text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training the distilled model. Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2. """ import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed MODEL_CLASSES = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), } def sanity_checks(args): """ A bunch of args sanity checks to perform even starting... """ assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def freeze_pos_embeddings(student, args): if args.student_type == "roberta": student.roberta.embeddings.position_embeddings.weight.requires_grad = False elif args.student_type == "gpt2": student.transformer.wpe.weight.requires_grad = False def freeze_token_type_embeddings(student, args): if args.student_type == "roberta": student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False def main(): parser = argparse.ArgumentParser(description="Training") parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.") parser.add_argument( "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file", type=str, required=True, help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", ) parser.add_argument( "--student_type", type=str, choices=["distilbert", "roberta", "gpt2"], required=True, help="The student type (DistilBERT, RoBERTa).", ) parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.") parser.add_argument( "--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.") parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.") parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm", default=0.0, type=float, help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.", ) parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.") parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") parser.add_argument( "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop", default=0.15, type=float, help="Proportion of tokens for which we need to make a prediction.", ) parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") parser.add_argument( "--mlm_smoothing", default=0.7, type=float, help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", ) parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.") parser.add_argument( "--restrict_ce_to_mask", action="store_true", help="If true, compute the distillation loss only the [MLM] prediction distribution.", ) parser.add_argument( "--freeze_pos_embs", action="store_true", help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", ) parser.add_argument( "--freeze_token_type_embds", action="store_true", help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", ) parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") parser.add_argument( "--group_by_size", action="store_false", help="If true, group sequences that have similar length into the same batch. Default is true.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=50, help="Gradient accumulation for larger training batches.", ) parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") parser.add_argument("--seed", type=int, default=56, help="Random seed") parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") args = parser.parse_args() sanity_checks(args) # ARGS # init_gpu_params(args) set_seed(args) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(f"Experiment will be dumped and logged in {args.dump_path}") # SAVE PARAMS # logger.info(f"Param: {args}") with open(os.path.join(args.dump_path, "parameters.json"), "w") as f: json.dump(vars(args), f, indent=4) git_log(args.dump_path) student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type] teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type] # TOKENIZER # tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name) special_tok_ids = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): idx = tokenizer.all_special_tokens.index(tok_symbol) special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}") args.special_tok_ids = special_tok_ids args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}") with open(args.data_file, "rb") as fp: data = pickle.load(fp) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)") with open(args.token_counts, "rb") as fp: counts = pickle.load(fp) token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): token_probs[idx] = 0.0 # do not predict special tokens token_probs = torch.from_numpy(token_probs) else: token_probs = None train_lm_seq_dataset = LmSeqsDataset(params=args, data=data) logger.info("Data loader created.") # STUDENT # logger.info(f"Loading student config from {args.student_config}") stu_architecture_config = student_config_class.from_pretrained(args.student_config) stu_architecture_config.output_hidden_states = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}") student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config) else: student = student_model_class(stu_architecture_config) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}") logger.info("Student loaded.") # TEACHER # teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}") logger.info(f"Teacher loaded from {args.teacher_name}.") # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(student, args) if args.freeze_token_type_embds: freeze_token_type_embeddings(student, args) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() distiller = Distiller( params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher ) distiller.train() logger.info("Let's go get some drinks.") if __name__ == "__main__": main()
transformers/examples/research_projects/distillation/train.py/0
{ "file_path": "transformers/examples/research_projects/distillation/train.py", "repo_id": "transformers", "token_count": 5147 }
257
# Copyright 2022 - Intel Corp. All rights reserved. # Authors: Mayank Kumar Raunak, Javier Turek, Nicole Backage import copy import logging import random import joblib import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AdamW, GPT2LMHeadModel, get_linear_schedule_with_warmup logger = logging.getLogger(__name__) def set_seed(seed): """ For reproducible training Args: seed: A seed for reproducible training """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def compute_perplexity(model, test_data, context_len): """ Computes perplexity of the transformer model on data in test_data Args: model: Pre-trained GPT2 model test_data: Data on which perplexity calculation is required context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded Returns: Perplexity on input test data """ model.eval() device = next(model.parameters()).device eval_batch_size = 1 context = torch.zeros((eval_batch_size, context_len), dtype=torch.long, device=device) eval_dataloader = DataLoader(test_data, shuffle=False, batch_size=eval_batch_size) eval_loss = torch.zeros(1, device=device) nb_eval_examples = 0 for batch in eval_dataloader: batch.to(device) # pad context.zero_() for i in range(eval_batch_size): context[i, :] = batch[i] outputs = model(context, labels=context) eval_loss += outputs[0].sum().item() nb_eval_examples += batch.size(0) eval_loss = eval_loss / nb_eval_examples perplexity = torch.exp(eval_loss) model.train() return perplexity def load_gpt2(model_name="gpt2"): """ load original gpt2 and save off for quicker loading Args: model_name: GPT-2 Returns: GPT-2 model """ model = GPT2LMHeadModel.from_pretrained(model_name, output_hidden_states=True) torch.save(model.state_dict(), model_name + "local.pt") return model def recopy_gpt2(orig_model, device, max_steps): """ Reset the model to the original pretrained GPT-2 weights after each iteration Args: orig_model: Original pretrained GPT-2 model imported from Transformers library device: CPU/GPU max_steps: number of training steps Returns: Original PreTrained GPT-2 model, lm_optimizer: Adam optimizer with Decoupled weight decay lm_scheduler: linear scheduler with the appropriate schedule """ model = copy.deepcopy(orig_model) model.to(device) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] lm_optimizer = AdamW(optimizer_grouped_parameters, lr=5e-5, eps=1e-8) lm_scheduler = get_linear_schedule_with_warmup(lm_optimizer, 0, max_steps) torch.cuda.empty_cache() return model, lm_optimizer, lm_scheduler def intermittent_save(contexts, real_perps, past_perps, filename): """ save the perplexity differences to filename Args: contexts: Example on which the perplexity is calculated real_perps: Perplexity after back-propagating on the selected context past_perps: Perplexity of model before training on the context filename: File to store perplexity differences Returns: file with perplexity differences """ # save the perplexity differences to filename avg = np.array(real_perps).mean() std = np.array(real_perps).std() perp_diff = (real_perps - avg) / std data_final = list(zip(contexts, perp_diff, past_perps)) joblib.dump(data_final, filename) def collect_objective_set( model, orig_perp, context_len, train_data, objective_set, max_steps, device, filename="dev.jbl", recopy_model=recopy_gpt2, ): """ Collect individual IGF values from pre-trained transformer model max_steps samples of training data to train secondary model Args: model: Pre-trained GPT2 model orig_perp: Perplexity of original pretrained GPT-2 model context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded train_data: Data to train model objective_set: Contexts used to create (X,IG(X)) pairs which is the training data for secondary learner max_steps: To calculate training epochs of model device: GPU/CPU filename: To store intermediate perplexity differences recopy_model: Reset the model to the original pretrained GPT-2 weights after each iteration Returns: file stored intermediate perplexity differences in intermediate stages """ # initialize variables to record relevant information contexts = [] real_perps = [] past_perps = [] # Initialize the transformer model orig_model = copy.deepcopy(model) orig_model.to(device="cpu") torch.cuda.empty_cache() # Compute perplexity of initial transformer model for comparison model.train() model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps) for step in tqdm(range(max_steps)): context = torch.zeros((1, context_len), dtype=torch.long, device=device) story = random.choice(train_data) start = random.randint(0, len(story[0]) - context_len - 1) context[0, :] = story[0][start : start + context_len] lm_optimizer.zero_grad() outputs = model(context, labels=context) lm_loss = outputs[0] past_perp = compute_perplexity(model, context, context_len) model.train() lm_loss.backward() # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule # Compute perplexity after back-propagating on the selected context real_perp = compute_perplexity(model, objective_set, context_len) # Periodically save the stored (X, IG(X)) pairs if step % 1000 == 0 and step > 1: intermittent_save(contexts, real_perps, past_perps, filename) # Reset the pretrained model to the original pretrained GPT-2 weights after each iteration model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps) past_perps.append(past_perp.item()) real_perps.append(orig_perp - real_perp.item()) contexts.append(np.array(context.cpu())) intermittent_save(contexts, real_perps, past_perps, filename) def generate_datasets( context_len, file="data/tokenized_stories_train_wikitext103.jbl", number=100, min_len=1026, trim=True ): """ Generate objective set and training set Args: context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded file: Tokenized data split into training set and objective set number: size of objective dataset min_len: minimum length of a context in objective set trim: If True truncate the context if it exceeds context length Returns: Generated objective set and training data """ # Generate objective set and training set # Designate the first number (100) articles that are long enough to be used # as our objective set, rest (that are long enough) are training data for # secondary learner data = joblib.load(file) print("data loaded") objective_set = [] if trim: for i, example in enumerate(data): if len(example[0]) > min_len: start = random.randint(0, len(example[0]) - context_len - 1) objective_set.append(example[0, start : start + context_len]) if len(objective_set) >= number: break train_data = [] for j in range(i + 1, len(data)): if len(data[j][0]) > min_len: train_data.append(data[j]) else: objective_set = data[0:number] train_data = data[number:] joblib.dump(objective_set, "objective_set.jbl") print("objective set saved") return train_data, objective_set def train_secondary_learner( secondary_learner, train_dataset, max_epochs, batch_size, eval_freq=50, igf_model_path="secondary_learner.pt" ): """ Train the secondary learner (igf_model) Args: secondary_learner: secondary learner train_dataset: data to train secondary learner max_epochs: number of epochs to train secondary learner batch_size: batch size of training data of secondary learner eval_freq: secondary model evaluation can be triggered at eval_freq igf_model_path: path to store trained secondary learner Returns: Trained secondary learner """ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # We will use the first 512 pairs from our dataset as a test set for # our secondary learner and the rest to train test_dataset = train_dataset[:512] train_dataset = train_dataset[512:] train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # secondary learner model set up loss = nn.MSELoss() test_loss = nn.MSELoss(reduction="sum") secondary_learner.to(device) q_optimizer = torch.optim.Adam(secondary_learner.parameters(), lr=0.00001) secondary_learner.train() # TODO in original code this is written as number of actual batches seen # not number of items seen but other places it is number of items instead. # improve consistency! changed this to epochs for clarity best_test_loss = float("inf") # Iterate through batches until we've used max_steps batches for epoch in range(int(max_epochs)): tr_q_loss = 0.0 secondary_learner.train() for step, batch in enumerate(train_dataloader): context = batch[0].to(device) real_q = batch[1].to(device) predicted_q = secondary_learner(context) q_optimizer.zero_grad() q_loss = loss(predicted_q, real_q.float()) q_loss.backward() q_optimizer.step() tr_q_loss += q_loss.item() # model trains fairly quickly so we won't wait for a full epoch # eval is triggered at eval_freq and end of epochs if (step % eval_freq == 0 and step > 0) or ((step + 1) == len(train_dataloader)): tr_loss = tr_q_loss / (step + 1) secondary_learner.eval() q_loss2 = 0.0 sum_q2 = 0.0 predicted = [] actual = [] # Compute performance of the secondary learner after this batch for step2, batch2 in enumerate(test_dataloader): features2 = batch2[0].to(device) real_q2 = batch2[1].to(device) predicted_q2 = secondary_learner(features2) q_loss2 += test_loss(predicted_q2, real_q2).item() sum_q2 += torch.sum(predicted_q2).item() for ei, i in enumerate(predicted_q2.cpu().detach().numpy()): predicted.append(i.item()) for ei, i in enumerate(real_q2.cpu().detach().numpy()): actual.append(i.item()) q_loss2 /= len(test_dataset) print( "Epoch: ", epoch, "step: ", step, "Avg. q:", sum_q2 / len(test_dataset), "Train Loss: ", tr_loss, "Test Loss: ", q_loss2, ) if q_loss2 < best_test_loss: joblib.dump((predicted, actual), "pred_vs_actual.jbl") torch.save(secondary_learner.state_dict(), igf_model_path) best_test_loss = q_loss2 secondary_learner.train() return secondary_learner class SecondaryLearner(nn.Module): """ Our secondary learner """ def __init__(self, model): """ We use a simple convolutional network as our secondary learner Args: model: Pre-trained GPT2 model """ # embeddings are from the pretrained model super(SecondaryLearner, self).__init__() self.embeddings = model.transformer.wte self.embeddings.weight = copy.deepcopy(model.transformer.wte.weight) self.conv = nn.Conv1d(self.embeddings.weight.size(1), 256, 3, padding=1) self.fc = nn.Sequential(nn.Linear(256, 32), nn.Dropout(p=0.1), nn.Linear(32, 32), nn.Linear(32, 1)) def forward(self, context): """ Forward pass through the secondary learner Args: context: Context input to the secondary learner Returns: tensor after squeeze operation """ pooled = torch.max(self.conv(self.embeddings(context).squeeze(1).transpose(1, 2)), 2)[0] qs = self.fc(pooled) return qs.squeeze(1) @classmethod def from_pretrained(cls, state_path, model): """ Load the secondary learner Args: state_path: Path to save secondary learner model: Pretrained GPT-2 Returns: secondary learner """ secondary_learner = cls(model) # this calls __init__ state_dict = torch.load(state_path) secondary_learner.load_state_dict(state_dict) secondary_learner.embeddings = model.transformer.wte secondary_learner.embeddings.weight = copy.deepcopy(model.transformer.wte.weight) return secondary_learner
transformers/examples/research_projects/information-gain-filtration/igf/igf.py/0
{ "file_path": "transformers/examples/research_projects/information-gain-filtration/igf/igf.py", "repo_id": "transformers", "token_count": 6107 }
258
import copy from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class HybridCLIPConfig(PretrainedConfig): r""" :class:`HybridCLIPConfig` is the configuration class to store the configuration of a :class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments, defining the text model and vision model configs. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: text_config_dict (:obj:`dict`): Dictionary of configuration options that defines text model config. vision_config_dict (:obj:`dict`): Dictionary of configuration options that defines vison model config. projection_dim (:obj:`int`, `optional`, defaults to 512): Dimentionality of text and vision projection layers. kwargs (`optional`): Dictionary of keyword arguments. Examples:: >>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP >>> # Initializing a BERT and CLIP configuration >>> config_text = BertConfig() >>> config_vision = CLIPConfig() >>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512) >>> # Initializing a BERT and CLIPVision model >>> model = EncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_text = model.config.text_config >>> config_vision = model.config.vision_config >>> # Saving the model, including its configuration >>> model.save_pretrained('my-model') >>> # loading model and config from pretrained folder >>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model') >>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config) """ model_type = "hybrid-clip" is_composition = True def __init__(self, projection_dim=512, **kwargs): super().__init__(**kwargs) if "text_config" not in kwargs: raise ValueError("`text_config` can not be `None`.") if "vision_config" not in kwargs: raise ValueError("`vision_config` can not be `None`.") text_config = kwargs.pop("text_config") vision_config = kwargs.pop("vision_config") text_model_type = text_config.pop("model_type") vision_model_type = vision_config.pop("model_type") from transformers import AutoConfig self.text_config = AutoConfig.for_model(text_model_type, **text_config) if vision_model_type == "clip": self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config elif vision_model_type == "clip_vision_model": from transformers import CLIPVisionConfig self.vision_config = CLIPVisionConfig(**vision_config) else: self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config) self.projection_dim = projection_dim self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs): r""" Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and vision model configuration. Returns: :class:`HybridCLIPConfig`: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default :meth:`~transformers.PretrainedConfig.to_dict`. Returns: :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["text_config"] = self.text_config.to_dict() output["vision_config"] = self.vision_config.to_dict() output["model_type"] = self.__class__.model_type return output
transformers/examples/research_projects/jax-projects/hybrid_clip/configuration_hybrid_clip.py/0
{ "file_path": "transformers/examples/research_projects/jax-projects/hybrid_clip/configuration_hybrid_clip.py", "repo_id": "transformers", "token_count": 1634 }
259
# Token classification ## PyTorch version, no Trainer Fine-tuning (m)LUKE for token classification task such as Named Entity Recognition (NER), Parts-of-speech tagging (POS) or phrase extraction (CHUNKS). You can easily customize it to your needs if you need extra processing on your datasets. It will either run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation, you might just need to add some tweaks in the data preprocessing. The script can be run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then to train English LUKE on CoNLL2003: ```bash export TASK_NAME=ner python run_luke_ner_no_trainer.py \ --model_name_or_path studio-ousia/luke-base \ --dataset_name conll2003 \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash export TASK_NAME=ner accelerate launch run_ner_no_trainer.py \ --model_name_or_path studio-ousia/luke-base \ --dataset_name conll2003 \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/research_projects/luke/README.md/0
{ "file_path": "transformers/examples/research_projects/luke/README.md", "repo_id": "transformers", "token_count": 667 }
260
import copy import itertools from typing import List, Optional, Tuple import torch import torch.nn.functional as F from transformers import BartConfig from transformers.generation import GenerationMixin def _convert_past_list_to_tuple(past_key_values): """ In Bart model, the type of past_key_values is tuple(tuple(torch.FloatTensor)) which is not TorchScript-compatible. To support this, we have to convert it during the export process. This function will convert past values from a list to tuple(tuple(torch.FloatTensor)) for the inner decoder. According to the definition of past_key_values, each inner tuple(torch.FloatTensor) has 4 tensors, so we convert every 4 elements in the list as a tuple(torch.FloatTensor). """ count_of_each_inner_tuple = 4 results = () temp_result = () count_n = len(past_key_values) // count_of_each_inner_tuple for idx in range(count_n): real_idx = idx * count_of_each_inner_tuple temp_result = tuple(past_key_values[real_idx : real_idx + count_of_each_inner_tuple]) results += ((temp_result),) return results class EncoderForONNX(torch.nn.Module): def __init__(self, encoder): super().__init__() self.encoder = encoder def forward(self, input_ids, attention_mask): return self.encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=False, ) class DecoderForONNX(torch.nn.Module): def __init__(self, decoder): super().__init__() self.decoder = decoder def forward(self, input_ids, encoder_state, attention_mask, past=None): all_results = None if past is not None: all_results = _convert_past_list_to_tuple(past) input_ids = input_ids[:, -1:] last_hidden_state, past_key_values = self.decoder( input_ids=input_ids, encoder_hidden_states=encoder_state, encoder_attention_mask=attention_mask, past_key_values=all_results, return_dict=False, ) past_values = [] for past in past_key_values: past_values = past_values + list(past) return last_hidden_state, past_values def _create_traced_encoder(encoder, input_ids, attention_mask): encoder_c = copy.deepcopy(encoder) encoder_for_onnx = EncoderForONNX(encoder_c) return torch.jit.trace(encoder_for_onnx, (input_ids, attention_mask)) def _create_traced_decoder(decoder, input_ids, encoder_state, attention_mask, past=None): decoder_c = copy.deepcopy(decoder) decoder_for_onnx = DecoderForONNX(decoder_c) past_values = list(itertools.chain.from_iterable(past or ())) # Do this twice so we got 2 different decoders for further work. if past_values: return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask, past_values)) else: return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask)) class BartConfigTS(BartConfig, torch.nn.Module): """ BartConfigTS is a TorchScript-compatible transformers.models.bart.configuration_bart.BartConfig. TorchScript only supports sub-classes of torch.nn.Module. """ def __init__(self, config): BartConfig.__init__(self, config) torch.nn.Module.__init__(self) class MinLengthLogitsProcessorTS(torch.nn.Module): r""" :class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0. Args: min_length (:obj:`int`): The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`. eos_token_id (:obj:`int`): The id of the `end-of-sequence` token. """ def __init__(self, min_length: int, eos_token_id: int): super().__init__() if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id def forward(self, input_ids, scores) -> torch.Tensor: cur_len = input_ids.shape[-1] if cur_len < self.min_length: scores[:, self.eos_token_id] = -float("inf") return scores class BARTGenerator(torch.nn.Module, GenerationMixin): def __init__(self, model): super().__init__() self.config = BartConfigTS(model.config) self.config.force_bos_token_to_be_generated = False self._trace_modules(model) self.logits_processor = MinLengthLogitsProcessorTS(self.config.min_length, self.config.eos_token_id) self.final_logits_weight = model.model.shared.weight self.final_logits_bias = model.final_logits_bias self.decoder_layers = model.config.decoder_layers def _trace_modules(self, model): input_ids = torch.tensor( [ [ 19, 669, 18, 420, 8, 664, 57, 42, 8, 664, 21, 3028, 195, 4445, 331, 1293, 34, 21, 10, 6174, 1100, 6, 69, 104, 42, 32, 2621, 1638, 144, 4, 6174, 558, 108, 4419, 1091, 28, 4, 1668, 9, 1509, 1621, 279, 35, 867, 2734, 85, 11, 2216, 2734, 85, 203, 2244, 7, 6, 15, 8102, 7, 57, 8629, 5, model.config.eos_token_id, ] ], device=model.device, dtype=torch.long, ) attention_mask = torch.tensor( [[True] * input_ids.shape[-1]], device=model.device, dtype=torch.bool, ) self.encoder = _create_traced_encoder(model.get_encoder(), input_ids, attention_mask) encoder_outputs = model.get_encoder()(input_ids, attention_mask=attention_mask, return_dict=True) decoder = model.model.decoder decoder_outputs = decoder(input_ids, attention_mask, encoder_outputs["last_hidden_state"], None, None, None) self.decoder_no_past = _create_traced_decoder( model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask ) self.decoder_with_past = _create_traced_decoder( model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask, decoder_outputs[1] ) def _encoder_forward(self, input_ids, attention_mask): return self.encoder(input_ids, attention_mask)[0] @staticmethod def _init_sequence_length_for_generation( input_ids: torch.LongTensor, max_length: int ) -> Tuple[torch.Tensor, torch.Tensor, int]: unfinished_sequences = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + 1 sequence_lengths = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + max_length cur_len = input_ids.shape[-1] return sequence_lengths, unfinished_sequences, cur_len def _decoder_forward(self, input_ids, encoder_output, attention_mask, past: List[torch.Tensor]): # Update here to use different decoder for different values of past. if past is None or len(past) == 0: decoder_output, past = self.decoder_no_past( input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask ) else: decoder_output, past = self.decoder_with_past( input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask, past=past ) lm_logits = F.linear(decoder_output, self.final_logits_weight, bias=self.final_logits_bias) return lm_logits, past def greedy_search( self, input_ids, encoder_output, attention_mask, max_length, pad_token_id: int, eos_token_id: int ): # init sequence length tensors sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation( input_ids, max_length ) past: List[torch.Tensor] = [] while cur_len < max_length: logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past) next_token_logits = logits[:, -1, :] # pre-process distribution scores = self.logits_processor(input_ids, next_token_logits) # argmax next_tokens = torch.argmax(scores, dim=-1) # add code that transfomers next_tokens to tokens_to_add if eos_token_id is not None: assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined." next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences) # add token and increase length by one input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) # update sequence length if eos_token_id is not None: sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation( sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id ) # stop when there is a </s> in each sentence, or if we exceed the maximul length if unfinished_sequences.max() == 0: break # increase cur_len cur_len = cur_len + 1 return input_ids def _prepare_decoder_input_ids_for_generation( self, input_ids: torch.LongTensor, decoder_start_token_id, bos_token_id: Optional[int] = None, ) -> torch.LongTensor: decoder_input_ids = ( torch.ones((input_ids.shape[0], 1), dtype=input_ids.dtype, device=input_ids.device) * decoder_start_token_id ) return decoder_input_ids def forward(self, input_ids, attention_mask, max_length, decoder_start_token_id): pad_token_id = self.config.pad_token_id bos_token_id = self.config.bos_token_id eos_token_id = self.config.eos_token_id # special case if pad_token_id is not defined if pad_token_id is None and eos_token_id is not None: # Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation. pad_token_id = eos_token_id encoder_output = self._encoder_forward(input_ids, attention_mask) input_ids = self._prepare_decoder_input_ids_for_generation( input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, ) return self.greedy_search( input_ids, encoder_output, attention_mask, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) # TorchScript compatible BeamSearchScorer class BeamSearchScorerTS(torch.nn.Module): def __init__(self): super().__init__() self.max_length: int = 200 self.num_beams: int = 3 self.batch_size: int = 1 self.length_penalty: float = 1.0 self.do_early_stopping: bool = True self.num_beam_hyps_to_keep: int = 1 self.num_beam_groups: int = 1 self.group_size: int = self.num_beams // self.num_beam_groups self._done = torch.zeros(self.batch_size, dtype=torch.bool) self._beam_hyps_count = torch.zeros(self.batch_size, dtype=torch.long) self._beam_hyps_worst_scores = torch.zeros(self.batch_size) + 1e9 self._beam_hyps_max_length: int = self.max_length - 1 self._beam_hyps: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility self._beam_scores: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility def is_done(self) -> torch.Tensor: return self._done.all() def init( self, batch_size: int, max_length: int, num_beams: int, device: torch.device, length_penalty: float = 1.0, do_early_stopping: bool = False, num_beam_hyps_to_keep: int = 1, num_beam_groups: int = 1, ): self.max_length = max_length self.num_beams = num_beams self.batch_size = batch_size self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep self.num_beam_groups = num_beam_groups self.group_size = self.num_beams // self.num_beam_groups # NOTE: TorchScript does not support List of Modules # Rewritten BeamHypotheses with tensors and list of tensors. self._done = torch.zeros(batch_size, dtype=torch.bool, device=device) self._beam_hyps_count = torch.zeros(batch_size, dtype=torch.long, device=device) self._beam_hyps_worst_scores = torch.zeros(batch_size, device=device) + 1e9 self._beam_hyps = [] self._beam_scores = [] self._beam_hyps_max_length = max_length - 1 # ignoring bos_token if not isinstance(num_beams, int) or num_beams <= 1: raise ValueError( f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1," " one should make use of `greedy_search` instead." ) if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0): raise ValueError( "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be" f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}." ) def hypo_len(self, hypo_idx: int): """ Number of hypotheses in the list. """ return self._beam_hyps_count[hypo_idx] def hypo_add(self, hyp: torch.Tensor, sum_logprobs: float, hypo_idx: int): """ Add a new hypothesis to the list. """ score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty) hyps_count = self.hypo_len(hypo_idx) if hyps_count < self.num_beams or score > self._beam_hyps_worst_scores[hypo_idx]: # NOTE: work around difference of torch.sum(empty_tensor) == 0, while error in onnx. # Bug: https://msdata.visualstudio.com/Vienna/_workitems/edit/1486599 beam_idx = ( torch.sum(self._beam_hyps_count[:hypo_idx]) if hypo_idx != 0 else torch.tensor(0, dtype=torch.long) ) self._beam_scores.insert(beam_idx, torch.tensor([score])) self._beam_hyps.insert(beam_idx, hyp) if hyps_count + 1 > self.num_beams: sorted_next_scores, sorted_indices = torch.topk( torch.cat(self._beam_scores)[beam_idx : beam_idx + hyps_count + 1], hyps_count + 1, largest=False ) del self._beam_hyps[int((sorted_indices[0] + beam_idx))] del self._beam_scores[int((sorted_indices[0] + beam_idx))] self._beam_hyps_worst_scores[hypo_idx] = sorted_next_scores[1] else: self._beam_hyps_worst_scores[hypo_idx] = min(score, self._beam_hyps_worst_scores[hypo_idx]) self._beam_hyps_count[hypo_idx] = hyps_count + 1 def hypo_is_done(self, hypo_idx: int, best_sum_logprobs: float, cur_len: int) -> bool: """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if self.hypo_len(hypo_idx) < self.num_beams: return False elif self.do_early_stopping: return True else: cur_score = best_sum_logprobs / cur_len**self.length_penalty ret = self._beam_hyps_worst_scores[hypo_idx].item() >= cur_score return ret def process( self, input_ids: torch.Tensor, next_scores: torch.Tensor, next_tokens: torch.Tensor, next_indices: torch.Tensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: cur_len = input_ids.shape[-1] batch_size = len(self._beam_hyps_count) assert batch_size == (input_ids.shape[0] // self.group_size) device = input_ids.device next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) for batch_idx in range(batch_size): if self._done[batch_idx]: assert ( self.hypo_len(batch_idx) >= self.num_beams ), "Batch can only be done if at least {} beams have been generated".format(self.num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" # pad the batch next_beam_scores[batch_idx, :] = 0 next_beam_tokens[batch_idx, :] = pad_token_id next_beam_indices[batch_idx, :] = 0 continue # next tokens for this sentence beam_idx = 0 for beam_token_rank, (next_token, next_score, next_index) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx]) ): batch_beam_idx = batch_idx * self.group_size + next_index # add to generated hypotheses if end of sentence if (eos_token_id is not None) and (next_token == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size if is_beam_token_worse_than_top_num_beams: continue self.hypo_add( input_ids[batch_beam_idx].clone(), next_score.item(), batch_idx, ) else: # add next predicted token since it is not eos_token next_beam_scores[batch_idx, beam_idx] = next_score next_beam_tokens[batch_idx, beam_idx] = next_token next_beam_indices[batch_idx, beam_idx] = batch_beam_idx beam_idx += 1 # once the beam for next step is full, don't add more tokens to it. if beam_idx == self.group_size: break if beam_idx < self.group_size: raise ValueError( f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:" f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected." ) # Check if we are done so that we can save a pad step if all(done) self._done[batch_idx] = self._done[batch_idx] or self.hypo_is_done( batch_idx, next_scores[batch_idx].max().item(), cur_len, ) return next_beam_scores.view(-1), next_beam_tokens.view(-1), next_beam_indices.view(-1) def finalize( self, input_ids: torch.Tensor, final_beam_scores: torch.Tensor, final_beam_tokens: torch.Tensor, final_beam_indices: torch.Tensor, pad_token_id: int, eos_token_id: int, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = len(self._beam_hyps_count) # finalize all open beam hypotheses and add to generated hypotheses for batch_idx in range(batch_size): if self._done[batch_idx]: continue # all open beam hypotheses are added to the beam hypothesis # beam hypothesis class automatically keeps the best beams for beam_id in range(self.num_beams): batch_beam_idx = batch_idx * self.num_beams + beam_id final_score = final_beam_scores[batch_beam_idx].item() final_tokens = input_ids[batch_beam_idx] self.hypo_add(final_tokens, final_score, batch_idx) # select the best hypotheses # NOTE: torch.Tensor.new_zeros() is not scriptable sent_lengths = torch.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=torch.long) best = [] best_scores = torch.zeros( batch_size * self.num_beam_hyps_to_keep, device=input_ids.device, dtype=torch.float32 ) # retrieve best hypotheses for i in range(batch_size): # NOTE: lambda is not scriptable batch_hypo_start = torch.sum(self._beam_hyps_count[:i]) if i > 0 else torch.tensor(0, dtype=torch.long) batch_hypo_end = torch.sum(self._beam_hyps_count[: i + 1]) beam_scores = torch.cat(self._beam_scores)[batch_hypo_start:batch_hypo_end] sorted_next_scores, sorted_indices = torch.topk(beam_scores, len(beam_scores), largest=True) for j in range(self.num_beam_hyps_to_keep): best_score = beam_scores[sorted_indices[j]] best_hyp = self._beam_hyps[batch_hypo_start + sorted_indices[j]] sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp) # append to lists best.append(best_hyp) best_scores[i * self.num_beam_hyps_to_keep + j] = best_score # prepare for adding eos sent_max_len = min(sent_lengths.max() + 1, self.max_length) decoded = torch.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=torch.long) # shorter batches are padded if needed if sent_lengths.min() != sent_lengths.max(): assert pad_token_id is not None, "`pad_token_id` has to be defined" decoded.fill_(pad_token_id) # fill with hypotheses and eos_token_id if the latter fits in for i, hypo in enumerate(best): decoded[i, : sent_lengths[i]] = hypo if sent_lengths[i] < self.max_length: decoded[i, sent_lengths[i]] = eos_token_id return decoded, best_scores class BARTBeamSearchGenerator(BARTGenerator): def __init__(self, model): super().__init__(model) self.beam_scorer = BeamSearchScorerTS() self.device = model.device @staticmethod def _expand_inputs_for_generation( input_ids: torch.Tensor, attention_mask: torch.Tensor, last_hidden_state: torch.Tensor, expand_size: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: expanded_return_idx = ( torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device) ) input_ids = input_ids.index_select(0, expanded_return_idx) attention_mask = attention_mask.index_select(0, expanded_return_idx) last_hidden_state = last_hidden_state.index_select(0, expanded_return_idx.to(last_hidden_state.device)) return input_ids, attention_mask, last_hidden_state def adjust_logits_during_generation(self, logits, cur_len: int, max_length: int): if cur_len == 1 and self.config.force_bos_token_to_be_generated: logits = self._force_token_id_to_be_generated(logits, self.config.bos_token_id) elif cur_len == max_length - 1 and self.config.eos_token_id is not None: logits = self._force_token_id_to_be_generated(logits, self.config.eos_token_id) return logits @staticmethod def _force_token_id_to_be_generated(scores, token_id: int): """force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))""" mask = torch.full_like(scores, 1, dtype=torch.bool) mask[:, token_id] = False return scores.masked_fill(mask, -float("inf")) def _reorder_cache(self, past: List[torch.Tensor], beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder reordered_decoder_past = [] for state in past: reordered_decoder_past.append(state.index_select(0, beam_idx)) return reordered_decoder_past def beam_search( self, input_ids, encoder_output, attention_mask, num_beams, max_length, pad_token_id: int, eos_token_id: int ): batch_size = self.beam_scorer.batch_size num_beams = self.beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape assert ( num_beams * batch_size == batch_beam_size ), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) next_tokens = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device) next_indices = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device) past: List[torch.Tensor] = [] while cur_len < max_length: logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past) next_token_logits = logits[:, -1, :] # adjust tokens for Bart, *e.g.* next_token_logits = self.adjust_logits_during_generation( next_token_logits, cur_len=cur_len, max_length=max_length ) next_token_scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size) # pre-process distribution next_token_scores = self.logits_processor(input_ids, next_token_scores) next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores) # reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) next_token_scores, next_tokens = torch.topk( next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True ) next_indices = next_tokens // vocab_size next_tokens = next_tokens % vocab_size beam_scores, beam_next_tokens, beam_idx = self.beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) cur_len = cur_len + 1 if len(past) > 0: past = self._reorder_cache(past, beam_idx) if self.beam_scorer.is_done(): break sequences, sequence_scores = self.beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) return sequences def forward(self, input_ids, attention_mask, num_beams, max_length, decoder_start_token_id): pad_token_id = self.config.pad_token_id bos_token_id = self.config.bos_token_id eos_token_id = self.config.eos_token_id # special case if pad_token_id is not defined if pad_token_id is None and eos_token_id is not None: # logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") pad_token_id = eos_token_id encoder_output = self._encoder_forward(input_ids, attention_mask) input_ids = self._prepare_decoder_input_ids_for_generation( input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, ) batch_size = input_ids.shape[0] length_penalty = self.config.length_penalty num_return_sequences = self.config.num_return_sequences early_stopping = True self.beam_scorer.init( batch_size=batch_size, max_length=max_length, num_beams=num_beams, device=self.device, length_penalty=length_penalty, do_early_stopping=early_stopping, num_beam_hyps_to_keep=num_return_sequences, ) input_ids, attention_mask, encoder_output = self._expand_inputs_for_generation( input_ids, attention_mask, encoder_output, expand_size=num_beams, ) return self.beam_search( input_ids=input_ids, encoder_output=encoder_output, attention_mask=attention_mask, num_beams=num_beams, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, )
transformers/examples/research_projects/onnx/summarization/bart_onnx/generation_onnx.py/0
{ "file_path": "transformers/examples/research_projects/onnx/summarization/bart_onnx/generation_onnx.py", "repo_id": "transformers", "token_count": 15163 }
261
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import json import math import time import numpy as np import torch import torch.optim as optim import torch.utils.data as data from nltk.tokenize.treebank import TreebankWordDetokenizer from pplm_classification_head import ClassificationHead from torch import nn from torchtext import data as torchtext_data from torchtext import datasets from tqdm import tqdm, trange from transformers import GPT2LMHeadModel, GPT2Tokenizer torch.manual_seed(0) np.random.seed(0) EPSILON = 1e-10 example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." max_length_seq = 100 class Discriminator(nn.Module): """Transformer encoder followed by a Classification Head""" def __init__(self, class_size, pretrained_model="gpt2-medium", cached_mode=False, device="cpu"): super().__init__() self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) self.embed_size = self.encoder.transformer.config.hidden_size self.classifier_head = ClassificationHead(class_size=class_size, embed_size=self.embed_size) self.cached_mode = cached_mode self.device = device def get_classifier(self): return self.classifier_head def train_custom(self): for param in self.encoder.parameters(): param.requires_grad = False self.classifier_head.train() def avg_representation(self, x): mask = x.ne(0).unsqueeze(2).repeat(1, 1, self.embed_size).float().to(self.device).detach() hidden = self.encoder.transformer(x)["last_hidden_state"] masked_hidden = hidden * mask avg_hidden = torch.sum(masked_hidden, dim=1) / (torch.sum(mask, dim=1).detach() + EPSILON) return avg_hidden def forward(self, x): if self.cached_mode: avg_hidden = x.to(self.device) else: avg_hidden = self.avg_representation(x.to(self.device)) logits = self.classifier_head(avg_hidden) probs = nn.functional.log_softmax(logits, dim=-1) return probs class Dataset(data.Dataset): def __init__(self, X, y): """Reads source and target sequences from txt files.""" self.X = X self.y = y def __len__(self): return len(self.X) def __getitem__(self, index): """Returns one data pair (source and target).""" data = {} data["X"] = self.X[index] data["y"] = self.y[index] return data def collate_fn(data): def pad_sequences(sequences): lengths = [len(seq) for seq in sequences] padded_sequences = torch.zeros(len(sequences), max(lengths)).long() # padding value = 0 for i, seq in enumerate(sequences): end = lengths[i] padded_sequences[i, :end] = seq[:end] return padded_sequences, lengths item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch, _ = pad_sequences(item_info["X"]) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def cached_collate_fn(data): item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch = torch.cat(item_info["X"], 0) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def train_epoch(data_loader, discriminator, optimizer, epoch=0, log_interval=10, device="cpu"): samples_so_far = 0 discriminator.train_custom() for batch_idx, (input_t, target_t) in enumerate(data_loader): input_t, target_t = input_t.to(device), target_t.to(device) optimizer.zero_grad() output_t = discriminator(input_t) loss = nn.functional.nll_loss(output_t, target_t) loss.backward(retain_graph=True) optimizer.step() samples_so_far += len(input_t) if batch_idx % log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch + 1, samples_so_far, len(data_loader.dataset), 100 * samples_so_far / len(data_loader.dataset), loss.item(), ) ) def evaluate_performance(data_loader, discriminator, device="cpu"): discriminator.eval() test_loss = 0 correct = 0 with torch.no_grad(): for input_t, target_t in data_loader: input_t, target_t = input_t.to(device), target_t.to(device) output_t = discriminator(input_t) # sum up batch loss test_loss += nn.functional.nll_loss(output_t, target_t, reduction="sum").item() # get the index of the max log-probability pred_t = output_t.argmax(dim=1, keepdim=True) correct += pred_t.eq(target_t.view_as(pred_t)).sum().item() test_loss /= len(data_loader.dataset) print( "Performance on test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( test_loss, correct, len(data_loader.dataset), 100.0 * correct / len(data_loader.dataset) ) ) def predict(input_sentence, model, classes, cached=False, device="cpu"): input_t = model.tokenizer.encode(input_sentence) input_t = torch.tensor([input_t], dtype=torch.long, device=device) if cached: input_t = model.avg_representation(input_t) log_probs = model(input_t).data.cpu().numpy().flatten().tolist() print("Input sentence:", input_sentence) print( "Predictions:", ", ".join("{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in zip(classes, log_probs)), ) def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"): data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn) xs = [] ys = [] for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): with torch.no_grad(): x = x.to(device) avg_rep = discriminator.avg_representation(x).cpu().detach() avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) xs += avg_rep_list ys += y.cpu().numpy().tolist() data_loader = torch.utils.data.DataLoader( dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn ) return data_loader def train_discriminator( dataset, dataset_fp=None, pretrained_model="gpt2-medium", epochs=10, batch_size=64, log_interval=10, save_model=False, cached=False, no_cuda=False, ): device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" print("Preprocessing {} dataset...".format(dataset)) start = time.time() if dataset == "SST": idx2class = ["positive", "negative", "very positive", "very negative", "neutral"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) text = torchtext_data.Field() label = torchtext_data.Field(sequential=False) train_data, val_data, test_data = datasets.SST.splits( text, label, fine_grained=True, train_subtrees=True, ) x = [] y = [] for i in trange(len(train_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) x.append(seq) y.append(class2idx[vars(train_data[i])["label"]]) train_dataset = Dataset(x, y) test_x = [] test_y = [] for i in trange(len(test_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) test_x.append(seq) test_y.append(class2idx[vars(test_data[i])["label"]]) test_dataset = Dataset(test_x, test_y) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 2, } elif dataset == "clickbait": idx2class = ["non_clickbait", "clickbait"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) with open("datasets/clickbait/clickbait_train_prefix.txt") as f: data = [] for i, line in enumerate(f): try: data.append(eval(line)) except Exception: print("Error evaluating line {}: {}".format(i, line)) continue x = [] y = [] with open("datasets/clickbait/clickbait_train_prefix.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(d["label"]) except Exception: print("Error evaluating / tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 1, } elif dataset == "toxic": idx2class = ["non_toxic", "toxic"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open("datasets/toxic/toxic_train.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(int(np.sum(d["label"]) > 0)) except Exception: print("Error evaluating / tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } else: # if dataset == "generic": # This assumes the input dataset is a TSV with the following structure: # class \t text if dataset_fp is None: raise ValueError("When generic dataset is selected, dataset_fp needs to be specified aswell.") classes = set() with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for row in tqdm(csv_reader, ascii=True): if row: classes.add(row[0]) idx2class = sorted(classes) class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for i, row in enumerate(tqdm(csv_reader, ascii=True)): if row: label = row[0] text = row[1] try: seq = discriminator.tokenizer.encode(text) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(class2idx[label]) except Exception: print("Error tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } end = time.time() print("Preprocessed {} data points".format(len(train_dataset) + len(test_dataset))) print("Data preprocessing took: {:.3f}s".format(end - start)) if cached: print("Building representation cache...") start = time.time() train_loader = get_cached_data_loader(train_dataset, batch_size, discriminator, shuffle=True, device=device) test_loader = get_cached_data_loader(test_dataset, batch_size, discriminator, device=device) end = time.time() print("Building representation cache took: {:.3f}s".format(end - start)) else: train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn ) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) if save_model: with open("{}_classifier_head_meta.json".format(dataset), "w") as meta_file: json.dump(discriminator_meta, meta_file) optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) for epoch in range(epochs): start = time.time() print("\nEpoch", epoch + 1) train_epoch( discriminator=discriminator, data_loader=train_loader, optimizer=optimizer, epoch=epoch, log_interval=log_interval, device=device, ) evaluate_performance(data_loader=test_loader, discriminator=discriminator, device=device) end = time.time() print("Epoch took: {:.3f}s".format(end - start)) print("\nExample prediction") predict(example_sentence, discriminator, idx2class, cached=cached, device=device) if save_model: # torch.save(discriminator.state_dict(), # "{}_discriminator_{}.pt".format( # args.dataset, epoch + 1 # )) torch.save( discriminator.get_classifier().state_dict(), "{}_classifier_head_epoch_{}.pt".format(dataset, epoch + 1), ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Train a discriminator on top of GPT-2 representations") parser.add_argument( "--dataset", type=str, default="SST", choices=("SST", "clickbait", "toxic", "generic"), help=( "dataset to train the discriminator on. " "In case of generic, the dataset is expected " "to be a TSBV file with structure: class \\t text" ), ) parser.add_argument( "--dataset_fp", type=str, default="", help="File path of the dataset to use. Needed only in case of generic datadset", ) parser.add_argument( "--pretrained_model", type=str, default="gpt2-medium", help="Pretrained model to use as encoder" ) parser.add_argument("--epochs", type=int, default=10, metavar="N", help="Number of training epochs") parser.add_argument( "--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save_model", action="store_true", help="whether to save the model") parser.add_argument("--cached", action="store_true", help="whether to cache the input representations") parser.add_argument("--no_cuda", action="store_true", help="use to turn off cuda") args = parser.parse_args() train_discriminator(**(vars(args)))
