en_sigma.weight.data.normal_(0, 0.002)
self.en_sigma.bias.data.normal_(0, 0.002)
def forward(self, x):
mu = self.en_mu(x)
sd = self.softplus(self.en_sigma(x))
return mu, sd
def sample(self, x):
mu = self.en_mu(x)
sd = self.softplus(self.en_sigma(x))
noise = Variable(torch.randn(mu.size(0), mu.size(1), mu.size(2), mu
.size(3)))
return mu + sd.mul(noise), mu, sd
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4, 1]
|
LearnedUpsampling1d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/yq/cyq4wjugvjvikmffahqz4pku6bhacbiyag4qtgzuj5w5mlbrlq42.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %view), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + ((4*x1) + (x0 % 4)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv_transpose1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(4,), padding=(0,), dilation=(1,), transposed=True, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16), (64, 16, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class LearnedUpsampling1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv_t = nn.ConvTranspose1d(in_channels=in_channels,
out_channels=out_channels, kernel_size=kernel_size, stride=
kernel_size, bias=False)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_channels,
kernel_size))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.conv_t.reset_parameters()
nn.init.constant_(self.bias, 0)
def forward(self, input):
batch_size, _, length = input.size()
kernel_size, = self.conv_t.kernel_size
bias = self.bias.unsqueeze(0).unsqueeze(2).expand(batch_size, self.
conv_t.out_channels, length, kernel_size).contiguous().view(
batch_size, self.conv_t.out_channels, length * kernel_size)
return self.conv_t(input) + bias
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (4 * x1 + x0 % 4), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(4,),
padding=(0,), dilation=(1,), transposed=True, output_padding=(0
,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16), (64, 16, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf1, primals_2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class LearnedUpsampling1dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv_t = nn.ConvTranspose1d(in_channels=in_channels,
out_channels=out_channels, kernel_size=kernel_size, stride=
kernel_size, bias=False)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_channels,
kernel_size))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.conv_t.reset_parameters()
nn.init.constant_(self.bias, 0)
def forward(self, input_0):
primals_2 = self.bias
primals_1 = self.conv_t.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| austincap/samplernn-pytorch | LearnedUpsampling1d | false | 3,140 | [
"MIT"
] | 0 | d78399b899dcc116fd20823ae9e006ad8a6df4ea | https://github.com/austincap/samplernn-pytorch/tree/d78399b899dcc116fd20823ae9e006ad8a6df4ea | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv_t = nn.ConvTranspose1d(in_channels=in_channels,
out_channels=out_channels, kernel_size=kernel_size, stride=
kernel_size, bias=False)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_channels,
kernel_size))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.conv_t.reset_parameters()
nn.init.constant_(self.bias, 0)
def forward(self, input):
batch_size, _, length = input.size()
kernel_size, = self.conv_t.kernel_size
bias = self.bias.unsqueeze(0).unsqueeze(2).expand(batch_size, self.
conv_t.out_channels, length, kernel_size).contiguous().view(
batch_size, self.conv_t.out_channels, length * kernel_size)
return self.conv_t(input) + bias
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ConvTranspose2dBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/fc/cfc2ly6hdnwcliv24f2k6prmw2piqgg6spz6xhzakrvpl323svai.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 49) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.bool)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, 784, grid=grid(784), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
from torch.nn import functional as F
import torch.nn as nn
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-05, momentum=0.1):
super(AdaptiveInstanceNorm2d, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.weight = None
self.bias = None
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
def forward(self, x):
assert self.weight is not None and self.bias is not None, 'Please assign weight and bias before calling AdaIN!'
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(x_reshaped, running_mean, running_var, self.
weight, self.bias, True, self.momentum, self.eps)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class ConvTranspose2dBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=
0, output_padding=0, norm='none', activation='relu', pad_type='zero'):
super(ConvTranspose2dBlock, self).__init__()
self.use_bias = True
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
self.dconv = nn.ConvTranspose2d(input_dim, output_dim, kernel_size,
stride, padding, output_padding, bias=self.use_bias)
def forward(self, x):
x = self.dconv(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4, 'kernel_size': 4,
'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch
from torch.nn import functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 49 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0[grid(784)](buf1,
primals_2, buf2, 784, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3, buf2
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-05, momentum=0.1):
super(AdaptiveInstanceNorm2d, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.weight = None
self.bias = None
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
def forward(self, x):
assert self.weight is not None and self.bias is not None, 'Please assign weight and bias before calling AdaIN!'
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(x_reshaped, running_mean, running_var, self.
weight, self.bias, True, self.momentum, self.eps)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class ConvTranspose2dBlockNew(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=
0, output_padding=0, norm='none', activation='relu', pad_type='zero'):
super(ConvTranspose2dBlockNew, self).__init__()
self.use_bias = True
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
self.dconv = nn.ConvTranspose2d(input_dim, output_dim, kernel_size,
stride, padding, output_padding, bias=self.use_bias)
def forward(self, input_0):
primals_1 = self.dconv.weight
primals_2 = self.dconv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ast0414/semit | ConvTranspose2dBlock | false | 3,141 | [
"MIT"
] | 0 | c221222ba06f14611e3d030969cdb9f7c17ff98f | https://github.com/ast0414/semit/tree/c221222ba06f14611e3d030969cdb9f7c17ff98f | import torch
import torch.utils.data
import torch
from torch.nn import functional as F
import torch.nn as nn
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-05, momentum=0.1):
super().__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.weight = None
self.bias = None
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
def forward(self, x):
assert self.weight is not None and self.bias is not None, 'Please assign weight and bias before calling AdaIN!'
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(x_reshaped, running_mean, running_var, self.
weight, self.bias, True, self.momentum, self.eps)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class Model(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=
0, output_padding=0, norm='none', activation='relu', pad_type='zero'):
super().__init__()
self.use_bias = True
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
self.dconv = nn.ConvTranspose2d(input_dim, output_dim, kernel_size,
stride, padding, output_padding, bias=self.use_bias)
def forward(self, x):
x = self.dconv(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4, 'kernel_size': 4,
'stride': 1}]
|
LocallyConnected | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/6d/c6dttqk6xutp77btpuo4ywspudms2jqt6a26lv6ujp22nczd4jrp.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ut/cuto2qe3zw4jiwcltayyusj62mkjuq64i4dgrq6wxdnsvyi6tcmd.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qe/cqephrryeq5bbogazi3by7gnbuhxgs4uuloay5luyxj5jfkfgsj5.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add, aten.squeeze]
# Source node to ATen node mapping:
# out_2 => add, squeeze_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%squeeze, %primals_3), kwargs = {})
# %squeeze_1 : [num_users=1] = call_function[target=torch.ops.aten.squeeze.dim](args = (%view_5, 2), kwargs = {})
triton_poi_fused_add_squeeze_2 = async_compile.triton('triton_poi_fused_add_squeeze_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_squeeze_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_squeeze_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(primals_2, buf1, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1), 0), out=buf2)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0); del buf2 # reuse
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add, aten.squeeze]
triton_poi_fused_add_squeeze_2.run(buf4, primals_3, 1024, grid=grid(1024), stream=stream0)
del primals_3
return (buf4, reinterpret_tensor(buf0, (64, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
class LocallyConnected(nn.Module):
"""Local linear layer, i.e. Conv1dLocal() with filter size 1.
Args:
num_linear: num of local linear layers, i.e.
in_features: m1
out_features: m2
bias: whether to include bias or not
Shape:
- Input: [n, d, m1]
- Output: [n, d, m2]
Attributes:
weight: [d, m1, m2]
bias: [d, m2]
"""
def __init__(self, num_linear, input_features, output_features, bias=True):
super(LocallyConnected, self).__init__()
self.num_linear = num_linear
self.input_features = input_features
self.output_features = output_features
self.weight = nn.Parameter(torch.Tensor(num_linear, input_features,
output_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(num_linear, output_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
k = 1.0 / self.input_features
bound = math.sqrt(k)
nn.init.uniform_(self.weight, -bound, bound)
if self.bias is not None:
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input: 'torch.Tensor'):
out = torch.matmul(input.unsqueeze(dim=2), self.weight.unsqueeze(dim=0)
)
out = out.squeeze(dim=2)
if self.bias is not None:
out += self.bias
return out
def extra_repr(self):
return ('num_linear={}, in_features={}, out_features={}, bias={}'.
format(self.num_linear, self.in_features, self.out_features,
self.bias is not None))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_linear': 4, 'input_features': 4, 'output_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_squeeze_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_clone_1[grid(1024)](primals_2, buf1, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (64, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1), 0), out=buf2)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0
)
del buf2
buf4 = buf3
del buf3
triton_poi_fused_add_squeeze_2[grid(1024)](buf4, primals_3, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf4, reinterpret_tensor(buf0, (64, 4, 4), (16, 1, 4), 0)
class LocallyConnectedNew(nn.Module):
"""Local linear layer, i.e. Conv1dLocal() with filter size 1.
Args:
num_linear: num of local linear layers, i.e.
in_features: m1
out_features: m2
bias: whether to include bias or not
Shape:
- Input: [n, d, m1]
- Output: [n, d, m2]
Attributes:
weight: [d, m1, m2]
bias: [d, m2]
"""
def __init__(self, num_linear, input_features, output_features, bias=True):
super(LocallyConnectedNew, self).__init__()
self.num_linear = num_linear
self.input_features = input_features
self.output_features = output_features
self.weight = nn.Parameter(torch.Tensor(num_linear, input_features,
output_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(num_linear, output_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
k = 1.0 / self.input_features
bound = math.sqrt(k)
nn.init.uniform_(self.weight, -bound, bound)
if self.bias is not None:
nn.init.uniform_(self.bias, -bound, bound)
def extra_repr(self):
return ('num_linear={}, in_features={}, out_features={}, bias={}'.
format(self.num_linear, self.in_features, self.out_features,
self.bias is not None))
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| atong01/Graphical-modelling-continuous-time | LocallyConnected | false | 3,142 | [
"MIT"
] | 0 | f1c8d9bc30a44c38fd504e4cce2f7886fc352f92 | https://github.com/atong01/Graphical-modelling-continuous-time/tree/f1c8d9bc30a44c38fd504e4cce2f7886fc352f92 | import math
import torch
from torch import nn
class Model(nn.Module):
"""Local linear layer, i.e. Conv1dLocal() with filter size 1.
Args:
num_linear: num of local linear layers, i.e.
in_features: m1
out_features: m2
bias: whether to include bias or not
Shape:
- Input: [n, d, m1]
- Output: [n, d, m2]
Attributes:
weight: [d, m1, m2]
bias: [d, m2]
"""
def __init__(self, num_linear, input_features, output_features, bias=True):
super().__init__()
self.num_linear = num_linear
self.input_features = input_features
self.output_features = output_features
self.weight = nn.Parameter(torch.Tensor(num_linear, input_features,
output_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(num_linear, output_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
k = 1.0 / self.input_features
bound = math.sqrt(k)
nn.init.uniform_(self.weight, -bound, bound)
if self.bias is not None:
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input: 'torch.Tensor'):
out = torch.matmul(input.unsqueeze(dim=2), self.weight.unsqueeze(dim=0)
)
out = out.squeeze(dim=2)
if self.bias is not None:
out += self.bias
return out
def extra_repr(self):
return ('num_linear={}, in_features={}, out_features={}, bias={}'.
format(self.num_linear, self.in_features, self.out_features,
self.bias is not None))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
TransposeConv2dLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/uo/cuoiyqgsyrfp53lkw4hij4ulyfkzax64rqr6gxumyfhn6ponmpoc.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# x_2 => convolution
# x_3 => gt, mul_4, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_4), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1.run(buf2, primals_3, buf3, 400, grid=grid(400), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayer, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, x):
x = self.pad(x)
x = self.conv2d(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class TransposeConv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='lrelu', norm=
'none', sn=False, scale_factor=2):
super(TransposeConv2dLayer, self).__init__()
self.scale_factor = scale_factor
self.conv2d = Conv2dLayer(in_channels, out_channels, kernel_size,
stride, padding, dilation, pad_type, activation, norm, sn)
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
x = self.conv2d(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1[grid(400)
](buf2, primals_3, buf3, 400, XBLOCK=128, num_warps=4, num_stages=1
)
del primals_3
return buf2, primals_2, buf0, buf3
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayer, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, x):
x = self.pad(x)
x = self.conv2d(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class TransposeConv2dLayerNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='lrelu', norm=
'none', sn=False, scale_factor=2):
super(TransposeConv2dLayerNew, self).__init__()
self.scale_factor = scale_factor
self.conv2d = Conv2dLayer(in_channels, out_channels, kernel_size,
stride, padding, dilation, pad_type, activation, norm, sn)
def forward(self, input_0):
primals_1 = self.conv2d.conv2d.weight
primals_3 = self.conv2d.conv2d.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| autocomic/https-github.com-autocomic-DeepFillv2_Pytorch | TransposeConv2dLayer | false | 3,143 | [
"MIT"
] | 0 | 7f6712a9b42dfd827879271f13856f1da5d6a032 | https://github.com/autocomic/https-github.com-autocomic-DeepFillv2_Pytorch/tree/7f6712a9b42dfd827879271f13856f1da5d6a032 | import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super().__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super().__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activati
# ... truncated (>4000 chars) for memory efficiency |
GatedTransition | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [concat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# concat => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py
# Topologically Sorted Source Nodes: [_gate], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# _gate => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/c4/cc4vmbhc2juq7op4t6e4hbq4ogsct5pryu36en5pzp5vgkdvhbsy.py
# Topologically Sorted Source Nodes: [gate, sub, mul, mul_1, loc, relu_2], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.relu]
# Source node to ATen node mapping:
# gate => sigmoid
# loc => add
# mul => mul
# mul_1 => mul_1
# relu_2 => relu_2
# sub => sub
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %addmm_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm_3,), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_2 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp4 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = tmp1 * tmp6
tmp8 = tmp5 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/b6/cb6mnpbpdzxqp5lvrgp2pntycqb3sct2o4rchn7lxcuttcaakbkm.py
# Topologically Sorted Source Nodes: [scale], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# scale => div, exp, gt, log1p, mul_2, where
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_5, 1.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_2,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_2, 20.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %addmm_5, %div), kwargs = {})
triton_poi_fused_softplus_3 = async_compile.triton('triton_poi_fused_softplus_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp6 * tmp1
tmp8 = tl.where(tmp4, tmp0, tmp7)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [concat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [_gate], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf4)
del primals_7
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [_proposed_mean], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf5, primals_8, 16, grid=grid(16), stream=stream0)
del primals_8
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proposed_mean], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf5, reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_10
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, primals_1, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_11
del primals_12
