text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Mask2Former model. """ import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import Mask2FormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_torch_fp16, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerModel if is_vision_available(): from transformers import Mask2FormerImageProcessor if is_vision_available(): from PIL import Image class Mask2FormerModelTester: def __init__( self, parent, batch_size=2, is_training=True, use_auxiliary_loss=False, num_queries=10, num_channels=3, min_size=32 * 8, max_size=32 * 8, num_labels=4, hidden_dim=64, num_attention_heads=4, num_hidden_layers=2, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_auxiliary_loss = use_auxiliary_loss self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.num_labels = num_labels self.hidden_dim = hidden_dim self.mask_feature_size = hidden_dim self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( torch_device ) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) mask_labels = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=torch_device) > 0.5 ).float() class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long() config = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def get_config(self): config = Mask2FormerConfig( hidden_size=self.hidden_dim, num_attention_heads=self.num_attention_heads, num_hidden_layers=self.num_hidden_layers, encoder_feedforward_dim=16, dim_feedforward=32, num_queries=self.num_queries, num_labels=self.num_labels, decoder_layers=2, encoder_layers=2, feature_size=16, ) config.num_queries = self.num_queries config.num_labels = self.num_labels config.backbone_config.embed_dim = 16 config.backbone_config.depths = [1, 1, 1, 1] config.backbone_config.hidden_size = 16 config.backbone_config.num_channels = self.num_channels config.backbone_config.num_heads = [1, 1, 2, 2] config.backbone = None config.hidden_dim = self.hidden_dim config.mask_feature_size = self.hidden_dim config.feature_size = self.hidden_dim return config def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, _, _ = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def check_output_hidden_state(self, output, config): encoder_hidden_states = output.encoder_hidden_states pixel_decoder_hidden_states = output.pixel_decoder_hidden_states transformer_decoder_hidden_states = output.transformer_decoder_hidden_states self.parent.assertTrue(len(encoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(pixel_decoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(transformer_decoder_hidden_states), config.decoder_layers) def create_and_check_mask2former_model(self, config, pixel_values, pixel_mask, output_hidden_states=False): with torch.no_grad(): model = Mask2FormerModel(config=config) model.to(torch_device) model.eval() output = model(pixel_values=pixel_values, pixel_mask=pixel_mask) output = model(pixel_values, output_hidden_states=True) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(output, config) def create_and_check_mask2former_instance_segmentation_head_model( self, config, pixel_values, pixel_mask, mask_labels, class_labels ): model = Mask2FormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() def comm_check_on_output(result): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) comm_check_on_output(result) result = model( pixel_values=pixel_values, pixel_mask=pixel_mask, mask_labels=mask_labels, class_labels=class_labels ) comm_check_on_output(result) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([])) @require_torch class Mask2FormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Mask2FormerModel, Mask2FormerForUniversalSegmentation) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": Mask2FormerModel} if is_torch_available() else {} is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = False def setUp(self): self.model_tester = Mask2FormerModelTester(self) self.config_tester = ConfigTester(self, config_class=Mask2FormerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_mask2former_model(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_mask2former_model(config, **inputs, output_hidden_states=False) def test_mask2former_instance_segmentation_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mask2former_instance_segmentation_head_model(*config_and_inputs) @unittest.skip(reason="Mask2Former does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="Mask2Former is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="Mask2Former does not use token embeddings") def test_resize_tokens_embeddings(self): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass @slow def test_model_from_pretrained(self): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: model = Mask2FormerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_model_with_labels(self): size = (self.model_tester.min_size,) * 2 inputs = { "pixel_values": torch.randn((2, 3, *size), device=torch_device), "mask_labels": torch.randn((2, 10, *size), device=torch_device), "class_labels": torch.zeros(2, 10, device=torch_device).long(), } config = self.model_tester.get_config() model = Mask2FormerForUniversalSegmentation(config).to(torch_device) outputs = model(**inputs) self.assertTrue(outputs.loss is not None) def test_hidden_states_output(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_mask2former_model(config, **inputs, output_hidden_states=True) def test_attention_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) outputs = model(**inputs, output_attentions=True) self.assertTrue(outputs.attentions is not None) def test_training(self): if not self.model_tester.is_training: return model_class = self.all_model_classes[1] config, pixel_values, pixel_mask, mask_labels, class_labels = self.model_tester.prepare_config_and_inputs() model = model_class(config) model.to(torch_device) model.train() loss = model(pixel_values, mask_labels=mask_labels, class_labels=class_labels).loss loss.backward() def test_retain_grad_hidden_states_attentions(self): model_class = self.all_model_classes[1] config, pixel_values, pixel_mask, mask_labels, class_labels = self.model_tester.prepare_config_and_inputs() config.output_hidden_states = True config.output_attentions = True model = model_class(config).to(torch_device) model.train() outputs = model(pixel_values, mask_labels=mask_labels, class_labels=class_labels) encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() attentions = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @slow class Mask2FormerModelIntegrationTest(unittest.TestCase): @cached_property def model_checkpoints(self): return "facebook/mask2former-swin-small-coco-instance" @cached_property def default_image_processor(self): return Mask2FormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def test_inference_no_head(self): model = Mask2FormerModel.from_pretrained(self.model_checkpoints).to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(image, return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(inputs_shape, (1, 3, 384, 384)) with torch.no_grad(): outputs = model(**inputs) expected_slice_hidden_state = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) def test_inference_universal_segmentation_head(self): model = Mask2FormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(torch_device).eval() image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(image, return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(inputs_shape, (1, 3, 384, 384)) with torch.no_grad(): outputs = model(**inputs) # masks_queries_logits masks_queries_logits = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) expected_slice = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] expected_slice = torch.tensor(expected_slice).to(torch_device) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE)) # class_queries_logits class_queries_logits = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1)) expected_slice = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE)) @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): model = ( Mask2FormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) .to(torch_device, dtype=torch.float16) .eval() ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(image, return_tensors="pt").to(torch_device, dtype=torch.float16) with torch.no_grad(): _ = model(**inputs) def test_with_segmentation_maps_and_loss(self): model = Mask2FormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(torch_device).eval() image_processor = self.default_image_processor inputs = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))], segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)], return_tensors="pt", ) inputs["pixel_values"] = inputs["pixel_values"].to(torch_device) inputs["mask_labels"] = [el.to(torch_device) for el in inputs["mask_labels"]] inputs["class_labels"] = [el.to(torch_device) for el in inputs["class_labels"]] with torch.no_grad(): outputs = model(**inputs) self.assertTrue(outputs.loss is not None)
transformers/tests/models/mask2former/test_modeling_mask2former.py/0
{ "file_path": "transformers/tests/models/mask2former/test_modeling_mask2former.py", "repo_id": "transformers", "token_count": 7759 }
357
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Nat model. """ import collections import unittest from transformers import NatConfig from transformers.testing_utils import require_natten, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import NatBackbone, NatForImageClassification, NatModel from transformers.models.nat.modeling_nat import NAT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class NatModelTester: def __init__( self, parent, batch_size=13, image_size=64, patch_size=4, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 4, 8], kernel_size=3, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, num_labels=10, out_features=["stage1", "stage2"], out_indices=[1, 2], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.kernel_size = kernel_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.num_labels = num_labels self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return NatConfig( num_labels=self.num_labels, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, kernel_size=self.kernel_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, patch_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = NatModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = (config.image_size // config.patch_size) // (2 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, expected_height, expected_width, expected_dim) ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = NatForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) # test greyscale images config.num_channels = 1 model = NatForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = NatBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = NatBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), 1) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_natten @require_torch class NatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( NatModel, NatForImageClassification, NatBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": NatModel, "image-classification": NatForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_torchscript = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = NatModelTester(self) self.config_tester = ConfigTester(self, config_class=NatConfig, embed_dim=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) @unittest.skip(reason="Nat does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Nat does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_attention_outputs(self): self.skipTest("Nat's attention operation is handled entirely by NATTEN.") def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Nat has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) height = image_size[0] // patch_size[0] width = image_size[1] // patch_size[1] self.assertListEqual( list(hidden_states[0].shape[-3:]), [height, width, self.model_tester.embed_dim], ) if model_class.__name__ != "NatBackbone": reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = ( reshaped_hidden_states[0].view(batch_size, num_channels, height, width).permute(0, 2, 3, 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-3:]), [height, width, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) @slow def test_model_from_pretrained(self): for model_name in NAT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = NatModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_natten @require_vision @require_torch class NatModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = NatForImageClassification.from_pretrained("shi-labs/nat-mini-in1k-224").to(torch_device) image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.3805, -0.8676, -0.3912]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch @require_natten class NatBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (NatBackbone,) if is_torch_available() else () config_class = NatConfig def setUp(self): self.model_tester = NatModelTester(self)
transformers/tests/models/nat/test_modeling_nat.py/0
{ "file_path": "transformers/tests/models/nat/test_modeling_nat.py", "repo_id": "transformers", "token_count": 6239 }
358
# coding=utf-8 # Copyright 2023 IBM and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch PatchTSMixer model. """ import inspect import itertools import random import tempfile import unittest from typing import Dict, List, Optional, Tuple, Union import numpy as np from huggingface_hub import hf_hub_download from parameterized import parameterized from transformers import is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin TOLERANCE = 1e-4 if is_torch_available(): import torch from transformers import ( MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING, MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING, PatchTSMixerConfig, PatchTSMixerForPrediction, PatchTSMixerForPretraining, PatchTSMixerForRegression, PatchTSMixerForTimeSeriesClassification, PatchTSMixerModel, ) from transformers.models.patchtsmixer.modeling_patchtsmixer import ( PatchTSMixerEncoder, PatchTSMixerForPredictionHead, PatchTSMixerForPredictionOutput, PatchTSMixerForRegressionOutput, PatchTSMixerForTimeSeriesClassificationOutput, PatchTSMixerLinearHead, PatchTSMixerPretrainHead, ) @require_torch class PatchTSMixerModelTester: def __init__( self, context_length: int = 32, patch_length: int = 8, num_input_channels: int = 3, patch_stride: int = 8, # d_model: int = 128, hidden_size: int = 8, # num_layers: int = 8, num_hidden_layers: int = 2, expansion_factor: int = 2, dropout: float = 0.5, mode: str = "common_channel", gated_attn: bool = True, norm_mlp="LayerNorm", swin_hier: int = 0, # masking related mask_type: str = "forecast", random_mask_ratio=0.5, mask_patches: list = [2, 3], forecast_mask_ratios: list = [1, 1], mask_value=0, masked_loss: bool = False, mask_mode: str = "mask_before_encoder", channel_consistent_masking: bool = True, scaling: Optional[Union[str, bool]] = "std", # Head related head_dropout: float = 0.2, # forecast related prediction_length: int = 16, out_channels: int = None, # Classification/regression related # num_labels: int = 3, num_targets: int = 3, output_range: list = None, head_aggregation: str = None, # Trainer related batch_size=13, is_training=True, seed_number=42, post_init=True, num_parallel_samples=4, ): self.num_input_channels = num_input_channels self.context_length = context_length self.patch_length = patch_length self.patch_stride = patch_stride # self.d_model = d_model self.hidden_size = hidden_size self.expansion_factor = expansion_factor # self.num_layers = num_layers self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.mode = mode self.gated_attn = gated_attn self.norm_mlp = norm_mlp self.swin_hier = swin_hier self.scaling = scaling self.head_dropout = head_dropout # masking related self.mask_type = mask_type self.random_mask_ratio = random_mask_ratio self.mask_patches = mask_patches self.forecast_mask_ratios = forecast_mask_ratios self.mask_value = mask_value self.channel_consistent_masking = channel_consistent_masking self.mask_mode = mask_mode self.masked_loss = masked_loss # patching related self.patch_last = True # forecast related self.prediction_length = prediction_length self.out_channels = out_channels # classification/regression related # self.num_labels = num_labels self.num_targets = num_targets self.output_range = output_range self.head_aggregation = head_aggregation # Trainer related self.batch_size = batch_size self.is_training = is_training self.seed_number = seed_number self.post_init = post_init self.num_parallel_samples = num_parallel_samples def get_config(self): config_ = PatchTSMixerConfig( num_input_channels=self.num_input_channels, context_length=self.context_length, patch_length=self.patch_length, patch_stride=self.patch_stride, # d_model = self.d_model, d_model=self.hidden_size, expansion_factor=self.expansion_factor, # num_layers = self.num_layers, num_layers=self.num_hidden_layers, dropout=self.dropout, mode=self.mode, gated_attn=self.gated_attn, norm_mlp=self.norm_mlp, swin_hier=self.swin_hier, scaling=self.scaling, head_dropout=self.head_dropout, mask_type=self.mask_type, random_mask_ratio=self.random_mask_ratio, mask_patches=self.mask_patches, forecast_mask_ratios=self.forecast_mask_ratios, mask_value=self.mask_value, channel_consistent_masking=self.channel_consistent_masking, mask_mode=self.mask_mode, masked_loss=self.masked_loss, prediction_length=self.prediction_length, out_channels=self.out_channels, # num_labels=self.num_labels, num_targets=self.num_targets, output_range=self.output_range, head_aggregation=self.head_aggregation, post_init=self.post_init, ) self.num_patches = config_.num_patches return config_ def prepare_patchtsmixer_inputs_dict(self, config): _past_length = config.context_length # bs, n_vars, num_patch, patch_length # [bs x context_length x n_vars] past_values = floats_tensor([self.batch_size, _past_length, self.num_input_channels]) inputs_dict = { "past_values": past_values, } return inputs_dict def prepare_config_and_inputs(self): config = self.get_config() inputs_dict = self.prepare_patchtsmixer_inputs_dict(config) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict @require_torch class PatchTSMixerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( PatchTSMixerModel, PatchTSMixerForPrediction, PatchTSMixerForPretraining, PatchTSMixerForTimeSeriesClassification, PatchTSMixerForRegression, ) if is_torch_available() else () ) all_generative_model_classes = ( (PatchTSMixerForPrediction, PatchTSMixerForPretraining) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": PatchTSMixerModel} if is_torch_available() else {} is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = False test_torchscript = False test_inputs_embeds = False test_model_common_attributes = False test_resize_embeddings = True test_resize_position_embeddings = False test_mismatched_shapes = True test_model_parallel = False has_attentions = False def setUp(self): self.model_tester = PatchTSMixerModelTester() self.config_tester = ConfigTester( self, config_class=PatchTSMixerConfig, has_text_modality=False, prediction_length=self.model_tester.prediction_length, common_properties=["hidden_size", "expansion_factor", "num_hidden_layers"], ) def test_config(self): self.config_tester.run_common_tests() def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if model_class == PatchTSMixerForPrediction: rng = random.Random(self.model_tester.seed_number) labels = floats_tensor( [ self.model_tester.batch_size, self.model_tester.prediction_length, self.model_tester.num_input_channels, ], rng=rng, ) inputs_dict["future_values"] = labels elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING): rng = random.Random(self.model_tester.seed_number) labels = ids_tensor([self.model_tester.batch_size], self.model_tester.num_targets, rng=rng) inputs_dict["target_values"] = labels elif model_class in get_values(MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING): rng = random.Random(self.model_tester.seed_number) labels = floats_tensor([self.model_tester.batch_size, self.model_tester.num_targets], rng=rng) inputs_dict["target_values"] = labels inputs_dict["output_hidden_states"] = True return inputs_dict def test_save_load_strict(self): config, _ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers, ) self.assertEqual(len(hidden_states), expected_num_layers) expected_hidden_size = self.model_tester.hidden_size self.assertEqual(hidden_states[0].shape[-1], expected_hidden_size) num_patch = self.model_tester.num_patches self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patch, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip("No tokens embeddings") def test_resize_tokens_embeddings(self): pass def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) output_ = model(**dict_inputs, return_dict=True, **additional_kwargs) attributes_ = vars(output_) dict_output = tuple(attributes_.values()) def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5, ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: print(model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) tuple_inputs.update({"output_hidden_states": False}) dict_inputs.update({"output_hidden_states": False}) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) tuple_inputs.update({"output_hidden_states": False}) dict_inputs.update({"output_hidden_states": False}) check_equivalence( model, tuple_inputs, dict_inputs, ) def test_model_main_input_name(self): model_signature = inspect.signature(getattr(PatchTSMixerModel, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(PatchTSMixerModel.main_input_name, observed_main_input_name) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model_class == PatchTSMixerForPretraining: expected_arg_names = [ "past_values", "observed_mask", "output_hidden_states", "return_loss", ] elif model_class == PatchTSMixerModel: expected_arg_names = [ "past_values", "observed_mask", "output_hidden_states", ] elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING) or model_class in get_values( MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING ): expected_arg_names = [ "past_values", "target_values", "output_hidden_states", "return_loss", ] else: # PatchTSMixerForPrediction expected_arg_names = [ "past_values", "observed_mask", "future_values", "output_hidden_states", "return_loss", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @is_flaky() def test_retain_grad_hidden_states_attentions(self): super().test_retain_grad_hidden_states_attentions() def prepare_batch(repo_id="ibm/patchtsmixer-etth1-test-data", file="pretrain_batch.pt"): # TODO: Make repo public file = hf_hub_download(repo_id=repo_id, filename=file, repo_type="dataset") batch = torch.load(file, map_location=torch_device) return batch @require_torch @slow class PatchTSMixerModelIntegrationTests(unittest.TestCase): def test_pretrain_head(self): model = PatchTSMixerForPretraining.from_pretrained("ibm/patchtsmixer-etth1-pretrain").to(torch_device) batch = prepare_batch() torch.manual_seed(0) with torch.no_grad(): output = model(past_values=batch["past_values"].to(torch_device)).prediction_outputs num_patch = ( max(model.config.context_length, model.config.patch_length) - model.config.patch_length ) // model.config.patch_stride + 1 expected_shape = torch.Size( [ 64, model.config.num_input_channels, num_patch, model.config.patch_length, ] ) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[[-0.9106]],[[1.5326]],[[-0.8245]],[[0.7439]],[[-0.7830]],[[2.6256]],[[-0.6485]],]],device=torch_device) # fmt: skip self.assertTrue(torch.allclose(output[0, :7, :1, :1], expected_slice, atol=TOLERANCE)) def test_forecasting_head(self): model = PatchTSMixerForPrediction.from_pretrained("ibm/patchtsmixer-etth1-forecasting").to(torch_device) batch = prepare_batch(file="forecast_batch.pt") model.eval() torch.manual_seed(0) with torch.no_grad(): output = model( past_values=batch["past_values"].to(torch_device), future_values=batch["future_values"].to(torch_device), ).prediction_outputs expected_shape = torch.Size([64, model.config.prediction_length, model.config.num_input_channels]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.2471, 0.5036, 0.3596, 0.5401, -0.0985, 0.3423, -0.8439]], device=torch_device, ) self.assertTrue(torch.allclose(output[0, :1, :7], expected_slice, atol=TOLERANCE)) def test_prediction_generation(self): model = PatchTSMixerForPrediction.from_pretrained("ibm/patchtsmixer-etth1-generate").to(torch_device) batch = prepare_batch(file="forecast_batch.pt") print(batch["past_values"]) torch.manual_seed(0) model.eval() with torch.no_grad(): outputs = model.generate(past_values=batch["past_values"].to(torch_device)) expected_shape = torch.Size((64, 1, model.config.prediction_length, model.config.num_input_channels)) self.assertEqual(outputs.sequences.shape, expected_shape) expected_slice = torch.tensor( [[0.4308, -0.4731, 1.3512, -0.1038, -0.4655, 1.1279, -0.7179]], device=torch_device, ) mean_prediction = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -1:], expected_slice, atol=TOLERANCE)) @require_torch class PatchTSMixerFunctionalTests(unittest.TestCase): @classmethod def setUpClass(cls): """Setup method: Called once before test-cases execution""" cls.params = {} cls.params.update( context_length=32, patch_length=8, num_input_channels=3, patch_stride=8, d_model=4, expansion_factor=2, num_layers=3, dropout=0.2, mode="common_channel", # common_channel, mix_channel gated_attn=True, norm_mlp="LayerNorm", mask_type="random", random_mask_ratio=0.5, mask_patches=[2, 3], forecast_mask_ratios=[1, 1], mask_value=0, masked_loss=True, channel_consistent_masking=True, head_dropout=0.2, prediction_length=64, out_channels=None, # num_labels=3, num_targets=3, output_range=None, head_aggregation=None, scaling="std", use_positional_encoding=False, positional_encoding="sincos", self_attn=False, self_attn_heads=1, num_parallel_samples=4, ) cls.num_patches = ( max(cls.params["context_length"], cls.params["patch_length"]) - cls.params["patch_length"] ) // cls.params["patch_stride"] + 1 # batch_size = 32 batch_size = 2 int(cls.params["prediction_length"] / cls.params["patch_length"]) cls.data = torch.rand( batch_size, cls.params["context_length"], cls.params["num_input_channels"], ) cls.enc_data = torch.rand( batch_size, cls.params["num_input_channels"], cls.num_patches, cls.params["patch_length"], ) cls.enc_output = torch.rand( batch_size, cls.params["num_input_channels"], cls.num_patches, cls.params["d_model"], ) cls.flat_enc_output = torch.rand( batch_size, cls.num_patches, cls.params["d_model"], ) cls.correct_pred_output = torch.rand( batch_size, cls.params["prediction_length"], cls.params["num_input_channels"], ) cls.correct_regression_output = torch.rand(batch_size, cls.params["num_targets"]) cls.correct_pretrain_output = torch.rand( batch_size, cls.params["num_input_channels"], cls.num_patches, cls.params["patch_length"], ) cls.correct_forecast_output = torch.rand( batch_size, cls.params["prediction_length"], cls.params["num_input_channels"], ) cls.correct_sel_forecast_output = torch.rand(batch_size, cls.params["prediction_length"], 2) cls.correct_classification_output = torch.rand( batch_size, cls.params["num_targets"], ) cls.correct_classification_classes = torch.randint(0, cls.params["num_targets"], (batch_size,)) def test_patchtsmixer_encoder(self): config = PatchTSMixerConfig(**self.__class__.params) enc = PatchTSMixerEncoder(config) output = enc(self.__class__.enc_data) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) def test_patchmodel(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerModel(config) output = mdl(self.__class__.data) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.patch_input.shape, self.__class__.enc_data.shape) def test_pretrainhead(self): config = PatchTSMixerConfig(**self.__class__.params) head = PatchTSMixerPretrainHead( config=config, ) output = head(self.__class__.enc_output) self.assertEqual(output.shape, self.__class__.correct_pretrain_output.shape) def test_pretrain_full(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerForPretraining(config) output = mdl(self.__class__.data) self.assertEqual( output.prediction_outputs.shape, self.__class__.correct_pretrain_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) def test_pretrain_full_with_return_dict(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerForPretraining(config) output = mdl(self.__class__.data, return_dict=False) self.assertEqual(output[1].shape, self.__class__.correct_pretrain_output.shape) self.assertEqual(output[2].shape, self.__class__.enc_output.shape) self.assertEqual(output[0].item() < np.inf, True) def test_forecast_head(self): config = PatchTSMixerConfig(**self.__class__.params) head = PatchTSMixerForPredictionHead( config=config, ) # output = head(self.__class__.enc_output, raw_data = self.__class__.correct_pretrain_output) output = head(self.__class__.enc_output) self.assertEqual(output.shape, self.__class__.correct_forecast_output.shape) def check_module( self, task, params=None, output_hidden_states=True, ): config = PatchTSMixerConfig(**params) if task == "forecast": mdl = PatchTSMixerForPrediction(config) target_input = self.__class__.correct_forecast_output if config.prediction_channel_indices is not None: target_output = self.__class__.correct_sel_forecast_output else: target_output = target_input ref_samples = target_output.unsqueeze(1).expand(-1, config.num_parallel_samples, -1, -1) ground_truth_arg = "future_values" output_predictions_arg = "prediction_outputs" elif task == "classification": mdl = PatchTSMixerForTimeSeriesClassification(config) target_input = self.__class__.correct_classification_classes target_output = self.__class__.correct_classification_output ground_truth_arg = "target_values" output_predictions_arg = "prediction_outputs" elif task == "regression": mdl = PatchTSMixerForRegression(config) target_input = self.__class__.correct_regression_output target_output = self.__class__.correct_regression_output ref_samples = target_output.unsqueeze(1).expand(-1, config.num_parallel_samples, -1) ground_truth_arg = "target_values" output_predictions_arg = "regression_outputs" elif task == "pretrain": mdl = PatchTSMixerForPretraining(config) target_input = None target_output = self.__class__.correct_pretrain_output ground_truth_arg = None output_predictions_arg = "prediction_outputs" else: print("invalid task") enc_output = self.__class__.enc_output if target_input is None: output = mdl(self.__class__.data, output_hidden_states=output_hidden_states) else: output = mdl( self.__class__.data, **{ ground_truth_arg: target_input, "output_hidden_states": output_hidden_states, }, ) prediction_outputs = getattr(output, output_predictions_arg) if isinstance(prediction_outputs, tuple): for t in prediction_outputs: self.assertEqual(t.shape, target_output.shape) else: self.assertEqual(prediction_outputs.shape, target_output.shape) self.assertEqual(output.last_hidden_state.shape, enc_output.shape) if output_hidden_states is True: self.assertEqual(len(output.hidden_states), params["num_layers"]) else: self.assertEqual(output.hidden_states, None) self.assertEqual(output.loss.item() < np.inf, True) if config.loss == "nll" and task in ["forecast", "regression"]: samples = mdl.generate(self.__class__.data) self.assertEqual(samples.sequences.shape, ref_samples.shape) @parameterized.expand( list( itertools.product( ["common_channel", "mix_channel"], [True, False], [True, False, "mean", "std"], [True, False], [None, [0, 2]], ["mse", "nll"], ) ) ) def test_forecast(self, mode, self_attn, scaling, gated_attn, prediction_channel_indices, loss): params = self.__class__.params.copy() params.update( mode=mode, self_attn=self_attn, scaling=scaling, prediction_channel_indices=prediction_channel_indices, gated_attn=gated_attn, loss=loss, ) self.check_module(task="forecast", params=params) @parameterized.expand( list( itertools.product( ["common_channel", "mix_channel"], [True, False], [True, False, "mean", "std"], [True, False], ["max_pool", "avg_pool"], ) ) ) def test_classification(self, mode, self_attn, scaling, gated_attn, head_aggregation): params = self.__class__.params.copy() params.update( mode=mode, self_attn=self_attn, scaling=scaling, head_aggregation=head_aggregation, gated_attn=gated_attn, ) self.check_module(task="classification", params=params) @parameterized.expand( list( itertools.product( ["common_channel", "mix_channel"], [True, False], [True, False, "mean", "std"], [True, False], ["max_pool", "avg_pool"], ["mse", "nll"], ) ) ) def test_regression(self, mode, self_attn, scaling, gated_attn, head_aggregation, loss): params = self.__class__.params.copy() params.update( mode=mode, self_attn=self_attn, scaling=scaling, head_aggregation=head_aggregation, gated_attn=gated_attn, loss=loss, ) self.check_module(task="regression", params=params) @parameterized.expand( list( itertools.product( ["common_channel", "mix_channel"], [True, False], [True, False, "mean", "std"], [True, False], ["random", "forecast"], [True, False], [True, False], ) ) ) def test_pretrain( self, mode, self_attn, scaling, gated_attn, mask_type, masked_loss, channel_consistent_masking, ): params = self.__class__.params.copy() params.update( mode=mode, self_attn=self_attn, scaling=scaling, gated_attn=gated_attn, mask_type=mask_type, masked_loss=masked_loss, channel_consistent_masking=channel_consistent_masking, ) self.check_module(task="pretrain", params=params) def forecast_full_module(self, params=None, output_hidden_states=False, return_dict=None): config = PatchTSMixerConfig(**params) mdl = PatchTSMixerForPrediction(config) target_val = self.__class__.correct_forecast_output if config.prediction_channel_indices is not None: target_val = self.__class__.correct_sel_forecast_output enc_output = self.__class__.enc_output output = mdl( self.__class__.data, future_values=self.__class__.correct_forecast_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(output, tuple): output = PatchTSMixerForPredictionOutput(*output) if config.loss == "mse": self.assertEqual(output.prediction_outputs.shape, target_val.shape) self.assertEqual(output.last_hidden_state.shape, enc_output.shape) if output_hidden_states is True: self.assertEqual(len(output.hidden_states), params["num_layers"]) else: self.assertEqual(output.hidden_states, None) self.assertEqual(output.loss.item() < np.inf, True) if config.loss == "nll": samples = mdl.generate(self.__class__.data) ref_samples = target_val.unsqueeze(1).expand(-1, params["num_parallel_samples"], -1, -1) self.assertEqual(samples.sequences.shape, ref_samples.shape) def test_forecast_full(self): self.check_module(task="forecast", params=self.__class__.params, output_hidden_states=True) # self.forecast_full_module(self.__class__.params, output_hidden_states = True) def test_forecast_full_2(self): params = self.__class__.params.copy() params.update( mode="mix_channel", ) self.forecast_full_module(params, output_hidden_states=True) def test_forecast_full_2_with_return_dict(self): params = self.__class__.params.copy() params.update( mode="mix_channel", ) self.forecast_full_module(params, output_hidden_states=True, return_dict=False) def test_forecast_full_3(self): params = self.__class__.params.copy() params.update( mode="mix_channel", ) self.forecast_full_module(params, output_hidden_states=True) def test_forecast_full_5(self): params = self.__class__.params.copy() params.update( self_attn=True, use_positional_encoding=True, positional_encoding="sincos", ) self.forecast_full_module(params, output_hidden_states=True) def test_forecast_full_4(self): params = self.__class__.params.copy() params.update( mode="mix_channel", prediction_channel_indices=[0, 2], ) self.forecast_full_module(params) def test_forecast_full_distributional(self): params = self.__class__.params.copy() params.update( mode="mix_channel", prediction_channel_indices=[0, 2], loss="nll", distribution_output="normal", ) self.forecast_full_module(params) def test_forecast_full_distributional_2(self): params = self.__class__.params.copy() params.update( mode="mix_channel", prediction_channel_indices=[0, 2], loss="nll", # distribution_output = "normal", ) self.forecast_full_module(params) def test_forecast_full_distributional_3(self): params = self.__class__.params.copy() params.update( mode="mix_channel", # prediction_channel_indices=[0, 2], loss="nll", distribution_output="normal", ) self.forecast_full_module(params) def test_forecast_full_distributional_4(self): params = self.__class__.params.copy() params.update( mode="mix_channel", # prediction_channel_indices=[0, 2], loss="nll", distribution_output="normal", ) self.forecast_full_module(params) def test_classification_head(self): config = PatchTSMixerConfig(**self.__class__.params) head = PatchTSMixerLinearHead( config=config, ) # output = head(self.__class__.enc_output, raw_data = self.__class__.correct_pretrain_output) output = head(self.__class__.enc_output) self.assertEqual(output.shape, self.__class__.correct_classification_output.shape) def test_classification_full(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerForTimeSeriesClassification(config) output = mdl( self.__class__.data, target_values=self.__class__.correct_classification_classes, ) self.assertEqual( output.prediction_outputs.shape, self.__class__.correct_classification_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) def test_classification_full_with_return_dict(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerForTimeSeriesClassification(config) output = mdl( self.__class__.data, target_values=self.__class__.correct_classification_classes, return_dict=False, ) if isinstance(output, tuple): output = PatchTSMixerForTimeSeriesClassificationOutput(*output) self.assertEqual( output.prediction_outputs.shape, self.__class__.correct_classification_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) def test_regression_head(self): config = PatchTSMixerConfig(**self.__class__.params) head = PatchTSMixerLinearHead( config=config, ) output = head(self.__class__.enc_output) self.assertEqual(output.shape, self.__class__.correct_regression_output.shape) def test_regression_full(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerForRegression(config) output = mdl(self.__class__.data, target_values=self.__class__.correct_regression_output) self.assertEqual( output.regression_outputs.shape, self.__class__.correct_regression_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) def test_regression_full_with_return_dict(self): config = PatchTSMixerConfig(**self.__class__.params) mdl = PatchTSMixerForRegression(config) output = mdl( self.__class__.data, target_values=self.__class__.correct_regression_output, return_dict=False, ) if isinstance(output, tuple): output = PatchTSMixerForRegressionOutput(*output) self.assertEqual( output.regression_outputs.shape, self.__class__.correct_regression_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) def test_regression_full_distribute(self): params = self.__class__.params.copy() params.update(loss="nll", distribution_output="normal") config = PatchTSMixerConfig(**params) mdl = PatchTSMixerForRegression(config) output = mdl(self.__class__.data, target_values=self.__class__.correct_regression_output) self.assertEqual( output.regression_outputs[0].shape, self.__class__.correct_regression_output.shape, ) self.assertEqual( output.regression_outputs[1].shape, self.__class__.correct_regression_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) if config.loss == "nll": samples = mdl.generate(self.__class__.data) ref_samples = self.__class__.correct_regression_output.unsqueeze(1).expand( -1, params["num_parallel_samples"], -1 ) self.assertEqual(samples.sequences.shape, ref_samples.shape) def test_regression_full_distribute_2(self): params = self.__class__.params.copy() params.update(loss="nll", distribution_output="student_t") config = PatchTSMixerConfig(**params) mdl = PatchTSMixerForRegression(config) output = mdl(self.__class__.data, target_values=self.__class__.correct_regression_output) self.assertEqual( output.regression_outputs[0].shape, self.__class__.correct_regression_output.shape, ) self.assertEqual( output.regression_outputs[1].shape, self.__class__.correct_regression_output.shape, ) self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) self.assertEqual(output.loss.item() < np.inf, True) if config.loss == "nll": samples = mdl.generate(self.__class__.data) ref_samples = self.__class__.correct_regression_output.unsqueeze(1).expand( -1, params["num_parallel_samples"], -1 ) self.assertEqual(samples.sequences.shape, ref_samples.shape)
transformers/tests/models/patchtsmixer/test_modeling_patchtsmixer.py/0
{ "file_path": "transformers/tests/models/patchtsmixer/test_modeling_patchtsmixer.py", "repo_id": "transformers", "token_count": 20454 }
359
# coding=utf-8 # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Phi model. """ import unittest import pytest from transformers import PhiConfig, is_torch_available from transformers.testing_utils import ( require_bitsandbytes, require_flash_attn, require_torch, require_torch_gpu, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, PhiForCausalLM, PhiForSequenceClassification, PhiForTokenClassification, PhiModel, ) class PhiModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return PhiConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = PhiModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = PhiModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = PhiForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = PhiForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class PhiModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (PhiModel, PhiForCausalLM, PhiForSequenceClassification, PhiForTokenClassification) if is_torch_available() else () ) all_generative_model_classes = (PhiForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": PhiModel, "text-classification": PhiForSequenceClassification, "text-generation": PhiForCausalLM, "token-classification": PhiForTokenClassification, "zero-shot": PhiForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79292/workflows/fa2ba644-8953-44a6-8f67-ccd69ca6a476/jobs/1012905 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.setUp with Llama->Phi def setUp(self): self.model_tester = PhiModelTester(self) self.config_tester = ConfigTester(self, config_class=PhiConfig, hidden_size=37) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_config def test_config(self): self.config_tester.run_common_tests() # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model with Llama->Phi,llama->phi def test_phi_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PhiForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_single_label with Llama->Phi,llama->phi def test_phi_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PhiForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_multi_label with Llama->Phi,llama->phi def test_phi_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = PhiForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @require_flash_attn @require_torch_gpu @require_bitsandbytes @pytest.mark.flash_attn_test @slow # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_flash_attn_2_generate_padding_right with LlamaForCausalLM->PhiForCausalLM,LlamaTokenizer->AutoTokenizer,meta-llama/Llama-2-7b-hf->microsoft/phi-1 def test_flash_attn_2_generate_padding_right(self): """ Overwritting the common test as the test is flaky on tiny models """ model = PhiForCausalLM.from_pretrained( "microsoft/phi-1", load_in_4bit=True, device_map={"": 0}, ) tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") texts = ["hi", "Hello this is a very long sentence"] tokenizer.padding_side = "right" tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0) output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_native = tokenizer.batch_decode(output_native) model = PhiForCausalLM.from_pretrained( "microsoft/phi-1", load_in_4bit=True, device_map={"": 0}, attn_implementation="flash_attention_2" ) output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_fa_2 = tokenizer.batch_decode(output_fa_2) self.assertListEqual(output_native, output_fa_2) @slow @require_torch class PhiIntegrationTest(unittest.TestCase): def test_model_phi_1_logits(self): input_ids = { "input_ids": torch.tensor( [[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device ) } model = PhiForCausalLM.from_pretrained("microsoft/phi-1").to(torch_device) model.eval() output = model(**input_ids).logits EXPECTED_OUTPUT = torch.tensor([[2.2671, 6.7684, -2.0107, -1.2440, -1.5335, -2.3828, 6.9186, 6.4245, 3.1548, 0.9998, 0.0760, 4.4653, 4.9857, 4.2956, 1.2308, -1.4178, 0.1361, 0.5191, -0.5699, -2.2201, -3.0750, -3.9600, -4.5936, -3.7394, -2.7777, 6.1874, -0.4148, -1.5684, -0.5967, 0.2395], [1.7004, 4.0383, 0.0546, 0.4530, -0.3619, -0.9021, 1.8355, 1.3587, 1.2406, 2.5775, -0.8834, 5.1910, 4.2565, 4.1406, 3.0752, -0.9099, 1.1595, 0.0264, 0.3243, -1.1803, -1.3945, -2.1406, -3.9939, -1.4438, -2.9546, 3.9204, 1.0851, -1.0598, -1.7819, -0.4827]]).to(torch_device) # fmt: skip self.assertTrue(torch.allclose(EXPECTED_OUTPUT, output[0, :2, :30], atol=1e-4, rtol=1e-4)) def test_model_phi_1_5_logits(self): input_ids = { "input_ids": torch.tensor( [[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device ) } model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5").to(torch_device) model.eval() output = model(**input_ids).logits EXPECTED_OUTPUT = torch.tensor([[12.2922, 13.3507, 8.6963, 9.1355, 9.3502, 9.2667, 14.2027, 13.1363, 13.5446, 11.1337, 9.9279, 16.7195, 13.0768, 14.9141, 11.9965, 8.0233, 10.3129, 10.6118, 10.0204, 9.3827, 8.8344, 8.2806, 8.0153, 8.0540, 7.0964, 16.5743, 11.1256, 9.6987, 11.4770, 10.5440], [12.3323, 14.6050, 8.9986, 8.1580, 9.5654, 6.6728, 12.5966, 12.6662, 12.2784, 11.7522, 8.2039, 16.3102, 11.2203, 13.6088, 12.0125, 9.1021, 9.8216, 10.0987, 9.0926, 8.4260, 8.8009, 7.6547, 6.8075, 7.7881, 7.4501, 15.7451, 10.5053, 8.3129, 10.0027, 9.2612]]).to(torch_device) # fmt: skip self.assertTrue(torch.allclose(EXPECTED_OUTPUT, output[0, :2, :30], atol=1e-4, rtol=1e-4)) def test_model_phi_2_logits(self): input_ids = { "input_ids": torch.tensor( [[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device ) } model = PhiForCausalLM.from_pretrained("microsoft/phi-2").to(torch_device) model.eval() output = model(**input_ids).logits EXPECTED_OUTPUT = torch.tensor([[6.4830, 6.1644, 3.4055, 2.2848, 5.4654, 2.8360, 5.5975, 5.5391, 7.3101, 4.2498, 2.5913, 10.3885, 6.4359, 8.7982, 5.6534, 0.5150, 2.7498, 3.1930, 2.4334, 1.7781, 1.5613, 1.3067, 0.8291, 0.5633, 0.6522, 9.8191, 5.5771, 2.7987, 4.2845, 3.7030], [6.0642, 7.8242, 3.4634, 1.9259, 4.3169, 2.0913, 6.0446, 3.6804, 6.6736, 4.0727, 2.1791, 11.4139, 5.6795, 7.5652, 6.2039, 2.7174, 4.3266, 3.6930, 2.8058, 2.6721, 2.3047, 2.0848, 2.0972, 2.0441, 1.3160, 9.2085, 4.5557, 3.0296, 2.6045, 2.4059]]).to(torch_device) # fmt: skip self.assertTrue(torch.allclose(EXPECTED_OUTPUT, output[0, :2, :30], atol=1e-3, rtol=1e-3)) def test_phi_2_generation(self): model = PhiForCausalLM.from_pretrained("microsoft/phi-2") tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") inputs = tokenizer( "Can you help me write a formal email to a potential business partner proposing a joint venture?", return_tensors="pt", return_attention_mask=False, ) outputs = model.generate(**inputs, max_new_tokens=30) output_text = tokenizer.batch_decode(outputs) EXPECTED_OUTPUT = [ "Can you help me write a formal email to a potential business partner proposing a joint venture?\nInput: Company A: ABC Inc.\nCompany B: XYZ Ltd.\nJoint Venture: A new online platform for e-commerce" ] self.assertListEqual(output_text, EXPECTED_OUTPUT)
transformers/tests/models/phi/test_modeling_phi.py/0
{ "file_path": "transformers/tests/models/phi/test_modeling_phi.py", "repo_id": "transformers", "token_count": 9169 }
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np import pytest from datasets import load_dataset from transformers.testing_utils import ( require_essentia, require_librosa, require_pretty_midi, require_scipy, require_torch, ) from transformers.tokenization_utils import BatchEncoding from transformers.utils.import_utils import ( is_essentia_available, is_librosa_available, is_pretty_midi_available, is_scipy_available, is_torch_available, ) requirements_available = ( is_torch_available() and is_essentia_available() and is_scipy_available() and is_librosa_available() and is_pretty_midi_available() ) if requirements_available: import pretty_midi from transformers import ( Pop2PianoFeatureExtractor, Pop2PianoForConditionalGeneration, Pop2PianoProcessor, Pop2PianoTokenizer, ) @require_scipy @require_torch @require_librosa @require_essentia @require_pretty_midi class Pop2PianoProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano") tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") processor = Pop2PianoProcessor(feature_extractor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return Pop2PianoTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Pop2PianoFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_additional_features(self): processor = Pop2PianoProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer( unk_token="-1", eos_token="1", pad_token="0", bos_token="2", ) feature_extractor_add_kwargs = self.get_feature_extractor() processor = Pop2PianoProcessor.from_pretrained( self.tmpdirname, unk_token="-1", eos_token="1", pad_token="0", bos_token="2", ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, Pop2PianoTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, Pop2PianoFeatureExtractor) def get_inputs(self): """get inputs for both feature extractor and tokenizer""" ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") speech_samples = ds.sort("id").select([0])["audio"] input_speech = [x["array"] for x in speech_samples][0] sampling_rate = [x["sampling_rate"] for x in speech_samples][0] feature_extractor_outputs = self.get_feature_extractor()( audio=input_speech, sampling_rate=sampling_rate, return_tensors="pt" ) model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") token_ids = model.generate(input_features=feature_extractor_outputs["input_features"], composer="composer1") dummy_notes = [ [ pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77), pretty_midi.Note(start=0.673379, end=0.905578, pitch=73, velocity=77), pretty_midi.Note(start=0.905578, end=2.159456, pitch=73, velocity=77), pretty_midi.Note(start=1.114558, end=2.159456, pitch=78, velocity=77), pretty_midi.Note(start=1.323537, end=1.532517, pitch=80, velocity=77), ], [ pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77), ], ] return input_speech, sampling_rate, token_ids, dummy_notes def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Pop2PianoProcessor( tokenizer=tokenizer, feature_extractor=feature_extractor, ) input_speech, sampling_rate, _, _ = self.get_inputs() feature_extractor_outputs = feature_extractor( audio=input_speech, sampling_rate=sampling_rate, return_tensors="np" ) processor_outputs = processor(audio=input_speech, sampling_rate=sampling_rate, return_tensors="np") for key in feature_extractor_outputs.keys(): self.assertTrue(np.allclose(feature_extractor_outputs[key], processor_outputs[key], atol=1e-4)) def test_processor_batch_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Pop2PianoProcessor( tokenizer=tokenizer, feature_extractor=feature_extractor, ) audio, sampling_rate, token_ids, _ = self.get_inputs() feature_extractor_output = feature_extractor(audio=audio, sampling_rate=sampling_rate, return_tensors="pt") encoded_processor = processor.batch_decode( token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=True, ) encoded_tokenizer = tokenizer.batch_decode( token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=True, ) # check start timings encoded_processor_start_timings = [token.start for token in encoded_processor["notes"]] encoded_tokenizer_start_timings = [token.start for token in encoded_tokenizer["notes"]] self.assertListEqual(encoded_processor_start_timings, encoded_tokenizer_start_timings) # check end timings encoded_processor_end_timings = [token.end for token in encoded_processor["notes"]] encoded_tokenizer_end_timings = [token.end for token in encoded_tokenizer["notes"]] self.assertListEqual(encoded_processor_end_timings, encoded_tokenizer_end_timings) # check pitch encoded_processor_pitch = [token.pitch for token in encoded_processor["notes"]] encoded_tokenizer_pitch = [token.pitch for token in encoded_tokenizer["notes"]] self.assertListEqual(encoded_processor_pitch, encoded_tokenizer_pitch) # check velocity encoded_processor_velocity = [token.velocity for token in encoded_processor["notes"]] encoded_tokenizer_velocity = [token.velocity for token in encoded_tokenizer["notes"]] self.assertListEqual(encoded_processor_velocity, encoded_tokenizer_velocity) def test_tokenizer_call(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Pop2PianoProcessor( tokenizer=tokenizer, feature_extractor=feature_extractor, ) _, _, _, notes = self.get_inputs() encoded_processor = processor( notes=notes, ) self.assertTrue(isinstance(encoded_processor, BatchEncoding)) def test_processor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Pop2PianoProcessor( tokenizer=tokenizer, feature_extractor=feature_extractor, ) audio, sampling_rate, _, notes = self.get_inputs() inputs = processor( audio=audio, sampling_rate=sampling_rate, notes=notes, ) self.assertListEqual( list(inputs.keys()), ["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"], ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Pop2PianoProcessor( tokenizer=tokenizer, feature_extractor=feature_extractor, ) audio, sampling_rate, _, notes = self.get_inputs() feature_extractor(audio, sampling_rate, return_tensors="pt") inputs = processor( audio=audio, sampling_rate=sampling_rate, notes=notes, ) self.assertListEqual( list(inputs.keys()), ["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"], )
transformers/tests/models/pop2piano/test_processor_pop2piano.py/0
{ "file_path": "transformers/tests/models/pop2piano/test_processor_pop2piano.py", "repo_id": "transformers", "token_count": 4029 }
361
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class RagRetrieverTest(TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() self.retrieval_vector_size = 8 # DPR tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(dpr_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(bart_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) def get_dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) def get_bart_tokenizer(self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) def get_dummy_dataset(self): dataset = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], } ) dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def get_dummy_canonical_hf_index_retriever(self): dataset = self.get_dummy_dataset() config = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), ) with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) return retriever def get_dummy_custom_hf_index_retriever(self, from_disk: bool): dataset = self.get_dummy_dataset() config = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name="custom", ) if from_disk: config.passages_path = os.path.join(self.tmpdirname, "dataset") config.index_path = os.path.join(self.tmpdirname, "index.faiss") dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss")) dataset.drop_index("embeddings") dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset")) del dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) else: retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, dataset), ) return retriever def test_canonical_hf_index_retriever_retrieve(self): n_docs = 1 retriever = self.get_dummy_canonical_hf_index_retriever() hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(doc_dicts), 2) self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]), n_docs) self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]]) def test_canonical_hf_index_retriever_save_and_from_pretrained(self): retriever = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = self.get_dummy_dataset() retriever.save_pretrained(tmp_dirname) retriever = RagRetriever.from_pretrained(tmp_dirname) self.assertIsInstance(retriever, RagRetriever) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) out = retriever.retrieve(hidden_states, n_docs=1) self.assertTrue(out is not None) def test_custom_hf_index_retriever_retrieve(self): n_docs = 1 retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(doc_dicts), 2) self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]), n_docs) self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]]) def test_custom_hf_index_retriever_save_and_from_pretrained(self): retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(tmp_dirname) retriever = RagRetriever.from_pretrained(tmp_dirname) self.assertIsInstance(retriever, RagRetriever) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) out = retriever.retrieve(hidden_states, n_docs=1) self.assertTrue(out is not None) def test_custom_hf_index_retriever_retrieve_from_disk(self): n_docs = 1 retriever = self.get_dummy_custom_hf_index_retriever(from_disk=True) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(doc_dicts), 2) self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]), n_docs) self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]]) def test_custom_hf_index_retriever_save_and_from_pretrained_from_disk(self): retriever = self.get_dummy_custom_hf_index_retriever(from_disk=True) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(tmp_dirname) retriever = RagRetriever.from_pretrained(tmp_dirname) self.assertIsInstance(retriever, RagRetriever) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) out = retriever.retrieve(hidden_states, n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def test_hf_index_retriever_call(self): import torch n_docs = 1 retriever = self.get_dummy_canonical_hf_index_retriever() question_input_ids = [[5, 7], [10, 11]] hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) out = retriever(question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(context_input_ids, list) self.assertIsInstance(context_attention_mask, list) self.assertIsInstance(retrieved_doc_embeds, np.ndarray) out = retriever( question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds, doc_ids = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(context_input_ids, torch.Tensor) self.assertIsInstance(context_attention_mask, torch.Tensor) self.assertIsInstance(retrieved_doc_embeds, torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def test_custom_hf_index_end2end_retriever_call(self): context_encoder_tokenizer = self.get_dpr_ctx_encoder_tokenizer() n_docs = 1 retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False) retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer) question_input_ids = [[5, 7], [10, 11]] hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) out = retriever(question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs) self.assertEqual( len(out), 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask")), True ) # check for doc token related keys in dictionary.