transformers/examples/research_projects/pplm/run_pplm_discrim_train.py/0
{ "file_path": "transformers/examples/research_projects/pplm/run_pplm_discrim_train.py", "repo_id": "transformers", "token_count": 8810 }
262
#!/usr/bin/env python3 import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def log_results(result: Dataset, args: Dict[str, str]): """DO NOT CHANGE. This function computes and logs the result metrics.""" log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print & log results result_str = f"WER: {wer_result}\nCER: {cer_result}" print(result_str) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(write_to_file, with_indices=True) def normalize_text(text: str) -> str: """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training text = re.sub(chars_to_ignore_regex, "", text.lower()) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! token_sequences_to_ignore = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: text = " ".join(text.split(t)) return text def main(args): # load dataset dataset = load_dataset(args.dataset, args.config, split=args.split, token=True) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) sampling_rate = feature_extractor.sampling_rate # resample audio dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline if args.device is None: args.device = 0 if torch.cuda.is_available() else -1 asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device) # map function to decode audio def map_to_pred(batch): prediction = asr( batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) batch["prediction"] = prediction["text"] batch["target"] = normalize_text(batch["sentence"]) return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # compute and log_results # do not change function below log_results(result, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) args = parser.parse_args() main(args)
transformers/examples/research_projects/robust-speech-event/eval.py/0
{ "file_path": "transformers/examples/research_projects/robust-speech-event/eval.py", "repo_id": "transformers", "token_count": 1852 }
263
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" export WANDB_PROJECT=dmar export MAX_LEN=128 python finetune.py \ --learning_rate=3e-4 \ --do_train \ --do_predict \ --fp16 \ --val_check_interval 0.25 \ --data_dir $ENRO_DIR \ --max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \ --freeze_encoder --freeze_embeds \ --train_batch_size=$BS --eval_batch_size=$BS \ --tokenizer_name $m --model_name_or_path $m \ --warmup_steps 500 --sortish_sampler --logger_name wandb \ --gpus 1 --fp16_opt_level=O1 --task translation --num_sanity_val_steps=0 \ "$@"
transformers/examples/research_projects/seq2seq-distillation/distil_marian_no_teacher.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/distil_marian_no_teacher.sh", "repo_id": "transformers", "token_count": 274 }
264
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" python finetune.py \ --learning_rate=3e-5 \ --fp16 \ --do_train \ --val_check_interval=0.25 \ --adam_eps 1e-06 \ --num_train_epochs 6 --src_lang en_XX --tgt_lang ro_RO \ --data_dir $ENRO_DIR \ --max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \ --train_batch_size=$BS --eval_batch_size=$BS \ --task translation \ --warmup_steps 500 \ --freeze_embeds \ --model_name_or_path=facebook/mbart-large-cc25 \ "$@"
transformers/examples/research_projects/seq2seq-distillation/train_mbart_cc25_enro.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/train_mbart_cc25_enro.sh", "repo_id": "transformers", "token_count": 273 }
265
# Simple VQGAN CLIP Author: @ErwannMillon This is a very simple VQGAN-CLIP implementation that was built as a part of the <a href= "https://github.com/ErwannMillon/face-editor"> Face Editor project </a> . This simplified version allows you to generate or edit images using text with just three lines of code. For a more full featured implementation with masking, more advanced losses, and a full GUI, check out the Face Editor project. By default this uses a CelebA checkpoint (for generating/editing faces), but also has an imagenet checkpoint that can be loaded by specifying vqgan_config and vqgan_checkpoint when instantiating VQGAN_CLIP. Learning rate and iterations can be set by modifying vqgan_clip.lr and vqgan_clip.iterations . You can edit images by passing `image_path` to the generate function. See the generate function's docstring to learn more about how to format prompts. ## Usage The easiest way to test this out is by <a href="https://colab.research.google.com/drive/1Ez4D1J6-hVkmlXeR5jBPWYyu6CLA9Yor?usp=sharing ">using the Colab demo</a> To install locally: - Clone this repo - Install git-lfs (ubuntu: sudo apt-get install git-lfs , MacOS: brew install git-lfs) In the root of the repo run: ``` conda create -n vqganclip python=3.8 conda activate vqganclip git-lfs install git clone https://huggingface.co/datasets/erwann/face_editor_model_ckpt model_checkpoints pip install -r requirements.txt ``` ### Generate new images ``` from VQGAN_CLIP import VQGAN_CLIP vqgan_clip = VQGAN_CLIP() vqgan_clip.generate("a picture of a smiling woman") ``` ### Edit an image To get a test image, run `git clone https://huggingface.co/datasets/erwann/vqgan-clip-pic test_images` To edit: ``` from VQGAN_CLIP import VQGAN_CLIP vqgan_clip = VQGAN_CLIP() vqgan_clip.lr = .07 vqgan_clip.iterations = 15 vqgan_clip.generate( pos_prompts= ["a picture of a beautiful asian woman", "a picture of a woman from Japan"], neg_prompts=["a picture of an Indian person", "a picture of a white person"], image_path="./test_images/face.jpeg", show_intermediate=True, save_intermediate=True, ) ``` ### Make an animation from the most recent generation `vqgan_clip.make_animation()` ## Features: - Positive and negative prompts - Multiple prompts - Prompt Weights - Creating GIF animations of the transformations - Wandb logging
transformers/examples/research_projects/vqgan-clip/README.md/0
{ "file_path": "transformers/examples/research_projects/vqgan-clip/README.md", "repo_id": "transformers", "token_count": 774 }
266
#!/usr/bin/env bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="tr" \ --output_dir=./wav2vec2-large-xlsr-turkish-demo \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size="16" \ --evaluation_strategy="steps" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --fp16 \ --freeze_feature_extractor \ --save_steps="400" \ --eval_steps="400" \ --save_total_limit="3" \ --logging_steps="400" \ --group_by_length \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --do_train --do_eval
transformers/examples/research_projects/wav2vec2/finetune_wav2vec2_xlsr_turkish.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_wav2vec2_xlsr_turkish.sh", "repo_id": "transformers", "token_count": 316 }
267
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import json import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import tensorflow as tf from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoTokenizer, DataCollatorWithPadding, DefaultDataCollator, HfArgumentParser, PretrainedConfig, PushToHubCallback, TFAutoModelForSequenceClassification, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) # region Command-line arguments @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: str = field( metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) predict_file: str = field( metadata={"help": "A file containing user-supplied examples to make predictions for"}, default=None, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) def __post_init__(self): self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow") if not (training_args.do_train or training_args.do_eval or training_args.do_predict): exit("Must specify at least one of --do_train, --do_eval or --do_predict!") # endregion # region Checkpoints checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: checkpoint = get_last_checkpoint(training_args.output_dir) if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # endregion # region Dataset and labels # Set seed before initializing model. set_seed(training_args.seed) # Downloading and loading a dataset from the hub. In distributed training, the load_dataset function guarantee # that only one local process can concurrently download the dataset. datasets = load_dataset( "glue", data_args.task_name, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 if data_args.predict_file is not None: logger.info("Preparing user-supplied file for predictions...") data_files = {"data": data_args.predict_file} for key in data_files.keys(): logger.info(f"Loading a local file for {key}: {data_files[key]}") if data_args.predict_file.endswith(".csv"): # Loading a dataset from local csv files user_dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files user_dataset = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) needed_keys = task_to_keys[data_args.task_name] for key in needed_keys: assert key in user_dataset["data"].features, f"Your supplied predict_file is missing the {key} key!" datasets["user_data"] = user_dataset["data"] # endregion # region Load model config and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Dataset preprocessing sentence1_key, sentence2_key = task_to_keys[data_args.task_name] # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if config.label2id != PretrainedConfig(num_labels=num_labels).label2id and not is_regression: # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) label_to_id = {label: i for i, label in enumerate(label_list)} if label_to_id is not None: config.label2id = label_to_id config.id2label = {id: label for label, id in config.label2id.items()} elif data_args.task_name is not None and not is_regression: config.label2id = {l: i for i, l in enumerate(label_list)} config.id2label = {id: label for label, id in config.label2id.items()} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if data_args.pad_to_max_length: data_collator = DefaultDataCollator(return_tensors="np") else: data_collator = DataCollatorWithPadding(tokenizer, return_tensors="np") # endregion # region Metric function metric = evaluate.load("glue", data_args.task_name, cache_dir=model_args.cache_dir) def compute_metrics(preds, label_ids): preds = preds["logits"] preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) result = metric.compute(predictions=preds, references=label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result # endregion with training_args.strategy.scope(): # region Load pretrained model if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForSequenceClassification.from_pretrained( model_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Convert data to a tf.data.Dataset dataset_options = tf.data.Options() dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF num_replicas = training_args.strategy.num_replicas_in_sync tf_data = {} max_samples = { "train": data_args.max_train_samples, "validation": data_args.max_eval_samples, "validation_matched": data_args.max_eval_samples, "validation_mismatched": data_args.max_eval_samples, "test": data_args.max_predict_samples, "test_matched": data_args.max_predict_samples, "test_mismatched": data_args.max_predict_samples, "user_data": None, } for key in datasets.keys(): if key == "train" or key.startswith("validation"): assert "label" in datasets[key].features, f"Missing labels from {key} data!" if key == "train": shuffle = True batch_size = training_args.per_device_train_batch_size * num_replicas else: shuffle = False batch_size = training_args.per_device_eval_batch_size * num_replicas samples_limit = max_samples[key] dataset = datasets[key] if samples_limit is not None: dataset = dataset.select(range(samples_limit)) # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset data = model.prepare_tf_dataset( dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=data_collator, tokenizer=tokenizer, ) data = data.with_options(dataset_options) tf_data[key] = data # endregion # region Optimizer, loss and compilation if training_args.do_train: num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 optimizer, schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) else: optimizer = "adam" # Just write anything because we won't be using it if is_regression: metrics = [] else: metrics = ["accuracy"] # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, metrics=metrics, jit_compile=training_args.xla) # endregion # region Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id model_name = model_args.model_name_or_path.split("/")[-1] if not push_to_hub_model_id: push_to_hub_model_id = f"{model_name}-finetuned-glue" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} model_card_kwargs["task_name"] = data_args.task_name if training_args.push_to_hub: callbacks = [ PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ] else: callbacks = [] # endregion # region Training and validation if training_args.do_train: if training_args.do_eval and not data_args.task_name == "mnli": # Do both evaluation and training in the Keras fit loop, unless the task is MNLI # because MNLI has two validation sets validation_data = tf_data["validation"] else: validation_data = None model.fit( tf_data["train"], validation_data=validation_data, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) # endregion # region Evaluation if training_args.do_eval: # We normally do validation as part of the Keras fit loop, but we run it independently # if there was no fit() step (because we didn't train the model) or if the task is MNLI, # because MNLI has a separate validation-mismatched validation set # In this example, we compute advanced metrics only at the end of training, and only compute # loss and accuracy on the validation set each epoch, but # if you'd like to compute metrics every epoch that are too complex to be written as # standard Keras metrics, you can use our KerasMetricCallback. See # https://huggingface.co/docs/transformers/main/en/main_classes/keras_callbacks logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) if data_args.task_name == "mnli": tasks = ["mnli", "mnli-mm"] tf_datasets = [tf_data["validation_matched"], tf_data["validation_mismatched"]] raw_datasets = [datasets["validation_matched"], datasets["validation_mismatched"]] else: tasks = [data_args.task_name] tf_datasets = [tf_data["validation"]] raw_datasets = [datasets["validation"]] for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): eval_predictions = model.predict(tf_dataset) eval_metrics = compute_metrics(eval_predictions, raw_dataset["label"]) print(f"Evaluation metrics ({task}):") print(eval_metrics) if training_args.output_dir is not None: output_eval_file = os.path.join(training_args.output_dir, "all_results.json") with open(output_eval_file, "w") as writer: writer.write(json.dumps(eval_metrics)) # endregion # region Prediction if training_args.do_predict or data_args.predict_file: logger.info("*** Predict ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [] tf_datasets = [] raw_datasets = [] if training_args.do_predict: if data_args.task_name == "mnli": tasks.extend(["mnli", "mnli-mm"]) tf_datasets.extend([tf_data["test_matched"], tf_data["test_mismatched"]]) raw_datasets.extend([datasets["test_matched"], datasets["test_mismatched"]]) else: tasks.append(data_args.task_name) tf_datasets.append(tf_data["test"]) raw_datasets.append(datasets["test"]) if data_args.predict_file: tasks.append("user_data") tf_datasets.append(tf_data["user_data"]) raw_datasets.append(datasets["user_data"]) for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): test_predictions = model.predict(tf_dataset) if "label" in raw_dataset: test_metrics = compute_metrics(test_predictions, raw_dataset["label"]) print(f"Test metrics ({task}):") print(test_metrics) if is_regression: predictions_to_write = np.squeeze(test_predictions["logits"]) else: predictions_to_write = np.argmax(test_predictions["logits"], axis=1) output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") with open(output_predict_file, "w") as writer: logger.info(f"***** Writing prediction results for {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions_to_write): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = model.config.id2label[item] writer.write(f"{index}\t{item}\n") # endregion if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
transformers/examples/tensorflow/text-classification/run_glue.py/0
{ "file_path": "transformers/examples/tensorflow/text-classification/run_glue.py", "repo_id": "transformers", "token_count": 11371 }
268
#!/usr/bin/env bash # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script acquires data and converts it to fsmt model # it covers: # - allenai/wmt19-de-en-6-6-base # - allenai/wmt19-de-en-6-6-big # this script needs to be run from the top level of the transformers repo if [ ! -d "src/transformers" ]; then echo "Error: This script needs to be run from the top of the transformers repo" exit 1 fi mkdir data # get data (run once) cd data gdown 'https://drive.google.com/uc?id=1j6z9fYdlUyOYsh7KJoumRlr1yHczxR5T' gdown 'https://drive.google.com/uc?id=1yT7ZjqfvUYOBXvMjeY8uGRHQFWoSo8Q5' gdown 'https://drive.google.com/uc?id=15gAzHeRUCs-QV8vHeTReMPEh1j8excNE' tar -xvzf wmt19.de-en.tar.gz tar -xvzf wmt19_deen_base_dr0.1_1.tar.gz tar -xvzf wmt19_deen_big_dr0.1_2.tar.gz cp wmt19.de-en/data-bin/dict.*.txt wmt19_deen_base_dr0.1_1 cp wmt19.de-en/data-bin/dict.*.txt wmt19_deen_big_dr0.1_2 cd - # run conversions and uploads PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_base_dr0.1_1/checkpoint_last3_avg.pt --pytorch_dump_folder_path data/wmt19-de-en-6-6-base PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_big_dr0.1_2/checkpoint_last3_avg.pt --pytorch_dump_folder_path data/wmt19-de-en-6-6-big # upload cd data transformers-cli upload -y wmt19-de-en-6-6-base transformers-cli upload -y wmt19-de-en-6-6-big cd - # if updating just small files and not the large models, here is a script to generate the right commands: perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] for ("wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big")}' vocab-src.json vocab-tgt.json tokenizer_config.json config.json # add/remove files as needed
transformers/scripts/fsmt/convert-allenai-wmt19.sh/0
{ "file_path": "transformers/scripts/fsmt/convert-allenai-wmt19.sh", "repo_id": "transformers", "token_count": 950 }
269
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py To create the package for pypi. 1. Create the release branch named: v<RELEASE>-release, for example v4.19-release. For a patch release checkout the current release branch. If releasing on a special branch, copy the updated README.md on the main branch for your the commit you will make for the post-release and run `make fix-copies` on the main branch as well. 2. Run `make pre-release` (or `make pre-patch` for a patch release) and commit these changes with the message: "Release: <VERSION>" and push. 3. Go back to the main branch and run `make post-release` then `make fix-copies`. Commit these changes with the message "v<NEXT_VERSION>.dev.0" and push to main. # If you were just cutting the branch in preparation for a release, you can stop here for now. 4. Wait for the tests on the release branch to be completed and be green (otherwise revert and fix bugs) 5. On the release branch, add a tag in git to mark the release: "git tag v<VERSION> -m 'Adds tag v<VERSION> for pypi' " Push the tag to git: git push --tags origin v<RELEASE>-release 6. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). Run `make build-release`. This will build the release and do some sanity checks for you. If this ends with an error message, you need to fix things before going further. You should now have a /dist directory with both .whl and .tar.gz source versions. 7. Check that everything looks correct by uploading the package to the pypi test server: twine upload dist/* -r testpypi (pypi suggest using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r testpypi --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi transformers Check you can run the following commands: python -c "from transformers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))" python -c "from transformers import *" python utils/check_build.py --check_lib If making a patch release, double check the bug you are patching is indeed resolved. 8. Upload the final version to actual pypi: twine upload dist/* -r pypi 9. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. """ import os import re import shutil from pathlib import Path from setuptools import Command, find_packages, setup # Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "transformers.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated transformers to 3.0 or later, this is expected,\n" "but it may prevent transformers from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) # IMPORTANT: # 1. all dependencies should be listed here with their version requirements if any # 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py _deps = [ "Pillow>=10.0.1,<=15.0", "accelerate>=0.21.0", "av==9.2.0", # Latest version of PyAV (10.0.0) has issues with audio stream. "beautifulsoup4", "codecarbon==1.2.0", "cookiecutter==1.7.3", "dataclasses", "datasets!=2.5.0", "decord==0.6.0", "deepspeed>=0.9.3", "diffusers", "dill<0.3.5", "evaluate>=0.2.0", "faiss-cpu", "fastapi", "filelock", "flax>=0.4.1,<=0.7.0", "fsspec<2023.10.0", "ftfy", "fugashi>=1.0", "GitPython<3.1.19", "hf-doc-builder>=0.3.0", "huggingface-hub>=0.19.3,<1.0", "importlib_metadata", "ipadic>=1.0.0,<2.0", "isort>=5.5.4", "jax>=0.4.1,<=0.4.13", "jaxlib>=0.4.1,<=0.4.13", "jieba", "kenlm", # Keras pin - this is to make sure Keras 3 doesn't destroy us. Remove or change when we have proper support. "keras<2.16", "keras-nlp>=0.3.1", "librosa", "nltk", "natten>=0.14.6,<0.15.0", "numpy>=1.17", "onnxconverter-common", "onnxruntime-tools>=1.4.2", "onnxruntime>=1.4.0", "opencv-python", "optuna", "optax>=0.0.8,<=0.1.4", "packaging>=20.0", "parameterized", "phonemizer", "protobuf", "psutil", "pyyaml>=5.1", "pydantic", "pytest>=7.2.0,<8.0.0", "pytest-timeout", "pytest-xdist", "python>=3.8.0", "ray[tune]>=2.7.0", "regex!=2019.12.17", "requests", "rhoknp>=1.1.0,<1.3.1", "rjieba", "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff==0.1.5", "sacrebleu>=1.4.12,<2.0.0", "sacremoses", "safetensors>=0.4.1", "sagemaker>=2.31.0", "scikit-learn", "sentencepiece>=0.1.91,!=0.1.92", "sigopt", "starlette", "sudachipy>=0.6.6", "sudachidict_core>=20220729", "tensorboard", # TensorFlow pin. When changing this value, update examples/tensorflow/_tests_requirements.txt accordingly "tensorflow-cpu>=2.6,<2.16", "tensorflow>=2.6,<2.16", "tensorflow-text<2.16", "tf2onnx", "timeout-decorator", "timm", "tokenizers>=0.14,<0.19", "torch<2.2.0", "torchaudio<2.2.0", "torchvision<0.17.0", "pyctcdecode>=0.4.0", "tqdm>=4.27", "unidic>=1.0.2", "unidic_lite>=1.0.7", "urllib3<2.0.0", "uvicorn", ] # this is a lookup table with items like: # # tokenizers: "tokenizers==0.9.4" # packaging: "packaging" # # some of the values are versioned whereas others aren't. deps = {b: a for a, b in (re.findall(r"^(([^!=<>~ ]+)(?:[!=<>~ ].*)?$)", x)[0] for x in _deps)} # since we save this data in src/transformers/dependency_versions_table.py it can be easily accessed from # anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with: # # python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets # # Just pass the desired package names to that script as it's shown with 2 packages above. # # If transformers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above # # You can then feed this for example to `pip`: # # pip install -U $(python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([deps[x] for x in sys.argv[1:]]))' tokenizers datasets) # def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] class DepsTableUpdateCommand(Command): """ A custom distutils command that updates the dependency table. usage: python setup.py deps_table_update """ description = "build runtime dependency table" user_options = [ # format: (long option, short option, description). ("dep-table-update", None, "updates src/transformers/dependency_versions_table.py"), ] def initialize_options(self): pass def finalize_options(self): pass def run(self): entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()]) content = [ "# THIS FILE HAS BEEN AUTOGENERATED. To update:", "# 1. modify the `_deps` dict in setup.py", "# 2. run `make deps_table_update``", "deps = {", entries, "}", "", ] target = "src/transformers/dependency_versions_table.py" print(f"updating {target}") with open(target, "w", encoding="utf-8", newline="\n") as f: f.write("\n".join(content)) extras = {} extras["ja"] = deps_list("fugashi", "ipadic", "unidic_lite", "unidic", "sudachipy", "sudachidict_core", "rhoknp") extras["sklearn"] = deps_list("scikit-learn") extras["tf"] = deps_list("tensorflow", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp") extras["tf-cpu"] = deps_list("tensorflow-cpu", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp") extras["torch"] = deps_list("torch", "accelerate") extras["accelerate"] = deps_list("accelerate") if os.name == "nt": # windows extras["retrieval"] = deps_list("datasets") # faiss is not supported on windows extras["flax"] = [] # jax is not supported on windows else: extras["retrieval"] = deps_list("faiss-cpu", "datasets") extras["flax"] = deps_list("jax", "jaxlib", "flax", "optax") extras["tokenizers"] = deps_list("tokenizers") extras["ftfy"] = deps_list("ftfy") extras["onnxruntime"] = deps_list("onnxruntime", "onnxruntime-tools") extras["onnx"] = deps_list("onnxconverter-common", "tf2onnx") + extras["onnxruntime"] extras["modelcreation"] = deps_list("cookiecutter") extras["sagemaker"] = deps_list("sagemaker") extras["deepspeed"] = deps_list("deepspeed") + extras["accelerate"] extras["optuna"] = deps_list("optuna") extras["ray"] = deps_list("ray[tune]") extras["sigopt"] = deps_list("sigopt") extras["integrations"] = extras["optuna"] + extras["ray"] + extras["sigopt"] extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette") extras["audio"] = deps_list("librosa", "pyctcdecode", "phonemizer", "kenlm") # `pip install ".[speech]"` is deprecated and `pip install ".[torch-speech]"` should be used instead extras["speech"] = deps_list("torchaudio") + extras["audio"] extras["torch-speech"] = deps_list("torchaudio") + extras["audio"] extras["tf-speech"] = extras["audio"] extras["flax-speech"] = extras["audio"] extras["vision"] = deps_list("Pillow") extras["timm"] = deps_list("timm") extras["torch-vision"] = deps_list("torchvision") + extras["vision"] extras["natten"] = deps_list("natten") extras["codecarbon"] = deps_list("codecarbon") extras["video"] = deps_list("decord", "av") extras["sentencepiece"] = deps_list("sentencepiece", "protobuf") extras["testing"] = ( deps_list( "pytest", "pytest-xdist", "timeout-decorator", "parameterized", "psutil", "datasets", "dill", "evaluate", "pytest-timeout", "ruff", "sacrebleu", "rouge-score", "nltk", "GitPython", "hf-doc-builder", "protobuf", # Can be removed once we can unpin protobuf "sacremoses", "rjieba", "beautifulsoup4", "tensorboard", "pydantic", ) + extras["retrieval"] + extras["modelcreation"] ) extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"] extras["quality"] = deps_list("datasets", "isort", "ruff", "GitPython", "hf-doc-builder", "urllib3") extras["all"] = ( extras["tf"] + extras["torch"] + extras["flax"] + extras["sentencepiece"] + extras["tokenizers"] + extras["torch-speech"] + extras["vision"] + extras["integrations"] + extras["timm"] + extras["torch-vision"] + extras["codecarbon"] + extras["accelerate"] + extras["video"] ) # Might need to add doc-builder and some specific deps in the future extras["docs_specific"] = ["hf-doc-builder"] # "docs" needs "all" to resolve all the references extras["docs"] = extras["all"] + extras["docs_specific"] extras["dev-torch"] = ( extras["testing"] + extras["torch"] + extras["sentencepiece"] + extras["tokenizers"] + extras["torch-speech"] + extras["vision"] + extras["integrations"] + extras["timm"] + extras["torch-vision"] + extras["codecarbon"] + extras["quality"] + extras["ja"] + extras["docs_specific"] + extras["sklearn"] + extras["modelcreation"] + extras["onnxruntime"] ) extras["dev-tensorflow"] = ( extras["testing"] + extras["tf"] + extras["sentencepiece"] + extras["tokenizers"] + extras["vision"] + extras["quality"] + extras["docs_specific"] + extras["sklearn"] + extras["modelcreation"] + extras["onnx"] + extras["tf-speech"] ) extras["dev"] = ( extras["all"] + extras["testing"] + extras["quality"] + extras["ja"] + extras["docs_specific"] + extras["sklearn"] + extras["modelcreation"] ) extras["torchhub"] = deps_list( "filelock", "huggingface-hub", "importlib_metadata", "numpy", "packaging", "protobuf", "regex", "requests", "sentencepiece", "torch", "tokenizers", "tqdm", ) extras["agents"] = deps_list( "diffusers", "accelerate", "datasets", "torch", "sentencepiece", "opencv-python", "Pillow" ) # when modifying the following list, make sure to update src/transformers/dependency_versions_check.py install_requires = [ deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads deps["huggingface-hub"], deps["numpy"], deps["packaging"], # utilities from PyPA to e.g., compare versions deps["pyyaml"], # used for the model cards metadata deps["regex"], # for OpenAI GPT deps["requests"], # for downloading models over HTTPS deps["tokenizers"], deps["safetensors"], deps["tqdm"], # progress bars in model download and training scripts ] setup( name="transformers", version="4.38.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)", author_email="[email protected]", description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="NLP vision speech deep learning transformer pytorch tensorflow jax BERT GPT-2 Wav2Vec2 ViT", license="Apache 2.0 License", url="https://github.com/huggingface/transformers", package_dir={"": "src"}, packages=find_packages("src"), include_package_data=True, package_data={"": ["**/*.cu", "**/*.cpp", "**/*.cuh", "**/*.h", "**/*.pyx"]}, zip_safe=False, extras_require=extras, entry_points={"console_scripts": ["transformers-cli=transformers.commands.transformers_cli:main"]}, python_requires=">=3.8.0", install_requires=list(install_requires), classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], cmdclass={"deps_table_update": DepsTableUpdateCommand}, )
transformers/setup.py/0
{ "file_path": "transformers/setup.py", "repo_id": "transformers", "token_count": 6425 }
270
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. Returns: ServeCommand """ return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) IMPORT_ERROR_MESSAGE = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class ConvertCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") train_parser.add_argument( "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name", type=str, default=None, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=convert_command_factory) def __init__( self, model_type: str, tf_checkpoint: str, pytorch_dump_output: str, config: str, finetuning_task_name: str, *args, ): self._logger = logging.get_logger("transformers-cli/converting") self._logger.info(f"Loading model {model_type}") self._model_type = model_type self._tf_checkpoint = tf_checkpoint self._pytorch_dump_output = pytorch_dump_output self._config = config self._finetuning_task_name = finetuning_task_name def run(self): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt2": try: from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import ( convert_gpt2_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) else: raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
transformers/src/transformers/commands/convert.py/0
{ "file_path": "transformers/src/transformers/commands/convert.py", "repo_id": "transformers", "token_count": 3159 }
271
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.21.0", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "fsspec": "fsspec<2023.10.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.19.3,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras": "keras<2.16", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6,<0.15.0", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0,<8.0.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.1.5", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.16", "tensorflow": "tensorflow>=2.6,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.14,<0.19", "torch": "torch<2.2.0", "torchaudio": "torchaudio<2.2.0", "torchvision": "torchvision<0.17.0", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
transformers/src/transformers/dependency_versions_table.py/0
{ "file_path": "transformers/src/transformers/dependency_versions_table.py", "repo_id": "transformers", "token_count": 1773 }
272
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import warnings from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from tensorflow.compiler.tf2xla.python.xla import dynamic_update_slice from ..modeling_tf_outputs import TFCausalLMOutputWithPast, TFSeq2SeqLMOutput from ..models.auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, ) from ..tf_utils import shape_list, stable_softmax from ..utils import ModelOutput, logging from .configuration_utils import GenerationConfig from .tf_logits_process import ( TFForcedBOSTokenLogitsProcessor, TFForcedEOSTokenLogitsProcessor, TFForceTokensLogitsProcessor, TFLogitsProcessorList, TFMinLengthLogitsProcessor, TFNoBadWordsLogitsProcessor, TFNoRepeatNGramLogitsProcessor, TFRepetitionPenaltyLogitsProcessor, TFSuppressTokensAtBeginLogitsProcessor, TFSuppressTokensLogitsProcessor, TFTemperatureLogitsWarper, TFTopKLogitsWarper, TFTopPLogitsWarper, ) logger = logging.get_logger(__name__) @dataclass class TFGreedySearchDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFGreedySearchEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFSampleDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using sampling. Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFSampleEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSearchDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using beam search. Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSearchEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. `Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSampleDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using beam sample. Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSampleEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size*num_beams, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_beams, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFContrastiveSearchDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using contrastive search. Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFContrastiveSearchEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using contrastive search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None TFGreedySearchOutput = Union[TFGreedySearchEncoderDecoderOutput, TFGreedySearchDecoderOnlyOutput] TFSampleOutput = Union[TFSampleEncoderDecoderOutput, TFSampleDecoderOnlyOutput] TFBeamSearchOutput = Union[TFBeamSearchEncoderDecoderOutput, TFBeamSearchDecoderOnlyOutput] TFBeamSampleOutput = Union[TFBeamSampleEncoderDecoderOutput, TFBeamSampleDecoderOnlyOutput] TFContrastiveSearchOutput = Union[TFContrastiveSearchEncoderDecoderOutput, TFContrastiveSearchDecoderOnlyOutput] TFGenerateOutput = Union[ TFGreedySearchOutput, TFSampleOutput, TFBeamSearchOutput, TFBeamSampleOutput, TFContrastiveSearchOutput ] class TFGenerationMixin: """ A class containing all of the functions supporting generation, to be used as a mixin in [`TFPreTrainedModel`]. The class exposes [`~generation.TFGenerationMixin.generate`], which can be used for: - *greedy decoding* by calling [`~generation.TFGenerationMixin.greedy_search`] if `num_beams=1` and `do_sample=False` - *contrastive search* by calling [`~generation.TFGenerationMixin.contrastive_search`] if `penalty_alpha>0` and `top_k>1` - *multinomial sampling* by calling [`~generation.TFGenerationMixin.sample`] if `num_beams=1` and `do_sample=True` - *beam-search decoding* by calling [`~generation.TFGenerationMixin.beam_search`] if `num_beams>1` You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). """ _seed_generator = None @property def seed_generator(self): warnings.warn("`seed_generator` is deprecated and will be removed in a future version.", UserWarning) if self._seed_generator is None: self._seed_generator = tf.random.Generator.from_non_deterministic_state() return self._seed_generator supports_xla_generation = True def prepare_inputs_for_generation(self, *args, **kwargs): raise NotImplementedError( "A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`." ) def compute_transition_scores( self, sequences: tf.Tensor, scores: Tuple[tf.Tensor], beam_indices: Optional[tf.Tensor] = None, normalize_logits: bool = False, ) -> tf.Tensor: """ Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time. Parameters: sequences (`tf.Tensor`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)`): Transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at generate-time. normalize_logits (`bool`, *optional*, defaults to `False`): Whether to normalize the logits (which, for legacy reasons, may be unnormalized). Return: `tf.Tensor`: A `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing the transition scores (logits) Examples: ```python >>> from transformers import GPT2Tokenizer, TFAutoModelForCausalLM >>> import numpy as np >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2") >>> model = TFAutoModelForCausalLM.from_pretrained("gpt2") >>> tokenizer.pad_token_id = tokenizer.eos_token_id >>> inputs = tokenizer(["Today is"], return_tensors="tf") >>> # Example 1: Print the scores for each token generated with Greedy Search >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, normalize_logits=True ... ) >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for >>> # encoder-decoder models, like BART or T5. >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] >>> generated_tokens = outputs.sequences[:, input_length:] >>> for tok, score in zip(generated_tokens[0], transition_scores[0]): ... # | token | token string | logits | probability ... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}") | 262 | the | -1.413 | 24.33% | 1110 | day | -2.609 | 7.36% | 618 | when | -2.009 | 13.41% | 356 | we | -1.859 | 15.58% | 460 | can | -2.508 | 8.14% >>> # Example 2: Reconstruct the sequence scores from Beam Search >>> outputs = model.generate( ... **inputs, ... max_new_tokens=5, ... num_beams=4, ... num_return_sequences=4, ... return_dict_in_generate=True, ... output_scores=True, ... ) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False ... ) >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores. >>> # Tip: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the >>> # use case, you might want to recompute it with `normalize_logits=True`. >>> output_length = input_length + np.sum(transition_scores.numpy() < 0, axis=1) >>> length_penalty = model.generation_config.length_penalty >>> reconstructed_scores = np.sum(transition_scores, axis=1) / (output_length**length_penalty) >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores)) True ```""" # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent # to a beam search approach were the first (and only) beam is always selected if beam_indices is None: beam_indices = tf.tile(tf.expand_dims(tf.range(scores[0].shape[0]), axis=1), [1, len(scores)]) # 2. reshape scores as [batch_size, vocab_size, # generation steps] with # generation steps being # seq_len - input_length scores = tf.transpose(tf.reshape(tf.stack(scores), (len(scores), -1)), (1, 0)) scores = tf.reshape(scores, (-1, self.config.vocab_size, scores.shape[-1])) # 3. Optionally normalize the logits (across the vocab dimension) if normalize_logits: scores = tf.nn.log_softmax(scores, axis=1) # 4. cut beam_indices to longest beam length beam_indices_mask = beam_indices < 0 max_beam_length = tf.math.reduce_max( tf.math.reduce_sum((1 - tf.cast(beam_indices_mask, dtype=tf.int32)), axis=-1) ) beam_indices = beam_indices[:, -max_beam_length:] beam_indices_mask = beam_indices_mask[:, -max_beam_length:] # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards beam_indices = tf.where(beam_indices_mask, 0, beam_indices) # 6. Define which indices contributed to scores cut_idx = sequences.shape[-1] - max_beam_length token_indices = sequences[:, cut_idx:] gen_step_idx = tf.broadcast_to(tf.range(scores.shape[-1]), token_indices.shape) indices = tf.stack([beam_indices, token_indices, gen_step_idx], axis=-1) # 7. Compute scores transition_scores = tf.gather_nd(scores, indices) # 8. Mask out transition_scores of beams that stopped early transition_scores = tf.where(beam_indices_mask, 0, transition_scores) return transition_scores def _validate_model_class(self): """ Confirms that the model class is compatible with generation. If not, raises an exception that points to the right class to use. """ if not self.can_generate(): generate_compatible_mappings = [ TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, ] generate_compatible_classes = set() for model_mapping in generate_compatible_mappings: supported_models = model_mapping.get(type(self.config), default=None) if supported_models is not None: generate_compatible_classes.add(supported_models.__name__) exception_message = ( f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " "it doesn't have a language model head." ) if generate_compatible_classes: exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}" raise TypeError(exception_message) def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): """Validates model kwargs for generation. Generate argument typos will also be caught here.""" # Excludes arguments that are handled before calling any model function if self.config.is_encoder_decoder: for key in ["decoder_input_ids"]: model_kwargs.pop(key, None) unused_model_args = [] model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) if "kwargs" in model_args or "model_kwargs" in model_args: model_args |= set(inspect.signature(self.call).parameters) for key, value in model_kwargs.items(): if value is not None and key not in model_args: unused_model_args.append(key) if unused_model_args: raise ValueError( f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" " generate arguments will also show up in this list)" ) def generate( self, inputs: Optional[tf.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[TFLogitsProcessorList] = None, seed=None, **kwargs, ) -> Union[TFGenerateOutput, tf.Tensor]: r""" Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](../generation_strategies). </Tip> Parameters: inputs (`tf.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. seed (`List[int]`, *optional*): Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the `seed` argument from stateless functions in `tf.random`. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `tf.Tensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchDecoderOnlyOutput`], - [`~generation.TFSampleDecoderOnlyOutput`], - [`~generation.TFBeamSearchDecoderOnlyOutput`], - [`~generation.TFBeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchEncoderDecoderOutput`], - [`~generation.TFSampleEncoderDecoderOutput`], - [`~generation.TFBeamSearchEncoderDecoderOutput`], - [`~generation.TFBeamSampleEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call self._validate_model_class() # priority: `generation_config` argument > `model.generation_config` (the default generation config) if generation_config is None: # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, # two conditions must be met # 1) the generation config must have been created from the model config (`_from_model_config` field); # 2) the generation config must have seen no modification since its creation (the hash is the same). if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash( self.generation_config ): new_generation_config = GenerationConfig.from_model_config(self.config) if new_generation_config != self.generation_config: warnings.warn( "You have modified the pretrained model configuration to control generation. This is a" " deprecated strategy to control generation and will be removed soon, in a future version." " Please use and modify the model generation configuration (see" " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" ) self.generation_config = new_generation_config generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Cast input dtypes to tf.int32 unless they're floats (which happens for some image models) if inputs is not None: if isinstance(inputs, tf.Tensor) and inputs.dtype.is_floating: pass elif isinstance(inputs, np.ndarray) and np.issubdtype(inputs.dtype, np.floating): pass else: inputs = tf.cast(inputs, tf.int32) if model_kwargs.get("attention_mask") is not None: model_kwargs["attention_mask"] = tf.cast(model_kwargs["attention_mask"], tf.int32) if "decoder_input_ids" in model_kwargs: if ( isinstance(model_kwargs["decoder_input_ids"], tf.Tensor) and model_kwargs["decoder_input_ids"].dtype.is_floating ): pass elif isinstance(model_kwargs["decoder_input_ids"], np.ndarray) and np.issubdtype( model_kwargs["decoder_input_ids"].dtype, np.floating ): pass else: model_kwargs["decoder_input_ids"] = tf.cast(model_kwargs["decoder_input_ids"], tf.int32) # 3. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask") is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id use_xla = not tf.executing_eagerly() if use_xla and not self.supports_xla_generation: raise ValueError( "The selected model does not support Graph mode nor XLA generation (e.g. from tf.function())" ) # 4. Define model inputs inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) # inputs_ids now has to be defined and cannot be None anymore batch_size = shape_list(inputs_tensor)[0] # 5. Prepare other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache accepts_attention_mask = "attention_mask" in set(inspect.signature(self.call).parameters.keys()) requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id ) # decoder-only models should use left-padding for generation if not self.config.is_encoder_decoder: if generation_config.pad_token_id is not None and tf.math.reduce_any( inputs_tensor[:, -1] == generation_config.pad_token_id ): logger.warning( "A decoder-only architecture is being used, but right-padding was detected! For correct " "generation results, please set `padding_side='left'` when initializing the tokenizer." ) if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: # if model is encoder decoder encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name ) # 6. Prepare model inputs which will be used for auto-regressive generation if self.config.is_encoder_decoder: input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, ) else: input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids") # 7. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = shape_list(input_ids)[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: # 20 is the default max_length of the generation config warnings.warn( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", UserWarning, ) elif generation_config.max_new_tokens is not None: if not has_default_max_length and generation_config.max_length is not None: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length # If the input length is a tensor (i.e. dynamic length), skip length checks if not isinstance(input_ids_seq_length, tf.Tensor): if ( generation_config.min_length is not None and generation_config.min_length > generation_config.max_length ): raise ValueError( f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger" f" than the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" logger.warning( f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing`max_new_tokens`." ) # 8. determine generation mode is_contrastive_search_gen_mode = ( generation_config.top_k is not None and generation_config.top_k > 1 and generation_config.do_sample is False and generation_config.penalty_alpha is not None and generation_config.penalty_alpha > 0 ) is_greedy_gen_mode = ( not is_contrastive_search_gen_mode and (generation_config.num_beams == 1) and generation_config.do_sample is False ) is_beam_gen_mode = ( not is_contrastive_search_gen_mode and (generation_config.num_beams > 1) and generation_config.do_sample is False ) is_sample_gen_mode = (generation_config.num_beams == 1) and generation_config.do_sample is True is_beam_sample_gen_mode = (generation_config.num_beams > 1) and generation_config.do_sample is True # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, logits_processor=logits_processor, ) # 10. go into different generation modes if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing" " greedy search." ) # 11. run greedy search return self.greedy_search( input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=logits_processor, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif is_contrastive_search_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing" " contrastive search." ) # 11. run contrastive search return self.contrastive_search( input_ids, top_k=generation_config.top_k, penalty_alpha=generation_config.penalty_alpha, logits_processor=logits_processor, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config=generation_config) # 12. expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 13. run sample return self.sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, seed=seed, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif is_beam_gen_mode: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) # 11. broadcast inputs to the desired number of beams input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, expand_in_new_axis=True, **model_kwargs, ) # 12. run beam search return self.beam_search( input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, length_penalty=generation_config.length_penalty, early_stopping=generation_config.early_stopping, logits_processor=logits_processor, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, num_return_sequences=generation_config.num_return_sequences, **model_kwargs, ) elif is_beam_sample_gen_mode: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config=generation_config) # 12. broadcast inputs to the desired number of beams input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, expand_in_new_axis=True, **model_kwargs, ) # 13. run beam sample (beam search with sampling) return self.beam_search( input_ids, do_sample=True, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, length_penalty=generation_config.length_penalty, early_stopping=generation_config.early_stopping, logits_processor=logits_processor, logits_warper=logits_warper, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, num_return_sequences=generation_config.num_return_sequences, **model_kwargs, ) def _prepare_attention_mask_for_generation( self, inputs: tf.Tensor, pad_token_id: Optional[int], eos_token_id: Optional[int], ) -> tf.Tensor: is_input_ids = len(inputs.shape) == 2 and inputs.dtype in (tf.int32, tf.int64) is_pad_token_in_inputs = (pad_token_id is not None) and tf.math.reduce_any(inputs == pad_token_id) is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id != eos_token_id) # Check if input is input_ids and padded -> only then is attention_mask defined if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id: return tf.cast(tf.math.not_equal(inputs, pad_token_id), dtype=tf.int32) else: return tf.ones(inputs.shape[:2], dtype=tf.int32) def _prepare_encoder_decoder_kwargs_for_generation( self, inputs_tensor: tf.Tensor, model_kwargs, model_input_name: Optional[str] = None ) -> Dict[str, Any]: # 1. get encoder and store encoder outputs encoder = self.get_encoder() # 2. prepare encoder args and encoder kwargs from model kwargs irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.call).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. vision models don't use `attention_mask`. encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor if model_input_name != self.main_input_name: # in Keras, the first input must always be passed encoder_kwargs[self.main_input_name] = None encoder_outputs = encoder(**encoder_kwargs) model_kwargs["encoder_outputs"] = encoder_outputs return model_kwargs def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, tf.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) decoder_input_ids_start = tf.ones((batch_size, 1), dtype=tf.int32) * decoder_start_token_id # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif tf.reduce_all(decoder_input_ids[:, 0] != decoder_start_token_id): decoder_input_ids = tf.concat([decoder_input_ids_start, decoder_input_ids], axis=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = tf.concat( (tf.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), axis=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int: # retrieve decoder_start_token_id for encoder-decoder models # fall back to bos_token_id if necessary decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.generation_config.decoder_start_token_id ) bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id if decoder_start_token_id is not None: return decoder_start_token_id elif bos_token_id is not None: return bos_token_id raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) @staticmethod def _expand_inputs_for_generation( expand_size: int = 1, is_encoder_decoder: bool = False, input_ids: Optional[tf.Tensor] = None, expand_in_new_axis: bool = False, **model_kwargs, ) -> Tuple[tf.Tensor, Dict[str, Any]]: """ Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...] or [batch_size, expand_size, ...], depending on `expand_in_new_axis`. Beam-based approaches expect this function to be used with `expand_in_new_axis=True` """ def _expand_tensor(tensor: tf.Tensor): if expand_in_new_axis: shape = shape_list(tensor) return tf.broadcast_to(tensor[:, None], (shape[0], expand_size) + tuple(shape[1:])) else: return tf.repeat(tensor, expand_size, axis=0) def _expand_dict_for_generation(dict_to_expand): for key in dict_to_expand: if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], tf.Tensor): dict_to_expand[key] = _expand_tensor(dict_to_expand[key]) return dict_to_expand if input_ids is not None: input_ids = _expand_tensor(input_ids) model_kwargs = _expand_dict_for_generation(model_kwargs) if is_encoder_decoder: if model_kwargs.get("encoder_outputs") is None: raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) return input_ids, model_kwargs def _prepare_model_inputs( self, inputs: Optional[tf.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, tf.Tensor]] = None, ) -> Tuple[tf.Tensor, Optional[str], Dict[str, tf.Tensor]]: """ This function extracts the model-specific `inputs` for generation. """ # 1. retrieve all kwargs that are non-None or non-model input related. # some encoder-decoder models have different names for model and encoder if ( self.config.is_encoder_decoder and hasattr(self, "encoder") and hasattr(self.encoder, "main_input_name") and self.encoder.main_input_name != self.main_input_name ): input_name = self.encoder.main_input_name else: input_name = self.main_input_name model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name} # 2. check whether model_input_name is passed as kwarg # if yes and `inputs` is None use kwarg inputs inputs_kwarg = model_kwargs.pop(input_name, None) if inputs_kwarg is not None and inputs is not None: raise ValueError( f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. " f"Make sure to either pass {inputs} or {input_name}=..." ) elif inputs_kwarg is not None: inputs = inputs_kwarg # 3. In the presence of `inputs_embeds` for text models: # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`) # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states. if input_name == "input_ids" and "inputs_embeds" in model_kwargs: if not self.config.is_encoder_decoder: has_inputs_embeds_forwarding = "inputs_embeds" in set( inspect.signature(self.prepare_inputs_for_generation).parameters.keys() ) if not has_inputs_embeds_forwarding: raise ValueError( f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} " "doesn't have its forwarding implemented. See the GPT2 implementation for an example " "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!" ) # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of # the attention mask) can rely on the actual model input. model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( inputs, bos_token_id, model_kwargs=model_kwargs ) else: if inputs is not None: raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.") inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds" # 4. if `inputs` is still None, try to create `input_ids` from BOS token inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) return inputs, input_name, model_kwargs def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[tf.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, tf.Tensor]] = None, ) -> tf.Tensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if self.config.is_encoder_decoder and encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs.last_hidden_state.shape[:-1] return tf.ones(shape, dtype=tf.int32) * -100 if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, tf.Tensor): batch_size = value.shape[0] break return tf.ones((batch_size, 1), dtype=tf.int32) * bos_token_id @staticmethod def _extract_past_from_model_output(outputs: ModelOutput): past_key_values = None if "past_key_values" in outputs: past_key_values = outputs.past_key_values elif "mems" in outputs: past_key_values = outputs.mems elif "past_buckets_states" in outputs: past_key_values = outputs.past_buckets_states return past_key_values def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False ) -> Dict[str, Any]: # update past_key_values model_kwargs["past_key_values"] = self._extract_past_from_model_output(outputs) # update attention mask if not is_encoder_decoder: if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = tf.concat( [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1 ) return model_kwargs def _update_model_kwargs_for_xla_generation( self, model_outputs: ModelOutput, model_kwargs: Dict[str, Any], cur_len: int, max_length: int, batch_size: int, is_encoder_decoder: bool = False, batch_axis: int = 0, ): def _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder): """initializes the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`""" if is_encoder_decoder: # One 1 for decoder_start_token_id, 0s for the currently-unfilled locations in the past_key_values tensor, # 1s for the actual input_ids decoder_attention_mask = tf.concat( [ tf.ones((batch_size, 1), dtype=tf.int32), tf.zeros((batch_size, num_padding_values), dtype=tf.int32), tf.ones((batch_size, 1), dtype=tf.int32), ], axis=1, ) mask = {"decoder_attention_mask": decoder_attention_mask} else: attention_mask = model_kwargs.pop("attention_mask") # 0s for the currently-unfilled locations in the past_key_values tensor, 1s for the actual input_ids attention_mask = tf.concat( [ attention_mask, tf.zeros((batch_size, num_padding_values), dtype=attention_mask.dtype), tf.ones((batch_size, 1), dtype=attention_mask.dtype), ], axis=1, ) mask = {"attention_mask": attention_mask} return mask def _update_attention(model_kwargs, new_past_index, is_encoder_decoder): """updates the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`""" update_start = tf.constant([0, 1], dtype=tf.int32) * new_past_index if is_encoder_decoder: decoder_attention_mask = model_kwargs.pop("decoder_attention_mask") decoder_attention_mask_update_slice = tf.ones((batch_size, 1), dtype=decoder_attention_mask.dtype) decoder_attention_mask = dynamic_update_slice( decoder_attention_mask, decoder_attention_mask_update_slice, update_start ) mask = {"decoder_attention_mask": decoder_attention_mask} else: attention_mask = model_kwargs.pop("attention_mask") attention_mask_update_slice = tf.ones((batch_size, 1), dtype=attention_mask.dtype) attention_mask = dynamic_update_slice(attention_mask, attention_mask_update_slice, update_start) mask = {"attention_mask": attention_mask} return mask def _initialize_past(past_key_values, num_padding_values, batch_axis): """initialize past_key_values with zeros -- the structure depends on `batch_axis`""" if batch_axis == 0: padding_values = tf.constant([[0, 0], [0, 0], [0, num_padding_values], [0, 0]], dtype=tf.int32) new_past = () for past_layer in past_key_values: new_past_layer = list(past_layer) for i in range(len(new_past_layer[:2])): new_past_layer[i] = tf.pad(past_layer[i], padding_values) new_past += (tuple(new_past_layer),) else: padding_values = tf.scatter_nd(indices=[[3, 1]], updates=[num_padding_values], shape=(5, 2)) new_past = list(past_key_values) for i in range(len(past_key_values)): new_past[i] = tf.pad(past_key_values[i], padding_values) return new_past def _update_past(past_key_values, new_past_index, batch_axis): if batch_axis == 0: slice_start_base = tf.constant([0, 0, 1, 0]) new_past = () for past_layer in past_key_values: new_past_layer = list(past_layer) for i in range(len(new_past_layer[:2])): update_slice = past_layer[i][:, :, -1:] # Write the last slice to the first open location in the padded past_key_values array # and then truncate the last slice off the array new_past_layer[i] = dynamic_update_slice( past_layer[i][:, :, :-1], update_slice, slice_start_base * new_past_index ) new_past += (tuple(new_past_layer),) else: slice_start_base = tf.constant([0, 0, 0, 1, 0]) new_past = [None for _ in range(len(past_key_values))] for i in range(len(past_key_values)): update_slice = past_key_values[i][:, :, :, -1:] # Write the last slice to the first open location in the padded past_key_values array # and then truncate the last slice off the array new_past[i] = dynamic_update_slice( past_key_values[i][:, :, :, :-1], update_slice, slice_start_base * new_past_index ) return new_past past_key_values = self._extract_past_from_model_output(model_outputs) if past_key_values is None: raise ValueError( "No known `past_key_values variable` found in model outputs (model outputs keys:" f" {list(model_outputs.keys())})" ) is_past_initialized = model_kwargs.pop("past_key_values", None) is not None if not is_past_initialized: # The padded version of `past_key_values` has a length of `max_length - 1`, as `past_key_values` holds information relative to # previous autoregressive generation steps (step 0 has no past_key_values, step 1 has 1 past_key_values value, ..., the last step # has `max_length - 1` past_key_values values). num_padding_values = max_length - cur_len - 1 mask = _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder) new_past = _initialize_past(past_key_values, num_padding_values, batch_axis) else: # The new index of past_key_values to be filled corresponds to the current length of the sequence, with two # subtractions: -1 because past_key_values holds information regarding previous generation steps (read comment above) # and -1 again because in an array the index is the length of the array minus 1. new_past_index = cur_len - 2 mask = _update_attention(model_kwargs, new_past_index, is_encoder_decoder) new_past = _update_past(past_key_values, new_past_index, batch_axis) # sets the updated variables (mask and past_key_values) model_kwargs.update(mask) model_kwargs["past_key_values"] = tuple(new_past) return model_kwargs def _get_logits_warper( self, generation_config: GenerationConfig, ) -> TFLogitsProcessorList: """ This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsWarper`] instances used for multinomial sampling. """ # instantiate warpers list warpers = TFLogitsProcessorList() # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a # better score (i.e. keep len(generation_config.eos_token_id) + 1) if generation_config.num_beams > 1: if isinstance(generation_config.eos_token_id, list): min_tokens_to_keep = len(generation_config.eos_token_id) + 1 else: min_tokens_to_keep = 2 else: min_tokens_to_keep = 1 if generation_config.temperature is not None and generation_config.temperature != 1.0: warpers.append(TFTemperatureLogitsWarper(generation_config.temperature)) if generation_config.top_k is not None and generation_config.top_k != 0: warpers.append(TFTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep)) if generation_config.top_p is not None and generation_config.top_p < 1.0: warpers.append(TFTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep)) return warpers def _get_logits_processor( self, generation_config: GenerationConfig, input_ids_seq_length: int, logits_processor: Optional[TFLogitsProcessorList], ) -> TFLogitsProcessorList: """ This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsProcessor`] instances used to modify the scores of the language model head. """ processors = TFLogitsProcessorList() # instantiate processors list if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0: processors.append(TFRepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty)) if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0: processors.append(TFNoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size)) if generation_config.bad_words_ids is not None: processors.append( TFNoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id) ) if ( generation_config.min_length is not None and generation_config.eos_token_id is not None and generation_config.min_length > 0 ): processors.append(TFMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id)) if generation_config.forced_bos_token_id is not None: processors.append(TFForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id)) if generation_config.forced_eos_token_id is not None: processors.append( TFForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id) ) if generation_config.suppress_tokens is not None: processors.append(TFSuppressTokensLogitsProcessor(generation_config.suppress_tokens)) if generation_config.begin_suppress_tokens is not None: begin_index = input_ids_seq_length begin_index = ( begin_index if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) else begin_index + 1 ) if generation_config.forced_decoder_ids is not None: begin_index += generation_config.forced_decoder_ids[-1][ 0 ] # generation starts after the last token that is forced processors.append( TFSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index) ) if generation_config.forced_decoder_ids is not None: processors.append(TFForceTokensLogitsProcessor(generation_config.forced_decoder_ids)) processors = self._merge_criteria_processor_list(processors, logits_processor) return processors def _merge_criteria_processor_list( self, default_list: TFLogitsProcessorList, custom_list: TFLogitsProcessorList, ) -> TFLogitsProcessorList: if len(custom_list) == 0: return default_list for default in default_list: for custom in custom_list: if type(custom) is type(default): object_type = "logits processor" raise ValueError( f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" f" `generate`, but it has already been created with the values {default}. {default} has been" " created by passing the corresponding arguments to generate or by the model's config default" f" values. If you just want to change the default values of {object_type} consider passing" f" them as arguments to `generate` instead of using a custom {object_type}." ) default_list.extend(custom_list) return default_list def greedy_search( self, input_ids: tf.Tensor, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, logits_processor: Optional[TFLogitsProcessorList] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFGreedySearchOutput, tf.Tensor]: r""" Generates sequences for models with a language modeling head using greedy decoding. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific keyword arguments will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFGreedySearchDecoderOnlyOutput`], [`~generation.TFGreedySearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFGreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFGreedySearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import ( ... AutoTokenizer, ... TFAutoModelForCausalLM, ... TFLogitsProcessorList, ... TFMinLengthLogitsProcessor, ... ) >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> model = TFAutoModelForCausalLM.from_pretrained("gpt2") >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id >>> input_prompt = "Today is a beautiful day, and" >>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids >>> # instantiate logits processors >>> logits_processor = TFLogitsProcessorList( ... [ ... TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id), ... ] ... ) >>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ["Today is a beautiful day, and I'm so happy to be here. I'm so happy to"] ```""" # 1. init greedy_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # some models, like XLNet, need more than the last token in the presence of past_key_values needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys()) # 2. init `attentions`, `hidden_states`, and `scores` tuples scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, cur_len = shape_list(input_ids) # initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences` input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0) generated = tf.concat([input_ids, input_ids_padding], axis=-1) finished_sequences = tf.zeros((batch_size,), dtype=tf.bool) # 4. define "xla-compile-able" stop-condition and auto-regressive function # define condition fn def greedy_search_cond_fn(generated, finished_sequences, cur_len, model_kwargs): """state termination condition fn.""" return ~tf.reduce_all(finished_sequences) # define condition fn def greedy_search_body_fn(generated, finished_sequences, cur_len, model_kwargs): """state update fn.""" if model_kwargs.get("past_key_values") is None or needs_full_input: input_ids = generated[:, :cur_len] else: input_ids = tf.expand_dims(generated[:, cur_len - 1], -1) model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs) # forward pass to get next token logits model_outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) next_token_logits = model_outputs.logits[:, -1] # pre-process distribution next_tokens_scores = logits_processor(generated, next_token_logits, cur_len) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: scores.append(next_tokens_scores) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(model_outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.hidden_states) # argmax next_tokens = tf.argmax(next_tokens_scores, axis=-1, output_type=tf.int32) if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32) next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq) next_token_is_eos = tf.math.reduce_any( tf.equal( tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1) ), axis=0, ) finished_sequences = finished_sequences | next_token_is_eos # update `generated` and `cur_len` update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1) generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens) cur_len += 1 # update model_kwargs if use_xla: model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=model_outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=batch_size, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # if we don't cache past_key_values key values we need the whole input if model_kwargs.get("past_key_values", None) is None: # let's throw out `past_key_values` since we don't want `None` tensors model_kwargs.pop("past_key_values", None) return generated, finished_sequences, cur_len, model_kwargs # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` generated, finished_sequences, cur_len, model_kwargs = greedy_search_body_fn( generated, finished_sequences, cur_len, model_kwargs ) # 2-to-n generation steps can then be run in autoregressive fashion # only in case 1st generation step does NOT yield EOS token though maximum_iterations = max_length - cur_len generated, _, cur_len, _ = tf.while_loop( greedy_search_cond_fn, greedy_search_body_fn, (generated, finished_sequences, cur_len, model_kwargs), maximum_iterations=maximum_iterations, ) # 6. prepare outputs if not use_xla: # cut for backward compatibility generated = generated[:, :cur_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights # and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) scores = tuple(scores) if scores is not None else None decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None return TFGreedySearchEncoderDecoderOutput( sequences=generated, scores=scores, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: return TFGreedySearchDecoderOnlyOutput( sequences=generated, scores=scores, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return generated def sample( self, input_ids: tf.Tensor, logits_processor: Optional[TFLogitsProcessorList] = None, logits_warper: Optional[TFLogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, seed: Optional[Tuple[int, int]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFSampleOutput, tf.Tensor]: r""" Generates sequences for models with a language modeling head using multinomial sampling. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. seed (`List[int]`, *optional*): Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the `seed` argument from stateless functions in `tf.random`. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFSampleDecoderOnlyOutput`], [`~generation.TFSampleEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFSampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFSampleEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> import tensorflow as tf >>> from transformers import ( ... AutoTokenizer, ... TFAutoModelForCausalLM, ... TFLogitsProcessorList, ... TFMinLengthLogitsProcessor, ... TFTopKLogitsWarper, ... TFTemperatureLogitsWarper, ... ) >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> model = TFAutoModelForCausalLM.from_pretrained("gpt2") >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id >>> input_prompt = "Today is a beautiful day, and" >>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids >>> # instantiate logits processors >>> logits_processor = TFLogitsProcessorList( ... [ ... TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id), ... ] ... ) >>> # instantiate logits processors >>> logits_warper = TFLogitsProcessorList( ... [ ... TFTopKLogitsWarper(50), ... TFTemperatureLogitsWarper(0.7), ... ] ... ) >>> tf.random.set_seed(0) >>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['Today is a beautiful day, and I love my country. But when I look at Donald Trump,'] ```""" # 1. init greedy_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # some models, like XLNet, need more than the last token in the presence of past_key_values needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys()) # 2. init `attentions`, `hidden_states`, and `scores` tuples scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, cur_len = shape_list(input_ids) # initialize `generated` (pre-populated with `pad_token_id`), `finished_sequences` input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0) generated = tf.concat([input_ids, input_ids_padding], axis=-1) finished_sequences = tf.zeros((batch_size,), dtype=tf.bool) # 4. define "xla-compile-able" stop-condition and auto-regressive function def sample_cond_fn(generated, finished_sequences, cur_len, model_kwargs): return ~tf.reduce_all(finished_sequences) def sample_body_fn(generated, finished_sequences, cur_len, model_kwargs): if model_kwargs.get("past_key_values") is None or needs_full_input: input_ids = generated[:, :cur_len] else: input_ids = tf.expand_dims(generated[:, cur_len - 1], -1) model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs) # forward pass to get next token logits model_outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) next_token_logits = model_outputs.logits[:, -1] # pre-process distribution next_tokens_scores = logits_processor(generated, next_token_logits, cur_len) next_tokens_scores = logits_warper(generated, next_tokens_scores, cur_len) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: scores.append(next_tokens_scores) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(model_outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.hidden_states) # sample if seed is not None: sample_seed = seed else: sample_seed = tf.experimental.numpy.random.randint(tf.int32.min, tf.int32.max, (2,), dtype=tf.int32) next_tokens = tf.squeeze( tf.random.stateless_categorical( logits=next_tokens_scores, num_samples=1, seed=sample_seed, dtype=tf.int32 ), axis=1, ) if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32) next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq) next_token_is_eos = tf.math.reduce_any( tf.equal( tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1) ), axis=0, ) finished_sequences = finished_sequences | next_token_is_eos # update `generated` and `cur_len` update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1) generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens) cur_len += 1 # update model_kwargs if use_xla: model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=model_outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=batch_size, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # if we don't cache past_key_values key values we need the whole input if model_kwargs.get("past_key_values", None) is None: # let's throw out `past_key_values` since we don't want `None` tensors model_kwargs.pop("past_key_values", None) return generated, finished_sequences, cur_len, model_kwargs # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` generated, finished_sequences, cur_len, model_kwargs = sample_body_fn( generated, finished_sequences, cur_len, model_kwargs ) # 2-to-n generation steps can then be run in autoregressive fashion # only in case 1st generation step does NOT yield EOS token though maximum_iterations = max_length - cur_len generated, _, cur_len, _ = tf.while_loop( sample_cond_fn, sample_body_fn, (generated, finished_sequences, cur_len, model_kwargs), maximum_iterations=maximum_iterations, ) # 6. prepare outputs if not use_xla: # cut for backward compatibility generated = generated[:, :cur_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights # and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) scores = tuple(scores) if scores is not None else None decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None return TFSampleEncoderDecoderOutput( sequences=generated, scores=scores, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: return TFSampleDecoderOnlyOutput( sequences=generated, scores=scores, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return generated @staticmethod def _gather_beams(nested, beam_indices, batch_axis=0): """Gathers the beam slices indexed by beam_indices into new beam array.""" def gather_fn(tensor): if batch_axis > 0: # pushes all dimentions before the batch to the end, so we get (batch, beam_id, ...) perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0) tensor = tf.transpose(tensor, perm=perm) gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) if batch_axis > 0: # transposes back to the original dimensions perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0) perm = tf.math.invert_permutation(perm) gathered_tensor = tf.transpose(gathered_tensor, perm=perm) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) def beam_search( self, input_ids: tf.Tensor, do_sample: bool = False, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[Union[bool, str]] = None, logits_processor: Optional[TFLogitsProcessorList] = None, logits_warper: Optional[TFLogitsProcessorList] = None, num_return_sequences: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFBeamSearchOutput, TFBeamSampleOutput, tf.Tensor]: r""" Generates sequences for models with a language modeling head using beam search. If `do_sample` is `False`, uses a greedy approach, otherwise does multinomial sampling without replacement. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. length_penalty (`float`, *optional*, defaults to 1.0): Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences. early_stopping (`bool` or `str`, *optional*, defaults to `False`): Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm). logits_processor (`[TFLogitsProcessorList]`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFBeamSearchDecoderOnlyOutput`], [`~generation.TFBeamSearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFBeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFBeamSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import ( ... AutoTokenizer, ... TFAutoModelForSeq2SeqLM, ... TFLogitsProcessorList, ... TFMinLengthLogitsProcessor, ... ) >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("t5-base") >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> encoder_input_str = "translate English to German: How old are you?" >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="tf").input_ids >>> # lets run beam search using 3 beams >>> num_beams = 3 >>> # define decoder start token ids >>> input_ids = tf.ones((1, num_beams, 1), dtype=tf.int32) >>> input_ids = input_ids * model.generation_config.decoder_start_token_id >>> # add encoder_outputs to model keyword arguments >>> encoder_outputs = model.get_encoder()(encoder_input_ids, return_dict=True) >>> encoder_outputs.last_hidden_state = tf.repeat( ... tf.expand_dims(encoder_outputs.last_hidden_state, axis=0), num_beams, axis=1 ... ) >>> model_kwargs = {"encoder_outputs": encoder_outputs} >>> # instantiate logits processors >>> logits_processor = TFLogitsProcessorList( ... [TFMinLengthLogitsProcessor(5, eos_token_id=model.generation_config.eos_token_id)] ... ) >>> outputs = model.beam_search(input_ids, logits_processor=logits_processor, **model_kwargs) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['Wie alt bist du?'] ```""" def flatten_beam_dim(tensor, batch_axis=0): """Flattens the first two dimensions of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape( tensor, shape[:batch_axis] + [shape[batch_axis] * shape[batch_axis + 1]] + shape[batch_axis + 2 :], ) def unflatten_beam_dim(tensor, num_beams, batch_axis=0): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape(tensor, shape[:batch_axis] + [-1, num_beams] + shape[batch_axis + 1 :]) # 1. init beam_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences ) output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) output_scores = output_scores if output_scores is not None else self.generation_config.output_scores return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # some models, like XLNet, need more than the last token in the presence of past_key_values needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys()) # 2. init `attentions`, `hidden_states`, and `scores` tuples all_scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, num_beams, cur_len = shape_list(input_ids) # store the prompt length of decoder decoder_prompt_len = cur_len # per batch, beam-item holding current token in loop, pre-populated with `pad_token_id` input_ids_padding = tf.ones((batch_size, num_beams, max_length - cur_len), dtype=tf.int32) * ( pad_token_id or 0 ) running_sequences = tf.concat([input_ids, input_ids_padding], axis=-1) sequences = tf.ones((batch_size, num_beams, max_length), dtype=tf.int32) * (pad_token_id or 0) # per batch,beam-item state bit indicating if sentence has finished. is_sent_finished = tf.zeros((batch_size, num_beams), dtype=tf.bool) # per batch, beam-item score, logprobs running_scores = tf.tile( tf.expand_dims(tf.convert_to_tensor([0.0] + [-1.0e9] * (num_beams - 1)), axis=0), [batch_size, 1] ) scores = tf.ones((batch_size, num_beams)) * -1.0e9 # per batch beam indices running_beam_indices = tf.ones((batch_size, num_beams, max_length - decoder_prompt_len), dtype=tf.int32) * -1 beam_indices = tf.ones((batch_size, num_beams, max_length - decoder_prompt_len), dtype=tf.int32) * -1 # flatten beam dim if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = flatten_beam_dim(model_kwargs["attention_mask"]) # 4. define "xla-compile-able" stop-condition and auto-regressive function # define stop-condition and auto-regressive function def beam_search_cond_fn( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ): """ Beam Search termination condition function -- halts the generation loop if any of these conditions becomes False """ # 1. is less than max length? not_max_length_yet = cur_len < max_length # 2. can the new beams still improve? # early_stopping == False -> apply heuristic = always get the best score from `cur_len - decoder_prompt_len`. See the discussion # below for more details. # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565 # early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of # length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there. if early_stopping == "never" and length_penalty > 0.0: best_running_score = running_scores[:, :1] / ((max_length - decoder_prompt_len) ** length_penalty) else: best_running_score = running_scores[:, :1] / ( tf.cast(cur_len - decoder_prompt_len, dtype=tf.float32) ** length_penalty ) worst_finished_score = tf.where( is_sent_finished, tf.math.reduce_min(scores, axis=1, keepdims=True), -1.0e9 ) improvement_still_possible = tf.math.reduce_any(best_running_score > worst_finished_score) # 3. is there still a beam that has not finished? still_open_beam = ~(tf.math.reduce_all(is_sent_finished) & (early_stopping is True)) return not_max_length_yet & still_open_beam & improvement_still_possible def beam_search_body_fn( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ): """ Beam Search iterative update function -- each iteration adds a new token and updates the best sequences seen so far """ # 1. Forward current tokens if model_kwargs.get("past_key_values") is None or needs_full_input: input_ids = running_sequences[:, :, :cur_len] else: input_ids = tf.expand_dims(running_sequences[:, :, cur_len - 1], -1) model_inputs = self.prepare_inputs_for_generation( flatten_beam_dim(input_ids), use_cache=use_cache, **model_kwargs ) model_outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) logits = unflatten_beam_dim(model_outputs.logits[:, -1], num_beams) # 2. Compute log probs # get log probabilities from logits, process logits with processors (*e.g.* min_length, ...), and # add new logprobs to existing running logprobs scores. log_probs = tf.nn.log_softmax(logits) log_probs = logits_processor(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len) log_probs = unflatten_beam_dim(log_probs, num_beams) if do_sample: log_probs = logits_warper(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len) log_probs = unflatten_beam_dim(log_probs, num_beams) log_probs_processed = log_probs log_probs = log_probs + tf.expand_dims(running_scores, axis=2) vocab_size = log_probs.shape[2] log_probs = tf.reshape(log_probs, (batch_size, num_beams * vocab_size)) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: all_scores.append( logits_warper( flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs_processed), cur_len, ) ) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(model_outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.hidden_states) # 3. Retrieve top-K # Each item in batch has num_beams * vocab_size candidate sequences. For each item, get the top 2*k # candidates with the highest log-probabilities. We gather the top 2*K beams here so that even if the # best K sequences reach EOS simultaneously, we have another K sequences remaining to continue the live # beam search. # Gather the top 2*K scores from _all_ beams. # Gather 2*k top beams. # Recover the beam index by floor division. # Recover token id by modulo division and expand Id array for broadcasting. # Update sequences for the 2*K top-k new sequences. beams_to_keep = 2 * num_beams if do_sample: topk_indices = sample_without_replacement(log_probs, beams_to_keep) topk_log_probs = tf.gather(log_probs, topk_indices, axis=1, batch_dims=1) else: topk_log_probs, topk_indices = tf.math.top_k(log_probs, k=beams_to_keep) topk_current_beam_indices = topk_indices // vocab_size topk_running_beam_indices = self._gather_beams(running_beam_indices, topk_current_beam_indices) topk_running_sequences = self._gather_beams(running_sequences, topk_current_beam_indices) topk_ids = topk_indices % vocab_size # writes the new token indices_batch = tf.repeat(tf.range(batch_size), [beams_to_keep]) indices_beam = tf.tile(tf.range(beams_to_keep), [batch_size]) update_indices = tf.stack( [indices_batch, indices_beam, tf.broadcast_to(cur_len, [batch_size * beams_to_keep])], axis=-1 ) topk_sequences = tf.tensor_scatter_nd_update( tensor=topk_running_sequences, indices=update_indices, updates=tf.reshape(topk_ids, [batch_size * beams_to_keep]), ) # we want to store the beam indices with batch information -> real beam index = beam index % num beams batch_modified_indices = topk_current_beam_indices + tf.broadcast_to( tf.expand_dims(tf.range(batch_size) * num_beams, axis=1), topk_current_beam_indices.shape ) update_indices = tf.stack( [ indices_batch, indices_beam, tf.broadcast_to(cur_len - decoder_prompt_len, [batch_size * beams_to_keep]), ], axis=-1, ) topk_beam_indices = tf.tensor_scatter_nd_update( tensor=topk_running_beam_indices, indices=update_indices, updates=tf.reshape(batch_modified_indices, [batch_size * beams_to_keep]), ) # 4. Check which sequences have ended # Update current sequences: Did the top `num_beams` sequences reach an end marker? # To prevent these just finished sequences from being added to the current sequences # set of active beam search sequences, set their log probs to a very large negative value. if eos_token_id is None: eos_in_next_token = tf.zeros(topk_sequences[:, :, cur_len].shape, dtype=tf.bool) else: eos_in_next_token = tf.math.reduce_any( tf.equal( tf.broadcast_to( topk_sequences[:, :, cur_len], [len(eos_token_id)] + topk_sequences[:, :, cur_len].shape, ), tf.expand_dims(tf.expand_dims(eos_token_id, -1), -1), ), axis=0, ) did_topk_just_finished = eos_in_next_token & tf.broadcast_to( tf.concat((tf.ones((num_beams), dtype=tf.bool), tf.zeros((num_beams), dtype=tf.bool)), axis=0), shape_list(eos_in_next_token), ) # non-top `num_beams` eos tokens can't be used to finish a beam, but the others can't be used in the next # running sentences either running_topk_log_probs = topk_log_probs + tf.cast(eos_in_next_token, tf.float32) * -1.0e9 # 5. Get running sequences scores for next # Determine the top k beam indices (from top 2*k beams) from log probs and gather top k beams # (from top 2*k beams). next_topk_indices = tf.math.top_k(running_topk_log_probs, k=num_beams)[1] next_running_sequences, next_running_scores, next_running_beam_indices = self._gather_beams( [topk_sequences, running_topk_log_probs, topk_beam_indices], next_topk_indices ) # 6. Process topk logits # Further process log probs: # - add length penalty # - make sure no scores can be added anymore if beam is full # - make sure still running sequences cannot be chosen as finalized beam topk_log_probs = topk_log_probs / ( tf.cast(cur_len + 1 - decoder_prompt_len, dtype=tf.float32) ** length_penalty ) beams_in_batch_are_full = tf.broadcast_to( tf.math.reduce_all(is_sent_finished, axis=-1, keepdims=True), shape_list(did_topk_just_finished) ) & (early_stopping is True) add_penalty = ~did_topk_just_finished | beams_in_batch_are_full topk_log_probs += tf.cast(add_penalty, tf.float32) * -1.0e9 # 7. Get scores, sequences, is sentence finished for next. # Combine sequences, scores, and flags along the beam dimension and compare new finished sequence scores # to existing finished scores and select the best from the new set of beams merged_sequences = tf.concat([sequences, topk_sequences], axis=1) merged_scores = tf.concat([scores, topk_log_probs], axis=1) merged_beams = tf.concat([beam_indices, topk_beam_indices], axis=1) merged_is_sent_finished = tf.concat([is_sent_finished, did_topk_just_finished], axis=1) topk_merged_indices = tf.math.top_k(merged_scores, k=num_beams)[1] next_sequences, next_scores, next_beam_indices, next_is_sent_finished = self._gather_beams( [merged_sequences, merged_scores, merged_beams, merged_is_sent_finished], topk_merged_indices ) # 8. Prepare data for the next iteration # Determine the top k beam indices from the original set of all beams. With these, gather the top k # beam-associated caches. cur_len = cur_len + 1 if "past_key_values" in model_outputs: cache = tf.nest.map_structure( lambda tensor: unflatten_beam_dim(tensor, num_beams, batch_axis=cache_batch_axis), model_outputs.past_key_values, ) next_running_indices = self._gather_beams(topk_current_beam_indices, next_topk_indices) next_cache = self._gather_beams(cache, next_running_indices, batch_axis=cache_batch_axis) model_outputs["past_key_values"] = tf.nest.map_structure( lambda tensor: flatten_beam_dim(tensor, batch_axis=cache_batch_axis), next_cache ) if use_xla: next_model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=model_outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=(batch_size * num_beams), is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: next_model_kwargs = self._update_model_kwargs_for_generation( model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # if we don't cache past_key_values key values we need the whole input if model_kwargs.get("past_key_values", None) is None: # let's throw out `past_key_values` since we don't want `None` tensors model_kwargs.pop("past_key_values", None) return ( cur_len, next_running_sequences, next_running_scores, next_running_beam_indices, next_sequences, next_scores, next_beam_indices, next_is_sent_finished, decoder_prompt_len, next_model_kwargs, ) # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` (if active) ( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ) = beam_search_body_fn( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ) # 2-to-n generation steps can then be run in autoregressive fashion (only in case 1st generation step does # NOT yield EOS token though) maximum_iterations = max_length - cur_len ( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, _, ) = tf.while_loop( beam_search_cond_fn, beam_search_body_fn, ( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ), maximum_iterations=maximum_iterations, ) # 6. prepare outputs # Account for the edge-case where there are no finished sequences for a particular batch item. If so, return # running sequences for that batch item. none_finished = tf.math.reduce_any(is_sent_finished, axis=1) sequences = tf.where(none_finished[:, None, None], sequences, running_sequences) beam_indices = tf.where(none_finished[:, None, None], beam_indices, running_beam_indices) # Apply the length penalty so that running scores match the finalized scores if they are used running_scores = running_scores / (tf.cast(cur_len - decoder_prompt_len, dtype=tf.float32) ** length_penalty) scores = tf.where(none_finished[:, None], scores, running_scores) # Take best beams for each batch (the score is sorted in descending order) sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :]) scores = flatten_beam_dim(scores[:, :num_return_sequences]) beam_indices = flatten_beam_dim(beam_indices[:, :num_return_sequences, :]) if not use_xla: # Cut for backward compatibility sequences = sequences[:, :cur_len] beam_indices = beam_indices[:, : cur_len - decoder_prompt_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) output_cls = TFBeamSampleEncoderDecoderOutput if do_sample else TFBeamSearchEncoderDecoderOutput return output_cls( sequences=sequences, sequences_scores=scores, scores=all_scores, beam_indices=beam_indices, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: output_cls = TFBeamSampleDecoderOnlyOutput if do_sample else TFBeamSearchDecoderOnlyOutput return output_cls( sequences=sequences, sequences_scores=scores, scores=all_scores, beam_indices=beam_indices, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return sequences def contrastive_search( self, input_ids: tf.Tensor, top_k: Optional[int] = 1, penalty_alpha: Optional[float] = 0, logits_processor: Optional[TFLogitsProcessorList] = None, logits_warper: Optional[TFLogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFContrastiveSearchOutput, tf.Tensor]: r""" Generates sequences of token ids for models with a language modeling head using **contrastive search** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. top_k (`int`, *optional*, defaults to 1): The size of the candidate set that is used to re-rank for contrastive search penalty_alpha (`float`, *optional*, defaults to 0): The degeneration penalty for contrastive search; activate when it is larger than 0 logits_processor (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific keyword arguments will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFContrastiveSearchDecoderOnlyOutput`], [`~generation.TFContrastiveSearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFContrastiveySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFContrastiveSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import AutoTokenizer, TFAutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") >>> model = TFAutoModelForCausalLM.from_pretrained("facebook/opt-125m") >>> # set pad_token_id to eos_token_id because OPT does not have a PAD token >>> model.config.pad_token_id = model.config.eos_token_id >>> input_prompt = "DeepMind Company is" >>> input_ids = tokenizer(input_prompt, return_tensors="tf") >>> outputs = model.contrastive_search(**input_ids, penalty_alpha=0.6, top_k=4, max_length=64) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it'] ```""" def gather_best_candidate(nested, selected_idx_stacked, batch_axis=0): """Gathers the slices indexed by selected_idx_stacked from a potentially nested structure of tensors.""" def gather_fn(tensor): gathered_tensor = tf.gather(params=tensor, indices=selected_idx_stacked, axis=batch_axis) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) # 1. init greedy_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) use_cache = True # In contrastive search, we always use cache model_kwargs.pop("use_cache", None) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # 2. init `attentions`, `hidden_states`, and `scores` tuples scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, cur_len = shape_list(input_ids) # initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences` input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0) generated = tf.concat([input_ids, input_ids_padding], axis=-1) finished_sequences = tf.zeros((batch_size,), dtype=tf.bool) # 4. define "xla-compile-able" stop-condition and auto-regressive function # define condition fn def contrastive_search_cond_fn( generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables ): """state termination condition fn.""" return ~tf.reduce_all(finished_sequences) # define condition fn def contrastive_search_body_fn( generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables ): """state update fn.""" # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values; # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step if model_kwargs.get("past_key_values") is None: # prepare inputs model_inputs = self.prepare_inputs_for_generation( generated[:, :cur_len], use_cache=use_cache, **model_kwargs ) # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save # the `encoder_outputs` outputs = self( **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions ) # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with # previous tokens) if self.config.is_encoder_decoder: last_hidden_states = outputs.decoder_hidden_states[-1] else: last_hidden_states = outputs.hidden_states[-1] # XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across # iterations (with fixed shapes) if use_xla: last_hidden_states = tf.pad(last_hidden_states, [[0, 0], [0, max_length - cur_len], [0, 0]]) # next logit for contrastive search to select top-k candidate tokens logit_for_next_step = outputs.logits[:, -1, :] if use_xla: model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=batch_size, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # Expands model inputs top_k times, for batched forward passes (akin to beam search). _, model_kwargs = self._expand_inputs_for_generation( expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs ) past_key_values = model_kwargs.get("past_key_values") if past_key_values is None: raise ValueError( f"{self.