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate, sub, mul, mul_1, loc, relu_2], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.relu]
triton_poi_fused_add_mul_relu_rsub_sigmoid_2.run(buf3, buf7, buf6, buf8, buf9, 16, grid=grid(16), stream=stream0)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, buf9, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10)
del primals_14
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [scale], Original ATen: [aten.softplus]
triton_poi_fused_softplus_3.run(buf10, buf11, 16, grid=grid(16), stream=stream0)
return (buf8, buf11, primals_1, buf0, buf2, buf3, buf5, buf6, buf7, buf9, buf10, primals_13, primals_9, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class GatedTransition(nn.Module):
"""
Parameterizes the gaussian latent transition probability `p(z_t | z_{t-1} ,s)`
"""
def __init__(self, z_dim, static_dim, transition_dim):
super().__init__()
self.concat_dim = z_dim + static_dim
self.lin_gate_z_to_hidden = nn.Linear(self.concat_dim, transition_dim)
self.lin_gate_hidden_to_z = nn.Linear(transition_dim, z_dim)
self.lin_proposed_mean_z_to_hidden = nn.Linear(self.concat_dim,
transition_dim)
self.lin_proposed_mean_hidden_to_z = nn.Linear(transition_dim, z_dim)
self.lin_sig = nn.Linear(z_dim, z_dim)
self.lin_z_to_loc = nn.Linear(z_dim, z_dim)
self.lin_z_to_loc.weight.data = torch.eye(z_dim)
self.lin_z_to_loc.bias.data = torch.zeros(z_dim)
self.relu = nn.ReLU()
self.softplus = nn.Softplus()
def forward(self, z_t_1, mini_batch_static):
"""
Given the latent `z_{t-1} and s` corresponding to the time step t-1
we return the mean and scale vectors that parameterize the
(diagonal) gaussian distribution `p(z_t | z_{t-1}, s)`
"""
concat = torch.cat((z_t_1, mini_batch_static), dim=1)
_gate = self.relu(self.lin_gate_z_to_hidden(concat))
gate = torch.sigmoid(self.lin_gate_hidden_to_z(_gate))
_proposed_mean = self.relu(self.lin_proposed_mean_z_to_hidden(concat))
proposed_mean = self.lin_proposed_mean_hidden_to_z(_proposed_mean)
loc = (1 - gate) * self.lin_z_to_loc(z_t_1) + gate * proposed_mean
scale = self.softplus(self.lin_sig(self.relu(proposed_mean)))
return loc, scale
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'z_dim': 4, 'static_dim': 4, 'transition_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = tmp1 * tmp6
tmp8 = tmp5 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_softplus_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp6 * tmp1
tmp8 = tl.where(tmp4, tmp0, tmp7)
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_7, (8, 4), (1, 8
), 0), out=buf4)
del primals_7
buf5 = buf4
del buf4
triton_poi_fused_relu_1[grid(16)](buf5, primals_8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, buf5, reinterpret_tensor(primals_9,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_10
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_12, primals_1, reinterpret_tensor(
primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_11
del primals_12
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_relu_rsub_sigmoid_2[grid(16)](buf3, buf7,
buf6, buf8, buf9, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_14, buf9, reinterpret_tensor(
primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10)
del primals_14
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_softplus_3[grid(16)](buf10, buf11, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return (buf8, buf11, primals_1, buf0, buf2, buf3, buf5, buf6, buf7,
buf9, buf10, primals_13, primals_9, primals_5)
class GatedTransitionNew(nn.Module):
"""
Parameterizes the gaussian latent transition probability `p(z_t | z_{t-1} ,s)`
"""
def __init__(self, z_dim, static_dim, transition_dim):
super().__init__()
self.concat_dim = z_dim + static_dim
self.lin_gate_z_to_hidden = nn.Linear(self.concat_dim, transition_dim)
self.lin_gate_hidden_to_z = nn.Linear(transition_dim, z_dim)
self.lin_proposed_mean_z_to_hidden = nn.Linear(self.concat_dim,
transition_dim)
self.lin_proposed_mean_hidden_to_z = nn.Linear(transition_dim, z_dim)
self.lin_sig = nn.Linear(z_dim, z_dim)
self.lin_z_to_loc = nn.Linear(z_dim, z_dim)
self.lin_z_to_loc.weight.data = torch.eye(z_dim)
self.lin_z_to_loc.bias.data = torch.zeros(z_dim)
self.relu = nn.ReLU()
self.softplus = nn.Softplus()
def forward(self, input_0, input_1):
primals_3 = self.lin_gate_z_to_hidden.weight
primals_4 = self.lin_gate_z_to_hidden.bias
primals_1 = self.lin_gate_hidden_to_z.weight
primals_6 = self.lin_gate_hidden_to_z.bias
primals_7 = self.lin_proposed_mean_z_to_hidden.weight
primals_8 = self.lin_proposed_mean_z_to_hidden.bias
primals_2 = self.lin_proposed_mean_hidden_to_z.weight
primals_10 = self.lin_proposed_mean_hidden_to_z.bias
primals_5 = self.lin_sig.weight
primals_12 = self.lin_sig.bias
primals_9 = self.lin_z_to_loc.weight
primals_14 = self.lin_z_to_loc.bias
primals_11 = input_0
primals_13 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0], output[1]
| autodidact-m/Projects | GatedTransition | false | 3,144 | [
"Apache-2.0"
] | 0 | f4c0473adba42f3a629b62eb09d3b1df91982f46 | https://github.com/autodidact-m/Projects/tree/f4c0473adba42f3a629b62eb09d3b1df91982f46 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Parameterizes the gaussian latent transition probability `p(z_t | z_{t-1} ,s)`
"""
def __init__(self, z_dim, static_dim, transition_dim):
super().__init__()
self.concat_dim = z_dim + static_dim
self.lin_gate_z_to_hidden = nn.Linear(self.concat_dim, transition_dim)
self.lin_gate_hidden_to_z = nn.Linear(transition_dim, z_dim)
self.lin_proposed_mean_z_to_hidden = nn.Linear(self.concat_dim,
transition_dim)
self.lin_proposed_mean_hidden_to_z = nn.Linear(transition_dim, z_dim)
self.lin_sig = nn.Linear(z_dim, z_dim)
self.lin_z_to_loc = nn.Linear(z_dim, z_dim)
self.lin_z_to_loc.weight.data = torch.eye(z_dim)
self.lin_z_to_loc.bias.data = torch.zeros(z_dim)
self.relu = nn.ReLU()
self.softplus = nn.Softplus()
def forward(self, z_t_1, mini_batch_static):
"""
Given the latent `z_{t-1} and s` corresponding to the time step t-1
we return the mean and scale vectors that parameterize the
(diagonal) gaussian distribution `p(z_t | z_{t-1}, s)`
"""
concat = torch.cat((z_t_1, mini_batch_static), dim=1)
_gate = self.relu(self.lin_gate_z_to_hidden(concat))
gate = torch.sigmoid(self.lin_gate_hidden_to_z(_gate))
_proposed_mean = self.relu(self.lin_proposed_mean_z_to_hidden(concat))
proposed_mean = self.lin_proposed_mean_hidden_to_z(_proposed_mean)
loc = (1 - gate) * self.lin_z_to_loc(z_t_1) + gate * proposed_mean
scale = self.softplus(self.lin_sig(self.relu(proposed_mean)))
return loc, scale
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Combiner | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [concat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# concat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mt/cmt472e6u5uttlzf5i6bgy7okk376t5i4m4t5zora4xldjzhnbzn.py
# Topologically Sorted Source Nodes: [tanh, add, h_combined], Original ATen: [aten.tanh, aten.add, aten.mul]
# Source node to ATen node mapping:
# add => add
# h_combined => mul
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %primals_5), kwargs = {})
# %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
triton_poi_fused_add_mul_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tmp1 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5f/c5f4n5hhbhk35a5suc6d6fn6ubyqrq34nuzwqatvnz6y5kmfmd43.py
# Topologically Sorted Source Nodes: [scale], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# scale => div, exp, gt, log1p, mul_1, where
# Graph fragment:
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_2, 1.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_1, 20.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %addmm_2, %div), kwargs = {})
triton_poi_fused_softplus_2 = async_compile.triton('triton_poi_fused_softplus_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp6 * tmp1
tmp8 = tl.where(tmp4, tmp0, tmp7)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [concat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, add, h_combined], Original ATen: [aten.tanh, aten.add, aten.mul]
triton_poi_fused_add_mul_tanh_1.run(buf1, primals_5, buf2, 16, grid=grid(16), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loc], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf2, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_9
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [scale], Original ATen: [aten.softplus]
triton_poi_fused_softplus_2.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
return (buf3, buf5, buf0, buf1, buf2, buf4, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Combiner(nn.Module):
"""
Parameterizes `q(z_t | z_{t-1}, x_{t:T}, m{t:T}, s)`, which is the basic building block
of the guide (i.e. the variational distribution). The dependence on `x_{t:T} and m_{t:T}` is
through the hidden state of the RNN (see the PyTorch module `rnn` below)
"""
def __init__(self, z_dim, static_dim, rnn_dim):
super().__init__()
self.concat_dim = z_dim + static_dim
self.lin_z_to_hidden = nn.Linear(self.concat_dim, rnn_dim)
self.lin_hidden_to_loc = nn.Linear(rnn_dim, z_dim)
self.lin_hidden_to_scale = nn.Linear(rnn_dim, z_dim)
self.tanh = nn.Tanh()
self.softplus = nn.Softplus()
def forward(self, z_t_1, mini_batch_static, h_rnn):
"""
parameterize the (diagonal) gaussian distribution `q(z_t | z_{t-1}, x_{t:T}, m{t:T}, s)`
"""
concat = torch.cat((z_t_1, mini_batch_static), dim=1)
h_combined = 0.5 * (self.tanh(self.lin_z_to_hidden(concat)) + h_rnn)
loc = self.lin_hidden_to_loc(h_combined)
scale = self.softplus(self.lin_hidden_to_scale(h_combined))
return loc, scale
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'z_dim': 4, 'static_dim': 4, 'rnn_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tmp1 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp6 * tmp1
tmp8 = tl.where(tmp4, tmp0, tmp7)
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_tanh_1[grid(16)](buf1, primals_5, buf2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf2, reinterpret_tensor(primals_8,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_9
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_softplus_2[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf3, buf5, buf0, buf1, buf2, buf4, primals_8, primals_6
class CombinerNew(nn.Module):
"""
Parameterizes `q(z_t | z_{t-1}, x_{t:T}, m{t:T}, s)`, which is the basic building block
of the guide (i.e. the variational distribution). The dependence on `x_{t:T} and m_{t:T}` is
through the hidden state of the RNN (see the PyTorch module `rnn` below)
"""
def __init__(self, z_dim, static_dim, rnn_dim):
super().__init__()
self.concat_dim = z_dim + static_dim
self.lin_z_to_hidden = nn.Linear(self.concat_dim, rnn_dim)
self.lin_hidden_to_loc = nn.Linear(rnn_dim, z_dim)
self.lin_hidden_to_scale = nn.Linear(rnn_dim, z_dim)
self.tanh = nn.Tanh()
self.softplus = nn.Softplus()
def forward(self, input_0, input_1, input_2):
primals_3 = self.lin_z_to_hidden.weight
primals_4 = self.lin_z_to_hidden.bias
primals_1 = self.lin_hidden_to_loc.weight
primals_7 = self.lin_hidden_to_loc.bias
primals_2 = self.lin_hidden_to_scale.weight
primals_9 = self.lin_hidden_to_scale.bias
primals_5 = input_0
primals_6 = input_1
primals_8 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| autodidact-m/Projects | Combiner | false | 3,145 | [
"Apache-2.0"
] | 0 | f4c0473adba42f3a629b62eb09d3b1df91982f46 | https://github.com/autodidact-m/Projects/tree/f4c0473adba42f3a629b62eb09d3b1df91982f46 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Parameterizes `q(z_t | z_{t-1}, x_{t:T}, m{t:T}, s)`, which is the basic building block
of the guide (i.e. the variational distribution). The dependence on `x_{t:T} and m_{t:T}` is
through the hidden state of the RNN (see the PyTorch module `rnn` below)
"""
def __init__(self, z_dim, static_dim, rnn_dim):
super().__init__()
self.concat_dim = z_dim + static_dim
self.lin_z_to_hidden = nn.Linear(self.concat_dim, rnn_dim)
self.lin_hidden_to_loc = nn.Linear(rnn_dim, z_dim)
self.lin_hidden_to_scale = nn.Linear(rnn_dim, z_dim)
self.tanh = nn.Tanh()
self.softplus = nn.Softplus()
def forward(self, z_t_1, mini_batch_static, h_rnn):
"""
parameterize the (diagonal) gaussian distribution `q(z_t | z_{t-1}, x_{t:T}, m{t:T}, s)`
"""
concat = torch.cat((z_t_1, mini_batch_static), dim=1)
h_combined = 0.5 * (self.tanh(self.lin_z_to_hidden(concat)) + h_rnn)
loc = self.lin_hidden_to_loc(h_combined)
scale = self.softplus(self.lin_hidden_to_scale(h_combined))
return loc, scale
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch.autograd import Variable
class Net(torch.nn.Module):
def __init__(self, n_in, n_hidden, n_out):
super(Net, self).__init__()
self.w1 = torch.nn.Linear(n_in, n_hidden)
self.w2 = torch.nn.Linear(n_hidden, n_out)
def forward(self, x):
x = torch.tanh(self.w1(x))
x = self.w2(x)
return x
def my_train(self, xtrain, ytrain, num_epochs):
"""
Train the network
Parameters
----------
xtrain : np.ndarray
Inputs
ytrain : np.ndarray
Corresponding desired outputs
"""
xtrain = Variable(torch.FloatTensor(xtrain))
ytrain = Variable(torch.FloatTensor(ytrain))
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(self.parameters(), lr=1e-05)
for t in range(num_epochs):
optimizer.zero_grad()
y_pred = self(xtrain)
loss = criterion(y_pred, ytrain)
loss.backward()
optimizer.step()
None
def call_numpy(self, x: 'np.ndarray'):
"""
Call the network with numpy input and output
"""
x_tensor = Variable(torch.FloatTensor(x))
out = self(x_tensor)
return out.detach().numpy()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_in': 4, 'n_hidden': 4, 'n_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4
class NetNew(torch.nn.Module):
def __init__(self, n_in, n_hidden, n_out):
super(NetNew, self).__init__()
self.w1 = torch.nn.Linear(n_in, n_hidden)
self.w2 = torch.nn.Linear(n_hidden, n_out)
def my_train(self, xtrain, ytrain, num_epochs):
"""
Train the network
Parameters
----------
xtrain : np.ndarray
Inputs
ytrain : np.ndarray
Corresponding desired outputs
"""
xtrain = Variable(torch.FloatTensor(xtrain))
ytrain = Variable(torch.FloatTensor(ytrain))
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(self.parameters(), lr=1e-05)
for t in range(num_epochs):
optimizer.zero_grad()
y_pred = self(xtrain)
loss = criterion(y_pred, ytrain)
loss.backward()
optimizer.step()
None
def call_numpy(self, x: 'np.ndarray'):
"""
Call the network with numpy input and output
"""
x_tensor = Variable(torch.FloatTensor(x))
out = self(x_tensor)
return out.detach().numpy()
def forward(self, input_0):
primals_1 = self.w1.weight
primals_2 = self.w1.bias
primals_4 = self.w2.weight
primals_5 = self.w2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| auckland-cosmo/LearnAsYouGoEmulator | Net | false | 3,146 | [
"Apache-2.0"
] | 0 | d29dfb0192d8050003ab4f7e7b18571e21776ba3 | https://github.com/auckland-cosmo/LearnAsYouGoEmulator/tree/d29dfb0192d8050003ab4f7e7b18571e21776ba3 | import torch
import numpy as np
from torch.autograd import Variable
class Model(torch.nn.Module):
def __init__(self, n_in, n_hidden, n_out):
super().__init__()
self.w1 = torch.nn.Linear(n_in, n_hidden)
self.w2 = torch.nn.Linear(n_hidden, n_out)
def forward(self, x):
x = torch.tanh(self.w1(x))
x = self.w2(x)
return x
def my_train(self, xtrain, ytrain, num_epochs):
"""
Train the network
Parameters
----------
xtrain : np.ndarray
Inputs
ytrain : np.ndarray
Corresponding desired outputs
"""
xtrain = Variable(torch.FloatTensor(xtrain))
ytrain = Variable(torch.FloatTensor(ytrain))
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(self.parameters(), lr=1e-05)
for t in range(num_epochs):
optimizer.zero_grad()
y_pred = self(xtrain)
loss = criterion(y_pred, ytrain)
loss.backward()
optimizer.step()
None
def call_numpy(self, x: 'np.ndarray'):
"""
Call the network with numpy input and output
"""
x_tensor = Variable(torch.FloatTensor(x))
out = self(x_tensor)
return out.detach().numpy()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
GatedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r3/cr3hlg2dj2d3nmsli5wlcbgrfym3b6ux3uuxd7pl3rggj6domt5d.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# x => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/e2/ce2cdkzdgfs7x35ywqy3cnp5gbzraaqnnk3zmuic27ohalb55dzx.py
# Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_1], Original ATen: [aten.convolution, aten.sigmoid, aten.elu, aten.mul]
# Source node to ATen node mapping:
# conv => convolution
# conv_1 => expm1, gt, mul, mul_2, where
# gated_mask => sigmoid
# mask => convolution_1
# x_1 => mul_3
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid), kwargs = {})
triton_poi_fused_convolution_elu_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_elu_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x2), xmask)
tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0
tmp9 = tmp2 * tmp8
tmp10 = libdevice.expm1(tmp9)
tmp11 = tmp10 * tmp8
tmp12 = tl.where(tmp7, tmp9, tmp11)
tmp13 = tl.sigmoid(tmp5)
tmp14 = tmp12 * tmp13
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
tl.store(in_out_ptr1 + (x2), tmp5, xmask)
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1; del buf1 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_1], Original ATen: [aten.convolution, aten.sigmoid, aten.elu, aten.mul]
triton_poi_fused_convolution_elu_mul_sigmoid_1.run(buf2, buf4, primals_3, primals_5, buf5, 16, grid=grid(16), stream=stream0)
del primals_3
del primals_5
return (buf5, primals_2, primals_4, buf0, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super(GatedConv2d, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.pad(x)
conv = self.conv2d(x)
mask = self.mask_conv2d(x)
gated_mask = self.sigmoid(mask)
if self.activation:
conv = self.activation(conv)
x = conv * gated_mask
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math
.abs(-3 + x1) + 16 * x2), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_elu_mul_sigmoid_1(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x2, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0
tmp9 = tmp2 * tmp8
tmp10 = libdevice.expm1(tmp9)
tmp11 = tmp10 * tmp8
tmp12 = tl.where(tmp7, tmp9, tmp11)
tmp13 = tl.sigmoid(tmp5)
tmp14 = tmp12 * tmp13
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(in_out_ptr1 + x2, tmp5, xmask)
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(256)](primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1
del buf1
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_convolution_elu_mul_sigmoid_1[grid(16)](buf2, buf4,
primals_3, primals_5, buf5, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_3
del primals_5
return buf5, primals_2, primals_4, buf0, buf2, buf4