transformers/tests/models/rag/test_retrieval_rag.py/0
{ "file_path": "transformers/tests/models/rag/test_retrieval_rag.py", "repo_id": "transformers", "token_count": 6761 }
362
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the RemBert tokenizer. """ import tempfile import unittest from tests.test_tokenization_common import AddedToken, TokenizerTesterMixin from transformers import RemBertTokenizer, RemBertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers SENTENCEPIECE_UNDERLINE = "▁" SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class RemBertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = RemBertTokenizer rust_tokenizer_class = RemBertTokenizerFast space_between_special_tokens = True test_rust_tokenizer = True test_sentencepiece_ignore_case = True pre_trained_model_path = "google/rembert" def setUp(self): super().setUp() tokenizer = RemBertTokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) # Copied from ReformerTokenizationTest.get_input_output_texts def get_input_output_texts(self, tokenizer): input_text = "this is a test" output_text = "this is a test" return input_text, output_text def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[5], "▁the") self.assertEqual(vocab_keys[2], "</s>") def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_000) def test_full_tokenizer(self): tokenizer = RemBertTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [SPIECE_UNDERLINE + "I",SPIECE_UNDERLINE + "was",SPIECE_UNDERLINE + "b","or","n",SPIECE_UNDERLINE + "in",SPIECE_UNDERLINE + "","9","2","0","0","0",",",SPIECE_UNDERLINE + "and",SPIECE_UNDERLINE + "this",SPIECE_UNDERLINE + "is",SPIECE_UNDERLINE + "f","al","s","é",".",],) # fmt: skip ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) def test_encode_decode_round_trip(self): tokenizer = RemBertTokenizer(SAMPLE_VOCAB, keep_accents=True) text = "清水寺は京都にある。" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["▁", "清水寺は京都にある。"]) encoded_string = tokenizer.encode(text) self.assertListEqual(encoded_string, [1000, 7, 0, 1001]) decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEquals(decode_text, text) text = "That's awesome! 🤩 #HuggingFace, 🌟 Have a great day! 🌈" tokens = tokenizer.tokenize(text) self.assertListEqual( tokens, ['▁That', "'", 's', '▁a', 'w', 'es', 'ome', '!', '▁', '🤩', '▁', '#', 'H', 'u', 'g', 'g', 'ing', 'F', 'a', 'ce', ',', '▁', '🌟', '▁H', 'a', 've', '▁a', '▁great', '▁day', '!', '▁', '🌈']) # fmt: skip decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEquals(decode_text, "That's awesome! 🤩 #HuggingFace, 🌟 Have a great day! 🌈") text = "In the sky up above" tokens = tokenizer._tokenize(text) self.assertListEqual(tokens, ["▁In", "▁the", "▁s", "k", "y", "▁up", "▁a", "b", "o", "ve"]) # fmt: skip encoded_string = tokenizer.encode(text) self.assertListEqual(encoded_string, [1000, 388, 5, 47, 45, 30, 118, 10, 65, 20, 123, 1001]) decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, decode_text) text = "The cat. . Sat <s>.In a room" tokens = tokenizer.tokenize(text) self.assertListEqual( tokens, ["▁The", "▁c", "at", ".", "▁", ".", "▁S", "at", "▁", "<", "s", ">", ".", "I", "n", "▁a", "▁room"] ) encoded_string = tokenizer.encode(text) self.assertListEqual( encoded_string, [1000, 68, 69, 76, 4, 7, 4, 166, 76, 7, 0, 6, 0, 4, 100, 24, 10, 136, 1001] ) decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, decode_text) text = "Invoice #12345, dated 2023-12-01, is due on 2024-01-15." tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ['▁In', 'v', 'o', 'ic', 'e', '▁', '#', '1', '2', '34', '5', ',', '▁da', 'ted', '▁', '2', '0', '2', '3', '-', '1', '2', '-', '0', '1', ',', '▁is', '▁d', 'u', 'e', '▁on', '▁', '2', '0', '2', '4', '-', '0', '1', '-', '1', '5', '.']) # fmt: skip encoded_string = tokenizer.encode(text) self.assertListEqual(encoded_string, [1000, 388, 83, 20, 113, 15, 7, 0, 356, 602, 0, 555, 3, 417, 273, 7, 602, 347, 602, 0, 33, 356, 602, 33, 347, 356, 3, 46, 229, 51, 15, 59, 7, 602, 347, 602, 0, 33, 347, 356, 33, 356, 555, 4, 1001]) # fmt: skip decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, decode_text) text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit..." tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ['▁', 'L', 'or', 'em', '▁', 'i', 'p', 's', 'um', '▁do', 'l', 'or', '▁sit', '▁am', 'e', 't', ',', '▁con', 'se', 'c', 'te', 't', 'ur', '▁a', 'd', 'i', 'p', 'is', 'c', 'ing', '▁', 'el', 'it', '.', '.', '.']) # fmt: skip encoded_string = tokenizer.encode(text) self.assertListEqual( encoded_string, [1000, 7, 279, 55, 300, 7, 23, 29, 6, 155, 92, 27, 55, 615, 219, 15, 14, 3, 247, 114, 28, 181, 14, 108, 10, 16, 23, 29, 125, 28, 17, 7, 168, 137, 4, 4, 4, 1001] ) # fmt: skip decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, decode_text) # for multiple language in one sentence text = "Bonjour! Hello! こんにちは!" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["▁B", "on", "j", "o", "ur", "!", "▁He", "ll", "o", "!", "▁", "こんにちは", "!"]) encoded_string = tokenizer.encode(text) self.assertListEqual(encoded_string, [1000, 295, 109, 999, 20, 108, 146, 156, 86, 20, 146, 7, 0, 146, 1001]) decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, decode_text) text = "Extra spaces\tand\nline breaks\r\nshould be handled." tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ['▁E', 'x', 't', 'r', 'a', '▁sp', 'a', 'ce', 's', '▁and', '▁line', '▁b', 're', 'a', 'k', 's', '▁should', '▁be', '▁hand', 'led', '.']) # fmt: skip encoded_string = tokenizer.encode(text) self.assertListEqual( encoded_string, [1000, 454, 297, 14, 35, 18, 277, 18, 133, 6, 12, 485, 84, 56, 18, 45, 6, 173, 36, 363, 338, 4, 1001], ) decode_text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual("Extra spaces and line breaks should be handled.", decode_text) def test_sequence_builders(self): tokenizer = RemBertTokenizer(SAMPLE_VOCAB) text = tokenizer.encode("sequence builders") text_2 = tokenizer.encode("multi-sequence build") encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [ tokenizer.sep_token_id ] def test_added_tokens_serialization(self): # Utility to test the added vocab def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir): tokenizer = tokenizer_class.from_pretrained(temp_dir) self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens) self.assertIn(new_eos, tokenizer.added_tokens_decoder.values()) self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos) self.assertDictEqual(expected, tokenizer.added_tokens_decoder) return tokenizer new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False, special=True) new_masked_token = AddedToken("[MASK]", lstrip=True, rstrip=False, normalized=False) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): # Load a slow tokenizer from the hub, init with the new token for fast to also include it tokenizer = self.tokenizer_class.from_pretrained( pretrained_name, eos_token=new_eos, mask_token=new_masked_token ) EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"): self.assertEqual(tokenizer._eos_token, new_eos) self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values())) with tempfile.TemporaryDirectory() as tmp_dir_2: tokenizer.save_pretrained(tmp_dir_2) with self.subTest( "Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class" ): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2 ) if self.rust_tokenizer_class is not None: with self.subTest( "Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class" ): tokenizer_fast = _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2 ) with tempfile.TemporaryDirectory() as tmp_dir_3: tokenizer_fast.save_pretrained(tmp_dir_3) with self.subTest( "Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class" ): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 ) with self.subTest( "Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class" ): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 ) with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"): if self.rust_tokenizer_class is not None: tokenizer_fast = self.rust_tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos) self.assertEqual(tokenizer_fast._eos_token, new_eos) self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values())) # We can't test the following because for BC we kept the default rstrip lstrip in slow not fast. Will comment once normalization is alright with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"): self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder) EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder with tempfile.TemporaryDirectory() as tmp_dir_4: tokenizer_fast.save_pretrained(tmp_dir_4) with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4 ) with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4 )
transformers/tests/models/rembert/test_tokenization_rembert.py/0
{ "file_path": "transformers/tests/models/rembert/test_tokenization_rembert.py", "repo_id": "transformers", "token_count": 6741 }
363
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = RoCBertTokenizer rust_tokenizer_class = None test_rust_tokenizer = False space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] word_shape = {} word_pronunciation = {} for i, value in enumerate(vocab_tokens): word_shape[value] = i word_pronunciation[value] = i self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.word_shape_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["word_shape_file"]) self.word_pronunciation_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["word_pronunciation_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.word_shape_file, "w", encoding="utf-8") as word_shape_writer: json.dump(word_shape, word_shape_writer, ensure_ascii=False) with open(self.word_pronunciation_file, "w", encoding="utf-8") as word_pronunciation_writer: json.dump(word_pronunciation, word_pronunciation_writer, ensure_ascii=False) def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file) tokens = tokenizer.tokenize("你好[SEP]你是谁") self.assertListEqual(tokens, ["你", "好", "[SEP]", "你", "是", "谁"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(tokens), [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(tokens), [5, 6, 2, 5, 7, 8]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_chinese with BasicTokenizer->RoCBertBasicTokenizer def test_chinese(self): tokenizer = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower_strip_accents_false with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower_strip_accents_true with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower_strip_accents_default with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_no_lower with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_no_lower(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_no_lower_strip_accents_false with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_no_lower_strip_accents_true with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_respects_never_split_tokens with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_wordpiece_tokenizer with WordpieceTokenizer->RoCBertWordpieceTokenizer def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = RoCBertWordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_is_whitespace def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_is_control def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_is_punctuation def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) if self.test_rust_tokenizer: rust_tokenizer = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_offsets_with_special_characters def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_change_tokenize_chinese_chars def test_change_tokenize_chinese_chars(self): list_of_commun_chinese_char = ["的", "人", "有"] text_with_chinese_char = "".join(list_of_commun_chinese_char) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): kwargs["tokenize_chinese_chars"] = True tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char) self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char) kwargs["tokenize_chinese_chars"] = False tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that only the first Chinese character is not preceded by "##". expected_tokens = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char) ] self.assertListEqual(tokens_without_spe_char_p, expected_tokens) self.assertListEqual(tokens_without_spe_char_r, expected_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file) text = tokenizer.encode("你好", add_special_tokens=False) text_2 = tokenizer.encode("你是谁", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_2 + [2] def test_prepare_for_model(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): string_sequence = "你好,你是谁" tokens = tokenizer.tokenize(string_sequence) tokens_ids = tokenizer.convert_tokens_to_ids(tokens) tokens_shape_ids = tokenizer.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = tokenizer.convert_tokens_to_pronunciation_ids(tokens) prepared_input_dict = tokenizer.prepare_for_model( tokens_ids, tokens_shape_ids, tokens_proun_ids, add_special_tokens=True ) input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True) self.assertEqual(input_dict, prepared_input_dict)
transformers/tests/models/roc_bert/test_tokenization_roc_bert.py/0
{ "file_path": "transformers/tests/models/roc_bert/test_tokenization_roc_bert.py", "repo_id": "transformers", "token_count": 7464 }
364
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, PreTrainedTokenizerFast, SeamlessM4TTokenizer, SeamlessM4TTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right EN_CODE = 256047 RO_CODE = 256145 SMALL_TRAINING_CORPUS = [ ["This is the first sentence.", "This is the second one."], ["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."], ] @require_sentencepiece @require_tokenizers class SeamlessM4TTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = SeamlessM4TTokenizer rust_tokenizer_class = SeamlessM4TTokenizerFast test_rust_tokenizer = True test_sentencepiece = True from_pretrained_kwargs = {} def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = SeamlessM4TTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_full_tokenizer(self): tokenizer = SeamlessM4TTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def test_maximum_encoding_length_single_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) sequence = tokenizer.encode(seq_0, add_special_tokens=False) total_length = len(sequence) self.assertGreater( total_length, 4, "Issue with the testing sequence, please update it, it's too short" ) # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_1 = seq_0 * model_max_length sequence1 = tokenizer(seq_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) self.assertGreater( total_length1, model_max_length, "Issue with the testing sequence, please update it, it's too short", ) # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"Truncation: {truncation_state}"): output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer(seq_1, padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer([seq_1], padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) # Overflowing tokens stride = 2 # modify padding because it's activated by default in seamlessM4T information = tokenizer( seq_0, max_length=total_length - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, padding=False, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence[:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) else: truncated_sequence = information["input_ids"] overflowing_tokens = information["overflowing_tokens"] self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence[:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) @unittest.skip("By defaults, uses pad_to_multiple_of which breaks the test") def test_maximum_encoding_length_pair_input(self): pass def test_padding_to_multiple_of(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.pad_token is None: self.skipTest("No padding token.") else: empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8) normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8) for key, value in empty_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # default to padding=True so need to precise which padding is called normal_tokens = tokenizer("This", pad_to_multiple_of=8, padding=False) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # Should also work with truncation normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # truncation to something which is not a multiple of pad_to_multiple_of raises an error self.assertRaises( ValueError, tokenizer.__call__, "This", padding=True, truncation=True, max_length=12, pad_to_multiple_of=8, ) @require_torch def test_prepare_seq2seq_batch(self): if not self.test_seq2seq: return tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. src_text = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: batch = tokenizer.prepare_seq2seq_batch( src_texts=src_text, tgt_texts=tgt_text, max_length=3, max_target_length=10, return_tensors="pt", src_lang="eng", tgt_lang="ron", pad_to_multiple_of=None, ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # TODO: not working for tgt_text # max_target_length will default to max_length if not specified batch = tokenizer.prepare_seq2seq_batch( src_texts=src_text, tgt_texts=tgt_text, max_length=4, return_tensors="pt", pad_to_multiple_of=None, ) self.assertEqual(batch.input_ids.shape[1], 4) self.assertEqual(batch.labels.shape[1], 4) batch_encoder_only = tokenizer.prepare_seq2seq_batch( src_texts=src_text, max_length=4, max_target_length=10, return_tensors="pt", pad_to_multiple_of=None, ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 4) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 4) self.assertNotIn("decoder_input_ids", batch_encoder_only) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.") def test_save_slow_from_fast_and_reload_fast(self): pass # Copied from tests.models.nllb.test_tokenization_nllb.NllbTokenizationTest.test_special_tokens_initialization def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) r_output = tokenizer_r.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, # , from_slow=True <- unfortunately too slow to convert ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a <special> token") cr_output = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @unittest.skip( "encode_plus and batch_encode_plus are deprecated and __call__ do some processing, so we expect different results." ) def test_call(self): pass def test_training_new_tokenizer(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) # We check that the parameters of the tokenizer remained the same # Check we have the same number of added_tokens for both pair and non-pair inputs. # make sure it has the same prefix tokens first new_tokenizer.tgt_lang = tokenizer.tgt_lang tokenizer.tgt_lang = tokenizer.tgt_lang self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False)) self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True)) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence) self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair) # Assert the set of special tokens match as we didn't ask to change them self.assertSequenceEqual( tokenizer.all_special_tokens_extended, new_tokenizer.all_special_tokens_extended, ) self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map) @unittest.skip("Fails because of the hack of adding <unk> in _tokenize") def test_pickle_subword_regularization_tokenizer(self): pass @unittest.skip("Fails because of the hack of adding <unk> in _tokenize") def test_subword_regularization_tokenizer(self): pass @require_torch @require_sentencepiece @require_tokenizers class SeamlessM4TDistilledIntegrationTest(unittest.TestCase): checkpoint_name = "facebook/hf-seamless-m4t-medium" src_text = [ " UN Chief Says There Is No Military Solution in Syria", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] expected_src_tokens = [256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 3] # fmt: skip @classmethod def setUpClass(cls): cls.tokenizer: SeamlessM4TTokenizer = SeamlessM4TTokenizer.from_pretrained( cls.checkpoint_name, src_lang="eng", tgt_lang="ron" ) # cls.pad_token_id = 1 return cls def test_language_codes(self): self.assertEqual(self.tokenizer.convert_tokens_to_ids("__ace_Latn__"), 256002) self.assertEqual(self.tokenizer.convert_tokens_to_ids("__shn__"), 256152) self.assertEqual(self.tokenizer.convert_tokens_to_ids("__eng__"), 256047) self.assertEqual(self.tokenizer.convert_tokens_to_ids("__fra__"), 256057) self.assertEqual(self.tokenizer.convert_tokens_to_ids("__quy__"), 256144) def test_tokenizer_tgt_lang(self): ids = self.tokenizer(self.src_text, src_lang="fra").input_ids[0] self.assertListEqual(self.expected_src_tokens[1:], ids[1 : len(self.expected_src_tokens)]) self.assertEqual(256057, ids[0]) rest_ids = ids[len(self.expected_src_tokens) :] self.assertListEqual([0] * len(rest_ids), rest_ids) ids = self.tokenizer(self.src_text, src_lang="__shn__").input_ids[0] self.assertListEqual(self.expected_src_tokens[1:], ids[1 : len(self.expected_src_tokens)]) self.assertEqual(256152, ids[0]) # Copied from tests.models.nllb.test_tokenization_nllb.NllbDistilledIntegrationTest.test_enro_tokenizer_decode_ignores_language_codes def test_enro_tokenizer_decode_ignores_language_codes(self): self.assertIn(RO_CODE, self.tokenizer.all_special_ids) generated_ids = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: skip result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_romanian) self.assertNotIn(self.tokenizer.eos_token, result) def test_enro_tokenizer_truncation(self): src_text = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], str) desired_max_length = 10 ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] self.assertEqual(ids[-1], 3) self.assertEqual(ids[0], EN_CODE) self.assertEqual(len(ids), desired_max_length) # Copied from tests.models.nllb.test_tokenization_nllb.NllbDistilledIntegrationTest.test_special_tokens_unaffacted_by_save_load with fairseq_tokens_to_ids->additional_special_tokens, Nllb->SeamlessM4T, Dict->List def test_special_tokens_unaffacted_by_save_load(self): tmpdirname = tempfile.mkdtemp() original_special_tokens = self.tokenizer.additional_special_tokens self.tokenizer.save_pretrained(tmpdirname) new_tok = SeamlessM4TTokenizer.from_pretrained(tmpdirname) self.assertListEqual(new_tok.additional_special_tokens, original_special_tokens) @require_torch def test_enro_tokenizer_prepare_batch(self): batch = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), pad_to_multiple_of=None, return_tensors="pt", ) batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.convert_tokens_to_ids("__ron__") ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 15), batch.input_ids.shape) self.assertEqual((2, 15), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, result) self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) def test_seq2seq_max_length(self): batch = self.tokenizer( self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt", pad_to_multiple_of=None ) targets = self.tokenizer( text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt" ) labels = targets["input_ids"] batch["decoder_input_ids"] = shift_tokens_right( labels, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.convert_tokens_to_ids(self.tokenizer.tgt_lang), ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def test_tokenizer_translation(self): inputs = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="eng", tgt_lang="fra" ) self.assertEqual( nested_simplify(inputs), { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 3]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, }, ) @require_sentencepiece @require_tokenizers class CommonSpmIntegrationTests(unittest.TestCase): """ A class that regroups important test to make sure that we properly handle the special tokens. """ @classmethod def setUpClass(cls): tokenizer = SeamlessM4TTokenizer(SAMPLE_VOCAB, extra_ids=0, add_bos_token=False, legacy=False) tokenizer.add_special_tokens({"additional_special_tokens": [AddedToken("<s>", rstrip=False, lstrip=False)]}) cls.tokenizer = tokenizer return cls def test_add_dummy_prefix(self): # make sure `'▁'` is prepended, and outputs match sp_model's # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute input_ids = self.tokenizer.encode(". Hello") self.assertEqual(input_ids, [3, 1, 8, 5, 157, 87, 21, 3]) sp_encode = self.tokenizer.sp_model.encode(". Hello") # [bos, lang_id, _] + offset_sp_encode self.assertEqual(input_ids[:-1], [3, 1, 8] + [i + self.tokenizer.fairseq_offset for i in sp_encode]) tokens = self.tokenizer.tokenize(". Hello") self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"]) tokens = self.tokenizer.tokenize("") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str)) tokens = self.tokenizer.tokenize(" ") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str)) tokens = self.tokenizer.tokenize("▁") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str)) def test_remove_extra_whitespaces(self): # make sure the extra spaces are eaten. Since the sample vocab does not have # `______`. sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute is set to False input_ids = self.tokenizer.encode(" . Hello") self.assertEqual(input_ids, [3, 1, 8, 5, 157, 87, 21, 3]) sp_encode = self.tokenizer.sp_model.encode(" . Hello") self.assertEqual([i - self.tokenizer.fairseq_offset for i in input_ids[2:-1]], [7] + sp_encode) tokens = self.tokenizer.tokenize(" . Hello") self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"]) # `'▁'` is also a whitespace input_ids = self.tokenizer.encode("▁He is not") self.assertEqual(input_ids, [3, 1, 157, 47, 45, 3]) tokens = self.tokenizer.tokenize("▁He is not") sp_encode = [ self.tokenizer.sp_model.piece_to_id("▁He"), self.tokenizer.sp_model.piece_to_id("▁is"), self.tokenizer.sp_model.piece_to_id("▁not"), ] self.assertEqual([i - self.tokenizer.fairseq_offset for i in input_ids[2:-1]], sp_encode) self.assertEqual(tokens, ["▁He", "▁is", "▁not"]) # no extra space added input_ids = self.tokenizer.encode("▁He is not<s> ▁He") self.assertEqual(input_ids, [3, 1, 157, 47, 45, 2, 157, 3]) tokens = self.tokenizer.tokenize("▁He is not<s> ▁He") self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<s>", "▁He"]) # spaces are eaten by spm + our strip # make sure that the output after the extra id is the same as if # extra_id was not there input_ids = self.tokenizer.encode("▁He is not ▁He") self.assertEqual(input_ids, [3, 1, 157, 47, 45, 157, 3]) tokens = self.tokenizer.tokenize("▁He is not ▁He") self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"]) # spaces are eaten by spm even if not start def test_character_after_special_token(self): # Make sure that `tokenizer.tokenize` is similar to # adding the equivalent special token to the vocab input_ids = self.tokenizer.encode("Hey <s>I") self.assertEqual(input_ids, [3, 1, 157, 31, 2, 101, 3]) sp_encode = self.tokenizer.sp_model.encode("Hey .I") # the last token besides eos should be 100 offset self.assertEqual(input_ids[-2] - self.tokenizer.fairseq_offset, sp_encode[-1]) tokens = self.tokenizer.tokenize("<s>I") self.assertEqual(tokens, ["<s>", "I"]) input_ids = self.tokenizer.encode("Hello, <s>,") self.assertEqual(input_ids, [3, 1, 157, 87, 21, 4, 2, 4, 3]) tokens = self.tokenizer.tokenize("Hello, <s>,") self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<s>", ","]) def test_special_tokens_strip(self): input_ids = self.tokenizer.encode(" <s> ,") self.assertEqual(input_ids, [3, 1, 2, 8, 4, 3]) tokens = self.tokenizer.tokenize(" <s> ,") # spaces are eaten by rstrip / lstrip + spm sp_model.encode(" ") = [] self.assertEqual(tokens, ["<s>", "▁", ","]) input_ids = self.tokenizer.encode("No <s> ▁He") self.assertEqual(input_ids, [3, 1, 285, 2, 157, 3]) tokens = self.tokenizer.tokenize("No <s> ▁He") self.assertEqual(tokens, ["▁No", "<s>", "▁He"]) # spaces are eaten by rstrip / lstrip
transformers/tests/models/seamless_m4t/test_tokenization_seamless_m4t.py/0
{ "file_path": "transformers/tests/models/seamless_m4t/test_tokenization_seamless_m4t.py", "repo_id": "transformers", "token_count": 15133 }
365
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow, torch_device from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bart.test_modeling_flax_bart import FlaxBartStandaloneDecoderModelTester from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..gpt2.test_modeling_flax_gpt2 import FlaxGPT2ModelTester from ..wav2vec2.test_modeling_flax_wav2vec2 import FlaxWav2Vec2ModelTester if is_flax_available(): import jax import jax.numpy as jnp from flax.training.common_utils import onehot from flax.traverse_util import flatten_dict from transformers import ( FlaxBartForCausalLM, FlaxBertForCausalLM, FlaxGPT2LMHeadModel, FlaxSpeechEncoderDecoderModel, FlaxWav2Vec2Model, SpeechEncoderDecoderConfig, ) from transformers.modeling_flax_outputs import FlaxBaseModelOutput from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import SpeechEncoderDecoderModel @require_flax class FlaxEncoderDecoderMixin: def get_encoder_decoder_model(self, config, decoder_config): raise NotImplementedError def prepare_config_and_inputs(self): raise NotImplementedError def get_pretrained_model(self): raise NotImplementedError def check_encoder_decoder_model_from_pretrained_configs( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) self.assertTrue(encoder_decoder_config.decoder.is_decoder) enc_dec_model = FlaxSpeechEncoderDecoderModel(encoder_decoder_config) self.assertTrue(enc_dec_model.config.is_encoder_decoder) self.assertFalse(enc_dec_model.config.tie_word_embeddings) outputs_encoder_decoder = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) self.assertTrue(enc_dec_model.config.decoder.is_decoder) self.assertTrue(enc_dec_model.config.decoder.add_cross_attention) self.assertTrue(enc_dec_model.config.is_encoder_decoder) outputs_encoder_decoder = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) encoder_outputs = FlaxBaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1]) outputs_encoder_decoder = enc_dec_model( attention_mask, decoder_input_ids, decoder_attention_mask, encoder_outputs=encoder_outputs ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model_from_pretrained( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, return_dict, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict} enc_dec_model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) outputs_encoder_decoder = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, return_dict=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_save_and_load( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model} enc_dec_model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) outputs = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_2 = np.array(outputs[0]) out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: enc_dec_model.save_pretrained(tmpdirname) FlaxSpeechEncoderDecoderModel.from_pretrained(tmpdirname) after_outputs = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_1 = np.array(after_outputs[0]) out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 4e-2) def check_encoder_decoder_model_from_encoder_decoder_pretrained( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) # assert that loading encoder and decoder models from configs has been correctly executed self.assertEqual(config.add_adapter, encoder_model.config.add_adapter) self.assertEqual(decoder_config.use_cache, decoder_model.config.use_cache) with tempfile.TemporaryDirectory() as enc_tmpdir: with tempfile.TemporaryDirectory() as dec_tmpdir: encoder_model.save_pretrained(enc_tmpdir) decoder_model.save_pretrained(dec_tmpdir) # load a model from pretrained encoder and decoder checkpoints, setting one encoder and one decoder kwarg opposite to that specified in their respective configs enc_dec_model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=enc_tmpdir, decoder_pretrained_model_name_or_path=dec_tmpdir, encoder_add_adapter=not config.add_adapter, decoder_use_cache=not decoder_config.use_cache, ) # assert that setting encoder and decoder kwargs opposite to those in the configs has correctly been applied self.assertNotEqual(config.add_adapter, enc_dec_model.config.encoder.add_adapter) self.assertNotEqual(decoder_config.use_cache, enc_dec_model.config.decoder.use_cache) outputs_encoder_decoder = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, return_dict=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model_output_attentions( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): # make the decoder inputs a different shape from the encoder inputs to harden the test decoder_input_ids = decoder_input_ids[:, :-1] decoder_attention_mask = decoder_attention_mask[:, :-1] encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model} enc_dec_model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) outputs_encoder_decoder = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=True, ) encoder_attentions = outputs_encoder_decoder["encoder_attentions"] self.assertEqual(len(encoder_attentions), config.num_hidden_layers) seq_len = enc_dec_model._get_feat_extract_output_lengths(inputs.shape[1]) self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len)) decoder_attentions = outputs_encoder_decoder["decoder_attentions"] num_decoder_layers = ( decoder_config.num_decoder_layers if hasattr(decoder_config, "num_decoder_layers") else decoder_config.num_hidden_layers ) self.assertEqual(len(decoder_attentions), num_decoder_layers) self.assertEqual( decoder_attentions[0].shape[-3:], (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]), ) cross_attentions = outputs_encoder_decoder["cross_attentions"] self.assertEqual(len(cross_attentions), num_decoder_layers) cross_attention_input_seq_len = decoder_input_ids.shape[-1] self.assertEqual( cross_attentions[0].shape[-3:], (decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len), ) def check_encoder_decoder_model_generate(self, inputs, config, decoder_config, **kwargs): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model} enc_dec_model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) pad_token_id = enc_dec_model.config.decoder.pad_token_id eos_token_id = enc_dec_model.config.decoder.eos_token_id decoder_start_token_id = enc_dec_model.config.decoder.decoder_start_token_id # Copied from generation.utils (GPT2 doesn't have `pad_token_id`) if pad_token_id is None and eos_token_id is not None: pad_token_id = eos_token_id if decoder_start_token_id is None: decoder_start_token_id = enc_dec_model.config.decoder.bos_token_id # Bert does not have a bos token id, so use pad_token_id instead # Copied from `test_modeling_encoder_decoder.py` if decoder_start_token_id is None: decoder_start_token_id = pad_token_id generated_output = enc_dec_model.generate( inputs, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, ) generated_sequences = generated_output.sequences self.assertEqual(generated_sequences.shape, (inputs.shape[0],) + (decoder_config.max_length,)) def check_freeze_feature_encoder( self, config, inputs, attention_mask, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) enc_dec_model = FlaxSpeechEncoderDecoderModel(encoder_decoder_config) params = enc_dec_model.params def cross_entropy(logits, labels): return -jnp.sum(labels * jax.nn.log_softmax(logits, axis=-1), axis=-1) # define a dummy loss function for computing the loss over a forward pass def compute_loss( params, inputs, attention_mask, decoder_input_ids, freeze_feature_encoder: bool = False, ): outputs_enc_dec = enc_dec_model( inputs=inputs, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, freeze_feature_encoder=freeze_feature_encoder, params=params, ) logits = outputs_enc_dec.logits vocab_size = logits.shape[-1] loss = cross_entropy(logits, onehot(labels=decoder_input_ids, num_classes=vocab_size)).sum() return (loss, logits) # transform the loss function to get the gradients grad_fn = jax.value_and_grad(compute_loss, has_aux=True) # compute the loss, logits, and gradients for the unfrozen model (loss, logits), grads = grad_fn( params, inputs, attention_mask, decoder_input_ids, freeze_feature_encoder=False ) # compare to the loss, logits and gradients for the frozen model (loss_frozen, logits_frozen), grads_frozen = grad_fn( params, inputs, attention_mask, decoder_input_ids, freeze_feature_encoder=True ) # ensure that the logits and losses remain precisely equal self.assertTrue((logits == logits_frozen).all()) self.assertEqual(loss, loss_frozen) grads = flatten_dict(grads) grads_frozen = flatten_dict(grads_frozen) # ensure that the dicts of gradients contain the same keys self.assertEqual(grads.keys(), grads_frozen.keys()) # ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k) feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k) for feature_extractor_grad, feature_extractor_grad_frozen in zip( feature_extractor_grads, feature_extractor_grads_frozen ): self.assertTrue((feature_extractor_grad_frozen == 0.0).all()) self.assertTrue((feature_extractor_grad > 0.0).any()) # ensure that the gradients of all unfrozen layers remain precisely equal, i.e. all layers excluding the frozen 'feature_extractor' grads = tuple(grads[k] for k in grads if "feature_extractor" not in k) grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k) for grad, grad_frozen in zip(grads, grads_frozen): self.assertTrue((grad == grad_frozen).all()) def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict): pt_model.to(torch_device) pt_model.eval() # prepare inputs flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output, pt_output.numpy(), 1e-5) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxSpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 1e-5) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = SpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs, pt_outputs_loaded): self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 1e-5) def check_equivalence_pt_to_flax(self, config, decoder_config, inputs_dict): encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) pt_model = SpeechEncoderDecoderModel(encoder_decoder_config) fx_model = FlaxSpeechEncoderDecoderModel(encoder_decoder_config) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def check_equivalence_flax_to_pt(self, config, decoder_config, inputs_dict): encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) pt_model = SpeechEncoderDecoderModel(encoder_decoder_config) fx_model = FlaxSpeechEncoderDecoderModel(encoder_decoder_config) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def test_encoder_decoder_model_from_pretrained_configs(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict) def test_encoder_decoder_model_from_pretrained(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False) def test_encoder_decoder_model_from_pretrained_return_dict(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True) def test_save_and_load_from_pretrained(self): input_ids_dict = self.prepare_config_and_inputs() self.check_save_and_load(**input_ids_dict) def test_encoder_decoder_model_from_encoder_decoder_pretrained(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_encoder_decoder_pretrained(**input_ids_dict) def test_encoder_decoder_model_output_attentions(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_output_attentions(**input_ids_dict) def test_freeze_feature_encoder(self): input_ids_dict = self.prepare_config_and_inputs() self.check_freeze_feature_encoder(**input_ids_dict) def test_encoder_decoder_model_generate(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_generate(**input_ids_dict) def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs((a - b)).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") @is_pt_flax_cross_test def test_pt_flax_equivalence(self): config_inputs_dict = self.prepare_config_and_inputs() config = config_inputs_dict.pop("config") decoder_config = config_inputs_dict.pop("decoder_config") inputs_dict = config_inputs_dict # `encoder_hidden_states` is not used in model call/forward del inputs_dict["encoder_hidden_states"] # Avoid the case where a sequence has no place to attend (after combined with the causal attention mask) batch_size = inputs_dict["decoder_attention_mask"].shape[0] inputs_dict["decoder_attention_mask"] = np.concatenate( [np.ones(shape=(batch_size, 1)), inputs_dict["decoder_attention_mask"][:, 1:]], axis=1 ) # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. decoder_config.use_cache = False self.assertTrue(decoder_config.cross_attention_hidden_size is None) # check without `enc_to_dec_proj` projection decoder_config.hidden_size = config.hidden_size self.assertTrue(config.hidden_size == decoder_config.hidden_size) self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict) self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict) # check `enc_to_dec_proj` work as expected decoder_config.hidden_size = decoder_config.hidden_size * 2 self.assertTrue(config.hidden_size != decoder_config.hidden_size) self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict) self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict) # check `add_adapter` works as expected config.add_adapter = True self.assertTrue(config.add_adapter) self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict) self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict) @slow def test_real_model_save_load_from_pretrained(self): model_2 = self.get_pretrained_model() inputs = ids_tensor([13, 5], model_2.config.encoder.vocab_size) decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size) attention_mask = ids_tensor([13, 5], vocab_size=2) outputs = model_2( inputs=inputs, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) out_2 = np.array(outputs[0]) out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmp_dirname: model_2.save_pretrained(tmp_dirname) model_1 = FlaxSpeechEncoderDecoderModel.from_pretrained(tmp_dirname) after_outputs = model_1( inputs=inputs, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) out_1 = np.array(after_outputs[0]) out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 4e-2) @require_flax class FlaxWav2Vec2GPT2ModelTest(FlaxEncoderDecoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( "facebook/wav2vec2-large-lv60", "gpt2-medium" ) batch_size = 13 input_values = floats_tensor([batch_size, 512], scale=1.0) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], model.config.decoder.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs = { "inputs": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return model, inputs def get_encoder_decoder_model(self, config, decoder_config): encoder_model = FlaxWav2Vec2Model(config) decoder_model = FlaxGPT2LMHeadModel(decoder_config) return encoder_model, decoder_model def prepare_config_and_inputs(self): model_tester_encoder = FlaxWav2Vec2ModelTester(self, batch_size=13) model_tester_decoder = FlaxGPT2ModelTester(self, batch_size=13) encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs() decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder() (config, inputs, attention_mask) = encoder_config_and_inputs ( decoder_config, decoder_input_ids, decoder_attention_mask, encoder_hidden_states, encoder_attention_mask, ) = decoder_config_and_inputs # make sure that cross attention layers are added decoder_config.add_cross_attention = True return { "config": config, "inputs": inputs, "attention_mask": attention_mask, "decoder_config": decoder_config, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, } @slow def test_flaxwav2vec2gpt2_pt_flax_equivalence(self): pt_model = SpeechEncoderDecoderModel.from_pretrained("jsnfly/wav2vec2-large-xlsr-53-german-gpt2") fx_model = FlaxSpeechEncoderDecoderModel.from_pretrained( "jsnfly/wav2vec2-large-xlsr-53-german-gpt2", from_pt=True ) pt_model.to(torch_device) pt_model.eval() # prepare inputs batch_size = 13 input_values = floats_tensor([batch_size, 512], scale=1.0) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], fx_model.config.decoder.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs_dict = { "inputs": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) pt_logits = pt_outputs.logits pt_outputs = pt_outputs.to_tuple() fx_outputs = fx_model(**inputs_dict) fx_logits = fx_outputs.logits fx_outputs = fx_outputs.to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits, pt_logits.numpy(), 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxSpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict) fx_logits_loaded = fx_outputs_loaded.logits fx_outputs_loaded = fx_outputs_loaded.to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits_loaded, pt_logits.numpy(), 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = SpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs) pt_logits_loaded = pt_outputs_loaded.logits pt_outputs_loaded = pt_outputs_loaded.to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits, pt_logits_loaded.numpy(), 4e-2) @require_flax class FlaxWav2Vec2BartModelTest(FlaxEncoderDecoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( "facebook/wav2vec2-large-lv60", "bart-large" ) batch_size = 13 input_values = floats_tensor([batch_size, 512], scale=1.0) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], model.config.decoder.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs = { "inputs": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return model, inputs def get_encoder_decoder_model(self, config, decoder_config): encoder_model = FlaxWav2Vec2Model(config) decoder_model = FlaxBartForCausalLM(decoder_config) return encoder_model, decoder_model def prepare_config_and_inputs(self): model_tester_encoder = FlaxWav2Vec2ModelTester(self, batch_size=13) model_tester_decoder = FlaxBartStandaloneDecoderModelTester(self, batch_size=13) encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs() decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder() (config, inputs, attention_mask) = encoder_config_and_inputs ( decoder_config, decoder_input_ids, decoder_attention_mask, encoder_hidden_states, encoder_attention_mask, ) = decoder_config_and_inputs # make sure that cross attention layers are added decoder_config.add_cross_attention = True return { "config": config, "inputs": inputs, "attention_mask": attention_mask, "decoder_config": decoder_config, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, } @slow def test_flaxwav2vec2bart_pt_flax_equivalence(self): pt_model = SpeechEncoderDecoderModel.from_pretrained("patrickvonplaten/wav2vec2-2-bart-large") fx_model = FlaxSpeechEncoderDecoderModel.from_pretrained( "patrickvonplaten/wav2vec2-2-bart-large", from_pt=True ) pt_model.to(torch_device) pt_model.eval() # prepare inputs batch_size = 13 input_values = floats_tensor([batch_size, 512], scale=1.0) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], fx_model.config.decoder.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs_dict = { "inputs": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) pt_logits = pt_outputs.logits pt_outputs = pt_outputs.to_tuple() fx_outputs = fx_model(**inputs_dict) fx_logits = fx_outputs.logits fx_outputs = fx_outputs.to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits, pt_logits.numpy(), 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxSpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict) fx_logits_loaded = fx_outputs_loaded.logits fx_outputs_loaded = fx_outputs_loaded.to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits_loaded, pt_logits.numpy(), 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = SpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs) pt_logits_loaded = pt_outputs_loaded.logits pt_outputs_loaded = pt_outputs_loaded.to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits, pt_logits_loaded.numpy(), 4e-2) @require_flax class FlaxWav2Vec2BertModelTest(FlaxEncoderDecoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( "facebook/wav2vec2-large-lv60", "bert-large-uncased" ) batch_size = 13 input_values = floats_tensor([batch_size, 512], model.config.encoder.vocab_size) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], model.config.decoder.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs = { "inputs": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return model, inputs def get_encoder_decoder_model(self, config, decoder_config): encoder_model = FlaxWav2Vec2Model(config) decoder_model = FlaxBertForCausalLM(decoder_config) return encoder_model, decoder_model def prepare_config_and_inputs(self): model_tester_encoder = FlaxWav2Vec2ModelTester(self, batch_size=13) model_tester_decoder = FlaxBertModelTester(self, batch_size=13) encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs() decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder() (config, inputs, attention_mask) = encoder_config_and_inputs ( decoder_config, decoder_input_ids, decoder_attention_mask, encoder_hidden_states, encoder_attention_mask, ) = decoder_config_and_inputs # make sure that cross attention layers are added decoder_config.add_cross_attention = True return { "config": config, "inputs": inputs, "attention_mask": attention_mask, "decoder_config": decoder_config, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, } @slow def test_flaxwav2vec2bert_pt_flax_equivalence(self): pt_model = SpeechEncoderDecoderModel.from_pretrained("speech-seq2seq/wav2vec2-2-bert-large") fx_model = FlaxSpeechEncoderDecoderModel.from_pretrained("speech-seq2seq/wav2vec2-2-bert-large", from_pt=True) pt_model.to(torch_device) pt_model.eval() # prepare inputs batch_size = 13 input_values = floats_tensor([batch_size, 512], fx_model.config.encoder.vocab_size) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], fx_model.config.decoder.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs_dict = { "inputs": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) pt_logits = pt_outputs.logits pt_outputs = pt_outputs.to_tuple() fx_outputs = fx_model(**inputs_dict) fx_logits = fx_outputs.logits fx_outputs = fx_outputs.to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits, pt_logits.numpy(), 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxSpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict) fx_logits_loaded = fx_outputs_loaded.logits fx_outputs_loaded = fx_outputs_loaded.to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits_loaded, pt_logits.numpy(), 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = SpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs) pt_logits_loaded = pt_outputs_loaded.logits pt_outputs_loaded = pt_outputs_loaded.to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") self.assert_almost_equals(fx_logits, pt_logits_loaded.numpy(), 4e-2)
transformers/tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py/0
{ "file_path": "transformers/tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py", "repo_id": "transformers", "token_count": 17887 }
366
# coding=utf-8 # Copyright 2022 Google SwitchTransformers Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import tempfile import unittest from transformers import SwitchTransformersConfig, is_torch_available from transformers.testing_utils import ( require_tokenizers, require_torch, require_torch_accelerator, require_torch_bf16, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, SwitchTransformersEncoderModel, SwitchTransformersForConditionalGeneration, SwitchTransformersModel, SwitchTransformersTop1Router, ) from transformers.models.switch_transformers.modeling_switch_transformers import ( SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST, load_balancing_loss_func, router_z_loss_func, ) class SwitchTransformersModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, decoder_layers=None, sparse_step=1, num_sparse_decoder_layers=2, num_sparse_encoder_layers=2, expert_capacity=100, router_jitter_noise=0.0, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = decoder_layers self.sparse_step = sparse_step self.num_sparse_decoder_layers = num_sparse_decoder_layers self.num_sparse_encoder_layers = num_sparse_encoder_layers self.expert_capacity = expert_capacity self.router_jitter_noise = router_jitter_noise def get_large_model_config(self): return SwitchTransformersConfig.from_pretrained("google/switch-base-8") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_pipeline_config(self): return SwitchTransformersConfig( vocab_size=166, # switch_transformers forces 100 extra tokens d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, expert_capacity=self.expert_capacity, router_jitter_noise=self.router_jitter_noise, ) def get_config(self): return SwitchTransformersConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, sparse_step=self.sparse_step, num_sparse_encoder_layers=self.num_sparse_encoder_layers, num_sparse_decoder_layers=self.num_sparse_decoder_layers, ) def check_prepare_lm_labels_via_shift_left( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersModel(config=config) model.to(torch_device) model.eval() # make sure that lm_labels are correctly padded from the right lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id) # add casaul pad token mask triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not() lm_labels.masked_fill_(triangular_mask, self.pad_token_id) decoder_input_ids = model._shift_right(lm_labels) for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)): # first item self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id) if i < decoder_input_ids_slice.shape[-1]: if i < decoder_input_ids.shape[-1] - 1: # items before diagonal self.parent.assertListEqual( decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist() ) # pad items after diagonal if i < decoder_input_ids.shape[-1] - 2: self.parent.assertListEqual( decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist() ) else: # all items after square self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist()) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_with_lm_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 10) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_decoder_model_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersModel(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True, output_router_logits=False) outputs_use_cache_conf = model(input_ids, output_router_logits=False) outputs_no_past = model(input_ids, use_cache=False, output_router_logits=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids, output_router_logits=False)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, output_router_logits=False)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersModel(config=config).get_decoder() model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past_key_values = model( input_ids, attention_mask=attn_mask, use_cache=True, output_router_logits=False ).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask, output_router_logits=False)[ "last_hidden_state" ] output_from_past = model( next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_router_logits=False )["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersModel(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True, output_router_logits=False) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask, output_router_logits=False)[ "last_hidden_state" ] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_router_logits=False, )["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) @slow def create_and_check_generate_with_past_key_values( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): r""" This test does not pass for small models due to precision errors. It is therefore only run for slightly larger models. """ model = ( SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8").to(torch_device).eval() ) torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = SwitchTransformersModel(config=config).to(torch_device).half().eval() output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_encoder_decoder_shared_weights( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): for model_class in [SwitchTransformersModel, SwitchTransformersForConditionalGeneration]: torch.manual_seed(0) model = model_class(config=config).to(torch_device).eval() # load state dict copies weights but does not tie them model.encoder.load_state_dict(model.decoder.state_dict(), strict=False) torch.manual_seed(0) tied_config = copy.deepcopy(config) tied_config.tie_encoder_decoder = True tied_model = model_class(config=tied_config).to(torch_device).eval() model_result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4 ) ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: tied_model.save_pretrained(tmpdirname) tied_model = model_class.from_pretrained(tmpdirname) tied_model.to(torch_device) tied_model.eval() # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4, ) ) def check_resize_embeddings_switch_transformers_v1_1( self, config, ): prev_vocab_size = config.vocab_size config.tie_word_embeddings = False model = SwitchTransformersForConditionalGeneration(config=config).to(torch_device).eval() model.resize_token_embeddings(prev_vocab_size - 10) self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, "output_router_logits": False, } return config, inputs_dict @require_torch class SwitchTransformersModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (SwitchTransformersModel, SwitchTransformersForConditionalGeneration) if is_torch_available() else () ) all_generative_model_classes = (SwitchTransformersForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": SwitchTransformersForConditionalGeneration, "feature-extraction": SwitchTransformersModel, "summarization": SwitchTransformersForConditionalGeneration, "text2text-generation": SwitchTransformersForConditionalGeneration, "translation": SwitchTransformersForConditionalGeneration, } if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = True test_model_parallel = False is_encoder_decoder = True test_torchscript = False # The small SWITCH_TRANSFORMERS model needs higher percentages for CPU/MP tests model_split_percents = [0.8, 0.9] def setUp(self): self.model_tester = SwitchTransformersModelTester(self) self.config_tester = ConfigTester(self, config_class=SwitchTransformersConfig, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_shift_right(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # check that gated gelu feed forward and different word embeddings work config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_model(config, *config_and_inputs[1:]) def test_config_and_model_silu_gated(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] config.feed_forward_proj = "gated-silu" self.model_tester.create_and_check_model(*config_and_inputs) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_decoder_model_past_with_3d_attn_mask(self): ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.model_tester.prepare_config_and_inputs() attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length], vocab_size=2, ) decoder_attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length], vocab_size=2, ) self.model_tester.create_and_check_decoder_model_attention_mask_past( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_generate_with_past_key_values(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs) def test_encoder_decoder_shared_weights(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def test_v1_1_resize_embeddings(self): config = self.model_tester.prepare_config_and_inputs()[0] self.model_tester.check_resize_embeddings_switch_transformers_v1_1(config) @slow def test_model_from_pretrained(self): for model_name in SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SwitchTransformersModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Test has a segmentation fault on torch 1.8.0") def test_export_to_onnx(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() model = SwitchTransformersModel(config_and_inputs[0]).to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( model, (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), f"{tmpdirname}/switch_transformers_test.onnx", export_params=True, opset_version=9, input_names=["input_ids", "decoder_input_ids"], ) def test_generate_with_head_masking(self): attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] max_length = config_and_inputs[1].shape[-1] + 3 model = SwitchTransformersForConditionalGeneration(config).eval() model.to(torch_device) head_masking = { "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device), "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), } for attn_name, (name, mask) in zip(attention_names, head_masking.items()): head_masks = {name: mask} # Explicitly pass decoder_head_mask as it is required from SWITCH_TRANSFORMERS model when head_mask specified if name == "head_mask": head_masks["decoder_head_mask"] = torch.ones( config.num_decoder_layers, config.num_heads, device=torch_device ) out = model.generate( config_and_inputs[1], num_beams=1, max_length=max_length, output_attentions=True, return_dict_in_generate=True, **head_masks, ) # We check the state of decoder_attentions and cross_attentions just from the last step attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_disk_offload(self): pass class SwitchTransformersEncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests use_attention_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, is_training=False, dropout_rate=0.1, initializer_factor=0.002, is_encoder_decoder=False, eos_token_id=1, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.is_encoder_decoder = is_encoder_decoder self.scope = None self.is_training = is_training def get_large_model_config(self): return SwitchTransformersConfig.from_pretrained("switch_base_8") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = SwitchTransformersConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=self.is_encoder_decoder, ) return config, input_ids, attention_mask def create_and_check_model(self, config, input_ids, attention_mask): model = SwitchTransformersEncoderModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) def create_and_check_model_fp16_forward(self, config, input_ids, attention_mask): model = SwitchTransformersEncoderModel(config=config).to(torch_device).half().eval() output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class SwitchTransformersEncoderOnlyModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (SwitchTransformersEncoderModel,) if is_torch_available() else () test_pruning = False test_resize_embeddings = False test_model_parallel = False test_torchscript = False def setUp(self): self.model_tester = SwitchTransformersEncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=SwitchTransformersConfig, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def use_task_specific_params(model, task): model.config.update(model.config.task_specific_params[task]) @require_torch class TestAsymmetricSwitchTransformers(unittest.TestCase): def build_model_and_check_forward_pass(self, **kwargs): tester = SwitchTransformersModelTester(self, **kwargs) config, *inputs = tester.prepare_config_and_inputs() ( input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = inputs model = SwitchTransformersForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, output_router_logits=False, ) # outputs = model(*inputs) assert len(outputs) == 4 assert outputs["logits"].size() == (tester.batch_size, tester.decoder_seq_length, tester.vocab_size) assert outputs["loss"].size() == () return model def test_small_decoder(self): # num_hidden_layers is passed to SwitchTransformersConfig as num_layers model = self.build_model_and_check_forward_pass(decoder_layers=1, num_hidden_layers=2) assert len(model.encoder.block) == 2 assert len(model.decoder.block) == 1 def test_defaulting_to_symmetry(self): # num_hidden_layers is passed to SwitchTransformersConfig as num_layers model = self.build_model_and_check_forward_pass(num_hidden_layers=2) assert len(model.decoder.block) == len(model.encoder.block) == 2 @require_torch class SwitchTransformerRouterTest(unittest.TestCase): r""" Switch Transformers has different blocks from classic transformer based models. The Swift MLP contains a Router class, that has to be tested to check if it is correctly implemented Original implementation of the routers here: """ config = SwitchTransformersConfig( num_experts=2, hidden_size=8, d_ff=16, router_jitter_noise=0, expert_capacity=4, ) def test_equivalency_balancy_loss(self): r""" This test checks if the balancy loss is correctly implemented as in the original implementation of the Switch Transformer . """ router_probs = torch.Tensor( [ [0.35490513, 0.60419905], [0.4275843, 0.23061597], [0.32985854, 0.43953657], [0.25099766, 0.27730572], [0.7678207, 0.71474564], ] ) expert_indices = torch.Tensor([[0], [1], [1], [0], [0]]).to(torch.int32) loss = load_balancing_loss_func(router_probs, expert_indices) self.assertAlmostEqual(loss.item(), 0.8741045, places=5) def test_equivalency_router_z_loss(self): r""" This test checks if the router z loss is correctly implemented as in the original implementation of the Switch Transformer . """ logits = torch.Tensor( [ [ [-4.2124424, 3.891939, -3.6481273, 1.8849981], [0.32625437, 2.918651, 0.84758997, -4.556842], [-3.32062, 4.6977115, -0.15439987, 0.44086337], [3.4467149, 4.3436565, -4.7224274, -4.264637], [-2.224406, -2.5318158, -1.3832569, 1.1891162], [-2.320062, -0.44705987, 4.289819, -0.00662684], ], [ [0.99470854, -0.6992364, 0.25503993, 4.2952085], [3.5937333, -3.2408535, -4.298278, 4.426601], [0.7669008, 2.6588762, 2.4505413, 4.6051874], [0.23330331, -3.0845237, 0.6262374, -2.9865491], [0.7595146, -2.1099675, -4.155346, -2.8326452], [2.3771453, 1.004138, -3.1781673, 0.7581556], ], ] ) loss = router_z_loss_func(logits) self.assertAlmostEqual(loss.item(), 13.786719, places=5) def test_equivalency_token_chose_masked_router(self): r""" This test tests the equivalency between the `SwitchTransformersTop1Router` originally implemented from here: TODO: provide link """ input_tokens = torch.Tensor( [ [ [0.6433916, 0.18188512, 0.02240455, 0.563781], [0.5526401, 0.0958724, 0.34253013, 0.03644359], [0.08744538, 0.7909105, 0.35205448, 0.53364205], ], [ [0.02900076, 0.4168595, 0.5802449, 0.91486526], [0.27414513, 0.14991808, 0.9383501, 0.5209162], [0.51207185, 0.90618336, 0.7309413, 0.95533276], ], ] ) model = SwitchTransformersTop1Router(self.config) model.classifier.weight = torch.nn.Parameter( torch.Tensor( [ [0.02008116, 0.00620062], [-0.00811031, -0.00031623], [-0.03542127, 0.02703803], [0.02335377, -0.02971946], ], ).t() ) expert_index, _, router_logits = model(input_tokens) router_probs = torch.softmax(router_logits, dim=-1) router_z_loss = router_z_loss_func(router_logits) auxiliary_loss = load_balancing_loss_func(router_probs, torch.argmax(expert_index, dim=-1)) self.assertAlmostEqual(auxiliary_loss.item(), 1.000308, places=5) self.assertAlmostEqual(router_z_loss.item(), 0.4789799, places=5) # self.assertTrue(torch.allclose(expert_index.bool().unsqueeze(-1), expected_dispatch_mask)) def test_max_routing_capacity(self): model = SwitchTransformersTop1Router(self.config) seq_len = 128 batch_size = 4 hidden_states = torch.stack(batch_size * [torch.rand((seq_len, self.config.hidden_size))]) router_probs, router_logits = model._compute_router_probabilities(hidden_states) expert_index = torch.argmax(router_probs, dim=-1) expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.config.num_experts) token_priority = torch.cumsum(expert_index, dim=-2) expert_capacity_mask = token_priority <= self.config.expert_capacity expert_index = expert_index * expert_capacity_mask assert torch.sum(expert_index) <= batch_size * self.config.num_experts * self.config.expert_capacity @slow @require_torch @require_tokenizers class SwitchTransformerModelIntegrationTests(unittest.TestCase): @require_torch_accelerator @require_torch_bf16 def test_small_logits(self): r""" Logits testing to check implementation consistency between `t5x` implementation and `transformers` implementation of Switch-C transformers. We only check the logits of the first batch. """ model = SwitchTransformersModel.from_pretrained("google/switch-base-8", torch_dtype=torch.bfloat16).to( torch_device ) input_ids = torch.ones((32, 64), dtype=torch.long).to(torch_device) decoder_input_ids = torch.ones((32, 64), dtype=torch.long).to(torch_device) # fmt: off EXPECTED_MEAN_LOGITS = torch.Tensor( [ -0.204102, -0.193359, 0.523438, -0.296875, 0.108887, 0.0211182, 0.605469, -0.100586, -0.0551758, 0.296875, 0.0090332, 0.174805, 0.139648, -0.170898, -0.0981445, 0.0245361, 0.0373535, 0.050293, -0.212891, 0.129883, 0.390625, -0.203125, -0.122559, -0.180664, 0.0437012, -0.349609, -0.0250244, -0.104004, -0.15918, -0.133789 ] ).to(torch.bfloat16) # fmt: on hf_logits = model(input_ids, decoder_input_ids=decoder_input_ids).last_hidden_state.cpu() hf_logits = hf_logits[0, 0, :30] torch.testing.assert_allclose(hf_logits, EXPECTED_MEAN_LOGITS, rtol=6e-3, atol=9e-3) @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def test_small_generate(self): # Generate test using the smalled switch-C model. model = SwitchTransformersForConditionalGeneration.from_pretrained( "google/switch-base-8", torch_dtype=torch.bfloat16 ).eval() tokenizer = AutoTokenizer.from_pretrained("t5-small", use_fast=False, legacy=False) model = model.to(torch_device) input_ids = tokenizer( "The human walks into a bar and orders a <extra_id_0>", return_tensors="pt" ).input_ids.to(torch_device) sequences = model.generate(input_ids) output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] self.assertEqual(output_str, "drink.") input_ids = tokenizer( "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", return_tensors="pt", ).input_ids.to(torch_device) sequences = model.generate(input_ids) output_str = tokenizer.batch_decode(sequences, skip_special_tokens=False)[0] EXPECTED_OUTPUT = "<pad><extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> whiskey<extra_id_4>.</s>" self.assertEqual(output_str, EXPECTED_OUTPUT) @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def test_small_batch_generate(self): BATCH_SIZE = 4 model = SwitchTransformersForConditionalGeneration.from_pretrained( "google/switch-base-8", torch_dtype=torch.bfloat16 ).eval() tokenizer = AutoTokenizer.from_pretrained("t5-small", use_fast=False, legacy=False) inputs = [ "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." ] * BATCH_SIZE encoded_input = tokenizer.batch_encode_plus(inputs, return_tensors="pt") sequences = model.generate(**encoded_input) batch_output = tokenizer.batch_decode(sequences, skip_special_tokens=False) for i in range(0, BATCH_SIZE, 2): self.assertEqual(batch_output[i], batch_output[i + 1])
transformers/tests/models/switch_transformers/test_modeling_switch_transformers.py/0
{ "file_path": "transformers/tests/models/switch_transformers/test_modeling_switch_transformers.py", "repo_id": "transformers", "token_count": 21272 }
367
# coding=utf-8 # Copyright 2021 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np from transformers import is_flax_available, is_torch_available, is_vision_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, require_vision, slow, torch_device from ...test_modeling_flax_common import floats_tensor, ids_tensor from ..gpt2.test_modeling_flax_gpt2 import FlaxGPT2ModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( AutoTokenizer, FlaxGPT2LMHeadModel, FlaxVisionEncoderDecoderModel, FlaxViTModel, VisionEncoderDecoderConfig, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionEncoderDecoderModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor @require_flax class FlaxEncoderDecoderMixin: def get_encoder_decoder_model(self, config, decoder_config): raise NotImplementedError def prepare_config_and_inputs(self): raise NotImplementedError def get_pretrained_model(self): raise NotImplementedError def check_encoder_decoder_model_from_pretrained_configs( self, config, pixel_values, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) self.assertTrue(encoder_decoder_config.decoder.is_decoder) enc_dec_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config) self.assertTrue(enc_dec_model.config.is_encoder_decoder) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0]) self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size) def check_encoder_decoder_model_from_pretrained( self, config, pixel_values, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, return_dict, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict} enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, return_dict=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0]) self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size) def check_save_and_load( self, config, pixel_values, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model} enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) outputs = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_2 = np.array(outputs[0]) out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: enc_dec_model.save_pretrained(tmpdirname) FlaxVisionEncoderDecoderModel.from_pretrained(tmpdirname) after_outputs = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_1 = np.array(after_outputs[0]) out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def check_encoder_decoder_model_output_attentions( self, config, pixel_values, encoder_hidden_states, decoder_config, decoder_input_ids, decoder_attention_mask, **kwargs, ): # make the decoder inputs a different shape from the encoder inputs to harden the test decoder_input_ids = decoder_input_ids[:, :-1] decoder_attention_mask = decoder_attention_mask[:, :-1] encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model} enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=True, ) encoder_attentions = outputs_encoder_decoder["encoder_attentions"] self.assertEqual(len(encoder_attentions), config.num_hidden_layers) self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,)) decoder_attentions = outputs_encoder_decoder["decoder_attentions"] num_decoder_layers = ( decoder_config.num_decoder_layers if hasattr(decoder_config, "num_decoder_layers") else decoder_config.num_hidden_layers ) self.assertEqual(len(decoder_attentions), num_decoder_layers) self.assertEqual( decoder_attentions[0].shape[-3:], (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]), ) cross_attentions = outputs_encoder_decoder["cross_attentions"] self.assertEqual(len(cross_attentions), num_decoder_layers) cross_attention_input_seq_len = decoder_input_ids.shape[-1] * ( 1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0) ) self.assertEqual( cross_attentions[0].shape[-3:-1], (decoder_config.num_attention_heads, cross_attention_input_seq_len), ) def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model} enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) pad_token_id = enc_dec_model.config.decoder.pad_token_id eos_token_id = enc_dec_model.config.decoder.eos_token_id decoder_start_token_id = enc_dec_model.config.decoder.decoder_start_token_id # Copied from generation.utils (GPT2 doesn't have `pad_token_id`) if pad_token_id is None and eos_token_id is not None: pad_token_id = eos_token_id if decoder_start_token_id is None: decoder_start_token_id = enc_dec_model.config.decoder.bos_token_id # Bert does not have a bos token id, so use pad_token_id instead # Copied from `test_modeling_encoder_decoder.py` if decoder_start_token_id is None: decoder_start_token_id = pad_token_id generated_output = enc_dec_model.generate( pixel_values, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, ) generated_sequences = generated_output.sequences self.assertEqual(generated_sequences.shape, (pixel_values.shape[0],) + (decoder_config.max_length,)) def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict): pt_model.to(torch_device) pt_model.eval() # prepare inputs flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output, pt_output.numpy(), 1e-5) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxVisionEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 1e-5) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = VisionEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs, pt_outputs_loaded): self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 1e-5) def check_equivalence_pt_to_flax(self, config, decoder_config, inputs_dict): encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) pt_model = VisionEncoderDecoderModel(encoder_decoder_config) fx_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def check_equivalence_flax_to_pt(self, config, decoder_config, inputs_dict): encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) pt_model = VisionEncoderDecoderModel(encoder_decoder_config) fx_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def test_encoder_decoder_model_from_pretrained_configs(self): config_inputs_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict) def test_encoder_decoder_model_from_pretrained(self): config_inputs_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False) def test_encoder_decoder_model_from_pretrained_return_dict(self): config_inputs_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True) def test_save_and_load_from_pretrained(self): config_inputs_dict = self.prepare_config_and_inputs() self.check_save_and_load(**config_inputs_dict) def test_encoder_decoder_model_output_attentions(self): config_inputs_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_output_attentions(**config_inputs_dict) def test_encoder_decoder_model_generate(self): config_inputs_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_generate(**config_inputs_dict) def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs((a - b)).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") @is_pt_flax_cross_test def test_pt_flax_equivalence(self): config_inputs_dict = self.prepare_config_and_inputs() config = config_inputs_dict.pop("config") decoder_config = config_inputs_dict.pop("decoder_config") inputs_dict = config_inputs_dict # `encoder_hidden_states` is not used in model call/forward del inputs_dict["encoder_hidden_states"] # Avoid the case where a sequence has no place to attend (after combined with the causal attention mask) batch_size = inputs_dict["decoder_attention_mask"].shape[0] inputs_dict["decoder_attention_mask"] = np.concatenate( [np.ones(shape=(batch_size, 1)), inputs_dict["decoder_attention_mask"][:, 1:]], axis=1 ) # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. decoder_config.use_cache = False self.assertTrue(decoder_config.cross_attention_hidden_size is None) # check without `enc_to_dec_proj` projection self.assertTrue(config.hidden_size == decoder_config.hidden_size) self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict) self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict) # check `enc_to_dec_proj` work as expected decoder_config.hidden_size = decoder_config.hidden_size * 2 self.assertTrue(config.hidden_size != decoder_config.hidden_size) self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict) self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict) @slow def test_real_model_save_load_from_pretrained(self): model_2 = self.get_pretrained_model() pixel_values = floats_tensor( [ 13, model_2.config.encoder.num_channels, model_2.config.encoder.image_size, model_2.config.encoder.image_size, ] ) decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size) outputs = model_2( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, ) out_2 = np.array(outputs[0]) out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmp_dirname: model_2.save_pretrained(tmp_dirname) model_1 = FlaxVisionEncoderDecoderModel.from_pretrained(tmp_dirname) after_outputs = model_1( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, ) out_1 = np.array(after_outputs[0]) out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @require_flax class FlaxViT2GPT2EncoderDecoderModelTest(FlaxEncoderDecoderMixin, unittest.TestCase): def get_encoder_decoder_model(self, config, decoder_config): encoder_model = FlaxViTModel(config) decoder_model = FlaxGPT2LMHeadModel(decoder_config) return encoder_model, decoder_model def prepare_config_and_inputs(self): model_tester_encoder = FlaxViTModelTester(self, batch_size=13) model_tester_decoder = FlaxGPT2ModelTester(self, batch_size=13) encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs() decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder() (config, pixel_values) = encoder_config_and_inputs ( decoder_config, decoder_input_ids, decoder_attention_mask, encoder_hidden_states, encoder_attention_mask, ) = decoder_config_and_inputs # make sure that cross attention layers are added decoder_config.add_cross_attention = True return { "config": config, "pixel_values": pixel_values, "decoder_config": decoder_config, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, # This is not used in the tests. } def get_pretrained_model(self): return FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( "google/vit-base-patch16-224-in21k", "gpt2" ) @require_flax class FlaxVisionEncoderDecoderModelTest(unittest.TestCase): def get_from_encoderdecoder_pretrained_model(self): return FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( "google/vit-base-patch16-224-in21k", "gpt2" ) def _check_configuration_tie(self, model): module = model.module.bind(model.params) assert id(module.decoder.config) == id(model.config.decoder) assert id(module.encoder.config) == id(model.config.encoder) @slow def test_configuration_tie(self): model = self.get_from_encoderdecoder_pretrained_model() self._check_configuration_tie(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class FlaxViT2GPT2ModelIntegrationTest(unittest.TestCase): @slow def test_inference_coco_en(self): loc = "ydshieh/vit-gpt2-coco-en" image_processor = ViTImageProcessor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) img = prepare_img() pixel_values = image_processor(images=img, return_tensors="np").pixel_values decoder_input_ids = np.array([[model.config.decoder_start_token_id]]) logits = model(pixel_values, decoder_input_ids)[0] logits = np.array(logits) # verify the logits expected_shape = (1, 1, model.config.decoder.vocab_size) self.assertEqual(logits.shape, expected_shape) EXPECTED_LOGIT_SLICE = np.array( [ -38.705837, -30.639936, -31.41905, -39.01204, -38.38698, -34.887215, -33.29087, -35.684475, -38.50852, -36.124676, ] ) max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE)) self.assertLessEqual(max_diff, 1e-4) def generate_step(pixel_values): outputs = model.generate(pixel_values, max_length=16, num_beams=4) output_ids = outputs.sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds, outputs.scores preds, scores = generate_step(pixel_values) EXPECTED_SCORES = np.array([-0.59563464]) scores = np.array(scores) max_diff = np.amax(np.abs(scores - EXPECTED_SCORES)) self.assertLessEqual(max_diff, 1e-4) # should produce # ["a cat laying on top of a couch next to another cat"] self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])
transformers/tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py/0