__class__.__name__} does not support caching and therefore **can't** be used " "for contrastive search." ) elif ( not isinstance(past_key_values[0], (tuple, tf.Tensor)) or past_key_values[0][0].shape[0] != batch_size ): raise ValueError( f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be " "used for contrastive search without further modifications." ) else: logit_for_next_step = next_step_cached_variables["logit_for_next_step"] last_hidden_states = next_step_cached_variables["last_hidden_states"] outputs = next_step_cached_variables["outputs"] # contrastive_search main logic start: # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by # degeneration penalty logit_for_next_step = logits_processor(generated, logit_for_next_step, cur_len) logit_for_next_step = logits_warper(generated, logit_for_next_step, cur_len) next_probs = stable_softmax(logit_for_next_step, axis=-1) top_k_probs, top_k_ids = tf.math.top_k(next_probs, k=top_k) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: scores.append(logit_for_next_step) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(outputs.hidden_states) # Replicates the new past_key_values to match the `top_k` candidates model_kwargs["past_key_values"] = tf.nest.map_structure( lambda tensor: tf.repeat(tensor, top_k, axis=cache_batch_axis), model_kwargs["past_key_values"] ) # compute the candidate tokens by the language model and collects their hidden_states next_model_inputs = self.prepare_inputs_for_generation( tf.reshape(top_k_ids, [-1, 1]), use_cache=use_cache, **model_kwargs ) outputs = self( **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions ) next_past_key_values = self._extract_past_from_model_output(outputs) logits = outputs.logits[:, -1, :] # name is different for encoder-decoder and decoder-only models if self.config.is_encoder_decoder: next_hidden = outputs.decoder_hidden_states[-1] full_hidden_states = outputs.decoder_hidden_states else: next_hidden = outputs.hidden_states[-1] full_hidden_states = outputs.hidden_states context_hidden = tf.repeat(last_hidden_states[:, :cur_len, :], top_k, axis=0) # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the # model confidence selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k) # converts indices to a dimension of top_k to the stacked top_k * batch_size dimension, for indexing # without a need to reshape on tensors that have these two dimensions stacked selected_idx_stacked = selected_idx + tf.range(selected_idx.shape[0], dtype=tf.int64) * top_k # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores # (model confidence minus degeneration penalty); (6) decoder hidden_states next_tokens = tf.gather(top_k_ids, selected_idx, axis=1, batch_dims=1) next_hidden = gather_best_candidate(next_hidden, selected_idx_stacked) # XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across # iterations (with fixed shapes) if use_xla: last_hidden_states = dynamic_update_slice(last_hidden_states, next_hidden, [0, cur_len, 0]) else: last_hidden_states = tf.concat([last_hidden_states, next_hidden], axis=1) next_decoder_hidden_states = gather_best_candidate(full_hidden_states, selected_idx_stacked) next_past_key_values = gather_best_candidate( next_past_key_values, selected_idx_stacked, batch_axis=cache_batch_axis ) logit_for_next_step = gather_best_candidate(logits, selected_idx_stacked) # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration if self.config.is_encoder_decoder: next_step_cross_attentions = () next_step_decoder_attentions = () if output_attentions: next_step_cross_attentions = gather_best_candidate(outputs.cross_attentions, selected_idx_stacked) next_step_decoder_attentions = gather_best_candidate( outputs.decoder_attentions, selected_idx_stacked ) outputs = TFSeq2SeqLMOutput( past_key_values=next_past_key_values, decoder_hidden_states=next_decoder_hidden_states, decoder_attentions=next_step_decoder_attentions or None, cross_attentions=next_step_cross_attentions or None, ) else: next_step_attentions = () if output_attentions: next_step_attentions = gather_best_candidate(outputs.attentions, selected_idx_stacked) outputs = TFCausalLMOutputWithPast( past_key_values=next_past_key_values, hidden_states=next_decoder_hidden_states, attentions=next_step_attentions or None, ) # contrastive_search main logic end if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32) next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq) next_token_is_eos = tf.math.reduce_any( tf.equal( tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1) ), axis=0, ) finished_sequences = finished_sequences | next_token_is_eos # update `generated` and `cur_len` update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1) generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens) cur_len += 1 if use_xla: # NOTE: 1) relative to other generation strategies, contrastive search is always running forward # passes one step ahead -- hence the `cur_len=cur_len + 1`; 2) the attention mask here is expanded from # [batch_size, ...] to [batch_size*top_k, ...] -- hence the `batch_size=batch_size * top_k` model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=outputs, model_kwargs=model_kwargs, cur_len=cur_len + 1, max_length=max_length, batch_size=batch_size * top_k, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) next_step_cached_variables = { "logit_for_next_step": logit_for_next_step, "last_hidden_states": last_hidden_states, "outputs": outputs, } return generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables = contrastive_search_body_fn( generated, finished_sequences, cur_len, model_kwargs, None ) # 2-to-n generation steps can then be run in autoregressive fashion # only in case 1st generation step does NOT yield EOS token though maximum_iterations = max_length - cur_len generated, _, cur_len, _, _ = tf.while_loop( contrastive_search_cond_fn, contrastive_search_body_fn, (generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables), maximum_iterations=maximum_iterations, ) # 6. prepare outputs if not use_xla: # cut for backward compatibility generated = generated[:, :cur_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights # and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) scores = tuple(scores) if scores is not None else None decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None return TFContrastiveSearchEncoderDecoderOutput( sequences=generated, scores=scores, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: return TFContrastiveSearchDecoderOnlyOutput( sequences=generated, scores=scores, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return generated def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) top_k (`int`, *optional*, defaults to 0): If > 0, only keep the top k tokens with highest probability (top-k filtering) top_p (`float`, *optional*, defaults to 1.0): If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimumber of tokens we keep per batch example in the output. From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ warnings.warn( "`tf_top_k_top_p_filtering` is scheduled for deletion in v4.39. Use `TFTopKLogitsWarper` and " "`TFTopPLogitsWarper` instead.", DeprecationWarning, ) logits_shape = shape_list(logits) if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None] logits = tf.where(indices_to_remove, filter_value, logits) if top_p < 1.0: sorted_indices = tf.argsort(logits, direction="DESCENDING") sorted_logits = tf.gather( logits, sorted_indices, axis=-1, batch_dims=1 ) # expects logits to be of dim (batch_size, vocab_size) cumulative_probs = tf.math.cumsum(stable_softmax(sorted_logits, axis=-1), axis=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove = tf.concat( [ tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]), sorted_indices_to_remove[:, min_tokens_to_keep:], ], -1, ) # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove = tf.concat( [tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, :-1]], -1, ) # scatter sorted tensors to original indexing indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices) logits = tf.where(indices_to_remove, filter_value, logits) return logits def scatter_values_on_batch_indices(values, batch_indices): shape = shape_list(batch_indices) # broadcast batch dim to shape broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1]) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape) def sample_without_replacement(logits, num_samples): """ categorical sampling without replacement is currently not implemented the gumbel-max trick will do for now see https://github.com/tensorflow/tensorflow/issues/9260 for more info """ z = -tf.math.log(-tf.math.log(tf.random.uniform(shape_list(logits), 0, 1))) _, indices = tf.nn.top_k(logits + z, num_samples) return indices def _ranking_fast( context_hidden: tf.Tensor, next_hidden: tf.Tensor, next_top_k_probs: tf.Tensor, alpha: float, beam_width: int, ) -> tf.Tensor: """ Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each row in the batch. """ norm_context_hidden = context_hidden / tf.norm(context_hidden, axis=2, keepdims=True) norm_next_hidden = next_hidden / tf.norm(next_hidden, axis=2, keepdims=True) cosine_matrix = tf.squeeze(tf.linalg.matmul(norm_context_hidden, norm_next_hidden, transpose_b=True), axis=-1) degeneration_penalty = tf.reduce_max(cosine_matrix, axis=-1) next_top_k_probs = tf.reshape(next_top_k_probs, shape=[-1]) contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty contrastive_score = tf.reshape(contrastive_score, shape=[-1, beam_width]) selected_idx = tf.argmax(contrastive_score, axis=1) return selected_idx
transformers/src/transformers/generation/tf_utils.py/0
{ "file_path": "transformers/src/transformers/generation/tf_utils.py", "repo_id": "transformers", "token_count": 77771 }
273
import logging import os from pathlib import Path from time import sleep from typing import Callable, List, Optional, Union import numpy as np import tensorflow as tf from huggingface_hub import Repository, create_repo from packaging.version import parse from . import IntervalStrategy, PreTrainedTokenizerBase from .modelcard import TrainingSummary from .modeling_tf_utils import keras logger = logging.getLogger(__name__) class KerasMetricCallback(keras.callbacks.Callback): """ Callback to compute metrics at the end of every epoch. Unlike normal Keras metrics, these do not need to be compilable by TF. It is particularly useful for common NLP metrics like BLEU and ROUGE that require string operations or generation loops that cannot be compiled. Predictions (or generations) will be computed on the `eval_dataset` before being passed to the `metric_fn` in `np.ndarray` format. The `metric_fn` should compute metrics and return a dict mapping metric names to metric values. We provide an example of a suitable metric_fn that computes ROUGE scores for a summarization model below. Note that this example skips some post-processing for readability and simplicity, and should probably not be used as-is! ```py from datasets import load_metric rouge_metric = load_metric("rouge") def rouge_fn(predictions, labels): decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) result = rouge_metric.compute(predictions=decoded_predictions, references=decoded_labels) return {key: value.mid.fmeasure * 100 for key, value in result.items()} ``` The above function will return a dict containing values which will be logged like any other Keras metric: ``` {'rouge1': 37.4199, 'rouge2': 13.9768, 'rougeL': 34.361, 'rougeLsum': 35.0781 ``` Args: metric_fn (`Callable`): Metric function provided by the user. It will be called with two arguments - `predictions` and `labels`. These contain the model's outputs and matching labels from the dataset. It should return a dict mapping metric names to numerical values. eval_dataset (`tf.data.Dataset` or `dict` or `tuple` or `np.ndarray` or `tf.Tensor`): Validation data to be used to generate predictions for the `metric_fn`. output_cols (`List[str], *optional*): A list of columns to be retained from the model output as the predictions. Defaults to all. label_cols ('`List[str]`, *optional*'): A list of columns to be retained from the input dataset as the labels. Will be autodetected if this is not supplied. batch_size (`int`, *optional*): Batch size. Only used when the data is not a pre-batched `tf.data.Dataset`. predict_with_generate (`bool`, *optional*, defaults to `False`): Whether we should use `model.generate()` to get outputs for the model. use_xla_generation (`bool`, *optional*, defaults to `False`): If we're generating, whether to compile model generation with XLA. This can massively increase the speed of generation (up to 100X speedup) but will require a new XLA compilation for each input shape. When using XLA generation, it's a good idea to pad your inputs to the same size, or to use the `pad_to_multiple_of` argument in your `tokenizer` or `DataCollator`, which will reduce the number of unique input shapes and save a lot of compilation time. This option has no effect is `predict_with_generate` is `False`. generate_kwargs (`dict`, *optional*): Keyword arguments to pass to `model.generate()` when generating. Has no effect if `predict_with_generate` is `False`. """ def __init__( self, metric_fn: Callable, eval_dataset: Union[tf.data.Dataset, np.ndarray, tf.Tensor, tuple, dict], output_cols: Optional[List[str]] = None, label_cols: Optional[List[str]] = None, batch_size: Optional[int] = None, predict_with_generate: bool = False, use_xla_generation: bool = False, generate_kwargs: Optional[dict] = None, ): super().__init__() self.metric_fn = metric_fn self.batch_size = batch_size if not isinstance(eval_dataset, tf.data.Dataset): if batch_size is None: raise ValueError( "When passing data to KerasMetricCallback that is not a pre-batched tf.data.Dataset " "the batch_size argument must be set." ) # Wrap a tf.data.Dataset around it eval_dataset = tf.data.Dataset.from_tensor_slices(eval_dataset).batch(batch_size, drop_remainder=False) self.eval_dataset = eval_dataset self.predict_with_generate = predict_with_generate self.output_cols = output_cols # This next block attempts to parse out which elements of the dataset should be appended to the labels list # that is passed to the metric_fn if isinstance(eval_dataset.element_spec, tuple) and len(eval_dataset.element_spec) == 2: input_spec, label_spec = eval_dataset.element_spec else: input_spec = eval_dataset.element_spec label_spec = None if label_cols is not None: for label in label_cols: if label not in input_spec: raise ValueError(f"Label {label} is in label_cols but could not be found in the dataset inputs!") self.label_cols = label_cols self.use_keras_label = False elif label_spec is not None: # If the dataset inputs are split into a 2-tuple of inputs and labels, # assume the second element is the labels self.label_cols = None self.use_keras_label = True elif "labels" in input_spec: self.label_cols = ["labels"] self.use_keras_label = False logging.warning("No label_cols specified for KerasMetricCallback, assuming you want the 'labels' key.") elif "start_positions" in input_spec and "end_positions" in input_spec: self.label_cols = ["start_positions", "end_positions"] self.use_keras_label = False logging.warning( "No label_cols specified for KerasMetricCallback, assuming you want the " "start_positions and end_positions keys." ) else: raise ValueError("Could not autodetect label_cols for KerasMetricCallback, please specify them!") if parse(tf.__version__) < parse("2.7"): logging.warning("TF versions less than 2.7 may encounter issues with KerasMetricCallback!") self.use_xla_generation = use_xla_generation self.generate_kwargs = {} if generate_kwargs is None else generate_kwargs self.generation_function = None @staticmethod def _concatenate_batches(batches, padding_index=-100): # If all batches are unidimensional or same length, do a simple concatenation if batches[0].ndim == 1 or all(batch.shape[1] == batches[0].shape[1] for batch in batches): return np.concatenate(batches, axis=0) # Welp, they're not the same length. Let's do some padding max_len = max([batch.shape[1] for batch in batches]) num_samples = sum([batch.shape[0] for batch in batches]) output = np.full_like( batches[0], fill_value=padding_index, shape=[num_samples, max_len] + list(batches[0].shape[2:]) ) # i keeps track of which part of the concatenated array we're writing the next batch to i = 0 for batch in batches: output[i : i + len(batch), : batch.shape[1]] = batch i += len(batch) return output def _postprocess_predictions_or_labels(self, inputs): if isinstance(inputs[0], dict): outputs = {} for key in inputs[0].keys(): outputs[key] = self._concatenate_batches([batch[key] for batch in inputs]) # If it's a dict with only one key, just return the array if len(outputs) == 1: outputs = list(outputs.values())[0] elif isinstance(inputs[0], list) or isinstance(inputs[0], tuple): outputs = [] for input_list in zip(*inputs): outputs.append(self._concatenate_batches(input_list)) if len(outputs) == 1: outputs = outputs[0] # If it's a list with only one element, just return the array elif isinstance(inputs[0], np.ndarray): outputs = self._concatenate_batches(inputs) elif isinstance(inputs[0], tf.Tensor): outputs = self._concatenate_batches([tensor.numpy() for tensor in inputs]) else: raise TypeError(f"Couldn't handle batch of type {type(inputs[0])}!") return outputs def on_epoch_end(self, epoch, logs=None): if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] main_input_name = None if self.predict_with_generate: # This dense conditional recognizes the case where we have an encoder-decoder model, but # avoids getting tangled up when we just have a model with a layer called 'encoder' if hasattr(self.model, "encoder") and hasattr(self.model.encoder, "main_input_name"): main_input_name = self.model.encoder.main_input_name else: main_input_name = getattr(self.model, "main_input_name", "input_ids") if self.use_xla_generation and self.generation_function is None: def generation_function(inputs, attention_mask): return self.model.generate(inputs, attention_mask=attention_mask, **self.generate_kwargs) self.generation_function = tf.function(generation_function, jit_compile=True) prediction_list = [] label_list = [] # The whole predict/generate loop is handled inside this method for batch in self.eval_dataset: if isinstance(batch, tuple): batch, labels = batch else: labels = None if self.predict_with_generate: if isinstance(batch, dict): generation_inputs = batch[main_input_name] attention_mask = batch.get("attention_mask", None) else: generation_inputs = batch attention_mask = None if self.use_xla_generation: predictions = self.generation_function(generation_inputs, attention_mask=attention_mask) else: predictions = self.model.generate( generation_inputs, attention_mask=attention_mask, **self.generate_kwargs ) else: predictions = self.model.predict_on_batch(batch) if isinstance(predictions, dict): # This converts any dict-subclass to a regular dict # Keras REALLY doesn't like it when we pass around a BatchEncoding or other derived class predictions = dict(predictions) if self.output_cols is not None: predictions = {key: predictions[key] for key in self.output_cols} else: predictions = { key: val for key, val in predictions.items() if key not in ignore_keys + ["loss"] } prediction_list.append(predictions) if not self.use_keras_label: labels = {key: batch[key].numpy() for key in self.label_cols} elif isinstance(labels, dict): labels = {key: array.numpy() for key, array in labels.items()} elif isinstance(labels, list) or isinstance(labels, tuple): labels = [array.numpy() for array in labels] elif isinstance(labels, tf.Tensor): labels = labels.numpy() else: raise TypeError(f"Confused by labels of type {type(labels)}") label_list.append(labels) all_preds = self._postprocess_predictions_or_labels(prediction_list) all_labels = self._postprocess_predictions_or_labels(label_list) metric_output = self.metric_fn((all_preds, all_labels)) if not isinstance(metric_output, dict): raise TypeError( f"metric_fn should return a dict mapping metric names to values but instead returned {metric_output}" ) # This is the critical bit - Keras passes a dict containing the loss and standard metric values for this epoch # in the logs argument. Ordinarily, this is so the callback can read them, but in this case we write a bunch of # new keys in there, which will then get read by the History callback and treated like any other metric value. # I promise that I have it in writing from Chollet that this is okay. logs.update(metric_output) class PushToHubCallback(keras.callbacks.Callback): """ Callback that will save and push the model to the Hub regularly. By default, it pushes once per epoch, but this can be changed with the `save_strategy` argument. Pushed models can be accessed like any other model on the hub, such as with the `from_pretrained` method. ```py from transformers.keras_callbacks import PushToHubCallback push_to_hub_callback = PushToHubCallback( output_dir="./model_save", tokenizer=tokenizer, hub_model_id="gpt5-7xlarge", ) model.fit(train_dataset, callbacks=[push_to_hub_callback]) ``` Args: output_dir (`str`): The output directory where the model predictions and checkpoints will be written and synced with the repository on the Hub. save_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"epoch"`): The checkpoint save strategy to adopt during training. Possible values are: - `"no"`: Save is done at the end of training. - `"epoch"`: Save is done at the end of each epoch. - `"steps"`: Save is done every `save_steps` save_steps (`int`, *optional*): The number of steps between saves when using the "steps" `save_strategy`. tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used by the model. If supplied, will be uploaded to the repo alongside the weights. hub_model_id (`str`, *optional*): The name of the repository to keep in sync with the local `output_dir`. It can be a simple model ID in which case the model will be pushed in your namespace. Otherwise it should be the whole repository name, for instance `"user_name/model"`, which allows you to push to an organization you are a member of with `"organization_name/model"`. Will default to the name of `output_dir`. hub_token (`str`, *optional*): The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with `huggingface-cli login`. checkpoint (`bool`, *optional*, defaults to `False`): Whether to save full training checkpoints (including epoch and optimizer state) to allow training to be resumed. Only usable when `save_strategy` is `"epoch"`. """ def __init__( self, output_dir: Union[str, Path], save_strategy: Union[str, IntervalStrategy] = "epoch", save_steps: Optional[int] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, hub_model_id: Optional[str] = None, hub_token: Optional[str] = None, checkpoint: bool = False, **model_card_args, ): super().__init__() if checkpoint and save_strategy != "epoch": raise ValueError("Cannot save checkpoints when save_strategy is not 'epoch'!") if isinstance(save_strategy, str): save_strategy = IntervalStrategy(save_strategy.lower()) self.save_strategy = save_strategy if self.save_strategy == IntervalStrategy.STEPS and (not isinstance(save_steps, int) or save_steps <= 0): raise ValueError("Please supply a positive integer argument for save_steps when save_strategy == 'steps'!") self.save_steps = save_steps output_dir = Path(output_dir) # Create repo and retrieve repo_id if hub_model_id is None: hub_model_id = output_dir.absolute().name self.hub_model_id = create_repo(repo_id=hub_model_id, exist_ok=True, token=hub_token).repo_id self.output_dir = output_dir self.repo = Repository(str(self.output_dir), clone_from=self.hub_model_id, token=hub_token) self.tokenizer = tokenizer self.last_job = None self.checkpoint = checkpoint self.training_history = None self.model_card_args = model_card_args def on_train_begin(self, logs=None): # Although we can access model.history, we have no guarantees that the History callback will fire before this # one, so we keep track of it here too self.training_history = [] def on_train_batch_end(self, batch, logs=None): if self.save_strategy == IntervalStrategy.STEPS and (batch + 1) % self.save_steps == 0: if self.last_job is not None and not self.last_job.is_done: return # The last upload is still running, don't start another self.model.save_pretrained(self.output_dir) if self.tokenizer is not None: self.tokenizer.save_pretrained(self.output_dir) _, self.last_job = self.repo.push_to_hub( commit_message=f"Training in progress steps {batch}", blocking=False ) def on_epoch_end(self, epoch, logs=None): logs = logs.copy() # Don't accidentally write things that Keras will read later if "epoch" not in logs: logs["epoch"] = epoch self.training_history.append(logs) if self.save_strategy == IntervalStrategy.EPOCH: if self.last_job is not None and not self.last_job.is_done: return # The last upload is still running, don't start another self.model.save_pretrained(self.output_dir) if self.tokenizer is not None: self.tokenizer.save_pretrained(self.output_dir) if self.checkpoint: checkpoint_dir = os.path.join(self.output_dir, "checkpoint") self.model._save_checkpoint(checkpoint_dir, epoch) train_summary = TrainingSummary.from_keras( model=self.model, model_name=self.hub_model_id, keras_history=self.training_history, **self.model_card_args, ) model_card = train_summary.to_model_card() with (self.output_dir / "README.md").open("w") as f: f.write(model_card) _, self.last_job = self.repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False ) def on_train_end(self, logs=None): # Makes sure the latest version of the model is uploaded if self.last_job is not None and not self.last_job.is_done: logging.info("Pushing the last epoch to the Hub, this may take a while...") while not self.last_job.is_done: sleep(1) else: self.model.save_pretrained(self.output_dir) if self.tokenizer is not None: self.tokenizer.save_pretrained(self.output_dir) train_summary = TrainingSummary.from_keras( model=self.model, model_name=self.hub_model_id, keras_history=self.training_history, **self.model_card_args, ) model_card = train_summary.to_model_card() with (self.output_dir / "README.md").open("w") as f: f.write(model_card) self.repo.push_to_hub(commit_message="End of training", blocking=True)
transformers/src/transformers/keras_callbacks.py/0
{ "file_path": "transformers/src/transformers/keras_callbacks.py", "repo_id": "transformers", "token_count": 8732 }
274
#include <torch/extension.h> #include "ATen/ATen.h" typedef at::BFloat16 bf16; void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y); void cuda_forward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y); void cuda_forward_with_state(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *s); void cuda_forward_with_state_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, float *s); void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv); void cuda_backward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv); void forward(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) { const int B = k.size(0); const int T = k.size(1); const int C = k.size(2); cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>()); } void forward_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) { const int B = k.size(0); const int T = k.size(1); const int C = k.size(2); cuda_forward_bf16(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>()); } void forward_with_state(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &s) { const int B = k.size(0); const int T = k.size(1); const int C = k.size(2); cuda_forward_with_state(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), s.data_ptr<float>()); } void forward_with_state_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &s) { const int B = k.size(0); const int T = k.size(1); const int C = k.size(2); cuda_forward_with_state_bf16(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(), s.data_ptr<float>()); } void backward(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) { const int B = k.size(0); const int T = k.size(1); const int C = k.size(2); cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>()); } void backward_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) { const int B = k.size(0); const int T = k.size(1); const int C = k.size(2); cuda_backward_bf16(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(), gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>()); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &forward, "wkv forward"); m.def("forward_bf16", &forward_bf16, "wkv forward bf16"); m.def("forward_with_state", &forward_with_state, "wkv forward with state"); m.def("forward_with_state_bf16", &forward_with_state_bf16, "wkv forward with state bf16"); m.def("backward", &backward, "wkv backward"); m.def("backward_bf16", &backward_bf16, "wkv backward bf16"); } TORCH_LIBRARY(wkv, m) { m.def("forward", forward); m.def("forward_bf16", forward_bf16); m.def("forward_with_state", forward_with_state); m.def("forward_with_state_bf16", forward_with_state_bf16); m.def("backward", backward); m.def("backward_bf16", backward_bf16); }
transformers/src/transformers/kernels/rwkv/wkv_op.cpp/0
{ "file_path": "transformers/src/transformers/kernels/rwkv/wkv_op.cpp", "repo_id": "transformers", "token_count": 1807 }
275
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch - TF 2.0 general utilities.""" import os import re import numpy from .utils import ExplicitEnum, expand_dims, is_numpy_array, is_torch_tensor, logging, reshape, squeeze, tensor_size from .utils import transpose as transpose_func logger = logging.get_logger(__name__) class TransposeType(ExplicitEnum): """ Possible ... """ NO = "no" SIMPLE = "simple" CONV1D = "conv1d" CONV2D = "conv2d" def convert_tf_weight_name_to_pt_weight_name( tf_name, start_prefix_to_remove="", tf_weight_shape=None, name_scope=None ): """ Convert a TF 2.0 model variable name in a pytorch model weight name. Conventions for TF2.0 scopes -> PyTorch attribute names conversions: - '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) - '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) return tuple with: - pytorch model weight name - transpose: `TransposeType` member indicating whether and how TF2.0 and PyTorch weights matrices should be transposed with regards to each other """ if name_scope is not None: if not tf_name.startswith(name_scope) and "final_logits_bias" not in tf_name: raise ValueError( f"Weight name {tf_name} does not start with name_scope {name_scope}. This is an internal error " "in Transformers, so (unless you were doing something really evil) please open an issue to report it!" ) tf_name = tf_name[len(name_scope) :] tf_name = tf_name.lstrip("/") tf_name = tf_name.replace(":0", "") # device ids tf_name = re.sub( r"/[^/]*___([^/]*)/", r"/\1/", tf_name ) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) tf_name = tf_name.replace( "_._", "/" ) # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) tf_name = re.sub(r"//+", "/", tf_name) # Remove empty levels at the end tf_name = tf_name.split("/") # Convert from TF2.0 '/' separators to PyTorch '.' separators # Some weights have a single name without "/" such as final_logits_bias in BART if len(tf_name) > 1: tf_name = tf_name[1:] # Remove level zero tf_weight_shape = list(tf_weight_shape) # When should we transpose the weights if tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 4: transpose = TransposeType.CONV2D elif tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 3: transpose = TransposeType.CONV1D elif bool( tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"] or "emb_projs" in tf_name or "out_projs" in tf_name ): transpose = TransposeType.SIMPLE else: transpose = TransposeType.NO # Convert standard TF2.0 names in PyTorch names if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma": tf_name[-1] = "weight" if tf_name[-1] == "beta": tf_name[-1] = "bias" # The SeparableConv1D TF layer contains two weights that are translated to PyTorch Conv1D here if tf_name[-1] == "pointwise_kernel" or tf_name[-1] == "depthwise_kernel": tf_name[-1] = tf_name[-1].replace("_kernel", ".weight") # Remove prefix if needed tf_name = ".".join(tf_name) if start_prefix_to_remove: tf_name = tf_name.replace(start_prefix_to_remove, "", 1) return tf_name, transpose def apply_transpose(transpose: TransposeType, weight, match_shape=None, pt_to_tf=True): """ Apply a transpose to some weight then tries to reshape the weight to the same shape as a given shape, all in a framework agnostic way. """ if transpose is TransposeType.CONV2D: # Conv2D weight: # PT: (num_out_channel, num_in_channel, kernel[0], kernel[1]) # -> TF: (kernel[0], kernel[1], num_in_channel, num_out_channel) axes = (2, 3, 1, 0) if pt_to_tf else (3, 2, 0, 1) weight = transpose_func(weight, axes=axes) elif transpose is TransposeType.CONV1D: # Conv1D weight: # PT: (num_out_channel, num_in_channel, kernel) # -> TF: (kernel, num_in_channel, num_out_channel) weight = transpose_func(weight, axes=(2, 1, 0)) elif transpose is TransposeType.SIMPLE: weight = transpose_func(weight) if match_shape is None: return weight if len(match_shape) < len(weight.shape): weight = squeeze(weight) elif len(match_shape) > len(weight.shape): weight = expand_dims(weight, axis=0) if list(match_shape) != list(weight.shape): try: weight = reshape(weight, match_shape) except AssertionError as e: e.args += (match_shape, match_shape) raise e return weight ##################### # PyTorch => TF 2.0 # ##################### def load_pytorch_checkpoint_in_tf2_model( tf_model, pytorch_checkpoint_path, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ): """Load pytorch checkpoints in a TF 2.0 model""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 from safetensors.torch import load_file as safe_load_file # noqa: F401 from .pytorch_utils import is_torch_greater_or_equal_than_1_13 # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise # Treats a single file as a collection of shards with 1 shard. if isinstance(pytorch_checkpoint_path, str): pytorch_checkpoint_path = [pytorch_checkpoint_path] # Loads all shards into a single state dictionary pt_state_dict = {} for path in pytorch_checkpoint_path: pt_path = os.path.abspath(path) logger.info(f"Loading PyTorch weights from {pt_path}") if pt_path.endswith(".safetensors"): state_dict = safe_load_file(pt_path) else: weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg) pt_state_dict.update(state_dict) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters") return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info, _prefix=_prefix, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ) def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False): """Load pytorch checkpoints in a TF 2.0 model""" pt_state_dict = pt_model.state_dict() return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ): """Load pytorch state_dict in a TF 2.0 model.""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} return load_pytorch_state_dict_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info, _prefix=_prefix, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ) def load_pytorch_state_dict_in_tf2_model( tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ignore_mismatched_sizes=False, ): """Load a pytorch state_dict in a TF 2.0 model. pt_state_dict can be either an actual dict or a lazy-loading safetensors archive created with the safe_open() function.""" import tensorflow as tf if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if _prefix is None: _prefix = "" if tf_inputs: with tf.name_scope(_prefix): tf_model(tf_inputs, training=False) # Make sure model is built # Convert old format to new format if needed from a PyTorch state_dict tf_keys_to_pt_keys = {} for key in pt_state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if "running_var" in key: new_key = key.replace("running_var", "moving_variance") if "running_mean" in key: new_key = key.replace("running_mean", "moving_mean") # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 key_components = key.split(".") name = None if key_components[-3::2] == ["parametrizations", "original0"]: name = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: name = key_components[-2] + "_v" if name is not None: key_components = key_components[:-3] + [name] new_key = ".".join(key_components) if new_key is None: new_key = key tf_keys_to_pt_keys[new_key] = key # Matt: All TF models store the actual model stem in a MainLayer class, including the base model. # In PT, the derived models (with heads) use the base model class as the stem instead, # and there is no MainLayer class. This means that TF base classes have one # extra layer in their weight names, corresponding to the MainLayer class. This code block compensates for that. start_prefix_to_remove = "" if not any(s.startswith(tf_model.base_model_prefix) for s in tf_keys_to_pt_keys.keys()): start_prefix_to_remove = tf_model.base_model_prefix + "." symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights tf_loaded_numel = 0 all_pytorch_weights = set(tf_keys_to_pt_keys.keys()) missing_keys = [] mismatched_keys = [] is_safetensor_archive = hasattr(pt_state_dict, "get_tensor") for symbolic_weight in symbolic_weights: sw_name = symbolic_weight.name name, transpose = convert_tf_weight_name_to_pt_weight_name( sw_name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=symbolic_weight.shape, name_scope=_prefix, ) if tf_to_pt_weight_rename is not None: aliases = tf_to_pt_weight_rename(name) # Is a tuple to account for possible name aliasing for alias in aliases: # The aliases are in priority order, take the first one that matches if alias in tf_keys_to_pt_keys: name = alias break else: # If none of the aliases match, just use the first one (it'll be reported as missing) name = aliases[0] # Find associated numpy array in pytorch model state dict if name not in tf_keys_to_pt_keys: if allow_missing_keys: missing_keys.append(name) continue elif tf_model._keys_to_ignore_on_load_missing is not None: # authorized missing keys don't have to be loaded if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing): continue raise AttributeError(f"{name} not found in PyTorch model") state_dict_name = tf_keys_to_pt_keys[name] if is_safetensor_archive: array = pt_state_dict.get_tensor(state_dict_name) else: array = pt_state_dict[state_dict_name] try: array = apply_transpose(transpose, array, symbolic_weight.shape) except tf.errors.InvalidArgumentError as e: if not ignore_mismatched_sizes: error_msg = str(e) error_msg += ( "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." ) raise tf.errors.InvalidArgumentError(error_msg) else: mismatched_keys.append((name, array.shape, symbolic_weight.shape)) continue tf_loaded_numel += tensor_size(array) symbolic_weight.assign(tf.cast(array, symbolic_weight.dtype)) del array # Immediately free memory to keep peak usage as low as possible all_pytorch_weights.discard(name) logger.info(f"Loaded {tf_loaded_numel:,} parameters in the TF 2.0 model.") unexpected_keys = list(all_pytorch_weights) if tf_model._keys_to_ignore_on_load_missing is not None: for pat in tf_model._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if tf_model._keys_to_ignore_on_load_unexpected is not None: for pat in tf_model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( "Some weights of the PyTorch model were not used when initializing the TF 2.0 model" f" {tf_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {tf_model.__class__.__name__} from a PyTorch model trained on another task or with another architecture" " (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n- This IS" f" NOT expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model that you expect" " to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a" " BertForSequenceClassification model)." ) else: logger.warning(f"All PyTorch model weights were used when initializing {tf_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights or buffers of the TF 2.0 model {tf_model.__class__.__name__} were not initialized from the" f" PyTorch model and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a" " down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {tf_model.__class__.__name__} were initialized from the PyTorch model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {tf_model.__class__.__name__} for predictions without further training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {tf_model.__class__.__name__} were not initialized from the model checkpoint" f" are newly initialized because the shapes did not" f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" " to use it for predictions and inference." ) if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "mismatched_keys": mismatched_keys, } return tf_model, loading_info return tf_model ##################### # TF 2.0 => PyTorch # ##################### def load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False, output_loading_info=False ): """ Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise import transformers from .modeling_tf_utils import load_tf_weights logger.info(f"Loading TensorFlow weights from {tf_checkpoint_path}") # Instantiate and load the associated TF 2.0 model tf_model_class_name = "TF" + pt_model.__class__.__name__ # Add "TF" at the beginning tf_model_class = getattr(transformers, tf_model_class_name) tf_model = tf_model_class(pt_model.config) if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built load_tf_weights(tf_model, tf_checkpoint_path) return load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info ) def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False, output_loading_info=False): """Load TF 2.0 model in a pytorch model""" weights = tf_model.weights return load_tf2_weights_in_pytorch_model( pt_model, weights, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info ) def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False, output_loading_info=False): """Load TF2.0 symbolic weights in a PyTorch model""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise tf_state_dict = {tf_weight.name: tf_weight.numpy() for tf_weight in tf_weights} return load_tf2_state_dict_in_pytorch_model( pt_model, tf_state_dict, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info ) def load_tf2_state_dict_in_pytorch_model(pt_model, tf_state_dict, allow_missing_keys=False, output_loading_info=False): import torch new_pt_params_dict = {} current_pt_params_dict = dict(pt_model.named_parameters()) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()): start_prefix_to_remove = pt_model.base_model_prefix + "." # Build a map from potential PyTorch weight names to TF 2.0 Variables tf_weights_map = {} for name, tf_weight in tf_state_dict.items(): pt_name, transpose = convert_tf_weight_name_to_pt_weight_name( name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=tf_weight.shape ) tf_weights_map[pt_name] = (tf_weight, transpose) all_tf_weights = set(tf_weights_map.keys()) loaded_pt_weights_data_ptr = {} missing_keys_pt = [] for pt_weight_name, pt_weight in current_pt_params_dict.items(): # Handle PyTorch shared weight ()not duplicated in TF 2.0 if pt_weight.data_ptr() in loaded_pt_weights_data_ptr: new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()] continue pt_weight_name_to_check = pt_weight_name # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 key_components = pt_weight_name.split(".") name = None if key_components[-3::2] == ["parametrizations", "original0"]: name = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: name = key_components[-2] + "_v" if name is not None: key_components = key_components[:-3] + [name] pt_weight_name_to_check = ".".join(key_components) # Find associated numpy array in pytorch model state dict if pt_weight_name_to_check not in tf_weights_map: if allow_missing_keys: missing_keys_pt.append(pt_weight_name) continue raise AttributeError(f"{pt_weight_name} not found in TF 2.0 model") array, transpose = tf_weights_map[pt_weight_name_to_check] array = apply_transpose(transpose, array, pt_weight.shape, pt_to_tf=False) if numpy.isscalar(array): array = numpy.array(array) if not is_torch_tensor(array) and not is_numpy_array(array): array = array.numpy() if is_numpy_array(array): # Convert to torch tensor array = torch.from_numpy(array) new_pt_params_dict[pt_weight_name] = array loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = array all_tf_weights.discard(pt_weight_name) missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False) missing_keys += missing_keys_pt # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if pt_model._keys_to_ignore_on_load_missing is not None: for pat in pt_model._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if pt_model._keys_to_ignore_on_load_unexpected is not None: for pat in pt_model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( "Some weights of the TF 2.0 model were not used when initializing the PyTorch model" f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a TF 2.0 model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a TFBertForPreTraining model).\n- This IS" f" NOT expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " TFBertForSequenceClassification model)." ) else: logger.warning(f"All TF 2.0 model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the TF 2.0 model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) logger.info(f"Weights or buffers not loaded from TF 2.0 model: {all_tf_weights}") if output_loading_info: loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys} return pt_model, loading_info return pt_model