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super(GatedConv2dNew, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_2 = self.mask_conv2d.weight
primals_5 = self.mask_conv2d.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| autocomic/https-github.com-autocomic-DeepFillv2_Pytorch | GatedConv2d | false | 3,147 | [
"MIT"
] | 0 | 7f6712a9b42dfd827879271f13856f1da5d6a032 | https://github.com/autocomic/https-github.com-autocomic-DeepFillv2_Pytorch/tree/7f6712a9b42dfd827879271f13856f1da5d6a032 | import torch
import torch.nn as nn
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super().__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Model(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super().__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activati
# ... truncated (>4000 chars) for memory efficiency |
Conv1DHighwayLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/d4/cd4ygdjn67m65g44zq7u52lzpladubxfjg4l5h77qlkxilabiuwm.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jl/cjldywv5hqofdstszqdftyc663yryllrebw22kahwov4tofxmxy3.py
# Topologically Sorted Source Nodes: [H, T, mul, sub, mul_1, out], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# H => relu
# T => sigmoid
# mul => mul
# mul_1 => mul_1
# out => add
# sub => sub
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %sigmoid), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp4
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 2), (2, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 2), (8, 2, 1), 0), primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 1), (4, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 4, grid=grid(4), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 2), (8, 2, 1), 0), primals_4, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (1, 4, 1), (4, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 4, grid=grid(4), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [H, T, mul, sub, mul_1, out], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_relu_rsub_sigmoid_1.run(buf1, buf3, primals_3, buf4, 8, grid=grid(8), stream=stream0)
return (buf4, primals_1, primals_3, primals_4, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Conv1DHighwayLayer(nn.Module):
def __init__(self, inchannels, outchannels, kernelsize, activation=
'relu', stride=1, bias=-1):
super(Conv1DHighwayLayer, self).__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.kernelsize = kernelsize
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.stride = stride
self.padding = (self.kernelsize - 1) // 2
self.conv = nn.Conv1d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gate = nn.Conv1d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, x):
H = self.activation(self.conv(x))
T = self.gateact(self.gate(x))
out = H * T + x * (1 - T)
return out
def get_inputs():
return [torch.rand([4, 2])]
def get_init_inputs():
return [[], {'inchannels': 4, 'outchannels': 4, 'kernelsize': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp4
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 2), (2, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 2), (8, 2, 1), 0), primals_1, stride=(1,), padding=(1,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 1), (4, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(4)](buf1, primals_2, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 2), (8, 2, 1), 0), primals_4, stride=(1,), padding=(1,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf2, (1, 4, 1), (4, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(4)](buf3, primals_5, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
triton_poi_fused_add_mul_relu_rsub_sigmoid_1[grid(8)](buf1, buf3,
primals_3, buf4, 8, XBLOCK=8, num_warps=1, num_stages=1)
return buf4, primals_1, primals_3, primals_4, buf1, buf3
class Conv1DHighwayLayerNew(nn.Module):
def __init__(self, inchannels, outchannels, kernelsize, activation=
'relu', stride=1, bias=-1):
super(Conv1DHighwayLayerNew, self).__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.kernelsize = kernelsize
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.stride = stride
self.padding = (self.kernelsize - 1) // 2
self.conv = nn.Conv1d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gate = nn.Conv1d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_4 = self.gate.weight
primals_5 = self.gate.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| avinashsai/Highway-Networks | Conv1DHighwayLayer | false | 3,148 | [
"MIT"
] | 0 | fe30629e47b919776f981eaa2bea7d21e648a17f | https://github.com/avinashsai/Highway-Networks/tree/fe30629e47b919776f981eaa2bea7d21e648a17f | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, inchannels, outchannels, kernelsize, activation=
'relu', stride=1, bias=-1):
super().__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.kernelsize = kernelsize
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.stride = stride
self.padding = (self.kernelsize - 1) // 2
self.conv = nn.Conv1d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gate = nn.Conv1d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, x):
H = self.activation(self.conv(x))
T = self.gateact(self.gate(x))
out = H * T + x * (1 - T)
return out
def get_inputs():
return [torch.rand([4, 2])]
def get_init_inputs():
return [4, 4, 4]
|
Conv2dLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ue/cuecegnhgafe2dsjwb2idu7ooicbmsi2pwlqk5kxrayxsv6nzpux.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# x_1 => convolution
# x_2 => expm1, gt, mul, mul_2, where
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_elu_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayer, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, x):
x = self.pad(x)
x = self.conv2d(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_elu_0[grid(16)](buf1, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf1, primals_1, primals_2, buf1
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayerNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayerNew, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| autocomic/https-github.com-autocomic-DeepFillv2_Pytorch | Conv2dLayer | false | 3,149 | [
"MIT"
] | 0 | 7f6712a9b42dfd827879271f13856f1da5d6a032 | https://github.com/autocomic/https-github.com-autocomic-DeepFillv2_Pytorch/tree/7f6712a9b42dfd827879271f13856f1da5d6a032 | import torch
import torch.nn as nn
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super().__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Model(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super().__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation
# ... truncated (>4000 chars) for memory efficiency |
HighwayFC | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ii/ciitic7gw336jmjrzv6vnyt7nggf2elteacsju5rdvniywfl7erg.py
# Topologically Sorted Source Nodes: [H, T, mul, sub, mul_1, out], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# H => relu
# T => sigmoid
# mul => mul
# mul_1 => mul_1
# out => add
# sub => sub
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %sigmoid), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp4
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [H, T, mul, sub, mul_1, out], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_relu_rsub_sigmoid_0.run(buf0, buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class HighwayFC(nn.Module):
def __init__(self, indim, outdim, activation='relu', bias=-1):
super(HighwayFC, self).__init__()
self.indim = indim
self.outdim = outdim
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.fc = nn.Linear(self.indim, self.outdim)
self.gate = nn.Linear(self.indim, self.outdim)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, x):
H = self.activation(self.fc(x))
T = self.gateact(self.gate(x))
out = H * T + x * (1 - T)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'indim': 4, 'outdim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp4
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_relu_rsub_sigmoid_0[grid(256)](buf0, buf1,
primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf2, primals_3, buf0, buf1
class HighwayFCNew(nn.Module):
def __init__(self, indim, outdim, activation='relu', bias=-1):
super(HighwayFCNew, self).__init__()
self.indim = indim
self.outdim = outdim
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.fc = nn.Linear(self.indim, self.outdim)
self.gate = nn.Linear(self.indim, self.outdim)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_4 = self.gate.weight
primals_5 = self.gate.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| avinashsai/Highway-Networks | HighwayFC | false | 3,150 | [
"MIT"
] | 0 | fe30629e47b919776f981eaa2bea7d21e648a17f | https://github.com/avinashsai/Highway-Networks/tree/fe30629e47b919776f981eaa2bea7d21e648a17f | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, indim, outdim, activation='relu', bias=-1):
super().__init__()
self.indim = indim
self.outdim = outdim
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.fc = nn.Linear(self.indim, self.outdim)
self.gate = nn.Linear(self.indim, self.outdim)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, x):
H = self.activation(self.fc(x))
T = self.gateact(self.gate(x))
out = H * T + x * (1 - T)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
VertexDirectEmbedder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xq/cxqinuparlha25j4geyv6tolvpah7qdqdkpecjesyn3kblysszql.py
# Topologically Sorted Source Nodes: [norm, clamp, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_min
# norm => pow_1, pow_2, sum_1
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2.0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, clamp, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
def normalize_embeddings(embeddings: 'torch.Tensor', epsilon: 'float'=1e-06
) ->torch.Tensor:
"""
Normalize N D-dimensional embedding vectors arranged in a tensor [N, D]
Args:
embeddings (tensor [N, D]): N D-dimensional embedding vectors
epsilon (float): minimum value for a vector norm
Return:
Normalized embeddings (tensor [N, D]), such that L2 vector norms are all equal to 1.
"""
return embeddings / torch.clamp(embeddings.norm(p=None, dim=1, keepdim=
True), min=epsilon)
class VertexDirectEmbedder(nn.Module):
"""
Class responsible for embedding vertices. Vertex embeddings take
the form of a tensor of size [N, D], where
N = number of vertices
D = number of dimensions in the embedding space
"""
def __init__(self, num_vertices: 'int', embed_dim: 'int'):
"""
Initialize embedder, set random embeddings
Args:
num_vertices (int): number of vertices to embed
embed_dim (int): number of dimensions in the embedding space
"""
super(VertexDirectEmbedder, self).__init__()
self.embeddings = nn.Parameter(torch.Tensor(num_vertices, embed_dim))
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
"""
Reset embeddings to random values
"""
torch.nn.init.uniform_(self.embeddings, a=-0.5, b=0.5)
def forward(self) ->torch.Tensor:
"""
Produce vertex embeddings, a tensor of shape [N, D] where:
N = number of vertices
D = number of dimensions in the embedding space
Return:
Full vertex embeddings, a tensor of shape [N, D]
"""
return normalize_embeddings(self.embeddings)
@torch.no_grad()
def load(self, fpath: 'str'):
"""
Load data from a file
Args:
fpath (str): file path to load data from
"""
with PathManager.open(fpath, 'rb') as hFile:
data = pickle.load(hFile)
for name in ['embeddings']:
if name in data:
getattr(self, name).copy_(torch.tensor(data[name]).float())
def get_inputs():
return []
def get_init_inputs():
return [[], {'num_vertices': 4, 'embed_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(16)](primals_1,
buf0, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf0, primals_1
def normalize_embeddings(embeddings: 'torch.Tensor', epsilon: 'float'=1e-06
) ->torch.Tensor:
"""
Normalize N D-dimensional embedding vectors arranged in a tensor [N, D]
Args:
embeddings (tensor [N, D]): N D-dimensional embedding vectors
epsilon (float): minimum value for a vector norm
Return:
Normalized embeddings (tensor [N, D]), such that L2 vector norms are all equal to 1.
"""
return embeddings / torch.clamp(embeddings.norm(p=None, dim=1, keepdim=
True), min=epsilon)
class VertexDirectEmbedderNew(nn.Module):
"""
Class responsible for embedding vertices. Vertex embeddings take
the form of a tensor of size [N, D], where
N = number of vertices
D = number of dimensions in the embedding space
"""
def __init__(self, num_vertices: 'int', embed_dim: 'int'):
"""
Initialize embedder, set random embeddings
Args:
num_vertices (int): number of vertices to embed
embed_dim (int): number of dimensions in the embedding space
"""
super(VertexDirectEmbedderNew, self).__init__()
self.embeddings = nn.Parameter(torch.Tensor(num_vertices, embed_dim))
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
"""
Reset embeddings to random values
"""
torch.nn.init.uniform_(self.embeddings, a=-0.5, b=0.5)
@torch.no_grad()
def load(self, fpath: 'str'):
"""
Load data from a file
Args:
fpath (str): file path to load data from
"""
with PathManager.open(fpath, 'rb') as hFile:
data = pickle.load(hFile)
for name in ['embeddings']:
if name in data:
getattr(self, name).copy_(torch.tensor(data[name]).float())
def forward(self):
primals_1 = self.embeddings
output = call([primals_1])
return output[0]
| av777x/detectron2 | VertexDirectEmbedder | false | 3,151 | [
"Apache-2.0"
] | 0 | c1794881d6d2fac6af0b3206937d32628677469c | https://github.com/av777x/detectron2/tree/c1794881d6d2fac6af0b3206937d32628677469c | import torch
import torch.utils.data
from torch import nn
def normalize_embeddings(embeddings: 'torch.Tensor', epsilon: 'float'=1e-06
) ->torch.Tensor:
"""
Normalize N D-dimensional embedding vectors arranged in a tensor [N, D]
Args:
embeddings (tensor [N, D]): N D-dimensional embedding vectors
epsilon (float): minimum value for a vector norm
Return:
Normalized embeddings (tensor [N, D]), such that L2 vector norms are all equal to 1.
"""
return embeddings / torch.clamp(embeddings.norm(p=None, dim=1, keepdim=
True), min=epsilon)
class Model(nn.Module):
"""
Class responsible for embedding vertices. Vertex embeddings take
the form of a tensor of size [N, D], where
N = number of vertices
D = number of dimensions in the embedding space
"""
def __init__(self, num_vertices: 'int', embed_dim: 'int'):
"""
Initialize embedder, set random embeddings
Args:
num_vertices (int): number of vertices to embed
embed_dim (int): number of dimensions in the embedding space
"""
super().__init__()
self.embeddings = nn.Parameter(torch.Tensor(num_vertices, embed_dim))
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
"""
Reset embeddings to random values
"""
torch.nn.init.uniform_(self.embeddings, a=-0.5, b=0.5)
def forward(self) ->torch.Tensor:
"""
Produce vertex embeddings, a tensor of shape [N, D] where:
N = number of vertices
D = number of dimensions in the embedding space
Return:
Full vertex embeddings, a tensor of shape [N, D]
"""
return normalize_embeddings(self.embeddings)
@torch.no_grad()
def load(self, fpath: 'str'):
"""
Load data from a file
Args:
fpath (str): file path to load data from
"""
with PathManager.open(fpath, 'rb') as hFile:
data = pickle.load(hFile)
for name in ['embeddings']:
if name in data:
getattr(self, name).copy_(torch.tensor(data[name]).float())
def get_inputs():
return []
def get_init_inputs():
return [4, 4]
|
Conv2DHighwayLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/l5/cl56dehze52dnaq4tqqqpfajqvmdbxyakq6kyzct6d6hp7k2mx2y.py
# Topologically Sorted Source Nodes: [H, T, mul, sub, mul_1, out], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# H => relu
# T => sigmoid
# mul => mul
# mul_1 => mul_1
# out => add
# sub => sub
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %sigmoid), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp4
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [H, T, mul, sub, mul_1, out], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_relu_rsub_sigmoid_1.run(buf1, buf3, primals_3, buf4, 64, grid=grid(64), stream=stream0)
return (buf4, primals_1, primals_3, primals_4, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Conv2DHighwayLayer(nn.Module):
def __init__(self, inchannels, outchannels, kernelsize, activation=
'relu', stride=1, bias=-1):
super(Conv2DHighwayLayer, self).__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.kernelsize = kernelsize
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.stride = stride
self.padding = (self.kernelsize - 1) // 2
self.conv = nn.Conv2d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gate = nn.Conv2d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, x):
H = self.activation(self.conv(x))
T = self.gateact(self.gate(x))
out = H * T + x * (1 - T)
return out
def get_inputs():
return [torch.rand([4, 4, 2, 2])]
def get_init_inputs():
return [[], {'inchannels': 4, 'outchannels': 4, 'kernelsize': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp4
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(16)](buf3, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_add_mul_relu_rsub_sigmoid_1[grid(64)](buf1, buf3,
primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf4, primals_1, primals_3, primals_4, buf1, buf3
class Conv2DHighwayLayerNew(nn.Module):
def __init__(self, inchannels, outchannels, kernelsize, activation=
'relu', stride=1, bias=-1):
super(Conv2DHighwayLayerNew, self).__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.kernelsize = kernelsize
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.stride = stride
self.padding = (self.kernelsize - 1) // 2
self.conv = nn.Conv2d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gate = nn.Conv2d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_4 = self.gate.weight
primals_5 = self.gate.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| avinashsai/Highway-Networks | Conv2DHighwayLayer | false | 3,152 | [
"MIT"
] | 0 | fe30629e47b919776f981eaa2bea7d21e648a17f | https://github.com/avinashsai/Highway-Networks/tree/fe30629e47b919776f981eaa2bea7d21e648a17f | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, inchannels, outchannels, kernelsize, activation=
'relu', stride=1, bias=-1):
super().__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.kernelsize = kernelsize
if activation == 'selu':
self.activation = nn.SELU()
elif activation == 'elu':
self.activation = nn.ELU()
else:
self.activation = nn.ReLU()
self.stride = stride
self.padding = (self.kernelsize - 1) // 2
self.conv = nn.Conv2d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gate = nn.Conv2d(self.inchannels, self.outchannels, self.