{ "file_path": "transformers/tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py", "repo_id": "transformers", "token_count": 9435 }
368
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViT Hybrid model. """ import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class ViTHybridModelTester: def __init__( self, parent, batch_size=13, image_size=64, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, backbone_featmap_shape=[1, 16, 4, 4], scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.backbone_featmap_shape = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size num_patches = (self.image_size // 32) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): backbone_config = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=backbone_config, backbone=None, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTHybridModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = ViTHybridForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTHybridModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False model_split_percents = [0.5, 0.9] def setUp(self): self.model_tester = ViTHybridModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTHybridConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def test_model_from_pretrained(self): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ViTHybridModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-1.9090, -0.4993, -0.2389]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow @require_accelerate def test_accelerate_inference(self): image_processor = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384") model = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384", device_map="auto") image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() self.assertTrue(model.config.id2label[predicted_class_idx], "tabby, tabby cat")
transformers/tests/models/vit_hybrid/test_modeling_vit_hybrid.py/0
{ "file_path": "transformers/tests/models/vit_hybrid/test_modeling_vit_hybrid.py", "repo_id": "transformers", "token_count": 4621 }
369
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wav2vec2.test_feature_extraction_wav2vec2 import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM from transformers.models.wav2vec2_with_lm.processing_wav2vec2_with_lm import Wav2Vec2DecoderWithLMOutput if is_torch_available(): from transformers import Wav2Vec2ForCTC @require_pyctcdecode class Wav2Vec2ProcessorWithLMTest(unittest.TestCase): def setUp(self): vocab = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.add_kwargs_tokens_map = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } self.tmpdirname = tempfile.mkdtemp() self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") # load decoder from hub self.decoder_name = "hf-internal-testing/ngram-beam-search-decoder" def get_tokenizer(self, **kwargs_init): kwargs = self.add_kwargs_tokens_map.copy() kwargs.update(kwargs_init) return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def get_decoder(self, **kwargs): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) processor.save_pretrained(self.tmpdirname) processor = Wav2Vec2ProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, BeamSearchDecoderCTC) def test_save_load_pretrained_additional_features(self): processor = Wav2Vec2ProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match processor = Wav2Vec2ProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0) self.assertEqual(processor.language_model.beta, 3.0) self.assertEqual(processor.language_model.score_boundary, -7.0) self.assertEqual(processor.language_model.unk_score_offset, 3) def test_load_decoder_tokenizer_mismatch_content(self): tokenizer = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"]) with self.assertRaisesRegex(ValueError, "include"): Wav2Vec2ProcessorWithLM( tokenizer=tokenizer, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def _get_dummy_logits(self, shape=(2, 10, 16), seed=77): np.random.seed(seed) return np.random.rand(*shape) def test_decoder(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits(shape=(10, 16), seed=13) decoded_processor = processor.decode(logits) decoded_decoder = decoder.decode_beams(logits)[0] self.assertEqual(decoded_decoder[0], decoded_processor.text) self.assertEqual("</s> <s> </s>", decoded_processor.text) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score) @parameterized.expand([[None], ["fork"], ["spawn"]]) def test_decoder_batch(self, pool_context): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: decoded_processor = processor.batch_decode(logits) else: with get_context(pool_context).Pool() as pool: decoded_processor = processor.batch_decode(logits, pool) logits_list = list(logits) with get_context("fork").Pool() as p: decoded_beams = decoder.decode_beams_batch(p, logits_list) texts_decoder, logit_scores_decoder, lm_scores_decoder = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(texts_decoder, decoded_processor.text) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"], decoded_processor.text) self.assertListEqual(logit_scores_decoder, decoded_processor.logit_score) self.assertListEqual(lm_scores_decoder, decoded_processor.lm_score) def test_decoder_with_params(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits() beam_width = 15 beam_prune_logp = -20.0 token_min_logp = -4.0 decoded_processor_out = processor.batch_decode( logits, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, ) decoded_processor = decoded_processor_out.text logits_list = list(logits) with get_context("fork").Pool() as pool: decoded_decoder_out = decoder.decode_beams_batch( pool, logits_list, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, ) decoded_decoder = [d[0][0] for d in decoded_decoder_out] logit_scores = [d[0][2] for d in decoded_decoder_out] lm_scores = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(decoded_decoder, decoded_processor) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"], decoded_processor) self.assertTrue(np.array_equal(logit_scores, decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-20.054, -18.447], logit_scores, atol=1e-3)) self.assertTrue(np.array_equal(lm_scores, decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-15.554, -13.9474], lm_scores, atol=1e-3)) def test_decoder_with_params_of_lm(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits() alpha = 2.0 beta = 5.0 unk_score_offset = -20.0 lm_score_boundary = True decoded_processor_out = processor.batch_decode( logits, alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary, ) decoded_processor = decoded_processor_out.text logits_list = list(logits) decoder.reset_params( alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary, ) with get_context("fork").Pool() as pool: decoded_decoder_out = decoder.decode_beams_batch( pool, logits_list, ) decoded_decoder = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(decoded_decoder, decoded_processor) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"], decoded_processor) lm_model = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0) self.assertEqual(lm_model.beta, 5.0) self.assertEqual(lm_model.unk_score_offset, -20.0) self.assertEqual(lm_model.score_boundary, True) def test_decoder_download_ignores_files(self): processor = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") language_model = processor.decoder.model_container[processor.decoder._model_key] path_to_cached_dir = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() downloaded_decoder_files = os.listdir(path_to_cached_dir) expected_decoder_files = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(downloaded_decoder_files, expected_decoder_files) def test_decoder_local_files(self): local_dir = snapshot_download("hf-internal-testing/processor_with_lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained(local_dir) language_model = processor.decoder.model_container[processor.decoder._model_key] path_to_cached_dir = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() local_decoder_files = os.listdir(local_dir) expected_decoder_files = os.listdir(path_to_cached_dir) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(local_decoder_files, expected_decoder_files) def test_processor_from_auto_processor(self): processor_wav2vec2 = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") processor_auto = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm") raw_speech = floats_list((3, 1000)) input_wav2vec2 = processor_wav2vec2(raw_speech, return_tensors="np") input_auto = processor_auto(raw_speech, return_tensors="np") for key in input_wav2vec2.keys(): self.assertAlmostEqual(input_wav2vec2[key].sum(), input_auto[key].sum(), delta=1e-2) logits = self._get_dummy_logits() decoded_wav2vec2 = processor_wav2vec2.batch_decode(logits) decoded_auto = processor_auto.batch_decode(logits) self.assertListEqual(decoded_wav2vec2.text, decoded_auto.text) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", ) @staticmethod def get_from_offsets(offsets, key): retrieved_list = [d[key] for d in offsets] return retrieved_list def test_offsets_integration_fast(self): processor = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") logits = self._get_dummy_logits()[0] outputs = processor.decode(logits, output_word_offsets=True) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()), 4) self.assertTrue("text" in outputs) self.assertTrue("word_offsets" in outputs) self.assertTrue(isinstance(outputs, Wav2Vec2DecoderWithLMOutput)) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"], "word")), outputs.text) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"], "word"), ["<s>", "<s>", "</s>"]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"], "start_offset"), [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"], "end_offset"), [1, 3, 5]) def test_offsets_integration_fast_batch(self): processor = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") logits = self._get_dummy_logits() outputs = processor.batch_decode(logits, output_word_offsets=True) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()), 4) self.assertTrue("text" in outputs) self.assertTrue("word_offsets" in outputs) self.assertTrue(isinstance(outputs, Wav2Vec2DecoderWithLMOutput)) self.assertListEqual( [" ".join(self.get_from_offsets(o, "word")) for o in outputs["word_offsets"]], outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0], "word"), ["<s>", "<s>", "</s>"]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0], "start_offset"), [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0], "end_offset"), [1, 3, 5]) @slow @require_torch @require_torchaudio def test_word_time_stamp_integration(self): import torch ds = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True) ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000)) ds_iter = iter(ds) sample = next(ds_iter) processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") input_values = processor(sample["audio"]["array"], return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits.cpu().numpy() output = processor.decode(logits[0], output_word_offsets=True) time_offset = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate word_time_stamps = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] EXPECTED_TEXT = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" EXPECTED_TEXT = "THE TRACK APPEARS ON THE COMPILATION ALBUM CRAFT FORKS" # output words self.assertEqual(" ".join(self.get_from_offsets(word_time_stamps, "word")), EXPECTED_TEXT) self.assertEqual(" ".join(self.get_from_offsets(word_time_stamps, "word")), output.text) # output times start_times = torch.tensor(self.get_from_offsets(word_time_stamps, "start_time")) end_times = torch.tensor(self.get_from_offsets(word_time_stamps, "end_time")) # fmt: off expected_start_tensor = torch.tensor([0.6800, 0.8800, 1.1800, 1.8600, 1.9600, 2.1000, 3.0000, 3.5600, 3.9800]) expected_end_tensor = torch.tensor([0.7800, 1.1000, 1.6600, 1.9200, 2.0400, 2.8000, 3.3000, 3.8800, 4.2800]) # fmt: on self.assertTrue(torch.allclose(start_times, expected_start_tensor, atol=0.01)) self.assertTrue(torch.allclose(end_times, expected_end_tensor, atol=0.01))
transformers/tests/models/wav2vec2_with_lm/test_processor_wav2vec2_with_lm.py/0
{ "file_path": "transformers/tests/models/wav2vec2_with_lm/test_processor_wav2vec2_with_lm.py", "repo_id": "transformers", "token_count": 8780 }
370
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class XGLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = XGLMTokenizer rust_tokenizer_class = XGLMTokenizerFast test_rust_tokenizer = True test_sentencepiece = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = XGLMTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<pad>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(len(vocab_keys), 1_008) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_008) def test_full_tokenizer(self): tokenizer = XGLMTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def big_tokenizer(self): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def test_picklable_without_disk(self): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SAMPLE_VOCAB, f.name) tokenizer = XGLMTokenizer(f.name, keep_accents=True) pickled_tokenizer = pickle.dumps(tokenizer) pickle.loads(pickled_tokenizer) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) @slow def test_tokenization_base_easy_symbols(self): symbols = "Hello World!" original_tokenizer_encodings = [2, 31227, 4447, 35] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenization_base_hard_symbols(self): symbols = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) original_tokenizer_encodings = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: skip self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = { 'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="facebook/xglm-564M", padding=False, )
transformers/tests/models/xglm/test_tokenization_xglm.py/0
{ "file_path": "transformers/tests/models/xglm/test_tokenization_xglm.py", "repo_id": "transformers", "token_count": 4199 }
371
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, Text2TextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class Text2TextGenerationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def get_test_pipeline(self, model, tokenizer, processor): generator = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer) return generator, ["Something to write", "Something else"] def run_pipeline_test(self, generator, _): outputs = generator("Something there") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) outputs = generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True) self.assertEqual( outputs, [ [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], ], ) outputs = generator( ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True ) self.assertEqual( outputs, [ [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], ], ) with self.assertRaises(ValueError): generator(4) @require_torch def test_small_model_pt(self): generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="pt") # do_sample=False necessary for reproducibility outputs = generator("Something there", do_sample=False) self.assertEqual(outputs, [{"generated_text": ""}]) num_return_sequences = 3 outputs = generator( "Something there", num_return_sequences=num_return_sequences, num_beams=num_return_sequences, ) target_outputs = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(outputs, target_outputs) outputs = generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True) self.assertEqual( outputs, [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ) generator.tokenizer.pad_token_id = generator.model.config.eos_token_id generator.tokenizer.pad_token = "<pad>" outputs = generator( ["This is a test", "This is a second test"], do_sample=True, num_return_sequences=2, batch_size=2, return_tensors=True, ) self.assertEqual( outputs, [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ], ) @require_tf def test_small_model_tf(self): generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="tf") # do_sample=False necessary for reproducibility outputs = generator("Something there", do_sample=False) self.assertEqual(outputs, [{"generated_text": ""}])
transformers/tests/pipelines/test_pipelines_text2text_generation.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_text2text_generation.py", "repo_id": "transformers", "token_count": 2111 }
372
# coding=utf-8 # Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_bitsandbytes_available, is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, torch_device, ) def get_some_linear_layer(model): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc elif model.config.model_type == "opt": try: return model.decoder.layers[0].fc1 except AttributeError: # for AutoModelforCausalLM return model.model.decoder.layers[0].fc1 else: return model.transformer.h[0].mlp.dense_4h_to_h if is_torch_available(): import torch import torch.nn as nn class LoRALayer(nn.Module): """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" def __init__(self, module: nn.Module, rank: int): super().__init__() self.module = module self.adapter = nn.Sequential( nn.Linear(module.in_features, rank, bias=False), nn.Linear(rank, module.out_features, bias=False), ) small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=small_std) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def forward(self, input, *args, **kwargs): return self.module(input, *args, **kwargs) + self.adapter(input) if is_bitsandbytes_available(): import bitsandbytes as bnb @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class Base4bitTest(unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module model_name = "bigscience/bloom-1b7" # Constant values EXPECTED_RELATIVE_DIFFERENCE = ( 2.109659552692574 # This was obtained on a RTX Titan so the number might slightly change ) input_text = "Hello my name is" EXPECTED_OUTPUTS = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") MAX_NEW_TOKENS = 10 def setUp(self): # Models and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) class Bnb4BitTest(Base4bitTest): def setUp(self): super().setUp() # Models and tokenizer self.model_fp16 = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16, device_map="auto" ) self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.model_fp16 del self.model_4bit gc.collect() torch.cuda.empty_cache() def test_quantization_num_parameters(self): r""" Test if the number of returned parameters is correct See: https://github.com/huggingface/transformers/issues/25978 """ num_params_4bit = self.model_4bit.num_parameters() num_params_fp16 = self.model_fp16.num_parameters() self.assertEqual(num_params_4bit, num_params_fp16) def test_quantization_config_json_serialization(self): r""" A simple test to check if the quantization config is correctly serialized and deserialized """ config = self.model_4bit.config self.assertTrue(hasattr(config, "quantization_config")) _ = config.to_dict() _ = config.to_diff_dict() _ = config.to_json_string() def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from bitsandbytes.nn import Params4bit mem_fp16 = self.model_fp16.get_memory_footprint() mem_4bit = self.model_4bit.get_memory_footprint() self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE) linear = get_some_linear_layer(self.model_4bit) self.assertTrue(linear.weight.__class__ == Params4bit) def test_original_dtype(self): r""" A simple test to check if the model succesfully stores the original dtype """ self.assertTrue(hasattr(self.model_4bit.config, "_pre_quantization_dtype")) self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) self.assertTrue(self.model_4bit.config._pre_quantization_dtype == torch.float16) def test_linear_are_4bit(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from transformers import T5PreTrainedModel self.model_fp16.get_memory_footprint() self.model_4bit.get_memory_footprint() for name, module in self.model_4bit.named_modules(): if isinstance(module, torch.nn.Linear): if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uint8) def test_rwkv_4bit(self): r""" A simple test to check if 4-bit RWKV inference works as expected. """ model_id = "RWKV/rwkv-4-169m-pile" quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) tok = AutoTokenizer.from_pretrained(model_id) text = "Hello my name is" input_ids = tok.encode(text, return_tensors="pt").to(0) _ = model.generate(input_ids, max_new_tokens=30) def test_generate_quality(self): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_generate_quality_config(self): r""" Test that loading the model with the config is equivalent """ bnb_config = BitsAndBytesConfig() bnb_config.load_in_4bit = True model_4bit_from_config = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_4bit_from_config.generate( input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. Checks also if other models are casted correctly. """ with self.assertRaises(ValueError): # Tries with `str` self.model_4bit.to("cpu") with self.assertRaises(ValueError): # Tries with a `dtype`` self.model_4bit.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.to(torch.device("cuda:0")) with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.float() with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.half() # Test if we did not break anything encoded_input = self.tokenizer(self.input_text, return_tensors="pt") self.model_fp16 = self.model_fp16.to(torch.float32) _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Check this does not throw an error _ = self.model_fp16.to("cpu") # Check this does not throw an error _ = self.model_fp16.half() # Check this does not throw an error _ = self.model_fp16.float() def test_fp32_4bit_conversion(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. """ model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_4bit=True, device_map="auto") self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class Bnb4BitT5Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_name = "t5-small" cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.input_text = "Translate in German: Hello, my dog is cute" def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ gc.collect() torch.cuda.empty_cache() def test_inference_without_keep_in_fp32(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration modules = T5ForConditionalGeneration._keep_in_fp32_modules T5ForConditionalGeneration._keep_in_fp32_modules = None # test with `t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_4bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) T5ForConditionalGeneration._keep_in_fp32_modules = modules def test_inference_with_keep_in_fp32(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration # test with `t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_4bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) class Classes4BitModelTest(Base4bitTest): def setUp(self): super().setUp() # model_name self.model_name = "bigscience/bloom-560m" self.seq_to_seq_name = "t5-small" # Different types of model self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # Sequence classification model self.sequence_model = AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_4bit=True, device_map="auto" ) # CausalLM model self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # Seq2seq model self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( self.seq_to_seq_name, load_in_4bit=True, device_map="auto" ) def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.base_model del self.sequence_model del self.model_4bit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def test_correct_head_class(self): r""" A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) are kept in their native class. """ from bitsandbytes.nn import Params4bit self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit) # Other heads should be nn.Parameter self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class Pipeline4BitTest(Base4bitTest): def setUp(self): super().setUp() def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.pipe gc.collect() torch.cuda.empty_cache() def test_pipeline(self): r""" The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything on pipline. """ # self._clear_cuda_cache() self.pipe = pipeline( "text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass pipeline_output = self.pipe(self.input_text) self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class Bnb4bitTestMultiGpu(Base4bitTest): def setUp(self): super().setUp() def test_multi_gpu_loading(self): r""" This tests that the model has been loaded and can be used correctly on a multi-GPU setup. Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice """ model_parallel = AutoModelForCausalLM.from_pretrained( self.model_name, load_in_4bit=True, device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Second real batch output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) class Bnb4BitTestTraining(Base4bitTest): def setUp(self): self.model_name = "facebook/opt-350m" super().setUp() def test_training(self): if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): return # Step 1: freeze all parameters model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True) self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(module)): module.q_proj = LoRALayer(module.q_proj, rank=16) module.k_proj = LoRALayer(module.k_proj, rank=16) module.v_proj = LoRALayer(module.v_proj, rank=16) # Step 3: dummy batch batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): out = model.forward(**batch) out.logits.norm().backward() for module in model.modules(): if isinstance(module, LoRALayer): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(module, nn.Embedding): self.assertTrue(module.weight.grad is None) class Bnb4BitGPT2Test(Bnb4BitTest): model_name = "gpt2-xl" EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187 @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class BaseSerializationTest(unittest.TestCase): model_name = "facebook/opt-125m" input_text = "Mars colonists' favorite meals are" def tearDown(self): gc.collect() torch.cuda.empty_cache() def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True): r""" Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default. See ExtendedSerializationTest class for more params combinations. """ tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type=quant_type, bnb_4bit_use_double_quant=double_quant, bnb_4bit_compute_dtype=torch.bfloat16, ) model_0 = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=self.quantization_config, device_map=torch_device, ) with tempfile.TemporaryDirectory() as tmpdirname: model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization) config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_1 = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) # checking quantized linear module weight linear = get_some_linear_layer(model_1) self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) self.assertTrue(hasattr(linear.weight, "quant_state")) self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState) # checking memory footpring self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2) # Matching all parameters and their quant_state items: d0 = dict(model_0.named_parameters()) d1 = dict(model_1.named_parameters()) self.assertTrue(d0.keys() == d1.keys()) for k in d0.keys(): self.assertTrue(d0[k].shape == d1[k].shape) self.assertTrue(d0[k].device.type == d1[k].device.type) self.assertTrue(d0[k].device == d1[k].device) self.assertTrue(d0[k].dtype == d1[k].dtype) self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device))) if isinstance(d0[k], bnb.nn.modules.Params4bit): for v0, v1 in zip( d0[k].quant_state.as_dict().values(), d1[k].quant_state.as_dict().values(), ): if isinstance(v0, torch.Tensor): self.assertTrue(torch.equal(v0, v1.to(v0.device))) else: self.assertTrue(v0 == v1) # comparing forward() outputs encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) out_0 = model_0(**encoded_input) out_1 = model_1(**encoded_input) self.assertTrue(torch.equal(out_0["logits"], out_1["logits"])) # comparing generate() outputs encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) output_sequences_0 = model_0.generate(**encoded_input, max_new_tokens=10) output_sequences_1 = model_1.generate(**encoded_input, max_new_tokens=10) def _decode(token): return tokenizer.decode(token, skip_special_tokens=True) self.assertEqual( [_decode(x) for x in output_sequences_0], [_decode(x) for x in output_sequences_1], ) class ExtendedSerializationTest(BaseSerializationTest): """ tests more combinations of parameters """ def test_nf4_single_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False) def test_nf4_single_safe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True) def test_nf4_double_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False) # nf4 double safetensors quantization is tested in test_serialization() method from the parent class def test_fp4_single_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False) def test_fp4_single_safe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True) def test_fp4_double_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False) def test_fp4_double_safe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True) class BloomSerializationTest(BaseSerializationTest): """ default BaseSerializationTest config tested with Bloom family model """ model_name = "bigscience/bloom-560m" class GPTSerializationTest(BaseSerializationTest): """ default BaseSerializationTest config tested with GPT family model """ model_name = "gpt2-xl" @require_bitsandbytes @require_accelerate @require_torch_gpu @slow class Bnb4BitTestBasicConfigTest(unittest.TestCase): def test_load_in_4_and_8_bit_fails(self): with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): AutoModelForCausalLM.from_pretrained("facebook/opt-125m", load_in_4bit=True, load_in_8bit=True) def test_set_load_in_8_bit(self): quantization_config = BitsAndBytesConfig(load_in_4bit=True) with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): quantization_config.load_in_8bit = True
transformers/tests/quantization/bnb/test_4bit.py/0
{ "file_path": "transformers/tests/quantization/bnb/test_4bit.py", "repo_id": "transformers", "token_count": 10958 }
373
import argparse import logging import sys import time import tensorflow as tf from datasets import load_dataset from packaging.version import parse from transformers import AutoTokenizer, TFAutoModelForSequenceClassification try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=1) parser.add_argument("--per_device_train_batch_size", type=int, default=16) parser.add_argument("--per_device_eval_batch_size", type=int, default=8) parser.add_argument("--model_name_or_path", type=str) parser.add_argument("--learning_rate", type=str, default=5e-5) parser.add_argument("--do_train", type=bool, default=True) parser.add_argument("--do_eval", type=bool, default=True) parser.add_argument("--output_dir", type=str) args, _ = parser.parse_known_args() # overwrite batch size until we have tf_glue.py args.per_device_train_batch_size = 16 args.per_device_eval_batch_size = 16 # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # Load model and tokenizer model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) # Load dataset train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"]) train_dataset = train_dataset.shuffle().select(range(5000)) # smaller the size for train dataset to 5k test_dataset = test_dataset.shuffle().select(range(500)) # smaller the size for test dataset to 500 # Preprocess train dataset train_dataset = train_dataset.map( lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True ) train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) train_features = { x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) for x in ["input_ids", "attention_mask"] } tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"])).batch( args.per_device_train_batch_size ) # Preprocess test dataset test_dataset = test_dataset.map( lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True ) test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) test_features = { x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) for x in ["input_ids", "attention_mask"] } tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"])).batch( args.per_device_eval_batch_size ) # fine optimizer and loss optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate) loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True) metrics = [keras.metrics.SparseCategoricalAccuracy()] model.compile(optimizer=optimizer, loss=loss, metrics=metrics) start_train_time = time.time() train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.per_device_train_batch_size) end_train_time = time.time() - start_train_time logger.info("*** Train ***") logger.info(f"train_runtime = {end_train_time}") for key, value in train_results.history.items(): logger.info(f" {key} = {value}")
transformers/tests/sagemaker/scripts/tensorflow/run_tf.py/0
{ "file_path": "transformers/tests/sagemaker/scripts/tensorflow/run_tf.py", "repo_id": "transformers", "token_count": 1577 }
374
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo, snapshot_download from requests.exceptions import HTTPError from transformers import BertConfig, BertModel, is_flax_available, is_torch_available from transformers.testing_utils import ( TOKEN, USER, CaptureLogger, is_pt_flax_cross_test, is_staging_test, require_flax, require_safetensors, require_torch, ) from transformers.utils import FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_NAME, logging if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch @require_flax @is_staging_test class FlaxModelPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @classmethod def tearDownClass(cls): try: delete_repo(token=cls._token, repo_id="test-model-flax") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org") except HTTPError: pass def test_push_to_hub(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = FlaxBertModel(config) model.push_to_hub("test-model-flax", token=self._token) new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # Reset repo delete_repo(token=self._token, repo_id="test-model-flax") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, token=self._token) new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_push_to_hub_in_organization(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = FlaxBertModel(config) model.push_to_hub("valid_org/test-model-flax-org", token=self._token) new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, token=self._token ) new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def check_models_equal(model1, model2): models_are_equal = True flat_params_1 = flatten_dict(model1.params) flat_params_2 = flatten_dict(model2.params) for key in flat_params_1.keys(): if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4: models_are_equal = False return models_are_equal @require_flax class FlaxModelUtilsTest(unittest.TestCase): def test_model_from_pretrained_subfolder(self): config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") model = FlaxBertModel(config) subfolder = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(tmp_dir, subfolder)) with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(tmp_dir) model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder) self.assertTrue(check_models_equal(model, model_loaded)) def test_model_from_pretrained_subfolder_sharded(self): config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") model = FlaxBertModel(config) subfolder = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB") with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(tmp_dir) model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder) self.assertTrue(check_models_equal(model, model_loaded)) def test_model_from_pretrained_hub_subfolder(self): subfolder = "bert" model_id = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(model_id) model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder) self.assertIsNotNone(model) def test_model_from_pretrained_hub_subfolder_sharded(self): subfolder = "bert" model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(model_id) model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder) self.assertIsNotNone(model) @require_safetensors def test_safetensors_save_and_load(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) # No msgpack file, only a model.safetensors self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME))) new_model = FlaxBertModel.from_pretrained(tmp_dir) self.assertTrue(check_models_equal(model, new_model)) @require_flax @require_torch @is_pt_flax_cross_test def test_safetensors_save_and_load_pt_to_flax(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir) # Check we have a model.safetensors file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) new_model = FlaxBertModel.from_pretrained(tmp_dir) # Check models are equal self.assertTrue(check_models_equal(model, new_model)) @require_safetensors def test_safetensors_load_from_hub(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") # Can load from the Flax-formatted checkpoint safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-only") self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors def test_safetensors_load_from_local(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-flax-only", cache_dir=tmp) flax_model = FlaxBertModel.from_pretrained(location) with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-flax-safetensors-only", cache_dir=tmp) safetensors_model = FlaxBertModel.from_pretrained(location) self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors @is_pt_flax_cross_test def test_safetensors_load_from_hub_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-msgpack") # Can load from the PyTorch-formatted checkpoint safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors @require_torch @is_pt_flax_cross_test def test_safetensors_load_from_hub_from_safetensors_pt_bf16(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ import torch model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") model.to(torch.bfloat16) with tempfile.TemporaryDirectory() as tmp: model.save_pretrained(tmp) flax_model = FlaxBertModel.from_pretrained(tmp) # Can load from the PyTorch-formatted checkpoint safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors @is_pt_flax_cross_test def test_safetensors_load_from_local_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-msgpack", cache_dir=tmp) flax_model = FlaxBertModel.from_pretrained(location) # Can load from the PyTorch-formatted checkpoint with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors", cache_dir=tmp) safetensors_model = FlaxBertModel.from_pretrained(location) self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors def test_safetensors_load_from_hub_msgpack_before_safetensors(self): """ This test checks that we'll first download msgpack weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack") @require_safetensors def test_safetensors_load_from_local_msgpack_before_safetensors(self): """ This test checks that we'll first download msgpack weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp) FlaxBertModel.from_pretrained(location) @require_safetensors def test_safetensors_flax_from_flax(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = FlaxBertModel.from_pretrained(tmp_dir) self.assertTrue(check_models_equal(model, new_model)) @require_safetensors @require_torch @is_pt_flax_cross_test def test_safetensors_flax_from_torch(self): hub_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = FlaxBertModel.from_pretrained(tmp_dir) self.assertTrue(check_models_equal(hub_model, new_model)) @require_safetensors def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_local(self): with tempfile.TemporaryDirectory() as tmp_dir: path = snapshot_download( "hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded", cache_dir=tmp_dir ) # This should not raise even if there are two types of sharded weights FlaxBertModel.from_pretrained(path) @require_safetensors def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_hub(self): # This should not raise even if there are two types of sharded weights # This should discard the safetensors weights in favor of the msgpack sharded weights FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded") @require_safetensors def test_safetensors_from_pt_bf16(self): # This should not raise; should be able to load bf16-serialized torch safetensors without issue # and without torch. logger = logging.get_logger("transformers.modeling_flax_utils") with CaptureLogger(logger) as cl: FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") self.assertTrue( "Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint" in cl.out ) @require_torch @require_safetensors @is_pt_flax_cross_test def test_from_pt_bf16(self): model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") model.to(torch.bfloat16) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=False) logger = logging.get_logger("transformers.modeling_flax_utils") with CaptureLogger(logger) as cl: new_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") self.assertTrue( "Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint" in cl.out ) flat_params_1 = flatten_dict(new_model.params) for value in flat_params_1.values(): self.assertEqual(value.dtype, "bfloat16")
transformers/tests/test_modeling_flax_utils.py/0
{ "file_path": "transformers/tests/test_modeling_flax_utils.py", "repo_id": "transformers", "token_count": 6875 }
375
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from transformers import is_vision_available, load_tool from transformers.testing_utils import get_tests_dir from .test_tools_common import ToolTesterMixin if is_vision_available(): from PIL import Image class ImageQuestionAnsweringToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("image-question-answering") self.tool.setup() self.remote_tool = load_tool("image-question-answering", remote=True) def test_exact_match_arg(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.tool(image, "How many cats are sleeping on the couch?") self.assertEqual(result, "2") def test_exact_match_arg_remote(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.remote_tool(image, "How many cats are sleeping on the couch?") self.assertEqual(result, "2") def test_exact_match_kwarg(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.tool(image=image, question="How many cats are sleeping on the couch?") self.assertEqual(result, "2") def test_exact_match_kwarg_remote(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.remote_tool(image=image, question="How many cats are sleeping on the couch?") self.assertEqual(result, "2")
transformers/tests/tools/test_image_question_answering.py/0
{ "file_path": "transformers/tests/tools/test_image_question_answering.py", "repo_id": "transformers", "token_count": 768 }
376
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This test is meant to be run in on an instance with TPUs like this: # # python examples/pytorch/xla_spawn.py --num_cores=8 tests/test_trainer_tpu.py # # Replace 8 with the number of TPU cores you have. # import sys from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.utils import logging logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class DummyDataset(Dataset): def __init__(self, length: int = 101): self.length = length def __len__(self): return self.length def __getitem__(self, i) -> int: return i class DummyDataCollator: def __call__(self, features): return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)} class DummyModel(nn.Module): def __init__(self): super().__init__() # Add some (unused) params otherwise DDP will complain. self.fc = nn.Linear(120, 80) def forward(self, input_ids, labels=None): if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids def main(): parser = HfArgumentParser((TrainingArguments,)) sys.argv += ["--output_dir", "./examples"] training_args = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, " f"tpu_num_cores: {training_args.tpu_num_cores}", ) # Essentially, what we want to verify in the distributed case is # that we get all samples back, in the right order. # (this is crucial for prediction for instance) for dataset_length in [1001, 256, 15]: dataset = DummyDataset(dataset_length) def compute_metrics(p: EvalPrediction) -> Dict: sequential = list(range(len(dataset))) success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential return {"success": success} trainer = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) metrics = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) p = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) trainer.args.eval_accumulation_steps = 2 metrics = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) p = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) trainer.args.eval_accumulation_steps = None logger.info("🔥 All distributed tests successful") def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/tests/trainer/test_trainer_tpu.py/0
{ "file_path": "transformers/tests/trainer/test_trainer_tpu.py", "repo_id": "transformers", "token_count": 1651 }
377
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.image_processing_utils import get_size_dict class ImageProcessingUtilsTester(unittest.TestCase): def test_get_size_dict(self): # Test a dict with the wrong keys raises an error inputs = {"wrong_key": 224} with self.assertRaises(ValueError): get_size_dict(inputs) inputs = {"height": 224} with self.assertRaises(ValueError): get_size_dict(inputs) inputs = {"width": 224, "shortest_edge": 224} with self.assertRaises(ValueError): get_size_dict(inputs) # Test a dict with the correct keys is returned as is inputs = {"height": 224, "width": 224} outputs = get_size_dict(inputs) self.assertEqual(outputs, inputs) inputs = {"shortest_edge": 224} outputs = get_size_dict(inputs) self.assertEqual(outputs, {"shortest_edge": 224}) inputs = {"longest_edge": 224, "shortest_edge": 224} outputs = get_size_dict(inputs) self.assertEqual(outputs, {"longest_edge": 224, "shortest_edge": 224}) # Test a single int value which represents (size, size) outputs = get_size_dict(224) self.assertEqual(outputs, {"height": 224, "width": 224}) # Test a single int value which represents the shortest edge outputs = get_size_dict(224, default_to_square=False) self.assertEqual(outputs, {"shortest_edge": 224}) # Test a tuple of ints which represents (height, width) outputs = get_size_dict((150, 200)) self.assertEqual(outputs, {"height": 150, "width": 200}) # Test a tuple of ints which represents (width, height) outputs = get_size_dict((150, 200), height_width_order=False) self.assertEqual(outputs, {"height": 200, "width": 150}) # Test an int representing the shortest edge and max_size which represents the longest edge outputs = get_size_dict(224, max_size=256, default_to_square=False) self.assertEqual(outputs, {"shortest_edge": 224, "longest_edge": 256}) # Test int with default_to_square=True and max_size fails with self.assertRaises(ValueError): get_size_dict(224, max_size=256, default_to_square=True)
transformers/tests/utils/test_image_processing_utils.py/0
{ "file_path": "transformers/tests/utils/test_image_processing_utils.py", "repo_id": "transformers", "token_count": 1072 }
378
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks all docstrings of public objects have an argument section matching their signature. Use from the root of the repo with: ```bash python utils/check_docstrings.py ``` for a check that will error in case of inconsistencies (used by `make repo-consistency`). To auto-fix issues run: ```bash python utils/check_docstrings.py --fix_and_overwrite ``` which is used by `make fix-copies` (note that this fills what it cans, you might have to manually fill information like argument descriptions). """ import argparse import ast import enum import inspect import operator as op import re from pathlib import Path from typing import Any, Optional, Tuple, Union from check_repo import ignore_undocumented from transformers.utils import direct_transformers_import PATH_TO_TRANSFORMERS = Path("src").resolve() / "transformers" # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) OPTIONAL_KEYWORD = "*optional*" # Re pattern that catches args blocks in docstrings (with all variation around the name supported). _re_args = re.compile(r"^\s*(Args?|Arguments?|Attributes?|Params?|Parameters?):\s*$") # Re pattern that parses the start of an arg block: catches <name> (<description>) in those lines. _re_parse_arg = re.compile(r"^(\s*)(\S+)\s+\((.+)\)(?:\:|$)") # Re pattern that parses the end of a description of an arg (catches the default in *optional*, defaults to xxx). _re_parse_description = re.compile(r"\*optional\*, defaults to (.*)$") # This is a temporary list of objects to ignore while we progressively fix them. Do not add anything here, fix the # docstrings instead. If formatting should be ignored for the docstring, you can put a comment # no-format on the # line before the docstring. OBJECTS_TO_IGNORE = [ # Deprecated "InputExample", "InputFeatures", # Signature is *args/**kwargs # "PretrainedConfig", #ignored but could be fixed # "GenerationConfig", #ignored but could be fixed "TFSequenceSummary", "TFBertTokenizer", "TFGPT2Tokenizer", # Missing arguments in the docstring "ASTFeatureExtractor", "AlbertModel", "AlbertTokenizerFast", "AlignTextModel", "AlignVisionConfig", "AudioClassificationPipeline", "AutoformerConfig", "AutomaticSpeechRecognitionPipeline", "AzureOpenAiAgent", "BarkCoarseConfig", "BarkConfig", "BarkFineConfig", "BarkSemanticConfig", "BartConfig", "BartTokenizerFast", "BarthezTokenizerFast", "BeitModel", "BertConfig", "BertJapaneseTokenizer", "BertModel", "BertTokenizerFast", "BigBirdConfig", "BigBirdForQuestionAnswering", "BigBirdModel", "BigBirdPegasusConfig", "BigBirdTokenizerFast", "BitImageProcessor", "BlenderbotConfig", "BlenderbotSmallConfig", "BlenderbotSmallTokenizerFast", "BlenderbotTokenizerFast", "Blip2QFormerConfig", "Blip2VisionConfig", "BlipTextConfig", "BlipVisionConfig", "BloomConfig", "BloomTokenizerFast", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", "BrosModel", "CamembertConfig", "CamembertModel", "CamembertTokenizerFast", "CanineModel", "CanineTokenizer", "ChineseCLIPTextModel", "ClapTextConfig", "ConditionalDetrConfig", "ConditionalDetrImageProcessor", "ConvBertConfig", "ConvBertTokenizerFast", "ConvNextConfig", "ConvNextV2Config", "ConversationalPipeline", "CpmAntTokenizer", "CvtConfig", "CvtModel", "DeiTImageProcessor", "DPRReaderTokenizer", "DPRReaderTokenizerFast", "DPTModel", "Data2VecAudioConfig", "Data2VecTextConfig", "Data2VecTextModel", "Data2VecVisionModel", "DataCollatorForLanguageModeling", "DebertaConfig", "DebertaV2Config", "DebertaV2Tokenizer", "DebertaV2TokenizerFast", "DecisionTransformerConfig", "DeformableDetrConfig", "DeformableDetrImageProcessor", "DeiTModel", "DepthEstimationPipeline", "DetaConfig", "DetaImageProcessor", "DetrConfig", "DetrImageProcessor", "DinatModel", "DistilBertConfig", "DistilBertTokenizerFast", "DocumentQuestionAnsweringPipeline", "DonutSwinModel", "EarlyStoppingCallback", "EfficientFormerConfig", "EfficientFormerImageProcessor", "EfficientNetConfig", "ElectraConfig", "ElectraTokenizerFast", "EncoderDecoderModel", "EncoderRepetitionPenaltyLogitsProcessor", "ErnieMModel", "ErnieModel", "ErnieMTokenizer", "EsmConfig", "EsmModel", "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxBartForCausalLM", "FlaxBartForConditionalGeneration", "FlaxBartForQuestionAnswering", "FlaxBartForSequenceClassification", "FlaxBartModel", "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBigBirdForCausalLM", "FlaxBigBirdForMaskedLM", "FlaxBigBirdForMultipleChoice", "FlaxBigBirdForPreTraining", "FlaxBigBirdForQuestionAnswering", "FlaxBigBirdForSequenceClassification", "FlaxBigBirdForTokenClassification", "FlaxBigBirdModel", "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBloomForCausalLM", "FlaxBloomModel", "FlaxCLIPModel", "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxEncoderDecoderModel", "FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMarianMTModel", "FlaxMarianModel", "FlaxMistralForCausalLM", "FlaxMistralModel", "FlaxOPTForCausalLM", "FlaxPegasusForConditionalGeneration", "FlaxPegasusModel", "FlaxRegNetForImageClassification", "FlaxRegNetModel", "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxSpeechEncoderDecoderModel", "FlaxViTForImageClassification", "FlaxViTModel", "FlaxVisionEncoderDecoderModel", "FlaxVisionTextDualEncoderModel", "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWhisperForAudioClassification", "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperTimeStampLogitsProcessor", "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FNetConfig", "FNetModel", "FNetTokenizerFast", "FSMTConfig", "FeatureExtractionPipeline", "FillMaskPipeline", "FlaubertConfig", "FlavaConfig", "FlavaForPreTraining", "FlavaImageModel", "FlavaImageProcessor", "FlavaMultimodalModel", "FlavaTextConfig", "FlavaTextModel", "FocalNetModel", "FunnelTokenizerFast", "GPTBigCodeConfig", "GPTJConfig", "GPTNeoXConfig", "GPTNeoXJapaneseConfig", "GPTNeoXTokenizerFast", "GPTSanJapaneseConfig", "GitConfig", "GitVisionConfig", "GraphormerConfig", "GroupViTTextConfig", "GroupViTVisionConfig", "HerbertTokenizerFast", "HubertConfig", "HubertForCTC", "IBertConfig", "IBertModel", "IdeficsConfig", "IdeficsProcessor", "ImageClassificationPipeline", "ImageGPTConfig", "ImageSegmentationPipeline", "ImageToImagePipeline", "ImageToTextPipeline", "InformerConfig", "InstructBlipQFormerConfig", "JukeboxPriorConfig", "JukeboxTokenizer", "LEDConfig", "LEDTokenizerFast", "LayoutLMForQuestionAnswering", "LayoutLMTokenizerFast", "LayoutLMv2Config", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2TokenizerFast", "LayoutLMv3Config", "LayoutLMv3ImageProcessor", "LayoutLMv3TokenizerFast", "LayoutXLMTokenizerFast", "LevitConfig", "LiltConfig", "LiltModel", "LongT5Config", "LongformerConfig", "LongformerModel", "LongformerTokenizerFast", "LukeModel", "LukeTokenizer", "LxmertTokenizerFast", "M2M100Config", "M2M100Tokenizer", "MarkupLMProcessor", "MaskGenerationPipeline", "MBart50TokenizerFast", "MBartConfig", "MCTCTFeatureExtractor", "MPNetConfig", "MPNetModel", "MPNetTokenizerFast", "MT5Config", "MT5TokenizerFast", "MarianConfig", "MarianTokenizer", "MarkupLMConfig", "MarkupLMModel", "MarkupLMTokenizer", "MarkupLMTokenizerFast", "Mask2FormerConfig", "MaskFormerConfig", "MaxTimeCriteria", "MegaConfig", "MegaModel", "MegatronBertConfig", "MegatronBertForPreTraining", "MegatronBertModel", "MobileBertConfig", "MobileBertModel", "MobileBertTokenizerFast", "MobileNetV1ImageProcessor", "MobileNetV1Model", "MobileNetV2ImageProcessor", "MobileNetV2Model", "MobileViTModel", "MobileViTV2Model", "MLukeTokenizer", "MraConfig", "MusicgenDecoderConfig", "MusicgenForConditionalGeneration", "MvpConfig", "MvpTokenizerFast", "MT5Tokenizer", "NatModel", "NerPipeline", "NezhaConfig", "NezhaModel", "NllbMoeConfig", "NllbTokenizer", "NllbTokenizerFast", "NystromformerConfig", "OPTConfig", "ObjectDetectionPipeline", "OneFormerProcessor", "OpenAIGPTTokenizerFast", "OpenLlamaConfig", "PLBartConfig", "PegasusConfig", "PegasusTokenizer", "PegasusTokenizerFast", "PegasusXConfig", "PerceiverImageProcessor", "PerceiverModel", "PerceiverTokenizer", "PersimmonConfig", "Pipeline", "Pix2StructConfig", "Pix2StructTextConfig", "PLBartTokenizer", "Pop2PianoConfig", "PreTrainedTokenizer", "PreTrainedTokenizerBase", "PreTrainedTokenizerFast", "PrefixConstrainedLogitsProcessor", "ProphetNetConfig", "QDQBertConfig", "QDQBertModel", "QuestionAnsweringPipeline", "RagConfig", "RagModel", "RagRetriever", "RagSequenceForGeneration", "RagTokenForGeneration", "RealmConfig", "RealmForOpenQA", "RealmScorer", "RealmTokenizerFast", "ReformerConfig", "ReformerTokenizerFast", "RegNetConfig", "RemBertConfig", "RemBertModel", "RemBertTokenizer", "RemBertTokenizerFast", "RepetitionPenaltyLogitsProcessor", "RetriBertConfig", "RetriBertTokenizerFast", "RoCBertConfig", "RoCBertModel", "RoCBertTokenizer", "RoFormerConfig", "RobertaConfig", "RobertaModel", "RobertaPreLayerNormConfig", "RobertaPreLayerNormModel", "RobertaTokenizerFast", "SEWConfig", "SEWDConfig", "SEWDForCTC", "SEWForCTC", "SamConfig", "SamPromptEncoderConfig", "SeamlessM4TConfig", # use of unconventional markdown "SeamlessM4Tv2Config", # use of unconventional markdown "Seq2SeqTrainingArguments", "SpecialTokensMixin", "Speech2Text2Config", "Speech2Text2Tokenizer", "Speech2TextTokenizer", "SpeechEncoderDecoderModel", "SpeechT5Config", "SpeechT5Model", "SplinterConfig", "SplinterTokenizerFast", "SqueezeBertTokenizerFast", "SummarizationPipeline", "Swin2SRImageProcessor", "Swinv2Model", "SwitchTransformersConfig", "T5Config", "T5Tokenizer", "T5TokenizerFast", "TableQuestionAnsweringPipeline", "TableTransformerConfig", "TapasConfig", "TapasModel", "TapasTokenizer", "Text2TextGenerationPipeline", "TextClassificationPipeline", "TextGenerationPipeline", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertModel", "TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertModel", "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlipForConditionalGeneration", "TFBlipForImageTextRetrieval", "TFBlipForQuestionAnswering", "TFCLIPModel", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCamembertForCausalLM", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertModel", "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextV2Model", # Parsing issue. Equivalent to PT ConvNextV2Model, see PR #25558 "TFConvNextV2ForImageClassification", "TFCvtForImageClassification", "TFCvtModel", "TFDPRReader", "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaV2ForMaskedLM", "TFDebertaV2ForMultipleChoice", "TFDebertaV2ForQuestionAnswering", "TFDebertaV2ForSequenceClassification", "TFDebertaV2ForTokenClassification", "TFDebertaV2Model", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertModel", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFEncoderDecoderModel", "TFEsmForMaskedLM", "TFEsmForSequenceClassification", "TFEsmForTokenClassification", "TFEsmModel", "TFFlaubertForMultipleChoice", "TFFlaubertForQuestionAnsweringSimple", "TFFlaubertForSequenceClassification", "TFFlaubertForTokenClassification", "TFFlaubertModel", "TFFlaubertWithLMHeadModel", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFGPT2DoubleHeadsModel", "TFGPT2ForSequenceClassification", "TFGPT2LMHeadModel", "TFGPT2Model", "TFGPTJForCausalLM", "TFGPTJForQuestionAnswering", "TFGPTJForSequenceClassification", "TFGPTJModel", "TFGroupViTModel", "TFHubertForCTC", "TFHubertModel", "TFLEDForConditionalGeneration", "TFLEDModel", "TFLayoutLMForMaskedLM", "TFLayoutLMForQuestionAnswering", "TFLayoutLMForSequenceClassification", "TFLayoutLMForTokenClassification", "TFLayoutLMModel", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLxmertForPreTraining", "TFLxmertModel", "TFMBartForConditionalGeneration", "TFMBartModel", "TFMPNetForMaskedLM", "TFMPNetForMultipleChoice", "TFMPNetForQuestionAnswering", "TFMPNetForSequenceClassification", "TFMPNetForTokenClassification", "TFMPNetModel", "TFMarianMTModel", "TFMarianModel", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertModel", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFOPTForCausalLM", "TFOPTModel", "TFOpenAIGPTDoubleHeadsModel", "TFOpenAIGPTForSequenceClassification", "TFOpenAIGPTLMHeadModel", "TFOpenAIGPTModel", "TFPegasusForConditionalGeneration", "TFPegasusModel", "TFRagModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", "TFRegNetForImageClassification", "TFRegNetModel", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertModel", "TFRepetitionPenaltyLogitsProcessor", "TFResNetForImageClassification", "TFResNetModel", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerModel", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaModel", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormModel", "TFSamModel", "TFSegformerForImageClassification", "TFSegformerForSemanticSegmentation", "TFSegformerModel", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFT5EncoderModel", "TFT5ForConditionalGeneration", "TFT5Model", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLModel", "TFViTForImageClassification", "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTModel", "TFVisionEncoderDecoderModel", "TFVisionTextDualEncoderModel", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFXGLMForCausalLM", "TFXGLMModel", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMModel", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMWithLMHeadModel", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetModel", "TimeSeriesTransformerConfig", "TokenClassificationPipeline", "TrOCRConfig", "TrainerState", "TrainingArguments", "TrajectoryTransformerConfig", "TranslationPipeline", "TvltImageProcessor", "UMT5Config", "UperNetConfig", "UperNetForSemanticSegmentation", "ViTHybridImageProcessor", "ViTHybridModel", "ViTMSNModel", "ViTModel", "VideoClassificationPipeline", "ViltConfig", "ViltForImagesAndTextClassification", "ViltModel", "VisionEncoderDecoderModel", "VisionTextDualEncoderModel", "VisualBertConfig", "VisualBertModel", "VisualQuestionAnsweringPipeline", "VitMatteForImageMatting", "VitsTokenizer", "VivitModel", "Wav2Vec2BertForCTC", "Wav2Vec2CTCTokenizer", "Wav2Vec2Config", "Wav2Vec2ConformerConfig", "Wav2Vec2ConformerForCTC", "Wav2Vec2FeatureExtractor", "Wav2Vec2PhonemeCTCTokenizer", "WavLMConfig", "WavLMForCTC", "WhisperConfig", "WhisperFeatureExtractor", "WhisperForAudioClassification", "XCLIPTextConfig", "XCLIPVisionConfig", "XGLMConfig", "XGLMModel", "XGLMTokenizerFast", "XLMConfig", "XLMProphetNetConfig", "XLMRobertaConfig", "XLMRobertaModel", "XLMRobertaTokenizerFast", "XLMRobertaXLConfig", "XLMRobertaXLModel", "XLNetConfig", "XLNetTokenizerFast", "XmodConfig", "XmodModel", "YolosImageProcessor", "YolosModel", "YosoConfig", "ZeroShotAudioClassificationPipeline", "ZeroShotClassificationPipeline", "ZeroShotImageClassificationPipeline", "ZeroShotObjectDetectionPipeline", ] # Supported math operations when interpreting the value of defaults. MATH_OPERATORS = { ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg, } def find_indent(line: str) -> int: """ Returns the number of spaces that start a line indent. """ search = re.search(r"^(\s*)(?:\S|$)", line) if search is None: return 0 return len(search.groups()[0]) def stringify_default(default: Any) -> str: """ Returns the string representation of a default value, as used in docstring: numbers are left as is, all other objects are in backtiks. Args: default (`Any`): The default value to process Returns: `str`: The string representation of that default. """ if isinstance(default, bool): # We need to test for bool first as a bool passes isinstance(xxx, (int, float)) return f"`{default}`" elif isinstance(default, enum.Enum): # We need to test for enum first as an enum with int values will pass isinstance(xxx, (int, float)) return f"`{str(default)}`" elif isinstance(default, int): return str(default) elif isinstance(default, float): result = str(default) return str(round(default, 2)) if len(result) > 6 else result elif isinstance(default, str): return str(default) if default.isnumeric() else f'`"{default}"`' elif isinstance(default, type): return f"`{default.__name__}`" else: return f"`{default}`" def eval_math_expression(expression: str) -> Optional[Union[float, int]]: # Mainly taken from the excellent https://stackoverflow.com/a/9558001 """ Evaluate (safely) a mathematial expression and returns its value. Args: expression (`str`): The expression to evaluate. Returns: `Optional[Union[float, int]]`: Returns `None` if the evaluation fails in any way and the value computed otherwise. Example: ```py >>> eval_expr('2^6') 4 >>> eval_expr('2**6') 64 >>> eval_expr('1 + 2*3**(4^5) / (6 + -7)') -5.0 ``` """ try: return eval_node(ast.parse(expression, mode="eval").body) except TypeError: return def eval_node(node): if isinstance(node, ast.Num): # <number> return node.n elif isinstance(node, ast.BinOp): # <left> <operator> <right> return MATH_OPERATORS[type(node.op)](eval_node(node.left), eval_node(node.right)) elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1 return MATH_OPERATORS[type(node.op)](eval_node(node.operand)) else: raise TypeError(node) def replace_default_in_arg_description(description: str, default: Any) -> str: """ Catches the default value in the description of an argument inside a docstring and replaces it by the value passed. Args: description (`str`): The description of an argument in a docstring to process. default (`Any`): The default value that whould be in the docstring of that argument. Returns: `str`: The description updated with the new default value. """ # Lots of docstrings have `optional` or **opational** instead of *optional* so we do this fix here. description = description.replace("`optional`", OPTIONAL_KEYWORD) description = description.replace("**optional**", OPTIONAL_KEYWORD) if default is inspect._empty: # No default, make sure the description doesn't have any either idx = description.find(OPTIONAL_KEYWORD) if idx != -1: description = description[:idx].rstrip() if description.endswith(","): description = description[:-1].rstrip() elif default is None: # Default None are not written, we just set `*optional*`. If there is default that is not None specified in the # description, we do not erase it (as sometimes we set the default to `None` because the default is a mutable # object). idx = description.find(OPTIONAL_KEYWORD) if idx == -1: description = f"{description}, {OPTIONAL_KEYWORD}" elif re.search(r"defaults to `?None`?", description) is not None: len_optional = len(OPTIONAL_KEYWORD) description = description[: idx + len_optional] else: str_default = None # For numbers we may have a default that is given by a math operation (1/255 is really popular). We don't # want to replace those by their actual values. if isinstance(default, (int, float)) and re.search("defaults to `?(.*?)(?:`|$)", description) is not None: # Grab the default and evaluate it. current_default = re.search("defaults to `?(.*?)(?:`|$)", description).groups()[0] if default == eval_math_expression(current_default): try: # If it can be directly converted to the type of the default, it's a simple value str_default = str(type(default)(current_default)) except Exception: # Otherwise there is a math operator so we add a code block. str_default = f"`{current_default}`" elif isinstance(default, enum.Enum) and default.name == current_default.split(".")[-1]: # When the default is an Enum (this is often the case for PIL.Image.Resampling), and the docstring # matches the enum name, keep the existing docstring rather than clobbering it with the enum value. str_default = f"`{current_default}`" if str_default is None: str_default = stringify_default(default) # Make sure default match if OPTIONAL_KEYWORD not in description: description = f"{description}, {OPTIONAL_KEYWORD}, defaults to {str_default}" elif _re_parse_description.search(description) is None: idx = description.find(OPTIONAL_KEYWORD) len_optional = len(OPTIONAL_KEYWORD) description = f"{description[:idx + len_optional]}, defaults to {str_default}" else: description = _re_parse_description.sub(rf"*optional*, defaults to {str_default}", description) return description def get_default_description(arg: inspect.Parameter) -> str: """ Builds a default description for a parameter that was not documented. Args: arg (`inspect.Parameter`): The argument in the signature to generate a description for. Returns: `str`: The description. """ if arg.annotation is inspect._empty: arg_type = "<fill_type>" elif hasattr(arg.annotation, "__name__"): arg_type = arg.annotation.__name__ else: arg_type = str(arg.annotation) if arg.default is inspect._empty: return f"`{arg_type}`" elif arg.default is None: return f"`{arg_type}`, {OPTIONAL_KEYWORD}" else: str_default = stringify_default(arg.default) return f"`{arg_type}`, {OPTIONAL_KEYWORD}, defaults to {str_default}" def find_source_file(obj: Any) -> Path: """ Finds the source file of an object. Args: obj (`Any`): The object whose source file we are looking for. Returns: `Path`: The source file. """ module = obj.__module__ obj_file = PATH_TO_TRANSFORMERS for part in module.split(".")[1:]: obj_file = obj_file / part return obj_file.with_suffix(".py") def match_docstring_with_signature(obj: Any) -> Optional[Tuple[str, str]]: """ Matches the docstring of an object with its signature. Args: obj (`Any`): The object to process. Returns: `Optional[Tuple[str, str]]`: Returns `None` if there is no docstring or no parameters documented in the docstring, otherwise returns a tuple of two strings: the current documentation of the arguments in the docstring and the one matched with the signature. """ if len(getattr(obj, "__doc__", "")) == 0: # Nothing to do, there is no docstring. return # Read the docstring in the source code to see if there is a special command to ignore this object. try: source, _ = inspect.getsourcelines(obj) except OSError: source = [] idx = 0 while idx < len(source) and '"""' not in source[idx]: idx += 1 ignore_order = False if idx < len(source): line_before_docstring = source[idx - 1] if re.search(r"^\s*#\s*no-format\s*$", line_before_docstring): # This object is ignored return elif re.search(r"^\s*#\s*ignore-order\s*$", line_before_docstring): ignore_order = True # Read the signature signature = inspect.signature(obj).parameters obj_doc_lines = obj.__doc__.split("\n") # Get to the line where we start documenting arguments idx = 0 while idx < len(obj_doc_lines) and _re_args.search(obj_doc_lines[idx]) is None: idx += 1 if idx == len(obj_doc_lines): # Nothing to do, no parameters are documented. return indent = find_indent(obj_doc_lines[idx]) arguments = {} current_arg = None idx += 1 start_idx = idx # Keep going until the arg section is finished (nonempty line at the same indent level) or the end of the docstring. while idx < len(obj_doc_lines) and ( len(obj_doc_lines[idx].strip()) == 0 or find_indent(obj_doc_lines[idx]) > indent ): if find_indent(obj_doc_lines[idx]) == indent + 4: # New argument -> let's generate the proper doc for it re_search_arg = _re_parse_arg.search(obj_doc_lines[idx]) if re_search_arg is not None: _, name, description = re_search_arg.groups() current_arg = name if name in signature: default = signature[name].default if signature[name].kind is inspect._ParameterKind.VAR_KEYWORD: default = None new_description = replace_default_in_arg_description(description, default) else: new_description = description init_doc = _re_parse_arg.sub(rf"\1\2 ({new_description}):", obj_doc_lines[idx]) arguments[current_arg] = [init_doc] elif current_arg is not None: arguments[current_arg].append(obj_doc_lines[idx]) idx += 1 # We went too far by one (perhaps more if there are a lot of new lines) idx -= 1 while len(obj_doc_lines[idx].strip()) == 0: arguments[current_arg] = arguments[current_arg][:-1] idx -= 1 # And we went too far by one again. idx += 1 old_doc_arg = "\n".join(obj_doc_lines[start_idx:idx]) old_arguments = list(arguments.keys()) arguments = {name: "\n".join(doc) for name, doc in arguments.items()} # Add missing arguments with a template for name in set(signature.keys()) - set(arguments.keys()): arg = signature[name] # We ignore private arguments or *args/**kwargs (unless they are documented by the user) if name.startswith("_") or arg.kind in [ inspect._ParameterKind.VAR_KEYWORD, inspect._ParameterKind.VAR_POSITIONAL, ]: arguments[name] = "" else: arg_desc = get_default_description(arg) arguments[name] = " " * (indent + 4) + f"{name} ({arg_desc}): <fill_docstring>" # Arguments are sorted by the order in the signature unless a special comment is put. if ignore_order: new_param_docs = [arguments[name] for name in old_arguments if name in signature] missing = set(signature.keys()) - set(old_arguments) new_param_docs.extend([arguments[name] for name in missing if len(arguments[name]) > 0]) else: new_param_docs = [arguments[name] for name in signature.keys() if len(arguments[name]) > 0] new_doc_arg = "\n".join(new_param_docs) return old_doc_arg, new_doc_arg def fix_docstring(obj: Any, old_doc_args: str, new_doc_args: str): """ Fixes the docstring of an object by replacing its arguments documentaiton by the one matched with the signature. Args: obj (`Any`): The object whose dostring we are fixing. old_doc_args (`str`): The current documentation of the parameters of `obj` in the docstring (as returned by `match_docstring_with_signature`). new_doc_args (`str`): The documentation of the parameters of `obj` matched with its signature (as returned by `match_docstring_with_signature`). """ # Read the docstring in the source code and make sure we have the right part of the docstring source, line_number = inspect.getsourcelines(obj) # Get to the line where we start documenting arguments idx = 0 while idx < len(source) and _re_args.search(source[idx]) is None: idx += 1 if idx == len(source): # Args are not defined in the docstring of this object return # Get to the line where we stop documenting arguments indent = find_indent(source[idx]) idx += 1 start_idx = idx while idx < len(source) and (len(source[idx].strip()) == 0 or find_indent(source[idx]) > indent): idx += 1 idx -= 1 while len(source[idx].strip()) == 0: idx -= 1 idx += 1 if "".join(source[start_idx:idx])[:-1] != old_doc_args: # Args are not fully defined in the docstring of this object return obj_file = find_source_file(obj) with open(obj_file, "r", encoding="utf-8") as f: content = f.read() # Replace content lines = content.split("\n") lines = lines[: line_number + start_idx - 1] + [new_doc_args] + lines[line_number + idx - 1 :] print(f"Fixing the docstring of {obj.__name__} in {obj_file}.") with open(obj_file, "w", encoding="utf-8") as f: f.write("\n".join(lines)) def check_docstrings(overwrite: bool = False): """ Check docstrings of all public objects that are callables and are documented. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether to fix inconsistencies or not. """ failures = [] hard_failures = [] to_clean = [] for name in dir(transformers): # Skip objects that are private or not documented. if name.startswith("_") or ignore_undocumented(name) or name in OBJECTS_TO_IGNORE: continue obj = getattr(transformers, name) if not callable(obj) or not isinstance(obj, type) or getattr(obj, "__doc__", None) is None: continue # Check docstring try: result = match_docstring_with_signature(obj) if result is not None: old_doc, new_doc = result else: old_doc, new_doc = None, None except Exception as e: print(e) hard_failures.append(name) continue if old_doc != new_doc: if overwrite: fix_docstring(obj, old_doc, new_doc) else: failures.append(name) elif not overwrite and new_doc is not None and ("<fill_type>" in new_doc or "<fill_docstring>" in new_doc): to_clean.append(name) # Deal with errors error_message = "" if len(hard_failures) > 0: error_message += ( "The argument part of the docstrings of the following objects could not be processed, check they are " "properly formatted." ) error_message += "\n" + "\n".join([f"- {name}" for name in hard_failures]) if len(failures) > 0: error_message += ( "The following objects docstrings do not match their signature. Run `make fix-copies` to fix this. " "In some cases, this error may be raised incorrectly by the docstring checker. If you think this is the " "case, you can manually check the docstrings and then add the object name to `OBJECTS_TO_IGNORE` in " "`utils/check_docstrings.py`." ) error_message += "\n" + "\n".join([f"- {name}" for name in failures]) if len(to_clean) > 0: error_message += ( "The following objects docstrings contain templates you need to fix: search for `<fill_type>` or " "`<fill_docstring>`." ) error_message += "\n" + "\n".join([f"- {name}" for name in to_clean]) if len(error_message) > 0: error_message = "There was at least one problem when checking docstrings of public objects.\n" + error_message raise ValueError(error_message) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_docstrings(overwrite=args.fix_and_overwrite)