transformers/src/transformers/modeling_tf_pytorch_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_tf_pytorch_utils.py", "repo_id": "transformers", "token_count": 10674 }
276
# coding=utf-8 # Copyright 2018 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class.""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES logger = logging.get_logger(__name__) FLAX_MODEL_MAPPING_NAMES = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("bloom", "FlaxBloomModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("llama", "FlaxLlamaModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mistral", "FlaxMistralModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("bloom", "FlaxBloomForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("llama", "FlaxLlamaForCausalLM"), ("mistral", "FlaxMistralForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) FLAX_MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) FLAX_MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) FLAX_MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) FLAX_MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class FlaxAutoModel(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_MAPPING FlaxAutoModel = auto_class_update(FlaxAutoModel) class FlaxAutoModelForPreTraining(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_PRETRAINING_MAPPING FlaxAutoModelForPreTraining = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class FlaxAutoModelForCausalLM(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING FlaxAutoModelForCausalLM = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class FlaxAutoModelForMaskedLM(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_MASKED_LM_MAPPING FlaxAutoModelForMaskedLM = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class FlaxAutoModelForSeq2SeqLM(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING FlaxAutoModelForSeq2SeqLM = auto_class_update( FlaxAutoModelForSeq2SeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class FlaxAutoModelForSequenceClassification(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING FlaxAutoModelForSequenceClassification = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class FlaxAutoModelForQuestionAnswering(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING FlaxAutoModelForQuestionAnswering = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class FlaxAutoModelForTokenClassification(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING FlaxAutoModelForTokenClassification = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class FlaxAutoModelForMultipleChoice(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING FlaxAutoModelForMultipleChoice = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class FlaxAutoModelForNextSentencePrediction(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING FlaxAutoModelForNextSentencePrediction = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class FlaxAutoModelForImageClassification(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING FlaxAutoModelForImageClassification = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class FlaxAutoModelForVision2Seq(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING FlaxAutoModelForVision2Seq = auto_class_update(FlaxAutoModelForVision2Seq, head_doc="vision-to-text modeling") class FlaxAutoModelForSpeechSeq2Seq(_BaseAutoModelClass): _model_mapping = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING FlaxAutoModelForSpeechSeq2Seq = auto_class_update( FlaxAutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling" )
transformers/src/transformers/models/auto/modeling_flax_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/modeling_flax_auto.py", "repo_id": "transformers", "token_count": 6111 }
277
# coding=utf-8 # Copyright 2021 Microsoft Research and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxMaskedLMOutput, FlaxSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward from .configuration_beit import BeitConfig @flax.struct.dataclass class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling): """ Class for outputs of [`FlaxBeitModel`]. Args: last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ BEIT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BeitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray: """ get pair-wise relative position index for each token inside the window """ num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 coords_h = np.arange(window_size[0]) coords_w = np.arange(window_size[1]) coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww coords_flatten = np.reshape(coords, (2, -1)) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = num_relative_distance - 3 relative_position_index[0:, 0] = num_relative_distance - 2 relative_position_index[0, 0] = num_relative_distance - 1 return jnp.array(relative_position_index) def ones_with_scale(key, shape, scale, dtype=jnp.float32): return jnp.ones(shape, dtype) * scale class FlaxBeitDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" rate: float @nn.module.compact def __call__(self, inputs, deterministic: Optional[bool] = True): if self.rate == 0.0: return inputs keep_prob = 1.0 - self.rate if deterministic: return inputs else: shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets rng = self.make_rng("droppath") random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype) binary_tensor = jnp.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output class FlaxBeitPatchEmbeddings(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.num_channels = self.config.num_channels image_size = self.config.image_size patch_size = self.config.patch_size num_patches = (image_size // patch_size) * (image_size // patch_size) patch_shape = (image_size // patch_size, image_size // patch_size) self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv( self.config.hidden_size, kernel_size=(patch_size, patch_size), strides=(patch_size, patch_size), padding="VALID", dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) def __call__(self, pixel_values): num_channels = pixel_values.shape[-1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) batch_size, _, _, channels = embeddings.shape return jnp.reshape(embeddings, (batch_size, -1, channels)) class FlaxBeitEmbeddings(nn.Module): """Construct the CLS token, position and patch embeddings.""" config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) if self.config.use_mask_token: self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype) num_patches = self.patch_embeddings.num_patches if self.config.use_absolute_position_embeddings: self.position_embeddings = self.param( "position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size) ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True): embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.shape cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) cls_tokens = cls_tokens.astype(embeddings.dtype) if bool_masked_pos is not None: mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size)) mask_tokens = mask_tokens.astype(embeddings.dtype) # replace the masked visual tokens by mask_tokens w = jnp.expand_dims(bool_masked_pos, axis=-1) embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) if self.config.use_absolute_position_embeddings: embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype) embeddings = self.dropout(embeddings, deterministic=deterministic) return embeddings class FlaxBeitRelativePositionBias(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3 self.relative_position_bias_table = self.param( "relative_position_bias_table", nn.initializers.zeros, (num_relative_distance, self.config.num_attention_heads), ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls self.relative_position_index = relative_position_index_init(self.window_size) def __call__(self): index = self.relative_position_index.reshape(-1) shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH return jnp.transpose(relative_position_bias, (2, 0, 1)) class FlaxBeitSelfAttention(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr( self.config, "embedding_size" ): raise ValueError( f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention " f"heads {self.config.num_attention_heads}." ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), use_bias=False, ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.relative_position_bias = ( FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype) if self.window_size else None ) def __call__( self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False ): head_dim = self.config.hidden_size // self.config.num_attention_heads query_states = self.query(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) value_states = self.value(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) key_states = self.key(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attention_bias = jnp.array(0.0, dtype=self.dtype) # Add relative position bias if present. if self.relative_position_bias is not None: attention_bias = jnp.expand_dims(self.relative_position_bias(), 0) attention_bias = attention_bias.astype(query_states.dtype) # Add shared relative position bias if provided. if relative_position_bias is not None: attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxBeitSelfOutput(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxBeitAttention(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 def setup(self): self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype) self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False ): attn_outputs = self.attention( hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions ) attn_output = attn_outputs[0] attn_output = self.output(attn_output, deterministic=deterministic) outputs = (attn_output,) if output_attentions: outputs += (attn_outputs[1],) return outputs class FlaxBeitIntermediate(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class FlaxBeitOutput(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxBeitLayer(nn.Module): config: BeitConfig window_size: Tuple[int, int] drop_path_rate: float dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype) self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype) self.output = FlaxBeitOutput(self.config, dtype=self.dtype) self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate) self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.init_values = self.config.layer_scale_init_value if self.init_values > 0: self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values) self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values) else: self.lambda_1 = None self.lambda_2 = None def __call__( self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False ): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention relative_position_bias, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output # first residual connection hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states # in BEiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output, deterministic=deterministic) # apply lambda_2 if present if self.lambda_2 is not None: layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output # second residual connection layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states outputs = (layer_output,) if output_attentions: outputs += (self_attention_outputs[1],) return outputs class FlaxBeitLayerCollection(nn.Module): config: BeitConfig window_size: Tuple[int, int] drop_path_rates: List[float] relative_position_bias: Callable[[], jnp.ndarray] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBeitLayer( self.config, window_size=self.window_size if self.config.use_relative_position_bias else None, drop_path_rate=self.drop_path_rates[i], name=str(i), dtype=self.dtype, ) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None layer_outputs = layer( hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxBeitEncoder(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.use_shared_relative_position_bias: self.relative_position_bias = FlaxBeitRelativePositionBias( config=self.config, window_size=self.window_size, dtype=self.dtype ) # stochastic depth decay rule drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers)) self.layer = FlaxBeitLayerCollection( self.config, window_size=self.window_size, drop_path_rates=drop_path_rates, relative_position_bias=self.relative_position_bias if self.config.use_shared_relative_position_bias else None, dtype=self.dtype, ) def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxBeitPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BeitConfig base_model_prefix = "beit" main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: BeitConfig, input_shape=None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, config.num_channels) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) params_rng, dropout_rng = jax.random.split(rng) dropout_rng, droppath_rng = jax.random.split(dropout_rng) rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng} random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, pixel_values, bool_masked_pos=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: dropout_rng, droppath_rng = jax.random.split(dropout_rng) rngs["dropout"] = dropout_rng rngs["droppath"] = droppath_rng return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), bool_masked_pos, not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxBeitPooler(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.use_mean_pooling: self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states): if self.config.use_mean_pooling: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output class FlaxBeitModule(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True def setup(self): self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxBeitEncoder( self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype ) if not self.config.use_mean_pooling: self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None def __call__( self, pixel_values, bool_masked_pos=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic) outputs = self.encoder( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if not self.config.use_mean_pooling: hidden_states = self.layernorm(hidden_states) pooled = self.pooler(hidden_states) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBeitModelOutputWithPooling( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", BEIT_START_DOCSTRING, ) class FlaxBeitModel(FlaxBeitPreTrainedModel): module_class = FlaxBeitModule FLAX_BEIT_MODEL_DOCSTRING = """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, FlaxBeitModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k") >>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig) class FlaxBeitForMaskedImageModelingModule(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype) # Classifier head self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, pixel_values=None, bool_masked_pos=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, bool_masked_pos, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.layernorm(sequence_output) prediction_scores = self.lm_head(sequence_output[:, 1:]) if not return_dict: output = (prediction_scores,) + outputs[2:] return output return FlaxMaskedLMOutput( logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).", BEIT_START_DOCSTRING, ) class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel): module_class = FlaxBeitForMaskedImageModelingModule FLAX_BEIT_MLM_DOCSTRING = """ bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits ``` """ overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING) append_replace_return_docstrings( FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig ) class FlaxBeitForImageClassificationModule(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True) self.classifier = nn.Dense( self.config.num_labels, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, pixel_values=None, bool_masked_pos=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, BEIT_START_DOCSTRING, ) class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel): module_class = FlaxBeitForImageClassificationModule FLAX_BEIT_CLASSIF_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") >>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` """ overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING) append_replace_return_docstrings( FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig )
transformers/src/transformers/models/beit/modeling_flax_beit.py/0
{ "file_path": "transformers/src/transformers/models/beit/modeling_flax_beit.py", "repo_id": "transformers", "token_count": 15754 }
278
# coding=utf-8 # Copyright 2023 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the BSD-3-clause license (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import math from typing import Optional, Tuple import tensorflow as tf from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, get_initializer, get_tf_activation, keras, keras_serializable, shape_list, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, invert_attention_mask, stable_softmax from ...utils import add_start_docstrings_to_model_forward, logging from .configuration_blip import BlipTextConfig logger = logging.get_logger(__name__) BLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52 class TFBlipTextEmbeddings(keras.layers.Layer): """Construct the embeddings from word and position embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.word_embeddings = keras.layers.Embedding( config.vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="word_embeddings", ) self.position_embeddings = keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="position_embeddings", ) # self.LayerNorm is not snake-cased to stick with PyTorch model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") self.position_ids = tf.expand_dims(tf.range(config.max_position_embeddings), 0) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def call(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, training=None): if input_ids is not None: input_shape = tf.shape(input_ids) else: input_shape = tf.shape(inputs_embeds)[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "word_embeddings", None) is not None: with tf.name_scope(self.word_embeddings.name): self.word_embeddings.build(None) if getattr(self, "position_embeddings", None) is not None: with tf.name_scope(self.position_embeddings.name): self.position_embeddings.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97 class TFBlipTextSelfAttention(keras.layers.Layer): def __init__(self, config, is_cross_attention, **kwargs): super().__init__(**kwargs) self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = keras.layers.Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size ) self.is_cross_attention = is_cross_attention def transpose_for_scores(self, x): new_x_shape = tf.concat( [tf.shape(x)[:-1], tf.constant([self.num_attention_heads, self.attention_head_size], dtype=tf.int32)], axis=0, ) x = tf.reshape(x, new_x_shape) return tf.transpose(x, perm=(0, 2, 1, 3)) def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=None, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = shape_list(hidden_states)[1] position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 1) position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 0) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function) attention_scores = attention_scores + tf.cast(attention_mask, attention_scores.dtype) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = attention_probs_dropped @ value_layer context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3)) new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if self.is_cross_attention: if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.encoder_hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.encoder_hidden_size]) else: if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) class TFBlipTextSelfOutput(keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: Optional[bool] = None) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242 class TFBlipTextAttention(keras.layers.Layer): def __init__(self, config, is_cross_attention=False, **kwargs): super().__init__(**kwargs) self.self = TFBlipTextSelfAttention(config, is_cross_attention, name="self") # "output" is a protected attribute on TF models self.self_output = TFBlipTextSelfOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, output_attentions: Optional[bool] = False, training: Optional[bool] = None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training=training, ) attention_output = self.self_output(self_outputs[0], hidden_states, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "self_output", None) is not None: with tf.name_scope(self.self_output.name): self.self_output.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->BlipText class TFBlipTextIntermediate(keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFBlipTextOutput(keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFBlipTextLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.attention = TFBlipTextAttention(config, name="attention") if self.config.is_decoder: self.crossattention = TFBlipTextAttention( config, is_cross_attention=self.config.is_decoder, name="crossattention" ) self.intermediate = TFBlipTextIntermediate(config, name="intermediate") self.self_output = TFBlipTextOutput(config, name="output") def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=None, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights intermediate_output = self.intermediate(attention_output) layer_output = self.self_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "self_output", None) is not None: with tf.name_scope(self.self_output.name): self.self_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386 @keras_serializable class TFBlipTextEncoder(keras.layers.Layer): config_class = BlipTextConfig def __init__(self, config, name=None, **kwargs): super().__init__(name=name, **kwargs) self.config = config self.layer = [TFBlipTextLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] @unpack_inputs def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.is_decoder else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->BlipText class TFBlipTextPooler(keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->BlipText class TFBlipTextPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFBlipTextLMPredictionHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFBlipTextPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = keras.layers.Dense( config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="decoder", use_bias=False, ) self.config = config def build(self, input_shape=None): self.bias = self.add_weight(name="bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True) if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build([None, None, self.config.hidden_size]) def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class TFBlipTextOnlyMLMHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFBlipTextLMPredictionHead(config, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548 class TFBlipTextPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipTextConfig base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] # Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571 class TFBlipTextModel(TFBlipTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True, name=None, **kwargs): super().__init__(config, name=name, **kwargs) self.config = config self.embeddings = TFBlipTextEmbeddings(config, name="embeddings") self.encoder = TFBlipTextEncoder(config, name="encoder") self.pooler = TFBlipTextPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value @tf.function def get_extended_attention_mask( self, attention_mask: tf.Tensor, input_shape: Tuple[int], is_decoder: bool ) -> tf.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`tf.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. is_decoder (`bool`): Whether the model is used as a decoder. Returns: `tf.Tensor` The extended attention mask, with the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if not isinstance(attention_mask, tf.Tensor): attention_mask = tf.convert_to_tensor(attention_mask) # Catches NumPy inputs that haven't been cast yet if attention_mask.shape.rank == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.shape.rank == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = tf.range(seq_length, dtype=attention_mask.dtype) causal_mask = tf.broadcast_to(seq_ids, (batch_size, seq_length, seq_length)) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask if shape_list(causal_mask)[1] < shape_list(attention_mask)[1]: prefix_seq_len = tf.shape(attention_mask)[1] - tf.shape(causal_mask)[1] causal_mask = tf.concat( [ tf.ones((batch_size, seq_length, prefix_seq_len), dtype=causal_mask.dtype), causal_mask, ], axis=-1, ) extended_attention_mask = ( tf.cast(causal_mask[:, None, :, :], attention_mask.dtype) * attention_mask[:, None, None, :] ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, encoder_embeds: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, is_decoder: bool = False, training: bool = False, ) -> Tuple[tf.Tensor] | TFBaseModelOutputWithPoolingAndCrossAttentions: r""" encoder_hidden_states (`tf.Tensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(tf.Tensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] batch_size, seq_length = input_shape elif encoder_embeds is not None: input_shape = shape_list(encoder_embeds)[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = tf.ones(((batch_size, seq_length + past_key_values_length))) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: tf.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, is_decoder) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, list): encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states[0]) else: encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states) encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if isinstance(encoder_attention_mask, list): encoder_extended_attention_mask = [invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = tf.ones(encoder_hidden_shape) encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if encoder_embeds is None: embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) else: embedding_output = encoder_embeds encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811 class TFBlipTextLMHeadModel(TFBlipTextPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.bert = TFBlipTextModel(config, add_pooling_layer=False, name="bert") self.cls = TFBlipTextOnlyMLMHead(config, name="cls") def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) @unpack_inputs def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=True, training=None, ): r""" encoder_hidden_states (`tf.Tensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`tf.Tensor`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(tf.Tensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, training=training, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :] lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :] shifted_prediction_scores = tf.reshape(shifted_prediction_scores, (-1, self.config.vocab_size)) labels = labels[:, 1:] labels = tf.reshape(labels, (-1,)) # Keras won't give us label smoothing for sparse CE, so we de-sparsify things here # Use relu to clamp masked labels at 0 to avoid NaN (we will be zeroing those out later anyway) one_hot_labels = tf.one_hot(tf.nn.relu(labels), depth=self.config.vocab_size, dtype=tf.float32) loss_fct = keras.losses.CategoricalCrossentropy(from_logits=True, label_smoothing=0.1, reduction="none") masked_positions = tf.cast(tf.not_equal(labels, -100), dtype=tf.float32) lm_loss = loss_fct(one_hot_labels, shifted_prediction_scores) lm_loss *= masked_positions lm_loss = tf.reduce_sum(lm_loss, axis=0) / tf.math.count_nonzero(masked_positions, dtype=tf.float32) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), "is_decoder": True, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "cls", None) is not None: with tf.name_scope(self.cls.name): self.cls.build(None)
transformers/src/transformers/models/blip/modeling_tf_blip_text.py/0
{ "file_path": "transformers/src/transformers/models/blip/modeling_tf_blip_text.py", "repo_id": "transformers", "token_count": 21856 }
279
# coding=utf-8 # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BridgeTower Model""" import math from collections import OrderedDict from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN, QuickGELUActivation from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, ModelOutput, SequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_bridgetower import BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BridgeTowerConfig" _CHECKPOINT_FOR_DOC = "BridgeTower/bridgetower-base" _TOKENIZER_FOR_DOC = "RobertaTokenizer" BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "BridgeTower/bridgetower-base", "BridgeTower/bridgetower-base-itm-mlm", # See all bridgetower models at https://huggingface.co/BridgeTower ] BRIDGETOWER_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BridgeTowerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BRIDGETOWER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`BridgeTowerImageProcessor`]. See [`BridgeTowerImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. image_token_type_idx (`int`, *optional*): - The token type ids for images. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @dataclass class BridgeTowerModelOutput(ModelOutput): """ Output type of [`BridgeTowerModel`]. Args: text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`): Sequence of hidden-states at the text output of the last layer of the model. image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`): Sequence of hidden-states at the image output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`): Concatenation of last layer hidden-state of the first token of the text and image sequence (classification token), respectively, after further processing through layers used for auxiliary pretraining tasks. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_features: torch.FloatTensor = None image_features: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BridgeTowerContrastiveOutput(ModelOutput): """ Output type of ['BridgeTowerForContrastiveLearning'] Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`: Image-text contrastive loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). text_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. image_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None text_embeds: Optional[Tuple[torch.FloatTensor]] = None image_embeds: Optional[Tuple[torch.FloatTensor]] = None cross_embeds: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class BridgeTowerResidualAttention(nn.Module): def __init__(self, config): super().__init__() self.attn = nn.MultiheadAttention(config.hidden_size, config.hidden_size // 64) self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = nn.ModuleDict( OrderedDict( [ ("c_fc", nn.Linear(config.hidden_size, config.hidden_size * 4)), ("gelu", QuickGELUActivation()), ("c_proj", nn.Linear(config.hidden_size * 4, config.hidden_size)), ] ) ) self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attn_mask = None def attention(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor): if attention_mask is not None: attention_mask = attention_mask.to(dtype=torch.bool, device=hidden_state.device) self.attn_mask = ( self.attn_mask.to(dtype=hidden_state.dtype, device=hidden_state.device) if self.attn_mask is not None else None ) return self.attn( hidden_state, hidden_state, hidden_state, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=attention_mask, )[0] def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None): residual_state = hidden_state + self.attention(self.ln_1(hidden_state), attention_mask) hidden_state = self.ln_2(residual_state) for _, layer in self.mlp.items(): hidden_state = layer(hidden_state) hidden_state = residual_state + hidden_state return hidden_state class BridgeTowerTransformer(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.num_hidden_layers = config.num_hidden_layers if config.remove_last_layer: self.resblocks = nn.ModuleList( [BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers - 1)] ) else: self.resblocks = nn.ModuleList( [BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers)] ) self.stop_gradient = config.stop_gradient def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): hidden_states = [] for block in self.resblocks: hidden_state = block(hidden_state, attention_mask) if self.stop_gradient: hidden_states.append(hidden_state.detach()) else: hidden_states.append(hidden_state) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->BridgeTower class BridgeTowerVisionEmbeddings(nn.Module): def __init__(self, config: BridgeTowerVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class BridgeTowerVisionTransformer(nn.Module): def __init__(self, config): super().__init__() self.embeddings = BridgeTowerVisionEmbeddings(config) self.ln_pre = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.transformer = BridgeTowerTransformer(config) self.ln_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.share_layernorm = config.share_layernorm if not config.share_layernorm: self.ln_separate = nn.ModuleList( [nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) for _ in range(config.num_hidden_layers)] ) def forward(self, pixel_values: torch.Tensor, attention_mask): hidden_states = self.embeddings(pixel_values) hidden_states = self.ln_pre(hidden_states) # NLD -> LND hidden_states = hidden_states.permute(1, 0, 2) hidden_states = self.transformer(hidden_states, attention_mask) # shape = [num_hidden_layers, hidden_size, *, grid ** 2] hidden_states = torch.stack(hidden_states, dim=0) # shape = [num_hidden_layers, *, hidden_size, grid ** 2] hidden_states = hidden_states.permute(0, 2, 1, 3) if self.share_layernorm: hidden_states = self.ln_post(hidden_states) else: hidden_states_stack = [] for hidden_states, ln in zip(hidden_states, self.ln_separate): hidden_states = ln(hidden_states) hidden_states_stack.append(hidden_states) # shape = [num_hidden_layers, *, hidden_size, grid ** 2] hidden_states = torch.stack(hidden_states_stack, dim=0) return hidden_states def forward_pre(self, pixel_values: torch.Tensor): hidden_states = self.embeddings(pixel_values) hidden_states = self.ln_pre(hidden_states) # NLD -> LND hidden_states = hidden_states.permute(1, 0, 2) return hidden_states def forward_post(self, hidden_state: torch.Tensor): visual_output_post = hidden_state.permute(1, 0, 2) visual_output_post = self.ln_post(visual_output_post) return visual_output_post class BridgeTowerLinkTower(nn.Module): def __init__(self, config): super().__init__() self.link_tower_type = config.link_tower_type self.hidden_size = config.hidden_size if config.link_tower_type in ["add", "scaled_add", "interpolate"]: if config.link_tower_type == "scaled_add": self.scaled_factor = nn.Parameter(torch.tensor(1.0)) elif config.link_tower_type == "interpolate": self.beta = nn.Parameter(torch.tensor(0.5)) self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) else: raise NotImplementedError(f"link_tower_type {config.link_tower_type} is not implemented") def forward(self, hidden_states, cross_modal_hidden_states, attention_mask): if self.link_tower_type == "add": return self.LayerNorm(hidden_states + cross_modal_hidden_states) elif self.link_tower_type == "scaled_add": return self.LayerNorm(hidden_states * self.scaled_factor + cross_modal_hidden_states) elif self.link_tower_type == "interpolate": return self.LayerNorm(hidden_states * (1 - self.beta) + cross_modal_hidden_states * self.beta) else: raise NotImplementedError(f"link_tower_type {self.link_tower_type} is not implemented") # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BridgeTower class BridgeTowerSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BridgeTower class BridgeTowerIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BridgeTower class BridgeTowerOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BridgeTower class BridgeTowerPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->BridgeTower class BridgeTowerSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BridgeTowerModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BridgeTower class BridgeTowerAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = BridgeTowerSelfAttention(config, position_embedding_type=position_embedding_type) self.output = BridgeTowerSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BridgeTowerBertCrossLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BridgeTowerAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention self.crossattention = BridgeTowerAttention(config) self.intermediate = BridgeTowerIntermediate(config) self.output = BridgeTowerOutput(config) def forward( self, hidden_states, encoder_hidden_states, attention_mask=None, head_mask=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attention_outputs = self.attention( hidden_states, attention_mask=attention_mask, head_mask=None, output_attentions=output_attentions, past_key_value=None, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache # add self attentions if we output attention weights outputs = self_attention_outputs[1:] cross_attention_outputs = self.crossattention( attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] # add cross attentions if we output attention weights outputs = outputs + cross_attention_outputs[1:-1] layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BridgeTowerTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BridgeTowerAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BridgeTowerAttention(config, position_embedding_type="absolute") self.intermediate = BridgeTowerIntermediate(config) self.output = BridgeTowerOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->BridgeTowerText class BridgeTowerTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BridgeTowerTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->BridgeTowerText class BridgeTowerTextEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx class BridgeTowerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BridgeTowerConfig base_model_prefix = "bridgetower" supports_gradient_checkpointing = False _no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): if isinstance(module, BridgeTowerVisionModel): proj_std = (module.visual.transformer.hidden_size**-0.5) * ( (2 * module.visual.transformer.num_hidden_layers) ** -0.5 ) attn_std = module.visual.transformer.hidden_size**-0.5 fc_std = (2 * module.visual.transformer.hidden_size) ** -0.5 for block in module.visual.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std * self.config.initializer_factor) nn.init.normal_(block.attn.out_proj.weight, std=proj_std * self.config.initializer_factor) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * self.config.initializer_factor) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * self.config.initializer_factor) nn.init.normal_(module.visual.embeddings.class_embedding, std=attn_std * self.config.initializer_factor) nn.init.normal_( module.visual.embeddings.position_embedding.weight, std=attn_std * self.config.initializer_factor ) elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.05 * self.config.initializer_factor) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() class BridgeTowerVisionModel(BridgeTowerPreTrainedModel): config_class = BridgeTowerVisionConfig def __init__(self, config): super().__init__(config) self.visual = BridgeTowerVisionTransformer(config) @property def dtype(self): return self.visual.embeddings.patch_embedding.weight.dtype def forward(self, image, image_mask=None): return self.visual(image.type(self.dtype), image_mask) class BridgeTowerTextModel(BridgeTowerPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ config_class = BridgeTowerTextConfig def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BridgeTowerTextEmbeddings(config) self.encoder = BridgeTowerTextEncoder(config) self.pooler = BridgeTowerPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( "The bare BridgeTower Model transformer outputting BridgeTowerModelOutput object without any specific head on" " top.", BRIDGETOWER_START_DOCSTRING, ) class BridgeTowerModel(BridgeTowerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config vision_config = config.vision_config text_config = config.text_config if config.share_cross_modal_transformer_layers: self.cross_modal_text_transform = nn.Linear(text_config.hidden_size, config.hidden_size) self.cross_modal_image_transform = nn.Linear(vision_config.hidden_size, config.hidden_size) else: self.cross_modal_text_transform = nn.ModuleList( [nn.Linear(text_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)] ) self.cross_modal_image_transform = nn.ModuleList( [nn.Linear(vision_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)] ) self.token_type_embeddings = nn.Embedding(2, config.hidden_size) self.vision_model = BridgeTowerVisionModel(vision_config) self.text_model = BridgeTowerTextModel(text_config) if not vision_config.share_layernorm and config.init_layernorm_from_vision_encoder: for ln in self.vision_model.visual.cross_modal_ln_separate: ln.weight.data = self.vision_model.visual.ln_post.weight.data ln.bias.data = self.vision_model.visual.ln_post.bias.data self.cross_modal_image_layers = nn.ModuleList( [BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)] ) self.cross_modal_text_layers = nn.ModuleList( [BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)] ) # Class token => Linear => Tanh self.cross_modal_image_pooler = BridgeTowerPooler(config) self.cross_modal_text_pooler = BridgeTowerPooler(config) # Initialize BridgeTower Components self.cross_modal_text_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.cross_modal_image_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.share_link_tower_layers: self.cross_modal_text_link_tower = BridgeTowerLinkTower(config) self.cross_modal_image_link_tower = BridgeTowerLinkTower(config) else: self.cross_modal_text_link_tower = nn.ModuleList( [BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)] ) self.cross_modal_image_link_tower = nn.ModuleList( [BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)] ) self.post_init() def get_input_embeddings(self): return self.