kernelsize, stride=self.stride, padding=self.padding)
self.gateact = nn.Sigmoid()
self.gate.bias.data.fill_(bias)
def forward(self, x):
H = self.activation(self.conv(x))
T = self.gateact(self.gate(x))
out = H * T + x * (1 - T)
return out
def get_inputs():
return [torch.rand([4, 4, 2, 2])]
def get_init_inputs():
return [4, 4, 4]
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oq/coqnz4zqnlcw7hdyfkxkk5a5gcgigeemmkgs4tro3dkl73j5pqlt.py
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mul => mul
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 0.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = tmp23 / tmp9
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-06
tmp27 = tmp25 + tmp26
tmp28 = tmp12 / tmp27
tmp30 = tmp28 + tmp29
tl.store(out_ptr0 + (x2), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.init
import torch.optim.lr_scheduler
class LayerNorm(torch.nn.Module):
"""
An implementation of `Layer Normalization
<https://www.semanticscholar.org/paper/Layer-Normalization-Ba-Kiros/97fb4e3d45bb098e27e0071448b6152217bd35a5>`_ .
Layer Normalization stabilises the training of deep neural networks by
normalising the outputs of neurons from a particular layer. It computes:
output = (gamma * (tensor - mean) / (std + eps)) + beta
Parameters
----------
dimension : ``int``, required.
The dimension of the layer output to normalize.
eps : ``float``, optional, (default = 1e-6)
An epsilon to prevent dividing by zero in the case
the layer has zero variance.
Returns
-------
The normalized layer output.
"""
def __init__(self, dimension: 'int', eps: 'float'=1e-06) ->None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(dimension))
self.beta = torch.nn.Parameter(torch.zeros(dimension))
self.eps = eps
def forward(self, tensor: 'torch.Tensor'):
mean = tensor.mean(-1, keepdim=True)
std = tensor.std(-1, unbiased=False, keepdim=True)
return self.gamma * (tensor - mean) / (std + self.eps) + self.beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.init
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = tmp23 / tmp9
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-06
tmp27 = tmp25 + tmp26
tmp28 = tmp12 / tmp27
tmp30 = tmp28 + tmp29
tl.store(out_ptr0 + x2, tmp30, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2,
primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class LayerNormNew(torch.nn.Module):
"""
An implementation of `Layer Normalization
<https://www.semanticscholar.org/paper/Layer-Normalization-Ba-Kiros/97fb4e3d45bb098e27e0071448b6152217bd35a5>`_ .
Layer Normalization stabilises the training of deep neural networks by
normalising the outputs of neurons from a particular layer. It computes:
output = (gamma * (tensor - mean) / (std + eps)) + beta
Parameters
----------
dimension : ``int``, required.
The dimension of the layer output to normalize.
eps : ``float``, optional, (default = 1e-6)
An epsilon to prevent dividing by zero in the case
the layer has zero variance.
Returns
-------
The normalized layer output.
"""
def __init__(self, dimension: 'int', eps: 'float'=1e-06) ->None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(dimension))
self.beta = torch.nn.Parameter(torch.zeros(dimension))
self.eps = eps
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| azraelzhor/allen-nlp-rc | LayerNorm | false | 3,153 | [
"Apache-2.0"
] | 0 | b114c00a8f364b18e3c427c1a447be9c65ede551 | https://github.com/azraelzhor/allen-nlp-rc/tree/b114c00a8f364b18e3c427c1a447be9c65ede551 | import torch
import torch.nn.init
import torch.optim.lr_scheduler
class Model(torch.nn.Module):
"""
An implementation of `Layer Normalization
<https://www.semanticscholar.org/paper/Layer-Normalization-Ba-Kiros/97fb4e3d45bb098e27e0071448b6152217bd35a5>`_ .
Layer Normalization stabilises the training of deep neural networks by
normalising the outputs of neurons from a particular layer. It computes:
output = (gamma * (tensor - mean) / (std + eps)) + beta
Parameters
----------
dimension : ``int``, required.
The dimension of the layer output to normalize.
eps : ``float``, optional, (default = 1e-6)
An epsilon to prevent dividing by zero in the case
the layer has zero variance.
Returns
-------
The normalized layer output.
"""
def __init__(self, dimension: 'int', eps: 'float'=1e-06) ->None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(dimension))
self.beta = torch.nn.Parameter(torch.zeros(dimension))
self.eps = eps
def forward(self, tensor: 'torch.Tensor'):
mean = tensor.mean(-1, keepdim=True)
std = tensor.std(-1, unbiased=False, keepdim=True)
return self.gamma * (tensor - mean) / (std + self.eps) + self.beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleResidualBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/w2/cw26etiuqgfsnlcvfovjrjfkwerbr3hb33ggi6l6pg47hpyjzaos.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ts/ctsxuni72ldi7frdvrd7og4lxh6ybeqguq5o4u4x6kenljvmb3c2.py
# Topologically Sorted Source Nodes: [out_2, relu_1, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# out_2 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_1, %primals_3), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x3), None)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp4 + tmp5
tmp7 = 0.0
tmp8 = tmp4 <= tmp7
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 49152, grid=grid(49152), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
buf4 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_2, relu_1, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf2, primals_5, primals_3, buf3, buf4, 49152, grid=grid(49152), stream=stream0)
del buf2
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SimpleResidualBlock(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,
stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,
stride=1, padding=1)
self.relu2 = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
return self.relu2(out) + x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x3, None)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp4 + tmp5
tmp7 = 0.0
tmp8 = tmp4 <= tmp7
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp8, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(49152)](buf1, primals_2,
49152, XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
buf4 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(49152)
](buf2, primals_5, primals_3, buf3, buf4, 49152, XBLOCK=512,
num_warps=4, num_stages=1)
del buf2
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1, buf4
class SimpleResidualBlockNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,
stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,
stride=1, padding=1)
self.relu2 = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ayanch07/ResNet-cifar-10-pytorch | SimpleResidualBlock | false | 3,154 | [
"MIT"
] | 0 | bafc945a022a2e3ada689a831c7e57b5bdb0e8bd | https://github.com/ayanch07/ResNet-cifar-10-pytorch/tree/bafc945a022a2e3ada689a831c7e57b5bdb0e8bd | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,
stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,
stride=1, padding=1)
self.relu2 = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
return self.relu2(out) + x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
TransposeGatedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ya/cya2grnbhraytq2wzrkx5sd2ottwnbrnd5ohd2xstcxyryneuc25.py
# Topologically Sorted Source Nodes: [mv, norm, add, truediv], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add_4
# mv => mul_4, sum_1
# norm => pow_1, pow_2, sum_2
# truediv => div
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_2), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-12), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_4), kwargs = {})
triton_per_fused_add_div_linalg_vector_norm_mv_1 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mv_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mv_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.load(in_ptr0 + (64 + r0), None)
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp9 = tl.load(in_ptr0 + (128 + r0), None)
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr0 + (192 + r0), None)
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp18 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-12
tmp25 = tmp23 + tmp24
tmp26 = tmp18 / tmp25
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp25, None)
tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp26, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qi/cqiozgecuvqtnurxrggbllqpuci3n65ycew5qi5gdqg44ypxzegy.py
# Topologically Sorted Source Nodes: [truediv, mv_1], Original ATen: [aten.div, aten.mv]
# Source node to ATen node mapping:
# mv_1 => mul_5, sum_3
# truediv => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_4), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {})
# %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [1]), kwargs = {})
triton_per_fused_div_mv_2 = async_compile.triton('triton_per_fused_div_mv_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mv_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mv_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp4 = tmp1 / tmp3
tmp5 = tmp0 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qa/cqaed4ios3xqwlv4d3cciikkdz7d73vhwkegurd5cxca3y7htmvg.py
# Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
# Source node to ATen node mapping:
# add_1 => add_5
# norm_1 => pow_3, pow_4, sum_4
# truediv_1 => div_1
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 1e-12), kwargs = {})
# %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_5), kwargs = {})
triton_per_fused_add_div_linalg_vector_norm_3 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/c2/cc2arficwjs4sforhl25gdfmb3uzfg7hkw46gq3mxgv57jy52z32.py
# Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.dot]
# Source node to ATen node mapping:
# sigma => mul_7, sum_6
# Graph fragment:
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sum_3), kwargs = {})
# %sum_6 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_7,), kwargs = {})
triton_per_fused_dot_4 = async_compile.triton('triton_per_fused_dot_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_dot_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_dot_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kw/ckwzptlssdpmtxi6pt23ik63xcuqar2giaakuqtgizxlg5weagc7.py
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv_2 => div_2
# Graph fragment:
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_4, %expand), kwargs = {})
triton_poi_fused_div_5 = async_compile.triton('triton_poi_fused_div_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2w/c2wlnlirhh2nibaimsmrfiriqyr7m3r6ij6r2vrxypktuy5hni2x.py
# Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_2], Original ATen: [aten.convolution, aten.sigmoid, aten.leaky_relu, aten.mul]
# Source node to ATen node mapping:
# conv => convolution
# conv_1 => gt, mul_12, where
# gated_mask => sigmoid
# mask => convolution_1
# x_2 => mul_13
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_2, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_5, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_12), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid), kwargs = {})
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 0.2
tmp9 = tmp2 * tmp8
tmp10 = tl.where(tmp7, tmp2, tmp9)
tmp11 = tl.sigmoid(tmp5)
tmp12 = tmp10 * tmp11
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(in_out_ptr1 + (x3), tmp5, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
buf27 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mv, norm, add, truediv], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div]
triton_per_fused_add_div_linalg_vector_norm_mv_1.run(buf3, primals_4, primals_2, buf1, buf27, 1, 64, grid=grid(1), stream=stream0)
buf4 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [truediv, mv_1], Original ATen: [aten.div, aten.mv]
triton_per_fused_div_mv_2.run(primals_4, buf1, buf3, buf4, 4, 64, grid=grid(4), stream=stream0)
buf6 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
triton_per_fused_add_div_linalg_vector_norm_3.run(buf4, buf6, 1, 4, grid=grid(1), stream=stream0)
buf7 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.dot]
triton_per_fused_dot_4.run(buf6, buf4, buf7, 1, 4, grid=grid(1), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
triton_poi_fused_div_5.run(primals_4, buf7, buf8, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf0, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 5, 5), (100, 25, 5, 1))
buf11 = empty_strided_cuda((64, ), (1, ), torch.float32)
buf12 = empty_strided_cuda((), (), torch.float32)
buf13 = buf12; del buf12 # reuse
buf36 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mv_3, norm_2, add_2, truediv_3], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div]
triton_per_fused_add_div_linalg_vector_norm_mv_1.run(buf13, primals_8, primals_6, buf11, buf36, 1, 64, grid=grid(1), stream=stream0)
buf14 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [truediv_3, mv_4], Original ATen: [aten.div, aten.mv]
triton_per_fused_div_mv_2.run(primals_8, buf11, buf13, buf14, 4, 64, grid=grid(4), stream=stream0)
buf16 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm_3, add_3, truediv_4], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
triton_per_fused_add_div_linalg_vector_norm_3.run(buf14, buf16, 1, 4, grid=grid(1), stream=stream0)
buf17 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [sigma_1], Original ATen: [aten.dot]
triton_per_fused_dot_4.run(buf16, buf14, buf17, 1, 4, grid=grid(1), stream=stream0)
del buf14
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div]
triton_poi_fused_div_5.run(primals_8, buf17, buf18, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf0, buf18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 5, 5), (100, 25, 5, 1))
buf10 = buf9; del buf9 # reuse
buf20 = buf19; del buf19 # reuse
buf21 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_2], Original ATen: [aten.convolution, aten.sigmoid, aten.leaky_relu, aten.mul]
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6.run(buf10, buf20, primals_5, primals_9, buf21, 400, grid=grid(400), stream=stream0)
del primals_5
del primals_9
# Topologically Sorted Source Nodes: [], Original ATen: []
buf22 = torch.ops.aten.set_.source_Tensor(primals_2, buf6)
assert_size_stride(buf22, (4, ), (1, ))
del buf1
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
buf28 = torch.ops.aten.set_.source_Tensor(primals_3, buf27)
assert_size_stride(buf28, (64, ), (1, ))
del primals_3
# Topologically Sorted Source Nodes: [], Original ATen: []
buf31 = torch.ops.aten.set_.source_Tensor(primals_6, buf16)
assert_size_stride(buf31, (4, ), (1, ))
del buf11
# Topologically Sorted Source Nodes: [truediv_3], Original ATen: [aten.div]
buf37 = torch.ops.aten.set_.source_Tensor(primals_7, buf36)
assert_size_stride(buf37, (64, ), (1, ))
del primals_7
return (buf21, buf8, buf18, primals_2, primals_4, primals_6, primals_8, buf0, buf3, buf6, buf7, buf8, buf10, buf13, buf16, buf17, buf18, buf20, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super(GatedConv2d, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.pad(x)
conv = self.conv2d(x)
mask = self.mask_conv2d(x)
gated_mask = self.sigmoid(mask)
if self.activation:
conv = self.activation(conv)
x = conv * gated_mask
return x
class TransposeGatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='lrelu', norm=
'none', sn=True, scale_factor=2):
super(TransposeGatedConv2d, self).__init__()
self.scale_factor = scale_factor
self.gated_conv2d = GatedConv2d(in_channels, out_channels,
kernel_size, stride, padding, dilation, pad_type, activation,
norm, sn)
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
x = self.gated_conv2d(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.load(in_ptr0 + (64 + r0), None)
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp9 = tl.load(in_ptr0 + (128 + r0), None)
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr0 + (192 + r0), None)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp18 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-12
tmp25 = tmp23 + tmp24
tmp26 = tmp18 / tmp25
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp25, None)
tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp26, None)
@triton.jit
def triton_per_fused_div_mv_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp4 = tmp1 / tmp3
tmp5 = tmp0 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_3(in_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp8, None)
@triton.jit
def triton_per_fused_dot_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_div_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 0.2
tmp9 = tmp2 * tmp8
tmp10 = tl.where(tmp7, tmp2, tmp9)
tmp11 = tl.sigmoid(tmp5)
tmp12 = tmp10 * tmp11
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(in_out_ptr1 + x3, tmp5, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64,), (1,), torch.float32)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
buf27 = empty_strided_cuda((64,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_mv_1[grid(1)](buf3,
primals_4, primals_2, buf1, buf27, 1, 64, XBLOCK=1, num_warps=2,
num_stages=1)
buf4 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_div_mv_2[grid(4)](primals_4, buf1, buf3, buf4, 4,
64, XBLOCK=1, num_warps=2, num_stages=1)
buf6 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_3[grid(1)](buf4, buf6,
1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf7 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_dot_4[grid(1)](buf6, buf4, buf7, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_5[grid(256)](primals_4, buf7, buf8, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf9 = extern_kernels.convolution(buf0, buf8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 5, 5), (100, 25, 5, 1))
buf11 = empty_strided_cuda((64,), (1,), torch.float32)
buf12 = empty_strided_cuda((), (), torch.float32)
buf13 = buf12
del buf12
buf36 = empty_strided_cuda((64,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_mv_1[grid(1)](buf13,
primals_8, primals_6, buf11, buf36, 1, 64, XBLOCK=1, num_warps=
2, num_stages=1)
buf14 = buf4
del buf4
triton_per_fused_div_mv_2[grid(4)](primals_8, buf11, buf13, buf14,
4, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf16 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_3[grid(1)](buf14, buf16,
1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf17 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_dot_4[grid(1)](buf16, buf14, buf17, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf14
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_5[grid(256)](primals_8, buf17, buf18, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf19 = extern_kernels.convolution(buf0, buf18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 5, 5), (100, 25, 5, 1))
buf10 = buf9
del buf9
buf20 = buf19
del buf19
buf21 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32
)
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6[grid(400)](buf10,
buf20, primals_5, primals_9, buf21, 400, XBLOCK=128, num_warps=
4, num_stages=1)
del primals_5
del primals_9
buf22 = torch.ops.aten.set_.source_Tensor(primals_2, buf6)
assert_size_stride(buf22, (4,), (1,))
del buf1
buf28 = torch.ops.aten.set_.source_Tensor(primals_3, buf27)
assert_size_stride(buf28, (64,), (1,))
del primals_3
buf31 = torch.ops.aten.set_.source_Tensor(primals_6, buf16)
assert_size_stride(buf31, (4,), (1,))
del buf11
buf37 = torch.ops.aten.set_.source_Tensor(primals_7, buf36)
assert_size_stride(buf37, (64,), (1,))
del primals_7
return (buf21, buf8, buf18, primals_2, primals_4, primals_6, primals_8,
buf0, buf3, buf6, buf7, buf8, buf10, buf13, buf16, buf17, buf18, buf20)
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super(GatedConv2d, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.pad(x)
conv = self.conv2d(x)
mask = self.mask_conv2d(x)
gated_mask = self.sigmoid(mask)
if self.activation:
conv = self.activation(conv)
x = conv * gated_mask
return x
class TransposeGatedConv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='lrelu', norm=
'none', sn=True, scale_factor=2):
super(TransposeGatedConv2dNew, self).__init__()
self.scale_factor = scale_factor
self.gated_conv2d = GatedConv2d(in_channels, out_channels,
kernel_size, stride, padding, dilation, pad_type, activation,
norm, sn)
def forward(self, input_0):
primals_2 = self.gated_conv2d.conv2d.module.bias
primals_5 = self.gated_conv2d.conv2d.module.weight_u
primals_3 = self.gated_conv2d.conv2d.module.weight_v
primals_1 = self.gated_conv2d.conv2d.module.weight_bar
primals_6 = self.gated_conv2d.mask_conv2d.module.bias
primals_9 = self.gated_conv2d.mask_conv2d.module.weight_u
primals_7 = self.gated_conv2d.mask_conv2d.module.weight_v
primals_4 = self.gated_conv2d.mask_conv2d.module.weight_bar
primals_8 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| autocomic/https-github.com-autocomic-DeepFillv2_Pytorch | TransposeGatedConv2d | false | 3,155 | [
"MIT"
] | 0 | 7f6712a9b42dfd827879271f13856f1da5d6a032 | https://github.com/autocomic/https-github.com-autocomic-DeepFillv2_Pytorch/tree/7f6712a9b42dfd827879271f13856f1da5d6a032 | import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super().__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super().__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activ
# ... truncated (>4000 chars) for memory efficiency |
SimpleNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/el/cel3ti6ei3rprs2l5m6qs62p6md67qhlcbr3oxhxsqfmherljfbo.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mt/cmttmov7q7l6eww5wgel4xbdmlbbf53sgwydh2ovfk4ks65mt3ki.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/w4/cw4mbfaglppoilurhnlij4aivvpd6du5dgvm56bnk7ylgctpb4hw.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_3 => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 - tmp3
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp2 - tmp3
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tmp5 / tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 2048), (2048, 1))
assert_size_stride(primals_2, (256, 2048), (2048, 1))
assert_size_stride(primals_3, (256, ), (1, ))
assert_size_stride(primals_4, (64, 256), (256, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (2, 64), (64, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (2048, 256), (1, 2048), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 1024, grid=grid(1024), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (256, 64), (1, 256), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (64, 2), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 8, grid=grid(8), stream=stream0)
del buf4
return (buf5, primals_1, buf1, buf3, buf5, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.functional import F
import torch.nn.functional as F
class SimpleNet(nn.Module):
"""
Simple Neural Net model
"""
def __init__(self):
"""
Creates layers as class attributes.