transformers/utils/check_docstrings.py/0
{ "file_path": "transformers/utils/check_docstrings.py", "repo_id": "transformers", "token_count": 16779 }
379
import argparse import math import traceback import dateutil.parser as date_parser import requests def extract_time_from_single_job(job): """Extract time info from a single job in a GitHub Actions workflow run""" job_info = {} start = job["started_at"] end = job["completed_at"] start_datetime = date_parser.parse(start) end_datetime = date_parser.parse(end) duration_in_min = round((end_datetime - start_datetime).total_seconds() / 60.0) job_info["started_at"] = start job_info["completed_at"] = end job_info["duration"] = duration_in_min return job_info def get_job_time(workflow_run_id, token=None): """Extract time info for all jobs in a GitHub Actions workflow run""" headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" result = requests.get(url, headers=headers).json() job_time = {} try: job_time.update({job["name"]: extract_time_from_single_job(job) for job in result["jobs"]}) pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100) for i in range(pages_to_iterate_over): result = requests.get(url + f"&page={i + 2}", headers=headers).json() job_time.update({job["name"]: extract_time_from_single_job(job) for job in result["jobs"]}) return job_time except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}") return {} if __name__ == "__main__": r""" Example: python get_github_job_time.py --workflow_run_id 2945609517 """ parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") args = parser.parse_args() job_time = get_job_time(args.workflow_run_id) job_time = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'{k}: {v["duration"]}')
transformers/utils/get_github_job_time.py/0
{ "file_path": "transformers/utils/get_github_job_time.py", "repo_id": "transformers", "token_count": 835 }
380
from transformers import CLIPImageProcessor class CustomImageProcessor(CLIPImageProcessor): pass
transformers/utils/test_module/custom_image_processing.py/0
{ "file_path": "transformers/utils/test_module/custom_image_processing.py", "repo_id": "transformers", "token_count": 29 }
381
from dataclasses import dataclass import tyro from huggingface_hub import HfApi @dataclass class Args: folder_path: str = "benchmark/trl" path_in_repo: str = "images/benchmark" repo_id: str = "trl-internal-testing/example-images" repo_type: str = "dataset" args = tyro.cli(Args) api = HfApi() api.upload_folder( folder_path=args.folder_path, path_in_repo=args.path_in_repo, repo_id=args.repo_id, repo_type=args.repo_type, )
trl/benchmark/upload_benchmark.py/0
{ "file_path": "trl/benchmark/upload_benchmark.py", "repo_id": "trl", "token_count": 200 }
382
# Learning Tools (Experimental 🧪) Using Large Language Models (LLMs) with tools has been a popular topic recently with awesome works such as [ToolFormer](https://arxiv.org/abs/2302.04761) and [ToolBench](https://arxiv.org/pdf/2305.16504.pdf). In TRL, we provide a simple example of how to teach LLM to use tools with reinforcement learning. Here's an overview of the scripts in the [trl repository](https://github.com/lvwerra/trl/tree/main/examples/research_projects/tools): | File | Description | |---|---| | [`calculator.py`](https://github.com/lvwerra/trl/blob/main/examples/research_projects/tools/calculator.py) | Script to train LLM to use a calculator with reinforcement learning. | | [`triviaqa.py`](https://github.com/lvwerra/trl/blob/main/examples/research_projects/tools/triviaqa.py) | Script to train LLM to use a wiki tool to answer questions. | | [`python_interpreter.py`](https://github.com/lvwerra/trl/blob/main/examples/research_projects/tools/python_interpreter.py) | Script to train LLM to use python interpreter to solve math puzzles. | <Tip warning={true}> Note that the scripts above rely heavily on the `TextEnvironment` API which is still under active development. The API may change in the future. Please see [`TextEnvironment`](text_environment) for the related docs. </Tip> ## Learning to Use a Calculator The rough idea is as follows: 1. Load a tool such as [ybelkada/simple-calculator](https://huggingface.co/spaces/ybelkada/simple-calculator) that parse a text calculation like `"14 + 34"` and return the calulated number: ```python from transformers import AutoTokenizer, load_tool tool = load_tool("ybelkada/simple-calculator") tool_fn = lambda text: str(round(float(tool(text)), 2)) # rounding to 2 decimal places ``` 1. Define a reward function that returns a positive reward if the tool returns the correct answer. In the script we create a dummy reward function like `reward_fn = lambda x: 1`, but we override the rewards directly later. 1. Create a prompt on how to use the tools ```python # system prompt prompt = """\ What is 13.1-3? <request><SimpleCalculatorTool>13.1-3<call>10.1<response> Result=10.1<submit> What is 4*3? <request><SimpleCalculatorTool>4*3<call>12<response> Result=12<submit> What is 12.1+1? <request><SimpleCalculatorTool>12.1+1<call>13.1<response> Result=13.1<submit> What is 12.1-20? <request><SimpleCalculatorTool>12.1-20<call>-7.9<response> Result=-7.9<submit>""" ``` 3. Create a `trl.TextEnvironment` with the model ```python env = TextEnvironment( model, tokenizer, {"SimpleCalculatorTool": tool_fn}, reward_fn, prompt, generation_kwargs=generation_kwargs, ) ``` 4. Then generate some data such as `tasks = ["\n\nWhat is 13.1-3?", "\n\nWhat is 4*3?"]` and run the environment with `queries, responses, masks, rewards, histories = env.run(tasks)`. The environment will look for the `<call>` token in the prompt and append the tool output to the response; it will also return the mask associated with the response. You can further use the `histories` to visualize the interaction between the model and the tool; `histories[0].show_text()` will show the text with color-coded tool output and `histories[0].show_tokens(tokenizer)` will show visualize the tokens. ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/learning_tools.png) 1. Finally, we can train the model with `train_stats = ppo_trainer.step(queries, responses, rewards, masks)`. The trainer will use the mask to ignore the tool output when computing the loss, make sure to pass that argument to `step`. ## Experiment results We trained a model with the above script for 10 random seeds. You can reproduce the run with the following command. Feel free to remove the `--slurm-*` arguments if you don't have access to a slurm cluster. ``` WANDB_TAGS="calculator_final" python benchmark/benchmark.py \ --command "python examples/research_projects/tools/calculator.py" \ --num-seeds 10 \ --start-seed 1 \ --workers 10 \ --slurm-gpus-per-task 1 \ --slurm-ntasks 1 \ --slurm-total-cpus 8 \ --slurm-template-path benchmark/trl.slurm_template ``` We can then use [`openrlbenchmark`](https://github.com/openrlbenchmark/openrlbenchmark) which generates the following plot. ``` python -m openrlbenchmark.rlops_multi_metrics \ --filters '?we=openrlbenchmark&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.tracker_project_name&cen=trl_ppo_trainer_config.value.log_with&metrics=env/reward_mean&metrics=objective/kl' \ 'wandb?tag=calculator_final&cl=calculator_mask' \ --env-ids trl \ --check-empty-runs \ --pc.ncols 2 \ --pc.ncols-legend 1 \ --output-filename static/0compare \ --scan-history ``` ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/learning_tools_chart.png) As we can see, while 1-2 experiments crashed for some reason, most of the runs obtained near perfect proficiency in the calculator task. ## (Early Experiments 🧪): learning to use a wiki tool for question answering In the [ToolFormer](https://arxiv.org/abs/2302.04761) paper, it shows an interesting use case that utilizes a Wikipedia Search tool to help answer questions. In this section, we attempt to perform similar experiments but uses RL instead to teach the model to use a wiki tool on the [TriviaQA](https://nlp.cs.washington.edu/triviaqa/) dataset. <Tip warning={true}> **Note that many settings are different so the results are not directly comparable.** </Tip> ### Building a search index Since [ToolFormer](https://arxiv.org/abs/2302.04761) did not open source, we needed to first replicate the search index. It is mentioned in their paper that the authors built the search index using a BM25 retriever that indexes the Wikipedia dump from [KILT](https://github.com/facebookresearch/KILT) Fortunately, [`pyserini`](https://github.com/castorini/pyserini) already implements the BM25 retriever and provides a prebuilt index for the KILT Wikipedia dump. We can use the following code to search the index. ```python from pyserini.search.lucene import LuceneSearcher import json searcher = LuceneSearcher.from_prebuilt_index('wikipedia-kilt-doc') def search(query): hits = searcher.search(query, k=1) hit = hits[0] contents = json.loads(hit.raw)['contents'] return contents print(search("tennis racket")) ``` ``` Racket (sports equipment) A racket or racquet is a sports implement consisting of a handled frame with an open hoop across which a network of strings or catgut is stretched tightly. It is used for striking a ball or shuttlecock in games such as squash, tennis, racquetball, and badminton. Collectively, these games are known as racket sports. Racket design and manufacturing has changed considerably over the centuries. The frame of rackets for all sports was traditionally made of solid wood (later laminated wood) and the strings of animal intestine known as catgut. The traditional racket size was limited by the strength and weight of the wooden frame which had to be strong enough to hold the strings and stiff enough to hit the ball or shuttle. Manufacturers started adding non-wood laminates to wood rackets to improve stiffness. Non-wood rackets were made first of steel, then of aluminum, and then carbon fiber composites. Wood is still used for real tennis, rackets, and xare. Most rackets are now made of composite materials including carbon fiber or fiberglass, metals such as titanium alloys, or ceramics. ... ``` We then basically deployed this snippet as a Hugging Face space [here](https://huggingface.co/spaces/vwxyzjn/pyserini-wikipedia-kilt-doc), so that we can use the space as a `transformers.Tool` later. ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/pyserini.png) ### Experiment settings We use the following settings: * use the `bigcode/starcoderbase` model as the base model * use the `pyserini-wikipedia-kilt-doc` space as the wiki tool and only uses the first paragrahs of the search result, allowing the `TextEnvironment` to obtain at most `max_tool_reponse=400` response tokens from the tool. * test if the response contain the answer string, if so, give a reward of 1, otherwise, give a reward of 0. * notice this is a simplified evaluation criteria. In [ToolFormer](https://arxiv.org/abs/2302.04761), the authors checks if the first 20 words of the response contain the correct answer. * used the following prompt that demonstrates the usage of the wiki tool. ```python prompt = """\ Answer the following question: Q: In which branch of the arts is Patricia Neary famous? A: Ballets A2: <request><Wiki>Patricia Neary<call>Patricia Neary (born October 27, 1942) is an American ballerina, choreographer and ballet director, who has been particularly active in Switzerland. She has also been a highly successful ambassador for the Balanchine Trust, bringing George Balanchine's ballets to 60 cities around the globe.<response> Result=Ballets<submit> Q: Who won Super Bowl XX? A: Chicago Bears A2: <request><Wiki>Super Bowl XX<call>Super Bowl XX was an American football game between the National Football Conference (NFC) champion Chicago Bears and the American Football Conference (AFC) champion New England Patriots to decide the National Football League (NFL) champion for the 1985 season. The Bears defeated the Patriots by the score of 46–10, capturing their first NFL championship (and Chicago's first overall sports victory) since 1963, three years prior to the birth of the Super Bowl. Super Bowl XX was played on January 26, 1986 at the Louisiana Superdome in New Orleans.<response> Result=Chicago Bears<submit> Q: """ ``` ### Result and Discussion Our experiments show that the agent can learn to use the wiki tool to answer questions. The learning curves would go up mostly, but one of the experiment did crash. ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/triviaqa_learning_curves.png) Wandb report is [here](https://wandb.ai/costa-huang/cleanRL/reports/TriviaQA-Final-Experiments--Vmlldzo1MjY0ODk5) for further inspection. Note that the correct rate of the trained model is on the low end, which could be due to the following reasons: * **incorrect searches:** When given the question `"What is Bruce Willis' real first name?"` if the model searches for `Bruce Willis`, our wiki tool returns "Patrick Poivey (born 18 February 1948) is a French actor. He is especially known for his voice: he is the French dub voice of Bruce Willis since 1988.` But a correct search should be `Walter Bruce Willis (born March 19, 1955) is an American former actor. He achieved fame with a leading role on the comedy-drama series Moonlighting (1985–1989) and appeared in over a hundred films, gaining recognition as an action hero after his portrayal of John McClane in the Die Hard franchise (1988–2013) and other roles.[1][2]" ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/real_first_name.png) * **unnecessarily long response**: The wiki tool by default sometimes output very long sequences. E.g., when the wiki tool searches for "Brown Act" * Our wiki tool returns "The Ralph M. Brown Act, located at California Government Code 54950 "et seq.", is an act of the California State Legislature, authored by Assemblymember Ralph M. Brown and passed in 1953, that guarantees the public's right to attend and participate in meetings of local legislative bodies." * [ToolFormer](https://arxiv.org/abs/2302.04761)'s wiki tool returns "The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies." which is more succinct. ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/brown_act.png) ## (Early Experiments 🧪): solving math puzzles with python interpreter In this section, we attempt to teach the model to use a python interpreter to solve math puzzles. The rough idea is to give the agent a prompt like the following: ```python prompt = """\ Example of using a Python API to solve math questions. Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left? <request><PythonInterpreter> def solution(): money_initial = 23 bagels = 5 bagel_cost = 3 money_spent = bagels * bagel_cost money_left = money_initial - money_spent result = money_left return result print(solution()) <call>72<response> Result = 72 <submit> Q: """ ``` Training experiment can be found at https://wandb.ai/lvwerra/trl-gsm8k/runs/a5odv01y ![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gms8k_learning_curve.png)
trl/docs/source/learning_tools.mdx/0
{ "file_path": "trl/docs/source/learning_tools.mdx", "repo_id": "trl", "token_count": 3876 }
383
# 0. imports import os from dataclasses import dataclass, field from typing import Dict, Optional import torch from datasets import Dataset, load_dataset from peft import LoraConfig from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments from trl import DPOTrainer # Define and parse arguments. @dataclass class ScriptArguments: """ The arguments for the DPO training script. """ # data parameters beta: Optional[float] = field(default=0.1, metadata={"help": "the beta parameter for DPO loss"}) # training parameters model_name_or_path: Optional[str] = field( default="../sft/results/final_checkpoint", metadata={"help": "the location of the SFT model name or path"}, ) learning_rate: Optional[float] = field(default=5e-4, metadata={"help": "optimizer learning rate"}) lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "the lr scheduler type"}) warmup_steps: Optional[int] = field(default=100, metadata={"help": "the number of warmup steps"}) weight_decay: Optional[float] = field(default=0.05, metadata={"help": "the weight decay"}) optimizer_type: Optional[str] = field(default="paged_adamw_32bit", metadata={"help": "the optimizer type"}) per_device_train_batch_size: Optional[int] = field(default=4, metadata={"help": "train batch size per device"}) per_device_eval_batch_size: Optional[int] = field(default=1, metadata={"help": "eval batch size per device"}) gradient_accumulation_steps: Optional[int] = field( default=4, metadata={"help": "the number of gradient accumulation steps"} ) gradient_checkpointing: Optional[bool] = field( default=True, metadata={"help": "whether to use gradient checkpointing"} ) lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"}) lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"}) lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"}) max_prompt_length: Optional[int] = field(default=512, metadata={"help": "the maximum prompt length"}) max_length: Optional[int] = field(default=1024, metadata={"help": "the maximum sequence length"}) max_steps: Optional[int] = field(default=1000, metadata={"help": "max number of training steps"}) logging_steps: Optional[int] = field(default=10, metadata={"help": "the logging frequency"}) save_steps: Optional[int] = field(default=100, metadata={"help": "the saving frequency"}) eval_steps: Optional[int] = field(default=100, metadata={"help": "the evaluation frequency"}) output_dir: Optional[str] = field(default="./results", metadata={"help": "the output directory"}) log_freq: Optional[int] = field(default=1, metadata={"help": "the logging frequency"}) # instrumentation sanity_check: Optional[bool] = field(default=False, metadata={"help": "only train on 1000 samples"}) report_to: Optional[str] = field( default="wandb", metadata={ "help": 'The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,' '`"comet_ml"`, `"mlflow"`, `"neptune"`, `"tensorboard"`,`"clearml"` and `"wandb"`. ' 'Use `"all"` to report to all integrations installed, `"none"` for no integrations.' }, ) # debug argument for distributed training ignore_bias_buffers: Optional[bool] = field( default=False, metadata={ "help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See" "https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992" }, ) def get_stack_exchange_paired( data_dir: str = "data/rl", sanity_check: bool = False, cache_dir: Optional[str] = None, num_proc=24, ) -> Dataset: """Load the stack-exchange-paired dataset from Hugging Face and convert it to the necessary format. The dataset is converted to a dictionary with the following structure: { 'prompt': List[str], 'chosen': List[str], 'rejected': List[str], } Prompts are structured as follows: "Question: " + <prompt> + "\n\nAnswer: " """ dataset = load_dataset( "lvwerra/stack-exchange-paired", split="train", cache_dir=cache_dir, data_dir=data_dir, ) original_columns = dataset.column_names if sanity_check: dataset = dataset.select(range(min(len(dataset), 1000))) def return_prompt_and_responses(samples) -> Dict[str, str]: return { "prompt": ["Question: " + question + "\n\nAnswer: " for question in samples["question"]], "chosen": samples["response_j"], "rejected": samples["response_k"], } return dataset.map( return_prompt_and_responses, batched=True, num_proc=num_proc, remove_columns=original_columns, ) if __name__ == "__main__": parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # 1. load a pretrained model model = AutoModelForCausalLM.from_pretrained( script_args.model_name_or_path, low_cpu_mem_usage=True, torch_dtype=torch.float16, load_in_4bit=True, ) model.config.use_cache = False if script_args.ignore_bias_buffers: # torch distributed hack model._ddp_params_and_buffers_to_ignore = [ name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool ] model_ref = AutoModelForCausalLM.from_pretrained( script_args.model_name_or_path, low_cpu_mem_usage=True, torch_dtype=torch.float16, load_in_4bit=True, ) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") tokenizer.pad_token = tokenizer.eos_token # 2. Load the Stack-exchange paired dataset train_dataset = get_stack_exchange_paired(data_dir="data/rl", sanity_check=script_args.sanity_check) train_dataset = train_dataset.filter( lambda x: len(x["prompt"]) + len(x["chosen"]) <= script_args.max_length and len(x["prompt"]) + len(x["rejected"]) <= script_args.max_length ) # 3. Load evaluation dataset eval_dataset = get_stack_exchange_paired(data_dir="data/evaluation", sanity_check=True) eval_dataset = eval_dataset.filter( lambda x: len(x["prompt"]) + len(x["chosen"]) <= script_args.max_length and len(x["prompt"]) + len(x["rejected"]) <= script_args.max_length ) # 4. initialize training arguments: training_args = TrainingArguments( per_device_train_batch_size=script_args.per_device_train_batch_size, per_device_eval_batch_size=script_args.per_device_eval_batch_size, max_steps=script_args.max_steps, logging_steps=script_args.logging_steps, save_steps=script_args.save_steps, gradient_accumulation_steps=script_args.gradient_accumulation_steps, gradient_checkpointing=script_args.gradient_checkpointing, learning_rate=script_args.learning_rate, evaluation_strategy="steps", eval_steps=script_args.eval_steps, output_dir=script_args.output_dir, report_to=script_args.report_to, lr_scheduler_type=script_args.lr_scheduler_type, warmup_steps=script_args.warmup_steps, optim=script_args.optimizer_type, bf16=True, remove_unused_columns=False, run_name="dpo_llama2", ) peft_config = LoraConfig( r=script_args.lora_r, lora_alpha=script_args.lora_alpha, lora_dropout=script_args.lora_dropout, target_modules=[ "q_proj", "v_proj", "k_proj", "out_proj", "fc_in", "fc_out", "wte", ], bias="none", task_type="CAUSAL_LM", ) # 5. initialize the DPO trainer dpo_trainer = DPOTrainer( model, model_ref, args=training_args, beta=script_args.beta, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, peft_config=peft_config, max_prompt_length=script_args.max_prompt_length, max_length=script_args.max_length, ) # 6. train dpo_trainer.train() dpo_trainer.save_model(script_args.output_dir) # 7. save output_dir = os.path.join(script_args.output_dir, "final_checkpoint") dpo_trainer.model.save_pretrained(output_dir)
trl/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py/0
{ "file_path": "trl/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py", "repo_id": "trl", "token_count": 3560 }
384
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import torch from datasets import Dataset from parameterized import parameterized from pytest import mark from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments from trl import DPOTrainer from .testing_utils import require_bitsandbytes, require_no_wandb, require_peft class DPOTrainerTester(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab" cls.model = AutoModelForCausalLM.from_pretrained(cls.model_id) cls.ref_model = AutoModelForCausalLM.from_pretrained(cls.model_id) cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_id) cls.tokenizer.pad_token = cls.tokenizer.eos_token # get t5 as seq2seq example: model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration-correct-vocab" cls.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) cls.t5_ref_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) cls.t5_tokenizer = AutoTokenizer.from_pretrained(model_id) def _init_dummy_dataset(self): # fmt: off dummy_dataset_dict = { "prompt": [ "hello", "how are you", "What is your name?", "What is your name?", "Which is the best programming language?", "Which is the best programming language?", "Which is the best programming language?", "[INST] How is the stock price? [/INST]", "[INST] How is the stock price? [/INST] ", ], "chosen": [ "hi nice to meet you", "I am fine", "My name is Mary", "My name is Mary", "Python", "Python", "Python", "$46 as of 10am EST", "46 as of 10am EST", ], "rejected": [ "leave me alone", "I am not fine", "Whats it to you?", "I dont have a name", "Javascript", "C++", "Java", " $46 as of 10am EST", " 46 as of 10am EST", ], } # fmt: on return Dataset.from_dict(dummy_dataset_dict) @parameterized.expand( [ ["gpt2", "sigmoid", True], ["t5", "hinge", False], ["gpt2", "ipo", False], ["t5", "ipo", True], ["gpt2", "kto_pair", True], ["t5", "kto_pair", False], ] ) def test_dpo_trainer(self, name, loss_type, pre_compute): with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() if name == "gpt2": model = self.model ref_model = self.ref_model tokenizer = self.tokenizer elif name == "t5": model = self.t5_model ref_model = self.t5_ref_model tokenizer = self.t5_tokenizer trainer = DPOTrainer( model=model, ref_model=ref_model, beta=0.1, loss_type=loss_type, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, precompute_ref_log_probs=pre_compute, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) def test_dpo_trainer_without_providing_ref_model(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() trainer = DPOTrainer( model=self.model, ref_model=None, beta=0.1, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, precompute_ref_log_probs=True, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) @require_peft @mark.peft_test def test_dpo_trainer_without_providing_ref_model_with_lora(self): from peft import LoraConfig lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() trainer = DPOTrainer( model=self.model, ref_model=None, beta=0.1, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, precompute_ref_log_probs=True, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[-1]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): if "lora" in n: new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) def test_dpo_trainer_padding_token_is_none(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() tokenizer = AutoTokenizer.from_pretrained(self.model_id) tokenizer.pad_token = None with self.assertRaisesRegex( ValueError, expected_regex=r"Padding is enabled, but the tokenizer is not configured with a padding token." r" Explicitly set `tokenizer.pad_token` \(e.g. `tokenizer.pad_token = tokenizer.eos_token`\)" r" before calling the trainer.", ): trainer = DPOTrainer( model=self.model, ref_model=None, beta=0.1, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) trainer.train() def test_dpo_trainer_w_dataset_num_proc(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() tokenizer = AutoTokenizer.from_pretrained(self.model_id) tokenizer.pad_token = None with self.assertRaisesRegex( ValueError, expected_regex=r"Padding is enabled, but the tokenizer is not configured with a padding token." r" Explicitly set `tokenizer.pad_token` \(e.g. `tokenizer.pad_token = tokenizer.eos_token`\)" r" before calling the trainer.", ): trainer = DPOTrainer( model=self.model, ref_model=None, beta=0.1, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, dataset_num_proc=5, ) trainer.train() @require_no_wandb def test_dpo_trainer_generate_during_eval_no_wandb(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=1, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() with self.assertRaisesRegex( ValueError, expected_regex="`generate_during_eval=True` requires Weights and Biases to be installed." " Please install `wandb` to resolve.", ): DPOTrainer( model=self.model, ref_model=None, beta=0.1, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, generate_during_eval=True, ) @require_peft @mark.peft_test def test_dpo_lora_save(self): from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(self.model_id) model_peft = get_peft_model(model, lora_config) with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model_peft, ref_model=None, beta=0.1, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, precompute_ref_log_probs=True, ) # train the model trainer.train() # save peft adapter trainer.save_model() # assert that the model is loaded without giving OSError try: AutoModelForCausalLM.from_pretrained(tmp_dir) except OSError: self.fail("Loading the saved peft adapter failed") @require_peft @require_bitsandbytes @mark.peft_test def test_dpo_lora_bf16_autocast_llama(self): # Note this test only works on compute capability > 7 GPU devices from peft import LoraConfig model_id = "HuggingFaceM4/tiny-random-LlamaForCausalLM" tokenizer = AutoTokenizer.from_pretrained(model_id) lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", bf16=True, ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, beta=0.1, args=training_args, tokenizer=tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, generate_during_eval=True, ) # train the model trainer.train() # save peft adapter trainer.save_model() @parameterized.expand( [ ["gpt2", "sigmoid", False, False], ["gpt2", "sigmoid", False, True], ["gpt2", "sigmoid", True, False], ["gpt2", "sigmoid", True, True], ["gpt2", "ipo", False, False], ["gpt2", "ipo", False, True], ["gpt2", "ipo", True, False], ["gpt2", "ipo", True, True], ["gpt2", "kto_pair", False, False], ["gpt2", "kto_pair", False, True], ["gpt2", "kto_pair", True, False], ["gpt2", "kto_pair", True, True], ] ) @require_bitsandbytes @require_peft @mark.peft_test @unittest.skip("You need a GPU with bf16 support in order to run these tests") def test_dpo_lora_bf16_autocast(self, name, loss_type, pre_compute, gen_during_eval): # Note this test only works on compute capability > 7 GPU devices from peft import LoraConfig lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) # lora model model = AutoModelForCausalLM.from_pretrained(self.model_id, load_in_4bit=True) with tempfile.TemporaryDirectory() as tmp_dir: training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", bf16=True, ) dummy_dataset = self._init_dummy_dataset() # dpo train lora model with a lora config trainer = DPOTrainer( model=model, ref_model=None, beta=0.1, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=lora_config, generate_during_eval=gen_during_eval, loss_type=loss_type, precompute_ref_log_probs=pre_compute, ) # train the model trainer.train() # save peft adapter trainer.save_model()
trl/tests/test_dpo_trainer.py/0
{ "file_path": "trl/tests/test_dpo_trainer.py", "repo_id": "trl", "token_count": 9731 }
385
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys import warnings from dataclasses import dataclass, field from typing import Literal, Optional import numpy as np import tyro from typing_extensions import Annotated from trl.trainer.utils import exact_div from ..core import flatten_dict from ..import_utils import is_wandb_available JSONDict = Annotated[Optional[dict], tyro.conf.arg(metavar="JSON", constructor=json.loads)] @dataclass class PPOConfig: """ Configuration class for PPOTrainer """ # common parameters exp_name: str = os.path.basename(sys.argv[0])[: -len(".py")] """the name of this experiment (by default is the file name without the extension name)""" seed: int = 0 """Seed value for random generations""" log_with: Optional[Literal["wandb", "tensorboard"]] = None """Log with either 'wandb' or 'tensorboard', check https://huggingface.co/docs/accelerate/usage_guides/tracking for more details""" task_name: Optional[str] = None """Name of task to use - used only for tracking purposes""" model_name: Optional[str] = "gpt2" """Name of model to use - used only for tracking purposes""" query_dataset: Optional[str] = "imdb" """Name of dataset to query - used only for tracking purposes""" reward_model: Optional[str] = "sentiment-analysis:lvwerra/distilbert-imdb" """The reward model to use - used only for tracking purposes""" remove_unused_columns: bool = True """Remove unused columns from the dataset if `datasets.Dataset` is used""" tracker_kwargs: JSONDict = field(default_factory=dict) """Keyword arguments for the tracker (e.g. python ppo.py --tracker_kwargs='{"wandb": {"entity": "my_wandb_entity", "name": "my_exp_name"}}'""" accelerator_kwargs: JSONDict = field(default_factory=dict) """Keyword arguments for the accelerator""" project_kwargs: JSONDict = field(default_factory=dict) """Keyword arguments for the accelerator project config (e.g. `logging_dir`)""" tracker_project_name: str = "trl" """Name of project to use for tracking""" push_to_hub_if_best_kwargs: JSONDict = field(default_factory=dict) """Keyword arguments for pushing model to the hub during training (e.g. repo_id)""" # hyperparameters steps: int = 20000 """Number of training steps""" learning_rate: float = 1.41e-5 """Adam learning rate""" adap_kl_ctrl: bool = True """Use adaptive KL control, otherwise linear""" init_kl_coef: Optional[float] = 0.2 """Initial KL penalty coefficient (used for adaptive and linear control)""" kl_penalty: Literal["kl", "abs", "mse", "full"] = "kl" """kl penalty options: 'kl': model_logp - ref_logp, 'abs': abs(kl), 'mse': mean squared error mse(kl) and 'full': the actual kl for all tokens in the distribution""" target: Optional[float] = 6 """Target KL value for adaptive KL control""" horizon: Optional[float] = 10000 """Horizon for adaptive KL control""" gamma: float = 1 """Gamma parameter for advantage calculation""" lam: float = 0.95 """Lambda parameter for advantage calculation""" cliprange: float = 0.2 """Range for clipping in PPO policy gradient loss""" cliprange_value: float = 0.2 """Range for clipping values in loss calculation""" vf_coef: float = 0.1 """Scaling factor for value loss""" batch_size: int = 128 """Number of samples per optimisation step""" forward_batch_size: Optional[int] = None """DEPRECATED: use `mini_batch_size` instead, which does the same thing.""" mini_batch_size: int = 128 """Number of samples optimized in each mini batch""" gradient_accumulation_steps: int = 1 """The number of gradient accumulation steps""" world_size: tyro.conf.Suppress[int] = None """The world size for distributed training""" ppo_epochs: int = 4 """Number of optimisation epochs per batch of samples""" max_grad_norm: Optional[float] = None """Maximum gradient norm for gradient clipping""" optimize_cuda_cache: Optional[bool] = None """DEPRECATED: use `optimize_device_cache` instead, which does the same thing.""" optimize_device_cache: Optional[bool] = False """Optimize device cache for slightly more memory-efficient training""" early_stopping: bool = False """Whether to stop the PPO optimization loop early is the KL too high""" target_kl: float = 1 """Stop early if we exceed this value by over 50%""" compare_steps: int = 1 """Number of steps between comparison of the current reward with the best seen so far""" ratio_threshold: float = 10.0 """Skip mini-batches with high PPO ratios that can cause loss spikes""" use_score_scaling: bool = False """Use score scaling""" use_score_norm: bool = False """Use score normalization. Only applicable if use_score_scaling is True""" score_clip: Optional[float] = None """Score clipping""" whiten_rewards: bool = False """Whiten the rewards before compute advantages""" # computed hyperparameters at runtime; we use `tyro.conf.Suppress` to hide them from the help text is_encoder_decoder: Optional[tyro.conf.Suppress[bool]] = None """TO BE FILLED In RUNTIME: Whether the model is an encoder-decoder model""" is_peft_model: Optional[tyro.conf.Suppress[bool]] = None """TO BE FILLED In RUNTIME: Whether the model is a PEFT model""" backward_batch_size: tyro.conf.Suppress[int] = None """TO BE FILLED In RUNTIME: Number of samples optimized in an `optimizer.step()` call""" global_backward_batch_size: tyro.conf.Suppress[int] = None """TO BE FILLED In RUNTIME: the effective `backward_batch_size` across all processes""" global_batch_size: tyro.conf.Suppress[int] = None """TO BE FILLED In RUNTIME: the effective `batch_size` across all processes""" if optimize_cuda_cache is not None: warnings.warn( "The `optimize_cuda_cache` argument will be deprecated soon, please use `optimize_device_cache` instead." ) optimize_device_cache = optimize_cuda_cache else: optimize_device_cache = False def __post_init__(self): if self.forward_batch_size is not None: warnings.warn( "Note that using `forward_batch_size` is deprecated, use `mini_batch_size` instead. By setting it you overwrite `mini_batch_size` which affects both the batch size during forward passes and also the mini batch size for PPO optimization." ) self.mini_batch_size = self.forward_batch_size self.backward_batch_size = self.mini_batch_size * self.gradient_accumulation_steps exact_div( self.batch_size, self.backward_batch_size, "`batch_size`", "`mini_batch_size * gradient_accumulation_steps`", "`batch_size` must be a multiple of `mini_batch_size * gradient_accumulation_steps`", ) # check if wandb is installed if self.log_with == "wandb": # raise error if wandb is not installed if not is_wandb_available(): raise ImportError( "Please install wandb to use wandb logging. You can do this by running `pip install wandb`." ) self.total_ppo_epochs = int(np.ceil(self.steps / self.batch_size)) assert self.kl_penalty in ["kl", "abs", "mse", "full"] def to_dict(self): output_dict = {} for key, value in self.__dict__.items(): output_dict[key] = value return flatten_dict(output_dict)
trl/trl/trainer/ppo_config.py/0
{ "file_path": "trl/trl/trainer/ppo_config.py", "repo_id": "trl", "token_count": 2849 }
386
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Installation and Configuration Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 Accelerate. 🤗 Accelerate is tested on **Python 3.8+**. ## Installing 🤗 Accelerate 🤗 Accelerate is available on pypi and conda, as well as on GitHub. Details to install from each are below: ### pip To install 🤗 Accelerate from pypi, perform: ```bash pip install accelerate ``` ### conda 🤗 Accelerate can also be installed with conda with: ```bash conda install -c conda-forge accelerate ``` ### Source New features are added every day that haven't been released yet. To try them out yourself, install from the GitHub repository: ```bash pip install git+https://github.com/huggingface/accelerate ``` If you're working on contributing to the library or wish to play with the source code and see live results as you run the code, an editable version can be installed from a locally-cloned version of the repository: ```bash git clone https://github.com/huggingface/accelerate cd accelerate pip install -e . ``` ## Configuring 🤗 Accelerate After installing, you need to configure 🤗 Accelerate for how the current system is setup for training. To do so run the following and answer the questions prompted to you: ```bash accelerate config ``` To write a barebones configuration that doesn't include options such as DeepSpeed configuration or running on TPUs, you can quickly run: ```bash python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='fp16')" ``` 🤗 Accelerate will automatically utilize the maximum number of GPUs available and set the mixed precision mode. To check that your configuration looks fine, run: ```bash accelerate env ``` An example output is shown below, which describes two GPUs on a single machine with no mixed precision being used: ```bash - `Accelerate` version: 0.11.0.dev0 - Platform: Linux-5.10.0-15-cloud-amd64-x86_64-with-debian-11.3 - Python version: 3.7.12 - Numpy version: 1.19.5 - PyTorch version (GPU?): 1.12.0+cu102 (True) - `Accelerate` default config: - compute_environment: LOCAL_MACHINE - distributed_type: MULTI_GPU - mixed_precision: no - use_cpu: False - num_processes: 2 - machine_rank: 0 - num_machines: 1 - main_process_ip: None - main_process_port: None - main_training_function: main - deepspeed_config: {} - fsdp_config: {} ```
accelerate/docs/source/basic_tutorials/install.md/0
{ "file_path": "accelerate/docs/source/basic_tutorials/install.md", "repo_id": "accelerate", "token_count": 996 }
0
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Accelerator The [`Accelerator`] is the main class provided by 🤗 Accelerate. It serves at the main entry point for the API. ## Quick adaptation of your code To quickly adapt your script to work on any kind of setup with 🤗 Accelerate just: 1. Initialize an [`Accelerator`] object (that we will call `accelerator` throughout this page) as early as possible in your script. 2. Pass your dataloader(s), model(s), optimizer(s), and scheduler(s) to the [`~Accelerator.prepare`] method. 3. Remove all the `.cuda()` or `.to(device)` from your code and let the `accelerator` handle the device placement for you. <Tip> Step three is optional, but considered a best practice. </Tip> 4. Replace `loss.backward()` in your code with `accelerator.backward(loss)` 5. Gather your predictions and labels before storing them or using them for metric computation using [`~Accelerator.gather`] <Tip warning={true}> Step five is mandatory when using distributed evaluation </Tip> In most cases this is all that is needed. The next section lists a few more advanced use cases and nice features you should search for and replace by the corresponding methods of your `accelerator`: ## Advanced recommendations ### Printing `print` statements should be replaced by [`~Accelerator.print`] to be printed once per process: ```diff - print("My thing I want to print!") + accelerator.print("My thing I want to print!") ``` ### Executing processes #### Once on a single server For statements that should be executed once per server, use [`~Accelerator.is_local_main_process`]: ```python if accelerator.is_local_main_process: do_thing_once_per_server() ``` A function can be wrapped using the [`~Accelerator.on_local_main_process`] function to achieve the same behavior on a function's execution: ```python @accelerator.on_local_main_process def do_my_thing(): "Something done once per server" do_thing_once_per_server() ``` #### Only ever once across all servers For statements that should only ever be executed once, use [`~Accelerator.is_main_process`]: ```python if accelerator.is_main_process: do_thing_once() ``` A function can be wrapped using the [`~Accelerator.on_main_process`] function to achieve the same behavior on a function's execution: ```python @accelerator.on_main_process def do_my_thing(): "Something done once per server" do_thing_once() ``` #### On specific processes If a function should be ran on a specific overall or local process index, there are similar decorators to achieve this: ```python @accelerator.on_local_process(local_process_idx=0) def do_my_thing(): "Something done on process index 0 on each server" do_thing_on_index_zero_on_each_server() ``` ```python @accelerator.on_process(process_index=0) def do_my_thing(): "Something done on process index 0" do_thing_on_index_zero() ``` ### Synchronicity control Use [`~Accelerator.wait_for_everyone`] to make sure all processes join that point before continuing. (Useful before a model save for instance). ### Saving and loading ```python model = MyModel() model = accelerator.prepare(model) ``` Use [`~Accelerator.save_model`] instead of `torch.save` to save a model. It will remove all model wrappers added during the distributed process, get the state_dict of the model and save it. The state_dict will be in the same precision as the model being trained. ```diff - torch.save(state_dict, "my_state.pkl") + accelerator.save_model(model, save_directory) ``` [`~Accelerator.save_model`] can also save a model into sharded checkpoints or with safetensors format. Here is an example: ```python accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True) ``` #### 🤗 Transformers models If you are using models from the [🤗 Transformers](https://huggingface.co/docs/transformers/) library, you can use the `.save_pretrained()` method. ```python from transformers import AutoModel model = AutoModel.from_pretrained("bert-base-cased") model = accelerator.prepare(model) # ...fine-tune with PyTorch... unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( "path/to/my_model_directory", is_main_process=accelerator.is_main_process, save_function=accelerator.save, ) ``` This will ensure your model stays compatible with other 🤗 Transformers functionality like the `.from_pretrained()` method. ```python from transformers import AutoModel model = AutoModel.from_pretrained("path/to/my_model_directory") ``` ### Operations Use [`~Accelerator.clip_grad_norm_`] instead of ``torch.nn.utils.clip_grad_norm_`` and [`~Accelerator.clip_grad_value_`] instead of ``torch.nn.utils.clip_grad_value`` ### Gradient Accumulation To perform gradient accumulation use [`~Accelerator.accumulate`] and specify a gradient_accumulation_steps. This will also automatically ensure the gradients are synced or unsynced when on multi-device training, check if the step should actually be performed, and auto-scale the loss: ```diff - accelerator = Accelerator() + accelerator = Accelerator(gradient_accumulation_steps=2) for (input, label) in training_dataloader: + with accelerator.accumulate(model): predictions = model(input) loss = loss_function(predictions, labels) accelerator.backward(loss) optimizer.step() scheduler.step() optimizer.zero_grad() ``` #### GradientAccumulationPlugin [[autodoc]] utils.GradientAccumulationPlugin Instead of passing `gradient_accumulation_steps` you can instantiate a GradientAccumulationPlugin and pass it to the [`Accelerator`]'s `__init__` as `gradient_accumulation_plugin`. You can only pass either one of `gradient_accumulation_plugin` or `gradient_accumulation_steps` passing both will raise an error. ```diff from accelerate.utils import GradientAccumulationPlugin gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2) - accelerator = Accelerator() + accelerator = Accelerator(gradient_accumulation_plugin=gradient_accumulation_plugin) ``` In addition to the number of steps, this also lets you configure whether or not you adjust your learning rate scheduler to account for the change in steps due to accumulation. ## Overall API documentation: [[autodoc]] Accelerator
accelerate/docs/source/package_reference/accelerator.md/0
{ "file_path": "accelerate/docs/source/package_reference/accelerator.md", "repo_id": "accelerate", "token_count": 2148 }
1
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DeepSpeed [DeepSpeed](https://github.com/microsoft/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Some of the salient optimizations are: 1. Optimizer state partitioning (ZeRO stage 1) 2. Gradient partitioning (ZeRO stage 2) 3. Parameter partitioning (ZeRO stage 3) 4. Custom mixed precision training handling 5. A range of fast CUDA-extension-based optimizers 6. ZeRO-Offload to CPU and Disk/NVMe 7. Hierarchical partitioning of model parameters (ZeRO++) ZeRO-Offload has its own dedicated paper: [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840). And NVMe-support is described in the paper [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857). DeepSpeed ZeRO-2 is primarily used only for training, as its features are of no use to inference. DeepSpeed ZeRO-3 can be used for inference as well since it allows huge models to be loaded on multiple GPUs, which won't be possible on a single GPU. 🤗 Accelerate integrates [DeepSpeed](https://github.com/microsoft/DeepSpeed) via 2 options: 1. Integration of the DeepSpeed features via `deepspeed config file` specification in `accelerate config` . You just supply your custom config file or use our template. Most of this document is focused on this feature. This supports all the core features of DeepSpeed and gives user a lot of flexibility. User may have to change a few lines of code depending on the config. 2. Integration via `deepspeed_plugin`.This supports subset of the DeepSpeed features and uses default options for the rest of the configurations. User need not change any code and is good for those who are fine with most of the default settings of DeepSpeed. ## What is integrated? Training: 1. 🤗 Accelerate integrates all features of DeepSpeed ZeRO. This includes all the ZeRO stages 1, 2 and 3 as well as ZeRO-Offload, ZeRO-Infinity (which can offload to disk/NVMe) and ZeRO++. Below is a short description of Data Parallelism using ZeRO - Zero Redundancy Optimizer along with diagram from this [blog post](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/) ![ZeRO Data Parallelism](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/parallelism-zero.png) (Source: [link](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/)) a. **Stage 1** : Shards optimizer states across data parallel workers/GPUs b. **Stage 2** : Shards optimizer states + gradients across data parallel workers/GPUs c. **Stage 3**: Shards optimizer states + gradients + model parameters across data parallel workers/GPUs d. **Optimizer Offload**: Offloads the gradients + optimizer states to CPU/Disk building on top of ZERO Stage 2 e. **Param Offload**: Offloads the model parameters to CPU/Disk building on top of ZERO Stage 3 f. **Hierarchical Partitioning**: Enables efficient multi-node training with data-parallel training across nodes and ZeRO-3 sharding within a node, built on top of ZeRO Stage 3. <u>Note</u>: With respect to Disk Offload, the disk should be an NVME for decent speed but it technically works on any Disk Inference: 1. DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity. It uses the same ZeRO protocol as training, but it doesn't use an optimizer and a lr scheduler and only stage 3 is relevant. For more details see: [deepspeed-zero-inference](#deepspeed-zero-inference). ## How it works? **Pre-Requisites**: Install DeepSpeed version >=0.6.5. Please refer to the [DeepSpeed Installation details](https://github.com/microsoft/DeepSpeed#installation) for more information. We will first look at easy to use integration via `accelerate config`. Followed by more flexible and feature rich `deepspeed config file` integration. ### Accelerate DeepSpeed Plugin On your machine(s) just run: ```bash accelerate config ``` and answer the questions asked. It will ask whether you want to use a config file for DeepSpeed to which you should answer no. Then answer the following questions to generate a basic DeepSpeed config. This will generate a config file that will be used automatically to properly set the default options when doing ```bash accelerate launch my_script.py --args_to_my_script ``` For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with DeepSpeed Plugin: **ZeRO Stage-2 DeepSpeed Plugin Example** ```bash compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 1.0 offload_optimizer_device: none offload_param_device: none zero3_init_flag: true zero_stage: 2 distributed_type: DEEPSPEED fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: fp16 num_machines: 1 num_processes: 2 use_cpu: false ``` ```bash accelerate launch examples/nlp_example.py --mixed_precision fp16 ``` **ZeRO Stage-3 with CPU Offload DeepSpeed Plugin Example** ```bash compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 1.0 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: true zero3_save_16bit_model: true zero_stage: 3 distributed_type: DEEPSPEED fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: fp16 num_machines: 1 num_processes: 2 use_cpu: false ``` ```bash accelerate launch examples/nlp_example.py --mixed_precision fp16 ``` Currently, `Accelerate` supports following config through the CLI: ```bash `zero_stage`: [0] Disabled, [1] optimizer state partitioning, [2] optimizer+gradient state partitioning and [3] optimizer+gradient+parameter partitioning `gradient_accumulation_steps`: Number of training steps to accumulate gradients before averaging and applying them. `gradient_clipping`: Enable gradient clipping with value. `offload_optimizer_device`: [none] Disable optimizer offloading, [cpu] offload optimizer to CPU, [nvme] offload optimizer to NVMe SSD. Only applicable with ZeRO >= Stage-2. `offload_param_device`: [none] Disable parameter offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3. `zero3_init_flag`: Decides whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with ZeRO Stage-3. `zero3_save_16bit_model`: Decides whether to save 16-bit model weights when using ZeRO Stage-3. `mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training. ``` To be able to tweak more options, you will need to use a DeepSpeed config file. ### DeepSpeed Config File On your machine(s) just run: ```bash accelerate config ``` and answer the questions asked. It will ask whether you want to use a config file for deepspeed to which you answer yes and provide the path to the deepspeed config file. This will generate a config file that will be used automatically to properly set the default options when doing ```bash accelerate launch my_script.py --args_to_my_script ``` For instance, here is how you would run the NLP example `examples/by_feature/deepspeed_with_config_support.py` (from the root of the repo) with DeepSpeed Config File: **ZeRO Stage-2 DeepSpeed Config File Example** ```bash compute_environment: LOCAL_MACHINE deepspeed_config: deepspeed_config_file: /home/ubuntu/accelerate/examples/configs/deepspeed_config_templates/zero_stage2_config.json zero3_init_flag: true distributed_type: DEEPSPEED fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: fp16 num_machines: 1 num_processes: 2 use_cpu: false ``` with the contents of `zero_stage2_config.json` being: ```json { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto", "torch_adam": true, "adam_w_mode": true } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 2, "allgather_partitions": true, "allgather_bucket_size": 2e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": "auto", "contiguous_gradients": true }, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } ``` ```bash accelerate launch examples/by_feature/deepspeed_with_config_support.py \ --config_name "gpt2-large" \ --tokenizer_name "gpt2-large" \ --dataset_name "wikitext" \ --dataset_config_name "wikitext-2-raw-v1" \ --block_size 128 \ --output_dir "./clm/clm_deepspeed_stage2_accelerate" \ --learning_rate 5e-4 \ --per_device_train_batch_size 24 \ --per_device_eval_batch_size 24 \ --num_train_epochs 3 \ --with_tracking \ --report_to "wandb"\ ``` **ZeRO Stage-3 with CPU offload DeepSpeed Config File Example** ```bash compute_environment: LOCAL_MACHINE deepspeed_config: deepspeed_config_file: /home/ubuntu/accelerate/examples/configs/deepspeed_config_templates/zero_stage3_offload_config.json zero3_init_flag: true distributed_type: DEEPSPEED fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: fp16 num_machines: 1 num_processes: 2 use_cpu: false ``` with the contents of `zero_stage3_offload_config.json` being: ```json { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "sub_group_size": 1e9, "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": "auto" }, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } ``` ```bash accelerate launch examples/by_feature/deepspeed_with_config_support.py \ --config_name "gpt2-large" \ --tokenizer_name "gpt2-large" \ --dataset_name "wikitext" \ --dataset_config_name "wikitext-2-raw-v1" \ --block_size 128 \ --output_dir "./clm/clm_deepspeed_stage3_offload_accelerate" \ --learning_rate 5e-4 \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --num_train_epochs 3 \ --with_tracking \ --report_to "wandb"\ ``` **ZeRO++ Config Example** You can use the the features of ZeRO++ by using the appropriate config parameters. Note that ZeRO++ is an extension for ZeRO Stage 3. Here is how the config file can be modified, from [DeepSpeed's ZeRO++ tutorial](https://www.deepspeed.ai/tutorials/zeropp/): ```json { "zero_optimization": { "stage": 3, "reduce_bucket_size": "auto", "zero_quantized_weights": true, "zero_hpz_partition_size": 8, "zero_quantized_gradients": true, "contiguous_gradients": true, "overlap_comm": true } } ``` For hierarchical partitioning, the partition size `zero_hpz_partition_size` should ideally be set to the number of GPUs per node. (For example, the above config file assumes 8 GPUs per node) **Important code changes when using DeepSpeed Config File** 1. DeepSpeed Optimizers and Schedulers. For more information on these, see the [DeepSpeed Optimizers](https://deepspeed.readthedocs.io/en/latest/optimizers.html) and [DeepSpeed Schedulers](https://deepspeed.readthedocs.io/en/latest/schedulers.html) documentation. We will look at the changes needed in the code when using these. a. DS Optim + DS Scheduler: The case when both `optimizer` and `scheduler` keys are present in the DeepSpeed config file. In this situation, those will be used and the user has to use `accelerate.utils.DummyOptim` and `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom optimizers and schedulers in their code. Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this: ```python # Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer optimizer_cls = ( torch.optim.AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate) # Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) else: lr_scheduler = DummyScheduler( optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps ) ``` b. Custom Optim + Custom Scheduler: The case when both `optimizer` and `scheduler` keys are absent in the DeepSpeed config file. In this situation, no code changes are needed from the user and this is the case when using integration via DeepSpeed Plugin. In the above example we can see that the code remains unchanged if the `optimizer` and `scheduler` keys are absent in the DeepSpeed config file. c. Custom Optim + DS Scheduler: The case when only `scheduler` key is present in the DeepSpeed config file. In this situation, the user has to use `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom scheduler in their code. d. DS Optim + Custom Scheduler: The case when only `optimizer` key is present in the DeepSpeed config file. This will result in an error because you can only use DS Scheduler when using DS Optim. 2. Notice the `auto` values in the above example DeepSpeed config files. These are automatically handled by `prepare` method based on model, dataloaders, dummy optimizer and dummy schedulers provided to `prepare` method. Only the `auto` fields specified in above examples are handled by `prepare` method and the rest have to be explicitly specified by the user. The `auto` values are calculated as: - `reduce_bucket_size`: `hidden_size * hidden_size` - `stage3_prefetch_bucket_size`: `0.9 * hidden_size * hidden_size` - `stage3_param_persistence_threshold`: `10 * hidden_size` For the `auto` feature to work for these 3 config entries - Accelerate will use `model.config.hidden_size` or `max(model.config.hidden_sizes)` as `hidden_size`. If neither of these is available, the launching will fail and you will have to set these 3 config entries manually. Remember the first 2 config entries are the communication buffers - the larger they are the more efficient the comms will be, and the larger they are the more GPU memory they will consume, so it's a tunable performance trade-off. **Things to note when using DeepSpeed Config File** Below is a sample script using `deepspeed_config_file` in different scenarios. Code `test.py`: ```python from accelerate import Accelerator from accelerate.state import AcceleratorState def main(): accelerator = Accelerator() accelerator.print(f"{AcceleratorState()}") if __name__ == "__main__": main() ``` **Scenario 1**: Manually tampered accelerate config file having `deepspeed_config_file` along with other entries. 1. Content of the `accelerate` config: ```yaml command_file: null commands: null compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 1.0 offload_optimizer_device: 'cpu' offload_param_device: 'cpu' zero3_init_flag: true zero3_save_16bit_model: true zero_stage: 3 deepspeed_config_file: 'ds_config.json' distributed_type: DEEPSPEED downcast_bf16: 'no' dynamo_backend: 'NO' fsdp_config: {} gpu_ids: null machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main megatron_lm_config: {} num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_name: null tpu_zone: null use_cpu: false ``` 2. `ds_config.json`: ```json { "bf16": { "enabled": true }, "zero_optimization": { "stage": 3, "stage3_gather_16bit_weights_on_model_save": false, "offload_optimizer": { "device": "none" }, "offload_param": { "device": "none" } }, "gradient_clipping": 1.0, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": 10, "steps_per_print": 2000000 } ``` 3. Output of `accelerate launch test.py`: ```bash ValueError: When using `deepspeed_config_file`, the following accelerate config variables will be ignored: ['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device', 'zero3_save_16bit_model', 'mixed_precision']. Please specify them appropriately in the DeepSpeed config file. If you are using an accelerate config file, remove others config variables mentioned in the above specified list. The easiest method is to create a new config following the questionnaire via `accelerate config`. It will only ask for the necessary config variables when using `deepspeed_config_file`. ``` **Scenario 2**: Use the solution of the error to create new accelerate config and check that no ambiguity error is now thrown. 1. Run `accelerate config`: ```bash $ accelerate config ------------------------------------------------------------------------------------------------------------------------------- In which compute environment are you running? This machine ------------------------------------------------------------------------------------------------------------------------------- Which type of machine are you using? multi-GPU How many different machines will you use (use more than 1 for multi-node training)? [1]: Do you wish to optimize your script with torch dynamo?[yes/NO]: Do you want to use DeepSpeed? [yes/NO]: yes Do you want to specify a json file to a DeepSpeed config? [yes/NO]: yes Please enter the path to the json DeepSpeed config file: ds_config.json Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: yes How many GPU(s) should be used for distributed training? [1]:4 accelerate configuration saved at ds_config_sample.yaml ``` 2. Content of the `accelerate` config: ```yaml compute_environment: LOCAL_MACHINE deepspeed_config: deepspeed_config_file: ds_config.json zero3_init_flag: true distributed_type: DEEPSPEED downcast_bf16: 'no' dynamo_backend: 'NO' fsdp_config: {} machine_rank: 0 main_training_function: main megatron_lm_config: {} num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true use_cpu: false ``` 3. Output of `accelerate launch test.py`: ```bash Distributed environment: DEEPSPEED Backend: nccl Num processes: 4 Process index: 0 Local process index: 0 Device: cuda:0 Mixed precision type: bf16 ds_config: {'bf16': {'enabled': True}, 'zero_optimization': {'stage': 3, 'stage3_gather_16bit_weights_on_model_save': False, 'offload_optimizer': {'device': 'none'}, 'offload_param': {'device': 'none'}}, 'gradient_clipping': 1.0, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'gradient_accumulation_steps': 10, 'steps_per_print': inf, 'fp16': {'enabled': False}} ``` **Scenario 3**: Setting the `accelerate launch` command arguments related to DeepSpeed as `"auto"` in the DeepSpeed` configuration file and check that things work as expected. 1. New `ds_config.json` with `"auto"` for the `accelerate launch` DeepSpeed command arguments: ```json { "bf16": { "enabled": "auto" }, "zero_optimization": { "stage": "auto", "stage3_gather_16bit_weights_on_model_save": "auto", "offload_optimizer": { "device": "auto" }, "offload_param": { "device": "auto" } }, "gradient_clipping": "auto", "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "steps_per_print": 2000000 } ``` 2. Output of `accelerate launch --mixed_precision="fp16" --zero_stage=3 --gradient_accumulation_steps=5 --gradient_clipping=1.0 --offload_param_device="cpu" --offload_optimizer_device="nvme" --zero3_save_16bit_model="true" test.py`: ```bash Distributed environment: DEEPSPEED Backend: nccl Num processes: 4 Process index: 0 Local process index: 0 Device: cuda:0 Mixed precision type: fp16 ds_config: {'bf16': {'enabled': False}, 'zero_optimization': {'stage': 3, 'stage3_gather_16bit_weights_on_model_save': True, 'offload_optimizer': {'device': 'nvme'}, 'offload_param': {'device': 'cpu'}}, 'gradient_clipping': 1.0, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'gradient_accumulation_steps': 5, 'steps_per_print': inf, 'fp16': {'enabled': True, 'auto_cast': True}} ``` **Note**: 1. Remaining `"auto"` values are handled in `accelerator.prepare()` call as explained in point 2 of `Important code changes when using DeepSpeed Config File`. 2. Only when `gradient_accumulation_steps` is `auto`, the value passed while creating `Accelerator` object via `Accelerator(gradient_accumulation_steps=k)` will be used. When using DeepSpeed Plugin, the value from it will be used and it will overwrite the value passed while creating Accelerator object. ## Saving and loading 1. Saving and loading of models is unchanged for ZeRO Stage-1 and Stage-2. 2. under ZeRO Stage-3, `state_dict` contains just the placeholders since the model weights are partitioned across multiple GPUs. ZeRO Stage-3 has 2 options: a. Saving the entire 16bit model weights to directly load later on using `model.load_state_dict(torch.load(pytorch_model.bin))`. For this, either set `zero_optimization.stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed Config file or set `zero3_save_16bit_model` to True in DeepSpeed Plugin. **Note that this option requires consolidation of the weights on one GPU it can be slow and memory demanding, so only use this feature when needed.** Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this: ```python unwrapped_model = accelerator.unwrap_model(model) # New Code # # Saves the whole/unpartitioned fp16 model when in ZeRO Stage-3 to the output directory if # `stage3_gather_16bit_weights_on_model_save` is True in DeepSpeed Config file or # `zero3_save_16bit_model` is True in DeepSpeed Plugin. # For Zero Stages 1 and 2, models are saved as usual in the output directory. # The model name saved is `pytorch_model.bin` unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model), ) ``` b. To get 32bit weights, first save the model using `model.save_checkpoint()`. Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this: ```python success = model.save_checkpoint(PATH, ckpt_id, checkpoint_state_dict) status_msg = "checkpointing: PATH={}, ckpt_id={}".format(PATH, ckpt_id) if success: logging.info(f"Success {status_msg}") else: logging.warning(f"Failure {status_msg}") ``` This will create ZeRO model and optimizer partitions along with `zero_to_fp32.py` script in checkpoint directory. You can use this script to do offline consolidation. It requires no configuration files or GPUs. Here is an example of its usage: ```bash $ cd /path/to/checkpoint_dir $ ./zero_to_fp32.py . pytorch_model.bin Processing zero checkpoint at global_step1 Detected checkpoint of type zero stage 3, world_size: 2 Saving fp32 state dict to pytorch_model.bin (total_numel=60506624) ``` To get 32bit model for saving/inference, you can perform: ```python from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint unwrapped_model = accelerator.unwrap_model(model) fp32_model = load_state_dict_from_zero_checkpoint(unwrapped_model, checkpoint_dir) ``` If you are only interested in the `state_dict`, you can do the following: ```python from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) ``` Note that all these functions require ~2x memory (general RAM) of the size of the final checkpoint. ## ZeRO Inference DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity. It uses the same ZeRO protocol as training, but it doesn't use an optimizer and a lr scheduler and only stage 3 is relevant. With accelerate integration, you just need to prepare the model and dataloader as shown below: ```python model, eval_dataloader = accelerator.prepare(model, eval_dataloader) ``` ## Few caveats to be aware of 1. Current integration doesn’t support Pipeline Parallelism of DeepSpeed. 2. Current integration doesn’t support `mpu`, limiting the tensor parallelism which is supported in Megatron-LM. 3. Current integration doesn’t support multiple models. ## DeepSpeed Resources The documentation for the internals related to deepspeed can be found [here](../package_reference/deepspeed). - [Project's github](https://github.com/microsoft/deepspeed) - [Usage docs](https://www.deepspeed.ai/getting-started/) - [API docs](https://deepspeed.readthedocs.io/en/latest/index.html) - [Blog posts](https://www.microsoft.com/en-us/research/search/?q=deepspeed) Papers: - [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054) - [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840) - [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857) - [ZeRO++: Extremely Efficient Collective Communication for Giant Model Training](https://arxiv.org/abs/2306.10209) Finally, please, remember that 🤗 `Accelerate` only integrates DeepSpeed, therefore if you have any problems or questions with regards to DeepSpeed usage, please, file an issue with [DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues).
accelerate/docs/source/usage_guides/deepspeed.md/0
{ "file_path": "accelerate/docs/source/usage_guides/deepspeed.md", "repo_id": "accelerate", "token_count": 9829 }
2
# What are these scripts? All scripts in this folder originate from the `nlp_example.py` file, as it is a very simplistic NLP training example using Accelerate with zero extra features. From there, each further script adds in just **one** feature of Accelerate, showing how you can quickly modify your own scripts to implement these capabilities. A full example with all of these parts integrated together can be found in the `complete_nlp_example.py` script and `complete_cv_example.py` script. Adjustments to each script from the base `nlp_example.py` file can be found quickly by searching for "# New Code #" ## Example Scripts by Feature and their Arguments ### Base Example (`../nlp_example.py`) - Shows how to use `Accelerator` in an extremely simplistic PyTorch training loop - Arguments available: - `mixed_precision`, whether to use mixed precision. ("no", "fp16", or "bf16") - `cpu`, whether to train using only the CPU. (yes/no/1/0) All following scripts also accept these arguments in addition to their added ones. These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.run`), such as: ```bash accelerate launch ../nlp_example.py --mixed_precision fp16 --cpu 0 ``` ### Checkpointing and Resuming Training (`checkpointing.py`) - Shows how to use `Accelerator.save_state` and `Accelerator.load_state` to save or continue training - **It is assumed you are continuing off the same training script** - Arguments available: - `checkpointing_steps`, after how many steps the various states should be saved. ("epoch", 1, 2, ...) - `output_dir`, where saved state folders should be saved to, default is current working directory - `resume_from_checkpoint`, what checkpoint folder to resume from. ("epoch_0", "step_22", ...) These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as: (Note, `resume_from_checkpoint` assumes that we've ran the script for one epoch with the `--checkpointing_steps epoch` flag) ```bash accelerate launch ./checkpointing.py --checkpointing_steps epoch output_dir "checkpointing_tutorial" --resume_from_checkpoint "checkpointing_tutorial/epoch_0" ``` ### Cross Validation (`cross_validation.py`) - Shows how to use `Accelerator.free_memory` and run cross validation efficiently with `datasets`. - Arguments available: - `num_folds`, the number of folds the training dataset should be split into. These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as: ```bash accelerate launch ./cross_validation.py --num_folds 2 ``` ### Experiment Tracking (`tracking.py`) - Shows how to use `Accelerate.init_trackers` and `Accelerator.log` - Can be used with Weights and Biases, TensorBoard, or CometML. - Arguments available: - `with_tracking`, whether to load in all available experiment trackers from the environment. These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as: ```bash accelerate launch ./tracking.py --with_tracking ``` ### Gradient Accumulation (`gradient_accumulation.py`) - Shows how to use `Accelerator.no_sync` to prevent gradient averaging in a distributed setup. - Arguments available: - `gradient_accumulation_steps`, the number of steps to perform before the gradients are accumulated and the optimizer and scheduler are stepped + zero_grad These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as: ```bash accelerate launch ./gradient_accumulation.py --gradient_accumulation_steps 5 ``` ### LocalSGD (`local_sgd.py`) - Shows how to use `Accelerator.no_sync` to prevent gradient averaging in a distributed setup. However, unlike gradient accumulation, this method does not change the effective batch size. Local SGD can be combined with gradient accumulation. These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as: ```bash accelerate launch ./local_sgd.py --local_sgd_steps 4 ```
accelerate/examples/by_feature/README.md/0
{ "file_path": "accelerate/examples/by_feature/README.md", "repo_id": "accelerate", "token_count": 1218 }
3
{ "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto", "torch_adam": true, "adam_w_mode": true } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 1, "allgather_partitions": true, "allgather_bucket_size": 2e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": "auto", "contiguous_gradients": true }, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
accelerate/examples/deepspeed_config_templates/zero_stage1_config.json/0
{ "file_path": "accelerate/examples/deepspeed_config_templates/zero_stage1_config.json", "repo_id": "accelerate", "token_count": 614 }
4
[isort] default_section = FIRSTPARTY ensure_newline_before_comments = True force_grid_wrap = 0 include_trailing_comma = True known_first_party = accelerate line_length = 119 lines_after_imports = 2 multi_line_output = 3 use_parentheses = True [flake8] ignore = E203, E722, E501, E741, W503, W605 max-line-length = 119
accelerate/setup.cfg/0
{ "file_path": "accelerate/setup.cfg", "repo_id": "accelerate", "token_count": 117 }
5
#!/usr/bin/env python # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def env_command_parser(subparsers=None): if subparsers is not None: parser = subparsers.add_parser("env") else: parser = argparse.ArgumentParser("Accelerate env command") parser.add_argument( "--config_file", default=None, help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=env_command) return parser def env_command(args): pt_version = torch.__version__ pt_cuda_available = torch.cuda.is_available() pt_xpu_available = is_xpu_available() pt_npu_available = is_npu_available() accelerate_config = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(default_config_file): accelerate_config = load_config_from_file(args.config_file).to_dict() info = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(pt_xpu_available), "PyTorch NPU available": str(pt_npu_available), "System RAM": f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: info["GPU type"] = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n") print("\n".join([f"- {prop}: {val}" for prop, val in info.items()])) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:") accelerate_config_str = ( "\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()]) if isinstance(accelerate_config, dict) else f"\t{accelerate_config}" ) print(accelerate_config_str) info["`Accelerate` configs"] = accelerate_config return info def main() -> int: parser = env_command_parser() args = parser.parse_args() env_command(args) return 0 if __name__ == "__main__": raise SystemExit(main())
accelerate/src/accelerate/commands/env.py/0
{ "file_path": "accelerate/src/accelerate/commands/env.py", "repo_id": "accelerate", "token_count": 1090 }
6