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.text_model.set_input_embeddings(value) @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BridgeTowerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, image_token_type_idx: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], BridgeTowerModelOutput]: r""" output_hidden_states (`bool`, *optional*): If set to `True`, hidden states are returned as a list containing the hidden states of text, image, and cross-modal components respectively. i.e. `(hidden_states_text, hidden_states_image, hidden_states_cross_modal)` where each element is a list of the hidden states of the corresponding modality. `hidden_states_txt/img` are a list of tensors corresponding to unimodal hidden states and `hidden_states_cross_modal` is a list of tuples containing `cross_modal_text_hidden_states` and `cross_modal_image_hidden_states` of each brdige layer. labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels are currently not supported. Returns: Examples: ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerModel >>> from PIL import Image >>> import requests >>> # prepare image and text >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "hello world" >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base") >>> model = BridgeTowerModel.from_pretrained("BridgeTower/bridgetower-base") >>> inputs = processor(image, text, return_tensors="pt") >>> outputs = model(**inputs) >>> outputs.keys() odict_keys(['text_features', 'image_features', 'pooler_output']) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) all_hidden_states_text = () if output_hidden_states else None all_hidden_states_image = () if output_hidden_states else None all_hidden_states_cross = () if output_hidden_states else None all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_token_type_idx = image_token_type_idx if image_token_type_idx else 1 input_shape = input_ids.size() text_embeds = self.text_model.embeddings(input_ids=input_ids) if output_hidden_states: all_hidden_states_text += (text_embeds,) if attention_mask is None: attention_mask = torch.ones(input_shape, dtype=torch.long, device=input_ids.device) extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, input_shape).to( input_ids.device ) # The split_index determines how many layers of the uni-modal encoder are applied before the cross-modal encoder split_index = len(self.text_model.encoder.layer) - self.config.num_hidden_layers + 1 # Run the first 'split_index' layers of the textual encoder for layer in self.text_model.encoder.layer[:split_index]: text_embeds = layer(text_embeds, extend_text_masks)[0] if output_hidden_states: all_hidden_states_text += (text_embeds,) if image_embeds is None: image_embeds = self.vision_model.visual.forward_pre(pixel_values.type(self.vision_model.dtype)) else: # Permute as BridgeTowerResidualAttention has batch_first=True image_embeds = image_embeds.permute(1, 0, 2) if output_hidden_states: all_hidden_states_image += (image_embeds,) # Run the first 'split_index' layers of the visual encoder for block in self.vision_model.visual.transformer.resblocks[:split_index]: image_embeds = block(image_embeds) if output_hidden_states: all_hidden_states_image += (image_embeds,) image_embeds_with_ln = self.vision_model.visual.forward_post(image_embeds.type(self.vision_model.dtype)) # first layer is a special case because we don't have the output from the cross-encoder yet cross_modal_text = self.cross_modal_text_transform(text_embeds) text_token_type_embeddings = self.token_type_embeddings( torch.zeros(1, dtype=torch.long, device=input_ids.device) ).expand_as(cross_modal_text) cross_modal_text = self.cross_modal_text_layernorm(cross_modal_text + text_token_type_embeddings) image_embeds_with_ln = self.cross_modal_image_transform(image_embeds_with_ln) image_token_type_embeddings = self.token_type_embeddings( torch.full((1,), image_token_type_idx, dtype=torch.long, device=input_ids.device) ).expand_as(image_embeds_with_ln) image_embeds_with_ln = image_embeds_with_ln + image_token_type_embeddings cross_modal_image = self.cross_modal_image_layernorm(image_embeds_with_ln) pixel_mask = torch.ones( (cross_modal_image.size(0), cross_modal_image.size(1)), dtype=torch.long, device=input_ids.device, ) extend_image_masks = self.text_model.get_extended_attention_mask(pixel_mask, pixel_mask.size()).to( input_ids.device ) layer_outputs_text = self.cross_modal_text_layers[0]( cross_modal_text, cross_modal_image, attention_mask=extend_text_masks, encoder_attention_mask=extend_image_masks, output_attentions=output_attentions, ) cross_text_features = layer_outputs_text[0] layer_outputs_image = self.cross_modal_image_layers[0]( cross_modal_image, cross_modal_text, attention_mask=extend_image_masks, encoder_attention_mask=extend_text_masks, output_attentions=output_attentions, ) cross_image_features = layer_outputs_image[0] if output_hidden_states: all_hidden_states_cross += ((cross_text_features, cross_image_features),) if output_attentions: all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),) link_layer_index = 0 # Each of the top 6 layers of the visual and textual encoders ([split_index:]) is connected to each layer of # the cross-modal encoder via bridge layers, which brings bottom-up alignment and fusion to the cross-modal encoder. for i in range(split_index, len(self.text_model.encoder.layer)): text_embeds = self.text_model.encoder.layer[i](text_embeds, extend_text_masks)[0] image_embeds = self.vision_model.visual.transformer.resblocks[i](image_embeds).type( self.vision_model.dtype ) image_embeds_with_ln = ( self.cross_modal_image_transform(self.vision_model.visual.forward_post(image_embeds)) + image_token_type_embeddings ) text_link_tower = self.cross_modal_text_link_tower[link_layer_index] image_link_tower = self.cross_modal_image_link_tower[link_layer_index] # Bridge layers for textual and visual encoders cross_text_features_ = text_link_tower( self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings, cross_text_features, extend_text_masks, ) cross_image_features_ = image_link_tower(image_embeds_with_ln, cross_image_features, extend_image_masks) # Cross-modal encoder via bridge layers of textual and visual encoders layer_outputs_text = self.cross_modal_text_layers[link_layer_index + 1]( cross_text_features_, cross_image_features_, attention_mask=extend_text_masks, encoder_attention_mask=extend_image_masks, output_attentions=output_attentions, ) cross_text_features = layer_outputs_text[0] layer_outputs_image = self.cross_modal_image_layers[link_layer_index + 1]( cross_image_features_, cross_text_features_, attention_mask=extend_image_masks, encoder_attention_mask=extend_text_masks, output_attentions=output_attentions, ) cross_image_features = layer_outputs_image[0] link_layer_index += 1 if output_hidden_states: all_hidden_states_text += (text_embeds,) all_hidden_states_image += (image_embeds,) all_hidden_states_cross += ((cross_text_features, cross_image_features),) if output_attentions: all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),) # Concatenate the cls token of the text and image features to get the final represtation text_features, image_features = cross_text_features, cross_image_features cls_features = self.get_cls_features(text_features, image_features) if output_hidden_states: all_hidden_states = (all_hidden_states_text, all_hidden_states_image, all_hidden_states_cross) if not return_dict: return tuple( v for v in [text_features, image_features, cls_features, all_hidden_states, all_self_attentions] if v is not None ) return BridgeTowerModelOutput( text_features=text_features, image_features=image_features, pooler_output=cls_features, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def get_cls_features(self, text_features, image_features): cls_features_text = self.cross_modal_text_pooler(text_features) cls_features_image = self.cross_modal_image_pooler(image_features) return torch.cat([cls_features_text, cls_features_image], dim=-1) # Copied from transformers.models.vilt.modeling_vilt.ViltPredictionHeadTransform with Vilt->BridgeTower class BridgeTowerPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BridgeTowerMLMHead(nn.Module): def __init__(self, config, weight=None): super().__init__() self.config = config self.transform = BridgeTowerPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.text_config.vocab_size)) if weight is not None: self.decoder.weight = weight def forward(self, x): mlm_score = self.transform(x) mlm_score = self.decoder(mlm_score) + self.bias return mlm_score class BridgeTowerITMHead(nn.Module): def __init__(self, hidden_size): super().__init__() self.fc = nn.Linear(hidden_size, 2) def forward(self, x): itm_score = self.fc(x) return itm_score @add_start_docstrings( """ BridgeTower Model with a language modeling head on top as done during pretraining. """, BRIDGETOWER_START_DOCSTRING, ) class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel): _tied_weights_keys = ["mlm_score.decoder.weight"] def __init__(self, config): super().__init__(config) self.bridgetower = BridgeTowerModel(config) self.mlm_score = BridgeTowerMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.mlm_score.decoder def set_output_embeddings(self, new_embeddings): self.mlm_score.decoder = new_embeddings @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000360943.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> text = "a <mask> looking out of the window" >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) >>> print(results) .a cat looking out of the window. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bridgetower( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) mlm_logits = self.mlm_score(outputs.text_features if return_dict else outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token labels = labels.to(mlm_logits.device) masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.text_config.vocab_size), labels.view(-1)) if not return_dict: output = tuple(mlm_logits) return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=mlm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BridgeTower Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for image-to-text matching. """, BRIDGETOWER_START_DOCSTRING, ) class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel): def __init__(self, config): super().__init__(config) self.bridgetower = BridgeTowerModel(config) self.itm_score = BridgeTowerITMHead(config.hidden_size * 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*): Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match. The pairs with 0 will be skipped for calculation. Returns: Examples: ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> # forward pass >>> scores = dict() >>> for text in texts: ... # prepare inputs ... encoding = processor(image, text, return_tensors="pt") ... outputs = model(**encoding) ... scores[text] = outputs.logits[0, 1].item() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bridgetower( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[2] logits = self.itm_score(pooler_output) itm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(logits.device) itm_loss = loss_fct(logits, labels) if not return_dict: output = tuple(logits) return ((itm_loss,) + output) if itm_loss is not None else output return SequenceClassifierOutput( loss=itm_loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BridgeTowerContrastiveHead(nn.Module): def __init__(self, hidden_size, embed_size): super().__init__() self.fc = nn.Linear(hidden_size, embed_size) def forward(self, x): x = self.fc(x) return x @add_start_docstrings( """ BridgeTower Model with a image-text contrastive head on top computing image-text contrastive loss. """, BRIDGETOWER_START_DOCSTRING, ) class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel): def __init__(self, config): super().__init__(config) self.bridgetower = BridgeTowerModel(config) self.itc_text_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size) self.itc_image_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size) self.itc_cross_modal_head = BridgeTowerContrastiveHead(config.hidden_size * 2, config.contrastive_hidden_size) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BridgeTowerContrastiveOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = True, return_dict: Optional[bool] = None, return_loss: Optional[bool] = None, ) -> Union[BridgeTowerContrastiveOutput, Tuple[torch.FloatTensor]]: r""" return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. Returns: Examples: ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning >>> import requests >>> from PIL import Image >>> import torch >>> image_urls = [ ... "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg", ... "http://images.cocodataset.org/val2017/000000039769.jpg", ... ] >>> texts = ["two dogs in a car", "two cats sleeping on a couch"] >>> images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls] >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") >>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") >>> inputs = processor(images, texts, padding=True, return_tensors="pt") >>> loss = model(**inputs, return_loss=True).loss >>> inputs = processor(images, texts[::-1], padding=True, return_tensors="pt") >>> loss_swapped = model(**inputs, return_loss=True).loss >>> print("Loss", round(loss.item(), 4)) Loss 0.0019 >>> print("Loss with swapped images", round(loss_swapped.item(), 4)) Loss with swapped images 2.126 ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bridgetower( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[2] hidden_states_txt, hidden_states_img, hidden_states_cross_modal = ( outputs.hidden_states if return_dict else outputs[3] ) text_embeds = hidden_states_txt[-1] image_embeds = hidden_states_img[-1] image_embeds_with_ln = self.bridgetower.vision_model.visual.forward_post(image_embeds) image_token_type_embeddings = self.bridgetower.token_type_embeddings( torch.full((1,), 1, dtype=torch.long, device=self.bridgetower.token_type_embeddings.weight.device) ).expand_as(image_embeds_with_ln) image_embeds = self.bridgetower.cross_modal_image_transform(image_embeds_with_ln) + image_token_type_embeddings # normalized features text_embeds = nn.functional.normalize(self.itc_text_head(text_embeds[:, 0, :]), dim=-1, p=2) image_embeds = nn.functional.normalize(self.itc_image_head(image_embeds[:, 0, :]), dim=-1, p=2).to( device=text_embeds.device ) cross_embeds = nn.functional.normalize(self.itc_cross_modal_head(pooler_output), dim=-1, p=2).to( device=text_embeds.device ) logits = torch.stack([text_embeds, image_embeds, cross_embeds], dim=-2) logit_scale = self.logit_scale.exp().to(device=text_embeds.device) logits_text_to_image = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_text_to_cross = torch.matmul(text_embeds, cross_embeds.t()) * logit_scale logits_image_to_cross = torch.matmul(image_embeds, cross_embeds.t()) * logit_scale itc_loss = None if return_loss: labels = torch.arange(len(logits), device=logits.device) text_to_image_loss = nn.functional.cross_entropy(logits_text_to_image, labels) text_to_cross_loss = nn.functional.cross_entropy(logits_text_to_cross, labels) image_to_cross_loss = nn.functional.cross_entropy(logits_image_to_cross, labels) itc_loss = (text_to_image_loss + text_to_cross_loss + image_to_cross_loss) / 3.0 if not return_dict: output = (logits, text_embeds, image_embeds, cross_embeds) + outputs[3:] return ((itc_loss,) + output) if itc_loss is not None else output return BridgeTowerContrastiveOutput( loss=itc_loss, logits=logits, text_embeds=text_embeds, image_embeds=image_embeds, cross_embeds=cross_embeds, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/bridgetower/modeling_bridgetower.py/0
{ "file_path": "transformers/src/transformers/models/bridgetower/modeling_bridgetower.py", "repo_id": "transformers", "token_count": 37419 }
280
# coding=utf-8 # Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CLAP model.""" import collections import math from dataclasses import dataclass from typing import Any, List, Optional, Tuple, Union import torch import torch.nn.functional as F from torch import nn from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused" CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "laion/clap-htsat-fused", "laion/clap-htsat-unfused", # See all clap models at https://huggingface.co/models?filter=clap ] # Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191 def interpolate(hidden_states, ratio): """ Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. Args: hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)): Input hidden states ratio (`int`): The ratio of the length of the output to the length of the input. """ (batch_size, time_length, classes_num) = hidden_states.shape upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1) upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num) return upsampled # Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249 def window_partition(hidden_states, window_size): """ Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size, num_channels)` Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`): Input hidden states window_size (`int`): Window size """ batch_size, height, width, num_channels = hidden_states.shape hidden_states = hidden_states.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263 def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. Args: windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`): Input windows window_size (`int`): Window size height (`int`): Height of the resized audio width (`int`): Width of the resized audio """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: labels = torch.arange(len(logits), device=logits.device) return nn.functional.cross_entropy(logits, labels) @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap class ClapTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class ClapAudioModelOutput(ModelOutput): """ ClapAudio model output to mimic the output of the original implementation. Args: audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): The Audio embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ audio_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio class ClapOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for audio-text similarity. logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`ClapTextModel`]. audio_model_output(`BaseModelOutputWithPooling`): The output of the [`ClapAudioModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_audio: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None audio_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None audio_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) # Adapted from transformers.models.swin.modeling_swin.SwinDropPath class ClapDropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly refactored version of the `SwinDropPath` implementation. """ def __init__(self, drop_prob=None): super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states): if self.drop_prob == 0.0 or not self.training: return hidden_states keep_prob = 1 - self.drop_prob # work with diff dim tensors, not just 2D ConvNets shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) random_tensor.floor_() # binarize output = hidden_states.div(keep_prob) * random_tensor return output # Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133 class ClapAudioAFFBlock(nn.Module): r""" ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement the 1D version. """ def __init__(self, config: ClapAudioConfig): super().__init__() channels = config.patch_embeds_hidden_size downsize_ratio = config.aff_block_r inter_channels = int(channels // downsize_ratio) self.local_att = nn.Sequential( nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.global_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.sigmoid = nn.Sigmoid() def forward(self, hidden_states, residual): attention_input = hidden_states + residual fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) fused_layer_output = self.sigmoid(fused_layer_output) output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) return output class ClapAudioPatchEmbed(nn.Module): """ This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the Transformer block. """ def __init__(self, config: ClapAudioConfig): super().__init__() img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size patch_size = ( (config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size ) patch_stride = ( (config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride ) self.img_size = img_size self.patch_stride = patch_stride self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = config.flatten_patch_embeds self.enable_fusion = config.enable_fusion padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 self.proj = nn.Conv2d( config.patch_embed_input_channels * scale_factor, config.patch_embeds_hidden_size, kernel_size=patch_size, stride=patch_stride, padding=padding, ) self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() if self.enable_fusion: self.fusion_model = ClapAudioAFFBlock(config) self.mel_conv2d = nn.Conv2d( config.patch_embed_input_channels, config.patch_embeds_hidden_size, kernel_size=(patch_size[0], patch_size[1] * 3), stride=(patch_stride[0], patch_stride[1] * 3), padding=padding, ) def forward(self, hidden_states, is_longer_idx=None): if self.enable_fusion: # retrieve the last mel as we have transposed the input global_hidden_states = hidden_states[:, 0:1, :, :] # global processing batch_size, num_channels, height, width = global_hidden_states.shape if height != self.img_size[0] or width != self.img_size[1]: raise ValueError( f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." ) global_hidden_states = self.proj(global_hidden_states) output_width = global_hidden_states.size(-1) if len(is_longer_idx) > 0: # local processing local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() batch_size, num_channels, height, width = local_hidden_states.shape local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) local_hidden_states = self.mel_conv2d(local_hidden_states) _, features, height, width = local_hidden_states.shape local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) local_width = local_hidden_states.size(-1) local_hidden_states = torch.nn.functional.pad( local_hidden_states, (0, output_width - local_width), "constant", 0 ) global_hidden_states[is_longer_idx] = self.fusion_model( global_hidden_states[is_longer_idx], local_hidden_states ) hidden_states = global_hidden_states else: _, _, height, width = hidden_states.shape if height != self.img_size[0] or width != self.img_size[1]: raise ValueError( f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." ) hidden_states = self.proj(hidden_states) if self.flatten: hidden_states = hidden_states.flatten(2).transpose(1, 2) hidden_states = self.norm(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio class ClapAudioSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio class ClapAudioSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio class ClapAudioAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) self.output = ClapAudioSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio class ClapAudioIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio class ClapAudioOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio class ClapAudioLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = ClapAudioIntermediate(config, dim) self.output = ClapAudioOutput(config, dim) def set_shift_and_window_size(self, input_resolution): if min(input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(input_resolution) def get_attn_mask(self, height, width, dtype): if self.shift_size > 0: # calculate attention mask for SW-MSA img_mask = torch.zeros((1, height, width, 1), dtype=dtype) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_right = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, 0, pad_right, 0, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: if not always_partition: self.set_shift_and_window_size(input_dimensions) else: pass height, width = input_dimensions batch_size, _, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = attention_outputs[0] attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs # Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio class ClapAudioStage(nn.Module): def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ ClapAudioLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor]: height, width = input_dimensions for i, layer_module in enumerate(self.blocks): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = hidden_states if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio class ClapAudioPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature class ClapAudioEncoder(nn.Module): def __init__(self, config): super().__init__() self.num_layers = len(config.depths) self.config = config self.patch_embed = ClapAudioPatchEmbed(config) self.enable_fusion = config.enable_fusion self.patch_stride = self.patch_embed.patch_stride self.spec_size = config.spec_size self.freq_ratio = config.spec_size // config.num_mel_bins self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] grid_size = self.patch_embed.grid_size self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] self.layers = nn.ModuleList( [ ClapAudioStage( config=config, dim=int(config.patch_embeds_hidden_size * 2**i_layer), input_resolution=self.input_resolutions[i_layer], depth=config.depths[i_layer], num_heads=config.num_attention_heads[i_layer], drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) self.norm = nn.LayerNorm(self.num_features) self.depths = config.depths self.avgpool = nn.AdaptiveAvgPool1d(1) def reshape_mel2img(self, normalized_input_features): """ The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. """ _, _, time_length, freq_length = normalized_input_features.shape spec_width = int(self.spec_size * self.freq_ratio) spec_heigth = self.spec_size // self.freq_ratio if time_length > spec_width or freq_length > spec_heigth: raise ValueError("the wav size should be less than or equal to the swin input size") # to avoid bicubic zero error if time_length < spec_width: normalized_input_features = nn.functional.interpolate( normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True ) if freq_length < spec_heigth: normalized_input_features = nn.functional.interpolate( normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True ) batch, channels, time, freq = normalized_input_features.shape # batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio normalized_input_features = normalized_input_features.reshape( batch, channels * self.freq_ratio, time // self.freq_ratio, freq ) normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() normalized_input_features = normalized_input_features.reshape( batch, channels, freq * self.freq_ratio, time // self.freq_ratio ) return normalized_input_features def forward( self, input_features, is_longer: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, always_partition: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, ClapAudioModelOutput]: input_features = input_features.transpose(1, 3) normalized_input_features = self.batch_norm(input_features) normalized_input_features = normalized_input_features.transpose(1, 3) is_longer_list_idx = None if self.enable_fusion: is_longer_list = is_longer.to(input_features.device) is_longer_list_idx = torch.where(is_longer_list == 1)[0] hidden_states = self.reshape_mel2img(normalized_input_features) frames_num = hidden_states.shape[2] hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None input_dimensions = self.input_resolutions[0] if output_hidden_states: batch_size, _, hidden_size = hidden_states.shape # rearrange batch_size (height width) channels -> batch_size channel height width reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None input_dimensions = self.input_resolutions[i] if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions ) else: layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = layer_outputs[1] output_dimensions = layer_outputs[2] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) if output_hidden_states and output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states_before_downsampling.shape # rearrange batch_size (height width) channels -> batch_size channel height width # here we use the original (not downsampled) height and width reshaped_hidden_state = hidden_states_before_downsampling.view( batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size ) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states.shape # rearrange batch_size (height width) channels -> batch_size channel height width reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[3:] last_hidden_state = self.norm(hidden_states) batch_size, _, n_channels = last_hidden_state.shape freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] last_hidden_state = ( last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) ) batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape # group 2D CNN c_freq_bin = n_frequencies // self.freq_ratio last_hidden_state = last_hidden_state.reshape( batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp ) last_hidden_state = ( last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) ) latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) latent_output = torch.flatten(latent_output, 1) if not return_dict: return tuple( v for v in [ last_hidden_state, latent_output, all_reshaped_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=latent_output, hidden_states=all_reshaped_hidden_states, attentions=all_self_attentions, ) CLAP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ClapConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLAP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLAP_AUDIO_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*): Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance the features. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLAP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class ClapProjectionLayer(nn.Module): def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): super().__init__() self.config = config hidden_size = config.hidden_size projection_dim = config.projection_dim self.linear1 = nn.Linear(hidden_size, projection_dim) self.activation = ACT2FN[config.projection_hidden_act] self.linear2 = nn.Linear(projection_dim, projection_dim) def forward(self, hidden_states): hidden_states = self.linear1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.linear2(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True class ClapTextEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText class ClapTextSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class ClapTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText class ClapTextAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type) self.output = ClapTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class ClapTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class ClapTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText class ClapTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ClapTextAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") self.intermediate = ClapTextIntermediate(config) self.output = ClapTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText class ClapTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class ClapTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class ClapPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ClapConfig base_model_prefix = "clap" supports_gradient_checkpointing = False def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, ClapTextEmbeddings): module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, ClapModel): nn.init.normal_(module.logit_scale_a, std=factor * 0.02) nn.init.normal_(module.logit_scale_t, std=factor * 0.02) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Conv2d, nn.Linear)): in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor nn.init.normal_(module.weight, std=in_proj_std) if module.bias is not None: module.bias.data.zero_() class ClapAudioModel(ClapPreTrainedModel): config_class = ClapAudioConfig main_input_name = "input_features" def __init__(self, config: ClapAudioConfig): super().__init__(config) self.audio_encoder = ClapAudioEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.audio_encoder.patch_embed.proj @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig) def forward( self, input_features: Optional[torch.FloatTensor] = None, is_longer: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoProcessor, ClapAudioModel >>> dataset = load_dataset("ashraq/esc50") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") >>> inputs = processor(audios=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return self.audio_encoder( input_features=input_features, is_longer=is_longer, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class ClapTextModel(ClapPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ config_class = ClapTextConfig # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->ClapText def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ClapTextEmbeddings(config) self.encoder = ClapTextEncoder(config) self.pooler = ClapTextPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings(CLAP_START_DOCSTRING) class ClapModel(ClapPreTrainedModel): config_class = ClapConfig def __init__(self, config: ClapConfig): super().__init__(config) if not isinstance(config.text_config, ClapTextConfig): raise ValueError( "config.text_config is expected to be of type ClapTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.audio_config, ClapAudioConfig): raise ValueError( "config.audio_config is expected to be of type ClapAudioConfig but is of type" f" {type(config.audio_config)}." ) text_config = config.text_config audio_config = config.audio_config self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) self.projection_dim = config.projection_dim self.text_model = ClapTextModel(text_config) self.text_projection = ClapProjectionLayer(text_config) self.audio_model = ClapAudioModel(audio_config) self.audio_projection = ClapProjectionLayer(audio_config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, ClapModel >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") >>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output text_features = self.text_projection(pooled_output) text_features = F.normalize(text_features, dim=-1) return text_features @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) def get_audio_features( self, input_features: Optional[torch.Tensor] = None, is_longer: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. Examples: ```python >>> from transformers import AutoFeatureExtractor, ClapModel >>> import torch >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") >>> random_audio = torch.rand((16_000)) >>> inputs = feature_extractor(random_audio, return_tensors="pt") >>> audio_features = model.get_audio_features(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict audio_outputs = self.audio_model( input_features=input_features, is_longer=is_longer, return_dict=return_dict, ) pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output audio_features = self.audio_projection(pooled_output) audio_features = F.normalize(audio_features, dim=-1) return audio_features @add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, is_longer: Optional[torch.BoolTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClapOutput]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoProcessor, ClapModel >>> dataset = load_dataset("ashraq/esc50") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") >>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] >>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score >>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities ```""" # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict audio_outputs = self.audio_model( input_features=input_features, is_longer=is_longer, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output audio_embeds = self.audio_projection(audio_embeds) text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output text_embeds = self.text_projection(text_embeds) # normalized features audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale_text = self.logit_scale_t.exp() logit_scale_audio = self.logit_scale_a.exp() logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio loss = None if return_loss: caption_loss = contrastive_loss(logits_per_text) audio_loss = contrastive_loss(logits_per_audio.t()) loss = (caption_loss + audio_loss) / 2.0 if not return_dict: output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) return ((loss,) + output) if loss is not None else output return ClapOutput( loss=loss, logits_per_audio=logits_per_audio, logits_per_text=logits_per_text, text_embeds=text_embeds, audio_embeds=audio_embeds, text_model_output=text_outputs, audio_model_output=audio_outputs, ) @add_start_docstrings( """ CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output). """, CLAP_START_DOCSTRING, ) class ClapTextModelWithProjection(ClapPreTrainedModel): config_class = ClapTextConfig def __init__(self, config: ClapTextConfig): super().__init__(config) self.text_model = ClapTextModel(config) self.text_projection = ClapProjectionLayer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.word_embeddings def set_input_embeddings(self, value): self.text_model.embeddings.word_embeddings = value @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClapTextModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, ClapTextModelWithProjection >>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") >>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> text_embeds = outputs.text_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output text_embeds = self.text_projection(pooled_output) if not return_dict: outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] return tuple(output for output in outputs if output is not None) return ClapTextModelOutput( text_embeds=text_embeds, last_hidden_state=text_outputs.last_hidden_state, hidden_states=text_outputs.hidden_states, attentions=text_outputs.attentions, ) @add_start_docstrings( """ CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output). """, CLAP_START_DOCSTRING, ) class ClapAudioModelWithProjection(ClapPreTrainedModel): config_class = ClapAudioConfig main_input_name = "input_features" def __init__(self, config: ClapAudioConfig): super().__init__(config) self.audio_model = ClapAudioModel(config) self.audio_projection = ClapProjectionLayer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.audio_model.audio_encoder.patch_embed.proj @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig) def forward( self, input_features: Optional[torch.FloatTensor] = None, is_longer: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClapAudioModelOutput]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import ClapAudioModelWithProjection, ClapProcessor >>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") >>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") >>> dataset = load_dataset("ashraq/esc50") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> inputs = processor(audios=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> audio_embeds = outputs.audio_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) audio_outputs = self.audio_model( input_features=input_features, is_longer=is_longer, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output audio_embeds = self.audio_projection(pooled_output) if not return_dict: outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] return tuple(output for output in outputs if output is not None) return ClapAudioModelOutput( audio_embeds=audio_embeds, last_hidden_state=audio_outputs.last_hidden_state, attentions=audio_outputs.attentions, hidden_states=audio_outputs.hidden_states, )
transformers/src/transformers/models/clap/modeling_clap.py/0
{ "file_path": "transformers/src/transformers/models/clap/modeling_clap.py", "repo_id": "transformers", "token_count": 44304 }
281
# coding=utf-8 # Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CLIPSeg model.""" import copy import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined" CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = [ "CIDAS/clipseg-rd64-refined", # See all CLIPSeg models at https://huggingface.co/models?filter=clipseg ] # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg class CLIPSegOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPSegTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @dataclass class CLIPSegDecoderOutput(ModelOutput): """ Args: logits (`torch.FloatTensor` of shape `(batch_size, height, width)`): Classification scores for each pixel. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CLIPSegImageSegmentationOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. ... vision_model_output (`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None conditional_embeddings: torch.FloatTensor = None pooled_output: torch.FloatTensor = None vision_model_output: BaseModelOutputWithPooling = None decoder_output: CLIPSegDecoderOutput = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class CLIPSegVisionEmbeddings(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_position_embeddings(self, new_size): if len(new_size) != 2: raise ValueError("new_size should consist of 2 values") num_patches_one_direction = int(self.num_patches**0.5) # we interpolate the position embeddings in 2D a = self.position_embedding.weight[1:].T.view( 1, self.config.hidden_size, num_patches_one_direction, num_patches_one_direction ) b = ( nn.functional.interpolate(a, new_size, mode="bicubic", align_corners=False) .squeeze(0) .view(self.config.hidden_size, new_size[0] * new_size[1]) .T ) result = torch.cat([self.position_embedding.weight[:1], b]) return result def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) if embeddings.shape[1] != self.num_positions: new_shape = int(math.sqrt(embeddings.shape[1] - 1)) embeddings = embeddings + self.interpolate_position_embeddings((new_shape, new_shape)) embeddings = embeddings.to(embeddings.dtype) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg class CLIPSegTextEmbeddings(nn.Module): def __init__(self, config: CLIPSegTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg class CLIPSegAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg class CLIPSegMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->CLIPSeg class CLIPSegEncoderLayer(nn.Module): def __init__(self, config: CLIPSegConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPSegAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPSegMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPSegPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPSegConfig base_model_prefix = "clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, CLIPSegTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, CLIPSegVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, CLIPSegAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, CLIPSegMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, CLIPSegModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() CLIPSEG_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLIPSEG_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIPSEG_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIPSEG_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->CLIPSeg class CLIPSegEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPSegEncoderLayer`]. Args: config: CLIPSegConfig """ def __init__(self, config: CLIPSegConfig): super().__init__() self.config = config self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class CLIPSegTextTransformer(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPSegTextEmbeddings(config) self.encoder = CLIPSegEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIPSeg's text model uses causal mask, prepare it here. # https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) .int() .argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class CLIPSegTextModel(CLIPSegPreTrainedModel): config_class = CLIPSegTextConfig _no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"] def __init__(self, config: CLIPSegTextConfig): super().__init__(config) self.text_model = CLIPSegTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPSegTextModel >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class CLIPSegVisionTransformer(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPSegVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPSegEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class CLIPSegVisionModel(CLIPSegPreTrainedModel): config_class = CLIPSegVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPSegVisionConfig): super().__init__(config) self.vision_model = CLIPSegVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegVisionModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(CLIPSEG_START_DOCSTRING) class CLIPSegModel(CLIPSegPreTrainedModel): config_class = CLIPSegConfig def __init__(self, config: CLIPSegConfig): super().__init__(config) if not isinstance(config.text_config, CLIPSegTextConfig): raise ValueError( "config.text_config is expected to be of type CLIPSegTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPSegVisionConfig): raise ValueError( "config.vision_config is expected to be of type CLIPSegVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPSegTextTransformer(text_config) self.vision_model = CLIPSegVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, CLIPSegModel >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPSegOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = clipseg_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return CLIPSegOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class CLIPSegDecoderLayer(nn.Module): """ CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after self-attention/MLP, rather than before. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPSegAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPSegMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = self.layer_norm1(hidden_states) residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states hidden_states = self.layer_norm2(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPSegDecoder(CLIPSegPreTrainedModel): def __init__(self, config: CLIPSegConfig): super().__init__(config) self.conditional_layer = config.conditional_layer self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim) self.film_add = nn.Linear(config.projection_dim, config.reduce_dim) if config.use_complex_transposed_convolution: transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4) self.transposed_convolution = nn.Sequential( nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1), nn.ReLU(), nn.ConvTranspose2d( config.reduce_dim, config.reduce_dim // 2, kernel_size=transposed_kernels[0], stride=transposed_kernels[0], ), nn.ReLU(), nn.ConvTranspose2d( config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1] ), ) else: self.transposed_convolution = nn.ConvTranspose2d( config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size ) depth = len(config.extract_layers) self.reduces = nn.ModuleList( [nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)] ) decoder_config = copy.deepcopy(config.vision_config) decoder_config.hidden_size = config.reduce_dim decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size decoder_config.hidden_act = "relu" self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))]) def forward( self, hidden_states: Tuple[torch.Tensor], conditional_embeddings: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None activations = hidden_states[::-1] output = None for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)): if output is not None: output = reduce(activation) + output else: output = reduce(activation) if i == self.conditional_layer: output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add( conditional_embeddings ) output = output.permute(1, 0, 2) layer_outputs = layer( output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions ) output = layer_outputs[0] if output_hidden_states: all_hidden_states += (output,) if output_attentions: all_attentions += (layer_outputs[1],) output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len] size = int(math.sqrt(output.shape[2])) batch_size = conditional_embeddings.shape[0] output = output.view(batch_size, output.shape[1], size, size) logits = self.transposed_convolution(output).squeeze() if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None) return CLIPSegDecoderOutput( logits=logits, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation. """, CLIPSEG_START_DOCSTRING, ) class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel): config_class = CLIPSegConfig def __init__(self, config: CLIPSegConfig): super().__init__(config) self.config = config self.clip = CLIPSegModel(config) self.extract_layers = config.extract_layers self.decoder = CLIPSegDecoder(config) # Initialize weights and apply final processing self.post_init() def get_conditional_embeddings( self, batch_size: int = None, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, conditional_pixel_values: Optional[torch.Tensor] = None, ): if input_ids is not None: # compute conditional embeddings from texts if len(input_ids) != batch_size: raise ValueError("Make sure to pass as many prompt texts as there are query images") with torch.no_grad(): conditional_embeddings = self.clip.get_text_features( input_ids, attention_mask=attention_mask, position_ids=position_ids ) elif conditional_pixel_values is not None: # compute conditional embeddings from images if len(conditional_pixel_values) != batch_size: raise ValueError("Make sure to pass as many prompt images as there are query images") with torch.no_grad(): conditional_embeddings = self.clip.get_image_features(conditional_pixel_values) else: raise ValueError( "Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`" ) return conditional_embeddings @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig) def forward( self, input_ids: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, conditional_pixel_values: Optional[torch.FloatTensor] = None, conditional_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPSegOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoProcessor, CLIPSegForImageSegmentation >>> from PIL import Image >>> import requests >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["a cat", "a remote", "a blanket"] >>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> print(logits.shape) torch.Size([3, 352, 352]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the query images through the frozen CLIP vision encoder with torch.no_grad(): vision_outputs = self.clip.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) pooled_output = self.clip.visual_projection(vision_outputs[1]) hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2] # we add +1 here as the hidden states also include the initial embeddings activations = [hidden_states[i + 1] for i in self.extract_layers] # update vision_outputs if return_dict: vision_outputs = BaseModelOutputWithPooling( last_hidden_state=vision_outputs.last_hidden_state, pooler_output=vision_outputs.pooler_output, hidden_states=vision_outputs.hidden_states if output_hidden_states else None, attentions=vision_outputs.attentions, ) else: vision_outputs = ( vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs ) # step 2: compute conditional embeddings, either from text, images or an own provided embedding if conditional_embeddings is None: conditional_embeddings = self.get_conditional_embeddings( batch_size=pixel_values.shape[0], input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, conditional_pixel_values=conditional_pixel_values, ) else: if conditional_embeddings.shape[0] != pixel_values.shape[0]: raise ValueError( "Make sure to pass as many conditional embeddings as there are query images in the batch" ) if conditional_embeddings.shape[1] != self.config.projection_dim: raise ValueError( "Make sure that the feature dimension of the conditional embeddings matches" " `config.projection_dim`." ) # step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks decoder_outputs = self.decoder( activations, conditional_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss = None if labels is not None: # move labels to the correct device to enable PP labels = labels.to(logits.device) loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels) if not return_dict: output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs) return ((loss,) + output) if loss is not None else output return CLIPSegImageSegmentationOutput( loss=loss, logits=logits, conditional_embeddings=conditional_embeddings, pooled_output=pooled_output, vision_model_output=vision_outputs, decoder_output=decoder_outputs, )
transformers/src/transformers/models/clipseg/modeling_clipseg.py/0