"""
super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(2048, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 2)
def forward(self, x):
"""
Forward pass of the network.
:param x:
:return:
"""
x = x.view(-1, 2048)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
def get_inputs():
return [torch.rand([4, 2048])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 - tmp3
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp2 - tmp3
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tmp5 / tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 2048), (2048, 1))
assert_size_stride(primals_2, (256, 2048), (2048, 1))
assert_size_stride(primals_3, (256,), (1,))
assert_size_stride(primals_4, (64, 256), (256, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (2, 64), (64, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (2048,
256), (1, 2048), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(1024)](buf1, primals_3, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (256, 64), (1,
256), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(256)](buf3, primals_5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(64, 2), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
triton_poi_fused__softmax_2[grid(8)](buf4, buf5, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del buf4
return buf5, primals_1, buf1, buf3, buf5, primals_6, primals_4
class SimpleNetNew(nn.Module):
"""
Simple Neural Net model
"""
def __init__(self):
"""
Creates layers as class attributes.
"""
super(SimpleNetNew, self).__init__()
self.fc1 = nn.Linear(2048, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 2)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| avizyt/PytorchMLDLStudy | SimpleNet | false | 3,156 | [
"MIT"
] | 0 | ccb552809e7ab4438576e6d3b7cd7ca3b73235ed | https://github.com/avizyt/PytorchMLDLStudy/tree/ccb552809e7ab4438576e6d3b7cd7ca3b73235ed | import torch
import torch.nn as nn
from torch.functional import F
import torch.nn.functional as F
class Model(nn.Module):
"""
Simple Neural Net model
"""
def __init__(self):
"""
Creates layers as class attributes.
"""
super().__init__()
self.fc1 = nn.Linear(2048, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 2)
def forward(self, x):
"""
Forward pass of the network.
:param x:
:return:
"""
x = x.view(-1, 2048)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
def get_inputs():
return [torch.rand([4, 2048])]
def get_init_inputs():
return []
|
FFN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128), (128, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (4, 128), (128, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf8, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 128), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf4 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf5, primals_7, buf7, 8192, grid=grid(8192), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 128), (128, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FFN(nn.Module):
def __init__(self, input_dim, num_class):
super().__init__()
self.layer1 = nn.Linear(input_dim, 256)
self.layer2 = nn.Linear(256, 128)
self.layer3 = nn.Linear(128, 128)
self.out = nn.Linear(128, num_class)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.dropout(torch.relu(self.layer1(x)))
x = self.dropout(torch.relu(self.layer2(x)))
x = self.dropout(torch.relu(self.layer3(x)))
x = self.out(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'num_class': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128), (128, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (4, 128), (128, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf9 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf9, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf8, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_6, (128, 128), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf4
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf5,
primals_7, buf7, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_8, (128, 4), (1, 128),
0), alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 128), (128, 1), 0
), reinterpret_tensor(buf5, (64, 128), (128, 1), 0
), primals_8, buf7, primals_6, buf8, primals_4, buf9
class FFNNew(nn.Module):
def __init__(self, input_dim, num_class):
super().__init__()
self.layer1 = nn.Linear(input_dim, 256)
self.layer2 = nn.Linear(256, 128)
self.layer3 = nn.Linear(128, 128)
self.out = nn.Linear(128, num_class)
self.dropout = nn.Dropout(0.5)
def forward(self, input_0):
primals_1 = self.layer1.weight
primals_2 = self.layer1.bias
primals_4 = self.layer2.weight
primals_5 = self.layer2.bias
primals_6 = self.layer3.weight
primals_7 = self.layer3.bias
primals_8 = self.out.weight
primals_9 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| baburamShapure/federatedGraphConv | FFN | false | 3,157 | [
"MIT"
] | 0 | 015e502fcf1b911ab23572b00c547591a4bdf378 | https://github.com/baburamShapure/federatedGraphConv/tree/015e502fcf1b911ab23572b00c547591a4bdf378 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim, num_class):
super().__init__()
self.layer1 = nn.Linear(input_dim, 256)
self.layer2 = nn.Linear(256, 128)
self.layer3 = nn.Linear(128, 128)
self.out = nn.Linear(128, num_class)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.dropout(torch.relu(self.layer1(x)))
x = self.dropout(torch.relu(self.layer2(x)))
x = self.dropout(torch.relu(self.layer3(x)))
x = self.out(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
TreeStandardize | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/7q/c7qioj3wzfoahlbhmblkjcjeokn56kdfsf2vbkfzv2a6umgdtkb5.py
# Topologically Sorted Source Nodes: [mean, sub, std, add, standardized], Original ATen: [aten.mean, aten.sub, aten.std, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mean => mean
# standardized => div
# std => var
# sub => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%select, [1, 2]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %unsqueeze_1), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_1, [1, 2]), kwargs = {correction: 1.0})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_3, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
triton_per_fused_add_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 15.0
tmp23 = tmp18 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + (16*x0)), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, std, add, standardized], Original ATen: [aten.mean, aten.sub, aten.std, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_std_sub_0.run(arg0_1, buf4, 4, 16, grid=grid(4), stream=stream0)
return (buf4, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 4, 1), 64), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
class TreeStandardize(nn.Module):
def forward(self, trees):
mu = torch.mean(trees[0], dim=(1, 2)).unsqueeze(1).unsqueeze(1)
s = torch.std(trees[0], dim=(1, 2)).unsqueeze(1).unsqueeze(1)
standardized = (trees[0] - mu) / (s + 1e-05)
return standardized, trees[1]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 15.0
tmp23 = tmp18 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + 16 * x0), tmp27, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_std_sub_0[grid(4)](arg0_1, buf4, 4,
16, XBLOCK=1, num_warps=2, num_stages=1)
return buf4, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 4, 1), 64)
class TreeStandardizeNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
| balsa-project/balsa | TreeStandardize | false | 3,158 | [
"Apache-2.0"
] | 0 | 36f3fb35d33589928d761b89de52367d18d08fd8 | https://github.com/balsa-project/balsa/tree/36f3fb35d33589928d761b89de52367d18d08fd8 | import torch
from torch import nn
import torch.utils.data
class Model(nn.Module):
def forward(self, trees):
mu = torch.mean(trees[0], dim=(1, 2)).unsqueeze(1).unsqueeze(1)
s = torch.std(trees[0], dim=(1, 2)).unsqueeze(1).unsqueeze(1)
standardized = (trees[0] - mu) / (s + 1e-05)
return standardized, trees[1]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
TreeMaxPool | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hb/chbyl6bwww7evwnl2j434ahvburubhja6e3jsmz2tf2im6ylbcz2.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {})
triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_max_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
class TreeMaxPool(nn.Module):
def forward(self, trees):
return trees[0].max(dim=2).values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class TreeMaxPoolNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| balsa-project/balsa | TreeMaxPool | false | 3,159 | [
"Apache-2.0"
] | 0 | 36f3fb35d33589928d761b89de52367d18d08fd8 | https://github.com/balsa-project/balsa/tree/36f3fb35d33589928d761b89de52367d18d08fd8 | import torch
from torch import nn
import torch.utils.data
class Model(nn.Module):
def forward(self, trees):
return trees[0].max(dim=2).values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MetricLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2s/c2sb2cj2h3u2ojnyqopuf7ruwqsfgkqt2mp4to4lvd6j7ap6t56s.py
# Topologically Sorted Source Nodes: [weight, sum_1, weight_1, sum_2, truediv, weight_2, sub_1, pow_1, tensor_result, sum_3], Original ATen: [aten.rsub, aten.sum, aten.div, aten.add, aten.sub, aten.pow, aten.mul]
# Source node to ATen node mapping:
# pow_1 => pow_1
# sub_1 => sub_1
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# tensor_result => mul
# truediv => div_1
# weight => sub
# weight_1 => div
# weight_2 => add
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sum_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sum_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
triton_per_fused_add_div_mul_pow_rsub_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_pow_rsub_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_pow_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_pow_rsub_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp12 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.broadcast_to(tmp0, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tmp2 / tmp5
tmp10 = tmp0 / tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp12 - tmp0
tmp14 = tmp13 * tmp13
tmp15 = tmp11 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [weight, sum_1, weight_1, sum_2, truediv, weight_2, sub_1, pow_1, tensor_result, sum_3], Original ATen: [aten.rsub, aten.sum, aten.div, aten.add, aten.sub, aten.pow, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_pow_rsub_sub_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.jit
import torch.nn
class MetricLoss(nn.Module):
"""Loss designed to train a true metric, as opposed to a
sigmoid classifier.
"""
def __init__(self):
super(MetricLoss, self).__init__()
def forward(self, input, target):
weight = 1.0 - target
weight /= weight.sum()
weight += target / target.sum()
tensor_result = weight * (input - target) ** 2
return tensor_result.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_pow_rsub_sub_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp12 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.broadcast_to(tmp0, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tmp2 / tmp5
tmp10 = tmp0 / tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp12 - tmp0
tmp14 = tmp13 * tmp13
tmp15 = tmp11 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_pow_rsub_sub_sum_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class MetricLossNew(nn.Module):
"""Loss designed to train a true metric, as opposed to a
sigmoid classifier.
"""
def __init__(self):
super(MetricLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ankmathur96/torchsupport | MetricLoss | false | 3,160 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
"""Loss designed to train a true metric, as opposed to a
sigmoid classifier.