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import io import math import time from copy import deepcopy from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, Dataset from accelerate import Accelerator from accelerate.data_loader import SeedableRandomSampler, prepare_data_loader from accelerate.state import AcceleratorState from accelerate.test_utils import RegressionDataset, are_the_same_tensors from accelerate.utils import ( DistributedType, gather, is_bf16_available, is_ipex_available, is_npu_available, is_xpu_available, set_seed, synchronize_rng_states, ) # TODO: remove RegressionModel4XPU once ccl support empty buffer in broadcasting. if is_xpu_available(): from accelerate.test_utils import RegressionModel4XPU as RegressionModel else: from accelerate.test_utils import RegressionModel def print_main(state): print(f"Printing from the main process {state.process_index}") def print_local_main(state): print(f"Printing from the local main process {state.local_process_index}") def print_last(state): print(f"Printing from the last process {state.process_index}") def print_on(state, process_idx): print(f"Printing from process {process_idx}: {state.process_index}") def process_execution_check(): accelerator = Accelerator() num_processes = accelerator.num_processes # Test main_process_first context manager path = Path("check_main_process_first.txt") with accelerator.main_process_first(): if accelerator.is_main_process: time.sleep(0.1) # ensure main process takes longest with open(path, "a+") as f: f.write("Currently in the main process\n") else: with open(path, "a+") as f: f.write("Now on another process\n") accelerator.wait_for_everyone() if accelerator.is_main_process: with open(path, "r") as f: text = "".join(f.readlines()) try: assert text.startswith("Currently in the main process\n"), "Main process was not first" if num_processes > 1: assert text.endswith("Now on another process\n"), "Main process was not first" assert ( text.count("Now on another process\n") == accelerator.num_processes - 1 ), f"Only wrote to file {text.count('Now on another process') + 1} times, not {accelerator.num_processes}" except AssertionError: path.unlink() raise if accelerator.is_main_process and path.exists(): path.unlink() accelerator.wait_for_everyone() # Test the decorators f = io.StringIO() with contextlib.redirect_stdout(f): accelerator.on_main_process(print_main)(accelerator.state) result = f.getvalue().rstrip() if accelerator.is_main_process: assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0" else: assert f.getvalue().rstrip() == "", f'{result} != ""' f.truncate(0) f.seek(0) with contextlib.redirect_stdout(f): accelerator.on_local_main_process(print_local_main)(accelerator.state) if accelerator.is_local_main_process: assert f.getvalue().rstrip() == "Printing from the local main process 0" else: assert f.getvalue().rstrip() == "" f.truncate(0) f.seek(0) with contextlib.redirect_stdout(f): accelerator.on_last_process(print_last)(accelerator.state) if accelerator.is_last_process: assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}" else: assert f.getvalue().rstrip() == "" f.truncate(0) f.seek(0) for process_idx in range(num_processes): with contextlib.redirect_stdout(f): accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx) if accelerator.process_index == process_idx: assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}" else: assert f.getvalue().rstrip() == "" f.truncate(0) f.seek(0) def init_state_check(): # Test we can instantiate this twice in a row. state = AcceleratorState() if state.local_process_index == 0: print("Testing, testing. 1, 2, 3.") print(state) def rng_sync_check(): state = AcceleratorState() synchronize_rng_states(["torch"]) assert are_the_same_tensors(torch.get_rng_state()), "RNG states improperly synchronized on CPU." if state.distributed_type == DistributedType.MULTI_GPU: synchronize_rng_states(["cuda"]) assert are_the_same_tensors(torch.cuda.get_rng_state()), "RNG states improperly synchronized on GPU." elif state.distributed_type == DistributedType.MULTI_XPU: synchronize_rng_states(["xpu"]) assert are_the_same_tensors(torch.xpu.get_rng_state()), "RNG states improperly synchronized on XPU." generator = torch.Generator() synchronize_rng_states(["generator"], generator=generator) assert are_the_same_tensors(generator.get_state()), "RNG states improperly synchronized in generator." if state.local_process_index == 0: print("All rng are properly synched.") def dl_preparation_check(): state = AcceleratorState() length = 32 * state.num_processes dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) print(state.process_index, result, type(dl)) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." if state.process_index == 0: print("Non-shuffled dataloader passing.") dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." if state.local_process_index == 0: print("Shuffled dataloader passing.") def central_dl_preparation_check(): state = AcceleratorState() length = 32 * state.num_processes dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, dispatch_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." if state.process_index == 0: print("Non-shuffled central dataloader passing.") dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, dispatch_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." if state.local_process_index == 0: print("Shuffled central dataloader passing.") def custom_sampler_check(): state = AcceleratorState() class CustomDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index] class CustomBatchSampler: def __init__(self, dataset_length: int, batch_size: int, shuffle: bool = True): self.batch_size = batch_size self.data_index = np.arange(dataset_length) self.shuffle = shuffle def __iter__(self): num_batches = len(self) if self.shuffle: index = np.random.permutation(self.data_index) else: index = self.data_index output = np.array_split(index, num_batches) yield from output def __len__(self): return math.ceil(len(self.data_index) / self.batch_size) dataset = CustomDataset(range(32 * state.num_processes)) sampler = CustomBatchSampler(len(dataset), batch_size=8) dl = DataLoader(dataset, batch_sampler=sampler) dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index) # We need just ensure that `dl.batch_sampler` (or `dl.batch_sampler.batch_sampler` is indeed the old batch sampler if hasattr(dl.batch_sampler, "batch_sampler"): assert isinstance( dl.batch_sampler.batch_sampler, CustomBatchSampler ), "Custom sampler was changed after calling `prepare_data_loader`" else: assert isinstance( dl.batch_sampler, CustomBatchSampler ), "Custom sampler was changed after calling `prepare_data_loader`" def mock_training(length, batch_size, generator, use_seedable_sampler=False): set_seed(42) generator.manual_seed(42) train_set = RegressionDataset(length=length, seed=42) if use_seedable_sampler: # The SeedableRandomSampler is needed during distributed setups # for full reproducability across processes with the `DataLoader` sampler = SeedableRandomSampler( generator=generator, data_source=train_set, num_samples=len(train_set), ) train_dl = DataLoader(train_set, batch_size=batch_size, sampler=sampler) else: train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) for epoch in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) loss.backward() optimizer.step() return train_set, model def training_check(use_seedable_sampler=False): state = AcceleratorState() generator = torch.Generator() batch_size = 8 length = batch_size * 4 * state.num_processes train_set, old_model = mock_training(length, batch_size * state.num_processes, generator, use_seedable_sampler) assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes." assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes." accelerator = Accelerator() if use_seedable_sampler: # The SeedableRandomSampler is needed during distributed setups # for full reproducability across processes with the `DataLoader` sampler = SeedableRandomSampler( generator=generator, data_source=train_set, num_samples=len(train_set), ) train_dl = DataLoader(train_set, batch_size=batch_size, sampler=sampler) else: train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for epoch in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.") accelerator = Accelerator(split_batches=True, use_seedable_sampler=use_seedable_sampler) train_dl = DataLoader(train_set, batch_size=batch_size * state.num_processes, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." accelerator.print("Training yielded the same results on one CPU or distributes setup with batch split.") if torch.cuda.is_available() or is_npu_available(): # Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16 print("FP16 training check.") AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="fp16", use_seedable_sampler=use_seedable_sampler) train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." if torch.cuda.is_available(): # Mostly a test that model.forward will have autocast when running unwrap_model(model, keep_fp32_wrapper=True) print("Keep fp32 wrapper check.") AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="fp16") model = torch.nn.Linear(2, 4) model = accelerator.prepare(model) model_with_fp32_wrapper = accelerator.unwrap_model(model, keep_fp32_wrapper=True) # Run forward with fp16 as input. # When the model is with mixed precision wrapper, no error will be raised. input_tensor = torch.Tensor([1, 2]).to(dtype=torch.float16, device=accelerator.device) output = model_with_fp32_wrapper(input_tensor) # BF16 support is only for CPU + TPU, and some GPU if is_bf16_available(): # Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16 print("BF16 training check.") AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="bf16", use_seedable_sampler=use_seedable_sampler) train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." # IPEX support is only for CPU if is_ipex_available(): print("ipex BF16 training check.") AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="bf16", cpu=True, use_seedable_sampler=use_seedable_sampler) train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." # XPU support is only for XPU if is_xpu_available(): print("xpu BF16 training check.") AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="bf16", cpu=False, use_seedable_sampler=use_seedable_sampler) train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on XPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on XPU or distributed training." def test_split_between_processes_list(): state = AcceleratorState() data = list(range(0, 2 * state.num_processes)) with state.split_between_processes(data) as results: assert ( len(results) == 2 ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" data = list(range(0, (3 * state.num_processes) - 1)) with state.split_between_processes(data, apply_padding=True) as results: if state.is_last_process: # Test that the last process gets the extra item(s) num_samples_per_device = math.ceil(len(data) / state.num_processes) assert ( len(results) == num_samples_per_device ), f"Last process did not get the extra item(s). Process index: {state.process_index}; Length: {len(results)}" state.wait_for_everyone() def test_split_between_processes_nested_dict(): state = AcceleratorState() a = [1, 2, 3, 4, 5, 6, 7, 8] b = ["a", "b", "c", "d", "e", "f", "g", "h"] c = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]) if state.num_processes in (1, 2, 4): data = {"a": a, "b": b, "c": c} data_copy = deepcopy(data) with state.split_between_processes(data) as results: if state.process_index == 0: assert results["a"] == data_copy["a"][: 8 // state.num_processes] elif state.num_processes == 2: assert results["a"] == data_copy["a"][4:] elif state.process_index == 3: # We return a list each time assert results["a"] == data_copy["a"][-2:], f'Expected: {data_copy["a"][-2]}, Actual: {results["a"]}' if state.process_index == 0: assert results["b"] == data_copy["b"][: 8 // state.num_processes] elif state.num_processes == 2: assert results["b"] == data_copy["b"][4:] elif state.process_index == 3: assert results["b"] == data_copy["b"][-2:] if state.process_index == 0: assert torch.allclose( results["c"], data_copy["c"][: 8 // state.num_processes] ), f"Did not obtain expected values on process 0, expected `{data['c'][:8 // state.num_processes]}`, received: {results['c']}" elif state.num_processes == 2: assert torch.allclose( results["c"], data_copy["c"][4:] ), f"Did not obtain expected values on process 2, expected `{data['c'][4:]}`, received: {results['c']}" elif state.process_index == 3: assert torch.allclose( results["c"], data_copy["c"][-2:] ), f"Did not obtain expected values on process 4, expected `{data['c'][-2:]}`, received: {results['c']}" state.wait_for_everyone() def test_split_between_processes_tensor(): state = AcceleratorState() if state.num_processes > 1: data = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]).to(state.device) with state.split_between_processes(data) as results: if state.process_index == 0: assert torch.allclose(results, torch.tensor([0, 1, 2, 3]).to(state.device)) else: assert torch.allclose(results, torch.tensor([4, 5, 6, 7]).to(state.device)) state.wait_for_everyone() def test_trigger(): accelerator = Accelerator() # should start with being false assert accelerator.check_trigger() is False # set a breakpoint on the main process if accelerator.is_main_process: accelerator.set_trigger() # check it's been activated across all processes # calls `all_reduce` and triggers a sync assert accelerator.check_trigger() is True # check it's been reset after the sync assert accelerator.check_trigger() is False def main(): accelerator = Accelerator() state = accelerator.state if state.local_process_index == 0: print("**Initialization**") init_state_check() state.wait_for_everyone() if state.distributed_type == DistributedType.MULTI_GPU: num_processes_per_node = torch.cuda.device_count() else: num_processes_per_node = state.num_processes # We only run this test on non-multinode if num_processes_per_node == state.num_processes: if state.process_index == 0: print("\n**Test process execution**") process_execution_check() if state.process_index == 0: print("\n**Test split between processes as a list**") test_split_between_processes_list() if state.process_index == 0: print("\n**Test split between processes as a dict**") test_split_between_processes_nested_dict() if state.process_index == 0: print("\n**Test split between processes as a tensor**") test_split_between_processes_tensor() if state.local_process_index == 0: print("\n**Test random number generator synchronization**") rng_sync_check() if state.local_process_index == 0: print("\n**DataLoader integration test**") dl_preparation_check() if state.distributed_type != DistributedType.TPU: central_dl_preparation_check() custom_sampler_check() # Trainings are not exactly the same in DeepSpeed and CPU mode if state.distributed_type == DistributedType.DEEPSPEED: return if state.local_process_index == 0: print("\n**Training integration test**") training_check(use_seedable_sampler=False) training_check(use_seedable_sampler=True) if state.local_process_index == 0: print("\n**Breakpoint trigger test**") test_trigger() if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_script.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_script.py", "repo_id": "accelerate", "token_count": 11089 }
7
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import gc import importlib import inspect import json import logging import os import re import shutil import tempfile from collections import OrderedDict, defaultdict from typing import Dict, List, Optional, Tuple, Union import packaging import torch import torch.nn as nn from ..state import AcceleratorState from .constants import SAFE_WEIGHTS_NAME, WEIGHTS_NAME from .dataclasses import AutocastKwargs, CustomDtype, DistributedType from .imports import is_mps_available, is_npu_available, is_peft_available, is_xpu_available from .offload import load_offloaded_weight, offload_weight, save_offload_index from .tqdm import is_tqdm_available, tqdm from .versions import compare_versions if is_npu_available(check_device=False): import torch_npu # noqa: F401 from safetensors import safe_open from safetensors.torch import load_file as safe_load_file WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json" logger = logging.getLogger(__name__) def is_peft_model(model): from .other import extract_model_from_parallel if is_peft_available(): from peft import PeftModel return is_peft_available() and isinstance(extract_model_from_parallel(model), PeftModel) def check_device_same(first_device, second_device): """ Utility method to check if two `torch` devices are similar. When dealing with CUDA devices, torch throws `False` for `torch.device("cuda") == torch.device("cuda:0")` whereas they should be the same Args: first_device (`torch.device`): First device to check second_device (`torch.device`): Second device to check """ if first_device.type != second_device.type: return False if first_device.type == "cuda" and first_device.index is None: # In case the first_device is a cuda device and have # the index attribute set to `None`, default it to `0` first_device = torch.device("cuda", index=0) if second_device.type == "cuda" and second_device.index is None: # In case the second_device is a cuda device and have # the index attribute set to `None`, default it to `0` second_device = torch.device("cuda", index=0) return first_device == second_device def convert_file_size_to_int(size: Union[int, str]): """ Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). Args: size (`int` or `str`): The size to convert. Will be directly returned if an `int`. Example: ```py >>> convert_file_size_to_int("1MiB") 1048576 ``` """ mem_size = 0 err_msg = ( f"`size` {size} is not in a valid format. Use an integer for bytes, or a string with an unit (like '5.0GB')." ) try: if isinstance(size, int): mem_size = size elif size.upper().endswith("GIB"): mem_size = int(float(size[:-3]) * (2**30)) elif size.upper().endswith("MIB"): mem_size = int(float(size[:-3]) * (2**20)) elif size.upper().endswith("KIB"): mem_size = int(float(size[:-3]) * (2**10)) elif size.upper().endswith("GB"): int_size = int(float(size[:-2]) * (10**9)) mem_size = int_size // 8 if size.endswith("b") else int_size elif size.upper().endswith("MB"): int_size = int(float(size[:-2]) * (10**6)) mem_size = int_size // 8 if size.endswith("b") else int_size elif size.upper().endswith("KB"): int_size = int(float(size[:-2]) * (10**3)) mem_size = int_size // 8 if size.endswith("b") else int_size except ValueError: raise ValueError(err_msg) if mem_size <= 0: raise ValueError(err_msg) return mem_size def dtype_byte_size(dtype: torch.dtype): """ Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: ```py >>> dtype_byte_size(torch.float32) 4 ``` """ if dtype == torch.bool: return 1 / 8 elif dtype == CustomDtype.INT4: return 1 / 2 elif dtype == CustomDtype.FP8: return 1 bit_search = re.search(r"[^\d](\d+)$", str(dtype)) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]: """ Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with non-overlapping lifetimes may have the same id. """ _SIZE = { torch.int64: 8, torch.float32: 4, torch.int32: 4, torch.bfloat16: 2, torch.float16: 2, torch.int16: 2, torch.uint8: 1, torch.int8: 1, torch.bool: 1, torch.float64: 8, } try: storage_ptr = tensor.untyped_storage().data_ptr() storage_size = tensor.untyped_storage().nbytes() except Exception: # Fallback for torch==1.10 try: storage_ptr = tensor.storage().data_ptr() storage_size = tensor.storage().size() * _SIZE[tensor.dtype] except NotImplementedError: # Fallback for meta storage storage_ptr = 0 # On torch >=2.0 this is the tensor size storage_size = tensor.nelement() * _SIZE[tensor.dtype] return tensor.device, storage_ptr, storage_size def shard_checkpoint( state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME ): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. <Tip warning={true}> If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will have a size greater than `max_shard_size`. </Tip> Args: state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`): The name of the model save file. """ max_shard_size = convert_file_size_to_int(max_shard_size) sharded_state_dicts = [{}] last_block_size = 0 total_size = 0 storage_id_to_block = {} for key, weight in state_dict.items(): # when bnb serialization is used the weights in the state dict can be strings # check: https://github.com/huggingface/transformers/pull/24416 for more details if isinstance(weight, str): continue else: storage_id = id_tensor_storage(weight) # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block` if storage_id in storage_id_to_block: block_id = storage_id_to_block[storage_id] sharded_state_dicts[block_id][key] = weight continue weight_size = weight.numel() * dtype_byte_size(weight.dtype) # If this weight is going to tip up over the maximal size, we split. if last_block_size + weight_size > max_shard_size: sharded_state_dicts.append({}) last_block_size = 0 sharded_state_dicts[-1][key] = weight last_block_size += weight_size total_size += weight_size storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1 # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = weights_name.replace(".bin", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.bin") shard_file = shard_file.replace( ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors" ) shards[shard_file] = shard for key in shard.keys(): weight_map[key] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index def set_module_tensor_to_device( module: nn.Module, tensor_name: str, device: Union[int, str, torch.device], value: Optional[torch.Tensor] = None, dtype: Optional[Union[str, torch.dtype]] = None, fp16_statistics: Optional[torch.HalfTensor] = None, tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None, ): """ A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing `param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function). Args: module (`torch.nn.Module`): The module in which the tensor we want to move lives. tensor_name (`str`): The full name of the parameter/buffer. device (`int`, `str` or `torch.device`): The device on which to set the tensor. value (`torch.Tensor`, *optional*): The value of the tensor (useful when going from the meta device to any other device). dtype (`torch.dtype`, *optional*): If passed along the value of the parameter will be cast to this `dtype`. Otherwise, `value` will be cast to the dtype of the existing parameter in the model. fp16_statistics (`torch.HalfTensor`, *optional*): The list of fp16 statistics to set on the module, used for 8 bit model serialization. tied_params_map (Dict[int, Dict[torch.device, torch.Tensor]], *optional*, defaults to `None`): A map of current data pointers to dictionaries of devices to already dispatched tied weights. For a given execution device, this parameter is useful to reuse the first available pointer of a shared weight on the device for all others, instead of duplicating memory. """ # Recurse if needed if "." in tensor_name: splits = tensor_name.split(".") for split in splits[:-1]: new_module = getattr(module, split) if new_module is None: raise ValueError(f"{module} has no attribute {split}.") module = new_module tensor_name = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") is_buffer = tensor_name in module._buffers old_value = getattr(module, tensor_name) # Treat the case where old_value (or a custom `value`, typically offloaded to RAM/disk) belongs to a tied group, and one of the weight # in the tied group has already been dispatched to the device, by avoiding reallocating memory on the device and just copying the pointer. if ( value is not None and tied_params_map is not None and value.data_ptr() in tied_params_map and device in tied_params_map[value.data_ptr()] ): module._parameters[tensor_name] = tied_params_map[value.data_ptr()][device] return elif ( tied_params_map is not None and old_value.data_ptr() in tied_params_map and device in tied_params_map[old_value.data_ptr()] ): module._parameters[tensor_name] = tied_params_map[old_value.data_ptr()][device] return if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.") if value is not None: if old_value.shape != value.shape: raise ValueError( f'Trying to set a tensor of shape {value.shape} in "{tensor_name}" (which has shape {old_value.shape}), this look incorrect.' ) if dtype is None: # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model value = value.to(old_value.dtype) elif not str(value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): value = value.to(dtype) param = module._parameters[tensor_name] if tensor_name in module._parameters else None param_cls = type(param) device_quantization = None with torch.no_grad(): # leave it on cpu first before moving them to cuda # # fix the case where the device is meta, we don't want to put it on cpu because there is no data =0 if ( param is not None and param.device.type != "cuda" and torch.device(device).type == "cuda" and param_cls.__name__ in ["Int8Params", "FP4Params", "Params4bit"] ): device_quantization = device device = "cpu" # `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)). if is_npu_available() and isinstance(device, int): device = f"npu:{device}" if is_xpu_available() and isinstance(device, int): device = f"xpu:{device}" if value is None: new_value = old_value.to(device) if dtype is not None and device in ["meta", torch.device("meta")]: if not str(old_value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): new_value = new_value.to(dtype) if not is_buffer: module._parameters[tensor_name] = param_cls(new_value, requires_grad=old_value.requires_grad) elif isinstance(value, torch.Tensor): new_value = value.to(device) else: new_value = torch.tensor(value, device=device) if device_quantization is not None: device = device_quantization if is_buffer: module._buffers[tensor_name] = new_value elif value is not None or not check_device_same(torch.device(device), module._parameters[tensor_name].device): param_cls = type(module._parameters[tensor_name]) kwargs = module._parameters[tensor_name].__dict__ if param_cls.__name__ in ["Int8Params", "FP4Params"]: if param_cls.__name__ == "Int8Params" and new_value.dtype == torch.float32: # downcast to fp16 if any - needed for 8bit serialization new_value = new_value.to(torch.float16) # quantize module that are going to stay on the cpu so that we offload quantized weights if device == "cpu" and param_cls.__name__ == "Int8Params": new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(0).to("cpu") new_value.CB = new_value.CB.to("cpu") new_value.SCB = new_value.SCB.to("cpu") else: new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(device) else: new_value = param_cls(new_value, requires_grad=old_value.requires_grad).to(device) module._parameters[tensor_name] = new_value if fp16_statistics is not None: setattr(module._parameters[tensor_name], "SCB", fp16_statistics.to(device)) del fp16_statistics # as we put the weight to meta, it doesn't have SCB attr anymore. make sure that it is not a meta weight if ( module.__class__.__name__ == "Linear8bitLt" and getattr(module.weight, "SCB", None) is None and str(module.weight.device) != "meta" ): # quantize only if necessary device_index = torch.device(device).index if torch.device(device).type == "cuda" else None if not getattr(module.weight, "SCB", None) and device_index is not None: if module.bias is not None and module.bias.device.type != "meta": # if a bias exists, we need to wait until the bias is set on the correct device module = module.cuda(device_index) elif module.bias is None: # if no bias exists, we can quantize right away module = module.cuda(device_index) elif module.__class__.__name__ == "Linear4bit" and getattr(module.weight, "quant_state", None) is None: # quantize only if necessary device_index = torch.device(device).index if torch.device(device).type == "cuda" else None if not getattr(module.weight, "quant_state", None) and device_index is not None: module.weight = module.weight.cuda(device_index) # clean pre and post foward hook if is_npu_available(): torch.npu.empty_cache() elif is_xpu_available(): torch.xpu.empty_cache() else: torch.cuda.empty_cache() # When handling tied weights, we update tied_params_map to keep track of the tied weights that have already been allocated on the device in # order to avoid duplicating memory, see above. if ( tied_params_map is not None and old_value.data_ptr() in tied_params_map and device not in tied_params_map[old_value.data_ptr()] ): tied_params_map[old_value.data_ptr()][device] = new_value elif ( value is not None and tied_params_map is not None and value.data_ptr() in tied_params_map and device not in tied_params_map[value.data_ptr()] ): tied_params_map[value.data_ptr()][device] = new_value def named_module_tensors( module: nn.Module, include_buffers: bool = True, recurse: bool = False, remove_non_persistent: bool = False ): """ A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True` it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`. Args: module (`torch.nn.Module`): The module we want the tensors on. include_buffer (`bool`, *optional*, defaults to `True`): Whether or not to include the buffers in the result. recurse (`bool`, *optional`, defaults to `False`): Whether or not to go look in every submodule or just return the direct parameters and buffers. remove_non_persistent (`bool`, *optional*, defaults to `False`): Whether or not to remove the non persistent buffer from the buffers. Useful only when include_buffers = True """ for named_parameter in module.named_parameters(recurse=recurse): yield named_parameter if include_buffers: non_persistent_buffers = set() if remove_non_persistent: non_persistent_buffers = get_non_persistent_buffers(module, recurse=recurse) for named_buffer in module.named_buffers(recurse=recurse): name, _ = named_buffer if name not in non_persistent_buffers: yield named_buffer def get_non_persistent_buffers(module: nn.Module, recurse: bool = False): """ Gather all non persistent buffers of a given modules into a set Args: module (`nn.Module`): The module we want the non persistent buffers on. recurse (`bool`, *optional*, defaults to `False`): Whether or not to go look in every submodule or just return the direct non persistent buffers. """ non_persistent_buffers_set = module._non_persistent_buffers_set if recurse: for _, m in module.named_modules(): non_persistent_buffers_set |= m._non_persistent_buffers_set return non_persistent_buffers_set class FindTiedParametersResult(list): """ This is a subclass of a list to handle backward compatibility for Transformers. Do not rely on the fact this is not a list or on the `values` method as in the future this will be removed. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def values(self): # TODO: at the next Transformers release (4.28.0) issue a deprecation warning here. return sum([x[1:] for x in self], []) def check_tied_parameters_in_config(model: nn.Module): """ Check if there is any indication in the given model that some weights should be tied. Args: model (`torch.nn.Module`): The model to inspect Returns: bool: True if the model needs to have tied weights """ # based on model.tie_weights() method has_tied_word_embedding = False has_tied_encoder_decoder = False has_tied_module = False if "PreTrainedModel" in [c.__name__ for c in inspect.getmro(model.__class__)]: has_tied_word_embedding = ( hasattr(model, "config") and getattr(model.config, "tie_word_embeddings", False) and model.get_output_embeddings() ) has_tied_encoder_decoder = ( hasattr(model, "config") and getattr(model.config, "is_encoder_decoder", False) and getattr(model.config, "tie_encoder_decoder", False) ) has_tied_module = any(hasattr(module, "_tie_weights") for module in model.modules()) return any([has_tied_word_embedding, has_tied_encoder_decoder, has_tied_module]) def _get_param_device(param, device_map): if param in device_map: return device_map[param] parent_param = ".".join(param.split(".")[:-1]) if parent_param == param: raise ValueError(f"The `device_map` does not contain the module {param}.") else: return _get_param_device(parent_param, device_map) def check_tied_parameters_on_same_device(tied_params, device_map): """ Check if tied parameters are on the same device Args: tied_params (`List[List[str]]`): A list of lists of parameter names being all tied together. device_map (`Dict[str, Union[int, str, torch.device]]`): A map that specifies where each submodule should go. """ for tie_param in tied_params: tie_param_devices = {} for param in tie_param: tie_param_devices[param] = _get_param_device(param, device_map) if len(set(tie_param_devices.values())) > 1: logger.warn( f"Tied parameters are on different devices: {tie_param_devices}. " "Please modify your custom device map or set `device_map='auto'`. " ) def find_tied_parameters(model: nn.Module, **kwargs): """ Find the tied parameters in a given model. <Tip warning={true}> The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore them. </Tip> Args: model (`torch.nn.Module`): The model to inspect. Returns: List[List[str]]: A list of lists of parameter names being all tied together. Example: ```py >>> from collections import OrderedDict >>> import torch.nn as nn >>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))])) >>> model.linear2.weight = model.linear1.weight >>> find_tied_parameters(model) [['linear1.weight', 'linear2.weight']] ``` """ # Initialize result and named_parameters before recursing. named_parameters = kwargs.get("named_parameters", None) prefix = kwargs.get("prefix", "") result = kwargs.get("result", {}) if named_parameters is None: named_parameters = {n: p for n, p in model.named_parameters()} else: # A tied parameter will not be in the full `named_parameters` seen above but will be in the `named_parameters` # of the submodule it belongs to. So while recursing we track the names that are not in the initial # `named_parameters`. for name, parameter in model.named_parameters(): full_name = name if prefix == "" else f"{prefix}.{name}" if full_name not in named_parameters: # When we find one, it has to be one of the existing parameters. for new_name, new_param in named_parameters.items(): if new_param is parameter: if new_name not in result: result[new_name] = [] result[new_name].append(full_name) # Once we have treated direct parameters, we move to the child modules. for name, child in model.named_children(): child_name = name if prefix == "" else f"{prefix}.{name}" find_tied_parameters(child, named_parameters=named_parameters, prefix=child_name, result=result) return FindTiedParametersResult([sorted([weight] + list(set(tied))) for weight, tied in result.items()]) def retie_parameters(model, tied_params): """ Reties tied parameters in a given model if the link was broken (for instance when adding hooks). Args: model (`torch.nn.Module`): The model in which to retie parameters. tied_params (`List[List[str]]`): A mapping parameter name to tied parameter name as obtained by `find_tied_parameters`. """ for tied_group in tied_params: param_to_tie = None # two loops : the first one to set param_to_tie , the second one to change the values of tied_group for param_name in tied_group: module = model splits = param_name.split(".") for split in splits[:-1]: module = getattr(module, split) param = getattr(module, splits[-1]) if param_to_tie is None and param.device != torch.device("meta"): param_to_tie = param break if param_to_tie is not None: for param_name in tied_group: module = model splits = param_name.split(".") for split in splits[:-1]: module = getattr(module, split) setattr(module, splits[-1], param_to_tie) def _get_proper_dtype(dtype: Union[str, torch.device]) -> torch.dtype: """ Just does torch.dtype(dtype) if necessary. """ if isinstance(dtype, str): # We accept "torch.float16" or just "float16" dtype = dtype.replace("torch.", "") dtype = getattr(torch, dtype) return dtype def compute_module_sizes( model: nn.Module, dtype: Optional[Union[str, torch.device]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None, ): """ Compute the size of each submodule of a given model. """ if dtype is not None: dtype = _get_proper_dtype(dtype) dtype_size = dtype_byte_size(dtype) if special_dtypes is not None: special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()} special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()} module_sizes = defaultdict(int) for name, tensor in named_module_tensors(model, recurse=True): if special_dtypes is not None and name in special_dtypes: size = tensor.numel() * special_dtypes_size[name] elif dtype is None: size = tensor.numel() * dtype_byte_size(tensor.dtype) elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): # According to the code in set_module_tensor_to_device, these types won't be converted # so use their original size here size = tensor.numel() * dtype_byte_size(tensor.dtype) else: size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype)) name_parts = name.split(".") for idx in range(len(name_parts) + 1): module_sizes[".".join(name_parts[:idx])] += size return module_sizes def get_max_layer_size( modules: List[Tuple[str, torch.nn.Module]], module_sizes: Dict[str, int], no_split_module_classes: List[str] ): """ Utility function that will scan a list of named modules and return the maximum size used by one full layer. The definition of a layer being: - a module with no direct children (just parameters and buffers) - a module whose class name is in the list `no_split_module_classes` Args: modules (`List[Tuple[str, torch.nn.Module]]`): The list of named modules where we want to determine the maximum layer size. module_sizes (`Dict[str, int]`): A dictionary mapping each layer name to its size (as generated by `compute_module_sizes`). no_split_module_classes (`List[str]`): A list of class names for layers we don't want to be split. Returns: `Tuple[int, List[str]]`: The maximum size of a layer with the list of layer names realizing that maximum size. """ max_size = 0 layer_names = [] modules_to_treat = modules.copy() while len(modules_to_treat) > 0: module_name, module = modules_to_treat.pop(0) modules_children = list(module.named_children()) if isinstance(module, torch.nn.Module) else [] if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes: # No splitting this one so we compare to the max_size size = module_sizes[module_name] if size > max_size: max_size = size layer_names = [module_name] elif size == max_size: layer_names.append(module_name) else: modules_to_treat = [(f"{module_name}.{n}", v) for n, v in modules_children] + modules_to_treat return max_size, layer_names def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None): """ Get the maximum memory available if nothing is passed, converts string to int otherwise. """ import psutil if max_memory is None: if not (torch.cuda.is_available() or is_npu_available() or is_xpu_available()): max_memory = {} else: # Make sure CUDA is initialized on each GPU to have the right memory info. if is_npu_available(): for i in range(torch.npu.device_count()): _ = torch.tensor(0, device=torch.device("npu", i)) max_memory = {i: torch.npu.mem_get_info(i)[0] for i in range(torch.npu.device_count())} elif is_xpu_available(): for i in range(torch.xpu.device_count()): _ = torch.tensor(0, device=torch.device("xpu", i)) max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())} else: for i in range(torch.cuda.device_count()): _ = torch.tensor([0], device=i) max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())} # allocate everything in the mps device as the RAM is shared if is_mps_available(): max_memory["mps"] = psutil.virtual_memory().available else: max_memory["cpu"] = psutil.virtual_memory().available return max_memory for key in max_memory: if isinstance(max_memory[key], str): max_memory[key] = convert_file_size_to_int(max_memory[key]) # Need to sort the device by type to make sure that we allocate the gpu first. # As gpu/npu/xpu are represented by int, we need to sort them first. gpu_devices = [k for k in max_memory.keys() if isinstance(k, int)] gpu_devices.sort() # check if gpu/npu/xpu devices are available and if not, throw a warning if is_npu_available(): num_devices = torch.npu.device_count() elif is_xpu_available(): num_devices = torch.xpu.device_count() else: num_devices = torch.cuda.device_count() for device in gpu_devices: if device >= num_devices or device < 0: logger.warning(f"Device {device} is not available, available devices are {list(range(num_devices))}") # Add the other devices in the preset order if they are available all_devices = gpu_devices + [k for k in ["mps", "cpu", "disk"] if k in max_memory.keys()] # Raise an error if a device is not recognized for k in max_memory.keys(): if k not in all_devices: raise ValueError( f"Device {k} is not recognized, available devices are integers(for GPU/XPU), 'mps', 'cpu' and 'disk'" ) max_memory = {k: max_memory[k] for k in all_devices} return max_memory def clean_device_map(device_map: Dict[str, Union[int, str, torch.device]], module_name: str = ""): """ Cleans a device_map by grouping all submodules that go on the same device together. """ # Get the value of the current module and if there is only one split across several keys, regroup it. prefix = "" if module_name == "" else f"{module_name}." values = [v for k, v in device_map.items() if k.startswith(prefix)] if len(set(values)) == 1 and len(values) > 1: for k in [k for k in device_map if k.startswith(prefix)]: del device_map[k] device_map[module_name] = values[0] # Recurse over the children children_modules = [k for k in device_map.keys() if k.startswith(prefix) and len(k) > len(module_name)] idx = len(module_name.split(".")) + 1 if len(module_name) > 0 else 1 children_modules = set(".".join(k.split(".")[:idx]) for k in children_modules) for child in children_modules: clean_device_map(device_map, module_name=child) return device_map def load_offloaded_weights(model, index, offload_folder): """ Loads the weights from the offload folder into the model. Args: model (`torch.nn.Module`): The model to load the weights into. index (`dict`): A dictionary containing the parameter name and its metadata for each parameter that was offloaded from the model. offload_folder (`str`): The folder where the offloaded weights are stored. """ if index is None or len(index) == 0: # Nothing to do return for param_name, metadata in index.items(): if "SCB" in param_name: continue fp16_statistics = None if "weight" in param_name and param_name.replace("weight", "SCB") in index.keys(): weight_name = param_name.replace("weight", "SCB") fp16_statistics = load_offloaded_weight( os.path.join(offload_folder, f"{weight_name}.dat"), index[weight_name] ) tensor_file = os.path.join(offload_folder, f"{param_name}.dat") weight = load_offloaded_weight(tensor_file, metadata) set_module_tensor_to_device(model, param_name, "cpu", value=weight, fp16_statistics=fp16_statistics) def get_balanced_memory( model: nn.Module, max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None, no_split_module_classes: Optional[List[str]] = None, dtype: Optional[Union[str, torch.dtype]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None, low_zero: bool = False, ): """ Compute a `max_memory` dictionary for [`infer_auto_device_map`] that will balance the use of each available GPU. <Tip> All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the meta device (as it would if initialized within the `init_empty_weights` context manager). </Tip> Args: model (`torch.nn.Module`): The model to analyze. max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset. Example: `max_memory={0: "1GB"}`. no_split_module_classes (`List[str]`, *optional*): A list of layer class names that should never be split across device (for instance any layer that has a residual connection). dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*): If provided, special dtypes to consider for some specific weights (will override dtype used as default for all weights). low_zero (`bool`, *optional*): Minimizes the number of weights on GPU 0, which is convenient when it's used for other operations (like the Transformers generate function). """ # Get default / clean up max_memory user_not_set_max_memory = max_memory is None max_memory = get_max_memory(max_memory) if is_npu_available(): num_devices = len([d for d in max_memory if torch.device(d).type == "npu" and max_memory[d] > 0]) elif is_xpu_available(): num_devices = len( [ d for d in max_memory if ( d != "cpu" and (torch.device(d).type == "xpu" or torch.xpu.get_device_properties(d).dev_type == "gpu") ) and max_memory[d] > 0 ] ) else: num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0]) if num_devices == 0: return max_memory if num_devices == 1: # We cannot do low_zero on just one GPU, but we will still reserve some memory for the buffer low_zero = False # If user just asked us to handle memory usage, we should avoid OOM if user_not_set_max_memory: for key in max_memory.keys(): if isinstance(key, int): max_memory[key] *= 0.9 # 90% is a good compromise logger.info( f"We will use 90% of the memory on device {key} for storing the model, and 10% for the buffer to avoid OOM. " "You can set `max_memory` in to a higher value to use more memory (at your own risk)." ) break # only one device module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes) per_gpu = module_sizes[""] // (num_devices - 1 if low_zero else num_devices) # We can't just set the memory to model_size // num_devices as it will end being too small: each GPU will get # slightly less layers and some layers will end up offload at the end. So this function computes a buffer size to # add which is the biggest of: # - the size of no split block (if applicable) # - the mean of the layer sizes if no_split_module_classes is None: no_split_module_classes = [] elif not isinstance(no_split_module_classes, (list, tuple)): no_split_module_classes = [no_split_module_classes] # Identify the size of the no_split_block modules if len(no_split_module_classes) > 0: no_split_children = {} for name, size in module_sizes.items(): if name == "": continue submodule = model for submodule_name in name.split("."): submodule = getattr(submodule, submodule_name) class_name = submodule.__class__.__name__ if class_name in no_split_module_classes and class_name not in no_split_children: no_split_children[class_name] = size if set(no_split_children.keys()) == set(no_split_module_classes): break buffer = max(no_split_children.values()) if len(no_split_children) > 0 else 0 else: buffer = 0 # Compute mean of final modules. In the first dict of module sizes, leaves are the parameters leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0] module_sizes = {n: v for n, v in module_sizes.items() if n not in leaves} # Once removed, leaves are the final modules. leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0] mean_leaves = int(sum([module_sizes[n] for n in leaves]) / max(len(leaves), 1)) buffer = int(1.25 * max(buffer, mean_leaves)) per_gpu += buffer # Sorted list of GPUs id (we may have some gpu ids not included in the our max_memory list - let's ignore them) gpus_idx_list = list( sorted( device_id for device_id, device_mem in max_memory.items() if isinstance(device_id, int) and device_mem > 0 ) ) # The last device is left with max_memory just in case the buffer is not enough. for idx in gpus_idx_list[:-1]: max_memory[idx] = min(max_memory[0] if low_zero and idx == 0 else per_gpu, max_memory[idx]) if low_zero: min_zero = max(0, module_sizes[""] - sum([max_memory[i] for i in range(1, num_devices)])) max_memory[0] = min(min_zero, max_memory[0]) return max_memory def calculate_maximum_sizes(model: torch.nn.Module): "Computes the total size of the model and its largest layer" sizes = compute_module_sizes(model) # `transformers` models store this information for us no_split_modules = getattr(model, "_no_split_modules", None) if no_split_modules is None: no_split_modules = [] modules_to_treat = ( list(model.named_parameters(recurse=False)) + list(model.named_children()) + list(model.named_buffers(recurse=False)) ) largest_layer = get_max_layer_size(modules_to_treat, sizes, no_split_modules) total_size = sizes[""] return total_size, largest_layer def infer_auto_device_map( model: nn.Module, max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None, no_split_module_classes: Optional[List[str]] = None, dtype: Optional[Union[str, torch.dtype]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None, verbose: bool = False, clean_result: bool = True, ): """ Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk, such that: - we don't exceed the memory available of any of the GPU. - if offload to the CPU is needed, there is always room left on GPU 0 to put back the layer offloaded on CPU that has the largest size. - if offload to the CPU is needed,we don't exceed the RAM available on the CPU. - if offload to the disk is needed, there is always room left on the CPU to put back the layer offloaded on disk that has the largest size. <Tip> All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the meta device (as it would if initialized within the `init_empty_weights` context manager). </Tip> Args: model (`torch.nn.Module`): The model to analyze. max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset. Example: `max_memory={0: "1GB"}`. no_split_module_classes (`List[str]`, *optional*): A list of layer class names that should never be split across device (for instance any layer that has a residual connection). dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*): If provided, special dtypes to consider for some specific weights (will override dtype used as default for all weights). verbose (`bool`, *optional*, defaults to `False`): Whether or not to provide debugging statements as the function builds the device_map. clean_result (`bool`, *optional*, defaults to `True`): Clean the resulting device_map by grouping all submodules that go on the same device together. """ # Get default / clean up max_memory max_memory = get_max_memory(max_memory) if no_split_module_classes is None: no_split_module_classes = [] elif not isinstance(no_split_module_classes, (list, tuple)): no_split_module_classes = [no_split_module_classes] devices = list(max_memory.keys()) if "disk" not in devices: devices.append("disk") gpus = [device for device in devices if device not in ["cpu", "disk"]] # Devices that need to keep space for a potential offloaded layer. if "mps" in gpus: main_devices = ["mps"] elif len(gpus) > 0: main_devices = [gpus[0], "cpu"] else: main_devices = ["cpu"] module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes) tied_parameters = find_tied_parameters(model) if check_tied_parameters_in_config(model) and len(tied_parameters) == 0: logger.warn( "The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function." ) device_map = OrderedDict() current_device = 0 current_memory_used = 0 # Direct submodules and parameters modules_to_treat = ( list(model.named_parameters(recurse=False)) + list(model.named_children()) + list(model.named_buffers(recurse=False)) ) # Initialize maximum largest layer, to know which space to keep in memory max_layer_size, max_layer_names = get_max_layer_size(modules_to_treat, module_sizes, no_split_module_classes) # Ready ? This is going to be a bit messy. while len(modules_to_treat) > 0: name, module = modules_to_treat.pop(0) if verbose: print(f"\nTreating module {name}.") # Max size in the remaining layers may have changed since we took one, so we maybe update it. max_layer_names = [n for n in max_layer_names if n != name and not n.startswith(name + ".")] if len(max_layer_names) == 0: max_layer_size, max_layer_names = get_max_layer_size( [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)], module_sizes, no_split_module_classes, ) # Assess size needed module_size = module_sizes[name] # We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module # and the other is not. # Note: If we are currently processing the name `compute.weight`, an other parameter named e.g. `compute.weight_submodule.parameter` # needs to be considered outside the current module, hence the check with additional dots. tied_param_goups = [ tied_group for tied_group in tied_parameters if any(name + "." in k + "." for k in tied_group) and not all(name + "." in k + "." for k in tied_group) ] if verbose and len(tied_param_goups) > 0: print(f" Found the relevant tied param groups {tied_param_goups}") # Then we keep track of all the parameters that are tied to the current module, but not in the current module tied_params = sum( [[p for p in tied_group if name + "." not in p + "."] for tied_group in tied_param_goups], [] ) if verbose and len(tied_params) > 0: print(f" So those parameters need to be taken into account {tied_params}") device = devices[current_device] current_max_size = max_memory[device] if device != "disk" else None # Reduce max size available by the largest layer. if devices[current_device] in main_devices: current_max_size = current_max_size - max_layer_size # Case 1 -> We're too big! if current_max_size is not None and current_memory_used + module_size > current_max_size: # Split or not split? modules_children = [] if isinstance(module, nn.Parameter) else list(module.named_children()) if verbose: print( f"Not enough space on {devices[current_device]} to put {name} (space available " f"{current_max_size - current_memory_used}, module size {module_size})." ) if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes: # -> no split, we go to the next device if verbose: print("This module cannot be split, going to the next device.") current_device += 1 modules_to_treat = [(name, module)] + modules_to_treat current_memory_used = 0 else: # -> split, we replace the module studied by its children + parameters if verbose: print(f"Splitting {name}.") modules_children = list(module.named_parameters(recurse=False)) + modules_children modules_to_treat = [(f"{name}.{n}", v) for n, v in modules_children] + modules_to_treat # Update the max layer size. max_layer_size, max_layer_names = get_max_layer_size( [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)], module_sizes, no_split_module_classes, ) # Case 2, it fits! We're not entirely out of the wood though, because we may have some tied parameters. elif len(tied_params) > 0: # First locate all tied modules tied_module_names = [] tied_modules = [] for tied_param in tied_params: tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0] tied_module_names.append(modules_to_treat[tied_module_index][0]) tied_modules.append(modules_to_treat[tied_module_index][1]) if verbose: print( f" It looks like {name} is going to fit on {devices[current_device]} but we have tied " f"parameters to account for.\n - Names {tied_params}\n - Module names {tied_module_names}" ) # Let's see if it all fits first module_size_with_ties = module_size for tied_param, tied_module_name in zip(tied_params, tied_module_names): module_size_with_ties += module_sizes[tied_module_name] - module_sizes[tied_param] if current_max_size is None or current_memory_used + module_size_with_ties <= current_max_size: # We really really fit! if verbose: print(f"Putting {name} and {tied_module_names} on {devices[current_device]}.") current_memory_used += module_size_with_ties device_map[name] = devices[current_device] for tied_module_name in tied_module_names: if tied_module_name in [m[0] for m in modules_to_treat]: # The module may have been removed by a previous iteration of this loop. tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][ 0 ] modules_to_treat.pop(tied_module_index) device_map[tied_module_name] = devices[current_device] else: # We don't fit with the tied modules. Next question is: can we split one of the tied modules to make it # smaller or do we need to go on the next device? if verbose: print( f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space " f"available {current_max_size - current_memory_used}, needed size {module_size_with_ties})." ) split_happened = False for tied_module_name, tied_module in zip(tied_module_names, tied_modules): tied_module_children = list(tied_module.named_children()) if len(tied_module_children) == 0 or tied_module.__class__.__name__ in no_split_module_classes: # can't break this one. continue if verbose: print(f"Splitting {tied_module_name}.") tied_module_children = list(tied_module.named_parameters(recurse=False)) + tied_module_children tied_module_children = [(f"{tied_module_name}.{n}", v) for n, v in tied_module_children] tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0] modules_to_treat = ( [(name, module)] + modules_to_treat[:tied_module_index] + tied_module_children + modules_to_treat[tied_module_index + 1 :] ) # Update the max layer size. max_layer_size, max_layer_names = get_max_layer_size( [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)], module_sizes, no_split_module_classes, ) split_happened = True break if not split_happened: # If the tied module is not split, we go to the next device if verbose: print("None of the tied module can be split, going to the next device.") current_device += 1 modules_to_treat = [(name, module)] + modules_to_treat current_memory_used = 0 else: if verbose: if current_max_size is None: print(f"Putting {name} (size={module_size}) on {devices[current_device]}.") else: print( f"Putting {name} (size={module_size}) on {devices[current_device]} " f"(available={current_max_size - current_memory_used})." ) current_memory_used += module_size device_map[name] = devices[current_device] if clean_result: device_map = clean_device_map(device_map) return device_map def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]): """ Checks a device map covers everything in a given model. Args: model (`torch.nn.Module`): The model to check the device map against. device_map (`Dict[str, Union[int, str, torch.device]]`): The device map to check. """ all_model_tensors = [name for name, _ in model.state_dict().items()] for module_name in device_map.keys(): if module_name == "": all_model_tensors.clear() break else: all_model_tensors = [ name for name in all_model_tensors if not name == module_name and not name.startswith(module_name + ".") ] if len(all_model_tensors) > 0: non_covered_params = ", ".join(all_model_tensors) raise ValueError( f"The device_map provided does not give any device for the following parameters: {non_covered_params}" ) def load_state_dict(checkpoint_file, device_map=None): """ Load a checkpoint from a given file. If the checkpoint is in the safetensors format and a device map is passed, the weights can be fast-loaded directly on the GPU. Args: checkpoint_file (`str`): The path to the checkpoint to load. device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. """ if checkpoint_file.endswith(".safetensors"): with safe_open(checkpoint_file, framework="pt") as f: metadata = f.metadata() weight_names = f.keys() if metadata is None: logger.warn( f"The safetensors archive passed at {checkpoint_file} does not contain metadata. " "Make sure to save your model with the `save_pretrained` method. Defaulting to 'pt' metadata." ) metadata = {"format": "pt"} if metadata.get("format") not in ["pt", "tf", "flax"]: raise OSError( f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure " "you save your model with the `save_pretrained` method." ) elif metadata["format"] != "pt": raise ValueError(f"The checkpoint passed was saved with {metadata['format']}, we need a the pt format.") if device_map is None: return safe_load_file(checkpoint_file) else: # if we only have one device we can load everything directly if len(set(device_map.values())) == 1: return safe_load_file(checkpoint_file, device=list(device_map.values())[0]) devices = list(set(device_map.values()) - {"disk"}) # cpu device should always exist as fallback option if "cpu" not in devices: devices.append("cpu") # For each device, get the weights that go there device_weights = {device: [] for device in devices} for module_name, device in device_map.items(): if device in devices: device_weights[device].extend( [k for k in weight_names if k == module_name or k.startswith(module_name + ".")] ) # all weights that haven't defined a device should be loaded on CPU device_weights["cpu"].extend([k for k in weight_names if k not in sum(device_weights.values(), [])]) tensors = {} if is_tqdm_available(): progress_bar = tqdm( main_process_only=False, total=sum([len(device_weights[device]) for device in devices]), unit="w", smoothing=0, leave=False, ) else: progress_bar = None for device in devices: target_device = device if is_xpu_available(): current_safetensors_version = packaging.version.parse(importlib.metadata.version("safetensors")) if compare_versions(current_safetensors_version, "<", "0.4.2"): raise ModuleNotFoundError( f"You need at least safetensors 0.4.2 for Intel GPU, while you have {current_safetensors_version}" ) if isinstance(device, int): target_device = f"xpu:{device}" with safe_open(checkpoint_file, framework="pt", device=target_device) as f: for key in device_weights[device]: if progress_bar is not None: progress_bar.set_postfix(dev=device, refresh=False) progress_bar.set_description(key) tensors[key] = f.get_tensor(key) if progress_bar is not None: progress_bar.update() if progress_bar is not None: progress_bar.close() return tensors else: return torch.load(checkpoint_file, map_location=torch.device("cpu")) def get_state_dict_offloaded_model(model: nn.Module): """ Returns the state dictionary for an offloaded model via iterative onloading Args: model (`torch.nn.Module`): The offloaded model we want to save """ from ..hooks import AlignDevicesHook state_dict = {} placeholders = set() for name, module in model.named_modules(): if name == "": continue if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload: original_device = module._hf_hook.execution_device # assign hook execution device to cpu module._hf_hook.execution_device = "cpu" # onload meta tensors to execution device try: module._hf_hook.pre_forward(module) except MemoryError: raise MemoryError("Offloaded module must fit in CPU memory to call save_model!") from None module_state_dict = module.state_dict() # offload meta tensors from cpu module._hf_hook.post_forward(module, torch.tensor([])) # re-assign hook to original execution device module._hf_hook.execution_device = original_device else: module_state_dict = module.state_dict() for key in module_state_dict: # ignore placeholder parameters that are still on the meta device if module_state_dict[key].device == torch.device("meta"): placeholders.add(name + f".{key}") continue params = module_state_dict[key] state_dict[name + f".{key}"] = params for key in placeholders.copy(): if key in state_dict: placeholders.remove(key) if placeholders: logger.warning(f"The following tensors were not saved because they were still on meta device: {placeholders}") return state_dict def load_checkpoint_in_model( model: nn.Module, checkpoint: Union[str, os.PathLike], device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None, offload_folder: Optional[Union[str, os.PathLike]] = None, dtype: Optional[Union[str, torch.dtype]] = None, offload_state_dict: bool = False, offload_buffers: bool = False, keep_in_fp32_modules: List[str] = None, offload_8bit_bnb: bool = False, ): """ Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are loaded. <Tip warning={true}> Once loaded across devices, you still need to call [`dispatch_model`] on your model to make it able to run. To group the checkpoint loading and dispatch in one single call, use [`load_checkpoint_and_dispatch`]. </Tip> Args: model (`torch.nn.Module`): The model in which we want to load a checkpoint. checkpoint (`str` or `os.PathLike`): The folder checkpoint to load. It can be: - a path to a file containing a whole model state dict - a path to a `.json` file containing the index to a sharded checkpoint - a path to a folder containing a unique `.index.json` file and the shards of a checkpoint. - a path to a folder containing a unique pytorch_model.bin or a model.safetensors file. device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. offload_folder (`str` or `os.PathLike`, *optional*): If the `device_map` contains any value `"disk"`, the folder where we will offload weights. dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. offload_state_dict (`bool`, *optional*, defaults to `False`): If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if the weight of the CPU state dict + the biggest shard does not fit. offload_buffers (`bool`, *optional*, defaults to `False`): Whether or not to include the buffers in the weights offloaded to disk. keep_in_fp32_modules(`List[str]`, *optional*): A list of the modules that we keep in `torch.float32` dtype. offload_8bit_bnb (`bool`, *optional*): Whether or not to enable offload of 8-bit modules on cpu/disk. """ if offload_8bit_bnb: from .bnb import quantize_and_offload_8bit tied_params = find_tied_parameters(model) if check_tied_parameters_in_config(model) and len(tied_params) == 0: logger.warn( "The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function." ) if device_map is not None: check_tied_parameters_on_same_device(tied_params, device_map) if offload_folder is None and device_map is not None and "disk" in device_map.values(): raise ValueError( "At least one of the model submodule will be offloaded to disk, please pass along an `offload_folder`." ) elif offload_folder is not None and device_map is not None and "disk" in device_map.values(): os.makedirs(offload_folder, exist_ok=True) if isinstance(dtype, str): # We accept "torch.float16" or just "float16" dtype = dtype.replace("torch.", "") dtype = getattr(torch, dtype) checkpoint_files = None index_filename = None if os.path.isfile(checkpoint): if str(checkpoint).endswith(".json"): index_filename = checkpoint else: checkpoint_files = [checkpoint] elif os.path.isdir(checkpoint): # check if the whole state dict is present potential_state_bin = [f for f in os.listdir(checkpoint) if f == WEIGHTS_NAME] potential_state_safetensor = [f for f in os.listdir(checkpoint) if f == SAFE_WEIGHTS_NAME] if len(potential_state_bin) == 1: checkpoint_files = [os.path.join(checkpoint, potential_state_bin[0])] elif len(potential_state_safetensor) == 1: checkpoint_files = [os.path.join(checkpoint, potential_state_safetensor[0])] else: # otherwise check for sharded checkpoints potential_index = [f for f in os.listdir(checkpoint) if f.endswith(".index.json")] if len(potential_index) == 0: raise ValueError( f"{checkpoint} is not a folder containing a `.index.json` file or a {WEIGHTS_NAME} or a {SAFE_WEIGHTS_NAME} file" ) elif len(potential_index) == 1: index_filename = os.path.join(checkpoint, potential_index[0]) else: raise ValueError( f"{checkpoint} containing more than one `.index.json` file, delete the irrelevant ones." ) else: raise ValueError( "`checkpoint` should be the path to a file containing a whole state dict, or the index of a sharded " f"checkpoint, or a folder containing a sharded checkpoint or the whole state dict, but got {checkpoint}." ) if index_filename is not None: checkpoint_folder = os.path.split(index_filename)[0] with open(index_filename, "r") as f: index = json.loads(f.read()) if "weight_map" in index: index = index["weight_map"] checkpoint_files = sorted(list(set(index.values()))) checkpoint_files = [os.path.join(checkpoint_folder, f) for f in checkpoint_files] # Logic for missing/unexepected keys goes here. offload_index = {} if offload_state_dict: state_dict_folder = tempfile.mkdtemp() state_dict_index = {} buffer_names = [name for name, _ in model.named_buffers()] for checkpoint_file in checkpoint_files: checkpoint = load_state_dict(checkpoint_file, device_map=device_map) if device_map is None: model.load_state_dict(checkpoint, strict=False) else: for param_name, param in checkpoint.items(): # skip SCB parameter (for 8-bit serialization) if "SCB" in param_name: continue module_name = param_name while len(module_name) > 0 and module_name not in device_map: module_name = ".".join(module_name.split(".")[:-1]) if module_name == "" and "" not in device_map: # TODO: group all errors and raise at the end. raise ValueError(f"{param_name} doesn't have any device set.") param_device = device_map[module_name] new_dtype = dtype if dtype is not None and torch.is_floating_point(param): if keep_in_fp32_modules is not None and dtype == torch.float16: proceed = False for key in keep_in_fp32_modules: if ((key in param_name) and (key + "." in param_name)) or key == param_name: proceed = True break if proceed: new_dtype = torch.float32 if "weight" in param_name and param_name.replace("weight", "SCB") in checkpoint.keys(): if param.dtype == torch.int8: fp16_statistics = checkpoint[param_name.replace("weight", "SCB")] else: fp16_statistics = None if param_device == "disk": if offload_buffers or param_name not in buffer_names: if new_dtype is None: new_dtype = param.dtype if offload_8bit_bnb: quantize_and_offload_8bit( model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics ) continue else: set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype) offload_weight(param, param_name, offload_folder, index=offload_index) elif param_device == "cpu" and offload_state_dict: if new_dtype is None: new_dtype = param.dtype if offload_8bit_bnb: quantize_and_offload_8bit( model, param, param_name, new_dtype, state_dict_folder, state_dict_index, fp16_statistics ) else: set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype) offload_weight(param, param_name, state_dict_folder, index=state_dict_index) else: set_module_tensor_to_device( model, param_name, param_device, value=param, dtype=new_dtype, fp16_statistics=fp16_statistics, ) # Force Python to clean up. del checkpoint gc.collect() save_offload_index(offload_index, offload_folder) # Load back offloaded state dict on CPU if offload_state_dict: load_offloaded_weights(model, state_dict_index, state_dict_folder) shutil.rmtree(state_dict_folder) retie_parameters(model, tied_params) def get_mixed_precision_context_manager(native_amp: bool = False, autocast_kwargs: AutocastKwargs = None): """ Return a context manager for autocasting mixed precision Args: native_amp (`bool`, *optional*, defaults to False): Whether mixed precision is actually enabled. cache_enabled (`bool`, *optional*, defaults to True): Whether the weight cache inside autocast should be enabled. """ state = AcceleratorState() if autocast_kwargs is None: autocast_kwargs = {} else: autocast_kwargs = autocast_kwargs.to_kwargs() if native_amp: if state.mixed_precision == "fp16": return torch.autocast(device_type=state.device.type, dtype=torch.float16, **autocast_kwargs) elif state.mixed_precision == "bf16" and state.distributed_type in [ DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.FSDP, ]: return torch.autocast(device_type=state.device.type, dtype=torch.bfloat16, **autocast_kwargs) else: return torch.autocast(device_type=state.device.type, **autocast_kwargs) else: return contextlib.nullcontext()
accelerate/src/accelerate/utils/modeling.py/0
{ "file_path": "accelerate/src/accelerate/utils/modeling.py", "repo_id": "accelerate", "token_count": 32341 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest from pathlib import Path import torch from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError import accelerate from accelerate.commands.estimate import estimate_command, estimate_command_parser, gather_data from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import ( require_multi_device, require_timm, require_transformers, run_command, ) from accelerate.utils import patch_environment class AccelerateLauncherTester(unittest.TestCase): """ Test case for verifying the `accelerate launch` CLI operates correctly. If a `default_config.yaml` file is located in the cache it will temporarily move it for the duration of the tests. """ mod_file = inspect.getfile(accelerate.test_utils) test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_cli.py"]) notebook_launcher_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_notebook.py"]) base_cmd = ["accelerate", "launch"] config_folder = Path.home() / ".cache/huggingface/accelerate" config_file = "default_config.yaml" config_path = config_folder / config_file changed_path = config_folder / "_default_config.yaml" test_config_path = Path("tests/test_configs") @classmethod def setUpClass(cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def tearDownClass(cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def test_no_config(self): cmd = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy()) def test_config_compatibility(self): for config in sorted(self.test_config_path.glob("**/*.yaml")): if "invalid" not in str(config): with self.subTest(config_file=config): execute_subprocess_async( self.base_cmd + ["--config_file", str(config), self.test_file_path], env=os.environ.copy() ) def test_invalid_keys(self): with self.assertRaises( RuntimeError, msg="The config file at 'invalid_keys.yaml' had unknown keys ('another_invalid_key', 'invalid_key')", ): execute_subprocess_async( self.base_cmd + ["--config_file", str(self.test_config_path / "invalid_keys.yaml"), self.test_file_path], env=os.environ.copy(), ) def test_accelerate_test(self): execute_subprocess_async(["accelerate", "test"], env=os.environ.copy()) @require_multi_device def test_notebook_launcher(self): """ This test checks a variety of situations and scenarios with the `notebook_launcher` """ cmd = ["python", self.notebook_launcher_path] with patch_environment(omp_num_threads=1, accelerate_num_processes=2): run_command(cmd, env=os.environ.copy()) class TpuConfigTester(unittest.TestCase): """ Test case for verifying the `accelerate tpu-config` CLI passes the right `gcloud` command. """ tpu_name = "test-tpu" tpu_zone = "us-central1-a" command = "ls" cmd = ["accelerate", "tpu-config"] base_output = "cd /usr/share" command_file = "tests/test_samples/test_command_file.sh" gcloud = "Running gcloud compute tpus tpu-vm ssh" def test_base(self): output = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"], return_stdout=True, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", output, ) def test_base_backward_compatibility(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=True, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", output, ) def test_with_config_file(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"], return_stdout=True ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all', output, ) def test_with_config_file_and_command(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"], return_stdout=True, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", output, ) def test_with_config_file_and_multiple_command(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", 'echo "Hello World"', "--debug", ], return_stdout=True, ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all', output, ) def test_with_config_file_and_command_file(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"], return_stdout=True, ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all', output, ) def test_with_config_file_and_command_file_backward_compatibility(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=True, ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all', output, ) def test_accelerate_install(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"], return_stdout=True, ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all', output, ) def test_accelerate_install_version(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ], return_stdout=True, ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all', output, ) class ModelEstimatorTester(unittest.TestCase): """ Test case for checking the output of `accelerate estimate-memory` is correct. - Uses `estimate_command` when trying to catch raised errors - Uses `gather_data` when just verifying the calculations are correct """ parser = estimate_command_parser() def test_invalid_model_name(self): with self.assertRaises( RepositoryNotFoundError, msg="Repo for model `somebrokenname` does not exist on the Hub" ): args = self.parser.parse_args(["somebrokenname"]) estimate_command(args) @require_timm def test_invalid_model_name_timm(self): with self.assertRaises(RuntimeError, msg="Tried to load `muellerzr/dummy` with `timm` but"): args = self.parser.parse_args(["muellerzr/dummy", "--library_name", "timm"]) estimate_command(args) @require_transformers def test_invalid_model_name_transformers(self): with self.assertRaises(RuntimeError, msg="Tried to load `muellerzr/dummy` with `transformers` but"): args = self.parser.parse_args(["muellerzr/dummy", "--library_name", "transformers"]) estimate_command(args) def test_no_metadata(self): with self.assertRaises( ValueError, msg="Model `muellerzr/dummy` does not have any library metadata on the Hub" ): args = self.parser.parse_args(["muellerzr/dummy"]) estimate_command(args) def test_gated(self): with self.assertRaises(GatedRepoError, msg="Repo for model `meta-llama/Llama-2-7b-hf` is gated"): args = self.parser.parse_args(["meta-llama/Llama-2-7b-hf"]) with patch_environment(hf_hub_disable_implicit_token="1"): estimate_command(args) @require_transformers def test_remote_code(self): # Also tests that custom `Auto` classes work args = self.parser.parse_args(["hf-internal-testing/test_dynamic_model"]) with self.assertRaises(ValueError, msg="--trust_remote_code"): gather_data(args) # Verify it works with the flag args = self.parser.parse_args(["hf-internal-testing/test_dynamic_model", "--trust_remote_code"]) gather_data(args) @require_transformers def test_explicit_dtypes(self): args = self.parser.parse_args(["bert-base-cased", "--dtypes", "float32", "float16"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 89075712, 433249280 # Check that full precision -> int4 is calculating correctly self.assertEqual(len(output), 2, f"Output was missing a precision, expected 2 but received {len(output)}") for i, factor in enumerate([1, 2]): precision = 32 // factor precision_str = f"float{precision}" largest_layer_estimate = largest_layer / factor total_size_estimate = total_size / factor total_training_size_estimate = total_size_estimate * 4 self.assertEqual(precision_str, output[i][0], f"Output is missing precision `{precision_str}`") self.assertEqual( largest_layer_estimate, output[i][1], f"Calculation for largest layer size in `{precision_str}` is incorrect.", ) self.assertEqual( total_size_estimate, output[i][2], msg=f"Calculation for total size in `{precision_str}` is incorrect.", ) self.assertEqual( total_training_size_estimate, output[i][3], msg=f"Calculation for total training size in `{precision_str}` is incorrect.", ) @require_transformers def test_transformers_model(self): args = self.parser.parse_args(["bert-base-cased", "--dtypes", "float32"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 89075712, 433249280 self.assertEqual( largest_layer, output[0][1], f"Calculation for largest layer size in `fp32` is incorrect, expected {largest_layer} but received {output[0][1]}", ) self.assertEqual( total_size, output[0][2], f"Calculation for total size in `fp32` is incorrect, expected {total_size} but received {output[0][2]}", ) @require_transformers def test_no_split_modules(self): # idefics-80b-instruct has ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] args = self.parser.parse_args(["HuggingFaceM4/idefics-80b-instruct", "--dtypes", "float32"]) output = gather_data(args) # without factoring in `no_split` modules, the largest layer is 721420288 bytes self.assertNotEqual( output[0][1], 721420288, "Largest layer calculation incorrect, did not factor in `no_split` modules." ) # the real answer is 3240165632 bytes self.assertEqual(output[0][1], 3240165632) @require_timm def test_timm_model(self): args = self.parser.parse_args(["timm/resnet50.a1_in1k", "--library_name", "timm"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 9437184, 102441032 self.assertEqual( largest_layer, output[0][1], f"Calculation for largest layer size in `fp32` is incorrect, expected {largest_layer} but received {output[0][1]}", ) self.assertEqual( total_size, output[0][2], f"Calculation for total size in `fp32` is incorrect, expected {total_size} but received {output[0][2]}", )