{ "file_path": "transformers/src/transformers/models/clipseg/modeling_clipseg.py", "repo_id": "transformers", "token_count": 27595 }
282
# coding=utf-8 # Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CodeGen""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np import regex as re from ...utils import is_tf_available, is_torch_available, logging, to_py_obj if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from ...tokenization_utils import AddedToken, PreTrainedTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Salesforce/codegen-350M-mono": 2048, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class CodeGenTokenizer(PreTrainedTokenizer): """ Construct a CodeGen tokenizer. Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import CodeGenTokenizer >>> tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*): The token used for padding, for example when batching sequences of different lengths. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space). add_bos_token (`bool`, *optional*, defaults to `False`): Whether to add a beginning of sequence token at the start of sequences. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, add_bos_token=False, **kwargs, ): bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token self.add_bos_token = add_bos_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, add_bos_token=add_bos_token, **kwargs, ) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, truncate_before_pattern: Optional[List[str]] = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ token_ids = to_py_obj(token_ids) decoded_text = super()._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: decoded_text = self.truncate(decoded_text, truncate_before_pattern) return decoded_text def truncate(self, completion, truncate_before_pattern): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] prints = list(re.finditer("^print", completion, re.MULTILINE)) if len(prints) > 1: completion = completion[: prints[1].start()] defs = list(re.finditer("^def", completion, re.MULTILINE)) if len(defs) > 1: completion = completion[: defs[1].start()] start_pos = 0 terminals_pos = [ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 ] if len(terminals_pos) > 0: return completion[: min(terminals_pos)] else: return completion
transformers/src/transformers/models/codegen/tokenization_codegen.py/0
{ "file_path": "transformers/src/transformers/models/codegen/tokenization_codegen.py", "repo_id": "transformers", "token_count": 6731 }
283
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CPMAnt""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_cpmant import CpmAntConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openbmb/cpm-ant-10b" _CONFIG_FOR_DOC = "CpmAntConfig" CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openbmb/cpm-ant-10b", # See all CPMAnt models at https://huggingface.co/models?filter=cpmant ] class CpmAntLayerNorm(nn.Module): """ We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details." """ def __init__(self, config: CpmAntConfig): super().__init__() self.eps = config.eps self.dim_norm = config.hidden_size self.weight = nn.Parameter(torch.empty(config.hidden_size)) def forward(self, hidden_states: torch.Tensor): """ Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ if hidden_states.size(-1) != self.dim_norm: raise AssertionError("hidden_states.size(-1) != self.dim_norm") old_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight return hidden_states class CpmAntAttention(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.dim_model = config.hidden_size self.num_heads = config.num_attention_heads self.dim_head = config.dim_head self.project_q = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.project_k = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.project_v = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.attention_out = nn.Linear(self.num_heads * self.dim_head, self.dim_model, bias=False) self.softmax = torch.nn.Softmax(dim=-1) if config.dropout_p is not None: self.dropout = torch.nn.Dropout(p=config.dropout_p) else: self.dropout = None def forward( self, hidden_q: torch.Tensor, hidden_kv: torch.Tensor, attention_mask: torch.BoolTensor, position_bias: torch.Tensor, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_q (`torch.Tensor`): Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)): Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)` attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Avoid invalid areas to participate in the calculation of self-attention. position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Provide positional information to self-attention block. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*): Cached past key and value projection states. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ batch_size = hidden_q.size(0) len_q = hidden_q.size(1) len_k = hidden_kv.size(1) query = self.project_q(hidden_q) key = self.project_k(hidden_kv) value = self.project_v(hidden_kv) query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3) key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) if past_key_values is not None: key = torch.cat([past_key_values[0], key], dim=-2) value = torch.cat([past_key_values[1], value], dim=-2) len_k = key.size(-2) # (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k) score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head) score = score + position_bias score = torch.masked_fill( score, attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype), ) score = self.softmax(score) score = torch.masked_fill( score, attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), torch.scalar_tensor(0, device=score.device, dtype=score.dtype), ) if output_attentions: attn_weights = score else: attn_weights = None if self.dropout is not None: score = self.dropout(score) # (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head) score = torch.matmul(score, value) score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3) score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head) score = self.attention_out(score) past_key_values = None if use_cache: past_key_values = (key, value) return score, attn_weights, past_key_values class CpmAntSelfAttentionBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.layernorm_before_attention = CpmAntLayerNorm(config) self.self_attention = CpmAntAttention(config) if config.dropout_p: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Avoid invalid areas to participate in the calculation of self-attention. position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Provide positional information to self-attention block. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple(torch.FloatTensor)`, *optional*): Cached past key and value projection states. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ outputs = self.layernorm_before_attention(hidden_states) outputs = self.self_attention( outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache ) outputs, attn_weights, current_key_value = outputs if self.dropout is not None: outputs = self.dropout(outputs) hidden_states = hidden_states + outputs return hidden_states, attn_weights, current_key_value class CpmAntDenseGatedACT(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.w_0 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) self.w_1 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) self.act = torch.nn.GELU() def forward(self, hidden_states: torch.Tensor): """Transform an input tensor from one feature space to another via a nonlinear operation Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ gate_score = self.act(self.w_0(hidden_states)) hidden_states = self.w_1(hidden_states) hidden_states = gate_score * hidden_states return hidden_states class CpmAntFeedForward(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.w_in = CpmAntDenseGatedACT(config) if config.dropout_p is not None: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None self.w_out = nn.Linear(config.dim_ff, config.hidden_size, bias=False) def forward(self, hidden_states: torch.Tensor): """ Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ hidden_states = self.w_in(hidden_states) if self.dropout is not None: hidden_states = self.dropout(hidden_states) hidden_states = self.w_out(hidden_states) return hidden_states class CpmAntFFNBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.layernorm_before_ffn = CpmAntLayerNorm(config) self.ffn = CpmAntFeedForward(config) if config.dropout_p: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None def forward( self, hidden_states: torch.Tensor, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): Hidden states before feed forward layer. """ ln_outputs = self.layernorm_before_ffn(hidden_states) outputs = self.ffn(ln_outputs) if self.dropout is not None: outputs = self.dropout(outputs) hidden_states = hidden_states + outputs return hidden_states class CpmAntTransformerBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.self_att = CpmAntSelfAttentionBlock(config) self.ffn = CpmAntFFNBlock(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor`): Input to the layer of shape `(batch, seq_len, dim_model)` attention_mask (`torch.Tensor`): Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` position_bias (`torch.Tensor`): Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): Cached past key and value projection states use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ hidden_states = self.self_att( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, past_key_values=past_key_values, use_cache=use_cache, ) hidden_states, attn_weights, current_key_value = hidden_states hidden_states = self.ffn(hidden_states) return hidden_states, attn_weights, current_key_value class CpmAntEncoder(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.num_layers = config.num_hidden_layers self.layers = nn.ModuleList([CpmAntTransformerBlock(config) for ith in range(self.num_layers)]) self.output_layernorm = CpmAntLayerNorm(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor`): Input to the layer of shape `(batch, seq_len, dim_model)` attention_mask (`torch.Tensor`): Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` position_bias (`torch.Tensor`): Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): Cached past key and value projection states use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None current_key_values = () if use_cache else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, position_bias, output_attentions=output_attentions, past_key_values=past_key_values[i] if past_key_values else None, use_cache=use_cache, ) hidden_states, attn_weights, current_key_value = layer_outputs if output_attentions: all_self_attns += (attn_weights,) if current_key_value is not None: current_key_values = current_key_values + (current_key_value,) hidden_states = self.output_layernorm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) return hidden_states, current_key_values, all_hidden_states, all_self_attns # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->CPMAnt class CpmAntIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class CpmAntSegmentPositionEmbedding(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.num_heads = config.num_attention_heads self.num_buckets = config.position_bias_num_buckets self.max_distance = config.position_bias_max_distance self.num_segments = config.segment_types self.relative_attention_bias = nn.Parameter( torch.empty( config.segment_types * config.segment_types + config.position_bias_num_buckets, config.num_attention_heads, ) ) def forward( self, key_pos: torch.Tensor, query_pos: torch.Tensor, key_segment: torch.Tensor, query_segment: torch.Tensor, ): with torch.no_grad(): batch = key_pos.size(0) keylen = key_pos.size(1) querylen = query_pos.size(1) if key_pos.size(0) != query_pos.size(0): raise AssertionError( f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!" ) if keylen != key_segment.size(1) or querylen != query_segment.size(1): raise AssertionError( f"keylen should be equal to key_segment.size(1), but got {keylen} and {key_segment.size(1)}!" ) if querylen != query_segment.size(1): raise AssertionError( f"querylen should be equal to query_segment.size(1), but got {querylen} and {query_segment.szie(1)}!" ) key_pos = key_pos.view(batch, -1, keylen) query_pos = query_pos.view(batch, querylen, -1) key_segment = key_segment.view(batch, -1, keylen) query_segment = query_segment.view(batch, querylen, -1) relative_position_bucket = self._segment_relative_position_bucket(query_segment, key_segment) relative_position_bucket = relative_position_bucket + self.num_buckets # (batch, len_q, len_k) absolute_position_bucket = self._position_bucket( torch.arange(keylen, dtype=torch.int32, device=relative_position_bucket.device)[None, :] - torch.arange(querylen, dtype=torch.int32, device=relative_position_bucket.device)[:, None], num_buckets=self.num_buckets, max_distance=self.max_distance, ) relative_position_bucket = torch.where( (key_segment == query_segment), absolute_position_bucket[None, :, :], relative_position_bucket, ) # (batch, len_q, len_k, num_heads) embeds = F.embedding(relative_position_bucket, self.relative_attention_bias) # (batch, num_heads, len_q, len_k) embeds = embeds.permute(0, 3, 1, 2).contiguous() return embeds def _segment_relative_position_bucket(self, query_segment, key_segment): return query_segment * self.num_segments + key_segment def _position_bucket(self, relative_position, num_buckets=32, max_distance=128): relative_buckets = 0 # always bidirectional in CPMAnt num_buckets //= 2 relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets relative_position = torch.abs(relative_position) max_exact = num_buckets // 2 is_small = relative_position < max_exact relative_postion_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.int32) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1), ) relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large) return relative_buckets # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMAnt class CpmAntOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class CpmAntPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CpmAntConfig base_model_prefix = "cpmant" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, CpmAntLayerNorm): module.weight.data.fill_(1.0) elif isinstance(module, CpmAntSegmentPositionEmbedding): module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std) CPMANT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CPMANT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare CPMAnt Model outputting raw hidden-states without any specific head on top.", CPMANT_START_DOCSTRING, ) class CpmAntModel(CpmAntPreTrainedModel): def __init__(self, config: CpmAntConfig): super().__init__(config) self.encoder = CpmAntEncoder(config) self.segment_embedding = nn.Embedding(config.segment_types, config.hidden_size) self.input_embedding = nn.Embedding( config.vocab_size + config.prompt_types * config.prompt_length, config.hidden_size ) self.position_bias = CpmAntSegmentPositionEmbedding(config) self.prompt_length = config.prompt_length self.vocab_size = config.vocab_size self.post_init() def get_input_embeddings(self): return self.input_embedding def set_input_embeddings(self, embeddings, **kwargs): self.input_embedding = embeddings def _prepare_attention_mask(self, input_ids, span, context, length): batch = input_ids.size(0) seqlen = input_ids.size(1) device = input_ids.device directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(seqlen, device=device).view(-1, 1) attention_mask = context[:, None, :] | ( context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen) ) attention_mask = attention_mask & (span[:, None, :] == span[:, :, None]) # mask for left padding mask_1d = ( torch.tensor(list(range(seqlen - self.prompt_length))[::-1], device=device)[None, :].repeat(batch, 1) < length[:, None] ) mask_1d = torch.cat((torch.ones(batch, self.prompt_length, device=device).bool(), mask_1d), dim=1) attention_mask = mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask return attention_mask @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache # add prompts ahead if input_ids.dtype != torch.int32: input_ids = input_ids.to(torch.int32) dtype, device = input_ids.dtype, input_ids.device segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device) length = (segment != 0).sum(-1).to(dtype=dtype, device=device) input_ids = torch.cat( ( torch.arange( self.prompt_length * 2 + self.vocab_size, self.prompt_length * 3 + self.vocab_size, dtype=dtype, device=device, ).repeat(input_ids.size(0), 1), input_ids, ), dim=1, ) batch, seq_length = input_ids.size() segment = torch.cat((torch.zeros(batch, self.prompt_length, dtype=dtype, device=device), segment), dim=1) context = torch.full((batch, seq_length), 1, dtype=dtype, device=device) position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) span = torch.full((batch, seq_length), 0, dtype=dtype, device=device) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.encoder.num_layers) input_ids = input_ids.contiguous() hidden_states = self.input_embedding(input_ids) segment_states = self.segment_embedding(segment) hidden_states = hidden_states + segment_states else: past_length = past_key_values[0][0].size(-2) segment_states = self.segment_embedding(segment) hidden_states = self.input_embedding(input_ids) + segment_states[:, -1:, :] attention_mask = self._prepare_attention_mask(input_ids, span, context, length) position_bias = self.position_bias(position, position, segment, segment) attention_mask = attention_mask[:, past_length:, :] position_bias = position_bias[:, :, past_length:, :] hidden_states = hidden_states[:, past_length:, :] hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder( hidden_states, attention_mask, position_bias, output_attentions, output_hidden_states, past_key_values, use_cache, ) if past_length == 0: hidden_states = hidden_states[:, self.prompt_length :, :] # drop the prompt if all_attentions is not None: new_attentions = () for attention in all_attentions: new_attentions += (attention[:, :, self.prompt_length :, self.prompt_length :],) all_attentions = new_attentions if all_hidden_states is not None: new_hidden_states = () for hidden_state in all_hidden_states: new_hidden_states += (hidden_state[:, self.prompt_length :, :],) all_hidden_states = new_hidden_states if not return_dict: return tuple( v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, CPMANT_START_DOCSTRING, ) class CpmAntForCausalLM(CpmAntPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: CpmAntConfig): super().__init__(config) self.cpmant = CpmAntModel(config) # lm_head.weight is tied to cpmant.input_embedding.weight self.lm_head = nn.Linear( config.hidden_size, config.vocab_size + config.prompt_types * config.prompt_length, bias=False ) self.post_init() @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, # dummy parameter for text-generation pipeline **kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): CPMAnt will process attention mask automatically, this parameter is a dummy parameter for text-generation pipeline. Example: Text Generation with CpmAntForCausalLM. ```python >>> from transformers import CPMAntTokenizer, CpmAntForCausalLM >>> texts = "今天天气不错," >>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b") >>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") >>> input_ids = tokenizer(texts, return_tensors="pt") >>> outputs = model.generate(**input_ids) >>> output_texts = tokenizer.batch_decode(outputs) >>> print(output_texts) ['今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的'] ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.cpmant( input_ids, output_attentions, output_hidden_states, past_key_values, use_cache, return_dict ) hidden_states = model_output.last_hidden_state if return_dict else model_output[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss_func = CrossEntropyLoss() loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1)) if not return_dict: output = (logits,) + model_output[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=model_output.past_key_values, hidden_states=model_output.hidden_states, attentions=model_output.attentions, ) def get_input_embeddings(self): return self.cpmant.input_embedding def set_input_embeddings(self, embeddings): self.cpmant.input_embedding = embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, **kwargs): input_ids = input_ids.int() # save the memory usage of dummy attention mask if "attention_mask" in kwargs: kwargs["attention_mask"] = torch.zeros(1, 1) return { "input_ids": input_ids, "use_cache": kwargs["use_cache"], "past_key_values": kwargs.get("past_key_values", None), } def _reorder_cache(self, past_key_values, beam_idx): past_key_values = [list(each) if each is not None else each for each in past_key_values] for key_value_layer in past_key_values: key_value_layer[0] = key_value_layer[0][beam_idx] key_value_layer[1] = key_value_layer[1][beam_idx] return past_key_values
transformers/src/transformers/models/cpmant/modeling_cpmant.py/0
{ "file_path": "transformers/src/transformers/models/cpmant/modeling_cpmant.py", "repo_id": "transformers", "token_count": 16764 }
284
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2 checkpoint.""" import argparse import os from functools import reduce import fairseq import torch from datasets import load_dataset from transformers import Wav2Vec2Processor, logging from transformers.models.data2vec.configuration_data2vec_audio import Data2VecAudioConfig # Copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py from transformers.models.data2vec.data2vec_audio import Data2VecAudioModel as Dummy # noqa: F401 from transformers.models.data2vec.modeling_data2vec_audio import Data2VecAudioForCTC, Data2VecAudioModel logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "models.0.layer_norm": "feature_projection.layer_norm", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } TOP_LEVEL_KEYS = [ "lm_head", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() if not is_headless: feature_extractor = hf_model.data2vec_audio.feature_extractor pos_conv_embedding = hf_model.data2vec_audio.encoder.pos_conv_embed else: feature_extractor = hf_model.feature_extractor pos_conv_embedding = hf_model.encoder.pos_conv_embed for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, ) is_used = True elif "pos_conv" in name: load_pos_conv_layer( name, value, pos_conv_embedding, unused_weights, ) is_used = True else: for key, mapped_key in MAPPING.items(): if not is_headless: mapped_key = "data2vec_audio." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def access_by_string(module, path): names = path.split(".") return reduce(getattr, names, module) def set_weights(full_name, module, fsq_value, hf_weight_path): hf_weight = access_by_string(module, hf_weight_path) hf_value = hf_weight.data if fsq_value.shape != hf_value.shape: raise ValueError(f"{full_name} has size {fsq_value.shape}, but {hf_value.shape} was found.") hf_weight.data = fsq_value logger.info(f"{full_name} was correctly initialized from {hf_weight_path}.") def load_conv_layer(full_name, value, feature_extractor, unused_weights): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) weight_type = name.split(".")[-1] if type_id == 0: layer_type = "conv" elif type_id == 2: layer_type = "layer_norm" else: unused_weights.append(full_name) return set_weights(full_name, feature_extractor, value, f"conv_layers.{layer_id}.{layer_type}.{weight_type}") def load_pos_conv_layer(full_name, value, pos_conv_embeddings, unused_weights): name = full_name.split("pos_conv.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) weight_type = name.split(".")[-1] if type_id != 0: unused_weights.append(full_name) return else: layer_type = "conv" set_weights(full_name, pos_conv_embeddings, value, f"layers.{layer_id}.{layer_type}.{weight_type}") @torch.no_grad() def convert_wav2vec2_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Data2VecAudioConfig.from_pretrained(config_path) else: config = Data2VecAudioConfig() if not is_finetuned: # Modify final_proj layer name hf_wav2vec = Data2VecAudioModel(config) data2vec_checkpoint_dir = os.path.dirname(checkpoint_path) state_dict = torch.load(checkpoint_path) state_dict["model"]["final_proj.weight"] = state_dict["model"].pop("final_proj.0.weight") state_dict["model"]["final_proj.bias"] = state_dict["model"].pop("final_proj.0.bias") converted_ckpt = os.path.join(data2vec_checkpoint_dir, "converted.pt") torch.save(state_dict, converted_ckpt) else: hf_wav2vec = Data2VecAudioForCTC(config) converted_ckpt = checkpoint_path def load_data2vec(path): model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([path]) return model[0].eval() model = load_data2vec(converted_ckpt) recursively_load_weights(model, hf_wav2vec, not is_finetuned) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-lv60") ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") input_audio = [x["array"] for x in ds[:4]["audio"]] inputs = processor(input_audio, return_tensors="pt", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask # input_values = inputs.input_values[:, :-1] # attention_mask = inputs.attention_mask[:, :-1] hf_wav2vec.eval() model.eval() if is_finetuned: their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ "encoder_out" ].transpose(0, 1) our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["logits"] pred_ids = torch.argmax(our_output, dim=-1) output_string = processor.batch_decode(pred_ids) print(f"Expected Output: {ds[:4]['text']}, Pred: {output_string}") else: their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ "layer_results" ][-1][0].transpose(0, 1) our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["last_hidden_state"] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if is_finetuned: processor.save_pretrained(pytorch_dump_folder_path) else: processor.feature_extractor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_wav2vec2_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4725 }
285
# coding=utf-8 # Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 DeBERTa-v2 model.""" from __future__ import annotations from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_deberta_v2 import DebertaV2Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DebertaV2Config" _CHECKPOINT_FOR_DOC = "kamalkraj/deberta-v2-xlarge" TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "kamalkraj/deberta-v2-xlarge", # See all DeBERTa models at https://huggingface.co/models?filter=deberta-v2 ] # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaContextPooler with Deberta->DebertaV2 class TFDebertaV2ContextPooler(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense") self.dropout = TFDebertaV2StableDropout(config.pooler_dropout, name="dropout") self.config = config def call(self, hidden_states, training: bool = False): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token, training=training) pooled_output = self.dense(context_token) pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output) return pooled_output @property def output_dim(self) -> int: return self.config.hidden_size def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.pooler_hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaXSoftmax with Deberta->DebertaV2 class TFDebertaV2XSoftmax(keras.layers.Layer): """ Masked Softmax which is optimized for saving memory Args: input (`tf.Tensor`): The input tensor that will apply softmax. mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis def call(self, inputs: tf.Tensor, mask: tf.Tensor): rmask = tf.logical_not(tf.cast(mask, tf.bool)) output = tf.where(rmask, float("-inf"), inputs) output = stable_softmax(output, self.axis) output = tf.where(rmask, 0.0, output) return output # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaStableDropout with Deberta->DebertaV2 class TFDebertaV2StableDropout(keras.layers.Layer): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prob @tf.custom_gradient def xdropout(self, inputs): """ Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob. """ mask = tf.cast( 1 - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)), tf.bool, ) scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32) if self.drop_prob > 0: inputs = tf.where(mask, 0.0, inputs) * scale def grad(upstream): if self.drop_prob > 0: return tf.where(mask, 0.0, upstream) * scale else: return upstream return inputs, grad def call(self, inputs: tf.Tensor, training: tf.Tensor = False): if training: return self.xdropout(inputs) return inputs # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaSelfOutput with Deberta->DebertaV2 class TFDebertaV2SelfOutput(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def call(self, hidden_states, input_tensor, training: bool = False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaAttention with Deberta->DebertaV2 class TFDebertaV2Attention(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.self = TFDebertaV2DisentangledSelfAttention(config, name="self") self.dense_output = TFDebertaV2SelfOutput(config, name="output") self.config = config def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self( hidden_states=input_tensor, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) if query_states is None: query_states = input_tensor attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=query_states, training=training ) output = (attention_output,) + self_outputs[1:] return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaIntermediate with Deberta->DebertaV2 class TFDebertaV2Intermediate(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOutput with Deberta->DebertaV2 class TFDebertaV2Output(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLayer with Deberta->DebertaV2 class TFDebertaV2Layer(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.attention = TFDebertaV2Attention(config, name="attention") self.intermediate = TFDebertaV2Intermediate(config, name="intermediate") self.bert_output = TFDebertaV2Output(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) class TFDebertaV2ConvLayer(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.kernel_size = getattr(config, "conv_kernel_size", 3) # groups = getattr(config, "conv_groups", 1) self.conv_act = get_tf_activation(getattr(config, "conv_act", "tanh")) self.padding = (self.kernel_size - 1) // 2 self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def build(self, input_shape=None): if self.built: return self.built = True with tf.name_scope("conv"): self.conv_kernel = self.add_weight( name="kernel", shape=[self.kernel_size, self.config.hidden_size, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) self.conv_bias = self.add_weight( name="bias", shape=[self.config.hidden_size], initializer=tf.zeros_initializer() ) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) def call( self, hidden_states: tf.Tensor, residual_states: tf.Tensor, input_mask: tf.Tensor, training: bool = False ) -> tf.Tensor: out = tf.nn.conv2d( tf.expand_dims(hidden_states, 1), tf.expand_dims(self.conv_kernel, 0), strides=1, padding=[[0, 0], [0, 0], [self.padding, self.padding], [0, 0]], ) out = tf.squeeze(tf.nn.bias_add(out, self.conv_bias), 1) rmask = tf.cast(1 - input_mask, tf.bool) out = tf.where(tf.broadcast_to(tf.expand_dims(rmask, -1), shape_list(out)), 0.0, out) out = self.dropout(out, training=training) out = self.conv_act(out) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input) if input_mask is None: output_states = output else: if len(shape_list(input_mask)) != len(shape_list(layer_norm_input)): if len(shape_list(input_mask)) == 4: input_mask = tf.squeeze(tf.squeeze(input_mask, axis=1), axis=1) input_mask = tf.cast(tf.expand_dims(input_mask, axis=2), tf.float32) output_states = output * input_mask return output_states class TFDebertaV2Encoder(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.layer = [TFDebertaV2Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] self.relative_attention = getattr(config, "relative_attention", False) self.config = config if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) self.pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets * 2 self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.conv = TFDebertaV2ConvLayer(config, name="conv") if getattr(config, "conv_kernel_size", 0) > 0 else None def build(self, input_shape=None): if self.built: return self.built = True if self.relative_attention: self.rel_embeddings = self.add_weight( name="rel_embeddings.weight", shape=[self.pos_ebd_size, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, self.config.hidden_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def get_rel_embedding(self): rel_embeddings = self.rel_embeddings if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if len(shape_list(attention_mask)) <= 2: extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2) attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1) attention_mask = tf.cast(attention_mask, tf.uint8) elif len(shape_list(attention_mask)) == 3: attention_mask = tf.expand_dims(attention_mask, 1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2] relative_pos = build_relative_position( q, shape_list(hidden_states)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) return relative_pos def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if len(shape_list(attention_mask)) <= 2: input_mask = attention_mask else: input_mask = tf.cast(tf.math.reduce_sum(attention_mask, axis=-2) > 0, dtype=tf.uint8) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) layer_outputs = layer_module( hidden_states=next_kv, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) output_states = layer_outputs[0] if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) next_kv = output_states if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = tf.math.sign(relative_pos) mid = bucket_size // 2 abs_pos = tf.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, tf.math.abs(relative_pos)) log_pos = ( tf.math.ceil( tf.cast(tf.math.log(abs_pos / mid), tf.float32) / tf.math.log((max_position - 1) / mid) * (mid - 1) ) + mid ) bucket_pos = tf.cast( tf.where(abs_pos <= mid, tf.cast(relative_pos, tf.float32), log_pos * tf.cast(sign, tf.float32)), tf.int32 ) return bucket_pos def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position Return: `tf.Tensor`: A tensor with shape [1, query_size, key_size] """ q_ids = tf.range(query_size, dtype=tf.int32) k_ids = tf.range(key_size, dtype=tf.int32) rel_pos_ids = q_ids[:, None] - tf.tile(tf.expand_dims(k_ids, axis=0), [shape_list(q_ids)[0], 1]) if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0) return tf.cast(rel_pos_ids, tf.int64) def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): shapes = [ shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(query_layer)[2], shape_list(relative_pos)[-1], ] return tf.broadcast_to(c2p_pos, shapes) def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): shapes = [ shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(key_layer)[-2], shape_list(key_layer)[-2], ] return tf.broadcast_to(c2p_pos, shapes) def pos_dynamic_expand(pos_index, p2c_att, key_layer): shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]] return tf.broadcast_to(pos_index, shapes) def take_along_axis(x, indices): # Only a valid port of np.take_along_axis when the gather axis is -1 # TPU + gathers and reshapes don't go along well -- see https://github.com/huggingface/transformers/issues/18239 if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy): # [B, S, P] -> [B, S, P, D] one_hot_indices = tf.one_hot(indices, depth=x.shape[-1], dtype=x.dtype) # if we ignore the first two dims, this is equivalent to multiplying a matrix (one hot) by a vector (x) # grossly abusing notation: [B, S, P, D] . [B, S, D] = [B, S, P] gathered = tf.einsum("ijkl,ijl->ijk", one_hot_indices, x) # GPUs, on the other hand, prefer gathers instead of large one-hot+matmuls else: gathered = tf.gather(x, indices, batch_dims=2) return gathered class TFDebertaV2DisentangledSelfAttention(keras.layers.Layer): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query_proj", use_bias=True, ) self.key_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key_proj", use_bias=True, ) self.value_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value_proj", use_bias=True, ) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="pos_dropout") if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_proj", use_bias=True, ) if "p2c" in self.pos_att_type: self.pos_query_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj", ) self.softmax = TFDebertaV2XSoftmax(axis=-1) self.dropout = TFDebertaV2StableDropout(config.attention_probs_dropout_prob, name="dropout") self.config = config def transpose_for_scores(self, tensor: tf.Tensor, attention_heads: int) -> tf.Tensor: tensor_shape = shape_list(tensor) # In graph mode mode, we can't reshape with -1 as the final dimension if the first dimension (batch size) is None shape = tensor_shape[:-1] + [attention_heads, tensor_shape[-1] // attention_heads] # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=shape) tensor = tf.transpose(tensor, perm=[0, 2, 1, 3]) x_shape = shape_list(tensor) tensor = tf.reshape(tensor, shape=[-1, x_shape[-2], x_shape[-1]]) return tensor def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: """ Call the module Args: hidden_states (`tf.Tensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`tf.Tensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. return_att (`bool`, optional): Whether return the attention matrix. query_states (`tf.Tensor`, optional): The *Q* state in *Attention(Q,K,V)*. relative_pos (`tf.Tensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`tf.Tensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = tf.math.sqrt(tf.cast(shape_list(query_layer)[-1] * scale_factor, tf.float32)) attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 2, 1]) / scale) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = tf.reshape( attention_scores, (-1, self.num_attention_heads, shape_list(attention_scores)[-2], shape_list(attention_scores)[-1]), ) # bsz x height x length x dimension attention_probs = self.softmax(attention_scores, attention_mask) attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul( tf.reshape(attention_probs, [-1, shape_list(attention_probs)[-2], shape_list(attention_probs)[-1]]), value_layer, ) context_layer = tf.transpose( tf.reshape( context_layer, [-1, self.num_attention_heads, shape_list(context_layer)[-2], shape_list(context_layer)[-1]], ), [0, 2, 1, 3], ) # Set the final dimension here explicitly. # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput # requires final input dimension to be defined context_layer_shape = shape_list(context_layer) new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = shape_list(query_layer)[-2] relative_pos = build_relative_position( q, shape_list(key_layer)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) shape_list_pos = shape_list(relative_pos) if len(shape_list_pos) == 2: relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0) elif len(shape_list_pos) == 3: relative_pos = tf.expand_dims(relative_pos, 1) # bsz x height x query x key elif len(shape_list_pos) != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}") att_span = self.pos_ebd_size rel_embeddings = tf.expand_dims( rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :], 0 ) if self.share_att_key: pos_query_layer = tf.tile( self.transpose_for_scores(self.query_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) pos_key_layer = tf.tile( self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) else: if "c2p" in self.pos_att_type: pos_key_layer = tf.tile( self.transpose_for_scores(self.pos_key_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = tf.tile( self.transpose_for_scores(self.pos_query_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = tf.math.sqrt(tf.cast(shape_list(pos_key_layer)[-1] * scale_factor, tf.float32)) c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 2, 1])) c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = take_along_axis( c2p_att, tf.broadcast_to( tf.squeeze(c2p_pos, 0), [shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(relative_pos)[-1]], ), ) score += c2p_att / scale # position->content if "p2c" in self.pos_att_type: scale = tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, tf.float32)) if shape_list(key_layer)[-2] != shape_list(query_layer)[-2]: r_pos = build_relative_position( shape_list(key_layer)[-2], shape_list(key_layer)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) r_pos = tf.expand_dims(r_pos, 0) else: r_pos = relative_pos p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 2, 1])) p2c_att = tf.transpose( take_along_axis( p2c_att, tf.broadcast_to( tf.squeeze(p2c_pos, 0), [shape_list(query_layer)[0], shape_list(key_layer)[-2], shape_list(key_layer)[-2]], ), ), [0, 2, 1], ) score += p2c_att / scale return score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query_proj", None) is not None: with tf.name_scope(self.query_proj.name): self.query_proj.build([None, None, self.config.hidden_size]) if getattr(self, "key_proj", None) is not None: with tf.name_scope(self.key_proj.name): self.key_proj.build([None, None, self.config.hidden_size]) if getattr(self, "value_proj", None) is not None: with tf.name_scope(self.value_proj.name): self.value_proj.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "pos_dropout", None) is not None: with tf.name_scope(self.pos_dropout.name): self.pos_dropout.build(None) if getattr(self, "pos_key_proj", None) is not None: with tf.name_scope(self.pos_key_proj.name): self.pos_key_proj.build([None, None, self.config.hidden_size]) if getattr(self, "pos_query_proj", None) is not None: with tf.name_scope(self.pos_query_proj.name): self.pos_query_proj.build([None, None, self.config.hidden_size]) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaEmbeddings Deberta->DebertaV2 class TFDebertaV2Embeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.position_biased_input = getattr(config, "position_biased_input", True) self.initializer_range = config.initializer_range if self.embedding_size != config.hidden_size: self.embed_proj = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embed_proj", use_bias=False, ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): if self.config.type_vocab_size > 0: self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) else: self.token_type_embeddings = None with tf.name_scope("position_embeddings"): if self.position_biased_input: self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "embed_proj", None) is not None: with tf.name_scope(self.embed_proj.name): self.embed_proj.build([None, None, self.embedding_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, mask: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) final_embeddings = inputs_embeds if self.position_biased_input: position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings += position_embeds if self.config.type_vocab_size > 0: token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings += token_type_embeds if self.embedding_size != self.hidden_size: final_embeddings = self.embed_proj(final_embeddings) final_embeddings = self.LayerNorm(final_embeddings) if mask is not None: if len(shape_list(mask)) != len(shape_list(final_embeddings)): if len(shape_list(mask)) == 4: mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1) mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32) final_embeddings = final_embeddings * mask final_embeddings = self.dropout(final_embeddings, training=training) return final_embeddings # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPredictionHeadTransform with Deberta->DebertaV2 class TFDebertaV2PredictionHeadTransform(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.dense = keras.layers.Dense( units=self.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.embedding_size]) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLMPredictionHead with Deberta->DebertaV2 class TFDebertaV2LMPredictionHead(keras.layers.Layer): def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.transform = TFDebertaV2PredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOnlyMLMHead with Deberta->DebertaV2 class TFDebertaV2OnlyMLMHead(keras.layers.Layer): def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFDebertaV2LMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaMainLayer with Deberta->DebertaV2 class TFDebertaV2MainLayer(keras.layers.Layer): config_class = DebertaV2Config def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFDebertaV2Embeddings(config, name="embeddings") self.encoder = TFDebertaV2Encoder(config, name="encoder") def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, mask=attention_mask, training=training, ) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPreTrainedModel with Deberta->DebertaV2 class TFDebertaV2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaV2Config base_model_prefix = "deberta" DEBERTA_START_DOCSTRING = r""" The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple. """ @add_start_docstrings( "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaModel with Deberta->DebertaV2 class TFDebertaV2Model(TFDebertaV2PreTrainedModel): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaV2MainLayer(config, name="deberta") @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForMaskedLM with Deberta->DebertaV2 class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFDebertaV2ForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.mlm = TFDebertaV2OnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings( """ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForSequenceClassification with Deberta->DebertaV2 class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.pooler = TFDebertaV2ContextPooler(config, name="pooler") drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = TFDebertaV2StableDropout(drop_out, name="cls_dropout") self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.output_dim = self.pooler.output_dim @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.output_dim]) @add_start_docstrings( """ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForTokenClassification with Deberta->DebertaV2 class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForQuestionAnswering with Deberta->DebertaV2 class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DEBERTA_START_DOCSTRING, ) class TFDebertaV2ForMultipleChoice(TFDebertaV2PreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model # _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] # _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.pooler = TFDebertaV2ContextPooler(config, name="pooler") self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.output_dim = self.pooler.output_dim @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.deberta( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.output_dim])
transformers/src/transformers/models/deberta_v2/modeling_tf_deberta_v2.py/0
{ "file_path": "transformers/src/transformers/models/deberta_v2/modeling_tf_deberta_v2.py", "repo_id": "transformers", "token_count": 36390 }
286
# coding=utf-8 # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Open-Llama model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class OpenLlamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OpenLlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. Example: ```python >>> from transformers import OpenLlamaModel, OpenLlamaConfig >>> # Initializing a Open-Llama open_llama-7b style configuration >>> configuration = OpenLlamaConfig() >>> # Initializing a model from the open_llama-7b style configuration >>> model = OpenLlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "open-llama" def __init__( self, vocab_size=100000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, use_memory_efficient_attention=True, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, use_stable_embedding=True, shared_input_output_embedding=True, rope_scaling=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.use_memory_efficient_attention = kwargs.pop( "use_memorry_efficient_attention", use_memory_efficient_attention ) self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.use_stable_embedding = use_stable_embedding self.shared_input_output_embedding = shared_input_output_embedding self.rope_scaling = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/deprecated/open_llama/configuration_open_llama.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/open_llama/configuration_open_llama.py", "repo_id": "transformers", "token_count": 3053 }
287