"""
def __init__(self):
super().__init__()
def forward(self, input, target):
weight = 1.0 - target
weight /= weight.sum()
weight += target / target.sum()
tensor_result = weight * (input - target) ** 2
return tensor_result.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
NotNorm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/33/c33yemyxangf5peeog7ojqw6iosift35tywl7sx3zkxbkgx6qdb2.py
# Topologically Sorted Source Nodes: [mean, sub, std, normed, mul, out_1], Original ATen: [aten.mean, aten.sub, aten.std, aten.div, aten.mul, aten.add]
# Source node to ATen node mapping:
# mean => mean
# mul => mul
# normed => div
# out_1 => add
# std => sqrt, var
# sub => sub
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, %div), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mean), kwargs = {})
triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 15.0
tmp20 = tmp18 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = 16.0
tmp23 = tmp4 / tmp22
tmp24 = tmp0 - tmp23
tmp25 = tmp24 / tmp21
tmp26 = tmp21 * tmp25
tmp27 = tmp26 + tmp23
tl.store(out_ptr2 + (r1 + (16*x0)), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, std, normed, mul, out_1], Original ATen: [aten.mean, aten.sub, aten.std, aten.div, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0.run(arg0_1, buf4, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.jit
import torch.nn
class NotNorm(nn.Module):
def __init__(self, in_size):
super().__init__()
self.in_size = in_size
def forward(self, inputs):
[1] * (inputs.dim() - 2)
out = inputs.view(inputs.size(0), inputs.size(1), -1)
mean = out.mean(dim=-1, keepdim=True)
std = out.std(dim=-1, keepdim=True)
normed = (out - mean.detach()) / std.detach()
out = std * normed + mean
return out.view(inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_ptr0, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 15.0
tmp20 = tmp18 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = 16.0
tmp23 = tmp4 / tmp22
tmp24 = tmp0 - tmp23
tmp25 = tmp24 / tmp21
tmp26 = tmp21 * tmp25
tmp27 = tmp26 + tmp23
tl.store(out_ptr2 + (r1 + 16 * x0), tmp27, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0[grid(16)](arg0_1, buf4,
16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class NotNormNew(nn.Module):
def __init__(self, in_size):
super().__init__()
self.in_size = in_size
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ankmathur96/torchsupport | NotNorm | false | 3,162 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, in_size):
super().__init__()
self.in_size = in_size
def forward(self, inputs):
[1] * (inputs.dim() - 2)
out = inputs.view(inputs.size(0), inputs.size(1), -1)
mean = out.mean(dim=-1, keepdim=True)
std = out.std(dim=-1, keepdim=True)
normed = (out - mean.detach()) / std.detach()
out = std * normed + mean
return out.view(inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
AdaptiveInstanceNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wq/cwqhw3gtimpyy6begz2samjapmh76kp6rm4h6wykkmba3ktkl2hv.py
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mul => mul
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [-1]), kwargs = {correction: 1.0})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %sub), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %view_6), kwargs = {})
triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp26 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + (x0 % 4), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr4 + (x0 % 4), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-06
tmp25 = tmp23 + tmp24
tmp28 = tmp26 + tmp27
tmp29 = tmp0 - tmp20
tmp30 = tmp28 * tmp29
tmp31 = tmp30 / tmp25
tmp34 = tmp32 + tmp33
tmp35 = tmp31 + tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp25, xmask)
tl.store(out_ptr0 + (r1 + (16*x0)), tmp35, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf5)
del primals_2
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf6)
del primals_5
buf0 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.float32)
buf3 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 64, 1, 1), (64, 1, 1, 1), 0); del buf0 # reuse
buf7 = reinterpret_tensor(buf3, (4, 64, 1, 1), (64, 1, 1, 1), 0); del buf3 # reuse
buf8 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0.run(buf1, buf7, primals_1, buf5, primals_3, buf6, primals_6, buf8, 256, 16, grid=grid(256), stream=stream0)
del buf5
del buf6
del primals_3
del primals_6
return (buf8, primals_1, buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.jit
import torch.nn
class AdaptiveInstanceNorm(nn.Module):
def __init__(self, in_size, ada_size):
super(AdaptiveInstanceNorm, self).__init__()
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
def forward(self, inputs, style):
in_view = inputs.view(inputs.size(0), inputs.size(1), 1, 1, -1)
mean = in_view.mean(dim=-1)
std = in_view.std(dim=-1)
scale = self.scale(style).view(style.size(0), -1, 1, 1)
bias = self.bias(style).view(style.size(0), -1, 1, 1)
return scale * (inputs - mean) / (std + 1e-06) + bias
def get_inputs():
return [torch.rand([4, 64, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'ada_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp26 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + x0 % 4, xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr4 + x0 % 4, xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-06
tmp25 = tmp23 + tmp24
tmp28 = tmp26 + tmp27
tmp29 = tmp0 - tmp20
tmp30 = tmp28 * tmp29
tmp31 = tmp30 / tmp25
tmp34 = tmp32 + tmp33
tmp35 = tmp31 + tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp25, xmask)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp35, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf5)
del primals_2
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf6)
del primals_5
buf0 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.
float32)
buf3 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.
float32)
buf1 = reinterpret_tensor(buf0, (4, 64, 1, 1), (64, 1, 1, 1), 0)
del buf0
buf7 = reinterpret_tensor(buf3, (4, 64, 1, 1), (64, 1, 1, 1), 0)
del buf3
buf8 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0[grid(256)](buf1, buf7,
primals_1, buf5, primals_3, buf6, primals_6, buf8, 256, 16,
XBLOCK=32, num_warps=4, num_stages=1)
del buf5
del buf6
del primals_3
del primals_6
return buf8, primals_1, buf1, reinterpret_tensor(primals_4, (64, 4), (4,
1), 0), buf7
class AdaptiveInstanceNormNew(nn.Module):
def __init__(self, in_size, ada_size):
super(AdaptiveInstanceNormNew, self).__init__()
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
def forward(self, input_0, input_1):
primals_2 = self.scale.weight
primals_3 = self.scale.bias
primals_5 = self.bias.weight
primals_6 = self.bias.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| ankmathur96/torchsupport | AdaptiveInstanceNorm | false | 3,163 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, in_size, ada_size):
super().__init__()
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
def forward(self, inputs, style):
in_view = inputs.view(inputs.size(0), inputs.size(1), 1, 1, -1)
mean = in_view.mean(dim=-1)
std = in_view.std(dim=-1)
scale = self.scale(style).view(style.size(0), -1, 1, 1)
bias = self.bias(style).view(style.size(0), -1, 1, 1)
return scale * (inputs - mean) / (std + 1e-06) + bias
def get_inputs():
return [torch.rand([4, 64, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
DCCWeightedELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/je/cjexendesi7elohnmwdepi3feto7gfriid6tgh6ps33azwcomqhm.py
# Topologically Sorted Source Nodes: [norm], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# norm => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
triton_per_fused_linalg_vector_norm_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yf/cyfbkz7ajzcw3h6bkzngshajo4zsharlwgyfi2xppafgxxdhdzlx.py
# Topologically Sorted Source Nodes: [norm, pow_1, mul, out_1, out_2], Original ATen: [aten.linalg_vector_norm, aten.pow, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# mul => mul
# norm => pow_2
# out_1 => sum_2
# out_2 => div
# pow_1 => pow_3
# Graph fragment:
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_3), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 256), kwargs = {})
triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1 = async_compile.triton('triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex
r0 = rindex % 4
tmp0 = tl.load(in_ptr0 + (r2), None)
tmp1 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp0 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = 0.00390625
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_0.run(arg0_1, arg1_1, buf0, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [norm, pow_1, mul, out_1, out_2], Original ATen: [aten.linalg_vector_norm, aten.pow, aten.mul, aten.sum, aten.div]
triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1.run(buf2, arg2_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.jit
import torch.nn
class DCCWeightedELoss(nn.Module):
def __init__(self, size_average=True):
super(DCCWeightedELoss, self).__init__()
self.size_average = size_average
def forward(self, inputs, outputs, weights):
out = (inputs - outputs).view(len(inputs), -1)
out = torch.sum(weights * torch.norm(out, p=2, dim=1) ** 2)
assert np.isfinite(out.data.cpu().numpy()).all(), 'Nan found in data'
if self.size_average:
out = out / inputs.nelement()
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex
r0 = rindex % 4
tmp0 = tl.load(in_ptr0 + r2, None)
tmp1 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tmp0 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = 0.00390625
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_0[grid(4)](arg0_1, arg1_1, buf0,
4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused_div_linalg_vector_norm_mul_pow_sum_1[grid(1)](buf2,
arg2_1, buf0, 1, 256, num_warps=2, num_stages=1)
del arg2_1
del buf0
return buf2,
class DCCWeightedELossNew(nn.Module):
def __init__(self, size_average=True):
super(DCCWeightedELossNew, self).__init__()
self.size_average = size_average
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| ankmathur96/torchsupport | DCCWeightedELoss | false | 3,164 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import numpy as np
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, size_average=True):
super().__init__()
self.size_average = size_average
def forward(self, inputs, outputs, weights):
out = (inputs - outputs).view(len(inputs), -1)
out = torch.sum(weights * torch.norm(out, p=2, dim=1) ** 2)
assert np.isfinite(out.data.cpu().numpy()).all(), 'Nan found in data'
if self.size_average:
out = out / inputs.nelement()
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
AdaptiveLayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bi/cbitwluw6amzzk2l4tcnovidjasx6v2ou4cmmzo6twgopcjgen27.py
# Topologically Sorted Source Nodes: [mean, std, add_1], Original ATen: [aten.mean, aten.std, aten.add]
# Source node to ATen node mapping:
# add_1 => add_1
# mean => mean
# std => sqrt, var
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
triton_per_fused_add_mean_std_0 = async_compile.triton('triton_per_fused_add_mean_std_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 64],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_std_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_std_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-06
tmp25 = tmp23 + tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + (x3), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/p2/cp2sb4sx4v7ayyh4tpqrrvnnyvmyc426vakzlccrfjjkfpgy6emj.py
# Topologically Sorted Source Nodes: [mean_1], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean_1 => mean_1
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_2, [1], True), kwargs = {})
triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/a6/ca6mrxitdufdjl2fq6s3h5bk3bstkie6uxpoa2rwuq55e4j3oxdh.py
# Topologically Sorted Source Nodes: [mean_1, sub, scale_1, mean_2, bias_1, sub_2, mul, truediv, add_2], Original ATen: [aten.mean, aten.sub, aten.add, aten.mul, aten.div]
# Source node to ATen node mapping:
# add_2 => add_2
# bias_1 => sub_1
# mean_1 => mean_1
# mean_2 => mean_2
# mul => mul
# scale_1 => add
# sub => sub
# sub_2 => sub_2
# truediv => div
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %mean_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_5, [1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %mean_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub_2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %sub_1), kwargs = {})
triton_poi_fused_add_div_mean_mul_sub_2 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = (xindex // 16)
x2 = (xindex // 1024)
x4 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (x4), None)
tmp8 = tl.load(in_ptr3 + (x0 + (16*x2)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x0 + (16*x2)), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + (x3), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + (x2), None, eviction_policy='evict_last')
tmp2 = 64.0
tmp3 = tmp1 / tmp2
tmp4 = tmp0 - tmp3
tmp5 = 1.0
tmp6 = tmp4 + tmp5
tmp9 = tmp7 - tmp8
tmp10 = tmp6 * tmp9
tmp12 = tmp10 / tmp11
tmp15 = tmp14 / tmp2
tmp16 = tmp13 - tmp15
tmp17 = tmp12 + tmp16
tl.store(out_ptr0 + (x4), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf0 # reuse
buf9 = reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [mean, std, add_1], Original ATen: [aten.mean, aten.std, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_std_0.run(buf1, buf9, primals_1, 64, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_2
del primals_3
buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [mean_1], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(buf5, buf6, 4, 64, grid=grid(4), stream=stream0)
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_5
del primals_6
buf8 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [mean_2], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(buf7, buf8, 4, 64, grid=grid(4), stream=stream0)
buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_1, sub, scale_1, mean_2, bias_1, sub_2, mul, truediv, add_2], Original ATen: [aten.mean, aten.sub, aten.add, aten.mul, aten.div]
triton_poi_fused_add_div_mean_mul_sub_2.run(buf5, buf6, primals_1, buf1, buf9, buf7, buf8, buf10, 4096, grid=grid(4096), stream=stream0)
del buf5
del buf6
del buf7
del buf8
return (buf10, primals_1, buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.jit
import torch.nn
class AdaptiveLayerNorm(nn.Module):
def __init__(self, in_size, ada_size):
super(AdaptiveLayerNorm, self).__init__()
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
def forward(self, inputs, style):
expand = [1] * (inputs.dim() - 2)
mean = inputs.mean(dim=1, keepdim=True)
std = inputs.std(dim=1, keepdim=True)
scale = self.scale(style).view(style.size(0), -1, *expand)
scale = scale - scale.mean(dim=1, keepdim=True) + 1
bias = self.bias(style).view(style.size(0), -1, *expand)
bias = bias - bias.mean(dim=1, keepdim=True)
return scale * (inputs - mean) / (std + 1e-06) + bias
def get_inputs():
return [torch.rand([4, 64, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'ada_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_std_0(in_out_ptr0, in_out_ptr1, in_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-06
tmp25 = tmp23 + tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + x3, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp25, xmask)
@triton.jit
def triton_per_fused_mean_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_sub_2(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex // 16
x2 = xindex // 1024
x4 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + x4, None)
tmp8 = tl.load(in_ptr3 + (x0 + 16 * x2), None, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr4 + (x0 + 16 * x2), None, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr5 + x3, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + x2, None, eviction_policy='evict_last')
tmp2 = 64.0
tmp3 = tmp1 / tmp2
tmp4 = tmp0 - tmp3
tmp5 = 1.0
tmp6 = tmp4 + tmp5
tmp9 = tmp7 - tmp8
tmp10 = tmp6 * tmp9
tmp12 = tmp10 / tmp11
tmp15 = tmp14 / tmp2
tmp16 = tmp13 - tmp15
tmp17 = tmp12 + tmp16
tl.store(out_ptr0 + x4, tmp17, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 16, 4, 1), 0)
del buf0
buf9 = reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0)
del buf3
get_raw_stream(0)
triton_per_fused_add_mean_std_0[grid(64)](buf1, buf9, primals_1, 64,
64, XBLOCK=32, num_warps=8, num_stages=1)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf5)
del primals_2
del primals_3
buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_mean_1[grid(4)](buf5, buf6, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_4, (64,
4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf7)
del primals_5
del primals_6
buf8 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_mean_1[grid(4)](buf7, buf8, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
triton_poi_fused_add_div_mean_mul_sub_2[grid(4096)](buf5, buf6,
primals_1, buf1, buf9, buf7, buf8, buf10, 4096, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
del buf6
del buf7
del buf8
return buf10, primals_1, buf1, reinterpret_tensor(primals_4, (64, 4), (
4, 1), 0), buf9
class AdaptiveLayerNormNew(nn.Module):
def __init__(self, in_size, ada_size):
super(AdaptiveLayerNormNew, self).__init__()
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
def forward(self, input_0, input_1):
primals_2 = self.scale.weight
primals_3 = self.scale.bias
primals_5 = self.bias.weight
primals_6 = self.bias.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| ankmathur96/torchsupport | AdaptiveLayerNorm | false | 3,165 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, in_size, ada_size):
super().__init__()
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
def forward(self, inputs, style):
expand = [1] * (inputs.dim() - 2)
mean = inputs.mean(dim=1, keepdim=True)
std = inputs.std(dim=1, keepdim=True)
scale = self.scale(style).view(style.size(0), -1, *expand)
scale = scale - scale.mean(dim=1, keepdim=True) + 1
bias = self.bias(style).view(style.size(0), -1, *expand)
bias = bias - bias.mean(dim=1, keepdim=True)
return scale * (inputs - mean) / (std + 1e-06) + bias
def get_inputs():
return [torch.rand([4, 64, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ConvMeanPool | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zl/czlj6w7bgqv6v6jwtuat5tk6hqgjbqda2njfcgonmqvlxwg22wnk.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, output_1], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# output_1 => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %slice_12), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %slice_16), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2) % 2
x4 = (xindex // 4)
x2 = (xindex // 4) % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (6*x1) + (9*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + (2*x0) + (9*x4)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (6*x1) + (9*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + (9*x4)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + (x6), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, add_2, output_1], Original ATen: [aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(buf0, primals_2, buf1, 64, grid=grid(64), stream=stream0)
del buf0
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from matplotlib import pyplot as pyplot
class MyConvo2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True,
stride=1, bias=True):
super(MyConvo2d, self).__init__()
self.he_init = he_init
self.padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=self.padding, bias=bias)
def forward(self, input):
output = self.conv(input)
return output
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True):
super(ConvMeanPool, self).__init__()
self.he_init = he_init
self.conv = MyConvo2d(input_dim, output_dim, kernel_size, he_init=
self.he_init)
def forward(self, input):
output = self.conv(input)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from matplotlib import pyplot as pyplot
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 2
x4 = xindex // 4