accelerate/tests/test_cli.py/0
{ "file_path": "accelerate/tests/test_cli.py", "repo_id": "accelerate", "token_count": 6731 }
9
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class OffloadTester(unittest.TestCase): def test_offload_state_dict(self): model = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, model.state_dict()) index_file = os.path.join(tmp_dir, "index.json") self.assertTrue(os.path.isfile(index_file)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: weight_file = os.path.join(tmp_dir, f"{key}.dat") self.assertTrue(os.path.isfile(weight_file)) # TODO: add tests on the fact weights are properly loaded def test_offload_weight(self): dtypes = [torch.float16, torch.float32, torch.bfloat16] for dtype in dtypes: weight = torch.randn(2, 3, dtype=dtype) with TemporaryDirectory() as tmp_dir: index = offload_weight(weight, "weight", tmp_dir, {}) weight_file = os.path.join(tmp_dir, "weight.dat") self.assertTrue(os.path.isfile(weight_file)) self.assertDictEqual(index, {"weight": {"shape": [2, 3], "dtype": str(dtype).split(".")[1]}}) new_weight = load_offloaded_weight(weight_file, index["weight"]) self.assertTrue(torch.equal(weight, new_weight)) def test_offload_weights_loader(self): model = ModelForTest() state_dict = model.state_dict() cpu_part = {k: v for k, v in state_dict.items() if "linear2" not in k} disk_part = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, disk_part) weight_map = OffloadedWeightsLoader(state_dict=cpu_part, save_folder=tmp_dir) # Every key is there with the right value self.assertEqual(sorted(weight_map), sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(param, weight_map[key])) cpu_part = {k: v for k, v in state_dict.items() if "weight" in k} disk_part = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, disk_part) weight_map = OffloadedWeightsLoader(state_dict=cpu_part, save_folder=tmp_dir) # Every key is there with the right value self.assertEqual(sorted(weight_map), sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(param, weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, state_dict) # Duplicates are removed weight_map = OffloadedWeightsLoader(state_dict=cpu_part, save_folder=tmp_dir) # Every key is there with the right value self.assertEqual(sorted(weight_map), sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(param, weight_map[key])) def test_extract_submodules_state_dict(self): state_dict = {"a.1": 0, "a.10": 1, "a.2": 2} extracted = extract_submodules_state_dict(state_dict, ["a.1", "a.2"]) self.assertDictEqual(extracted, {"a.1": 0, "a.2": 2}) state_dict = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} extracted = extract_submodules_state_dict(state_dict, ["a.1", "a.2"]) self.assertDictEqual(extracted, {"a.1.a": 0, "a.2.a": 2})
accelerate/tests/test_offload.py/0
{ "file_path": "accelerate/tests/test_offload.py", "repo_id": "accelerate", "token_count": 2058 }
10
<p align="center"> <img src="https://raw.githubusercontent.com/huggingface/alignment-handbook/main/assets/handbook.png"> </p> <p align="center"> 🤗 <a href="https://huggingface.co/collections/alignment-handbook/handbook-v01-models-and-datasets-654e424d22e6880da5ebc015" target="_blank">Models & Datasets</a> | 📃 <a href="https://arxiv.org/abs/2310.16944" target="_blank">Technical Report</a> </p> # The Alignment Handbook Robust recipes to align language models with human and AI preferences. ## What is this? Just one year ago, chatbots were out of fashion and most people hadn't heard about techniques like Reinforcement Learning from Human Feedback (RLHF) to align language models with human preferences. Then, OpenAI broke the internet with ChatGPT and Meta followed suit by releasing the Llama series of language models which enabled the ML community to build their very own capable chatbots. This has led to a rich ecosystem of datasets and models that have mostly focused on teaching language models to follow instructions through supervised fine-tuning (SFT). However, we know from the [InstructGPT](https://huggingface.co/papers/2203.02155) and [Llama2](https://huggingface.co/papers/2307.09288) papers that significant gains in helpfulness and safety can be had by augmenting SFT with human (or AI) preferences. At the same time, aligning language models to a set of preferences is a fairly novel idea and there are few public resources available on how to train these models, what data to collect, and what metrics to measure for best downstream performance. The Alignment Handbook aims to fill that gap by providing the community with a series of robust training recipes that span the whole pipeline. ## News 🗞️ * **February 1, 2024:** We release a recipe to align open LLMs with Constitutional AI 📜! See the [recipe](https://github.com/huggingface/alignment-handbook/tree/main/recipes/constitutional-ai) and the [blog post](https://huggingface.co/blog/constitutional_ai) for details. * **January 18, 2024:** We release a suite of evaluations of DPO vs KTO vs IPO, see the [recipe](recipes/pref_align_scan/README.md) and the [blog post](https://huggingface.co/blog/pref-tuning) for details. * **November 10, 2023:** We release all the training code to replicate Zephyr-7b-β 🪁! We also release [No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots), a brand new dataset of 10,000 instructions and demonstrations written entirely by skilled human annotators. ## Links 🔗 * [Zephyr 7B models, datasets, and demos](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66) ## How to navigate this project 🧭 This project is simple by design and mostly consists of: * [`scripts`](./scripts/) to train and evaluate chat models. Each script supports distributed training of the full model weights with DeepSpeed ZeRO-3, or LoRA/QLoRA for parameter-efficient fine-tuning. * [`recipes`](./recipes/) to reproduce models like Zephyr 7B. Each recipe takes the form of a YAML file which contains all the parameters associated with a single training run. We are also working on a series of guides to explain how methods like direct preference optimization (DPO) work, along with lessons learned from gathering human preferences in practice. To get started, we recommend the following: 1. Follow the [installation instructions](#installation-instructions) to set up your environment etc. 2. Replicate Zephyr-7b-β by following the [recipe instructions](./recipes/zephyr-7b-beta/README.md). If you would like to train chat models on your own datasets, we recommend following the dataset formatting instructions [here](./scripts/README.md#fine-tuning-on-your-datasets). ## Contents The initial release of the handbook will focus on the following techniques: * **Supervised fine-tuning:** teach language models to follow instructions and tips on how to collect and curate your own training dataset. * **Reward modeling:** teach language models to distinguish model responses according to human or AI preferences. * **Rejection sampling:** a simple, but powerful technique to boost the performance of your SFT model. * **Direct preference optimisation (DPO):** a powerful and promising alternative to PPO. ## Installation instructions To run the code in this project, first, create a Python virtual environment using e.g. Conda: ```shell conda create -n handbook python=3.10 && conda activate handbook ``` Next, install PyTorch `v2.1.2` - the precise version is important for reproducibility! Since this is hardware-dependent, we direct you to the [PyTorch Installation Page](https://pytorch.org/get-started/locally/). You can then install the remaining package dependencies as follows: ```shell git clone https://github.com/huggingface/alignment-handbook.git cd ./alignment-handbook/ python -m pip install . ``` You will also need Flash Attention 2 installed, which can be done by running: ```shell python -m pip install flash-attn==2.3.6 --no-build-isolation ``` > **Note** > If your machine has less than 96GB of RAM and many CPU cores, reduce the `MAX_JOBS` arguments, e.g. `MAX_JOBS=4 pip install flash-attn==2.3.6 --no-build-isolation` Next, log into your Hugging Face account as follows: ```shell huggingface-cli login ``` Finally, install Git LFS so that you can push models to the Hugging Face Hub: ```shell sudo apt-get install git-lfs ``` You can now check out the `scripts` and `recipes` directories for instructions on how to train some models 🪁! ## Project structure ``` ├── LICENSE ├── Makefile <- Makefile with commands like `make style` ├── README.md <- The top-level README for developers using this project ├── chapters <- Educational content to render on hf.co/learn ├── recipes <- Recipe configs, accelerate configs, slurm scripts ├── scripts <- Scripts to train and evaluate chat models ├── setup.cfg <- Installation config (mostly used for configuring code quality & tests) ├── setup.py <- Makes project pip installable (pip install -e .) so `alignment` can be imported ├── src <- Source code for use in this project └── tests <- Unit tests ``` ## Citation If you find the content of this repo useful in your work, please cite it as follows: ```bibtex @misc{alignment_handbook2023, author = {Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Shengyi Huang and Kashif Rasul and Alexander M. Rush and Thomas Wolf}, title = {The Alignment Handbook}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/alignment-handbook}} } ```
alignment-handbook/README.md/0
{ "file_path": "alignment-handbook/README.md", "repo_id": "alignment-handbook", "token_count": 2053 }
11
# Model arguments model_name_or_path: alignment-handbook/zephyr-7b-sft-full torch_dtype: null # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.01 do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: zephyr-7b-dpo-full learning_rate: 5.0e-7 log_level: info logging_steps: 10 lr_scheduler_type: cosine max_length: 1024 max_prompt_length: 512 num_train_epochs: 1 optim: adamw_torch output_dir: data/zephyr-7b-dpo-full per_device_train_batch_size: 8 per_device_eval_batch_size: 8 push_to_hub: true save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/zephyr-7b-beta/dpo/config_full.yaml/0
{ "file_path": "alignment-handbook/recipes/zephyr-7b-beta/dpo/config_full.yaml", "repo_id": "alignment-handbook", "token_count": 365 }
12
# Model arguments model_name_or_path: mistralai/Mistral-7B-v0.1 model_revision: main torch_dtype: bfloat16 use_flash_attention_2: true # Data training arguments dataset_mixer: HuggingFaceH4/ultrachat_200k: 1.0 dataset_splits: - train_sft - test_sft preprocessing_num_workers: 12 # SFT trainer config bf16: true do_eval: true evaluation_strategy: epoch gradient_accumulation_steps: 2 gradient_checkpointing: true hub_model_id: zephyr-7b-sft-full hub_strategy: every_save learning_rate: 2.0e-05 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 2048 max_steps: -1 num_train_epochs: 1 output_dir: data/zephyr-7b-sft-full overwrite_output_dir: true per_device_eval_batch_size: 16 per_device_train_batch_size: 32 push_to_hub: true remove_unused_columns: true report_to: - tensorboard save_strategy: "no" save_total_limit: null seed: 42
alignment-handbook/tests/fixtures/config_sft_full.yaml/0
{ "file_path": "alignment-handbook/tests/fixtures/config_sft_full.yaml", "repo_id": "alignment-handbook", "token_count": 357 }
13
[package] name = "candle-book" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true readme = "README.md" [dependencies] accelerate-src = { workspace = true, optional = true } candle = { workspace = true } candle-datasets = { workspace = true } candle-nn = { workspace = true } candle-transformers = { workspace = true } candle-flash-attn = { workspace = true, optional = true } safetensors = { workspace = true } serde = { workspace = true } serde_json = { workspace = true } num-traits = { workspace = true } intel-mkl-src = { workspace = true, optional = true } cudarc = { workspace = true, optional = true } half = { workspace = true, optional = true } image = { workspace = true, optional = true } anyhow = { workspace = true } tokio = "1.29.1" [dev-dependencies] byteorder = { workspace = true } hf-hub = { workspace = true, features=["tokio"]} clap = { workspace = true } memmap2 = { workspace = true } rand = { workspace = true } tokenizers = { workspace = true, features = ["onig"] } tracing = { workspace = true } tracing-chrome = { workspace = true } tracing-subscriber = { workspace = true } wav = { workspace = true } # Necessary to disambiguate with tokio in wasm examples which are 1.28.1 parquet = { workspace = true } image = { workspace = true } [build-dependencies] anyhow = { workspace = true } [features] default = []
candle/candle-book/Cargo.toml/0
{ "file_path": "candle/candle-book/Cargo.toml", "repo_id": "candle", "token_count": 467 }
14
# Installation **With Cuda support**: 1. First, make sure that Cuda is correctly installed. - `nvcc --version` should print information about your Cuda compiler driver. - `nvidia-smi --query-gpu=compute_cap --format=csv` should print your GPUs compute capability, e.g. something like: ```bash compute_cap 8.9 ``` You can also compile the Cuda kernels for a specific compute cap using the `CUDA_COMPUTE_CAP=<compute cap>` environment variable. If any of the above commands errors out, please make sure to update your Cuda version. 2. Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) with Cuda support. Start by creating a new cargo: ```bash cargo new myapp cd myapp ``` Make sure to add the `candle-core` crate with the cuda feature: ```bash cargo add --git https://github.com/huggingface/candle.git candle-core --features "cuda" ``` Run `cargo build` to make sure everything can be correctly built. ```bash cargo build ``` **Without Cuda support**: Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as follows: ```bash cargo new myapp cd myapp cargo add --git https://github.com/huggingface/candle.git candle-core ``` Finally, run `cargo build` to make sure everything can be correctly built. ```bash cargo build ``` **With mkl support** You can also see the `mkl` feature which could be interesting to get faster inference on CPU. [Using mkl](./advanced/mkl.md)
candle/candle-book/src/guide/installation.md/0
{ "file_path": "candle/candle-book/src/guide/installation.md", "repo_id": "candle", "token_count": 487 }
15
mod benchmarks; use criterion::criterion_main; criterion_main!( benchmarks::affine::benches, benchmarks::matmul::benches, benchmarks::random::benches, benchmarks::where_cond::benches );
candle/candle-core/benches/bench_main.rs/0
{ "file_path": "candle/candle-core/benches/bench_main.rs", "repo_id": "candle", "token_count": 71 }
16
#![allow(clippy::excessive_precision)] // Code taken from https://github.com/statrs-dev/statrs //! Provides the [error](https://en.wikipedia.org/wiki/Error_function) and //! related functions mod evaluate { //! Provides functions that don't have a numerical solution and must //! be solved computationally (e.g. evaluation of a polynomial) /// evaluates a polynomial at `z` where `coeff` are the coeffecients /// to a polynomial of order `k` where `k` is the length of `coeff` and the /// coeffecient /// to the `k`th power is the `k`th element in coeff. E.g. [3,-1,2] equates to /// `2z^2 - z + 3` /// /// # Remarks /// /// Returns 0 for a 0 length coefficient slice pub fn polynomial(z: f64, coeff: &[f64]) -> f64 { let n = coeff.len(); if n == 0 { return 0.0; } let mut sum = *coeff.last().unwrap(); for c in coeff[0..n - 1].iter().rev() { sum = *c + z * sum; } sum } } use std::f64; /// `erf` calculates the error function at `x`. pub fn erf(x: f64) -> f64 { if x.is_nan() { f64::NAN } else if x >= 0.0 && x.is_infinite() { 1.0 } else if x <= 0.0 && x.is_infinite() { -1.0 } else if x == 0. { 0.0 } else { erf_impl(x, false) } } /// `erf_inv` calculates the inverse error function /// at `x`. pub fn erf_inv(x: f64) -> f64 { if x == 0.0 { 0.0 } else if x >= 1.0 { f64::INFINITY } else if x <= -1.0 { f64::NEG_INFINITY } else if x < 0.0 { erf_inv_impl(-x, 1.0 + x, -1.0) } else { erf_inv_impl(x, 1.0 - x, 1.0) } } /// `erfc` calculates the complementary error function /// at `x`. pub fn erfc(x: f64) -> f64 { if x.is_nan() { f64::NAN } else if x == f64::INFINITY { 0.0 } else if x == f64::NEG_INFINITY { 2.0 } else { erf_impl(x, true) } } /// `erfc_inv` calculates the complementary inverse /// error function at `x`. pub fn erfc_inv(x: f64) -> f64 { if x <= 0.0 { f64::INFINITY } else if x >= 2.0 { f64::NEG_INFINITY } else if x > 1.0 { erf_inv_impl(-1.0 + x, 2.0 - x, -1.0) } else { erf_inv_impl(1.0 - x, x, 1.0) } } // ********************************************************** // ********** Coefficients for erf_impl polynomial ********** // ********************************************************** /// Polynomial coefficients for a numerator of `erf_impl` /// in the interval [1e-10, 0.5]. const ERF_IMPL_AN: &[f64] = &[ 0.00337916709551257388990745, -0.00073695653048167948530905, -0.374732337392919607868241, 0.0817442448733587196071743, -0.0421089319936548595203468, 0.0070165709512095756344528, -0.00495091255982435110337458, 0.000871646599037922480317225, ]; /// Polynomial coefficients for a denominator of `erf_impl` /// in the interval [1e-10, 0.5] const ERF_IMPL_AD: &[f64] = &[ 1.0, -0.218088218087924645390535, 0.412542972725442099083918, -0.0841891147873106755410271, 0.0655338856400241519690695, -0.0120019604454941768171266, 0.00408165558926174048329689, -0.000615900721557769691924509, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [0.5, 0.75]. const ERF_IMPL_BN: &[f64] = &[ -0.0361790390718262471360258, 0.292251883444882683221149, 0.281447041797604512774415, 0.125610208862766947294894, 0.0274135028268930549240776, 0.00250839672168065762786937, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [0.5, 0.75]. const ERF_IMPL_BD: &[f64] = &[ 1.0, 1.8545005897903486499845, 1.43575803037831418074962, 0.582827658753036572454135, 0.124810476932949746447682, 0.0113724176546353285778481, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [0.75, 1.25]. const ERF_IMPL_CN: &[f64] = &[ -0.0397876892611136856954425, 0.153165212467878293257683, 0.191260295600936245503129, 0.10276327061989304213645, 0.029637090615738836726027, 0.0046093486780275489468812, 0.000307607820348680180548455, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [0.75, 1.25]. const ERF_IMPL_CD: &[f64] = &[ 1.0, 1.95520072987627704987886, 1.64762317199384860109595, 0.768238607022126250082483, 0.209793185936509782784315, 0.0319569316899913392596356, 0.00213363160895785378615014, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [1.25, 2.25]. const ERF_IMPL_DN: &[f64] = &[ -0.0300838560557949717328341, 0.0538578829844454508530552, 0.0726211541651914182692959, 0.0367628469888049348429018, 0.00964629015572527529605267, 0.00133453480075291076745275, 0.778087599782504251917881e-4, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [1.25, 2.25]. const ERF_IMPL_DD: &[f64] = &[ 1.0, 1.75967098147167528287343, 1.32883571437961120556307, 0.552528596508757581287907, 0.133793056941332861912279, 0.0179509645176280768640766, 0.00104712440019937356634038, -0.106640381820357337177643e-7, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [2.25, 3.5]. const ERF_IMPL_EN: &[f64] = &[ -0.0117907570137227847827732, 0.014262132090538809896674, 0.0202234435902960820020765, 0.00930668299990432009042239, 0.00213357802422065994322516, 0.00025022987386460102395382, 0.120534912219588189822126e-4, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [2.25, 3.5]. const ERF_IMPL_ED: &[f64] = &[ 1.0, 1.50376225203620482047419, 0.965397786204462896346934, 0.339265230476796681555511, 0.0689740649541569716897427, 0.00771060262491768307365526, 0.000371421101531069302990367, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [3.5, 5.25]. const ERF_IMPL_FN: &[f64] = &[ -0.00546954795538729307482955, 0.00404190278731707110245394, 0.0054963369553161170521356, 0.00212616472603945399437862, 0.000394984014495083900689956, 0.365565477064442377259271e-4, 0.135485897109932323253786e-5, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [3.5, 5.25]. const ERF_IMPL_FD: &[f64] = &[ 1.0, 1.21019697773630784832251, 0.620914668221143886601045, 0.173038430661142762569515, 0.0276550813773432047594539, 0.00240625974424309709745382, 0.891811817251336577241006e-4, -0.465528836283382684461025e-11, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [5.25, 8]. const ERF_IMPL_GN: &[f64] = &[ -0.00270722535905778347999196, 0.0013187563425029400461378, 0.00119925933261002333923989, 0.00027849619811344664248235, 0.267822988218331849989363e-4, 0.923043672315028197865066e-6, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [5.25, 8]. const ERF_IMPL_GD: &[f64] = &[ 1.0, 0.814632808543141591118279, 0.268901665856299542168425, 0.0449877216103041118694989, 0.00381759663320248459168994, 0.000131571897888596914350697, 0.404815359675764138445257e-11, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [8, 11.5]. const ERF_IMPL_HN: &[f64] = &[ -0.00109946720691742196814323, 0.000406425442750422675169153, 0.000274499489416900707787024, 0.465293770646659383436343e-4, 0.320955425395767463401993e-5, 0.778286018145020892261936e-7, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [8, 11.5]. const ERF_IMPL_HD: &[f64] = &[ 1.0, 0.588173710611846046373373, 0.139363331289409746077541, 0.0166329340417083678763028, 0.00100023921310234908642639, 0.24254837521587225125068e-4, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [11.5, 17]. const ERF_IMPL_IN: &[f64] = &[ -0.00056907993601094962855594, 0.000169498540373762264416984, 0.518472354581100890120501e-4, 0.382819312231928859704678e-5, 0.824989931281894431781794e-7, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [11.5, 17]. const ERF_IMPL_ID: &[f64] = &[ 1.0, 0.339637250051139347430323, 0.043472647870310663055044, 0.00248549335224637114641629, 0.535633305337152900549536e-4, -0.117490944405459578783846e-12, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [17, 24]. const ERF_IMPL_JN: &[f64] = &[ -0.000241313599483991337479091, 0.574224975202501512365975e-4, 0.115998962927383778460557e-4, 0.581762134402593739370875e-6, 0.853971555085673614607418e-8, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [17, 24]. const ERF_IMPL_JD: &[f64] = &[ 1.0, 0.233044138299687841018015, 0.0204186940546440312625597, 0.000797185647564398289151125, 0.117019281670172327758019e-4, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [24, 38]. const ERF_IMPL_KN: &[f64] = &[ -0.000146674699277760365803642, 0.162666552112280519955647e-4, 0.269116248509165239294897e-5, 0.979584479468091935086972e-7, 0.101994647625723465722285e-8, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [24, 38]. const ERF_IMPL_KD: &[f64] = &[ 1.0, 0.165907812944847226546036, 0.0103361716191505884359634, 0.000286593026373868366935721, 0.298401570840900340874568e-5, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [38, 60]. const ERF_IMPL_LN: &[f64] = &[ -0.583905797629771786720406e-4, 0.412510325105496173512992e-5, 0.431790922420250949096906e-6, 0.993365155590013193345569e-8, 0.653480510020104699270084e-10, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [38, 60]. const ERF_IMPL_LD: &[f64] = &[ 1.0, 0.105077086072039915406159, 0.00414278428675475620830226, 0.726338754644523769144108e-4, 0.477818471047398785369849e-6, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [60, 85]. const ERF_IMPL_MN: &[f64] = &[ -0.196457797609229579459841e-4, 0.157243887666800692441195e-5, 0.543902511192700878690335e-7, 0.317472492369117710852685e-9, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [60, 85]. const ERF_IMPL_MD: &[f64] = &[ 1.0, 0.052803989240957632204885, 0.000926876069151753290378112, 0.541011723226630257077328e-5, 0.535093845803642394908747e-15, ]; /// Polynomial coefficients for a numerator in `erf_impl` /// in the interval [85, 110]. const ERF_IMPL_NN: &[f64] = &[ -0.789224703978722689089794e-5, 0.622088451660986955124162e-6, 0.145728445676882396797184e-7, 0.603715505542715364529243e-10, ]; /// Polynomial coefficients for a denominator in `erf_impl` /// in the interval [85, 110]. const ERF_IMPL_ND: &[f64] = &[ 1.0, 0.0375328846356293715248719, 0.000467919535974625308126054, 0.193847039275845656900547e-5, ]; // ********************************************************** // ********** Coefficients for erf_inv_impl polynomial ****** // ********************************************************** /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0, 0.5]. const ERF_INV_IMPL_AN: &[f64] = &[ -0.000508781949658280665617, -0.00836874819741736770379, 0.0334806625409744615033, -0.0126926147662974029034, -0.0365637971411762664006, 0.0219878681111168899165, 0.00822687874676915743155, -0.00538772965071242932965, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0, 0.5]. const ERF_INV_IMPL_AD: &[f64] = &[ 1.0, -0.970005043303290640362, -1.56574558234175846809, 1.56221558398423026363, 0.662328840472002992063, -0.71228902341542847553, -0.0527396382340099713954, 0.0795283687341571680018, -0.00233393759374190016776, 0.000886216390456424707504, ]; /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0.5, 0.75]. const ERF_INV_IMPL_BN: &[f64] = &[ -0.202433508355938759655, 0.105264680699391713268, 8.37050328343119927838, 17.6447298408374015486, -18.8510648058714251895, -44.6382324441786960818, 17.445385985570866523, 21.1294655448340526258, -3.67192254707729348546, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0.5, 0.75]. const ERF_INV_IMPL_BD: &[f64] = &[ 1.0, 6.24264124854247537712, 3.9713437953343869095, -28.6608180499800029974, -20.1432634680485188801, 48.5609213108739935468, 10.8268667355460159008, -22.6436933413139721736, 1.72114765761200282724, ]; /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0.75, 1] with x less than 3. const ERF_INV_IMPL_CN: &[f64] = &[ -0.131102781679951906451, -0.163794047193317060787, 0.117030156341995252019, 0.387079738972604337464, 0.337785538912035898924, 0.142869534408157156766, 0.0290157910005329060432, 0.00214558995388805277169, -0.679465575181126350155e-6, 0.285225331782217055858e-7, -0.681149956853776992068e-9, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0.75, 1] with x less than 3. const ERF_INV_IMPL_CD: &[f64] = &[ 1.0, 3.46625407242567245975, 5.38168345707006855425, 4.77846592945843778382, 2.59301921623620271374, 0.848854343457902036425, 0.152264338295331783612, 0.01105924229346489121, ]; /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0.75, 1] with x between 3 and 6. const ERF_INV_IMPL_DN: &[f64] = &[ -0.0350353787183177984712, -0.00222426529213447927281, 0.0185573306514231072324, 0.00950804701325919603619, 0.00187123492819559223345, 0.000157544617424960554631, 0.460469890584317994083e-5, -0.230404776911882601748e-9, 0.266339227425782031962e-11, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0.75, 1] with x between 3 and 6. const ERF_INV_IMPL_DD: &[f64] = &[ 1.0, 1.3653349817554063097, 0.762059164553623404043, 0.220091105764131249824, 0.0341589143670947727934, 0.00263861676657015992959, 0.764675292302794483503e-4, ]; /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0.75, 1] with x between 6 and 18. const ERF_INV_IMPL_EN: &[f64] = &[ -0.0167431005076633737133, -0.00112951438745580278863, 0.00105628862152492910091, 0.000209386317487588078668, 0.149624783758342370182e-4, 0.449696789927706453732e-6, 0.462596163522878599135e-8, -0.281128735628831791805e-13, 0.99055709973310326855e-16, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0.75, 1] with x between 6 and 18. const ERF_INV_IMPL_ED: &[f64] = &[ 1.0, 0.591429344886417493481, 0.138151865749083321638, 0.0160746087093676504695, 0.000964011807005165528527, 0.275335474764726041141e-4, 0.282243172016108031869e-6, ]; /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0.75, 1] with x between 18 and 44. const ERF_INV_IMPL_FN: &[f64] = &[ -0.0024978212791898131227, -0.779190719229053954292e-5, 0.254723037413027451751e-4, 0.162397777342510920873e-5, 0.396341011304801168516e-7, 0.411632831190944208473e-9, 0.145596286718675035587e-11, -0.116765012397184275695e-17, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0.75, 1] with x between 18 and 44. const ERF_INV_IMPL_FD: &[f64] = &[ 1.0, 0.207123112214422517181, 0.0169410838120975906478, 0.000690538265622684595676, 0.145007359818232637924e-4, 0.144437756628144157666e-6, 0.509761276599778486139e-9, ]; /// Polynomial coefficients for a numerator of `erf_inv_impl` /// in the interval [0.75, 1] with x greater than 44. const ERF_INV_IMPL_GN: &[f64] = &[ -0.000539042911019078575891, -0.28398759004727721098e-6, 0.899465114892291446442e-6, 0.229345859265920864296e-7, 0.225561444863500149219e-9, 0.947846627503022684216e-12, 0.135880130108924861008e-14, -0.348890393399948882918e-21, ]; /// Polynomial coefficients for a denominator of `erf_inv_impl` /// in the interval [0.75, 1] with x greater than 44. const ERF_INV_IMPL_GD: &[f64] = &[ 1.0, 0.0845746234001899436914, 0.00282092984726264681981, 0.468292921940894236786e-4, 0.399968812193862100054e-6, 0.161809290887904476097e-8, 0.231558608310259605225e-11, ]; /// `erf_impl` computes the error function at `z`. /// If `inv` is true, `1 - erf` is calculated as opposed to `erf` fn erf_impl(z: f64, inv: bool) -> f64 { if z < 0.0 { if !inv { return -erf_impl(-z, false); } if z < -0.5 { return 2.0 - erf_impl(-z, true); } return 1.0 + erf_impl(-z, false); } let result = if z < 0.5 { if z < 1e-10 { z * 1.125 + z * 0.003379167095512573896158903121545171688 } else { z * 1.125 + z * evaluate::polynomial(z, ERF_IMPL_AN) / evaluate::polynomial(z, ERF_IMPL_AD) } } else if z < 110.0 { let (r, b) = if z < 0.75 { ( evaluate::polynomial(z - 0.5, ERF_IMPL_BN) / evaluate::polynomial(z - 0.5, ERF_IMPL_BD), 0.3440242112, ) } else if z < 1.25 { ( evaluate::polynomial(z - 0.75, ERF_IMPL_CN) / evaluate::polynomial(z - 0.75, ERF_IMPL_CD), 0.419990927, ) } else if z < 2.25 { ( evaluate::polynomial(z - 1.25, ERF_IMPL_DN) / evaluate::polynomial(z - 1.25, ERF_IMPL_DD), 0.4898625016, ) } else if z < 3.5 { ( evaluate::polynomial(z - 2.25, ERF_IMPL_EN) / evaluate::polynomial(z - 2.25, ERF_IMPL_ED), 0.5317370892, ) } else if z < 5.25 { ( evaluate::polynomial(z - 3.5, ERF_IMPL_FN) / evaluate::polynomial(z - 3.5, ERF_IMPL_FD), 0.5489973426, ) } else if z < 8.0 { ( evaluate::polynomial(z - 5.25, ERF_IMPL_GN) / evaluate::polynomial(z - 5.25, ERF_IMPL_GD), 0.5571740866, ) } else if z < 11.5 { ( evaluate::polynomial(z - 8.0, ERF_IMPL_HN) / evaluate::polynomial(z - 8.0, ERF_IMPL_HD), 0.5609807968, ) } else if z < 17.0 { ( evaluate::polynomial(z - 11.5, ERF_IMPL_IN) / evaluate::polynomial(z - 11.5, ERF_IMPL_ID), 0.5626493692, ) } else if z < 24.0 { ( evaluate::polynomial(z - 17.0, ERF_IMPL_JN) / evaluate::polynomial(z - 17.0, ERF_IMPL_JD), 0.5634598136, ) } else if z < 38.0 { ( evaluate::polynomial(z - 24.0, ERF_IMPL_KN) / evaluate::polynomial(z - 24.0, ERF_IMPL_KD), 0.5638477802, ) } else if z < 60.0 { ( evaluate::polynomial(z - 38.0, ERF_IMPL_LN) / evaluate::polynomial(z - 38.0, ERF_IMPL_LD), 0.5640528202, ) } else if z < 85.0 { ( evaluate::polynomial(z - 60.0, ERF_IMPL_MN) / evaluate::polynomial(z - 60.0, ERF_IMPL_MD), 0.5641309023, ) } else { ( evaluate::polynomial(z - 85.0, ERF_IMPL_NN) / evaluate::polynomial(z - 85.0, ERF_IMPL_ND), 0.5641584396, ) }; let g = (-z * z).exp() / z; g * b + g * r } else { 0.0 }; if inv && z >= 0.5 { result } else if z >= 0.5 || inv { 1.0 - result } else { result } } // `erf_inv_impl` computes the inverse error function where // `p`,`q`, and `s` are the first, second, and third intermediate // parameters respectively fn erf_inv_impl(p: f64, q: f64, s: f64) -> f64 { let result = if p <= 0.5 { let y = 0.0891314744949340820313; let g = p * (p + 10.0); let r = evaluate::polynomial(p, ERF_INV_IMPL_AN) / evaluate::polynomial(p, ERF_INV_IMPL_AD); g * y + g * r } else if q >= 0.25 { let y = 2.249481201171875; let g = (-2.0 * q.ln()).sqrt(); let xs = q - 0.25; let r = evaluate::polynomial(xs, ERF_INV_IMPL_BN) / evaluate::polynomial(xs, ERF_INV_IMPL_BD); g / (y + r) } else { let x = (-q.ln()).sqrt(); if x < 3.0 { let y = 0.807220458984375; let xs = x - 1.125; let r = evaluate::polynomial(xs, ERF_INV_IMPL_CN) / evaluate::polynomial(xs, ERF_INV_IMPL_CD); y * x + r * x } else if x < 6.0 { let y = 0.93995571136474609375; let xs = x - 3.0; let r = evaluate::polynomial(xs, ERF_INV_IMPL_DN) / evaluate::polynomial(xs, ERF_INV_IMPL_DD); y * x + r * x } else if x < 18.0 { let y = 0.98362827301025390625; let xs = x - 6.0; let r = evaluate::polynomial(xs, ERF_INV_IMPL_EN) / evaluate::polynomial(xs, ERF_INV_IMPL_ED); y * x + r * x } else if x < 44.0 { let y = 0.99714565277099609375; let xs = x - 18.0; let r = evaluate::polynomial(xs, ERF_INV_IMPL_FN) / evaluate::polynomial(xs, ERF_INV_IMPL_FD); y * x + r * x } else { let y = 0.99941349029541015625; let xs = x - 44.0; let r = evaluate::polynomial(xs, ERF_INV_IMPL_GN) / evaluate::polynomial(xs, ERF_INV_IMPL_GD); y * x + r * x } }; s * result }
candle/candle-core/src/cpu/erf.rs/0
{ "file_path": "candle/candle-core/src/cpu/erf.rs", "repo_id": "candle", "token_count": 11974 }
17
//! ML framework for Rust //! //! ```rust //! use candle_core::{Tensor, DType, Device}; //! # use candle_core::Error; //! # fn main() -> Result<(), Error>{ //! //! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?; //! let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?; //! //! let c = a.matmul(&b)?; //! # Ok(())} //! ``` //! //! ## Features //! //! - Simple syntax (looks and like PyTorch) //! - CPU and Cuda backends (and M1 support) //! - Enable serverless (CPU) small and fast deployments //! - Model training //! - Distributed computing (NCCL). //! - Models out of the box (Llama, Whisper, Falcon, ...) //! //! ## FAQ //! //! - Why Candle? //! //! Candle stems from the need to reduce binary size in order to *enable serverless* //! possible by making the whole engine smaller than PyTorch very large library volume //! //! And simply *removing Python* from production workloads. //! Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches. //! //! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers) #[cfg(feature = "accelerate")] mod accelerate; pub mod backend; pub mod backprop; mod conv; mod convert; pub mod cpu; pub mod cpu_backend; #[cfg(feature = "cuda")] pub mod cuda_backend; #[cfg(feature = "cudnn")] pub mod cudnn; mod device; pub mod display; mod dtype; mod dummy_cuda_backend; mod dummy_metal_backend; pub mod error; mod indexer; pub mod layout; #[cfg(feature = "metal")] pub mod metal_backend; #[cfg(feature = "mkl")] mod mkl; pub mod npy; mod op; pub mod pickle; pub mod quantized; pub mod safetensors; pub mod scalar; pub mod shape; mod storage; mod strided_index; mod tensor; pub mod test_utils; pub mod utils; mod variable; pub use cpu_backend::CpuStorage; pub use device::{Device, DeviceLocation, NdArray}; pub use dtype::{DType, FloatDType, IntDType, WithDType}; pub use error::{Error, Result}; pub use indexer::IndexOp; pub use layout::Layout; pub use op::{CustomOp1, CustomOp2, CustomOp3}; pub use shape::{Shape, D}; pub use storage::Storage; pub use strided_index::{StridedBlocks, StridedIndex}; pub use tensor::{Tensor, TensorId}; pub use variable::Var; #[cfg(feature = "cuda")] pub use cuda_backend::{CudaDevice, CudaStorage}; #[cfg(not(feature = "cuda"))] pub use dummy_cuda_backend::{CudaDevice, CudaStorage}; #[cfg(feature = "metal")] pub use metal_backend::{MetalDevice, MetalError, MetalStorage}; #[cfg(not(feature = "metal"))] pub use dummy_metal_backend::{MetalDevice, MetalError, MetalStorage}; #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; pub trait ToUsize2 { fn to_usize2(self) -> (usize, usize); } impl ToUsize2 for usize { fn to_usize2(self) -> (usize, usize) { (self, self) } } impl ToUsize2 for (usize, usize) { fn to_usize2(self) -> (usize, usize) { self } } // A simple trait defining a module with forward method using a single argument. pub trait Module { fn forward(&self, xs: &Tensor) -> Result<Tensor>; } impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T { fn forward(&self, xs: &Tensor) -> Result<Tensor> { self(xs) } } // A trait defining a module with forward method using a single tensor argument and a flag to // separate the training and evaluation behaviors. pub trait ModuleT { fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>; } impl<M: Module> ModuleT for M { fn forward_t(&self, xs: &Tensor, _train: bool) -> Result<Tensor> { self.forward(xs) } }
candle/candle-core/src/lib.rs/0
{ "file_path": "candle/candle-core/src/lib.rs", "repo_id": "candle", "token_count": 1404 }
18
use crate::{Result, Tensor, WithDType}; pub enum TensorScalar { Tensor(Tensor), Scalar(Tensor), } pub trait TensorOrScalar { fn to_tensor_scalar(self) -> Result<TensorScalar>; } impl TensorOrScalar for &Tensor { fn to_tensor_scalar(self) -> Result<TensorScalar> { Ok(TensorScalar::Tensor(self.clone())) } } impl<T: WithDType> TensorOrScalar for T { fn to_tensor_scalar(self) -> Result<TensorScalar> { let scalar = Tensor::new(self, &crate::Device::Cpu)?; Ok(TensorScalar::Scalar(scalar)) } }
candle/candle-core/src/scalar.rs/0
{ "file_path": "candle/candle-core/src/scalar.rs", "repo_id": "candle", "token_count": 261 }
19
use candle_core::{ bail, quantized::{self, GgmlDType}, test_device, test_utils::to_vec2_round, Device, Module, Result, Tensor, }; use quantized::{k_quants, GgmlType}; use rand::prelude::*; const GGML_TEST_SIZE: usize = 32 * 128; const GGML_MAX_QUANTIZATION_TOTAL_ERROR: f32 = 0.002; const GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS: f32 = 0.0075; const GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS: f32 = 0.0040; const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02; fn test_matmul( device: &Device, (b, m, n, k): (usize, usize, usize, usize), dtype: GgmlDType, ) -> Result<()> { let lhs = (0..(m * k)) .map(|v| v as f32 / (m * k) as f32) .collect::<Vec<_>>(); let rhs = (0..(k * n)) .map(|v| v as f32 / (n * k) as f32) .collect::<Vec<_>>(); let lhs = Tensor::from_slice(&lhs, (m, k), device)?; let rhs = Tensor::from_slice(&rhs, (k, n), device)?; let mm = lhs.matmul(&rhs)?; let qtensor = quantized::QTensor::quantize(&rhs.t()?, dtype)?; let matmul = quantized::QMatMul::from_qtensor(qtensor)?; let res = matmul.forward(&lhs)?; let error: f32 = ((&mm - &res)?.abs()? / &mm.abs()?)? .sum_all()? .to_scalar()?; let error = error / (b * m * n) as f32; assert!( error <= 0.02, "Error {error} is too big. \nExpected:\n {mm} \nFound:\n {res}\n for {dtype:?}" ); Ok(()) } fn quantized_matmul(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let (m, k, n) = (3, 64, 4); let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>(); let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?; let mut dst = vec![42.; 3 * 4]; let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8]; let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>(); k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?; k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?; assert_eq!( dst.iter().map(|x| x.round()).collect::<Vec<_>>(), &[ 85120.0, 214562.0, 345455.0, 474748.0, 213475.0, 604465.0, 1000686.0, 1388317.0, 341876.0, 994283.0, 1655709.0, 2301518.0 ] ); let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?; let mm = tensor_lhs.matmul(&tensor_rhs)?; assert_eq!( mm.to_vec2::<f32>()?, &[ [85344.0, 214368.0, 343392.0, 472416.0], [214368.0, 605536.0, 996704.0, 1387872.0], [343392.0, 996704.0, 1650016.0, 2303328.0] ] ); let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?; let matmul = quantized::QMatMul::from_qtensor(qtensor)?; let res = matmul.forward(&tensor_lhs)?; match device { Device::Metal(_) => assert_eq!( to_vec2_round(&res, 0)?, &[ [84946.0, 214126.0, 344757.0, 473798.0], [213458.0, 604350.0, 1000469.0, 1387990.0], [341970.0, 994574.0, 1656181.0, 2302182.0] ] ), _ => assert_eq!( to_vec2_round(&res, 0)?, &[ [85120.0, 214562.0, 345455.0, 474748.0], [213475.0, 604465.0, 1000686.0, 1388317.0], [341876.0, 994283.0, 1655709.0, 2301518.0] ] ), } test_matmul(device, (1, 3, 4, 256), GgmlDType::Q4_0)?; Ok(()) } fn quantized_matmul_neg(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let (m, k, n) = (3, 64, 4); let lhs = (0..(m * k)) .map(|v| v as f32 - (m * k) as f32 / 2.0) .collect::<Vec<_>>(); let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?; let mut dst = vec![42.; 3 * 4]; let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8]; let rhs = (0..k * n) .map(|v| v as f32 - (k * n) as f32 / 3.0) .collect::<Vec<_>>(); let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?; k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?; k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?; assert_eq!( dst.iter().map(|x| x.round()).collect::<Vec<_>>(), &[ 243524.0, -19596.0, -285051.0, -549815.0, 23777.0, 21651.0, 19398.0, 18367.0, -196472.0, 63012.0, 324585.0, 587902.0 ] ); let mm = tensor_lhs.matmul(&tensor_rhs)?; assert_eq!( to_vec2_round(&mm, 0)?, &[ [244064.0, -20128.0, -284320.0, -548512.0], [23563.0, 21515.0, 19467.0, 17419.0], [-196939.0, 63157.0, 323253.0, 583349.0] ] ); let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?; let matmul = quantized::QMatMul::from_qtensor(qtensor)?; let res = matmul.forward(&tensor_lhs)?; match device { Device::Metal(_) => assert_eq!( to_vec2_round(&res, 0)?, &[ [243666.0, -19714.0, -285433.0, -550453.0], [23782.0, 21654.0, 19400.0, 18369.0], [-196102.0, 63022.0, 324233.0, 587191.0] ] ), _ => assert_eq!( to_vec2_round(&res, 0)?, &[ [243524.0, -19596.0, -285051.0, -549815.0], [23777.0, 21651.0, 19398.0, 18367.0], [-196472.0, 63012.0, 324585.0, 587902.0] ] ), } Ok(()) } test_device!( quantized_matmul, quantized_matmul_cpu, quantized_matmul_cuda, quantized_matmul_metal ); test_device!( quantized_matmul_neg, quantized_matmul_neg_cpu, quantized_matmul_neg_cuda, quantized_matmul_neg_metal ); fn quantize_q4_0(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_0)?; let dst = quant.dequantize(device)?; assert_eq!( dst.to_vec1::<f32>()?, &[ -0.0, -0.0, 3.875, 3.875, 3.875, 3.875, 7.75, 7.75, 7.75, 7.75, 11.625, 11.625, 11.625, 11.625, 15.5, 15.5, 15.5, 15.5, 19.375, 19.375, 19.375, 19.375, 23.25, 23.25, 23.25, 23.25, 27.125, 27.125, 27.125, 27.125, 31.0, 31.0, 31.5, 31.5, 31.5, 31.5, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 47.25, 47.25, 47.25, 47.25, 47.25, 47.25, 47.25, 47.25, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 63.0, 63.0, 63.0, 63.0, 59.375, 59.375, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 95.0, 95.0, 95.0, 95.0, 95.0, 95.0, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0 ] ); ggml_quantization_error_test(GgmlDType::Q4_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q4_1(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?; let dst = quant.dequantize(device)?; assert_eq!( round_vector(&dst.to_vec1::<f32>()?), &[ 0.0, 0.0, 2.066, 2.066, 4.133, 4.133, 6.199, 6.199, 8.266, 8.266, 10.332, 10.332, 12.398, 12.398, 14.465, 14.465, 16.531, 16.531, 18.598, 18.598, 20.664, 20.664, 22.73, 22.73, 24.797, 24.797, 26.863, 26.863, 28.93, 28.93, 30.996, 30.996, 32.0, 32.0, 34.066, 34.066, 36.133, 36.133, 38.199, 38.199, 40.266, 40.266, 42.332, 42.332, 44.398, 44.398, 46.465, 46.465, 48.531, 48.531, 50.598, 50.598, 52.664, 52.664, 54.73, 54.73, 56.797, 56.797, 58.863, 58.863, 60.93, 60.93, 62.996, 62.996, 64.0, 64.0, 66.066, 66.066, 68.133, 68.133, 70.199, 70.199, 72.266, 72.266, 74.332, 74.332, 76.398, 76.398, 78.465, 78.465, 80.531, 80.531, 82.598, 82.598, 84.664, 84.664, 86.73, 86.73, 88.797, 88.797, 90.863, 90.863, 92.93, 92.93, 94.996, 94.996, 96.0, 96.0, 98.066, 98.066, 100.133, 100.133, 102.199, 102.199, 104.266, 104.266, 106.332, 106.332, 108.398, 108.398, 110.465, 110.465, 112.531, 112.531, 114.598, 114.598, 116.664, 116.664, 118.73, 118.73, 120.797, 120.797, 122.863, 122.863, 124.93, 124.93, 126.996, 126.996 ] ); ggml_quantization_error_test(GgmlDType::Q4_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q5_0(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?; let dst = quant.dequantize(device)?; assert_eq!( round_vector(&dst.to_vec1::<f32>()?), &[ -0.0, 1.938, 1.938, 3.875, 3.875, 5.813, 5.813, 7.75, 7.75, 9.688, 9.688, 11.625, 11.625, 13.563, 13.563, 15.5, 15.5, 17.438, 17.438, 19.375, 19.375, 21.313, 21.313, 23.25, 23.25, 25.188, 25.188, 27.125, 27.125, 29.063, 29.063, 31.0, 31.5, 31.5, 35.438, 35.438, 35.438, 35.438, 39.375, 39.375, 39.375, 39.375, 43.313, 43.313, 43.313, 43.313, 47.25, 47.25, 47.25, 47.25, 51.188, 51.188, 51.188, 51.188, 55.125, 55.125, 55.125, 55.125, 59.063, 59.063, 59.063, 59.063, 63.0, 63.0, 65.313, 65.313, 65.313, 65.313, 65.313, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 77.188, 77.188, 77.188, 77.188, 77.188, 77.188, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 89.063, 89.063, 89.063, 89.063, 89.063, 89.063, 95.0, 95.0, 95.0, 95.25, 95.25, 95.25, 95.25, 103.188, 103.188, 103.188, 103.188, 103.188, 103.188, 103.188, 103.188, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 119.063, 119.063, 119.063, 119.063, 119.063, 119.063, 119.063, 119.063, 127.0, 127.0, 127.0, 127.0 ] ); ggml_quantization_error_test(GgmlDType::Q5_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q5_1(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?; let dst = quant.dequantize(device)?; assert_eq!( round_vector(&dst.to_vec1::<f32>()?), &[ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0, 101.0, 102.0, 103.0, 104.0, 105.0, 106.0, 107.0, 108.0, 109.0, 110.0, 111.0, 112.0, 113.0, 114.0, 115.0, 116.0, 117.0, 118.0, 119.0, 120.0, 121.0, 122.0, 123.0, 124.0, 125.0, 126.0, 127.0 ] ); ggml_quantization_error_test(GgmlDType::Q5_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn get_test_vector2(bound: f32, size: usize, device: &Device) -> Result<Tensor> { assert!( size % crate::quantized::k_quants::QK_K == 0, "size must be a multiple of {}", crate::quantized::k_quants::QK_K ); let src = (0..size) .map(|v| (v as f32 - size as f32 / 2.) * bound / (size as f32 / 2.)) .collect::<Vec<_>>(); assert_eq!([src[0], src[size / 2]], [-bound, 0.0]); Tensor::from_vec(src, (size,), device) } /// Round a vector fn round_vector(values: &[f32]) -> Vec<f32> { values .iter() .map(|x| (1000. * x).round() / 1000.) .collect::<Vec<_>>() } fn compare_with_error(values: &[f32], expected: &[f32], tolerance: f32) { for (i, (value, expected_value)) in values.iter().zip(expected.iter()).enumerate() { let difference = (value - expected_value).abs(); assert!( difference < tolerance, "Error at index {}: value = {}, expected = {}. Difference = {} exceeds tolerance = {}.", i, value, expected_value, difference, tolerance ); } } /// Creates a vector similar to the ones used in GGML unit tests: /// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30 fn create_ggml_like_vector(offset: f32) -> Vec<f32> { (0..GGML_TEST_SIZE) .map(|i| 0.1 + 2.0 * (i as f32 + offset).cos()) .collect() } /// Calculates the root mean square error between two vectors fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 { assert_eq!(a.len(), b.len()); let sum = a .iter() .zip(b) .map(|(a, b)| (a - b).powi(2)) .sum::<f32>() .sqrt(); sum / a.len() as f32 } /// Similar to the GGML quantization unit test: /// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50 fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f32) -> Result<()> { let src = create_ggml_like_vector(0.0); let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?); if error > max_error { bail!( "Quantization error {} exceeds max error {}", error, max_error ); } Ok(()) } fn quantize_q2k(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let dtype = GgmlDType::Q2K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.1); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.499, -0.366, -0.249, 0.0, 0.295, 0.492] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 6.0); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?; Ok(()) } fn quantize_q3k(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let dtype = GgmlDType::Q3K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.03); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.493, -0.37, -0.243, -0.0, 0.292, 0.492] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 3.5); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?; Ok(()) } fn quantize_q4k(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let dtype = GgmlDType::Q4K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.017); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.5, -0.373, -0.25, 0.0, 0.288, 0.498] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 4.5); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q5k(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let dtype = GgmlDType::Q5K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.009); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.5, -0.373, -0.25, 0.0, 0.279, 0.499] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.5); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q6k(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let dtype = GgmlDType::Q6K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.008); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.497, -0.372, -0.25, -0.0, 0.284, 0.5] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.0); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q8k(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let dtype = GgmlDType::Q8K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.008); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.5, -0.375, -0.25, -0.0, 0.281, 0.499] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 0.6); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } test_device!( quantize_q4_0, quantize_q4_0_cpu, quantize_q4_0_cuda, quantize_q4_0_metal ); test_device!( quantize_q4_1, quantize_q4_1_cpu, quantize_q4_1_cuda, quantize_q4_1_metal ); test_device!( quantize_q5_0, quantize_q5_0_cpu, quantize_q5_0_cuda, quantize_q5_0_metal ); test_device!( quantize_q5_1, quantize_q5_1_cpu, quantize_q5_1_cuda, quantize_q5_1_metal ); test_device!( quantize_q2k, quantize_q2k_cpu, quantize_q2k_cuda, quantize_q2k_metal ); test_device!( quantize_q3k, quantize_q3k_cpu, quantize_q3k_cuda, quantize_q3k_metal ); test_device!( quantize_q4k, quantize_q4k_cpu, quantize_q4k_cuda, quantize_q4k_metal ); test_device!( quantize_q5k, quantize_q5k_cpu, quantize_q5k_cuda, quantize_q5k_metal ); test_device!( quantize_q6k, quantize_q6k_cpu, quantize_q6k_cuda, quantize_q6k_metal ); test_device!( quantize_q8k, quantize_q8k_cpu, quantize_q8k_cuda, quantize_q8k_metal ); /// Very simple dot product implementation fn vec_dot_reference(a: &[f32], b: &[f32]) -> f32 { a.iter().zip(b).map(|(a, b)| a * b).sum() } /// Returns the error achieved by the GGML matmul unit test. fn ggml_reference_matmul_error(dtype: GgmlDType) -> Result<f32> { let err = match dtype { GgmlDType::F16 => 0.000010, GgmlDType::Q2K => 0.004086, GgmlDType::Q3K => 0.016148, GgmlDType::Q4K => 0.002425, GgmlDType::Q5K => 0.000740, GgmlDType::Q6K => 0.000952, GgmlDType::Q4_0 => 0.001143, GgmlDType::Q4_1 => 0.008, GgmlDType::Q5_0 => 0.001353, GgmlDType::Q5_1 => 0.00149, GgmlDType::Q8_0 => 0.000092, // Not from the ggml repo. GgmlDType::Q8K => 0.00065, _ => bail!("No GGML results for quantization type {dtype:?}",), }; Ok(err) } /// Similar to the GGML matmul unit test: /// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91 fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> { let a = create_ggml_like_vector(0.0); let b = create_ggml_like_vector(1.0); ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 1.0)?; // Another example that is more likely to trigger the overflow reported in #1526 let a = (0..GGML_TEST_SIZE) .map(|i| i as f32 / GGML_TEST_SIZE as f32) .collect::<Vec<_>>(); let b = (0..GGML_TEST_SIZE) .map(|i| i as f32 / GGML_TEST_SIZE as f32) .collect::<Vec<_>>(); ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 2.0)?; Ok(()) } fn ggml_matmul_error_test_<T: GgmlType>(a: &[f32], b: &[f32], err_m: f32) -> Result<()> { let length = a.len(); let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE]; let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE]; T::from_float(a, &mut a_quant)?; T::VecDotType::from_float(b, &mut b_quant)?; let result = T::vec_dot(length, &a_quant, &b_quant)?; let result_unopt = T::vec_dot_unopt(length, &a_quant, &b_quant)?; let reference_result = vec_dot_reference(a, b); if (result - result_unopt).abs() / length as f32 > 1e-6 { bail!( "the opt and unopt vec-dot returned different values, opt {result}, unopt {result_unopt}" ) } let error = (result - reference_result).abs() / length as f32; let ggml_error = ggml_reference_matmul_error(T::DTYPE)? * err_m; if !error.is_finite() || error > GGML_MAX_DOT_PRODUCT_ERROR { bail!("Dot product error {error} exceeds max error {GGML_MAX_DOT_PRODUCT_ERROR}",); } // We diverge slightly due to different rounding behavior / f16 to f32 conversions in GGML // => we use a slightly higher error threshold const ERROR_LENIENCY: f32 = 0.00001; if error - ERROR_LENIENCY > ggml_error { bail!( "Dot product error {} exceeds ggml reference error {}", error, ggml_error ); } Ok(()) } #[test] fn quantized_mm() -> Result<()> { ggml_matmul_error_test::<k_quants::BlockQ4_0>()?; ggml_matmul_error_test::<k_quants::BlockQ4_1>()?; ggml_matmul_error_test::<k_quants::BlockQ5_0>()?; ggml_matmul_error_test::<k_quants::BlockQ5_1>()?; ggml_matmul_error_test::<k_quants::BlockQ8_0>()?; Ok(()) } /// generates random tensors of size `m x k` and `n x k` and calculates their expected matrix multiplication result. fn get_random_tensors( m: usize, k: usize, n: usize, device: &Device, ) -> Result<(Tensor, Tensor, Tensor)> { let mut rng = StdRng::seed_from_u64(314159265358979); let lhs = (0..m * k) .map(|_| rng.gen::<f32>() - 0.5) .collect::<Vec<_>>(); let rhs = (0..n * k) .map(|_| rng.gen::<f32>() - 0.5) .collect::<Vec<_>>(); let lhs = Tensor::from_vec(lhs, (m, k), device)?; let rhs = Tensor::from_vec(rhs, (n, k), device)?; let mm = lhs.matmul(&rhs.t()?)?; Ok((lhs, rhs, mm)) } #[macro_export] macro_rules! quantized_matmul { // TODO: Switch to generating the two last arguments automatically once concat_idents is // stable. https://github.com/rust-lang/rust/issues/29599 ($fn_name: ident, $fn_name_cpu: ident, $fn_name_cuda: ident, $fn_name_metal: ident, $dtype: expr) => { fn $fn_name(device: &Device) -> Result<()> { if device.is_cuda() { // TODO Enable Cuda GGML sometime maybe. return Ok(()); } test_matmul(device, (1, 3, 4, 256), $dtype)?; Ok(()) } test_device!($fn_name, $fn_name_cpu, $fn_name_cuda, $fn_name_metal); }; } quantized_matmul!( quantized_matmul_q4_0_bis, quantized_matmul_q4_0_cpu, quantized_matmul_q4_0_cuda, quantized_matmul_q4_0_metal, GgmlDType::Q4_0 ); quantized_matmul!( quantized_matmul_q4_1_bis, quantized_matmul_q4_1_cpu, quantized_matmul_q4_1_cuda, quantized_matmul_q4_1_metal, GgmlDType::Q4_1 ); quantized_matmul!( quantized_matmul_q5_0_bis, quantized_matmul_q5_0_cpu, quantized_matmul_q5_0_cuda, quantized_matmul_q5_0_metal, GgmlDType::Q5_0 ); quantized_matmul!( quantized_matmul_q5_1_bis, quantized_matmul_q5_1_cpu, quantized_matmul_q5_1_cuda, quantized_matmul_q5_1_metal, GgmlDType::Q5_1 ); quantized_matmul!( quantized_matmul_q8_0_bis, quantized_matmul_q8_0_cpu, quantized_matmul_q8_0_cuda, quantized_matmul_q8_0_metal, GgmlDType::Q8_0 ); // Not implemented in Ggml // quantized_matmul!( // quantized_matmul_q8_1_bis, // quantized_matmul_q8_1_cpu, // quantized_matmul_q8_1_cuda, // quantized_matmul_q8_1_metal, // GgmlDType::Q8_1 // ); // TODO This is bugged (also bugged in GGML quantized_matmul!( quantized_matmul_q2k_bis, quantized_matmul_q2k_cpu, quantized_matmul_q2k_cuda, quantized_matmul_q2k_metal, GgmlDType::Q2K ); quantized_matmul!( quantized_matmul_q3k_bis, quantized_matmul_q3k_cpu, quantized_matmul_q3k_cuda, quantized_matmul_q3k_metal, GgmlDType::Q3K ); quantized_matmul!( quantized_matmul_q4k_bis, quantized_matmul_q4k_cpu, quantized_matmul_q4k_cuda, quantized_matmul_q4k_metal, GgmlDType::Q4K ); quantized_matmul!( quantized_matmul_q5k_bis, quantized_matmul_q5k_cpu, quantized_matmul_q5k_cuda, quantized_matmul_q5k_metal, GgmlDType::Q5K ); quantized_matmul!( quantized_matmul_q6k_bis, quantized_matmul_q6k_cpu, quantized_matmul_q6k_cuda, quantized_matmul_q6k_metal, GgmlDType::Q6K ); // Not implemented on metal // quantized_matmul!( // quantized_matmul_q8k_bis, // quantized_matmul_q8k_cpu, // quantized_matmul_q8k_cuda, // quantized_matmul_q8k_metal, // GgmlDType::Q8K // ); #[test] fn quantized_matmul_q2k() -> Result<()> { use k_quants::BlockQ2K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [0.916, 0.422, 0.215, 1.668]); ggml_matmul_error_test::<BlockQ2K>()?; Ok(()) } #[test] fn quantized_matmul_q3k() -> Result<()> { use k_quants::BlockQ3K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q3K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.029, 1.418, -0.314, 1.495]); ggml_matmul_error_test::<BlockQ3K>()?; Ok(()) } #[test] fn quantized_matmul_q4k() -> Result<()> { use k_quants::BlockQ4K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q4K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.125, 1.435, -0.201, 1.589]); ggml_matmul_error_test::<BlockQ4K>()?; Ok(()) } #[test] fn quantized_matmul_q5k() -> Result<()> { use k_quants::BlockQ5K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q5K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.192, 1.491, -0.18, 1.743]); //Expected: 0.000740408897 ggml_matmul_error_test::<BlockQ5K>()?; Ok(()) } #[test] fn quantized_matmul_q6k() -> Result<()> { use k_quants::BlockQ6K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q6K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.324, 1.49, -0.164, 1.741]); ggml_matmul_error_test::<BlockQ6K>()?; Ok(()) } #[test] fn quantized_matmul_q8k() -> Result<()> { use k_quants::BlockQ8K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q8K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.266, 1.504, -0.204, 1.7]); ggml_matmul_error_test::<BlockQ8K>()?; Ok(()) }
candle/candle-core/tests/quantized_tests.rs/0
{ "file_path": "candle/candle-core/tests/quantized_tests.rs", "repo_id": "candle", "token_count": 18700 }
20
# candle-examples
candle/candle-examples/README.md/0
{ "file_path": "candle/candle-examples/README.md", "repo_id": "candle", "token_count": 6 }
21
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle_transformers::models::distilbert::{Config, DistilBertModel, DTYPE}; use anyhow::{Error as E, Result}; use candle::{Device, Tensor}; use candle_nn::VarBuilder; use clap::Parser; use hf_hub::{api::sync::Api, Repo, RepoType}; use tokenizers::Tokenizer; #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, /// The model to use, check out available models: https://huggingface.co/models?library=sentence-transformers&sort=trending #[arg(long)] model_id: Option<String>, #[arg(long)] revision: Option<String>, /// When set, compute embeddings for this prompt. #[arg(long)] prompt: String, /// Use the pytorch weights rather than the safetensors ones #[arg(long)] use_pth: bool, /// The number of times to run the prompt. #[arg(long, default_value = "1")] n: usize, /// L2 normalization for embeddings. #[arg(long, default_value = "true")] normalize_embeddings: bool, } impl Args { fn build_model_and_tokenizer(&self) -> Result<(DistilBertModel, Tokenizer)> { let device = candle_examples::device(self.cpu)?; let default_model = "distilbert-base-uncased".to_string(); let default_revision = "main".to_string(); let (model_id, revision) = match (self.model_id.to_owned(), self.revision.to_owned()) { (Some(model_id), Some(revision)) => (model_id, revision), (Some(model_id), None) => (model_id, "main".to_string()), (None, Some(revision)) => (default_model, revision), (None, None) => (default_model, default_revision), }; let repo = Repo::with_revision(model_id, RepoType::Model, revision); let (config_filename, tokenizer_filename, weights_filename) = { let api = Api::new()?; let api = api.repo(repo); let config = api.get("config.json")?; let tokenizer = api.get("tokenizer.json")?; let weights = if self.use_pth { api.get("pytorch_model.bin")? } else { api.get("model.safetensors")? }; (config, tokenizer, weights) }; let config = std::fs::read_to_string(config_filename)?; let config: Config = serde_json::from_str(&config)?; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let vb = if self.use_pth { VarBuilder::from_pth(&weights_filename, DTYPE, &device)? } else { unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? } }; let model = DistilBertModel::load(vb, &config)?; Ok((model, tokenizer)) } } fn get_mask(size: usize, device: &Device) -> Tensor { let mask: Vec<_> = (0..size) .flat_map(|i| (0..size).map(move |j| u8::from(j > i))) .collect(); Tensor::from_slice(&mask, (size, size), device).unwrap() } fn main() -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { println!("tracing..."); let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; let (model, mut tokenizer) = args.build_model_and_tokenizer()?; let device = &model.device; let tokenizer = tokenizer .with_padding(None) .with_truncation(None) .map_err(E::msg)?; let tokens = tokenizer .encode(args.prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; let mask = get_mask(tokens.len(), device); println!("token_ids: {:?}", token_ids.to_vec2::<u32>()); println!("mask: {:?}", mask.to_vec2::<u8>()); let ys = model.forward(&token_ids, &mask)?; println!("{ys}"); Ok(()) } pub fn normalize_l2(v: &Tensor) -> Result<Tensor> { Ok(v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)?) }
candle/candle-examples/examples/distilbert/main.rs/0
{ "file_path": "candle/candle-examples/examples/distilbert/main.rs", "repo_id": "candle", "token_count": 1939 }
22
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::Error as E; use clap::{Parser, ValueEnum}; use candle::{DType, Tensor}; use candle_examples::token_output_stream::TokenOutputStream; use candle_nn::VarBuilder; use candle_transformers::models::marian; use tokenizers::Tokenizer; #[derive(Clone, Debug, Copy, ValueEnum)] enum Which { Base, Big, } // TODO: Maybe add support for the conditional prompt. #[derive(Parser)] struct Args { #[arg(long)] model: Option<String>, #[arg(long)] tokenizer: Option<String>, #[arg(long)] tokenizer_dec: Option<String>, /// Choose the variant of the model to run. #[arg(long, default_value = "big")] which: Which, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Use the quantized version of the model. #[arg(long)] quantized: bool, /// Text to be translated #[arg(long)] text: String, } pub fn main() -> anyhow::Result<()> { use hf_hub::api::sync::Api; let args = Args::parse(); let config = match args.which { Which::Base => marian::Config::opus_mt_fr_en(), Which::Big => marian::Config::opus_mt_tc_big_fr_en(), }; let tokenizer = { let tokenizer = match args.tokenizer { Some(tokenizer) => std::path::PathBuf::from(tokenizer), None => { let name = match args.which { Which::Base => "tokenizer-marian-base-fr.json", Which::Big => "tokenizer-marian-fr.json", }; Api::new()? .model("lmz/candle-marian".to_string()) .get(name)? } }; Tokenizer::from_file(&tokenizer).map_err(E::msg)? }; let tokenizer_dec = { let tokenizer = match args.tokenizer_dec { Some(tokenizer) => std::path::PathBuf::from(tokenizer), None => { let name = match args.which { Which::Base => "tokenizer-marian-base-en.json", Which::Big => "tokenizer-marian-en.json", }; Api::new()? .model("lmz/candle-marian".to_string()) .get(name)? } }; Tokenizer::from_file(&tokenizer).map_err(E::msg)? }; let mut tokenizer_dec = TokenOutputStream::new(tokenizer_dec); let device = candle_examples::device(args.cpu)?; let vb = { let model = match args.model { Some(model) => std::path::PathBuf::from(model), None => match args.which { Which::Base => Api::new()? .repo(hf_hub::Repo::with_revision( "Helsinki-NLP/opus-mt-fr-en".to_string(), hf_hub::RepoType::Model, "refs/pr/4".to_string(), )) .get("model.safetensors")?, Which::Big => Api::new()? .model("Helsinki-NLP/opus-mt-tc-big-fr-en".to_string()) .get("model.safetensors")?, }, }; unsafe { VarBuilder::from_mmaped_safetensors(&[&model], DType::F32, &device)? } }; let mut model = marian::MTModel::new(&config, vb)?; let mut logits_processor = candle_transformers::generation::LogitsProcessor::new(1337, None, None); let encoder_xs = { let mut tokens = tokenizer .encode(args.text, true) .map_err(E::msg)? .get_ids() .to_vec(); tokens.push(config.eos_token_id); let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?; model.encoder().forward(&tokens, 0)? }; let mut token_ids = vec![config.decoder_start_token_id]; for index in 0..1000 { let context_size = if index >= 1 { 1 } else { token_ids.len() }; let start_pos = token_ids.len().saturating_sub(context_size); let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?; let logits = model.decode(&input_ids, &encoder_xs, start_pos)?; let logits = logits.squeeze(0)?; let logits = logits.get(logits.dim(0)? - 1)?; let token = logits_processor.sample(&logits)?; token_ids.push(token); if let Some(t) = tokenizer_dec.next_token(token)? { use std::io::Write; print!("{t}"); std::io::stdout().flush()?; } if token == config.eos_token_id || token == config.forced_eos_token_id { break; } } if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? { print!("{rest}"); } println!(); Ok(()) }
candle/candle-examples/examples/marian-mt/main.rs/0
{ "file_path": "candle/candle-examples/examples/marian-mt/main.rs", "repo_id": "candle", "token_count": 2385 }
23
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::{Error as E, Result}; use clap::{Parser, ValueEnum}; use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer}; use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi}; use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer; use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; use hf_hub::{api::sync::Api, Repo, RepoType}; use tokenizers::Tokenizer; enum Model { MixFormer(MixFormer), Phi(Phi), Quantized(QMixFormer), } struct TextGeneration { model: Model, device: Device, tokenizer: Tokenizer, logits_processor: LogitsProcessor, repeat_penalty: f32, repeat_last_n: usize, verbose_prompt: bool, } impl TextGeneration { #[allow(clippy::too_many_arguments)] fn new( model: Model, tokenizer: Tokenizer, seed: u64, temp: Option<f64>, top_p: Option<f64>, repeat_penalty: f32, repeat_last_n: usize, verbose_prompt: bool, device: &Device, ) -> Self { let logits_processor = LogitsProcessor::new(seed, temp, top_p); Self { model, tokenizer, logits_processor, repeat_penalty, repeat_last_n, verbose_prompt, device: device.clone(), } } fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> { use std::io::Write; println!("starting the inference loop"); let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?; if tokens.is_empty() { anyhow::bail!("Empty prompts are not supported in the phi model.") } if self.verbose_prompt { for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) { let token = token.replace('▁', " ").replace("<0x0A>", "\n"); println!("{id:7} -> '{token}'"); } } let mut tokens = tokens.get_ids().to_vec(); let mut generated_tokens = 0usize; let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") { Some(token) => *token, None => anyhow::bail!("cannot find the endoftext token"), }; print!("{prompt}"); std::io::stdout().flush()?; let start_gen = std::time::Instant::now(); for index in 0..sample_len { let context_size = if index > 0 { 1 } else { tokens.len() }; let ctxt = &tokens[tokens.len().saturating_sub(context_size)..]; let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; let logits = match &mut self.model { Model::MixFormer(m) => m.forward(&input)?, Model::Phi(m) => m.forward(&input)?, Model::Quantized(m) => m.forward(&input)?, }; let logits = logits.squeeze(0)?.to_dtype(DType::F32)?; let logits = if self.repeat_penalty == 1. { logits } else { let start_at = tokens.len().saturating_sub(self.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, self.repeat_penalty, &tokens[start_at..], )? }; let next_token = self.logits_processor.sample(&logits)?; tokens.push(next_token); generated_tokens += 1; if next_token == eos_token { break; } let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?; print!("{token}"); std::io::stdout().flush()?; } let dt = start_gen.elapsed(); println!( "\n{generated_tokens} tokens generated ({:.2} token/s)", generated_tokens as f64 / dt.as_secs_f64(), ); Ok(()) } } #[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)] enum WhichModel { #[value(name = "1")] V1, #[value(name = "1.5")] V1_5, #[value(name = "2")] V2, #[value(name = "2-old")] V2Old, PuffinPhiV2, PhiHermes, } #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, /// Display the token for the specified prompt. #[arg(long)] verbose_prompt: bool, #[arg(long)] prompt: Option<String>, #[arg(long)] mmlu_dir: Option<String>, /// The temperature used to generate samples. #[arg(long)] temperature: Option<f64>, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option<f64>, /// The seed to use when generating random samples. #[arg(long, default_value_t = 299792458)] seed: u64, /// The length of the sample to generate (in tokens). #[arg(long, short = 'n', default_value_t = 5000)] sample_len: usize, #[arg(long)] model_id: Option<String>, #[arg(long, default_value = "2")] model: WhichModel, #[arg(long)] revision: Option<String>, #[arg(long)] weight_file: Option<String>, #[arg(long)] tokenizer: Option<String>, #[arg(long)] quantized: bool, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.1)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, } fn main() -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; println!( "avx: {}, neon: {}, simd128: {}, f16c: {}", candle::utils::with_avx(), candle::utils::with_neon(), candle::utils::with_simd128(), candle::utils::with_f16c() ); println!( "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", args.temperature.unwrap_or(0.), args.repeat_penalty, args.repeat_last_n ); let start = std::time::Instant::now(); let api = Api::new()?; let model_id = match args.model_id { Some(model_id) => model_id.to_string(), None => { if args.quantized { "lmz/candle-quantized-phi".to_string() } else { match args.model { WhichModel::V1 => "microsoft/phi-1".to_string(), WhichModel::V1_5 => "microsoft/phi-1_5".to_string(), WhichModel::V2 | WhichModel::V2Old => "microsoft/phi-2".to_string(), WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => { "lmz/candle-quantized-phi".to_string() } } } } }; let revision = match args.revision { Some(rev) => rev.to_string(), None => { if args.quantized { "main".to_string() } else { match args.model { WhichModel::V1 => "refs/pr/8".to_string(), WhichModel::V1_5 => "refs/pr/73".to_string(), WhichModel::V2Old => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(), WhichModel::V2 | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => { "main".to_string() } } } } }; let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision)); let tokenizer_filename = match args.tokenizer { Some(file) => std::path::PathBuf::from(file), None => match args.model { WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2Old => { repo.get("tokenizer.json")? } WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => { repo.get("tokenizer-puffin-phi-v2.json")? } }, }; let filenames = match args.weight_file { Some(weight_file) => vec![std::path::PathBuf::from(weight_file)], None => { if args.quantized { match args.model { WhichModel::V1 => vec![repo.get("model-v1-q4k.gguf")?], WhichModel::V1_5 => vec![repo.get("model-q4k.gguf")?], WhichModel::V2 | WhichModel::V2Old => vec![repo.get("model-v2-q4k.gguf")?], WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?], WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?], } } else { match args.model { WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?], WhichModel::V2 | WhichModel::V2Old => candle_examples::hub_load_safetensors( &repo, "model.safetensors.index.json", )?, WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2.safetensors")?], WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B.safetensors")?], } } } }; println!("retrieved the files in {:?}", start.elapsed()); let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let start = std::time::Instant::now(); let config = || match args.model { WhichModel::V1 => Config::v1(), WhichModel::V1_5 => Config::v1_5(), WhichModel::V2 | WhichModel::V2Old => Config::v2(), WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(), WhichModel::PhiHermes => Config::phi_hermes_1_3b(), }; let device = candle_examples::device(args.cpu)?; let model = if args.quantized { let config = config(); let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf( &filenames[0], &device, )?; let model = match args.model { WhichModel::V2 | WhichModel::V2Old => QMixFormer::new_v2(&config, vb)?, _ => QMixFormer::new(&config, vb)?, }; Model::Quantized(model) } else { let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? }; match args.model { WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => { let config_filename = repo.get("config.json")?; let config = std::fs::read_to_string(config_filename)?; let config: PhiConfig = serde_json::from_str(&config)?; let phi = Phi::new(&config, vb)?; Model::Phi(phi) } WhichModel::V2Old => { let config = config(); Model::MixFormer(MixFormer::new_v2(&config, vb)?) } WhichModel::PhiHermes | WhichModel::PuffinPhiV2 => { let config = config(); Model::MixFormer(MixFormer::new(&config, vb)?) } } }; println!("loaded the model in {:?}", start.elapsed()); match (args.prompt, args.mmlu_dir) { (None, None) | (Some(_), Some(_)) => { anyhow::bail!("exactly one of --prompt and --mmlu-dir must be specified") } (Some(prompt), None) => { let mut pipeline = TextGeneration::new( model, tokenizer, args.seed, args.temperature, args.top_p, args.repeat_penalty, args.repeat_last_n, args.verbose_prompt, &device, ); pipeline.run(&prompt, args.sample_len)?; } (None, Some(mmlu_dir)) => mmlu(model, tokenizer, &device, mmlu_dir)?, } Ok(()) } fn mmlu<P: AsRef<std::path::Path>>( mut model: Model, tokenizer: Tokenizer, device: &Device, mmlu_dir: P, ) -> anyhow::Result<()> { for dir_entry in mmlu_dir.as_ref().read_dir()?.flatten() { let dir_entry = dir_entry.path(); let theme = match dir_entry.file_stem().and_then(|v| v.to_str()) { None => "".to_string(), Some(v) => match v.strip_suffix("_test") { None => v.replace('_', " "), Some(v) => v.replace('_', " "), }, }; if dir_entry.extension().as_ref().and_then(|v| v.to_str()) != Some("csv") { continue; } println!("reading {dir_entry:?}"); let dir_entry = std::fs::File::open(dir_entry)?; let mut reader = csv::ReaderBuilder::new() .has_headers(false) .from_reader(dir_entry); let token_a = tokenizer.token_to_id("A").unwrap(); let token_b = tokenizer.token_to_id("B").unwrap(); let token_c = tokenizer.token_to_id("C").unwrap(); let token_d = tokenizer.token_to_id("D").unwrap(); for row in reader.records() { let row = match row { Err(_) => continue, Ok(row) => row, }; if row.len() < 5 { continue; } let question = row.get(0).unwrap(); let answer_a = row.get(1).unwrap(); let answer_b = row.get(2).unwrap(); let answer_c = row.get(3).unwrap(); let answer_d = row.get(4).unwrap(); let answer = row.get(5).unwrap(); let prompt = format!( "{} {theme}.\n{question}\nA. {answer_a}\nB. {answer_b}\nC. {answer_c}\nD. {answer_d}\nAnswer:\n", "The following are multiple choice questions (with answers) about" ); let tokens = tokenizer.encode(prompt.as_str(), true).map_err(E::msg)?; let tokens = tokens.get_ids().to_vec(); let input = Tensor::new(tokens, device)?.unsqueeze(0)?; let logits = match &mut model { Model::MixFormer(m) => { m.clear_kv_cache(); m.forward(&input)? } Model::Phi(m) => { m.clear_kv_cache(); m.forward(&input)? } Model::Quantized(m) => { m.clear_kv_cache(); m.forward(&input)? } }; let logits = logits.squeeze(0)?.to_dtype(DType::F32)?; let logits_v: Vec<f32> = logits.to_vec1()?; let pr_a = logits_v[token_a as usize]; let pr_b = logits_v[token_b as usize]; let pr_c = logits_v[token_c as usize]; let pr_d = logits_v[token_d as usize]; let model_answer = if pr_a > pr_b && pr_a > pr_c && pr_a > pr_d { "A" } else if pr_b > pr_c && pr_b > pr_d { "B" } else if pr_c > pr_d { "C" } else { "D" }; println!("{prompt}\n -> {model_answer} vs {answer}"); } } Ok(()) }
candle/candle-examples/examples/phi/main.rs/0
{ "file_path": "candle/candle-examples/examples/phi/main.rs", "repo_id": "candle", "token_count": 8133 }
24
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::{Parser, ValueEnum}; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::repvgg; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { A0, A1, A2, B0, B1, B2, B3, B1G4, B2G4, B3G4, } impl Which { fn model_filename(&self) -> String { let name = match self { Self::A0 => "a0", Self::A1 => "a1", Self::A2 => "a2", Self::B0 => "b0", Self::B1 => "b1", Self::B2 => "b2", Self::B3 => "b3", Self::B1G4 => "b1g4", Self::B2G4 => "b2g4", Self::B3G4 => "b3g4", }; format!("timm/repvgg_{}.rvgg_in1k", name) } fn config(&self) -> repvgg::Config { match self { Self::A0 => repvgg::Config::a0(), Self::A1 => repvgg::Config::a1(), Self::A2 => repvgg::Config::a2(), Self::B0 => repvgg::Config::b0(), Self::B1 => repvgg::Config::b1(), Self::B2 => repvgg::Config::b2(), Self::B3 => repvgg::Config::b3(), Self::B1G4 => repvgg::Config::b1g4(), Self::B2G4 => repvgg::Config::b2g4(), Self::B3G4 => repvgg::Config::b3g4(), } } } #[derive(Parser)] struct Args { #[arg(long)] model: Option<String>, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, #[arg(value_enum, long, default_value_t=Which::A0)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image224(args.image)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let model_name = args.which.model_filename(); let api = hf_hub::api::sync::Api::new()?; let api = api.model(model_name); api.get("model.safetensors")? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = repvgg::repvgg(&args.which.config(), 1000, vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::<f32>()?; let mut prs = prs.iter().enumerate().collect::<Vec<_>>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }
candle/candle-examples/examples/repvgg/main.rs/0
{ "file_path": "candle/candle-examples/examples/repvgg/main.rs", "repo_id": "candle", "token_count": 1518 }
25
#[cfg(feature = "accelerate")] extern crate accelerate_src; #[cfg(feature = "mkl")] extern crate intel_mkl_src; use candle_transformers::models::stable_diffusion; use candle_transformers::models::wuerstchen; use anyhow::{Error as E, Result}; use candle::{DType, Device, IndexOp, Tensor}; use clap::Parser; use tokenizers::Tokenizer; const PRIOR_GUIDANCE_SCALE: f64 = 4.0; const RESOLUTION_MULTIPLE: f64 = 42.67; const LATENT_DIM_SCALE: f64 = 10.67; const PRIOR_CIN: usize = 16; const DECODER_CIN: usize = 4; #[derive(Parser)] #[command(author, version, about, long_about = None)] struct Args { /// The prompt to be used for image generation. #[arg( long, default_value = "A very realistic photo of a rusty robot walking on a sandy beach" )] prompt: String, #[arg(long, default_value = "")] uncond_prompt: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, #[arg(long)] use_flash_attn: bool, /// The height in pixels of the generated image. #[arg(long)] height: Option<usize>, /// The width in pixels of the generated image. #[arg(long)] width: Option<usize>, /// The decoder weight file, in .safetensors format. #[arg(long, value_name = "FILE")] decoder_weights: Option<String>, /// The CLIP weight file, in .safetensors format. #[arg(long, value_name = "FILE")] clip_weights: Option<String>, /// The CLIP weight file used by the prior model, in .safetensors format. #[arg(long, value_name = "FILE")] prior_clip_weights: Option<String>, /// The prior weight file, in .safetensors format. #[arg(long, value_name = "FILE")] prior_weights: Option<String>, /// The VQGAN weight file, in .safetensors format. #[arg(long, value_name = "FILE")] vqgan_weights: Option<String>, #[arg(long, value_name = "FILE")] /// The file specifying the tokenizer to used for tokenization. tokenizer: Option<String>, #[arg(long, value_name = "FILE")] /// The file specifying the tokenizer to used for prior tokenization. prior_tokenizer: Option<String>, /// The number of samples to generate. #[arg(long, default_value_t = 1)] num_samples: i64, /// The name of the final image to generate. #[arg(long, value_name = "FILE", default_value = "sd_final.png")] final_image: String, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum ModelFile { Tokenizer, PriorTokenizer, Clip, PriorClip, Decoder, VqGan, Prior, } impl ModelFile { fn get(&self, filename: Option<String>) -> Result<std::path::PathBuf> { use hf_hub::api::sync::Api; match filename { Some(filename) => Ok(std::path::PathBuf::from(filename)), None => { let repo_main = "warp-ai/wuerstchen"; let repo_prior = "warp-ai/wuerstchen-prior"; let (repo, path) = match self { Self::Tokenizer => (repo_main, "tokenizer/tokenizer.json"), Self::PriorTokenizer => (repo_prior, "tokenizer/tokenizer.json"), Self::Clip => (repo_main, "text_encoder/model.safetensors"), Self::PriorClip => (repo_prior, "text_encoder/model.safetensors"), Self::Decoder => (repo_main, "decoder/diffusion_pytorch_model.safetensors"), Self::VqGan => (repo_main, "vqgan/diffusion_pytorch_model.safetensors"), Self::Prior => (repo_prior, "prior/diffusion_pytorch_model.safetensors"), }; let filename = Api::new()?.model(repo.to_string()).get(path)?; Ok(filename) } } } } fn output_filename( basename: &str, sample_idx: i64, num_samples: i64, timestep_idx: Option<usize>, ) -> String { let filename = if num_samples > 1 { match basename.rsplit_once('.') { None => format!("{basename}.{sample_idx}.png"), Some((filename_no_extension, extension)) => { format!("{filename_no_extension}.{sample_idx}.{extension}") } } } else { basename.to_string() }; match timestep_idx { None => filename, Some(timestep_idx) => match filename.rsplit_once('.') { None => format!("{filename}-{timestep_idx}.png"), Some((filename_no_extension, extension)) => { format!("{filename_no_extension}-{timestep_idx}.{extension}") } }, } } fn encode_prompt( prompt: &str, uncond_prompt: Option<&str>, tokenizer: std::path::PathBuf, clip_weights: std::path::PathBuf, clip_config: stable_diffusion::clip::Config, device: &Device, ) -> Result<Tensor> { let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?; let pad_id = match &clip_config.pad_with { Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(), None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(), }; println!("Running with prompt \"{prompt}\"."); let mut tokens = tokenizer .encode(prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); let tokens_len = tokens.len(); while tokens.len() < clip_config.max_position_embeddings { tokens.push(pad_id) } let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?; println!("Building the clip transformer."); let text_model = stable_diffusion::build_clip_transformer(&clip_config, clip_weights, device, DType::F32)?; let text_embeddings = text_model.forward_with_mask(&tokens, tokens_len - 1)?; match uncond_prompt { None => Ok(text_embeddings), Some(uncond_prompt) => { let mut uncond_tokens = tokenizer .encode(uncond_prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); let uncond_tokens_len = uncond_tokens.len(); while uncond_tokens.len() < clip_config.max_position_embeddings { uncond_tokens.push(pad_id) } let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), device)?.unsqueeze(0)?; let uncond_embeddings = text_model.forward_with_mask(&uncond_tokens, uncond_tokens_len - 1)?; let text_embeddings = Tensor::cat(&[text_embeddings, uncond_embeddings], 0)?; Ok(text_embeddings) } } } fn run(args: Args) -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let Args { prompt, uncond_prompt, cpu, height, width, tokenizer, final_image, num_samples, clip_weights, prior_weights, vqgan_weights, decoder_weights, tracing, .. } = args; let _guard = if tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; let device = candle_examples::device(cpu)?; let height = height.unwrap_or(1024); let width = width.unwrap_or(1024); let prior_text_embeddings = { let tokenizer = ModelFile::PriorTokenizer.get(args.prior_tokenizer)?; let weights = ModelFile::PriorClip.get(args.prior_clip_weights)?; encode_prompt( &prompt, Some(&uncond_prompt), tokenizer.clone(), weights, stable_diffusion::clip::Config::wuerstchen_prior(), &device, )? }; println!("generated prior text embeddings {prior_text_embeddings:?}"); let text_embeddings = { let tokenizer = ModelFile::Tokenizer.get(tokenizer)?; let weights = ModelFile::Clip.get(clip_weights)?; encode_prompt( &prompt, None, tokenizer.clone(), weights, stable_diffusion::clip::Config::wuerstchen(), &device, )? }; println!("generated text embeddings {text_embeddings:?}"); println!("Building the prior."); let b_size = 1; let image_embeddings = { // https://huggingface.co/warp-ai/wuerstchen-prior/blob/main/prior/config.json let latent_height = (height as f64 / RESOLUTION_MULTIPLE).ceil() as usize; let latent_width = (width as f64 / RESOLUTION_MULTIPLE).ceil() as usize; let mut latents = Tensor::randn( 0f32, 1f32, (b_size, PRIOR_CIN, latent_height, latent_width), &device, )?; let prior = { let file = ModelFile::Prior.get(prior_weights)?; let vb = unsafe { candle_nn::VarBuilder::from_mmaped_safetensors(&[file], DType::F32, &device)? }; wuerstchen::prior::WPrior::new( /* c_in */ PRIOR_CIN, /* c */ 1536, /* c_cond */ 1280, /* c_r */ 64, /* depth */ 32, /* nhead */ 24, args.use_flash_attn, vb, )? }; let prior_scheduler = wuerstchen::ddpm::DDPMWScheduler::new(60, Default::default())?; let timesteps = prior_scheduler.timesteps(); let timesteps = &timesteps[..timesteps.len() - 1]; println!("prior denoising"); for (index, &t) in timesteps.iter().enumerate() { let start_time = std::time::Instant::now(); let latent_model_input = Tensor::cat(&[&latents, &latents], 0)?; let ratio = (Tensor::ones(2, DType::F32, &device)? * t)?; let noise_pred = prior.forward(&latent_model_input, &ratio, &prior_text_embeddings)?; let noise_pred = noise_pred.chunk(2, 0)?; let (noise_pred_text, noise_pred_uncond) = (&noise_pred[0], &noise_pred[1]); let noise_pred = (noise_pred_uncond + ((noise_pred_text - noise_pred_uncond)? * PRIOR_GUIDANCE_SCALE)?)?; latents = prior_scheduler.step(&noise_pred, t, &latents)?; let dt = start_time.elapsed().as_secs_f32(); println!("step {}/{} done, {:.2}s", index + 1, timesteps.len(), dt); } ((latents * 42.)? - 1.)? }; println!("Building the vqgan."); let vqgan = { let file = ModelFile::VqGan.get(vqgan_weights)?; let vb = unsafe { candle_nn::VarBuilder::from_mmaped_safetensors(&[file], DType::F32, &device)? }; wuerstchen::paella_vq::PaellaVQ::new(vb)? }; println!("Building the decoder."); // https://huggingface.co/warp-ai/wuerstchen/blob/main/decoder/config.json let decoder = { let file = ModelFile::Decoder.get(decoder_weights)?; let vb = unsafe { candle_nn::VarBuilder::from_mmaped_safetensors(&[file], DType::F32, &device)? }; wuerstchen::diffnext::WDiffNeXt::new( /* c_in */ DECODER_CIN, /* c_out */ DECODER_CIN, /* c_r */ 64, /* c_cond */ 1024, /* clip_embd */ 1024, /* patch_size */ 2, args.use_flash_attn, vb, )? }; for idx in 0..num_samples { // https://huggingface.co/warp-ai/wuerstchen/blob/main/model_index.json let latent_height = (image_embeddings.dim(2)? as f64 * LATENT_DIM_SCALE) as usize; let latent_width = (image_embeddings.dim(3)? as f64 * LATENT_DIM_SCALE) as usize; let mut latents = Tensor::randn( 0f32, 1f32, (b_size, DECODER_CIN, latent_height, latent_width), &device, )?; println!("diffusion process with prior {image_embeddings:?}"); let scheduler = wuerstchen::ddpm::DDPMWScheduler::new(12, Default::default())?; let timesteps = scheduler.timesteps(); let timesteps = &timesteps[..timesteps.len() - 1]; for (index, &t) in timesteps.iter().enumerate() { let start_time = std::time::Instant::now(); let ratio = (Tensor::ones(1, DType::F32, &device)? * t)?; let noise_pred = decoder.forward(&latents, &ratio, &image_embeddings, Some(&text_embeddings))?; latents = scheduler.step(&noise_pred, t, &latents)?; let dt = start_time.elapsed().as_secs_f32(); println!("step {}/{} done, {:.2}s", index + 1, timesteps.len(), dt); } println!( "Generating the final image for sample {}/{}.", idx + 1, num_samples ); let image = vqgan.decode(&(&latents * 0.3764)?)?; let image = (image.clamp(0f32, 1f32)? * 255.)? .to_dtype(DType::U8)? .i(0)?; let image_filename = output_filename(&final_image, idx + 1, num_samples, None); candle_examples::save_image(&image, image_filename)? } Ok(()) } fn main() -> Result<()> { let args = Args::parse(); run(args) }
candle/candle-examples/examples/wuerstchen/main.rs/0
{ "file_path": "candle/candle-examples/examples/wuerstchen/main.rs", "repo_id": "candle", "token_count": 6372 }
26
use candle::Result; /// This is a wrapper around a tokenizer to ensure that tokens can be returned to the user in a /// streaming way rather than having to wait for the full decoding. pub struct TokenOutputStream { tokenizer: tokenizers::Tokenizer, tokens: Vec<u32>, prev_index: usize, current_index: usize, } impl TokenOutputStream { pub fn new(tokenizer: tokenizers::Tokenizer) -> Self { Self { tokenizer, tokens: Vec::new(), prev_index: 0, current_index: 0, } } pub fn into_inner(self) -> tokenizers::Tokenizer { self.tokenizer } fn decode(&self, tokens: &[u32]) -> Result<String> { match self.tokenizer.decode(tokens, true) { Ok(str) => Ok(str), Err(err) => candle::bail!("cannot decode: {err}"), } } // https://github.com/huggingface/text-generation-inference/blob/5ba53d44a18983a4de32d122f4cb46f4a17d9ef6/server/text_generation_server/models/model.py#L68 pub fn next_token(&mut self, token: u32) -> Result<Option<String>> { let prev_text = if self.tokens.is_empty() { String::new() } else { let tokens = &self.tokens[self.prev_index..self.current_index]; self.decode(tokens)? }; self.tokens.push(token); let text = self.decode(&self.tokens[self.prev_index..])?; if text.len() > prev_text.len() && text.chars().last().unwrap().is_ascii() { let text = text.split_at(prev_text.len()); self.prev_index = self.current_index; self.current_index = self.tokens.len(); Ok(Some(text.1.to_string())) } else { Ok(None) } } pub fn decode_rest(&self) -> Result<Option<String>> { let prev_text = if self.tokens.is_empty() { String::new() } else { let tokens = &self.tokens[self.prev_index..self.current_index]; self.decode(tokens)? }; let text = self.decode(&self.tokens[self.prev_index..])?; if text.len() > prev_text.len() { let text = text.split_at(prev_text.len()); Ok(Some(text.1.to_string())) } else { Ok(None) } } pub fn decode_all(&self) -> Result<String> { self.decode(&self.tokens) } pub fn get_token(&self, token_s: &str) -> Option<u32> { self.tokenizer.get_vocab(true).get(token_s).copied() } pub fn tokenizer(&self) -> &tokenizers::Tokenizer { &self.tokenizer } pub fn clear(&mut self) { self.tokens.clear(); self.prev_index = 0; self.current_index = 0; } }
candle/candle-examples/src/token_output_stream.rs/0
{ "file_path": "candle/candle-examples/src/token_output_stream.rs", "repo_id": "candle", "token_count": 1295 }
27
use core::ffi::{c_int, c_void}; extern "C" { pub(crate) fn run_mha( q_ptr: *const c_void, k_ptr: *const c_void, v_ptr: *const c_void, o_ptr: *const c_void, softmax_lse_ptr: *const c_void, alibi_slopes_ptr: *const c_void, cu_seqlens_q_ptr: *const i32, cu_seqlens_k_ptr: *const i32, q_batch_stride: u32, k_batch_stride: u32, v_batch_stride: u32, o_batch_stride: u32, alibi_slopes_batch_stride: u32, q_row_stride: u32, k_row_stride: u32, v_row_stride: u32, o_row_stride: u32, q_head_stride: u32, k_head_stride: u32, v_head_stride: u32, o_head_stride: u32, b: u32, h: u32, h_k: u32, d: u32, d_rounded: u32, softmax_scale: f32, seqlen_q: u32, seqlen_k: u32, seqlen_q_rounded: u32, seqlen_k_rounded: u32, is_bf16: c_int, is_causal: c_int, window_size_left: c_int, window_size_right: c_int, ); }
candle/candle-flash-attn/src/ffi.rs/0
{ "file_path": "candle/candle-flash-attn/src/ffi.rs", "repo_id": "candle", "token_count": 670 }
28
#include "cuda_utils.cuh" #include <cmath> #include <stdint.h> const int BLOCK_SIZE = 1024; // TODO: Maybe add some fast_sum_f16_f32 variant that not only accumulate in f32 // but also expect a f32 output so that this can be used for normalization e.g. // in softmax. // Fast reduce sum kernel, this assumes that the dimensions to loop over are at // the end, each block is responsible for populating one value in the output // array. There are at most 1024 threads per block. template <typename T> __device__ void fast_sum(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, T *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = 0; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); shr[tid] += src[strided_i]; idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s) shr[tid] += shr[tid + s]; } if (tid == 0) dst[dst_id] = shr[0]; } // Softmax implementation adapted from ggml. // https://github.com/ggerganov/llama.cpp/blob/d59bd97065cd7ded6c4ecab54b1d5e0b1b11e318/ggml-cuda.cu#L4159 template <typename T, typename ACC> __device__ void softmax(const T * x, T * dst, const int ncols) { const int row = blockDim.x*blockIdx.x + threadIdx.x; const int block_size = blockDim.y; const int tid = threadIdx.y; T max_val = -INFINITY; for (int col = tid; col < ncols; col += block_size) { const int i = row*ncols + col; max_val = maxg(max_val, x[i]); } // find the max value in the block #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { max_val = maxg(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32)); } ACC tmp = 0.; for (int col = tid; col < ncols; col += block_size) { const int i = row*ncols + col; const T val = expg(x[i] - max_val); tmp += static_cast<ACC>(val); dst[i] = val; } // sum up partial sums #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } const ACC inv_tmp = 1. / tmp; for (int col = tid; col < ncols; col += block_size) { const int i = row*ncols + col; dst[i] *= inv_tmp; } } template <typename T> __device__ void fast_max(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, T *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = -INFINITY; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); shr[tid] = maxg(shr[tid], src[strided_i]); idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s) shr[tid] = maxg(shr[tid], shr[tid + s]); } if (tid == 0) dst[dst_id] = shr[0]; } template <typename T> __device__ void fast_min(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, T *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = INFINITY; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); shr[tid] = ming(shr[tid], src[strided_i]); idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s) shr[tid] = ming(shr[tid], shr[tid + s]); } if (tid == 0) dst[dst_id] = shr[0]; } template <typename T> __device__ void fast_argmin(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; __shared__ uint32_t shr_index[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; // Not sure how that works on uint32_t and uint8_t but it seems to do ok. shr[tid] = INFINITY; shr_index[tid] = 0xFFFFFFFF; bool not_set = true; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); if (not_set || src[strided_i] < shr[tid]) { shr[tid] = src[strided_i]; // Assume that the reduction takes place over the last dimension which is contiguous. shr_index[tid] = idx % dims[num_dims - 1]; not_set = false; } idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s && shr[tid + s] < shr[tid]) { shr[tid] = shr[tid + s]; shr_index[tid] = shr_index[tid + s]; } } if (tid == 0) dst[dst_id] = shr_index[0]; } template <typename T> __device__ void fast_argmax(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; __shared__ uint32_t shr_index[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = -INFINITY; shr_index[tid] = 0xFFFFFFFF; bool not_set = true; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); if (not_set || src[strided_i] > shr[tid]) { shr[tid] = src[strided_i]; // Assume that the reduction takes place over the last dimension which is contiguous. shr_index[tid] = idx % dims[num_dims - 1]; not_set = false; } idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s && shr[tid + s] > shr[tid]) { shr[tid] = shr[tid + s]; shr_index[tid] = shr_index[tid + s]; } } if (tid == 0) dst[dst_id] = shr_index[0]; } #define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, ARGMIN_NAME, ARGMAX_NAME, SUM_NAME) \ extern "C" __global__ void ARGMIN_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ uint32_t *dst) { \ fast_argmin(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void ARGMAX_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ uint32_t *dst) { \ fast_argmax(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void MIN_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ TYPENAME *dst) { \ fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void MAX_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ TYPENAME *dst) { \ fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void SUM_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ TYPENAME *dst) { \ fast_sum(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } #define SUM_OP(TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t numel, const size_t num_dims, const size_t num_sum_dims, \ const size_t *info, const TYPENAME *inp, TYPENAME *out) { \ const size_t *dims = info; \ const size_t *strides = info + num_dims; \ const size_t *sum_dims_l = info + 2 * num_dims; \ const size_t *sum_dims_s = info + 2 * num_dims + num_sum_dims; \ if (is_contiguous(num_dims, dims, strides)) { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \ i += blockDim.x * gridDim.x) { \ size_t dst_index = i; \ for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \ size_t stride = sum_dims_s[nd]; \ size_t pre = dst_index / stride; \ size_t post = dst_index % stride; \ dst_index = (pre / sum_dims_l[nd]) * stride + post; \ } \ atomicAdd(out + dst_index, inp[i]); \ } \ } else { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \ i += blockDim.x * gridDim.x) { \ unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \ size_t dst_index = i; \ for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \ size_t stride = sum_dims_s[nd]; \ size_t pre = dst_index / stride; \ size_t post = dst_index % stride; \ dst_index = (pre / sum_dims_l[nd]) * stride + post; \ } \ atomicAdd(out + dst_index, inp[strided_i]); \ } \ } \ } #define SOFTMAX_OP(TYPENAME, ACC_TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const TYPENAME *src, TYPENAME *dst, \ const int n_cols) { \ softmax<TYPENAME, ACC_TYPENAME>(src, dst, n_cols); \ } \ #if __CUDA_ARCH__ >= 800 SOFTMAX_OP(__nv_bfloat16, float, softmax_bf16) SUM_OP(__nv_bfloat16, sum_bf16) FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_argmin_bf16, fast_argmax_bf16, fast_sum_bf16) #endif #if __CUDA_ARCH__ >= 530 SOFTMAX_OP(__half, float, softmax_f16) SUM_OP(__half, sum_f16) FAST_OP(__half, fast_min_f16, fast_max_f16, fast_argmin_f16, fast_argmax_f16, fast_sum_f16) #endif SUM_OP(float, sum_f32) SUM_OP(double, sum_f64) SUM_OP(uint32_t, sum_u32) SOFTMAX_OP(float, float, softmax_f32) SOFTMAX_OP(double, double, softmax_f64) FAST_OP(float, fast_min_f32, fast_max_f32, fast_argmin_f32, fast_argmax_f32, fast_sum_f32) FAST_OP(double, fast_min_f64, fast_max_f64, fast_argmin_f64, fast_argmax_f64, fast_sum_f64) FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_argmin_u32, fast_argmax_u32, fast_sum_u32) FAST_OP(int64_t, fast_min_i64, fast_max_i64, fast_argmin_i64, fast_argmax_i64, fast_sum_i64) FAST_OP(uint8_t, fast_min_u8, fast_max_u8, fast_argmin_u8, fast_argmax_u8, fast_sum_u8)
candle/candle-kernels/src/reduce.cu/0
{ "file_path": "candle/candle-kernels/src/reduce.cu", "repo_id": "candle", "token_count": 8419 }
29
use super::*; use half::{bf16, f16}; use metal::{Buffer, Device, MTLResourceOptions}; fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> { let ptr = buffer.contents() as *const T; assert!(!ptr.is_null()); let slice = unsafe { std::slice::from_raw_parts(ptr, n) }; slice.to_vec() } fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer { let options = MTLResourceOptions::StorageModeManaged; let ptr = data.as_ptr() as *const c_void; let size = (data.len() * std::mem::size_of::<T>()) as u64; device.new_buffer_with_data(ptr, size, options) } fn device() -> Device { Device::system_default().unwrap() } fn approx(v: Vec<f32>, digits: i32) -> Vec<f32> { let b = 10f32.powi(digits); v.iter().map(|t| f32::round(t * b) / b).collect() } fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> { let b = 10f32.powi(digits); v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect() } fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> { let b = 10f32.powi(digits); v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect() } fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); call_unary_contiguous( &device, command_buffer, &kernels, name, v.len(), &input, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let left = new_buffer(&device, x); let right = new_buffer(&device, y); let output = device.new_buffer(std::mem::size_of_val(x) as u64, options); call_binary_contiguous( &device, command_buffer, &kernels, name, x.len(), &left, &right, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, x.len()) } fn run_strided<T: Clone>( v: &[T], kernel: unary::strided::Kernel, shape: &[usize], strides: &[usize], offset: usize, ) -> Vec<T> { let device = device(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); let kernels = Kernels::new(); call_unary_strided( &device, command_buffer, &kernels, kernel, shape, &input, strides, offset, &output, 0, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } #[test] fn cos_f32() { let v = vec![1.0f32, 2.0, 3.0]; let results = run(&v, unary::contiguous::cos::FLOAT); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(results, 4), vec![0.5403, -0.4161, -0.99]); assert_eq!(approx(expected, 4), vec![0.5403, -0.4161, -0.99]); let v = vec![1.0f32; 10_000]; let results = run(&v, unary::contiguous::cos::FLOAT); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(results, 4), vec![0.5403; 10_000]); assert_eq!(approx(expected, 4), vec![0.5403; 10_000]); } #[test] fn cos_f32_strided() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let shape = vec![6]; let strides = vec![1]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!( approx(results, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); assert_eq!( approx(expected, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); // Contiguous let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let shape = vec![3, 2]; let strides = vec![2, 1]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!( approx(results, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); assert_eq!( approx(expected, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); // Transposed let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let shape = vec![3, 2]; let strides = vec![1, 3]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!( approx(results, 4), vec![0.5403, -0.6536, -0.4161, 0.2837, -0.99, 0.9602] ); assert_eq!( approx(expected, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); // Very large let v = vec![1.0f32; 10_000]; let shape = vec![2, 5_000]; let strides = vec![2, 1]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(results, 4), vec![0.5403; 10_000]); assert_eq!(approx(expected, 4), vec![0.5403; 10_000]); } #[test] fn cos_strided_random() { let v: Vec<_> = (0..10_000).map(|_| rand::random::<f32>()).collect(); let shape = vec![5_000, 2]; let strides = vec![1, 5_000]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(vec![results[0]], 4), approx(vec![expected[0]], 4)); assert_eq!( approx(vec![results[1]], 4), approx(vec![expected[5_000]], 4) ); assert_eq!(approx(vec![results[2]], 4), approx(vec![expected[1]], 4)); assert_eq!( approx(vec![results[3]], 4), approx(vec![expected[5_001]], 4) ); assert_eq!( approx(vec![results[5_000]], 4), approx(vec![expected[2_500]], 4) ); } #[test] fn gelu_f16() { let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0]; let results = run(&v, unary::contiguous::gelu::HALF); assert_eq!(approx_f16(results, 2), expected); } #[test] fn gelu_f32() { let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]; let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0]; let results = run(&v, unary::contiguous::gelu::FLOAT); assert_eq!(approx(results, 3), expected); } #[test] fn binary_add_f32() { let left = vec![1.0f32, 2.0, 3.0]; let right = vec![2.0f32, 3.1, 4.2]; let results = run_binary(&left, &right, binary::contiguous::add::FLOAT); let expected: Vec<_> = left .iter() .zip(right.iter()) .map(|(&x, &y)| x + y) .collect(); assert_eq!(approx(results, 4), vec![3.0f32, 5.1, 7.2]); assert_eq!(approx(expected, 4), vec![3.0f32, 5.1, 7.2]); } #[test] fn binary_ops_bf16() { let lhs: Vec<bf16> = [1.1f32, 2.2, 3.3].into_iter().map(bf16::from_f32).collect(); let rhs: Vec<bf16> = [4.2f32, 5.5f32, 6.91f32] .into_iter() .map(bf16::from_f32) .collect(); macro_rules! binary_op { ($opname:ident, $opexpr:expr) => {{ let results = run_binary(&lhs, &rhs, binary::contiguous::$opname::BFLOAT); let expected: Vec<bf16> = lhs .iter() .zip(rhs.iter()) .map(|(x, y): (&bf16, &bf16)| $opexpr(*x, *y)) .collect(); assert_eq!(results, expected); }}; } binary_op!(add, |x, y| x + y); binary_op!(sub, |x, y| x - y); binary_op!(mul, |x, y| x * y); binary_op!(div, |x, y| x / y); binary_op!(min, |x: bf16, y| x.min(y)); binary_op!(max, |x: bf16, y| x.max(y)); } fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let options = MTLResourceOptions::StorageModeManaged; let size = (v.len() * std::mem::size_of::<U>()) as u64; let output = device.new_buffer(size, options); call_cast_contiguous( &device, command_buffer, &kernels, name, v.len(), &input, 0, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } #[test] fn cast_u32_f32() { let v = vec![1u32, 2, 3]; let results = cast(&v, "cast_u32_f32"); let expected: Vec<_> = v.iter().map(|&v| v as f32).collect(); assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]); assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]); let v = vec![1.0f32, 2.0, 3.0]; let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect(); let results: Vec<f32> = cast(&input, "cast_f16_f32"); assert_eq!(results, vec![1.0f32, 2.0, 3.0]); let v = vec![1.0f32; 10_000]; let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect(); let results: Vec<f32> = cast(&input, "cast_f16_f32"); assert_eq!(results.len(), 10_000); assert_eq!(&results[..10], vec![1.0f32; 10]); assert_eq!(results, vec![1.0f32; 10_000]); } #[test] fn it_cast_bf16_u32() { let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect(); let output: Vec<u32> = cast(&input, "cast_bf16_u32"); let expected: Vec<u32> = (1..=3).map(|v| v as u32).collect(); assert_eq!(output, expected); } #[test] fn it_cast_bf16_f32() { let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect(); let output: Vec<f32> = cast(&input, "cast_bf16_f32"); let expected: Vec<f32> = (1..=3).map(|v| v as f32).collect(); assert_eq!(output, expected); } #[test] fn it_cast_u8_bf16() { let input: Vec<u8> = (1..=3).map(|v| v as u8).collect(); let output: Vec<bf16> = cast(&input, "cast_u8_bf16"); let expected: Vec<bf16> = input .iter() .map(|v| bf16::from_f32(*v as f32)) .collect::<Vec<_>>(); assert_eq!(output, expected); } #[test] fn it_cast_u32_bf16() { let input: Vec<u32> = (1..=3).map(|v| v as u32).collect(); let output: Vec<bf16> = cast(&input, "cast_u32_bf16"); let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(*v as f32)).collect(); assert_eq!(output, expected); } #[test] fn it_cast_f32_bf16() { let input: Vec<f32> = (1..=3).map(|v| v as f32).collect(); let output: Vec<bf16> = cast(&input, "cast_f32_bf16"); let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(*v as f32)).collect(); assert_eq!(output, expected); } #[test] fn it_cast_bf16_u8() { let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect(); let output: Vec<u8> = cast(&input, "cast_bf16_u8"); let expected: Vec<u8> = input.iter().map(|v| v.to_f32() as u8).collect(); assert_eq!(output, expected); } #[test] fn it_cast_bf16_f16() { let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect(); let output: Vec<f16> = cast(&input, "cast_bf16_f16"); let expected: Vec<f16> = input.iter().map(|v| f16::from_f32(v.to_f32())).collect(); assert_eq!(output, expected); } #[test] fn it_cast_f16_bf16() { let input: Vec<f16> = (1..=3).map(|v| f16::from_f32(v as f32)).collect(); let output: Vec<bf16> = cast(&input, "cast_f16_bf16"); let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(v.to_f32())).collect(); assert_eq!(output, expected); } fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); let size = v.len(); call_affine( &device, command_buffer, &kernels, "affine_f32", size, &input, &output, mul as f32, add as f32, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } fn run_affine_strided<T: Clone>( v: &[T], shape: &[usize], strides: &[usize], mul: f64, add: f64, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); call_affine_strided( &device, command_buffer, &kernels, "affine_f32_strided", shape, &input, strides, 0, &output, mul as f32, add as f32, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); let len: usize = shape.iter().product(); read_to_vec(&output, len) } #[test] fn affine() { let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; let mul = 1.5; let add = 1.1; let result = run_affine(&input, mul, add); assert_eq!(result, vec![2.6, 4.1, 5.6, 7.1, 8.6, 10.1, 11.6, 13.1]); let input = [1.0f32; 40_000]; let mul = 1.5; let add = 1.1; let result = run_affine(&input, mul, add); assert_eq!(result, vec![2.6; 40_000]); } #[test] fn affine_strided() { let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; let mul = 1.5; let add = 1.1; let shape = [4]; let strides = [2]; let result = run_affine_strided(&input, &shape, &strides, mul, add); // 1 on 2 assert_eq!(result, vec![2.6, 5.6, 8.6, 11.6]); } #[test] fn index_select() { let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]; let shape = [5, 2]; let ids = [0u32, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f32"); assert_eq!(result, vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]); let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]; let shape = [2, 5]; let ids = [0u32, 1, 0]; let dim = 0; let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f32"); assert_eq!( result, vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0] ); } #[test] fn index_select_f16() { let embedding: Vec<_> = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] .into_iter() .map(|x| f16::from_f32(x)) .collect(); let shape = [5, 2]; let ids = [0u32, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f16"); assert_eq!( approx_f16(result, 4), vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0] ); } #[test] fn index_select_is_u32_bf16() { let embedding: Vec<bf16> = (1..=10).map(|x| bf16::from_f32(x as f32)).collect(); let shape = [5, 2]; let ids = [0u32, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_bf16"); assert_eq!( approx_bf16(result, 4), vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0] ); } #[test] fn index_select_is_u8_bf16() { let embedding: Vec<bf16> = (1..=10).map(|x| bf16::from_f32(x as f32)).collect(); let shape = [5, 2]; let ids = [0u8, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &ids, dim, "is_u8_bf16"); assert_eq!( approx_bf16(result, 4), vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0] ); } #[test] fn index_select_dim1() { let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]; let shape = [5, 2]; let ids = [0u32, 1, 0]; let dim = 1; let result = run_index_select(&embedding, &shape, &ids, dim, "is_u32_f32"); assert_eq!( result, vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0] ); } fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>( embeddings: &[T], shape: &[usize], ids: &[I], dim: usize, name: &'static str, ) -> Vec<T> { let device = Device::system_default().expect("no device found"); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let embeddings_buffer = new_buffer(&device, &embeddings); let ids_buffer = new_buffer(&device, &ids); let left_size: usize = shape[..dim].iter().product(); let right_size: usize = shape[dim + 1..].iter().product(); let dst_el = ids.len() * left_size * right_size; let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]); let kernels = Kernels::new(); call_index_select( &device, &command_buffer, &kernels, name, shape, ids.len(), dim, &embeddings_buffer, &ids_buffer, &dst_buffer, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&dst_buffer, dst_el) } #[test] fn cos_f16() { let v: Vec<f16> = [1.0f32, 2.0, 3.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let results = run(&v, unary::contiguous::cos::HALF); let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect(); assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]); assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]); } fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let options = MTLResourceOptions::StorageModeManaged; let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options); let dims = vec![v.len()]; let strides = vec![1]; call_reduce_strided( &device, command_buffer, &kernels, name, &dims, &strides, out_length, &input, 0, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, out_length) } fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); call_last_softmax( &device, command_buffer, &kernels, name, v.len(), last_dim, &input, 0, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } #[test] fn reduce_sum() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let out_length = 1; let results = run_reduce(&v, out_length, "fast_sum_f32_strided"); assert_eq!(approx(results, 4), vec![21.0]); } #[test] fn reduce_sum2() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let out_length = 2; let results = run_reduce(&v, out_length, "fast_sum_f32_strided"); assert_eq!(approx(results, 4), vec![6.0, 15.0]); } #[test] fn softmax() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_f32"); assert_eq!( approx(results, 4), vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337] ); let last_dim = 4096; let n = 200; let mut v = vec![0.0; n * last_dim]; for i in 0..n { v[i * last_dim] = 20.0; } let results = run_softmax(&v, last_dim, "softmax_f32"); let results = approx(results, 4); assert_eq!( results.iter().map(|&s| s.round() as usize).sum::<usize>(), n ); assert_eq!(results[0], 1.0); assert_eq!(results[1], 0.0); assert_eq!(results[last_dim], 1.0); assert_eq!(results[2 * last_dim], 1.0); let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0]; let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_f32"); assert_eq!( approx(results, 4), vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337] ); let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let last_dim = 3; let results = run_softmax(&v, last_dim, "softmax_f32"); assert_eq!( approx(results, 4), vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652] ); let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0] .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_f16"); assert_eq!( approx_f16(results, 4), vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338] ); let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0] .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_bf16"); assert_eq!( approx_bf16(results, 4), vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328] ); } fn run_where_cond<I: Clone, T: Clone>( shape: &[usize], cond: &[I], (cond_stride, cond_offset): (Vec<usize>, usize), left_true: &[T], (left_stride, left_offset): (Vec<usize>, usize), right_false: &[T], (_right_stride, _right_offset): (Vec<usize>, usize), name: &'static str, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let length = cond.len(); let cond = device.new_buffer_with_data( cond.as_ptr() as *const core::ffi::c_void, std::mem::size_of_val(cond) as u64, options, ); let left = device.new_buffer_with_data( left_true.as_ptr() as *const core::ffi::c_void, (length * core::mem::size_of::<T>()) as u64, options, ); let right = device.new_buffer_with_data( right_false.as_ptr() as *const core::ffi::c_void, (length * core::mem::size_of::<T>()) as u64, options, ); let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options); call_where_cond_strided( &device, command_buffer, &kernels, name, shape, &cond, (&cond_stride, cond_offset), &left, (&left_stride, left_offset), &right, (&cond_stride, cond_offset), &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, length) } #[test] fn where_cond() { let shape = vec![6]; let cond = vec![0u8, 1, 0, 0, 1, 1]; let cond_l = (vec![1], 0); let left_true = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let left_l = (vec![1], 0); let right_false = vec![-1.0f32, -2.0, -3.0, -4.0, -5.0, -6.0]; let right_l = (vec![1], 0); let results = run_where_cond( &shape, &cond, cond_l, &left_true, left_l, &right_false, right_l, "where_u8_f32", ); assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]); } fn run_gemm<T: Clone>( (b, m, n, k): (usize, usize, usize, usize), lhs: &[T], lhs_stride: Vec<usize>, lhs_offset: usize, rhs: &[T], rhs_stride: Vec<usize>, rhs_offset: usize, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let lhs = device.new_buffer_with_data( lhs.as_ptr() as *const core::ffi::c_void, std::mem::size_of_val(lhs) as u64, options, ); let rhs = device.new_buffer_with_data( rhs.as_ptr() as *const core::ffi::c_void, std::mem::size_of_val(rhs) as u64, options, ); let length = b * m * n; let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options); call_gemm( &device, command_buffer, &kernels, "sgemm", (b, m, n, k), &lhs_stride, lhs_offset, &lhs, &rhs_stride, rhs_offset, &rhs, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, length) } #[test] fn gemm() { let (b, m, n, k) = (1, 2, 4, 3); let lhs_stride = vec![m * k, k, 1]; let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let rhs_stride = vec![n * k, n, 1]; let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0); assert_eq!( approx(results, 4), vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0] ); let (b, m, n, k) = (2, 2, 4, 3); let lhs_stride = vec![m * k, k, 1]; let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let rhs_stride = vec![n * k, n, 1]; let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0); assert_eq!( approx(results, 4), vec![ 20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0, 344.0, 365.0, 386.0, 407.0, 488.0, 518.0, 548.0, 578.0 ] ); // OFFSET let (b, m, n, k) = (2, 2, 4, 3); let lhs_stride = vec![m * k, k, 1]; let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let rhs_stride = vec![n * k, n, 1]; let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); // Manually set batch_size=1 and offset 12 elements * 4 the number of bytes for f32 let results = run_gemm((1, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 12 * 4); assert_eq!( approx(results, 4), vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0] ); } fn run_random<T: Clone>(name: &'static str, seed: u32, length: usize, a: f32, b: f32) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let output = device.new_buffer((length * core::mem::size_of::<T>()) as NSUInteger, options); let seed = device.new_buffer_with_data( &seed as *const u32 as *const core::ffi::c_void, std::mem::size_of::<u32>() as NSUInteger, options, ); if name.starts_with("rand_uniform") { call_random_uniform( &device, command_buffer, &kernels, name, a, b, length, &seed, &output, ) .unwrap(); } else { call_random_normal( &device, command_buffer, &kernels, name, a, b, length, &seed, &output, ) .unwrap(); } command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, length) } #[test] fn random() { fn calc_mean(data: &[f32]) -> f32 { let sum = data.iter().sum::<f32>() as f32; let count = data.len(); assert!(count > 0); sum / count as f32 } fn calc_stddev(data: &[f32]) -> f32 { let mean = calc_mean(data); let count = data.len(); assert!(count > 0); let variance = data .iter() .map(|value| { let diff = mean - (*value as f32); diff * diff }) .sum::<f32>() / count as f32; variance.sqrt() } let shape = vec![1024, 10]; let length = shape.iter().product::<usize>(); let seed = 299792458; let min = -30.0; let max = 30.0; let mean = 100.0; let stddev = 50.0; macro_rules! validate_random { ($type:ty) => { let results: Vec<f32> = run_random::<$type>( concat!("rand_uniform_", stringify!($type)), seed, length, min, max, ) .into_iter() .map(f32::from) .collect(); results.iter().for_each(|v| { assert!(*v >= min && *v <= max); }); assert!(calc_mean(&results) > -1.0 && calc_mean(&results) < 1.0); let results: Vec<f32> = run_random::<$type>( concat!("rand_normal_", stringify!($type)), seed, length, mean, stddev, ) .into_iter() .map(f32::from) .collect(); assert!((calc_mean(&results) - mean).abs() < mean / 10.0); assert!((calc_stddev(&results) - stddev).abs() < stddev / 10.0); }; } validate_random!(f32); validate_random!(f16); validate_random!(bf16); }
candle/candle-metal-kernels/src/tests.rs/0
{ "file_path": "candle/candle-metal-kernels/src/tests.rs", "repo_id": "candle", "token_count": 15462 }
30
//! Group Normalization. //! //! This layer applies Group Normalization over a mini-batch of inputs. use candle::{DType, Result, Tensor}; // This group norm version handles both weight and bias so removes the mean. #[derive(Clone, Debug)] pub struct GroupNorm { weight: Tensor, bias: Tensor, eps: f64, num_channels: usize, num_groups: usize, } impl GroupNorm { pub fn new( weight: Tensor, bias: Tensor, num_channels: usize, num_groups: usize, eps: f64, ) -> Result<Self> { if num_channels % num_groups != 0 { candle::bail!( "GroupNorm: num_groups ({num_groups}) must divide num_channels ({num_channels})" ) } Ok(Self { weight, bias, eps, num_channels, num_groups, }) } } impl crate::Module for GroupNorm { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x_shape = x.dims(); if x_shape.len() <= 2 { candle::bail!("input rank for GroupNorm should be at least 3"); } let (b_sz, n_channels) = (x_shape[0], x_shape[1]); let hidden_size = x_shape[2..].iter().product::<usize>() * n_channels / self.num_groups; if n_channels != self.num_channels { candle::bail!( "unexpected num-channels in GroupNorm ({n_channels} <> {}", self.num_channels ) } let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; let x = x.reshape((b_sz, self.num_groups, hidden_size))?; let x = x.to_dtype(internal_dtype)?; let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?; let x = x.broadcast_sub(&mean_x)?; let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; let mut w_dims = vec![1; x_shape.len()]; w_dims[1] = n_channels; let weight = self.weight.reshape(w_dims.clone())?; let bias = self.bias.reshape(w_dims)?; x_normed .to_dtype(x_dtype)? .reshape(x_shape)? .broadcast_mul(&weight)? .broadcast_add(&bias) } } pub fn group_norm( num_groups: usize, num_channels: usize, eps: f64, vb: crate::VarBuilder, ) -> Result<GroupNorm> { let weight = vb.get_with_hints(num_channels, "weight", crate::Init::Const(1.))?; let bias = vb.get_with_hints(num_channels, "bias", crate::Init::Const(0.))?; GroupNorm::new(weight, bias, num_channels, num_groups, eps) }
candle/candle-nn/src/group_norm.rs/0
{ "file_path": "candle/candle-nn/src/group_norm.rs", "repo_id": "candle", "token_count": 1372 }
31
use candle::{Result, Shape, Tensor}; use candle_nn::encoding::one_hot; #[test] fn test_i64_one_hot() -> Result<()> { let device = candle::Device::Cpu; let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?; let depth = 4; let on_value = 1.0; let off_value = 0.0; let one_hot = one_hot::<f32>(indices, depth, on_value, off_value)?; let expected_matrix = [ [[1., 0., 0., 0.], [0., 0., 1., 0.]], [[0., 1., 0., 0.], [0., 0., 0., 0.]], ]; assert_eq!(one_hot.shape(), &Shape::from((2, 2, depth))); let matrix = one_hot.to_vec3::<f32>()?; assert_eq!(matrix, expected_matrix); Ok(()) } #[test] fn test_rank_3_one_hot() -> Result<()> { let device = candle::Device::Cpu; let indices = Tensor::new( vec![ vec![vec![0i64, 1], vec![2, 3]], vec![vec![3, 1], vec![1, -1]], ], &device, )?; let depth = 4; let on_value = 1.0; let off_value = 0.0; let one_hot = one_hot::<f32>(indices, depth, on_value, off_value)?; let expected_matrix = Tensor::new( vec![ vec![ vec![vec![1f32, 0., 0., 0.], vec![0., 1., 0., 0.]], vec![vec![0., 0., 1., 0.], vec![0., 0., 0., 1.]], ], vec![ vec![vec![0., 0., 0., 1.], vec![0., 1., 0., 0.]], vec![vec![0., 1., 0., 0.], vec![0., 0., 0., 0.]], ], ], &device, )?; assert_eq!(one_hot.shape(), expected_matrix.shape()); assert_eq!(one_hot.dims(), expected_matrix.dims()); let matrix = one_hot.get(1)?.to_vec3::<f32>()?; let expected_matrix = expected_matrix.get(1)?.to_vec3::<f32>()?; assert_eq!(matrix, expected_matrix); Ok(()) } #[test] fn test_u8_one_cold() -> Result<()> { let device = candle::Device::Cpu; let depth = 4; let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?; let on_value = 0u8; let off_value = 1; // Note that the method does not require the turbofish operator, as the type is inferred from the on_value. let one_cold = one_hot(indices, depth, on_value, off_value)?; let expected_matrix = [[[0, 1, 1, 1], [1, 1, 0, 1]], [[1, 0, 1, 1], [1, 1, 1, 1]]]; assert_eq!(one_cold.shape(), &Shape::from((2, 2, depth))); let matrix = one_cold.to_vec3::<u8>()?; assert_eq!(matrix, expected_matrix); Ok(()) } #[test] fn test_iter() -> Result<()> { let device = candle::Device::Cpu; let depth = 4; let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?; let matrix = indices.to_vec2::<i64>()?; let (dim1, dim2) = indices.dims2()?; let iter = (0..dim1).flat_map(|i| (0..dim2).map(move |j| (i, j))); let mut v = vec![0; depth * dim1 * dim2]; for (i, j) in iter { let idx = i * depth * dim2 + j * depth; v[idx] = matrix[i][j]; } for (i, row) in matrix.iter().enumerate() { for (j, &value) in row.iter().enumerate() { let idx = i * depth * dim2 + j * depth; assert_eq!(v[idx], value); } } Ok(()) }
candle/candle-nn/tests/one_hot.rs/0
{ "file_path": "candle/candle-nn/tests/one_hot.rs", "repo_id": "candle", "token_count": 1592 }
32
fn main() { pyo3_build_config::add_extension_module_link_args(); }
candle/candle-pyo3/build.rs/0
{ "file_path": "candle/candle-pyo3/build.rs", "repo_id": "candle", "token_count": 30 }
33
import candle from candle import Tensor _UNSIGNED_DTYPES = set([str(candle.u8), str(candle.u32)]) def _assert_tensor_metadata( actual: Tensor, expected: Tensor, check_device: bool = True, check_dtype: bool = True, check_layout: bool = True, check_stride: bool = False, ): if check_device: assert actual.device == expected.device, f"Device mismatch: {actual.device} != {expected.device}" if check_dtype: assert str(actual.dtype) == str(expected.dtype), f"Dtype mismatch: {actual.dtype} != {expected.dtype}" if check_layout: assert actual.shape == expected.shape, f"Shape mismatch: {actual.shape} != {expected.shape}" if check_stride: assert actual.stride == expected.stride, f"Stride mismatch: {actual.stride} != {expected.stride}" def assert_equal( actual: Tensor, expected: Tensor, check_device: bool = True, check_dtype: bool = True, check_layout: bool = True, check_stride: bool = False, ): """ Asserts that two tensors are exact equals. """ _assert_tensor_metadata(actual, expected, check_device, check_dtype, check_layout, check_stride) assert (actual - expected).abs().sum_all().values() == 0, f"Tensors mismatch: {actual} != {expected}" def assert_almost_equal( actual: Tensor, expected: Tensor, rtol=1e-05, atol=1e-08, check_device: bool = True, check_dtype: bool = True, check_layout: bool = True, check_stride: bool = False, ): """ Asserts, that two tensors are almost equal by performing an element wise comparison of the tensors with a tolerance. Computes: |actual - expected| ≤ atol + rtol x |expected| """ _assert_tensor_metadata(actual, expected, check_device, check_dtype, check_layout, check_stride) # Secure against overflow of u32 and u8 tensors if str(actual.dtype) in _UNSIGNED_DTYPES or str(expected.dtype) in _UNSIGNED_DTYPES: actual = actual.to(candle.i64) expected = expected.to(candle.i64) diff = (actual - expected).abs() threshold = (expected.abs().to_dtype(candle.f32) * rtol + atol).to(expected) assert (diff <= threshold).sum_all().values() == actual.nelement, f"Difference between tensors was to great"
candle/candle-pyo3/py_src/candle/testing/__init__.py/0
{ "file_path": "candle/candle-pyo3/py_src/candle/testing/__init__.py", "repo_id": "candle", "token_count": 854 }
34
import candle from candle import Tensor from candle.testing import assert_equal, assert_almost_equal import pytest @pytest.mark.parametrize("dtype", [candle.f32, candle.f64, candle.f16, candle.u32, candle.u8, candle.i64]) def test_assert_equal_asserts_correctly(dtype: candle.DType): a = Tensor([1, 2, 3]).to(dtype) b = Tensor([1, 2, 3]).to(dtype) assert_equal(a, b) with pytest.raises(AssertionError): assert_equal(a, b + 1) @pytest.mark.parametrize("dtype", [candle.f32, candle.f64, candle.f16, candle.u32, candle.u8, candle.i64]) def test_assert_almost_equal_asserts_correctly(dtype: candle.DType): a = Tensor([1, 2, 3]).to(dtype) b = Tensor([1, 2, 3]).to(dtype) assert_almost_equal(a, b) with pytest.raises(AssertionError): assert_almost_equal(a, b + 1) assert_almost_equal(a, b + 1, atol=20) assert_almost_equal(a, b + 1, rtol=20) with pytest.raises(AssertionError): assert_almost_equal(a, b + 1, atol=0.9) with pytest.raises(AssertionError): assert_almost_equal(a, b + 1, rtol=0.1)
candle/candle-pyo3/tests/bindings/test_testing.py/0
{ "file_path": "candle/candle-pyo3/tests/bindings/test_testing.py", "repo_id": "candle", "token_count": 476 }
35
use candle::{DType, Device, Result, Tensor, D}; use candle_nn::{embedding, Embedding, LayerNorm, Linear, Module, VarBuilder}; const MAX_SEQ_LEN: usize = 5000; fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> { let weight = vb.get((size2, size1), "weight")?; let bias = if bias { Some(vb.get(size2, "bias")?) } else { None }; Ok(Linear::new(weight, bias)) } fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> { let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) { (Ok(weight), Ok(bias)) => (weight, bias), (Err(err), _) | (_, Err(err)) => { if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) { (weight, bias) } else { return Err(err); } } }; Ok(LayerNorm::new(weight, bias, eps)) } // https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py #[derive(Debug)] pub struct Config { pub vocab_size: usize, pub hidden_size: usize, pub num_hidden_layers: usize, pub num_attention_heads: usize, pub layer_norm_epsilon: f64, pub initializer_range: f64, pub use_cache: bool, pub bos_token_id: u32, pub eos_token_id: u32, pub hidden_dropout: f64, pub attention_dropout: f64, pub n_head_kv: Option<usize>, pub alibi: bool, pub new_decoder_architecture: bool, pub multi_query: bool, pub parallel_attn: bool, pub bias: bool, } impl Default for Config { fn default() -> Self { Self { vocab_size: 65024, hidden_size: 4544, num_hidden_layers: 32, num_attention_heads: 71, layer_norm_epsilon: 1e-5, initializer_range: 0.02, use_cache: true, bos_token_id: 11, eos_token_id: 11, hidden_dropout: 0.0, attention_dropout: 0.0, n_head_kv: None, alibi: false, new_decoder_architecture: false, multi_query: true, parallel_attn: true, bias: false, } } } impl Config { pub fn validate(&self) -> Result<()> { if self.alibi { candle::bail!("alibi is not supported"); } if self.new_decoder_architecture { candle::bail!("new_decoder_architecture is not supported"); } if self.n_head_kv.is_some() { candle::bail!("n_head_kv is not supported"); } Ok(()) } // https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json pub fn falcon7b() -> Self { // This is currently on par with the defaults, the defaults come from the Python default // arguments for the config initialization whereas the following come from the json config. Self { vocab_size: 65024, hidden_size: 4544, num_hidden_layers: 32, num_attention_heads: 71, layer_norm_epsilon: 1e-5, initializer_range: 0.02, use_cache: true, bos_token_id: 11, eos_token_id: 11, hidden_dropout: 0., attention_dropout: 0., n_head_kv: None, alibi: false, new_decoder_architecture: false, multi_query: true, parallel_attn: true, bias: false, } } fn head_dim(&self) -> usize { self.hidden_size / self.num_attention_heads } fn rotary(&self) -> bool { !self.alibi } } fn rotate_half(x: &Tensor) -> Result<Tensor> { let l = x.dim(D::Minus1)?; let x1 = x.narrow(D::Minus1, 0, l / 2)?; let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?; let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?; Ok(x21) } #[derive(Debug)] struct FalconRotaryEmbedding { inv_freq: Tensor, cache: Option<(usize, Tensor, Tensor)>, } impl FalconRotaryEmbedding { fn load(device: &Device, cfg: &Config) -> Result<Self> { let head_dim = cfg.head_dim(); let inv_freq: Vec<_> = (0..head_dim) .step_by(2) .map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32)) .collect(); Ok(Self { inv_freq: Tensor::new(inv_freq.as_slice(), device)?, cache: None, }) } fn cos_sin( &mut self, seq_len: usize, device: &Device, dtype: DType, ) -> Result<(Tensor, Tensor)> { match &self.cache { Some((s, cos, sin)) if *s == seq_len => { return Ok((cos.clone(), sin.clone())); } _ => {} } let t = Tensor::arange(0, seq_len as u32, device)?.to_dtype(dtype)?; let inv_freq = self.inv_freq.to_dtype(dtype)?; let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?; let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?; let cos = emb.cos()?; let sin = emb.sin()?; self.cache = Some((seq_len, cos.clone(), sin.clone())); Ok((cos, sin)) } fn forward( &mut self, query: &Tensor, key: &Tensor, past_kv_len: usize, ) -> Result<(Tensor, Tensor)> { let (_batch, seq_len, _head_dim) = query.dims3()?; let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, query.device(), query.dtype())?; let cos = cos.narrow(0, past_kv_len, seq_len)?; let sin = sin.narrow(0, past_kv_len, seq_len)?; let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?; let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?; Ok((qs, ks)) } } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } #[derive(Debug)] struct FalconAttention { query_key_value: Linear, dense: Linear, maybe_rotary: Option<FalconRotaryEmbedding>, kv_cache: Option<(Tensor, Tensor)>, inv_norm_factor: f64, multi_query: bool, use_cache: bool, num_heads: usize, head_dim: usize, n_head_kv: usize, } impl FalconAttention { fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { let maybe_rotary = if cfg.rotary() { let rotary = FalconRotaryEmbedding::load(vb.device(), cfg)?; Some(rotary) } else { None }; let head_dim = cfg.head_dim(); let hidden_size = cfg.hidden_size; let qkv_out_dim = if cfg.multi_query { hidden_size + 2 * head_dim } else { 3 * hidden_size }; let query_key_value = linear(hidden_size, qkv_out_dim, cfg.bias, vb.pp("query_key_value"))?; let dense = linear(hidden_size, hidden_size, cfg.bias, vb.pp("dense"))?; Ok(Self { query_key_value, dense, maybe_rotary, kv_cache: None, inv_norm_factor: 1. / (head_dim as f64).sqrt(), multi_query: cfg.multi_query, use_cache: cfg.use_cache, num_heads: cfg.num_attention_heads, n_head_kv: cfg.n_head_kv.unwrap_or(1), head_dim, }) } fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { let (b_sz, seq_len, _) = fused_qkv.dims3()?; if !self.multi_query { let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?; let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?; let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?; let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?; Ok((q, k, v)) } else { let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?; let d = fused_qkv.dim(D::Minus2)?; let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?; let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?; let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?; Ok((q, k, v)) } } fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> { let fused_qkv = self.query_key_value.forward(x)?; let head_dim = self.head_dim; let (query, key, value) = self.split_heads(&fused_qkv)?; let (b_sz, seq_len, _, _) = query.dims4()?; let query = query .transpose(1, 2)? .reshape((b_sz * self.num_heads, seq_len, head_dim))?; let key = key .transpose(1, 2)? .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?; let value = value .transpose(1, 2)? .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?; let (query, key) = if let Some(r) = &mut self.maybe_rotary { r.forward(&query, &key, past_kv_len)? } else { (query, key) }; let (mut key, mut value) = (key, value); let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?.to_dtype(query.dtype())?; if self.use_cache { if let Some((cache_k, cache_v)) = &self.kv_cache { // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for // arbitrarily large sizes. key = Tensor::cat(&[cache_k, &key], 1)?.contiguous()?; value = Tensor::cat(&[cache_v, &value], 1)?.contiguous()?; } self.kv_cache = Some((key.clone(), value.clone())) } let query = query.reshape((b_sz * self.num_heads, seq_len, head_dim))?; let all_len = past_kv_len + seq_len; let key = key.reshape((b_sz * self.n_head_kv, all_len, head_dim))?; let value = value.reshape((b_sz * self.n_head_kv, all_len, head_dim))?; let (key, value) = if self.n_head_kv == 1 { ( key.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?, value.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?, ) } else { (key, value) }; // Only handle the case where alibi is None here, and non-flash attention. let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?; let attention_scores = candle_nn::ops::softmax( &attention_scores .broadcast_add(&mask.squeeze(1)?)? .to_dtype(DType::F32)?, D::Minus1, )? .to_dtype(x.dtype())?; let attn_output = attention_scores .matmul(&value)? .reshape((b_sz, self.num_heads, seq_len, head_dim))? .transpose(1, 2)? .reshape((b_sz, seq_len, self.num_heads * head_dim))?; let attn_output = self.dense.forward(&attn_output)?; Ok(attn_output) } } #[derive(Debug)] struct FalconMlp { dense_h_to_4h: Linear, dense_4h_to_h: Linear, } impl FalconMlp { fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { let h = cfg.hidden_size; let b = cfg.bias; let dense_h_to_4h = linear(h, 4 * h, b, vb.pp("dense_h_to_4h"))?; let dense_4h_to_h = linear(4 * h, h, b, vb.pp("dense_4h_to_h"))?; Ok(Self { dense_h_to_4h, dense_4h_to_h, }) } fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = self.dense_h_to_4h.forward(x)?.gelu()?; let x = self.dense_4h_to_h.forward(&x)?; Ok(x) } } #[derive(Debug)] struct FalconDecoderLayer { inp_layernorm: LayerNorm, self_attention: FalconAttention, post_attention_layernorm: Option<LayerNorm>, mlp: FalconMlp, parallel_attn: bool, } impl FalconDecoderLayer { fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { let mlp = FalconMlp::load(vb.pp("mlp"), cfg)?; let inp_layernorm = layer_norm( cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("input_layernorm"), )?; let self_attention = FalconAttention::load(vb.pp("self_attention"), cfg)?; let post_attention_layernorm = if cfg.parallel_attn { None } else { let ln = layer_norm( cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("post_attention_layernorm"), )?; Some(ln) }; Ok(Self { inp_layernorm, self_attention, post_attention_layernorm, mlp, parallel_attn: cfg.parallel_attn, }) } fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> { let residual = x.clone(); let ln_attn = self.inp_layernorm.forward(x)?; let attn_output = self.self_attention.forward(&ln_attn, mask, past_kv_len)?; let (residual, ln_mlp) = match &self.post_attention_layernorm { None => (residual, ln_attn), Some(pal) => { // This should include some dropout. let residual = (&attn_output + &residual)?; let ln_mlp = pal.forward(&residual)?; (residual, ln_mlp) } }; let mlp_output = self.mlp.forward(&ln_mlp)?; let mlp_output = if self.parallel_attn { (mlp_output + attn_output)? } else { mlp_output }; let output = (mlp_output + residual)?; Ok(output) } } #[derive(Debug)] pub struct Falcon { word_embeddings: Embedding, blocks: Vec<FalconDecoderLayer>, ln_f: LayerNorm, lm_head: Linear, config: Config, } fn make_causal_mask(t: usize) -> Result<Tensor> { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?; Ok(mask) } fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result<Tensor> { // let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?; let mask = make_causal_mask(seq_len)?; let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?; Ok(mask) } impl Falcon { pub fn config(&self) -> &Config { &self.config } pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> { let word_embeddings = embedding( cfg.vocab_size, cfg.hidden_size, vb.pp("transformer.word_embeddings"), )?; let blocks = (0..cfg.num_hidden_layers) .map(|i| FalconDecoderLayer::load(vb.pp(&format!("transformer.h.{i}")), &cfg)) .collect::<Result<Vec<_>>>()?; let ln_f = layer_norm( cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("transformer.ln_f"), )?; let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb.pp("lm_head"))?; Ok(Self { word_embeddings, blocks, ln_f, lm_head, config: cfg, }) } pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> { let (b_sz, seq_len) = input_ids.dims2()?; let mut hidden_state = self.word_embeddings.forward(input_ids)?; let past_kv_len = match &self.blocks[0].self_attention.kv_cache { Some((k, _)) => k.dim(1)?, None => 0, }; let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(input_ids.device())?; for block in self.blocks.iter_mut() { hidden_state = block.forward(&hidden_state, &causal_mask, past_kv_len)?; } let hidden_state = self.ln_f.forward(&hidden_state)?; let hidden_state = hidden_state.narrow(1, seq_len - 1, 1)?; let logits = self.lm_head.forward(&hidden_state)?.squeeze(1)?; Ok(logits) } }
candle/candle-transformers/src/models/falcon.rs/0
{ "file_path": "candle/candle-transformers/src/models/falcon.rs", "repo_id": "candle", "token_count": 8568 }
36
use std::collections::HashMap; use candle::quantized::QTensor; use candle::quantized::{ggml_file, gguf_file}; use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::{Embedding, Module}; pub const MAX_SEQ_LEN: usize = 4096; #[derive(Debug, Clone)] struct RmsNorm { inner: candle_nn::LayerNorm, span: tracing::Span, } impl RmsNorm { fn new(scale: QTensor, eps: f32) -> Result<Self> { let span = tracing::span!(tracing::Level::TRACE, "rms-norm"); let scale = scale.dequantize(&Device::Cpu)?; let inner = candle_nn::LayerNorm::rms_norm(scale, eps as f64); Ok(Self { inner, span }) } fn forward(&self, x: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); self.inner.forward(x) } } // QMatMul wrapper adding some tracing. #[derive(Debug, Clone)] struct QMatMul { inner: candle::quantized::QMatMul, span: tracing::Span, } impl QMatMul { fn from_qtensor(qtensor: QTensor) -> Result<Self> { let inner = candle::quantized::QMatMul::from_qtensor(qtensor)?; let span = tracing::span!(tracing::Level::TRACE, "qmatmul"); Ok(Self { inner, span }) } fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); self.inner.forward(xs) } } #[derive(Debug, Clone)] struct Mlp { feed_forward_w1: QMatMul, feed_forward_w2: QMatMul, feed_forward_w3: QMatMul, } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let w1 = self.feed_forward_w1.forward(xs)?; let w3 = self.feed_forward_w3.forward(xs)?; self.feed_forward_w2 .forward(&(candle_nn::ops::silu(&w1)? * w3)?) } } #[derive(Debug, Clone)] enum MlpOrMoe { Mlp(Mlp), MoE { n_expert_used: usize, feed_forward_gate_inp: QMatMul, experts: Vec<Mlp>, }, } impl Module for MlpOrMoe { fn forward(&self, xs: &Tensor) -> Result<Tensor> { match self { Self::MoE { feed_forward_gate_inp, experts, n_expert_used, } => { let (b_size, seq_len, hidden_dim) = xs.dims3()?; let xs = xs.reshape(((), hidden_dim))?; let router_logits = feed_forward_gate_inp.forward(&xs)?; let routing_weights = candle_nn::ops::softmax_last_dim(&router_logits)?; // In order to extract topk, we extract the data from the tensor and manipulate it // directly. Maybe we will want to use some custom ops instead at some point. let routing_weights = routing_weights.to_dtype(DType::F32)?.to_vec2::<f32>()?; // routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) // top_x contains the row indexes to evaluate for each expert. let mut top_x = vec![vec![]; experts.len()]; let mut selected_rws = vec![vec![]; experts.len()]; for (row_idx, rw) in routing_weights.iter().enumerate() { let mut dst = (0..rw.len() as u32).collect::<Vec<u32>>(); dst.sort_by(|&i, &j| rw[j as usize].total_cmp(&rw[i as usize])); let mut sum_routing_weights = 0f32; for &expert_idx in dst.iter().take(*n_expert_used) { let expert_idx = expert_idx as usize; let routing_weight = rw[expert_idx]; sum_routing_weights += routing_weight; top_x[expert_idx].push(row_idx as u32); } for &expert_idx in dst.iter().take(*n_expert_used) { let expert_idx = expert_idx as usize; let routing_weight = rw[expert_idx]; selected_rws[expert_idx].push(routing_weight / sum_routing_weights) } } // routing_weights /= routing_weights.sum(dim=-1, keepdim=True) // expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) let mut ys = xs.zeros_like()?; for (expert_idx, expert_layer) in experts.iter().enumerate() { let top_x = &top_x[expert_idx]; if top_x.is_empty() { continue; } let top_x = Tensor::new(top_x.as_slice(), xs.device())?; let selected_rws = Tensor::new(selected_rws[expert_idx].as_slice(), xs.device())? .reshape(((), 1))?; // Index the correct hidden states and compute the expert hidden state for // the current expert. We need to make sure to multiply the output hidden // states by `routing_weights` on the corresponding tokens (top-1 and top-2) let current_state = xs.index_select(&top_x, 0)?.reshape(((), hidden_dim))?; // current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None]) let current_hidden_states = expert_layer.forward(&current_state)?; let current_hidden_states = current_hidden_states.broadcast_mul(&selected_rws)?; ys = ys.index_add(&top_x, &current_hidden_states, 0)?; } let ys = ys.reshape((b_size, seq_len, hidden_dim))?; Ok(ys) } Self::Mlp(mlp) => mlp.forward(xs), } } } #[derive(Debug, Clone)] struct LayerWeights { attention_wq: QMatMul, attention_wk: QMatMul, attention_wv: QMatMul, attention_wo: QMatMul, attention_norm: RmsNorm, mlp_or_moe: MlpOrMoe, ffn_norm: RmsNorm, n_head: usize, n_kv_head: usize, head_dim: usize, cos: Tensor, sin: Tensor, kv_cache: Option<(Tensor, Tensor)>, span_attn: tracing::Span, span_rot: tracing::Span, span_mlp: tracing::Span, } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } impl LayerWeights { fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> { let _enter = self.span_rot.enter(); let (b_sz, n_head, seq_len, n_embd) = x.dims4()?; let cos = self .cos .narrow(0, index_pos, seq_len)? .reshape((seq_len, n_embd / 2, 1))?; let sin = self .sin .narrow(0, index_pos, seq_len)? .reshape((seq_len, n_embd / 2, 1))?; let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?; let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?; // This mimics the llama.cpp behavior. // https://github.com/ggerganov/llama.cpp/blob/1f0bccb27929e261744c979bc75114955da49e98/ggml.c#L12104-L12105 // The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension. // The resulting y0 and y1 are also interleaved with: // y0 = x0*cos - x1*sin // y1 = x0*sin + x1*cos let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?; let x0 = x.narrow(D::Minus1, 0, 1)?; let x1 = x.narrow(D::Minus1, 1, 1)?; let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?; let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?; let rope = Tensor::cat(&[y0, y1], D::Minus1)?; let rope = rope.flatten_from(D::Minus2)?; Ok(rope) } fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> { let _enter = self.span_attn.enter(); let (b_sz, seq_len, n_embd) = x.dims3()?; let q = self.attention_wq.forward(x)?; let k = self.attention_wk.forward(x)?; let v = self.attention_wv.forward(x)?; let q = q .reshape((b_sz, seq_len, self.n_head, self.head_dim))? .transpose(1, 2)?; let k = k .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? .transpose(1, 2)?; let v = v .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? .transpose(1, 2)?; let q = self.apply_rotary_emb(&q, index_pos)?; let k = self.apply_rotary_emb(&k, index_pos)?; let (k, v) = match &self.kv_cache { None => (k, v), Some((k_cache, v_cache)) => { if index_pos == 0 { (k, v) } else { let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?; let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?; (k, v) } } }; self.kv_cache = Some((k.clone(), v.clone())); // Support for MQA, useful for 70B models. let k = self.repeat_kv(k)?; let v = self.repeat_kv(v)?; let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; let mask = mask.broadcast_as(att.shape())?; let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?; let att = candle_nn::ops::softmax_last_dim(&att)?; // Convert to contiguous as matmul doesn't support strided vs for now. let y = att.matmul(&v.contiguous()?)?; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = self.attention_wo.forward(&y)?; Ok(y) } fn repeat_kv(&self, x: Tensor) -> Result<Tensor> { let n_rep = self.n_head / self.n_kv_head; if n_rep == 1 { Ok(x) } else { let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?; let x = x .unsqueeze(2)? .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))? .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?; Ok(x) } } } #[derive(Debug, Clone)] pub struct ModelWeights { tok_embeddings: Embedding, layers: Vec<LayerWeights>, norm: RmsNorm, output: QMatMul, masks: HashMap<usize, Tensor>, span: tracing::Span, span_output: tracing::Span, } fn precomput_freqs_cis(head_dim: usize, freq_base: f32) -> Result<(Tensor, Tensor)> { let theta: Vec<_> = (0..head_dim) .step_by(2) .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32)) .collect(); let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?; let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)? .to_dtype(DType::F32)? .reshape((MAX_SEQ_LEN, 1))? .matmul(&theta.reshape((1, theta.elem_count()))?)?; let cos = idx_theta.cos()?; let sin = idx_theta.sin()?; Ok((cos, sin)) } impl ModelWeights { pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> { let cpu = &Device::Cpu; let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize; let (cos, sin) = precomput_freqs_cis(head_dim, 10000.)?; let tok_embeddings = ct.remove("tok_embeddings.weight")?; let tok_embeddings = tok_embeddings.dequantize(cpu)?; let norm = RmsNorm::new(ct.remove("norm.weight")?, 1e-5)?; let output = ct.remove("output.weight")?; let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize); for layer_idx in 0..ct.hparams.n_layer { let prefix = format!("layers.{layer_idx}"); let attention_wq = ct.remove(&format!("{prefix}.attention.wq.weight"))?; let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?; let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?; let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?; let mlp_or_moe = { let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?; let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?; let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?; MlpOrMoe::Mlp(Mlp { feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?, feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?, feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?, }) }; let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?; let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?; let span_attn = tracing::span!(tracing::Level::TRACE, "attn"); let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot"); let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp"); layers.push(LayerWeights { attention_wq: QMatMul::from_qtensor(attention_wq)?, attention_wk: QMatMul::from_qtensor(attention_wk)?, attention_wv: QMatMul::from_qtensor(attention_wv)?, attention_wo: QMatMul::from_qtensor(attention_wo)?, attention_norm: RmsNorm::new(attention_norm, 1e-5)?, mlp_or_moe, ffn_norm: RmsNorm::new(ffn_norm, 1e-5)?, n_head: ct.hparams.n_head as usize, n_kv_head: ct.hparams.n_head as usize / gqa, head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize, cos: cos.clone(), sin: sin.clone(), kv_cache: None, span_attn, span_rot, span_mlp, }) } let span = tracing::span!(tracing::Level::TRACE, "model"); let span_output = tracing::span!(tracing::Level::TRACE, "output"); Ok(Self { tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize), layers, norm, output: QMatMul::from_qtensor(output)?, masks: HashMap::new(), span, span_output, }) } pub fn from_gguf<R: std::io::Seek + std::io::Read>( ct: gguf_file::Content, reader: &mut R, device: &Device, ) -> Result<Self> { let cpu = &Device::Cpu; let md_get = |s: &str| match ct.metadata.get(s) { None => candle::bail!("cannot find {s} in metadata"), Some(v) => Ok(v), }; // Parameter extraction from metadata. let n_expert = md_get("llama.expert_count") .and_then(|v| v.to_u32()) .unwrap_or(0) as usize; let n_expert_used = md_get("llama.expert_used_count") .and_then(|v| v.to_u32()) .unwrap_or(0) as usize; let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize; let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize; let block_count = md_get("llama.block_count")?.to_u32()? as usize; let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize; let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize; // Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default. let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()?; let rope_freq_base = md_get("llama.rope.freq_base") .and_then(|m| m.to_f32()) .unwrap_or(10000f32); let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base)?; let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?; let tok_embeddings = tok_embeddings.dequantize(cpu)?; let norm = RmsNorm::new( ct.tensor(reader, "output_norm.weight", device)?, rms_norm_eps, )?; let output = ct.tensor(reader, "output.weight", device)?; let mut layers = Vec::with_capacity(block_count); for layer_idx in 0..block_count { let prefix = format!("blk.{layer_idx}"); let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?; let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?; let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?; let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?; let mlp_or_moe = if n_expert <= 1 { let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?; let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?; let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?; MlpOrMoe::Mlp(Mlp { feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?, feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?, feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?, }) } else { let feed_forward_gate_inp = ct.tensor(reader, &format!("{prefix}.ffn_gate_inp.weight"), device)?; let mut experts = Vec::with_capacity(n_expert); for i in 0..n_expert { let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.{i}.weight"), device)?; let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.{i}.weight"), device)?; let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.{i}.weight"), device)?; experts.push(Mlp { feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?, feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?, feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?, }) } MlpOrMoe::MoE { n_expert_used, feed_forward_gate_inp: QMatMul::from_qtensor(feed_forward_gate_inp)?, experts, } }; let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?; let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?; let span_attn = tracing::span!(tracing::Level::TRACE, "attn"); let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot"); let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp"); layers.push(LayerWeights { attention_wq: QMatMul::from_qtensor(attention_wq)?, attention_wk: QMatMul::from_qtensor(attention_wk)?, attention_wv: QMatMul::from_qtensor(attention_wv)?, attention_wo: QMatMul::from_qtensor(attention_wo)?, attention_norm: RmsNorm::new(attention_norm, rms_norm_eps)?, mlp_or_moe, ffn_norm: RmsNorm::new(ffn_norm, rms_norm_eps)?, n_head: head_count, n_kv_head: head_count_kv, head_dim: embedding_length / head_count, cos: cos.clone(), sin: sin.clone(), kv_cache: None, span_attn, span_rot, span_mlp, }) } let span = tracing::span!(tracing::Level::TRACE, "model"); let span_output = tracing::span!(tracing::Level::TRACE, "output"); Ok(Self { tok_embeddings: Embedding::new(tok_embeddings, embedding_length), layers, norm, output: QMatMul::from_qtensor(output)?, masks: HashMap::new(), span, span_output, }) } fn mask(&mut self, t: usize) -> Result<Tensor> { if let Some(mask) = self.masks.get(&t) { Ok(mask.clone()) } else { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?; self.masks.insert(t, mask.clone()); Ok(mask) } } pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> { let (_b_sz, seq_len) = x.dims2()?; let mask = self.mask(seq_len)?; let _enter = self.span.enter(); let mut layer_in = self.tok_embeddings.forward(x)?; for layer in self.layers.iter_mut() { let x = layer_in; let residual = &x; let x = layer.attention_norm.forward(&x)?; let attn = layer.forward_attn(&x, &mask, index_pos)?; let x = (attn + residual)?; // MLP let _enter = layer.span_mlp.enter(); let residual = &x; let x = layer.ffn_norm.forward(&x)?; let x = layer.mlp_or_moe.forward(&x)?; let x = (x + residual)?; layer_in = x } let x = self.norm.forward(&layer_in)?; let x = x.i((.., seq_len - 1, ..))?; let _enter = self.span_output.enter(); self.output.forward(&x) } }