x2 = xindex // 4 % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 6 * x1 + 9 * x4), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + 2 * x0 + 9 * x4), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 6 * x1 + 9 * x4), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (4 + 9 * x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + x6, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(64)](buf0, primals_2, buf1, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf1, primals_1, primals_3
class MyConvo2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True,
stride=1, bias=True):
super(MyConvo2d, self).__init__()
self.he_init = he_init
self.padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=self.padding, bias=bias)
def forward(self, input):
output = self.conv(input)
return output
class ConvMeanPoolNew(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True):
super(ConvMeanPoolNew, self).__init__()
self.he_init = he_init
self.conv = MyConvo2d(input_dim, output_dim, kernel_size, he_init=
self.he_init)
def forward(self, input_0):
primals_1 = self.conv.conv.weight
primals_2 = self.conv.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ameya005/Conn_InvNet | ConvMeanPool | false | 3,166 | [
"MIT"
] | 0 | 848a90e45808e540d3047d92b8d0a220da1bc5e7 | https://github.com/ameya005/Conn_InvNet/tree/848a90e45808e540d3047d92b8d0a220da1bc5e7 | import torch
from torch import nn
from matplotlib import pyplot as pyplot
class MyConvo2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True,
stride=1, bias=True):
super().__init__()
self.he_init = he_init
self.padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=self.padding, bias=bias)
def forward(self, input):
output = self.conv(input)
return output
class Model(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, he_init=True):
super().__init__()
self.he_init = he_init
self.conv = MyConvo2d(input_dim, output_dim, kernel_size, he_init=
self.he_init)
def forward(self, input):
output = self.conv(input)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ProposalNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nm/cnmglpj4qvkq45h3iildar75nv7wu3lqsl6x5zchzj23qrjx4f6e.py
# Topologically Sorted Source Nodes: [conv2d, d1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# d1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2q/c2q4u4pgdnp6pwjmdzbi7jhbh3tla4ihgaaaazp52iqt7tletsba.py
# Topologically Sorted Source Nodes: [conv2d_1, d2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# d2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bo/cbocewi6laf27jtgqeub5ygfdygjkgxcuppyyhxfonmdqh2k6mme.py
# Topologically Sorted Source Nodes: [conv2d_2, d3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# d3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7a/c7abt63xczjibehpu6hz2y4a6cyqq3v22tb5vy6lgfa34ghangsf.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2], 1), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 132096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 33024
x1 = (xindex // 33024)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 24576, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((24576*x1) + (x0 % 24576)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((x0 // 4096) % 6), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 30720, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((6144*x1) + (((-24576) + x0) % 6144)), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((((-24576) + x0) // 1024) % 6), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 33024, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tl.load(in_ptr4 + ((2304*x1) + (((-30720) + x0) % 2304)), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + ((((-30720) + x0) // 256) % 9), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tl.store(out_ptr0 + (x2), tmp28, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 2048, 64, 64), (8388608, 4096, 64, 1))
assert_size_stride(primals_2, (128, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_3, (128, ), (1, ))
assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (6, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_9, (6, ), (1, ))
assert_size_stride(primals_10, (6, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (6, ), (1, ))
assert_size_stride(primals_12, (9, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_13, (9, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 128, 64, 64), (524288, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, d1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 2097152, grid=grid(2097152), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 32, 32), (131072, 1024, 32, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, d2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 524288, grid=grid(524288), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 16, 16), (32768, 256, 16, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, d3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 131072, grid=grid(131072), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 6, 64, 64), (24576, 4096, 64, 1))
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf3, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 6, 32, 32), (6144, 1024, 32, 1))
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf5, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 9, 16, 16), (2304, 256, 16, 1))
buf9 = empty_strided_cuda((4, 33024), (33024, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf6, primals_9, buf7, primals_11, buf8, primals_13, buf9, 132096, grid=grid(132096), stream=stream0)
del buf6
del buf7
del buf8
del primals_11
del primals_13
del primals_9
return (buf9, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 2048, 64, 64), (8388608, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((6, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((6, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((9, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((9, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
class ProposalNet(nn.Module):
def __init__(self):
super(ProposalNet, self).__init__()
self.down1 = nn.Conv2d(2048, 128, 3, 1, 1)
self.down2 = nn.Conv2d(128, 128, 3, 2, 1)
self.down3 = nn.Conv2d(128, 128, 3, 2, 1)
self.ReLU = nn.ReLU()
self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0)
self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0)
self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0)
def forward(self, x):
batch_size = x.size(0)
d1 = self.ReLU(self.down1(x))
d2 = self.ReLU(self.down2(d1))
d3 = self.ReLU(self.down3(d2))
t1 = self.tidy1(d1).view(batch_size, -1)
t2 = self.tidy2(d2).view(batch_size, -1)
t3 = self.tidy3(d3).view(batch_size, -1)
return torch.cat((t1, t2, t3), dim=1)
def get_inputs():
return [torch.rand([4, 2048, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 132096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 33024
x1 = xindex // 33024
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 24576, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (24576 * x1 + x0 % 24576), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0 // 4096 % 6, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 30720, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (6144 * x1 + (-24576 + x0) % 6144), tmp13 &
xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (-24576 + x0) // 1024 % 6, tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tl.full([1], 33024, tl.int64)
tmp22 = tl.load(in_ptr4 + (2304 * x1 + (-30720 + x0) % 2304), tmp19 &
xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + (-30720 + x0) // 256 % 9, tmp19 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tl.store(out_ptr0 + x2, tmp28, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 2048, 64, 64), (8388608, 4096, 64, 1))
assert_size_stride(primals_2, (128, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_3, (128,), (1,))
assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (6, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_9, (6,), (1,))
assert_size_stride(primals_10, (6, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (6,), (1,))
assert_size_stride(primals_12, (9, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_13, (9,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 128, 64, 64), (524288, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(2097152)](buf1, primals_3,
2097152, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 32, 32), (131072, 1024, 32, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(524288)](buf3, primals_5,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 16, 16), (32768, 256, 16, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_7,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf1, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 6, 64, 64), (24576, 4096, 64, 1))
buf7 = extern_kernels.convolution(buf3, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 6, 32, 32), (6144, 1024, 32, 1))
buf8 = extern_kernels.convolution(buf5, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 9, 16, 16), (2304, 256, 16, 1))
buf9 = empty_strided_cuda((4, 33024), (33024, 1), torch.float32)
triton_poi_fused_cat_3[grid(132096)](buf6, primals_9, buf7,
primals_11, buf8, primals_13, buf9, 132096, XBLOCK=512,
num_warps=8, num_stages=1)
del buf6
del buf7
del buf8
del primals_11
del primals_13
del primals_9
return (buf9, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, buf1, buf3, buf5)
class ProposalNetNew(nn.Module):
def __init__(self):
super(ProposalNetNew, self).__init__()
self.down1 = nn.Conv2d(2048, 128, 3, 1, 1)
self.down2 = nn.Conv2d(128, 128, 3, 2, 1)
self.down3 = nn.Conv2d(128, 128, 3, 2, 1)
self.ReLU = nn.ReLU()
self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0)
self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0)
self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0)
def forward(self, input_0):
primals_2 = self.down1.weight
primals_3 = self.down1.bias
primals_4 = self.down2.weight
primals_5 = self.down2.bias
primals_6 = self.down3.weight
primals_7 = self.down3.bias
primals_8 = self.tidy1.weight
primals_9 = self.tidy1.bias
primals_10 = self.tidy2.weight
primals_11 = self.tidy2.bias
primals_12 = self.tidy3.weight
primals_13 = self.tidy3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| Syderny/NTS-Net | ProposalNet | false | 3,167 | [
"MIT"
] | 0 | 02d29e8e46aca7698c3102626eec33b12ddd7669 | https://github.com/Syderny/NTS-Net/tree/02d29e8e46aca7698c3102626eec33b12ddd7669 | import torch
from torch import nn
import torch.utils.data
class Model(nn.Module):
def __init__(self):
super().__init__()
self.down1 = nn.Conv2d(2048, 128, 3, 1, 1)
self.down2 = nn.Conv2d(128, 128, 3, 2, 1)
self.down3 = nn.Conv2d(128, 128, 3, 2, 1)
self.ReLU = nn.ReLU()
self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0)
self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0)
self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0)
def forward(self, x):
batch_size = x.size(0)
d1 = self.ReLU(self.down1(x))
d2 = self.ReLU(self.down2(d1))
d3 = self.ReLU(self.down3(d2))
t1 = self.tidy1(d1).view(batch_size, -1)
t2 = self.tidy2(d2).view(batch_size, -1)
t3 = self.tidy3(d3).view(batch_size, -1)
return torch.cat((t1, t2, t3), dim=1)
def get_inputs():
return [torch.rand([4, 2048, 64, 64])]
def get_init_inputs():
return []
|
AdaptiveFilterResponseNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/37/c376objbv2oyurmzuqxsye5tjfljfmrnhxv4zfyxke5kfhvjfppn.py
# Topologically Sorted Source Nodes: [nu2, add, denominator, out_1, mul, add_1, sub, relu, out_2], Original ATen: [aten.mean, aten.add, aten.sqrt, aten.div, aten.mul, aten.sub, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# denominator => sqrt
# mul => mul
# nu2 => mean
# out_1 => div
# out_2 => add_2
# relu => relu
# sub => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-16), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %view_7), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %view_7), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i1', 10: 'i32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r2 = rindex % 4
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp10 = tl.load(in_out_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp11 = tl.load(in_ptr1 + (r2), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (r1 + (16*x0)), xmask, other=0.0)
tmp16 = tl.load(in_ptr3 + (r2), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr4 + (r1 + (16*x0)), xmask, other=0.0)
tmp20 = tl.load(in_ptr5 + (r2), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-16
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp12 = tmp10 + tmp11
tmp13 = tmp0 / tmp9
tmp14 = tmp12 * tmp13
tmp17 = tmp15 + tmp16
tmp18 = tmp14 + tmp17
tmp21 = tmp19 + tmp20
tmp22 = tmp18 - tmp21
tmp23 = tl.full([1, 1], 0, tl.int32)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp25 = tmp24 + tmp21
tmp26 = 0.0
tmp27 = tmp24 <= tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
tl.store(out_ptr0 + (r1 + (16*x0)), tmp25, xmask)
tl.store(out_ptr1 + (r1 + (16*x0)), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2)
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf4)
del primals_7
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
buf5 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [nu2, add, denominator, out_1, mul, add_1, sub, relu, out_2], Original ATen: [aten.mean, aten.add, aten.sqrt, aten.div, aten.mul, aten.sub, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0.run(buf1, buf5, primals_1, primals_3, buf3, primals_6, buf4, primals_8, buf6, buf7, 16, 16, grid=grid(16), stream=stream0)
del buf3
del buf4
del buf5
del primals_3
del primals_6
del primals_8
return (buf6, primals_1, reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as func
import torch.jit
import torch.nn
class AdaptiveFilterResponseNorm(nn.Module):
def __init__(self, in_size, ada_size, eps=1e-16):
super().__init__()
self.eps = eps
self.in_size = in_size
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
self.threshold = nn.Linear(ada_size, in_size)
def forward(self, inputs, condition):
out = inputs.view(inputs.size(0), inputs.size(1), -1)
nu2 = out.mean(dim=-1)
extension = [1] * (inputs.dim() - 2)
denominator = torch.sqrt(nu2 + self.eps)
denominator = denominator.view(inputs.size(0), inputs.size(1), *
extension)
out = inputs / denominator
scale = self.scale(condition)
bias = self.bias(condition)
threshold = self.threshold(condition)
out = func.relu(scale * out + bias - threshold) + threshold
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'ada_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0(
in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r2 = rindex % 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp10 = tl.load(in_out_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp11 = tl.load(in_ptr1 + r2, None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (r1 + 16 * x0), xmask, other=0.0)
tmp16 = tl.load(in_ptr3 + r2, None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr4 + (r1 + 16 * x0), xmask, other=0.0)
tmp20 = tl.load(in_ptr5 + r2, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-16
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp12 = tmp10 + tmp11
tmp13 = tmp0 / tmp9
tmp14 = tmp12 * tmp13
tmp17 = tmp15 + tmp16
tmp18 = tmp14 + tmp17
tmp21 = tmp19 + tmp20
tmp22 = tmp18 - tmp21
tmp23 = tl.full([1, 1], 0, tl.int32)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp25 = tmp24 + tmp21
tmp26 = 0.0
tmp27 = tmp24 <= tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp25, xmask)
tl.store(out_ptr1 + (r1 + 16 * x0), tmp27, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2)
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf4)
del primals_7
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
buf5 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_relu_sqrt_sub_threshold_backward_0[
grid(16)](buf1, buf5, primals_1, primals_3, buf3, primals_6,
buf4, primals_8, buf6, buf7, 16, 16, XBLOCK=8, num_warps=2,
num_stages=1)
del buf3
del buf4
del buf5
del primals_3
del primals_6
del primals_8
return buf6, primals_1, reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1,
1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf7
class AdaptiveFilterResponseNormNew(nn.Module):
def __init__(self, in_size, ada_size, eps=1e-16):
super().__init__()
self.eps = eps
self.in_size = in_size
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
self.threshold = nn.Linear(ada_size, in_size)
def forward(self, input_0, input_1):
primals_2 = self.scale.weight
primals_3 = self.scale.bias
primals_5 = self.bias.weight
primals_6 = self.bias.bias
primals_7 = self.threshold.weight
primals_8 = self.threshold.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| ankmathur96/torchsupport | AdaptiveFilterResponseNorm | false | 3,168 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.nn.functional as func
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, in_size, ada_size, eps=1e-16):
super().__init__()
self.eps = eps
self.in_size = in_size
self.scale = nn.Linear(ada_size, in_size)
self.bias = nn.Linear(ada_size, in_size)
self.threshold = nn.Linear(ada_size, in_size)
def forward(self, inputs, condition):
out = inputs.view(inputs.size(0), inputs.size(1), -1)
nu2 = out.mean(dim=-1)
extension = [1] * (inputs.dim() - 2)
denominator = torch.sqrt(nu2 + self.eps)
denominator = denominator.view(inputs.size(0), inputs.size(1), *
extension)
out = inputs / denominator
scale = self.scale(condition)
bias = self.bias(condition)
threshold = self.threshold(condition)
out = func.relu(scale * out + bias - threshold) + threshold
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
DepthWiseSeparableConv1d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/d4/cd4ygdjn67m65g44zq7u52lzpladubxfjg4l5h77qlkxilabiuwm.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 1), (4, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 4, grid=grid(4), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 1), (0, 1, 0), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (1, 4, 1), (4, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 4, grid=grid(4), stream=stream0)
del primals_5
return (reinterpret_tensor(buf3, (4, 1), (1, 1), 0), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.jit
import torch.nn
class DepthWiseSeparableConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True):
"""Depthwise separable 1D convolution.
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
kernel_size (int or (int, int)): kernel size.
kwargs: additional keyword arguments. See `Conv1d` for details.
"""
super(DepthWiseSeparableConv1d, self).__init__()
self.depth_conv = nn.Conv1d(in_channels, in_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, bias=bias)
self.point_conv = nn.Conv1d(in_channels, out_channels, 1)
def forward(self, input):
return self.point_conv(self.depth_conv(input))
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 1), (4, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(4)](buf1, primals_2, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 1
), (0, 1, 0), 0), primals_4, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf2, (1, 4, 1), (4, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(4)](buf3, primals_5, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_5
return reinterpret_tensor(buf3, (4, 1), (1, 1), 0
), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (
16, 4, 1), 0), buf1
class DepthWiseSeparableConv1dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True):
"""Depthwise separable 1D convolution.
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
kernel_size (int or (int, int)): kernel size.
kwargs: additional keyword arguments. See `Conv1d` for details.
"""
super(DepthWiseSeparableConv1dNew, self).__init__()
self.depth_conv = nn.Conv1d(in_channels, in_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, bias=bias)
self.point_conv = nn.Conv1d(in_channels, out_channels, 1)
def forward(self, input_0):
primals_1 = self.depth_conv.weight
primals_2 = self.depth_conv.bias
primals_4 = self.point_conv.weight
primals_5 = self.point_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ankmathur96/torchsupport | DepthWiseSeparableConv1d | false | 3,169 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True):
"""Depthwise separable 1D convolution.
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
kernel_size (int or (int, int)): kernel size.
kwargs: additional keyword arguments. See `Conv1d` for details.
"""
super().__init__()
self.depth_conv = nn.Conv1d(in_channels, in_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, bias=bias)
self.point_conv = nn.Conv1d(in_channels, out_channels, 1)
def forward(self, input):
return self.point_conv(self.depth_conv(input))
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
SemiNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/7r/c7ropiifeibl5ynmvclnzdbugv3jj2chhjkp6274o2examg2m3ba.py
# Topologically Sorted Source Nodes: [mean, std], Original ATen: [aten.mean, aten.std]
# Source node to ATen node mapping:
# mean => mean
# std => sqrt, var
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [-1]), kwargs = {correction: 1.0})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
triton_per_fused_mean_std_0 = async_compile.triton('triton_per_fused_mean_std_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_std_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tl.store(out_ptr2 + (x2 + (8*x3)), tmp20, xmask)
tl.store(out_ptr3 + (x2 + (8*x3)), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6n/c6nwltytpo33ssumvxlcryrpvlql2hsjrmxl624j4dkkjxt5qgkm.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# out_1 => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ds/cdsplnorbtmrlzwc6y24oci7qy52yiyr2ydfvnj73jpn3ycrmkhf.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %unsqueeze), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 16)
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + ((x3 // 4)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((x3 // 4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x3 % 4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x3 % 4), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + (x4), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf6 = reinterpret_tensor(buf8, (4, 4), (8, 1), 0) # alias
buf7 = reinterpret_tensor(buf8, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [mean, std], Original ATen: [aten.mean, aten.std]
stream0 = get_raw_stream(0)
triton_per_fused_mean_std_0.run(primals_1, buf6, buf7, 16, 16, grid=grid(16), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf4, buf5, 64, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf9)
del primals_4
buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_2.run(primals_1, buf4, buf5, primals_2, primals_3, buf9, primals_5, buf10, 256, grid=grid(256), stream=stream0)
del buf4
del buf5
del buf9
del primals_2
del primals_3
del primals_5
return (reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.jit
import torch.nn
from torch.nn.utils.spectral_norm import spectral_norm
class SemiNorm(nn.Module):
def __init__(self, in_size, normalization=None):
super().__init__()
normalization = normalization or spectral_norm
self.norm = nn.Linear(2 * in_size, in_size)
self.bn = nn.LayerNorm(in_size)
def forward(self, inputs):
out = inputs.view(inputs.size(0), inputs.size(1), -1)
mean = out.mean(dim=-1)
std = out.std(dim=-1)
out = self.bn(inputs)
out = out.view(out.size(0), out.size(1), -1)
features = self.norm(torch.cat((mean, std), dim=1))
out = out + features.unsqueeze(-1)
return out.view(inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.jit
import torch.nn
from torch.nn.utils.spectral_norm import spectral_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tl.store(out_ptr2 + (x2 + 8 * x3), tmp20, xmask)
tl.store(out_ptr3 + (x2 + 8 * x3), tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_add_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x3 // 4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x3 // 4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x3 % 4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x3 % 4, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + x4, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf6 = reinterpret_tensor(buf8, (4, 4), (8, 1), 0)
buf7 = reinterpret_tensor(buf8, (4, 4), (8, 1), 4)
get_raw_stream(0)
triton_per_fused_mean_std_0[grid(16)](primals_1, buf6, buf7, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_1, buf4,
buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_4, (8, 4), (1, 8
), 0), out=buf9)
del primals_4
buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_add_2[grid(256)](primals_1, buf4, buf5, primals_2,
primals_3, buf9, primals_5, buf10, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf4
del buf5
del buf9
del primals_2
del primals_3
del primals_5
return reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, buf8
class SemiNormNew(nn.Module):
def __init__(self, in_size, normalization=None):
super().__init__()
normalization = normalization or spectral_norm
self.norm = nn.Linear(2 * in_size, in_size)
self.bn = nn.LayerNorm(in_size)
def forward(self, input_0):
primals_4 = self.norm.weight
primals_2 = self.norm.bias
primals_3 = self.bn.weight
primals_5 = self.bn.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ankmathur96/torchsupport | SemiNorm | false | 3,170 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.jit
import torch.nn
from torch.nn.utils.spectral_norm import spectral_norm
class Model(nn.Module):
def __init__(self, in_size, normalization=None):
super().__init__()
normalization = normalization or spectral_norm
self.norm = nn.Linear(2 * in_size, in_size)
self.bn = nn.LayerNorm(in_size)
def forward(self, inputs):
out = inputs.view(inputs.size(0), inputs.size(1), -1)
mean = out.mean(dim=-1)
std = out.std(dim=-1)
out = self.bn(inputs)
out = out.view(out.size(0), out.size(1), -1)
features = self.norm(torch.cat((mean, std), dim=1))
out = out + features.unsqueeze(-1)
return out.view(inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ScaleNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/43/c435cfxb2vy6e5lzsyrwif2bemb7woqhjiv5uarl3mh4c22cilq5.py
# Topologically Sorted Source Nodes: [norm, mul, add, out_1], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# norm => pow_1, pow_2, sum_1
# out_1 => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-16), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
triton_per_fused_add_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp9 = tl.load(in_ptr1 + (0))
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 1e-16
tmp8 = tmp6 + tmp7
tmp11 = tmp10 * tmp0
tmp12 = tmp11 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, mul, add, out_1], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_linalg_vector_norm_mul_0.run(buf1, primals_1, primals_2, buf2, 4, 64, grid=grid(4), stream=stream0)
del primals_2
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.jit
import torch.nn
class ScaleNorm(nn.Module):
def __init__(self, *args):
super().__init__()
self.scale = nn.Parameter(torch.tensor(1.0, dtype=torch.float))
def forward(self, inputs):
out = inputs.view(inputs.size(0), -1)
norm = out.norm(dim=1, keepdim=True)
out = self.scale * out / (norm + 1e-16)
return out.view(*inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.jit
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mul_0(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp9 = tl.load(in_ptr1 + 0)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 1e-16
tmp8 = tmp6 + tmp7
tmp11 = tmp10 * tmp0
tmp12 = tmp11 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp12, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_linalg_vector_norm_mul_0[grid(4)](buf1,
primals_1, primals_2, buf2, 4, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del primals_2
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, buf1
class ScaleNormNew(nn.Module):
def __init__(self, *args):
super().__init__()
self.scale = nn.Parameter(torch.tensor(1.0, dtype=torch.float))
def forward(self, input_0):
primals_2 = self.scale
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| ankmathur96/torchsupport | ScaleNorm | false | 3,171 | [
"MIT"
] | 0 | 77bf4a90b8770a408665e2604428808c3ed2f979 | https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979 | import torch
import torch.nn as nn
import torch.jit
import torch.nn
class Model(nn.Module):
def __init__(self, *args):
super().__init__()
self.scale = nn.Parameter(torch.tensor(1.0, dtype=torch.float))
def forward(self, inputs):
out = inputs.view(inputs.size(0), -1)
norm = out.norm(dim=1, keepdim=True)
out = self.scale * out / (norm + 1e-16)
return out.view(*inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
AuxiliaryConvolutions | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/k3/ck32qkbu76goin6gngorb46frxtcgido7u4gqqjikn6bs3l76qke.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = (yindex // 1024)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None)
tl.store(out_ptr0 + (y0 + (1024*x2) + (4194304*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/iw/ciw5fne4c4ykscbegdmm3uvzowo3xwefv4ro2tovkicwghjx4kku.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 131072
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qn/cqnvlz36e5n74qbwjehi6cgr4dntmtxxsduqflrrittcgu3yf256.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dt/cdtzy2sk4ud45h7rfcart7sv7jm567awlymms4zgeznths2wtsqv.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4194304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ge/cgeoavt4hzgtf4m2q7qssqlp3nld2sgotuhmnrsgchg7mbqmoq6z.py
# Topologically Sorted Source Nodes: [conv2d_1, out_1, conv2d_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# out_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 1024], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = (yindex // 512)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (524288*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + (1024*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (512*x2) + (524288*y1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7j/c7jq3fq7s3nff7zmqw3tkclugp3t4n7gtljlodonzl7vtd77ccv6.py
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# out_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bx/cbx47x2dxzsrue4u24vxstww4bfmxqkborergbnxsewnl2ohqpcj.py
# Topologically Sorted Source Nodes: [conv2d_3, out_3, conv2d_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# conv2d_4 => convolution_4
# out_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (65536*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + (256*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (65536*y1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hx/chxoq3xxsaciy3qpsdg7bzm7yh45vwcakjrprs74f5aqhz23ftak.py
# Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# out_4 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/o4/co4poaxsi3ynmtrayjqpbklkdqtnt7ufei7tynzfqeyxnr34djrs.py
# Topologically Sorted Source Nodes: [conv2d_5, out_5, conv2d_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# conv2d_6 => convolution_6
# out_5 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 196
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (50176*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + (196*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (50176*y1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/e3/ce3s664utrz3vjali3f3qxxqtzcxam23vzxcz5kt5uaqjjtawb7h.py
# Topologically Sorted Source Nodes: [conv2d_6, out_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# out_6 => relu_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100352
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6t/c6tucgktlc6hbc3e47hpkzjzo3jk4qfiy427zrqtws2iag7p6avh.py
# Topologically Sorted Source Nodes: [conv2d_7, conv11_2_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv11_2_feats => relu_7
# conv2d_7 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 144
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (36864*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (144*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (36864*y1)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_4, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (128, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (128, ), (1, ))
assert_size_stride(primals_16, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 4096, 4096, grid=grid(4096, 4096), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_4, buf1, 131072, 9, grid=grid(131072, 9), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_8, buf2, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_8
buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_12, buf3, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_12
buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_16, buf4, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_16
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf6, primals_2, 4194304, grid=grid(4194304), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 512, 32, 32), (524288, 1, 16384, 512))
buf8 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32)
buf9 = empty_strided_cuda((4, 512, 32, 32), (524288, 1, 16384, 512), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, out_1, conv2d_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf7, primals_5, buf8, buf9, 2048, 1024, grid=grid(2048, 1024), stream=stream0)
del buf7
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 32, 32), (131072, 1, 4096, 128))
del buf9
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_5.run(buf11, primals_7, 524288, grid=grid(524288), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32)
buf14 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, out_3, conv2d_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf12, primals_9, buf13, buf14, 1024, 256, grid=grid(1024, 256), stream=stream0)
del buf12
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 16, 16), (32768, 1, 2048, 128))
del buf14
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf16, primals_11, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 14, 14), (50176, 1, 3584, 256))
buf18 = empty_strided_cuda((4, 256, 14, 14), (50176, 196, 14, 1), torch.float32)
buf19 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_5, out_5, conv2d_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf17, primals_13, buf18, buf19, 1024, 196, grid=grid(1024, 196), stream=stream0)
del buf17
del primals_13
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 14, 14), (25088, 1, 1792, 128))
del buf19
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, out_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf21, primals_15, 100352, grid=grid(100352), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 256, 12, 12), (36864, 1, 3072, 256))
buf23 = empty_strided_cuda((4, 256, 12, 12), (36864, 144, 12, 1), torch.float32)
buf24 = empty_strided_cuda((4, 256, 12, 12), (36864, 1, 3072, 256), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, conv11_2_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_10.run(buf22, primals_17, buf23, buf24, 1024, 144, grid=grid(1024, 144), stream=stream0)
del buf22
del primals_17
return (buf8, buf13, buf18, buf23, primals_1, buf0, buf1, primals_6, buf2, primals_10, buf3, primals_14, buf4, buf6, buf8, buf11, buf13, buf16, buf18, buf21, buf24, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
from itertools import product as product
import torch.optim
class AuxiliaryConvolutions(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super(AuxiliaryConvolutions, self).__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv7_feats):
"""
Forward propagation.
:param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2
"""
out = F.relu(self.conv8_1(conv7_feats))
out = F.relu(self.conv8_2(out))
conv8_2_feats = out
out = F.relu(self.conv9_1(out))
out = F.relu(self.conv9_2(out))
conv9_2_feats = out
out = F.relu(self.conv10_1(out))
out = F.relu(self.conv10_2(out))
conv10_2_feats = out
out = F.relu(self.conv11_1(out))
conv11_2_feats = F.relu(self.conv11_2(out))
return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats
def get_inputs():
return [torch.rand([4, 1024, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
from torch import nn
from itertools import product as product
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = yindex // 1024
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None)
tl.store(out_ptr0 + (y0 + 1024 * x2 + 4194304 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = yindex // 512
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 524288 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + 1024 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 512 * x2 + 524288 * y1), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 65536 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + 256 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 65536 * y1), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 196
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 50176 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2 + 196 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 50176 * y1), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
xnumel = 144
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 36864 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 144 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 36864 * y1), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_4, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (128, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536,
1024), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(4096, 4096)](primals_3, buf0, 4096, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_1[grid(131072, 9)](primals_4, buf1, 131072, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_8, buf2, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_12, buf3, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_16, buf4, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_16
buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_3[grid(4194304)](buf6, primals_2,
4194304, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 512, 32, 32), (524288, 1, 16384, 512))
buf8 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1),
torch.float32)
buf9 = empty_strided_cuda((4, 512, 32, 32), (524288, 1, 16384, 512),
torch.float32)
triton_poi_fused_convolution_relu_4[grid(2048, 1024)](buf7,
primals_5, buf8, buf9, 2048, 1024, XBLOCK=64, YBLOCK=64,
num_warps=8, num_stages=1)
del buf7
del primals_5
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 32, 32), (131072, 1, 4096, 128))
del buf9
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_5[grid(524288)](buf11, primals_7,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.float32)
buf14 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_convolution_relu_6[grid(1024, 256)](buf12,
primals_9, buf13, buf14, 1024, 256, XBLOCK=32, YBLOCK=32,
num_warps=4, num_stages=1)
del buf12
del primals_9
buf15 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 16, 16), (32768, 1, 2048, 128))
del buf14
buf16 = buf15
del buf15
triton_poi_fused_convolution_relu_7[grid(131072)](buf16, primals_11,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_11
buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 14, 14), (50176, 1, 3584, 256))
buf18 = empty_strided_cuda((4, 256, 14, 14), (50176, 196, 14, 1),
torch.float32)
buf19 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256),
torch.float32)
triton_poi_fused_convolution_relu_8[grid(1024, 196)](buf17,
primals_13, buf18, buf19, 1024, 196, XBLOCK=32, YBLOCK=32,
num_warps=4, num_stages=1)
del buf17
del primals_13
buf20 = extern_kernels.convolution(buf19, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 14, 14), (25088, 1, 1792, 128))
del buf19
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_9[grid(100352)](buf21, primals_15,
100352, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 256, 12, 12), (36864, 1, 3072, 256))
buf23 = empty_strided_cuda((4, 256, 12, 12), (36864, 144, 12, 1),
torch.float32)
buf24 = empty_strided_cuda((4, 256, 12, 12), (36864, 1, 3072, 256),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_10[grid(1024, 144)
](buf22, primals_17, buf23, buf24, 1024, 144, XBLOCK=64, YBLOCK
=64, num_warps=8, num_stages=1)
del buf22
del primals_17
return (buf8, buf13, buf18, buf23, primals_1, buf0, buf1, primals_6,
buf2, primals_10, buf3, primals_14, buf4, buf6, buf8, buf11, buf13,
buf16, buf18, buf21, buf24)
class AuxiliaryConvolutionsNew(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super(AuxiliaryConvolutionsNew, self).__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, input_0):
primals_1 = self.conv8_1.weight
primals_2 = self.conv8_1.bias
primals_4 = self.conv8_2.weight
primals_5 = self.conv8_2.bias
primals_6 = self.conv9_1.weight
primals_7 = self.conv9_1.bias
primals_8 = self.conv9_2.weight
primals_9 = self.conv9_2.bias
primals_10 = self.conv10_1.weight
primals_11 = self.conv10_1.bias
primals_12 = self.conv10_2.weight
primals_13 = self.conv10_2.bias
primals_14 = self.conv11_1.weight
primals_15 = self.conv11_1.bias
primals_16 = self.conv11_2.weight
primals_17 = self.conv11_2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0], output[1], output[2], output[3]
| adityag6994/pytorch_ssd_training | AuxiliaryConvolutions | false | 3,172 | [
"MIT"
] | 0 | 404f3cbef815e314337ec2c1b4f06a2403a7ce03 | https://github.com/adityag6994/pytorch_ssd_training/tree/404f3cbef815e314337ec2c1b4f06a2403a7ce03 | import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
from itertools import product as product
import torch.optim
class Model(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super().__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv7_feats):
"""
Forward propagation.
:param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2
"""
out = F.relu(self.conv8_1(conv7_feats))
out = F.relu(self.conv8_2(out))
conv8_2_feats = out
out = F.relu(self.conv9_1(out))
out = F.relu(self.conv9_2(out))
conv9_2_feats = out
out = F.relu(self.conv10_1(out))
out = F.relu(self.conv10_2(out))
conv10_2_feats = out
out = F.relu(self.conv11_1(out))
conv11_2_feats = F.relu(self.conv11_2(out))
return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats
def get_inputs():
return [torch.rand([4, 1024, 64, 64])]
def get_init_inputs():
return []
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.