candle/candle-transformers/src/models/quantized_llama.rs/0
{ "file_path": "candle/candle-transformers/src/models/quantized_llama.rs", "repo_id": "candle", "token_count": 11696 }
37
//! Attention Based Building Blocks use candle::{DType, IndexOp, Result, Tensor, D}; use candle_nn as nn; use candle_nn::Module; #[derive(Debug)] struct GeGlu { proj: nn::Linear, span: tracing::Span, } impl GeGlu { fn new(vs: nn::VarBuilder, dim_in: usize, dim_out: usize) -> Result<Self> { let proj = nn::linear(dim_in, dim_out * 2, vs.pp("proj"))?; let span = tracing::span!(tracing::Level::TRACE, "geglu"); Ok(Self { proj, span }) } } impl Module for GeGlu { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let hidden_states_and_gate = self.proj.forward(xs)?.chunk(2, D::Minus1)?; &hidden_states_and_gate[0] * hidden_states_and_gate[1].gelu()? } } /// A feed-forward layer. #[derive(Debug)] struct FeedForward { project_in: GeGlu, linear: nn::Linear, span: tracing::Span, } impl FeedForward { // The glu parameter in the python code is unused? // https://github.com/huggingface/diffusers/blob/d3d22ce5a894becb951eec03e663951b28d45135/src/diffusers/models/attention.py#L347 /// Creates a new feed-forward layer based on some given input dimension, some /// output dimension, and a multiplier to be used for the intermediary layer. fn new(vs: nn::VarBuilder, dim: usize, dim_out: Option<usize>, mult: usize) -> Result<Self> { let inner_dim = dim * mult; let dim_out = dim_out.unwrap_or(dim); let vs = vs.pp("net"); let project_in = GeGlu::new(vs.pp("0"), dim, inner_dim)?; let linear = nn::linear(inner_dim, dim_out, vs.pp("2"))?; let span = tracing::span!(tracing::Level::TRACE, "ff"); Ok(Self { project_in, linear, span, }) } } impl Module for FeedForward { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let xs = self.project_in.forward(xs)?; self.linear.forward(&xs) } } #[cfg(feature = "flash-attn")] fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal) } #[cfg(not(feature = "flash-attn"))] fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> { unimplemented!("compile with '--features flash-attn'") } #[derive(Debug)] pub struct CrossAttention { to_q: nn::Linear, to_k: nn::Linear, to_v: nn::Linear, to_out: nn::Linear, heads: usize, scale: f64, slice_size: Option<usize>, span: tracing::Span, span_attn: tracing::Span, span_softmax: tracing::Span, use_flash_attn: bool, } impl CrossAttention { // Defaults should be heads = 8, dim_head = 64, context_dim = None pub fn new( vs: nn::VarBuilder, query_dim: usize, context_dim: Option<usize>, heads: usize, dim_head: usize, slice_size: Option<usize>, use_flash_attn: bool, ) -> Result<Self> { let inner_dim = dim_head * heads; let context_dim = context_dim.unwrap_or(query_dim); let scale = 1.0 / f64::sqrt(dim_head as f64); let to_q = nn::linear_no_bias(query_dim, inner_dim, vs.pp("to_q"))?; let to_k = nn::linear_no_bias(context_dim, inner_dim, vs.pp("to_k"))?; let to_v = nn::linear_no_bias(context_dim, inner_dim, vs.pp("to_v"))?; let to_out = nn::linear(inner_dim, query_dim, vs.pp("to_out.0"))?; let span = tracing::span!(tracing::Level::TRACE, "xa"); let span_attn = tracing::span!(tracing::Level::TRACE, "xa-attn"); let span_softmax = tracing::span!(tracing::Level::TRACE, "xa-softmax"); Ok(Self { to_q, to_k, to_v, to_out, heads, scale, slice_size, span, span_attn, span_softmax, use_flash_attn, }) } fn reshape_heads_to_batch_dim(&self, xs: &Tensor) -> Result<Tensor> { let (batch_size, seq_len, dim) = xs.dims3()?; xs.reshape((batch_size, seq_len, self.heads, dim / self.heads))? .transpose(1, 2)? .reshape((batch_size * self.heads, seq_len, dim / self.heads)) } fn reshape_batch_dim_to_heads(&self, xs: &Tensor) -> Result<Tensor> { let (batch_size, seq_len, dim) = xs.dims3()?; xs.reshape((batch_size / self.heads, self.heads, seq_len, dim))? .transpose(1, 2)? .reshape((batch_size / self.heads, seq_len, dim * self.heads)) } fn sliced_attention( &self, query: &Tensor, key: &Tensor, value: &Tensor, slice_size: usize, ) -> Result<Tensor> { let batch_size_attention = query.dim(0)?; let mut hidden_states = Vec::with_capacity(batch_size_attention / slice_size); let in_dtype = query.dtype(); let query = query.to_dtype(DType::F32)?; let key = key.to_dtype(DType::F32)?; let value = value.to_dtype(DType::F32)?; for i in 0..batch_size_attention / slice_size { let start_idx = i * slice_size; let end_idx = (i + 1) * slice_size; let xs = query .i(start_idx..end_idx)? .matmul(&(key.i(start_idx..end_idx)?.t()? * self.scale)?)?; let xs = nn::ops::softmax(&xs, D::Minus1)?.matmul(&value.i(start_idx..end_idx)?)?; hidden_states.push(xs) } let hidden_states = Tensor::stack(&hidden_states, 0)?.to_dtype(in_dtype)?; self.reshape_batch_dim_to_heads(&hidden_states) } fn attention(&self, query: &Tensor, key: &Tensor, value: &Tensor) -> Result<Tensor> { let _enter = self.span_attn.enter(); let xs = if self.use_flash_attn { let init_dtype = query.dtype(); let q = query .to_dtype(candle::DType::F16)? .unsqueeze(0)? .transpose(1, 2)?; let k = key .to_dtype(candle::DType::F16)? .unsqueeze(0)? .transpose(1, 2)?; let v = value .to_dtype(candle::DType::F16)? .unsqueeze(0)? .transpose(1, 2)?; flash_attn(&q, &k, &v, self.scale as f32, false)? .transpose(1, 2)? .squeeze(0)? .to_dtype(init_dtype)? } else { let in_dtype = query.dtype(); let query = query.to_dtype(DType::F32)?; let key = key.to_dtype(DType::F32)?; let value = value.to_dtype(DType::F32)?; let xs = query.matmul(&(key.t()? * self.scale)?)?; let xs = { let _enter = self.span_softmax.enter(); nn::ops::softmax_last_dim(&xs)? }; xs.matmul(&value)?.to_dtype(in_dtype)? }; self.reshape_batch_dim_to_heads(&xs) } pub fn forward(&self, xs: &Tensor, context: Option<&Tensor>) -> Result<Tensor> { let _enter = self.span.enter(); let query = self.to_q.forward(xs)?; let context = context.unwrap_or(xs).contiguous()?; let key = self.to_k.forward(&context)?; let value = self.to_v.forward(&context)?; let query = self.reshape_heads_to_batch_dim(&query)?; let key = self.reshape_heads_to_batch_dim(&key)?; let value = self.reshape_heads_to_batch_dim(&value)?; let dim0 = query.dim(0)?; let slice_size = self.slice_size.and_then(|slice_size| { if dim0 < slice_size { None } else { Some(slice_size) } }); let xs = match slice_size { None => self.attention(&query, &key, &value)?, Some(slice_size) => self.sliced_attention(&query, &key, &value, slice_size)?, }; self.to_out.forward(&xs) } } /// A basic Transformer block. #[derive(Debug)] struct BasicTransformerBlock { attn1: CrossAttention, ff: FeedForward, attn2: CrossAttention, norm1: nn::LayerNorm, norm2: nn::LayerNorm, norm3: nn::LayerNorm, span: tracing::Span, } impl BasicTransformerBlock { fn new( vs: nn::VarBuilder, dim: usize, n_heads: usize, d_head: usize, context_dim: Option<usize>, sliced_attention_size: Option<usize>, use_flash_attn: bool, ) -> Result<Self> { let attn1 = CrossAttention::new( vs.pp("attn1"), dim, None, n_heads, d_head, sliced_attention_size, use_flash_attn, )?; let ff = FeedForward::new(vs.pp("ff"), dim, None, 4)?; let attn2 = CrossAttention::new( vs.pp("attn2"), dim, context_dim, n_heads, d_head, sliced_attention_size, use_flash_attn, )?; let norm1 = nn::layer_norm(dim, 1e-5, vs.pp("norm1"))?; let norm2 = nn::layer_norm(dim, 1e-5, vs.pp("norm2"))?; let norm3 = nn::layer_norm(dim, 1e-5, vs.pp("norm3"))?; let span = tracing::span!(tracing::Level::TRACE, "basic-transformer"); Ok(Self { attn1, ff, attn2, norm1, norm2, norm3, span, }) } fn forward(&self, xs: &Tensor, context: Option<&Tensor>) -> Result<Tensor> { let _enter = self.span.enter(); let xs = (self.attn1.forward(&self.norm1.forward(xs)?, None)? + xs)?; let xs = (self.attn2.forward(&self.norm2.forward(&xs)?, context)? + xs)?; self.ff.forward(&self.norm3.forward(&xs)?)? + xs } } #[derive(Debug, Clone, Copy)] pub struct SpatialTransformerConfig { pub depth: usize, pub num_groups: usize, pub context_dim: Option<usize>, pub sliced_attention_size: Option<usize>, pub use_linear_projection: bool, } impl Default for SpatialTransformerConfig { fn default() -> Self { Self { depth: 1, num_groups: 32, context_dim: None, sliced_attention_size: None, use_linear_projection: false, } } } #[derive(Debug)] enum Proj { Conv2d(nn::Conv2d), Linear(nn::Linear), } // Aka Transformer2DModel #[derive(Debug)] pub struct SpatialTransformer { norm: nn::GroupNorm, proj_in: Proj, transformer_blocks: Vec<BasicTransformerBlock>, proj_out: Proj, span: tracing::Span, pub config: SpatialTransformerConfig, } impl SpatialTransformer { pub fn new( vs: nn::VarBuilder, in_channels: usize, n_heads: usize, d_head: usize, use_flash_attn: bool, config: SpatialTransformerConfig, ) -> Result<Self> { let inner_dim = n_heads * d_head; let norm = nn::group_norm(config.num_groups, in_channels, 1e-6, vs.pp("norm"))?; let proj_in = if config.use_linear_projection { Proj::Linear(nn::linear(in_channels, inner_dim, vs.pp("proj_in"))?) } else { Proj::Conv2d(nn::conv2d( in_channels, inner_dim, 1, Default::default(), vs.pp("proj_in"), )?) }; let mut transformer_blocks = vec![]; let vs_tb = vs.pp("transformer_blocks"); for index in 0..config.depth { let tb = BasicTransformerBlock::new( vs_tb.pp(&index.to_string()), inner_dim, n_heads, d_head, config.context_dim, config.sliced_attention_size, use_flash_attn, )?; transformer_blocks.push(tb) } let proj_out = if config.use_linear_projection { Proj::Linear(nn::linear(in_channels, inner_dim, vs.pp("proj_out"))?) } else { Proj::Conv2d(nn::conv2d( inner_dim, in_channels, 1, Default::default(), vs.pp("proj_out"), )?) }; let span = tracing::span!(tracing::Level::TRACE, "spatial-transformer"); Ok(Self { norm, proj_in, transformer_blocks, proj_out, span, config, }) } pub fn forward(&self, xs: &Tensor, context: Option<&Tensor>) -> Result<Tensor> { let _enter = self.span.enter(); let (batch, _channel, height, weight) = xs.dims4()?; let residual = xs; let xs = self.norm.forward(xs)?; let (inner_dim, xs) = match &self.proj_in { Proj::Conv2d(p) => { let xs = p.forward(&xs)?; let inner_dim = xs.dim(1)?; let xs = xs .transpose(1, 2)? .t()? .reshape((batch, height * weight, inner_dim))?; (inner_dim, xs) } Proj::Linear(p) => { let inner_dim = xs.dim(1)?; let xs = xs .transpose(1, 2)? .t()? .reshape((batch, height * weight, inner_dim))?; (inner_dim, p.forward(&xs)?) } }; let mut xs = xs; for block in self.transformer_blocks.iter() { xs = block.forward(&xs, context)? } let xs = match &self.proj_out { Proj::Conv2d(p) => p.forward( &xs.reshape((batch, height, weight, inner_dim))? .t()? .transpose(1, 2)?, )?, Proj::Linear(p) => p .forward(&xs)? .reshape((batch, height, weight, inner_dim))? .t()? .transpose(1, 2)?, }; xs + residual } } /// Configuration for an attention block. #[derive(Debug, Clone, Copy)] pub struct AttentionBlockConfig { pub num_head_channels: Option<usize>, pub num_groups: usize, pub rescale_output_factor: f64, pub eps: f64, } impl Default for AttentionBlockConfig { fn default() -> Self { Self { num_head_channels: None, num_groups: 32, rescale_output_factor: 1., eps: 1e-5, } } } #[derive(Debug)] pub struct AttentionBlock { group_norm: nn::GroupNorm, query: nn::Linear, key: nn::Linear, value: nn::Linear, proj_attn: nn::Linear, channels: usize, num_heads: usize, span: tracing::Span, config: AttentionBlockConfig, } impl AttentionBlock { pub fn new(vs: nn::VarBuilder, channels: usize, config: AttentionBlockConfig) -> Result<Self> { let num_head_channels = config.num_head_channels.unwrap_or(channels); let num_heads = channels / num_head_channels; let group_norm = nn::group_norm(config.num_groups, channels, config.eps, vs.pp("group_norm"))?; let (q_path, k_path, v_path, out_path) = if vs.contains_tensor("to_q.weight") { ("to_q", "to_k", "to_v", "to_out.0") } else { ("query", "key", "value", "proj_attn") }; let query = nn::linear(channels, channels, vs.pp(q_path))?; let key = nn::linear(channels, channels, vs.pp(k_path))?; let value = nn::linear(channels, channels, vs.pp(v_path))?; let proj_attn = nn::linear(channels, channels, vs.pp(out_path))?; let span = tracing::span!(tracing::Level::TRACE, "attn-block"); Ok(Self { group_norm, query, key, value, proj_attn, channels, num_heads, span, config, }) } fn transpose_for_scores(&self, xs: Tensor) -> Result<Tensor> { let (batch, t, h_times_d) = xs.dims3()?; xs.reshape((batch, t, self.num_heads, h_times_d / self.num_heads))? .transpose(1, 2) } } impl Module for AttentionBlock { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let in_dtype = xs.dtype(); let residual = xs; let (batch, channel, height, width) = xs.dims4()?; let xs = self .group_norm .forward(xs)? .reshape((batch, channel, height * width))? .transpose(1, 2)?; let query_proj = self.query.forward(&xs)?; let key_proj = self.key.forward(&xs)?; let value_proj = self.value.forward(&xs)?; let query_states = self .transpose_for_scores(query_proj)? .to_dtype(DType::F32)?; let key_states = self.transpose_for_scores(key_proj)?.to_dtype(DType::F32)?; let value_states = self .transpose_for_scores(value_proj)? .to_dtype(DType::F32)?; // scale is applied twice, hence the -0.25 here rather than -0.5. // https://github.com/huggingface/diffusers/blob/d3d22ce5a894becb951eec03e663951b28d45135/src/diffusers/models/attention.py#L87 let scale = f64::powf(self.channels as f64 / self.num_heads as f64, -0.25); let attention_scores = (query_states * scale)?.matmul(&(key_states.t()? * scale)?)?; let attention_probs = nn::ops::softmax(&attention_scores, D::Minus1)?; let xs = attention_probs.matmul(&value_states.contiguous()?)?; let xs = xs.to_dtype(in_dtype)?; let xs = xs.transpose(1, 2)?.contiguous()?; let xs = xs.flatten_from(D::Minus2)?; let xs = self .proj_attn .forward(&xs)? .t()? .reshape((batch, channel, height, width))?; (xs + residual)? / self.config.rescale_output_factor } }
candle/candle-transformers/src/models/stable_diffusion/attention.rs/0
{ "file_path": "candle/candle-transformers/src/models/stable_diffusion/attention.rs", "repo_id": "candle", "token_count": 9413 }
38
//! VGG-16 model implementation. //! //! See Very Deep Convolutional Networks for Large-Scale Image Recognition //! <https://arxiv.org/abs/1409.1556> use candle::{ModuleT, Result, Tensor}; use candle_nn::{FuncT, VarBuilder}; // Enum representing the different VGG models pub enum Models { Vgg13, Vgg16, Vgg19, } // Struct representing a VGG model #[derive(Debug)] pub struct Vgg<'a> { blocks: Vec<FuncT<'a>>, } // Struct representing the configuration for the pre-logit layer struct PreLogitConfig { in_dim: (usize, usize, usize, usize), target_in: usize, target_out: usize, } // Implementation of the VGG model impl<'a> Vgg<'a> { // Function to create a new VGG model pub fn new(vb: VarBuilder<'a>, model: Models) -> Result<Self> { let blocks = match model { Models::Vgg13 => vgg13_blocks(vb)?, Models::Vgg16 => vgg16_blocks(vb)?, Models::Vgg19 => vgg19_blocks(vb)?, }; Ok(Self { blocks }) } } // Implementation of the forward pass for the VGG model impl ModuleT for Vgg<'_> { fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> { let mut xs = xs.unsqueeze(0)?; for block in self.blocks.iter() { xs = xs.apply_t(block, train)?; } Ok(xs) } } // Function to create a conv2d block // The block is composed of two conv2d layers followed by a max pool layer fn conv2d_block(convs: &[(usize, usize, &str)], vb: &VarBuilder) -> Result<FuncT<'static>> { let layers = convs .iter() .enumerate() .map(|(_, &(in_c, out_c, name))| { candle_nn::conv2d( in_c, out_c, 3, candle_nn::Conv2dConfig { stride: 1, padding: 1, ..Default::default() }, vb.pp(name), ) }) .collect::<Result<Vec<_>>>()?; Ok(FuncT::new(move |xs, _train| { let mut xs = xs.clone(); for layer in layers.iter() { xs = xs.apply(layer)?.relu()? } xs = xs.max_pool2d_with_stride(2, 2)?; Ok(xs) })) } // Function to create a fully connected layer // The layer is composed of two linear layers followed by a dropout layer fn fully_connected( num_classes: usize, pre_logit_1: PreLogitConfig, pre_logit_2: PreLogitConfig, vb: VarBuilder, ) -> Result<FuncT> { let lin = get_weights_and_biases( &vb.pp("pre_logits.fc1"), pre_logit_1.in_dim, pre_logit_1.target_in, pre_logit_1.target_out, )?; let lin2 = get_weights_and_biases( &vb.pp("pre_logits.fc2"), pre_logit_2.in_dim, pre_logit_2.target_in, pre_logit_2.target_out, )?; let dropout1 = candle_nn::Dropout::new(0.5); let dropout2 = candle_nn::Dropout::new(0.5); let dropout3 = candle_nn::Dropout::new(0.5); Ok(FuncT::new(move |xs, train| { let xs = xs.reshape((1, pre_logit_1.target_out))?; let xs = xs.apply_t(&dropout1, train)?.apply(&lin)?.relu()?; let xs = xs.apply_t(&dropout2, train)?.apply(&lin2)?.relu()?; let lin3 = candle_nn::linear(4096, num_classes, vb.pp("head.fc"))?; let xs = xs.apply_t(&dropout3, train)?.apply(&lin3)?.relu()?; Ok(xs) })) } // Function to get the weights and biases for a layer // This is required because the weights and biases are stored in different format than our linear layer expects fn get_weights_and_biases( vs: &VarBuilder, in_dim: (usize, usize, usize, usize), target_in: usize, target_out: usize, ) -> Result<candle_nn::Linear> { let init_ws = candle_nn::init::DEFAULT_KAIMING_NORMAL; let ws = vs.get_with_hints(in_dim, "weight", init_ws)?; let ws = ws.reshape((target_in, target_out))?; let bound = 1. / (target_out as f64).sqrt(); let init_bs = candle_nn::Init::Uniform { lo: -bound, up: bound, }; let bs = vs.get_with_hints(target_in, "bias", init_bs)?; Ok(candle_nn::Linear::new(ws, Some(bs))) } fn vgg13_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> { let num_classes = 1000; let blocks = vec![ conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?, conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?, conv2d_block(&[(128, 256, "features.10"), (256, 256, "features.12")], &vb)?, conv2d_block(&[(256, 512, "features.15"), (512, 512, "features.17")], &vb)?, conv2d_block(&[(512, 512, "features.20"), (512, 512, "features.22")], &vb)?, fully_connected( num_classes, PreLogitConfig { in_dim: (4096, 512, 7, 7), target_in: 4096, target_out: 512 * 7 * 7, }, PreLogitConfig { in_dim: (4096, 4096, 1, 1), target_in: 4096, target_out: 4096, }, vb.clone(), )?, ]; Ok(blocks) } fn vgg16_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> { let num_classes = 1000; let blocks = vec![ conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?, conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?, conv2d_block( &[ (128, 256, "features.10"), (256, 256, "features.12"), (256, 256, "features.14"), ], &vb, )?, conv2d_block( &[ (256, 512, "features.17"), (512, 512, "features.19"), (512, 512, "features.21"), ], &vb, )?, conv2d_block( &[ (512, 512, "features.24"), (512, 512, "features.26"), (512, 512, "features.28"), ], &vb, )?, fully_connected( num_classes, PreLogitConfig { in_dim: (4096, 512, 7, 7), target_in: 4096, target_out: 512 * 7 * 7, }, PreLogitConfig { in_dim: (4096, 4096, 1, 1), target_in: 4096, target_out: 4096, }, vb.clone(), )?, ]; Ok(blocks) } fn vgg19_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> { let num_classes = 1000; let blocks = vec![ conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?, conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?, conv2d_block( &[ (128, 256, "features.10"), (256, 256, "features.12"), (256, 256, "features.14"), (256, 256, "features.16"), ], &vb, )?, conv2d_block( &[ (256, 512, "features.19"), (512, 512, "features.21"), (512, 512, "features.23"), (512, 512, "features.25"), ], &vb, )?, conv2d_block( &[ (512, 512, "features.28"), (512, 512, "features.30"), (512, 512, "features.32"), (512, 512, "features.34"), ], &vb, )?, fully_connected( num_classes, PreLogitConfig { in_dim: (4096, 512, 7, 7), target_in: 4096, target_out: 512 * 7 * 7, }, PreLogitConfig { in_dim: (4096, 4096, 1, 1), target_in: 4096, target_out: 4096, }, vb.clone(), )?, ]; Ok(blocks) }
candle/candle-transformers/src/models/vgg.rs/0
{ "file_path": "candle/candle-transformers/src/models/vgg.rs", "repo_id": "candle", "token_count": 4303 }
39
pub mod text_generation;
candle/candle-transformers/src/pipelines/mod.rs/0
{ "file_path": "candle/candle-transformers/src/pipelines/mod.rs", "repo_id": "candle", "token_count": 7 }
40
import init, { Model } from "./build/m.js"; async function fetchArrayBuffer(url, cacheFile = true) { if (!cacheFile) return new Uint8Array(await (await fetch(url)).arrayBuffer()); const cacheName = "blip-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } class Blip { static instance = {}; static async getInstance( weightsURL, tokenizerURL, configURL, modelID, quantized ) { if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = await Promise.all([ fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), fetchArrayBuffer(configURL), ]); this.instance[modelID] = new Model( weightsArrayU8, tokenizerArrayU8, configArrayU8, quantized ); } else { self.postMessage({ status: "ready", message: "Model Already Loaded" }); } return this.instance[modelID]; } } self.addEventListener("message", async (event) => { const { weightsURL, tokenizerURL, configURL, modelID, imageURL, quantized } = event.data; try { self.postMessage({ status: "status", message: "Loading Blip Model..." }); const model = await Blip.getInstance( weightsURL, tokenizerURL, configURL, modelID, quantized ); self.postMessage({ status: "status", message: "Running Blip Inference...", }); const imageArrayU8 = await fetchArrayBuffer(imageURL, false); const output = model.generate_caption_from_image(imageArrayU8); self.postMessage({ status: "complete", message: "complete", output: output, }); } catch (e) { self.postMessage({ error: e }); } });
candle/candle-wasm-examples/blip/blipWorker.js/0
{ "file_path": "candle/candle-wasm-examples/blip/blipWorker.js", "repo_id": "candle", "token_count": 815 }
41
mod app; pub mod model; pub mod worker; pub use app::App; pub use worker::Worker;
candle/candle-wasm-examples/llama2-c/src/lib.rs/0
{ "file_path": "candle/candle-wasm-examples/llama2-c/src/lib.rs", "repo_id": "candle", "token_count": 29 }
42
import init, { run_app } from './pkg/candle_wasm_example_whisper.js'; async function main() { await init('/pkg/candle_wasm_example_whisper_bg.wasm'); run_app(); } main()
candle/candle-wasm-examples/whisper/main.js/0
{ "file_path": "candle/candle-wasm-examples/whisper/main.js", "repo_id": "candle", "token_count": 73 }
43
fn main() { wasm_logger::init(wasm_logger::Config::new(log::Level::Trace)); console_error_panic_hook::set_once(); yew::Renderer::<candle_wasm_example_yolo::App>::new().render(); }
candle/candle-wasm-examples/yolo/src/bin/app.rs/0
{ "file_path": "candle/candle-wasm-examples/yolo/src/bin/app.rs", "repo_id": "candle", "token_count": 82 }
44
MONGODB_URL=mongodb://localhost:27017/
chat-ui/.env.ci/0
{ "file_path": "chat-ui/.env.ci", "repo_id": "chat-ui", "token_count": 16 }
45
import fs from "fs"; const SECRET_CONFIG = fs.existsSync(".env.SECRET_CONFIG") ? fs.readFileSync(".env.SECRET_CONFIG", "utf8") : process.env.SECRET_CONFIG; if (!SECRET_CONFIG) { throw new Error( "SECRET_CONFIG is not defined. Please provide it either in a file or as an environment variable." ); } // Read the content of the file .env.template const PUBLIC_CONFIG = fs.readFileSync(".env.template", "utf8"); // Prepend the content of the env variable SECRET_CONFIG const full_config = `${PUBLIC_CONFIG}\n${SECRET_CONFIG}`; // Write full_config to .env.local fs.writeFileSync(".env.local", full_config);
chat-ui/scripts/updateLocalEnv.ts/0
{ "file_path": "chat-ui/scripts/updateLocalEnv.ts", "repo_id": "chat-ui", "token_count": 217 }
46
<script lang="ts"> import { navigating } from "$app/stores"; import { createEventDispatcher } from "svelte"; import { browser } from "$app/environment"; import { base } from "$app/paths"; import { page } from "$app/stores"; import CarbonClose from "~icons/carbon/close"; import CarbonTextAlignJustify from "~icons/carbon/text-align-justify"; import IconNew from "$lib/components/icons/IconNew.svelte"; export let isOpen = false; export let title: string | undefined; $: title = title || "New Chat"; let closeEl: HTMLButtonElement; let openEl: HTMLButtonElement; const dispatch = createEventDispatcher(); $: if ($navigating) { dispatch("toggle", false); } $: if (isOpen && closeEl) { closeEl.focus(); } else if (!isOpen && browser && document.activeElement === closeEl) { openEl.focus(); } </script> <nav class="flex h-12 items-center justify-between border-b bg-gray-50 px-3 md:hidden dark:border-gray-800 dark:bg-gray-800/70" > <button type="button" class="-ml-3 flex size-12 shrink-0 items-center justify-center text-lg" on:click={() => dispatch("toggle", true)} aria-label="Open menu" bind:this={openEl}><CarbonTextAlignJustify /></button > <span class="truncate px-4">{title}</span> <a class:invisible={!$page.params.id} href="{base}/" class="-mr-3 flex size-12 shrink-0 items-center justify-center text-lg"><IconNew /></a > </nav> <nav class="fixed inset-0 z-30 grid max-h-screen grid-cols-1 grid-rows-[auto,auto,1fr,auto] bg-white dark:bg-gray-900 {isOpen ? 'block' : 'hidden'}" > <div class="flex h-12 items-center px-4"> <button type="button" class="-mr-3 ml-auto flex size-12 items-center justify-center text-lg" on:click={() => dispatch("toggle", false)} aria-label="Close menu" bind:this={closeEl}><CarbonClose /></button > </div> <slot /> </nav>
chat-ui/src/lib/components/MobileNav.svelte/0
{ "file_path": "chat-ui/src/lib/components/MobileNav.svelte", "repo_id": "chat-ui", "token_count": 692 }
47
<script lang="ts"> import { createEventDispatcher } from "svelte"; import IconGear from "~icons/bi/gear-fill"; import { base } from "$app/paths"; import type { Assistant } from "$lib/types/Assistant"; export let assistant: Pick< Assistant, "avatar" | "name" | "modelId" | "createdByName" | "exampleInputs" | "_id" | "description" >; const dispatch = createEventDispatcher<{ message: string }>(); </script> <div class="flex h-full w-full flex-col content-center items-center justify-center"> <div class="relative mt-auto rounded-2xl bg-gray-100 text-gray-600 dark:border-gray-800 dark:bg-gray-800/60 dark:text-gray-300" > <div class="flex min-w-[80dvw] items-center gap-4 p-4 pr-1 sm:min-w-[440px] md:p-8 md:pt-10 xl:gap-8" > {#if assistant.avatar} <img src={`${base}/settings/assistants/${assistant._id.toString()}/avatar.jpg?hash=${ assistant.avatar }`} alt="avatar" class="size-16 flex-none rounded-full object-cover max-sm:self-start md:size-32" /> {:else} <div class="flex size-12 flex-none items-center justify-center rounded-full bg-gray-300 object-cover text-xl font-bold uppercase text-gray-500 max-sm:self-start sm:text-4xl md:size-32 dark:bg-gray-600" > {assistant?.name[0]} </div> {/if} <div class="flex h-full flex-col gap-2 text-balance"> <p class="-mb-1">Assistant</p> <p class="text-xl font-bold sm:text-2xl">{assistant.name}</p> <p class="line-clamp-6 text-sm text-gray-500 dark:text-gray-400"> {assistant.description} </p> {#if assistant.createdByName} <p class="pt-2 text-sm text-gray-400 dark:text-gray-500"> Created by <a class="hover:underline" href="https://hf.co/{assistant.createdByName}" target="_blank" > {assistant.createdByName} </a> </p> {/if} </div> </div> <div class="absolute right-3 top-3 md:right-4 md:top-4"> <a href="{base}/settings/assistants/{assistant._id.toString()}" class="flex items-center gap-1.5 rounded-full border bg-white py-1 pl-3 pr-2.5 text-xs text-gray-800 shadow-sm hover:shadow-inner md:text-sm dark:border-gray-700 dark:bg-gray-700 dark:text-gray-300/90 dark:hover:bg-gray-800" ><IconGear class="text-xxs" />Settings</a > </div> </div> {#if assistant.exampleInputs} <div class="mx-auto mt-auto w-full gap-8 sm:-mb-8"> <div class="md:col-span-2 md:mt-6"> <div class="grid grid-cols-1 gap-3 {assistant.exampleInputs.length > 1 ? 'md:grid-cols-2' : ''}" > {#each assistant.exampleInputs as example} <button type="button" class="truncate whitespace-nowrap rounded-xl border bg-gray-50 px-3 py-2 text-left text-smd text-gray-600 hover:bg-gray-100 dark:border-gray-800 dark:bg-gray-800 dark:text-gray-300 dark:hover:bg-gray-700" on:click={() => dispatch("message", example)} > {example} </button> {/each} </div> </div> </div> {/if} </div>
chat-ui/src/lib/components/chat/AssistantIntroduction.svelte/0
{ "file_path": "chat-ui/src/lib/components/chat/AssistantIntroduction.svelte", "repo_id": "chat-ui", "token_count": 1361 }
48
// Shouldn't be needed if we dove into sveltekit internals, see https://github.com/huggingface/chat-ui/pull/88#issuecomment-1523173850 import { setTimeout } from "node:timers/promises"; import { collections } from "./database"; let closed = false; process.on("SIGINT", () => { closed = true; }); export let abortedGenerations: Map<string, Date> = new Map(); async function maintainAbortedGenerations() { while (!closed) { await setTimeout(1000); try { const aborts = await collections.abortedGenerations.find({}).sort({ createdAt: 1 }).toArray(); abortedGenerations = new Map( aborts.map(({ conversationId, createdAt }) => [conversationId.toString(), createdAt]) ); } catch (err) { console.error(err); } } } maintainAbortedGenerations();
chat-ui/src/lib/server/abortedGenerations.ts/0
{ "file_path": "chat-ui/src/lib/server/abortedGenerations.ts", "repo_id": "chat-ui", "token_count": 267 }
49
import type { Conversation } from "$lib/types/Conversation"; import { sha256 } from "$lib/utils/sha256"; import { collections } from "../database"; export async function uploadFile(file: Blob, conv: Conversation): Promise<string> { const sha = await sha256(await file.text()); const upload = collections.bucket.openUploadStream(`${conv._id}-${sha}`, { metadata: { conversation: conv._id.toString(), mime: "image/jpeg" }, }); upload.write((await file.arrayBuffer()) as unknown as Buffer); upload.end(); // only return the filename when upload throws a finish event or a 10s time out occurs return new Promise((resolve, reject) => { upload.once("finish", () => resolve(sha)); upload.once("error", reject); setTimeout(() => reject(new Error("Upload timed out")), 10000); }); }
chat-ui/src/lib/server/files/uploadFile.ts/0
{ "file_path": "chat-ui/src/lib/server/files/uploadFile.ts", "repo_id": "chat-ui", "token_count": 244 }
50
import { writable } from "svelte/store"; export interface WebSearchParameters { useSearch: boolean; nItems: number; } export const webSearchParameters = writable<WebSearchParameters>({ useSearch: false, nItems: 5, });
chat-ui/src/lib/stores/webSearchParameters.ts/0
{ "file_path": "chat-ui/src/lib/stores/webSearchParameters.ts", "repo_id": "chat-ui", "token_count": 68 }
51
/* eslint-disable no-shadow */ export enum UrlDependency { ConversationList = "conversation:list", Conversation = "conversation", }
chat-ui/src/lib/types/UrlDependency.ts/0
{ "file_path": "chat-ui/src/lib/types/UrlDependency.ts", "repo_id": "chat-ui", "token_count": 47 }
52
export async function share(url: string, title: string) { if (navigator.share) { navigator.share({ url, title }); } else { await navigator.clipboard.writeText(url); } }
chat-ui/src/lib/utils/share.ts/0
{ "file_path": "chat-ui/src/lib/utils/share.ts", "repo_id": "chat-ui", "token_count": 63 }
53
import ChatThumbnail from "./ChatThumbnail.svelte"; import { collections } from "$lib/server/database"; import { error, type RequestHandler } from "@sveltejs/kit"; import { ObjectId } from "mongodb"; import type { SvelteComponent } from "svelte"; import { Resvg } from "@resvg/resvg-js"; import satori from "satori"; import { html } from "satori-html"; import InterRegular from "../../../../../static/fonts/Inter-Regular.ttf"; import InterBold from "../../../../../static/fonts/Inter-Bold.ttf"; import sharp from "sharp"; export const GET: RequestHandler = (async ({ params }) => { const assistant = await collections.assistants.findOne({ _id: new ObjectId(params.assistantId), }); if (!assistant) { throw error(404, "Assistant not found."); } let avatar = ""; const fileId = collections.bucket.find({ filename: assistant._id.toString() }); const file = await fileId.next(); if (file) { avatar = await (async () => { const fileStream = collections.bucket.openDownloadStream(file?._id); const fileBuffer = await new Promise<Buffer>((resolve, reject) => { const chunks: Uint8Array[] = []; fileStream.on("data", (chunk) => chunks.push(chunk)); fileStream.on("error", reject); fileStream.on("end", () => resolve(Buffer.concat(chunks))); }); return fileBuffer; })() .then(async (buf) => sharp(buf).jpeg().toBuffer()) // convert to jpeg bc satori png is really slow .then(async (buf) => "data:image/jpeg;base64," + buf.toString("base64")); } const renderedComponent = (ChatThumbnail as unknown as SvelteComponent).render({ name: assistant.name, description: assistant.description, createdByName: assistant.createdByName, avatar, }); const reactLike = html( "<style>" + renderedComponent.css.code + "</style>" + renderedComponent.html ); const svg = await satori(reactLike, { width: 1200, height: 648, fonts: [ { name: "Inter", data: InterRegular as unknown as ArrayBuffer, weight: 500, }, { name: "Inter", data: InterBold as unknown as ArrayBuffer, weight: 700, }, ], }); const png = new Resvg(svg, { fitTo: { mode: "original" }, }) .render() .asPng(); return new Response(png, { headers: { "Content-Type": "image/png", }, }); }) satisfies RequestHandler;
chat-ui/src/routes/assistant/[assistantId]/thumbnail.png/+server.ts/0
{ "file_path": "chat-ui/src/routes/assistant/[assistantId]/thumbnail.png/+server.ts", "repo_id": "chat-ui", "token_count": 833 }
54
import { assert, it, describe, afterEach, vi, expect } from "vitest"; import type { Cookies } from "@sveltejs/kit"; import { collections } from "$lib/server/database"; import { updateUser } from "./updateUser"; import { ObjectId } from "mongodb"; import { DEFAULT_SETTINGS } from "$lib/types/Settings"; import { defaultModel } from "$lib/server/models"; import { findUser } from "$lib/server/auth"; import { defaultEmbeddingModel } from "$lib/server/embeddingModels"; const userData = { preferred_username: "new-username", name: "name", picture: "https://example.com/avatar.png", sub: "1234567890", }; Object.freeze(userData); const locals = { userId: "1234567890", sessionId: "1234567890", }; // @ts-expect-error SvelteKit cookies dumb mock const cookiesMock: Cookies = { set: vi.fn(), }; const insertRandomUser = async () => { const res = await collections.users.insertOne({ _id: new ObjectId(), createdAt: new Date(), updatedAt: new Date(), username: "base-username", name: userData.name, avatarUrl: userData.picture, hfUserId: userData.sub, }); return res.insertedId; }; const insertRandomConversations = async (count: number) => { const res = await collections.conversations.insertMany( new Array(count).fill(0).map(() => ({ _id: new ObjectId(), title: "random title", messages: [], model: defaultModel.id, embeddingModel: defaultEmbeddingModel.id, createdAt: new Date(), updatedAt: new Date(), sessionId: locals.sessionId, })) ); return res.insertedIds; }; describe("login", () => { it("should update user if existing", async () => { await insertRandomUser(); await updateUser({ userData, locals, cookies: cookiesMock }); const existingUser = await collections.users.findOne({ hfUserId: userData.sub }); assert.equal(existingUser?.name, userData.name); expect(cookiesMock.set).toBeCalledTimes(1); }); it("should migrate pre-existing conversations for new user", async () => { const insertedId = await insertRandomUser(); await insertRandomConversations(2); await updateUser({ userData, locals, cookies: cookiesMock }); const conversationCount = await collections.conversations.countDocuments({ userId: insertedId, sessionId: { $exists: false }, }); assert.equal(conversationCount, 2); await collections.conversations.deleteMany({ userId: insertedId }); }); it("should create default settings for new user", async () => { await updateUser({ userData, locals, cookies: cookiesMock }); const user = await findUser(locals.sessionId); assert.exists(user); const settings = await collections.settings.findOne({ userId: user?._id }); expect(settings).toMatchObject({ userId: user?._id, updatedAt: expect.any(Date), createdAt: expect.any(Date), ethicsModalAcceptedAt: expect.any(Date), ...DEFAULT_SETTINGS, }); await collections.settings.deleteOne({ userId: user?._id }); }); it("should migrate pre-existing settings for pre-existing user", async () => { const { insertedId } = await collections.settings.insertOne({ sessionId: locals.sessionId, ethicsModalAcceptedAt: new Date(), updatedAt: new Date(), createdAt: new Date(), ...DEFAULT_SETTINGS, shareConversationsWithModelAuthors: false, }); await updateUser({ userData, locals, cookies: cookiesMock }); const settings = await collections.settings.findOne({ _id: insertedId, sessionId: { $exists: false }, }); assert.exists(settings); const user = await collections.users.findOne({ hfUserId: userData.sub }); expect(settings).toMatchObject({ userId: user?._id, updatedAt: expect.any(Date), createdAt: expect.any(Date), ethicsModalAcceptedAt: expect.any(Date), ...DEFAULT_SETTINGS, shareConversationsWithModelAuthors: false, }); await collections.settings.deleteOne({ userId: user?._id }); }); }); afterEach(async () => { await collections.users.deleteMany({ hfUserId: userData.sub }); await collections.sessions.deleteMany({}); locals.userId = "1234567890"; locals.sessionId = "1234567890"; vi.clearAllMocks(); });
chat-ui/src/routes/login/callback/updateUser.spec.ts/0
{ "file_path": "chat-ui/src/routes/login/callback/updateUser.spec.ts", "repo_id": "chat-ui", "token_count": 1408 }
55
<script lang="ts"> import type { PageData, ActionData } from "./$types"; import { page } from "$app/stores"; import AssistantSettings from "$lib/components/AssistantSettings.svelte"; export let data: PageData; export let form: ActionData; $: assistant = data.assistants.find((el) => el._id.toString() === $page.params.assistantId); </script> <AssistantSettings bind:form {assistant} models={data.models} />
chat-ui/src/routes/settings/assistants/[assistantId]/edit/+page.svelte/0
{ "file_path": "chat-ui/src/routes/settings/assistants/[assistantId]/edit/+page.svelte", "repo_id": "chat-ui", "token_count": 130 }
56
{ "background_color": "#ffffff", "name": "HuggingChat", "short_name": "HuggingChat", "display": "standalone", "start_url": "/chat", "icons": [ { "src": "/chat/huggingchat/icon-128x128.png", "sizes": "128x128", "type": "image/png" }, { "src": "/chat/huggingchat/icon-256x256.png", "sizes": "256x256", "type": "image/png" }, { "src": "/chat/huggingchat/icon-512x512.png", "sizes": "512x512", "type": "image/png" } ] }
chat-ui/static/huggingchat/manifest.json/0
{ "file_path": "chat-ui/static/huggingchat/manifest.json", "repo_id": "chat-ui", "token_count": 233 }
57
import json import os from dataclasses import dataclass import numpy as np import pyarrow as pa import datasets from utils import get_duration SPEED_TEST_N_EXAMPLES = 100_000_000_000 SPEED_TEST_CHUNK_SIZE = 10_000 RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__) RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) def generate_100B_dataset(num_examples: int, chunk_size: int) -> datasets.Dataset: table = pa.Table.from_pydict({"col": [0] * chunk_size}) table = pa.concat_tables([table] * (num_examples // chunk_size)) return datasets.Dataset(table, fingerprint="table_100B") @dataclass class RandIter: low: int high: int size: int seed: int def __post_init__(self): rng = np.random.default_rng(self.seed) self._sampled_values = rng.integers(low=self.low, high=self.high, size=self.size).tolist() def __iter__(self): return iter(self._sampled_values) def __len__(self): return self.size @get_duration def get_first_row(dataset: datasets.Dataset): _ = dataset[0] @get_duration def get_last_row(dataset: datasets.Dataset): _ = dataset[-1] @get_duration def get_batch_of_1024_rows(dataset: datasets.Dataset): _ = dataset[range(len(dataset) // 2, len(dataset) // 2 + 1024)] @get_duration def get_batch_of_1024_random_rows(dataset: datasets.Dataset): _ = dataset[RandIter(0, len(dataset), 1024, seed=42)] def benchmark_table_100B(): times = {"num examples": SPEED_TEST_N_EXAMPLES} functions = (get_first_row, get_last_row, get_batch_of_1024_rows, get_batch_of_1024_random_rows) print("generating dataset") dataset = generate_100B_dataset(num_examples=SPEED_TEST_N_EXAMPLES, chunk_size=SPEED_TEST_CHUNK_SIZE) print("Functions") for func in functions: print(func.__name__) times[func.__name__] = func(dataset) with open(RESULTS_FILE_PATH, "wb") as f: f.write(json.dumps(times).encode("utf-8")) if __name__ == "__main__": # useful to run the profiler benchmark_table_100B()
datasets/benchmarks/benchmark_getitem_100B.py/0
{ "file_path": "datasets/benchmarks/benchmark_getitem_100B.py", "repo_id": "datasets", "token_count": 867 }
58
# Datasets 🤝 Arrow ## What is Arrow? [Arrow](https://arrow.apache.org/) enables large amounts of data to be processed and moved quickly. It is a specific data format that stores data in a columnar memory layout. This provides several significant advantages: * Arrow's standard format allows [zero-copy reads](https://en.wikipedia.org/wiki/Zero-copy) which removes virtually all serialization overhead. * Arrow is language-agnostic so it supports different programming languages. * Arrow is column-oriented so it is faster at querying and processing slices or columns of data. * Arrow allows for copy-free hand-offs to standard machine learning tools such as NumPy, Pandas, PyTorch, and TensorFlow. * Arrow supports many, possibly nested, column types. ## Memory-mapping 🤗 Datasets uses Arrow for its local caching system. It allows datasets to be backed by an on-disk cache, which is memory-mapped for fast lookup. This architecture allows for large datasets to be used on machines with relatively small device memory. For example, loading the full English Wikipedia dataset only takes a few MB of RAM: ```python >>> import os; import psutil; import timeit >>> from datasets import load_dataset # Process.memory_info is expressed in bytes, so convert to megabytes >>> mem_before = psutil.Process(os.getpid()).memory_info().rss / (1024 * 1024) >>> wiki = load_dataset("wikipedia", "20220301.en", split="train") >>> mem_after = psutil.Process(os.getpid()).memory_info().rss / (1024 * 1024) >>> print(f"RAM memory used: {(mem_after - mem_before)} MB") RAM memory used: 50 MB ``` This is possible because the Arrow data is actually memory-mapped from disk, and not loaded in memory. Memory-mapping allows access to data on disk, and leverages virtual memory capabilities for fast lookups. ## Performance Iterating over a memory-mapped dataset using Arrow is fast. Iterating over Wikipedia on a laptop gives you speeds of 1-3 Gbit/s: ```python >>> s = """batch_size = 1000 ... for batch in wiki.iter(batch_size): ... ... ... """ >>> elapsed_time = timeit.timeit(stmt=s, number=1, globals=globals()) >>> print(f"Time to iterate over the {wiki.dataset_size >> 30} GB dataset: {elapsed_time:.1f} sec, " ... f"ie. {float(wiki.dataset_size >> 27)/elapsed_time:.1f} Gb/s") Time to iterate over the 18 GB dataset: 31.8 sec, ie. 4.8 Gb/s ```
datasets/docs/source/about_arrow.md/0
{ "file_path": "datasets/docs/source/about_arrow.md", "repo_id": "datasets", "token_count": 682 }
59
# Depth estimation Depth estimation datasets are used to train a model to approximate the relative distance of every pixel in an image from the camera, also known as depth. The applications enabled by these datasets primarily lie in areas like visual machine perception and perception in robotics. Example applications include mapping streets for self-driving cars. This guide will show you how to apply transformations to a depth estimation dataset. Before you start, make sure you have up-to-date versions of `albumentations` installed: ```bash pip install -U albumentations ``` [Albumentations](https://albumentations.ai/) is a Python library for performing data augmentation for computer vision. It supports various computer vision tasks such as image classification, object detection, segmentation, and keypoint estimation. This guide uses the [NYU Depth V2](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) dataset which is comprised of video sequences from various indoor scenes, recorded by RGB and depth cameras. The dataset consists of scenes from 3 cities and provides images along with their depth maps as labels. Load the `train` split of the dataset and take a look at an example: ```py >>> from datasets import load_dataset >>> train_dataset = load_dataset("sayakpaul/nyu_depth_v2", split="train") >>> index = 17 >>> example = train_dataset[index] >>> example {'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x480>, 'depth_map': <PIL.TiffImagePlugin.TiffImageFile image mode=F size=640x480>} ``` The dataset has two fields: * `image`: a PIL PNG image object with `uint8` data type. * `depth_map`: a PIL Tiff image object with `float32` data type which is the depth map of the image. It is mention-worthy that JPEG/PNG format can only store `uint8` or `uint16` data. As the depth map is `float32` data, it can't be stored using PNG/JPEG. However, we can save the depth map using TIFF format as it supports a wider range of data types, including `float32` data. Next, check out an image with: ```py >>> example["image"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_sample.png"> </div> Before we look at the depth map, we need to first convert its data type to `uint8` using `.convert('RGB')` as PIL can't display `float32` images. Now take a look at its corresponding depth map: ```py >>> example["depth_map"].convert("RGB") ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_target.png"> </div> It's all black! You'll need to add some color to the depth map to visualize it properly. To do that, either we can apply color automatically during display using `plt.imshow()` or create a colored depth map using `plt.cm` and then display it. In this example, we have used the latter one, as we can save/write the colored depth map later. (the utility below is taken from the [FastDepth repository](https://github.com/dwofk/fast-depth/blob/master/utils.py)). ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> cmap = plt.cm.viridis >>> def colored_depthmap(depth, d_min=None, d_max=None): ... if d_min is None: ... d_min = np.min(depth) ... if d_max is None: ... d_max = np.max(depth) ... depth_relative = (depth - d_min) / (d_max - d_min) ... return 255 * cmap(depth_relative)[:,:,:3] >>> def show_depthmap(depth_map): ... if not isinstance(depth_map, np.ndarray): ... depth_map = np.array(depth_map) ... if depth_map.ndim == 3: ... depth_map = depth_map.squeeze() ... d_min = np.min(depth_map) ... d_max = np.max(depth_map) ... depth_map = colored_depthmap(depth_map, d_min, d_max) ... plt.imshow(depth_map.astype("uint8")) ... plt.axis("off") ... plt.show() >>> show_depthmap(example["depth_map"]) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_target_viz.png"> </div> You can also visualize several different images and their corresponding depth maps. ```py >>> def merge_into_row(input_image, depth_target): ... if not isinstance(input_image, np.ndarray): ... input_image = np.array(input_image) ... ... d_min = np.min(depth_target) ... d_max = np.max(depth_target) ... depth_target_col = colored_depthmap(depth_target, d_min, d_max) ... img_merge = np.hstack([input_image, depth_target_col]) ... ... return img_merge >>> random_indices = np.random.choice(len(train_dataset), 9).tolist() >>> plt.figure(figsize=(15, 6)) >>> for i, idx in enumerate(random_indices): ... example = train_dataset[idx] ... ax = plt.subplot(3, 3, i + 1) ... image_viz = merge_into_row( ... example["image"], example["depth_map"] ... ) ... plt.imshow(image_viz.astype("uint8")) ... plt.axis("off") ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_collage.png"> </div> Now apply some augmentations with `albumentations`. The augmentation transformations include: * Random horizontal flipping * Random cropping * Random brightness and contrast * Random gamma correction * Random hue saturation ```py >>> import albumentations as A >>> crop_size = (448, 576) >>> transforms = [ ... A.HorizontalFlip(p=0.5), ... A.RandomCrop(crop_size[0], crop_size[1]), ... A.RandomBrightnessContrast(), ... A.RandomGamma(), ... A.HueSaturationValue() ... ] ``` Additionally, define a mapping to better reflect the target key name. ```py >>> additional_targets = {"depth": "mask"} >>> aug = A.Compose(transforms=transforms, additional_targets=additional_targets) ``` With `additional_targets` defined, you can pass the target depth maps to the `depth` argument of `aug` instead of `mask`. You'll notice this change in the `apply_transforms()` function defined below. Create a function to apply the transformation to the images as well as their depth maps: ```py >>> def apply_transforms(examples): ... transformed_images, transformed_maps = [], [] ... for image, depth_map in zip(examples["image"], examples["depth_map"]): ... image, depth_map = np.array(image), np.array(depth_map) ... transformed = aug(image=image, depth=depth_map) ... transformed_images.append(transformed["image"]) ... transformed_maps.append(transformed["depth"]) ... ... examples["pixel_values"] = transformed_images ... examples["labels"] = transformed_maps ... return examples ``` Use the [`~Dataset.set_transform`] function to apply the transformation on-the-fly to batches of the dataset to consume less disk space: ```py >>> train_dataset.set_transform(apply_transforms) ``` You can verify the transformation worked by indexing into the `pixel_values` and `labels` of an example image: ```py >>> example = train_dataset[index] >>> plt.imshow(example["pixel_values"]) >>> plt.axis("off") >>> plt.show() ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_sample_aug.png"> </div> Visualize the same transformation on the image's corresponding depth map: ```py >>> show_depthmap(example["labels"]) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_target_aug.png"> </div> You can also visualize multiple training samples reusing the previous `random_indices`: ```py >>> plt.figure(figsize=(15, 6)) >>> for i, idx in enumerate(random_indices): ... ax = plt.subplot(3, 3, i + 1) ... example = train_dataset[idx] ... image_viz = merge_into_row( ... example["pixel_values"], example["labels"] ... ) ... plt.imshow(image_viz.astype("uint8")) ... plt.axis("off") ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_aug_collage.png"> </div>
datasets/docs/source/depth_estimation.mdx/0
{ "file_path": "datasets/docs/source/depth_estimation.mdx", "repo_id": "datasets", "token_count": 2848 }
60
# Load text data This guide shows you how to load text datasets. To learn how to load any type of dataset, take a look at the <a class="underline decoration-sky-400 decoration-2 font-semibold" href="./loading">general loading guide</a>. Text files are one of the most common file types for storing a dataset. By default, 🤗 Datasets samples a text file line by line to build the dataset. ```py >>> from datasets import load_dataset >>> dataset = load_dataset("text", data_files={"train": ["my_text_1.txt", "my_text_2.txt"], "test": "my_test_file.txt"}) # Load from a directory >>> dataset = load_dataset("text", data_dir="path/to/text/dataset") ``` To sample a text file by paragraph or even an entire document, use the `sample_by` parameter: ```py # Sample by paragraph >>> dataset = load_dataset("text", data_files={"train": "my_train_file.txt", "test": "my_test_file.txt"}, sample_by="paragraph") # Sample by document >>> dataset = load_dataset("text", data_files={"train": "my_train_file.txt", "test": "my_test_file.txt"}, sample_by="document") ``` You can also use grep patterns to load specific files: ```py >>> from datasets import load_dataset >>> c4_subset = load_dataset("allenai/c4", data_files="en/c4-train.0000*-of-01024.json.gz") ``` To load remote text files via HTTP, pass the URLs instead: ```py >>> dataset = load_dataset("text", data_files="https://huggingface.co/datasets/lhoestq/test/resolve/main/some_text.txt") ```
datasets/docs/source/nlp_load.mdx/0
{ "file_path": "datasets/docs/source/nlp_load.mdx", "repo_id": "datasets", "token_count": 482 }
61
# Troubleshooting This guide aims to provide you the tools and knowledge required to navigate some common issues. If the suggestions listed in this guide do not cover your such situation, please refer to the [Asking for Help](#asking-for-help) section to learn where to find help with your specific issue. ## Issues when uploading datasets with `push_to_hub` ### Authentication issues If you are experiencing authentication issues when sharing a dataset on 🤗 Hub using [`Dataset.push_to_hub`] and a Hugging Face access token: * Make sure that the Hugging Face token you're using to authenticate yourself is a token with **write** permission. * On OSX, it may help to clean up all the huggingface.co passwords on your keychain access, as well as reconfigure `git config --global credential.helper osxkeychain`, before using `huggingface-cli login`. Alternatively, you can use SSH keys to authenticate yourself - read more in the [🤗 Hub documentation](https://huggingface.co/docs/hub/security-git-ssh). ### Lost connection on large dataset upload When uploading large datasets to Hub, if the number of dataset shards is large, it can create too many commits for the Hub in a short period. This will result in a connection error. The connection error can also be caused by a HTTP 500 error returned by AWS S3 bucket that Hub uses internally. In either situation, you can re-run [`Dataset.push_to_hub`] to proceed with the dataset upload. Hub will check the SHAs of already uploaded shards to avoid reuploading them. We are working on making upload process more robust to transient errors, so updating to the latest library version is always a good idea. ### `Too Many Requests` Uploading large datasets via `push_to_hub()` can result in an error: ```bash HfHubHTTPError: 429 Client Error: Too Many Requests for url: ... You have exceeded our hourly quotas for action: commit. We invite you to retry later. ``` If you encounter this issue, you need to upgrade the `datasets` library to the latest version (or at least `2.15.0`). ## Issues when creating datasets from custom data ### Loading images and audio from a folder When creating a dataset from a folder, one of the most common issues is that the file structure does not follow the expected format, or there's an issue with the metadata file. Learn more about required folder structure in corresponding documentation pages: * [AudioFolder](https://huggingface.co/docs/datasets/audio_dataset#audiofolder) * [ImageFolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder) ### Pickling issues #### Pickling issues when using `Dataset.from_generator` When creating a dataset, [`IterableDataset.from_generator`] and [`Dataset.from_generator`] expect a "picklable" generator function. This is required to hash the function using [`pickle`](https://docs.python.org/3/library/pickle.html) to be able to cache the dataset on disk. While generator functions are generally "picklable", note that generator objects are not. So if you're using a generator object, you will encounter a `TypeError` like this: ```bash TypeError: cannot pickle 'generator' object ``` This error can also occur when using a generator function that uses a global object that is not "picklable", such as a DB connection, for example. If that's the case, you can initialize such object directly inside the generator function to avoid this error. #### Pickling issues with `Dataset.map` Pickling errors can also happen in the multiprocess [`Dataset.map`] - objects are pickled to be passed to child processes. If the objects used in the transformation are not picklable, it's not possible to cache the result of `map`, which leads to an error being raised. Here are some ways to address this issue: * A universal solution to pickle issues is to make sure the objects (or generator classes) are pickable manually by implementing `__getstate__` / `__setstate__` / `__reduce__`. * You can also provide your own unique hash in `map` with the `new_fingerprint` argument. * You can also disable caching by calling `datasets.disable_caching()`, however, this is undesirable - [read more about importance of cache](cache) ## Asking for help If the above troubleshooting advice did not help you resolve your issue, reach out for help to the community and the team. ### Forums Ask for help on the Hugging Face forums - post your question in the [🤗Datasets category](https://discuss.huggingface.co/c/datasets/10) Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved! ### Discord Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you. ### Community Discussions on 🤗 Hub If you are facing issues creating a custom dataset with a script on Hub, you can ask the Hugging Face team for help by opening a discussion in the Community tab of your dataset with this message: ```text # Dataset rewiew request for <Dataset name> ## Description <brief description of the dataset> ## Files to review - file1 - file2 - ... cc @lhoestq @polinaeterna @mariosasko @albertvillanova ``` ### GitHub Issues Finally, if you suspect to have found a bug related to the library itself, create an Issue on the 🤗 Datasets [GitHub repository](https://github.com/huggingface/datasets/issues). Include context regarding the bug: code snippet to reproduce, details about your environment and data, etc. to help us figure out what's wrong and how we can fix it.
datasets/docs/source/troubleshoot.mdx/0
{ "file_path": "datasets/docs/source/troubleshoot.mdx", "repo_id": "datasets", "token_count": 1470 }
62
# Metric Card for CER ## Metric description Character error rate (CER) is a common metric of the performance of an automatic speech recognition (ASR) system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Character error rate can be computed as: `CER = (S + D + I) / N = (S + D + I) / (S + D + C)` where `S` is the number of substitutions, `D` is the number of deletions, `I` is the number of insertions, `C` is the number of correct characters, `N` is the number of characters in the reference (`N=S+D+C`). ## How to use The metric takes two inputs: references (a list of references for each speech input) and predictions (a list of transcriptions to score). ```python from datasets import load_metric cer = load_metric("cer") cer_score = cer.compute(predictions=predictions, references=references) ``` ## Output values This metric outputs a float representing the character error rate. ``` print(cer_score) 0.34146341463414637 ``` The **lower** the CER value, the **better** the performance of the ASR system, with a CER of 0 being a perfect score. However, CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions (see [Examples](#Examples) below). ### Values from popular papers This metric is highly dependent on the content and quality of the dataset, and therefore users can expect very different values for the same model but on different datasets. Multilingual datasets such as [Common Voice](https://huggingface.co/datasets/common_voice) report different CERs depending on the language, ranging from 0.02-0.03 for languages such as French and Italian, to 0.05-0.07 for English (see [here](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) for more values). ## Examples Perfect match between prediction and reference: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["hello world", "good night moon"] references = ["hello world", "good night moon"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 0.0 ``` Partial match between prediction and reference: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["this is the prediction", "there is an other sample"] references = ["this is the reference", "there is another one"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 0.34146341463414637 ``` No match between prediction and reference: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["hello"] references = ["gracias"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 1.0 ``` CER above 1 due to insertion errors: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["hello world"] references = ["hello"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 1.2 ``` ## Limitations and bias CER is useful for comparing different models for tasks such as automatic speech recognition (ASR) and optic character recognition (OCR), especially for multilingual datasets where WER is not suitable given the diversity of languages. However, CER provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. Also, in some cases, instead of reporting the raw CER, a normalized CER is reported where the number of mistakes is divided by the sum of the number of edit operations (`I` + `S` + `D`) and `C` (the number of correct characters), which results in CER values that fall within the range of 0–100%. ## Citation ```bibtex @inproceedings{morris2004, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ``` ## Further References - [Hugging Face Tasks -- Automatic Speech Recognition](https://huggingface.co/tasks/automatic-speech-recognition)
datasets/metrics/cer/README.md/0
{ "file_path": "datasets/metrics/cer/README.md", "repo_id": "datasets", "token_count": 1192 }
63
""" Official evaluation script for CUAD dataset. """ import argparse import json import re import string import sys import numpy as np IOU_THRESH = 0.5 def get_jaccard(prediction, ground_truth): remove_tokens = [".", ",", ";", ":"] for token in remove_tokens: ground_truth = ground_truth.replace(token, "") prediction = prediction.replace(token, "") ground_truth, prediction = ground_truth.lower(), prediction.lower() ground_truth, prediction = ground_truth.replace("/", " "), prediction.replace("/", " ") ground_truth, prediction = set(ground_truth.split(" ")), set(prediction.split(" ")) intersection = ground_truth.intersection(prediction) union = ground_truth.union(prediction) jaccard = len(intersection) / len(union) return jaccard def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def compute_precision_recall(predictions, ground_truths, qa_id): tp, fp, fn = 0, 0, 0 substr_ok = "Parties" in qa_id # first check if ground truth is empty if len(ground_truths) == 0: if len(predictions) > 0: fp += len(predictions) # false positive for each one else: for ground_truth in ground_truths: assert len(ground_truth) > 0 # check if there is a match match_found = False for pred in predictions: if substr_ok: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH or ground_truth in pred else: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH if is_match: match_found = True if match_found: tp += 1 else: fn += 1 # now also get any fps by looping through preds for pred in predictions: # Check if there's a match. if so, don't count (don't want to double count based on the above) # but if there's no match, then this is a false positive. # (Note: we get the true positives in the above loop instead of this loop so that we don't double count # multiple predictions that are matched with the same answer.) match_found = False for ground_truth in ground_truths: assert len(ground_truth) > 0 if substr_ok: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH or ground_truth in pred else: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH if is_match: match_found = True if not match_found: fp += 1 precision = tp / (tp + fp) if tp + fp > 0 else np.nan recall = tp / (tp + fn) if tp + fn > 0 else np.nan return precision, recall def process_precisions(precisions): """ Processes precisions to ensure that precision and recall don't both get worse. Assumes the list precision is sorted in order of recalls """ precision_best = precisions[::-1] for i in range(1, len(precision_best)): precision_best[i] = max(precision_best[i - 1], precision_best[i]) precisions = precision_best[::-1] return precisions def get_aupr(precisions, recalls): processed_precisions = process_precisions(precisions) aupr = np.trapz(processed_precisions, recalls) if np.isnan(aupr): return 0 return aupr def get_prec_at_recall(precisions, recalls, recall_thresh): """Assumes recalls are sorted in increasing order""" processed_precisions = process_precisions(precisions) prec_at_recall = 0 for prec, recall in zip(processed_precisions, recalls): if recall >= recall_thresh: prec_at_recall = prec break return prec_at_recall def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, predictions, ground_truths): score = 0 for pred in predictions: for ground_truth in ground_truths: score = metric_fn(pred, ground_truth) if score == 1: # break the loop when one prediction matches the ground truth break if score == 1: break return score def evaluate(dataset, predictions): f1 = exact_match = total = 0 precisions = [] recalls = [] for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] precision, recall = compute_precision_recall(prediction, ground_truths, qa["id"]) precisions.append(precision) recalls.append(recall) if precision == 0 and recall == 0: f1 += 0 else: f1 += 2 * (precision * recall) / (precision + recall) exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) precisions = [x for _, x in sorted(zip(recalls, precisions))] recalls.sort() f1 = 100.0 * f1 / total exact_match = 100.0 * exact_match / total aupr = get_aupr(precisions, recalls) prec_at_90_recall = get_prec_at_recall(precisions, recalls, recall_thresh=0.9) prec_at_80_recall = get_prec_at_recall(precisions, recalls, recall_thresh=0.8) return { "exact_match": exact_match, "f1": f1, "aupr": aupr, "prec_at_80_recall": prec_at_80_recall, "prec_at_90_recall": prec_at_90_recall, } if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluation for CUAD") parser.add_argument("dataset_file", help="Dataset file") parser.add_argument("prediction_file", help="Prediction File") args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json["data"] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
datasets/metrics/cuad/evaluate.py/0
{ "file_path": "datasets/metrics/cuad/evaluate.py", "repo_id": "datasets", "token_count": 3035 }
64
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mahalanobis metric.""" import numpy as np import datasets _DESCRIPTION = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _CITATION = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _KWARGS_DESCRIPTION = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mahalanobis(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float", id="sequence"), id="X"), } ), ) def _compute(self, X, reference_distribution): # convert to numpy arrays X = np.array(X) reference_distribution = np.array(reference_distribution) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction X_minus_mu = X - np.mean(reference_distribution) cov = np.cov(reference_distribution.T) try: inv_covmat = np.linalg.inv(cov) except np.linalg.LinAlgError: inv_covmat = np.linalg.pinv(cov) left_term = np.dot(X_minus_mu, inv_covmat) mahal_dist = np.dot(left_term, X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
datasets/metrics/mahalanobis/mahalanobis.py/0
{ "file_path": "datasets/metrics/mahalanobis/mahalanobis.py", "repo_id": "datasets", "token_count": 1363 }
65
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Precision metric.""" from sklearn.metrics import precision_score import datasets _DESCRIPTION = """ Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation: Precision = TP / (TP + FP) where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive). """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted class labels. references (`list` of `int`): Actual class labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. zero_division (`int` or `string`): Sets the value to return when there is a zero division. Defaults to 'warn'. - 0: Returns 0 when there is a zero division. - 1: Returns 1 when there is a zero division. - 'warn': Raises warnings and then returns 0 when there is a zero division. Returns: precision (`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better. Examples: Example 1-A simple binary example >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'precision': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['precision'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(results) {'precision': 0.23529411764705882} Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = precision_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'precision': 0.3333333333333333} >>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average=None) >>> print([round(res, 2) for res in results['precision']]) [0.67, 0.0, 0.0] """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Precision(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html"], ) def _compute( self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None, zero_division="warn", ): score = precision_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight, zero_division=zero_division, ) return {"precision": float(score) if score.size == 1 else score}
datasets/metrics/precision/precision.py/0
{ "file_path": "datasets/metrics/precision/precision.py", "repo_id": "datasets", "token_count": 2663 }
66
""" Official evaluation script for v1.1 of the SQuAD dataset. """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {"exact_match": exact_match, "f1": f1} if __name__ == "__main__": expected_version = "1.1" parser = argparse.ArgumentParser(description="Evaluation for SQuAD " + expected_version) parser.add_argument("dataset_file", help="Dataset file") parser.add_argument("prediction_file", help="Prediction File") args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if dataset_json["version"] != expected_version: print( "Evaluation expects v-" + expected_version + ", but got dataset with v-" + dataset_json["version"], file=sys.stderr, ) dataset = dataset_json["data"] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
datasets/metrics/squad/evaluate.py/0
{ "file_path": "datasets/metrics/squad/evaluate.py", "repo_id": "datasets", "token_count": 1337 }
67
# Metric Card for XTREME-S ## Metric Description The XTREME-S metric aims to evaluate model performance on the Cross-lingual TRansfer Evaluation of Multilingual Encoders for Speech (XTREME-S) benchmark. This benchmark was designed to evaluate speech representations across languages, tasks, domains and data regimes. It covers 102 languages from 10+ language families, 3 different domains and 4 task families: speech recognition, translation, classification and retrieval. ## How to Use There are two steps: (1) loading the XTREME-S metric relevant to the subset of the benchmark being used for evaluation; and (2) calculating the metric. 1. **Loading the relevant XTREME-S metric** : the subsets of XTREME-S are the following: `mls`, `voxpopuli`, `covost2`, `fleurs-asr`, `fleurs-lang_id`, `minds14` and `babel`. More information about the different subsets can be found on the [XTREME-S benchmark page](https://huggingface.co/datasets/google/xtreme_s). ```python >>> from datasets import load_metric >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'mls') ``` 2. **Calculating the metric**: the metric takes two inputs : - `predictions`: a list of predictions to score, with each prediction a `str`. - `references`: a list of lists of references for each translation, with each reference a `str`. ```python >>> references = ["it is sunny here", "paper and pen are essentials"] >>> predictions = ["it's sunny", "paper pen are essential"] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) ``` It also has two optional arguments: - `bleu_kwargs`: a `dict` of keywords to be passed when computing the `bleu` metric for the `covost2` subset. Keywords can be one of `smooth_method`, `smooth_value`, `force`, `lowercase`, `tokenize`, `use_effective_order`. - `wer_kwargs`: optional dict of keywords to be passed when computing `wer` and `cer`, which are computed for the `mls`, `fleurs-asr`, `voxpopuli`, and `babel` subsets. Keywords are `concatenate_texts`. ## Output values The output of the metric depends on the XTREME-S subset chosen, consisting of a dictionary that contains one or several of the following metrics: - `accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information). This is returned for the `fleurs-lang_id` and `minds14` subsets. - `f1`: the harmonic mean of the precision and recall (see [F1 score](https://huggingface.co/metrics/f1) for more information). Its range is 0-1 -- its lowest possible value is 0, if either the precision or the recall is 0, and its highest possible value is 1.0, which means perfect precision and recall. It is returned for the `minds14` subset. - `wer`: Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The lower the value, the better the performance of the ASR system, with a WER of 0 being a perfect score (see [WER score](https://huggingface.co/metrics/wer) for more information). It is returned for the `mls`, `fleurs-asr`, `voxpopuli` and `babel` subsets of the benchmark. - `cer`: Character error rate (CER) is similar to WER, but operates on character instead of word. The lower the CER value, the better the performance of the ASR system, with a CER of 0 being a perfect score (see [CER score](https://huggingface.co/metrics/cer) for more information). It is returned for the `mls`, `fleurs-asr`, `voxpopuli` and `babel` subsets of the benchmark. - `bleu`: the BLEU score, calculated according to the SacreBLEU metric approach. It can take any value between 0.0 and 100.0, inclusive, with higher values being better (see [SacreBLEU](https://huggingface.co/metrics/sacrebleu) for more details). This is returned for the `covost2` subset. ### Values from popular papers The [original XTREME-S paper](https://arxiv.org/pdf/2203.10752.pdf) reported average WERs ranging from 9.2 to 14.6, a BLEU score of 20.6, an accuracy of 73.3 and F1 score of 86.9, depending on the subsets of the dataset tested on. ## Examples For the `mls` subset (which outputs `wer` and `cer`): ```python >>> from datasets import load_metric >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'mls') >>> references = ["it is sunny here", "paper and pen are essentials"] >>> predictions = ["it's sunny", "paper pen are essential"] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'wer': 0.56, 'cer': 0.27} ``` For the `covost2` subset (which outputs `bleu`): ```python >>> from datasets import load_metric >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'covost2') >>> references = ["bonjour paris", "il est necessaire de faire du sport de temps en temp"] >>> predictions = ["bonjour paris", "il est important de faire du sport souvent"] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'bleu': 31.65} ``` For the `fleurs-lang_id` subset (which outputs `accuracy`): ```python >>> from datasets import load_metric >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'fleurs-lang_id') >>> references = [0, 1, 0, 0, 1] >>> predictions = [0, 1, 1, 0, 0] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'accuracy': 0.6} ``` For the `minds14` subset (which outputs `f1` and `accuracy`): ```python >>> from datasets import load_metric >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'minds14') >>> references = [0, 1, 0, 0, 1] >>> predictions = [0, 1, 1, 0, 0] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'f1': 0.58, 'accuracy': 0.6} ``` ## Limitations and bias This metric works only with datasets that have the same format as the [XTREME-S dataset](https://huggingface.co/datasets/google/xtreme_s). While the XTREME-S dataset is meant to represent a variety of languages and tasks, it has inherent biases: it is missing many languages that are important and under-represented in NLP datasets. It also has a particular focus on read-speech because common evaluation benchmarks like CoVoST-2 or LibriSpeech evaluate on this type of speech, which results in a mismatch between performance obtained in a read-speech setting and a more noisy setting (in production or live deployment, for instance). ## Citation ```bibtex @article{conneau2022xtreme, title={XTREME-S: Evaluating Cross-lingual Speech Representations}, author={Conneau, Alexis and Bapna, Ankur and Zhang, Yu and Ma, Min and von Platen, Patrick and Lozhkov, Anton and Cherry, Colin and Jia, Ye and Rivera, Clara and Kale, Mihir and others}, journal={arXiv preprint arXiv:2203.10752}, year={2022} } ``` ## Further References - [XTREME-S dataset](https://huggingface.co/datasets/google/xtreme_s) - [XTREME-S github repository](https://github.com/google-research/xtreme)
datasets/metrics/xtreme_s/README.md/0
{ "file_path": "datasets/metrics/xtreme_s/README.md", "repo_id": "datasets", "token_count": 2218 }
68
import platform from argparse import ArgumentParser import fsspec import huggingface_hub import pandas import pyarrow from datasets import __version__ as version from datasets.commands import BaseDatasetsCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env", help="Print relevant system environment info.") download_parser.set_defaults(func=info_command_factory) def run(self): info = { "`datasets` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "`huggingface_hub` version": huggingface_hub.__version__, "PyArrow version": pyarrow.__version__, "Pandas version": pandas.__version__, "`fsspec` version": fsspec.__version__, } print("\nCopy-and-paste the text below in your GitHub issue.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
datasets/src/datasets/commands/env.py/0
{ "file_path": "datasets/src/datasets/commands/env.py", "repo_id": "datasets", "token_count": 476 }
69