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Transformer XL model. """ from __future__ import annotations from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ....modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ....tf_utils import shape_list, stable_softmax from ....utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_transfo_xl import TransfoXLConfig from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "transfo-xl-wt103", # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl ] class TFPositionalEmbedding(keras.layers.Layer): def __init__(self, demb, **kwargs): super().__init__(**kwargs) self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb)) def call(self, pos_seq, bsz=None): self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype) sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) if bsz is not None: return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) else: return pos_emb[:, None, :] class TFPositionwiseFF(keras.layers.Layer): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs): super().__init__(**kwargs) self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.layer_1 = keras.layers.Dense( d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0" ) self.drop_1 = keras.layers.Dropout(dropout) self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3") self.drop_2 = keras.layers.Dropout(dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.pre_lnorm = pre_lnorm def call(self, inp, training=False): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.layer_norm(inp) core_out = self.layer_1(core_out) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.layer_1(inp) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0.0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.output_attentions = output_attentions self.qkv_net = keras.layers.Dense( 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net" ) self.drop = keras.layers.Dropout(dropout) self.dropatt = keras.layers.Dropout(dropatt) self.o_net = keras.layers.Dense( d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.scale = 1 / (d_head**0.5) self.pre_lnorm = pre_lnorm if r_r_bias is not None and r_w_bias is not None: # Biases are shared self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias else: self.r_r_bias = None self.r_w_bias = None self.r_net = keras.layers.Dense( self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net" ) def build(self, input_shape): if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) super().build(input_shape) def _rel_shift(self, x): x_size = shape_list(x) x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) x = tf.reshape(x, x_size) return x def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False): qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1] if mems is not None: mems = tf.cast(mems, dtype=w.dtype) cat = tf.concat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) klen = shape_list(w_head_k)[0] w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score = attn_score * self.scale # compute attention probability if attn_mask is not None: attn_mask_t = attn_mask[:, :, None, None] attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype) attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t # [qlen x klen x bsz x n_head] attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropatt(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v) # [qlen x bsz x n_head x d_head] attn_vec_sizes = shape_list(attn_vec) attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head)) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out, training=training) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class TFRelPartialLearnableDecoderLayer(keras.layers.Layer): def __init__( self, n_head, d_model, d_head, d_inner, dropout, dropatt=0.0, pre_lnorm=False, r_w_bias=None, r_r_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.dec_attn = TFRelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm, r_w_bias=r_w_bias, r_r_bias=r_r_bias, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, output_attentions=output_attentions, name="dec_attn", ) self.pos_ff = TFPositionwiseFF( d_model, d_inner, dropout, pre_lnorm=pre_lnorm, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, name="pos_ff", ) def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False): attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training) ff_output = self.pos_ff(attn_outputs[0], training=training) outputs = [ff_output] + attn_outputs[1:] return outputs class TFTransfoEmbeddings(keras.layers.Layer): def __init__(self, vocab_size, emb_size, init_std, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.emb_size = emb_size self.init_std = init_std def build(self, input_shape): self.weight = self.add_weight( shape=(self.vocab_size, self.emb_size), initializer=get_initializer(self.init_std), name="embeddings", ) super().build(input_shape) def call(self, inputs): return tf.gather(self.weight, inputs) class TFAdaptiveEmbedding(keras.layers.Layer): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs): super().__init__(**kwargs) self.n_token = n_token self.d_embed = d_embed self.init_std = init_std self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj**0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = [] self.emb_projs = [] if div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.emb_layers.append( TFTransfoEmbeddings( r_idx - l_idx, d_emb_i, init_std, name=f"emb_layers_._{i}", ) ) def build(self, input_shape): for i in range(len(self.cutoffs)): d_emb_i = self.d_embed // (self.div_val**i) self.emb_projs.append( self.add_weight( shape=(d_emb_i, self.d_proj), initializer=get_initializer(self.init_std), trainable=True, name=f"emb_projs_._{i}", ) ) super().build(input_shape) def call(self, inp): if self.div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: inp_flat = tf.reshape(inp, (-1,)) emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i]) mask_idx = tf.where(mask_i) scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat)) emb_flat = tf.cast(emb_flat, dtype=scatter.dtype) emb_flat += scatter embed_shape = shape_list(inp) + [self.d_proj] embed = tf.reshape(emb_flat, embed_shape) embed *= self.emb_scale return embed @keras_serializable class TFTransfoXLMainLayer(keras.layers.Layer): config_class = TransfoXLConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.untie_r = config.untie_r self.word_emb = TFAdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, init_std=config.init_std, name="word_emb", ) self.drop = keras.layers.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type self.layers = [] if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( TFRelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if self.untie_r else self.r_w_bias, r_r_bias=None if self.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, init_std=config.init_std, output_attentions=self.output_attentions, name=f"layers_._{i}", ) ) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb") else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint def build(self, input_shape): if not self.untie_r: self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) super().build(input_shape) def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, value): raise NotImplementedError def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): raise NotImplementedError def init_mems(self, bsz): if self.mem_len > 0: mems = [] for i in range(self.n_layer): empty = tf.zeros([self.mem_len, bsz, self.d_model]) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems new_mems = [] end_idx = mlen + tf.math.maximum(0, qlen) beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len)) for i in range(len(hids)): mems[i] = tf.cast(mems[i], dtype=hids[i].dtype) cat = tf.concat([mems[i], hids[i]], axis=0) tf.stop_gradient(cat) new_mems.append(cat[beg_idx:end_idx]) return new_mems @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ): # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids) elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = shape_list(mems[0])[0] if mems is not None else 0 klen = mlen + qlen # Compute decoder attention mask all_ones = tf.ones([qlen, klen], dtype=tf.int32) upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen) if self.same_length: mask_len = klen - self.mem_len mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero # Use an indicator variable instead of a conditional to keep the compiler happy lower_mask = tf.linalg.band_part(all_ones, -1, 0) - ( tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32) ) dec_attn_mask = upper_mask + lower_mask else: dec_attn_mask = upper_mask hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = tf.range(klen - 1, -1, -1.0) if self.clamp_len > 0: pos_seq = tf.minimum(pos_seq, self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb, training=training) pos_emb = self.drop(pos_emb, training=training) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask, mems_i, head_mask[i], output_attentions, training=training, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out, training=training) new_mems = self._update_mems(hids, mems, mlen, qlen) # We transpose back here to shape [bsz, len, hidden_dim] core_out = tf.transpose(core_out, perm=(1, 0, 2)) if output_hidden_states: # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids) hids = hids + (core_out,) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TFTransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) class TFTransfoXLPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig base_model_prefix = "transformer" @dataclass class TFTransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): Language modeling losses (not reduced). prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_scores: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None TRANSFO_XL_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as `input_ids` as they have already been computed. head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLModel(TFTransfoXLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFTransfoXLMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]: outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = TFTransfoXLMainLayer(config, name="transformer") self.sample_softmax = config.sample_softmax assert self.sample_softmax <= 0, ( "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" " https://github.com/huggingface/transformers/issues/3310" ) self.crit = TFAdaptiveSoftmaxMask( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit" ) def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError() def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if len(self.crit.out_layers) > 0: return self.crit.out_layers[-1] return None def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]: if input_ids is not None: bsz, tgt_len = shape_list(input_ids)[:2] else: bsz, tgt_len = shape_list(inputs_embeds)[:2] transformer_outputs = self.transformer( input_ids, mems, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, training=training, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] softmax_output = self.crit(pred_hid, labels, training=training) prediction_scores = softmax_output if labels is None else () if not return_dict: return (prediction_scores,) + transformer_outputs[1:] return TFTransfoXLLMHeadModelOutput( prediction_scores=prediction_scores, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past_key_values: input_ids = tf.expand_dims(input_ids[:, -1], axis=-1) else: input_ids = input_ids return inputs # Adapted from the torch tie_weights function def tf_to_pt_weight_rename(self, tf_weight): if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight: return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers") elif self.config.tie_projs and "crit.out_projs" in tf_weight: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0") elif tie_proj and self.config.div_val != 1: # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs") else: return (tf_weight,) @add_start_docstrings( """ The Transfo XL Model transformer with a sequence classification head on top (linear layer). [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1,GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_range), name="score", use_bias=False, ) self.transformer = TFTransfoXLMainLayer(config, name="transformer") def get_output_embeddings(self): # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too. logger.warning( "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed " "in transformers v4.32." ) return self.transformer.word_emb @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if input_ids is not None: batch_size, sequence_length = shape_list(input_ids)[:2] else: batch_size, sequence_length = shape_list(inputs_embeds)[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py", "repo_id": "transformers", "token_count": 20972 }
288
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DETA checkpoints from the original repository. URL: https://github.com/jozhang97/DETA/tree/master""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_deta_config(model_name): backbone_config = SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["stage2", "stage3", "stage4"], ) config = DetaConfig( backbone_config=backbone_config, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=True, with_box_refine=True, two_stage=True, ) # set labels repo_id = "huggingface/label-files" if "o365" in model_name: num_labels = 366 filename = "object365-id2label.json" else: num_labels = 91 filename = "coco-detection-id2label.json" config.num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight")) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight")) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias")) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight")) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias")) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight")) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_swin_q_k_v(state_dict, backbone_config): num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): dim = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[ dim : dim * 2, : ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[ dim : dim * 2 ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[ -dim :, : ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :] # fmt: on def read_in_decoder_q_k_v(state_dict, config): # transformer decoder self-attention layers hidden_size = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention in_proj_weight = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size:] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_deta_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): """ Copy/paste/tweak model's weights to our DETA structure. """ # load config config = get_deta_config(model_name) # load original state dict if model_name == "deta-swin-large": checkpoint_path = hf_hub_download(repo_id="nielsr/deta-checkpoints", filename="adet_swin_ft.pth") elif model_name == "deta-swin-large-o365": checkpoint_path = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365", filename="deta_swin_pt_o365.pth") else: raise ValueError(f"Model name {model_name} not supported") state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] # original state dict for name, param in state_dict.items(): print(name, param.shape) # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_swin_q_k_v(state_dict, config.backbone_config) read_in_decoder_q_k_v(state_dict, config) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: val = state_dict.pop(key) state_dict[key.replace("transformer.decoder", "model.decoder")] = val if "input_proj" in key: val = state_dict.pop(key) state_dict["model." + key] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: val = state_dict.pop(key) state_dict[key.replace("transformer", "model")] = val # finally, create HuggingFace model and load state dict model = DetaForObjectDetection(config) model.load_state_dict(state_dict) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # load image processor processor = DetaImageProcessor(format="coco_detection") # verify our conversion on image img = prepare_img() encoding = processor(images=img, return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values.to(device)) # verify logits print("Logits:", outputs.logits[0, :3, :3]) print("Boxes:", outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": expected_logits = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) expected_boxes = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": expected_logits = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) expected_boxes = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(device), atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(device), atol=1e-4) print("Everything ok!") if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) # Push to hub if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(f"jozhang97/{model_name}") processor.push_to_hub(f"jozhang97/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/deta/convert_deta_swin_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deta/convert_deta_swin_to_pytorch.py", "repo_id": "transformers", "token_count": 8242 }
289
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DINOv2 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/dinov2-base": "https://huggingface.co/facebook/dinov2-base/resolve/main/config.json", } class Dinov2Config(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Dinov2 [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`int`, *optional*, defaults to 4): Ratio of the hidden size of the MLPs relative to the `hidden_size`. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. layerscale_value (`float`, *optional*, defaults to 1.0): Initial value to use for layer scale. drop_path_rate (`float`, *optional*, defaults to 0.0): Stochastic depth rate per sample (when applied in the main path of residual layers). use_swiglu_ffn (`bool`, *optional*, defaults to `False`): Whether to use the SwiGLU feedforward neural network. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. apply_layernorm (`bool`, *optional*, defaults to `True`): Whether to apply layer normalization to the feature maps in case the model is used as backbone. reshape_hidden_states (`bool`, *optional*, defaults to `True`): Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, seq_len, hidden_size)`. Example: ```python >>> from transformers import Dinov2Config, Dinov2Model >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration >>> configuration = Dinov2Config() >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration >>> model = Dinov2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dinov2" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, mlp_ratio=4, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, layerscale_value=1.0, drop_path_rate=0.0, use_swiglu_ffn=False, out_features=None, out_indices=None, apply_layernorm=True, reshape_hidden_states=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.layerscale_value = layerscale_value self.drop_path_rate = drop_path_rate self.use_swiglu_ffn = use_swiglu_ffn self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) self.apply_layernorm = apply_layernorm self.reshape_hidden_states = reshape_hidden_states class Dinov2OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/dinov2/configuration_dinov2.py/0
{ "file_path": "transformers/src/transformers/models/dinov2/configuration_dinov2.py", "repo_id": "transformers", "token_count": 3160 }
290
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Donut.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, pad, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging from ...utils.import_utils import is_vision_available logger = logging.get_logger(__name__) if is_vision_available(): import PIL class DonutImageProcessor(BaseImageProcessor): r""" Constructs a Donut image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_thumbnail (`bool`, *optional*, defaults to `True`): Whether to resize the image using thumbnail method. do_align_long_axis (`bool`, *optional*, defaults to `False`): Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are padded to the largest image size in the batch. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Image standard deviation. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_thumbnail: bool = True, do_align_long_axis: bool = False, do_pad: bool = True, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 2560, "width": 1920} if isinstance(size, (tuple, list)): # The previous feature extractor size parameter was in (width, height) format size = size[::-1] size = get_size_dict(size) self.do_resize = do_resize self.size = size self.resample = resample self.do_thumbnail = do_thumbnail self.do_align_long_axis = do_align_long_axis self.do_pad = do_pad self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD def align_long_axis( self, image: np.ndarray, size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Align the long axis of the image to the longest axis of the specified size. Args: image (`np.ndarray`): The image to be aligned. size (`Dict[str, int]`): The size `{"height": h, "width": w}` to align the long axis to. data_format (`str` or `ChannelDimension`, *optional*): The data format of the output image. If unset, the same format as the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. Returns: `np.ndarray`: The aligned image. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = size["height"], size["width"] if (output_width < output_height and input_width > input_height) or ( output_width > output_height and input_width < input_height ): image = np.rot90(image, 3) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def pad_image( self, image: np.ndarray, size: Dict[str, int], random_padding: bool = False, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad the image to the specified size. Args: image (`np.ndarray`): The image to be padded. size (`Dict[str, int]`): The size `{"height": h, "width": w}` to pad the image to. random_padding (`bool`, *optional*, defaults to `False`): Whether to use random padding or not. data_format (`str` or `ChannelDimension`, *optional*): The data format of the output image. If unset, the same format as the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ output_height, output_width = size["height"], size["width"] input_height, input_width = get_image_size(image, channel_dim=input_data_format) delta_width = output_width - input_width delta_height = output_height - input_height if random_padding: pad_top = np.random.randint(low=0, high=delta_height + 1) pad_left = np.random.randint(low=0, high=delta_width + 1) else: pad_top = delta_height // 2 pad_left = delta_width // 2 pad_bottom = delta_height - pad_top pad_right = delta_width - pad_left padding = ((pad_top, pad_bottom), (pad_left, pad_right)) return pad(image, padding, data_format=data_format, input_data_format=input_data_format) def pad(self, *args, **kwargs): logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.") return self.pad_image(*args, **kwargs) def thumbnail( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any corresponding dimension of the specified size. Args: image (`np.ndarray`): The image to be resized. size (`Dict[str, int]`): The size `{"height": h, "width": w}` to resize the image to. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): The resampling filter to use. data_format (`Optional[Union[str, ChannelDimension]]`, *optional*): The data format of the output image. If unset, the same format as the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = size["height"], size["width"] # We always resize to the smallest of either the input or output size. height = min(input_height, output_height) width = min(input_width, output_width) if height == input_height and width == input_width: return image if input_height > input_width: width = int(input_width * height / input_height) elif input_width > input_height: height = int(input_height * width / input_width) return resize( image, size=(height, width), resample=resample, reducing_gap=2.0, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resizes `image` to `(height, width)` specified by `size` using the PIL library. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size) shortest_edge = min(size["height"], size["width"]) output_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format ) resized_image = resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return resized_image def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_thumbnail: bool = None, do_align_long_axis: bool = None, do_pad: bool = None, random_padding: bool = False, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to min(size["height"], size["width"]) with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`): Whether to resize the image using thumbnail method. do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`): Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are padded to the largest image size in the batch. random_padding (`bool`, *optional*, defaults to `self.random_padding`): Whether to use random padding when padding the image. If `True`, each image in the batch with be padded with a random amount of padding on each side up to the size of the largest image in the batch. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size if isinstance(size, (tuple, list)): # Previous feature extractor had size in (width, height) format size = size[::-1] size = get_size_dict(size) resample = resample if resample is not None else self.resample do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis do_pad = do_pad if do_pad is not None else self.do_pad do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_pad and size is None: raise ValueError("Size must be specified if do_pad is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_align_long_axis: images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images] if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_thumbnail: images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images] if do_pad: images = [ self.pad_image( image=image, size=size, random_padding=random_padding, input_data_format=input_data_format ) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/donut/image_processing_donut.py/0
{ "file_path": "transformers/src/transformers/models/donut/image_processing_donut.py", "repo_id": "transformers", "token_count": 9138 }
291
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ELECTRA model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json", "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json", "google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json", "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json" ), } class ElectraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`]. embedding_size (`int`, *optional*, defaults to 128): Dimensionality of the encoder layers and the pooler layer. hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 1024): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. summary_type (`str`, *optional*, defaults to `"first"`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation. summary_last_dropout (`float`, *optional*, defaults to 0.0): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import ElectraConfig, ElectraModel >>> # Initializing a ELECTRA electra-base-uncased style configuration >>> configuration = ElectraConfig() >>> # Initializing a model (with random weights) from the electra-base-uncased style configuration >>> model = ElectraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "electra" def __init__( self, vocab_size=30522, embedding_size=128, hidden_size=256, num_hidden_layers=12, num_attention_heads=4, intermediate_size=1024, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, summary_type="first", summary_use_proj=True, summary_activation="gelu", summary_last_dropout=0.1, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout class ElectraOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
transformers/src/transformers/models/electra/configuration_electra.py/0
{ "file_path": "transformers/src/transformers/models/electra/configuration_electra.py", "repo_id": "transformers", "token_count": 3700 }
292
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Encoder-Decoder architectures""" from __future__ import annotations import inspect import re import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, get_initializer, keras, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function. """ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" load_weight_prefix = "tf_encoder_decoder_model" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) decoder_signature = set(inspect.signature(self.decoder.call).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def tf_to_pt_weight_rename(self, tf_weight): # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! # This override is only needed in the case where we're crossloading weights from PT. However, since weights are # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it # or not. encoder_model_type = self.config.encoder.model_type if "encoder" in tf_weight and "decoder" not in tf_weight: return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) else: return (tf_weight,) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFEncoderDecoderModel >>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "gpt2") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2gpt2") >>> # load fine-tuned model >>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import TFEncoderDecoderModel, BertTokenizer >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> # forward >>> input_ids = tokenizer.encode( ... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf" ... ) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2gpt2") >>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") if past_key_values is None: past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2 input_dict = { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past, beam_idx) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "enc_to_dec_proj", None) is not None: with tf.name_scope(self.enc_to_dec_proj.name): self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
transformers/src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py", "repo_id": "transformers", "token_count": 14142 }
293
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def make_atom14_masks(protein: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Construct denser atom positions (14 dimensions instead of 37).""" restype_atom14_to_atom37_list = [] restype_atom37_to_atom14_list = [] restype_atom14_mask_list = [] for rt in rc.restypes: atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]] restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)} restype_atom37_to_atom14_list.append( [(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types] ) restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atom14_to_atom37_list.append([0] * 14) restype_atom37_to_atom14_list.append([0] * 37) restype_atom14_mask_list.append([0.0] * 14) restype_atom14_to_atom37 = torch.tensor( restype_atom14_to_atom37_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom37_to_atom14 = torch.tensor( restype_atom37_to_atom14_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom14_mask = torch.tensor( restype_atom14_mask_list, dtype=torch.float32, device=protein["aatype"].device, ) protein_aatype = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype] residx_atom14_mask = restype_atom14_mask[protein_aatype] protein["atom14_atom_exists"] = residx_atom14_mask protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long() # create the gather indices for mapping back residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype] protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long() # create the corresponding mask restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): restype_name = rc.restype_1to3[restype_letter] atom_names = rc.residue_atoms[restype_name] for atom_name in atom_names: atom_type = rc.atom_order[atom_name] restype_atom37_mask[restype, atom_type] = 1 residx_atom37_mask = restype_atom37_mask[protein_aatype] protein["atom37_atom_exists"] = residx_atom37_mask return protein def make_atom14_masks_np(batch: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]: batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray) out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch)) return out
transformers/src/transformers/models/esm/openfold_utils/data_transforms.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/data_transforms.py", "repo_id": "transformers", "token_count": 1505 }
294
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FastSpeech2Conformer checkpoint.""" import argparse import torch from transformers import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerModel, FastSpeech2ConformerWithHifiGan, FastSpeech2ConformerWithHifiGanConfig, logging, ) from .convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch import ( convert_espnet_state_dict_to_hf, remap_model_yaml_config, ) from .convert_hifigan import load_weights, remap_hifigan_yaml_config logging.set_verbosity_info() logger = logging.get_logger("transformers.models.FastSpeech2Conformer") def convert_FastSpeech2ConformerWithHifiGan_checkpoint( checkpoint_path, yaml_config_path, pytorch_dump_folder_path, repo_id=None, ): # Prepare the model model_params, *_ = remap_model_yaml_config(yaml_config_path) model_config = FastSpeech2ConformerConfig(**model_params) model = FastSpeech2ConformerModel(model_config) espnet_checkpoint = torch.load(checkpoint_path) hf_compatible_state_dict = convert_espnet_state_dict_to_hf(espnet_checkpoint) model.load_state_dict(hf_compatible_state_dict) # Prepare the vocoder config_kwargs = remap_hifigan_yaml_config(yaml_config_path) vocoder_config = FastSpeech2ConformerHifiGanConfig(**config_kwargs) vocoder = FastSpeech2ConformerHifiGan(vocoder_config) load_weights(espnet_checkpoint, vocoder, vocoder_config) # Prepare the model + vocoder config = FastSpeech2ConformerWithHifiGanConfig.from_sub_model_configs(model_config, vocoder_config) with_hifigan_model = FastSpeech2ConformerWithHifiGan(config) with_hifigan_model.model = model with_hifigan_model.vocoder = vocoder with_hifigan_model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") with_hifigan_model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument( "--yaml_config_path", required=True, default=None, type=str, help="Path to config.yaml of model to convert" ) parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output `FastSpeech2ConformerModel` PyTorch model.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_FastSpeech2ConformerWithHifiGan_checkpoint( args.checkpoint_path, args.yaml_config_path, args.pytorch_dump_folder_path, args.push_to_hub, )
transformers/src/transformers/models/fastspeech2_conformer/convert_model_with_hifigan.py/0
{ "file_path": "transformers/src/transformers/models/fastspeech2_conformer/convert_model_with_hifigan.py", "repo_id": "transformers", "token_count": 1299 }
295
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_fnet"] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_fnet"] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/fnet/__init__.py/0
{ "file_path": "transformers/src/transformers/models/fnet/__init__.py", "repo_id": "transformers", "token_count": 1260 }
296
# coding=utf-8 # Copyright 2020, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Funnel Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class FunnelConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`]. block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`): The sizes of the blocks used in the model. block_repeats (`List[int]`, *optional*): If passed along, each layer of each block is repeated the number of times indicated. num_decoder_layers (`int`, *optional*, defaults to 2): The number of layers in the decoder (when not using the base model). d_model (`int`, *optional*, defaults to 768): Dimensionality of the model's hidden states. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. d_head (`int`, *optional*, defaults to 64): Dimensionality of the model's heads. d_inner (`int`, *optional*, defaults to 3072): Inner dimension in the feed-forward blocks. hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability used between the two layers of the feed-forward blocks. initializer_range (`float`, *optional*, defaults to 0.1): The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers. initializer_std (`float`, *optional*): The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for linear layers. layer_norm_eps (`float`, *optional*, defaults to 1e-09): The epsilon used by the layer normalization layers. pooling_type (`str`, *optional*, defaults to `"mean"`): Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block. attention_type (`str`, *optional*, defaults to `"relative_shift"`): Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter is faster on TPU. separate_cls (`bool`, *optional*, defaults to `True`): Whether or not to separate the cls token when applying pooling. truncate_seq (`bool`, *optional*, defaults to `True`): When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a sequence length that is not a multiple of 2. pool_q_only (`bool`, *optional*, defaults to `True`): Whether or not to apply the pooling only to the query or to query, key and values for the attention layers. """ model_type = "funnel" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self, vocab_size=30522, block_sizes=[4, 4, 4], block_repeats=None, num_decoder_layers=2, d_model=768, n_head=12, d_head=64, d_inner=3072, hidden_act="gelu_new", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, initializer_range=0.1, initializer_std=None, layer_norm_eps=1e-9, pooling_type="mean", attention_type="relative_shift", separate_cls=True, truncate_seq=True, pool_q_only=True, **kwargs, ): self.vocab_size = vocab_size self.block_sizes = block_sizes self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats assert len(block_sizes) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." self.num_decoder_layers = num_decoder_layers self.d_model = d_model self.n_head = n_head self.d_head = d_head self.d_inner = d_inner self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.initializer_std = initializer_std self.layer_norm_eps = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." self.pooling_type = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." self.attention_type = attention_type self.separate_cls = separate_cls self.truncate_seq = truncate_seq self.pool_q_only = pool_q_only super().__init__(**kwargs) @property def num_hidden_layers(self): return sum(self.block_sizes) @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def num_blocks(self): return len(self.block_sizes) @num_blocks.setter def num_blocks(self, value): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
transformers/src/transformers/models/funnel/configuration_funnel.py/0
{ "file_path": "transformers/src/transformers/models/funnel/configuration_funnel.py", "repo_id": "transformers", "token_count": 3437 }
297
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from ...modeling_tf_utils import keras from .tokenization_gpt2 import GPT2Tokenizer class TFGPT2Tokenizer(keras.layers.Layer): """ This is an in-graph tokenizer for GPT2. It should be initialized similarly to other tokenizers, using the `from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings from an existing standard tokenizer object. In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes straight from `tf.string` inputs to outputs. Args: vocab (Dict[str, int]): Vocabulary dict for Byte Pair Tokenizer merges (List[str]): Merges list for Byte Pair Tokenizer """ def __init__(self, vocab: Dict[str, int], merges: List[str], max_length: int = None, pad_token_id: int = None): super().__init__() self.pad_token_id = pad_token_id self.max_length = max_length self.vocab = vocab self.merges = merges self.tf_tokenizer = BytePairTokenizer(vocab, merges, sequence_length=max_length) @classmethod def from_tokenizer(cls, tokenizer: GPT2Tokenizer, *args, **kwargs): """Creates TFGPT2Tokenizer from GPT2Tokenizer Args: tokenizer (GPT2Tokenizer) Examples: ```python from transformers import AutoTokenizer, TFGPT2Tokenizer tokenizer = AutoTokenizer.from_pretrained("gpt2") tf_tokenizer = TFGPT2Tokenizer.from_tokenizer(tokenizer) ``` """ merges = [" ".join(m) for m in tokenizer.bpe_ranks.keys()] vocab = tokenizer.get_vocab() return cls(vocab, merges, *args, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs): """Creates TFGPT2Tokenizer from pretrained GPT2Tokenizer Args: pretrained_model_name_or_path (Union[str, os.PathLike]): Path to pretrained model Examples: ```python from transformers import TFGPT2Tokenizer tf_tokenizer = TFGPT2Tokenizer.from_pretrained("gpt2") ``` """ tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs) return cls.from_tokenizer(tokenizer, *init_inputs, **kwargs) @classmethod def from_config(cls, config): """Creates TFGPT2Tokenizer from configurations Args: config (Dict): Dictionary with keys such as stated in `get_config`. """ return cls(**config) def get_config(self): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def call(self, x, max_length: int = None): input_ids = self.tf_tokenizer(x) attention_mask = tf.ones_like(input_ids) if self.pad_token_id is not None: # pad the tokens up to max length max_length = max_length if max_length is not None else self.max_length if max_length is not None: input_ids, attention_mask = pad_model_inputs( input_ids, max_seq_length=max_length, pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
transformers/src/transformers/models/gpt2/tokenization_gpt2_tf.py/0
{ "file_path": "transformers/src/transformers/models/gpt2/tokenization_gpt2_tf.py", "repo_id": "transformers", "token_count": 1565 }
298
# coding=utf-8 # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for GPTNeoXJapanese.""" import collections import json import os import re from typing import Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "abeja/gpt-neox-japanese-2.7b": 2048, } def load_vocab_and_emoji(vocab_file, emoji_file): """Loads a vocabulary file and emoji file into a dictionary.""" with open(emoji_file, "r", encoding="utf-8") as f: emoji = json.loads(f.read()) vocab = collections.OrderedDict() raw_vocab = collections.OrderedDict() ids_to_tokens = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as f: token = f.readlines() token = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token] for idx, b in enumerate(token): ids_to_tokens[idx] = b raw_vocab[",".join(b)] = idx for wd in b: vocab[wd] = idx return vocab, raw_vocab, ids_to_tokens, emoji class GPTNeoXJapaneseTokenizer(PreTrainedTokenizer): """ This tokenizer inherits from [`PreTrainedTokenizer`] and is based on Japanese special Sub-Word-Encoding that is used in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). Check the repository for details. Japanese has a relatively large vocabulary and there is no separation between words. Furthermore, the language is a combination of hiragana, katakana, and kanji, and variants such as "1" and "①" are often used. In order to cope with these, this tokenizer has the following features - Subword-by-subword segmentation, which is intermediate between byte strings and morphological analysis. - BPEs are created for each Kanji, Hiragana, and Katakana character, and there are no BPEs that cross character types, such as Kanji + Hiragana or Hiragana + Katakana. - All-byte encoding that does not require <unk>. - Independent of UTF codes such as 2-byte and 3-byte characters - Conversion of heterographs to the same token_id - Emoji and Emoticon are grouped into 12 types as special tags. Example: ```python >>> from transformers import GPTNeoXJapaneseTokenizer >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> # You can confirm both 慶応 and 慶應 are encoded to 17749 >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"] [30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281] >>> # Both 慶応 and 慶應 are decoded to 慶応 >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]) '吾輩は猫である🐯。実は慶応(慶応)大学出身' ``` Args: vocab_file (`str`): File containing the vocabulary. emoji_file (`str`): File containing the emoji. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. do_clean_text (`bool`, *optional*, defaults to `False`): Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, emoji_file, unk_token="<|endoftext|>", pad_token="<|endoftext|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", do_clean_text=False, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(emoji_file): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.do_clean_text = do_clean_text self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file) self.subword_tokenizer = SubWordJapaneseTokenizer( vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji ) super().__init__( unk_token=unk_token, pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, do_clean_text=do_clean_text, **kwargs, ) @property def vocab_size(self): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) def get_vocab(self): return dict(self.raw_vocab, **self.added_tokens_encoder) def _tokenize(self, text): return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.subword_tokenizer.convert_id_to_token(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).strip() return out_string @property def default_chat_template(self): """ A simple chat template that just adds BOS/EOS tokens around messages while discarding role information. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return ( "{% for message in messages %}" "{{ bos_token + eos_token + message.content + eos_token }}" "{% endfor %}" "{% if add_generation_prompt %} {{ bos_token + eos_token }} {% endif %}" ) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) emoji_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: vocab_file = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) emoji_file = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(vocab_file, "w", encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(",".join(token) + "\n") index += 1 with open(emoji_file, "w", encoding="utf-8") as writer: json.dump(self.emoji, writer) return vocab_file, emoji_file class SubWordJapaneseTokenizer(object): """ https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the original repository. MIT License Copyright (c) 2020 tanreinama Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ def __init__(self, vocab, ids_to_tokens, emoji): self.vocab = vocab # same as swe self.ids_to_tokens = ids_to_tokens # same as bpe self.emoji = emoji self.maxlen = np.max([len(w) for w in self.vocab.keys()]) self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") self.content_repatter4 = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) self.content_repatter5 = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) self.content_repatter6 = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__(self): return len(self.ids_to_tokens) def clean_text(self, content): content = self.content_repatter1.sub("<URL>", content) content = self.content_repatter2.sub("<EMAIL>", content) content = self.content_repatter3.sub("<TEL>", content) content = self.content_repatter4.sub("<DATE>", content) content = self.content_repatter5.sub("<DATE>", content) content = self.content_repatter6.sub("<PRICE>", content) content = content.translate(self.content_trans1) while "<BLOCK><BLOCK>" in content: content = content.replace("<BLOCK><BLOCK>", "<BLOCK>") return content def tokenize(self, text, clean=False): text = text.replace(" ", "<SP>") text = text.replace(" ", "<SP>") text = text.replace("\r\n", "<BR>") text = text.replace("\n", "<BR>") text = text.replace("\r", "<BR>") text = text.replace("\t", "<TAB>") text = text.replace("—", "ー") text = text.replace("−", "ー") for k, v in self.emoji["emoji"].items(): if k in text: text = text.replace(k, v) if clean: text = self.clean_text(text) def check_simbol(x): e = x.encode() if len(x) == 1 and len(e) == 2: c = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checku2e(x): e = x.encode() if len(x) == 1 and len(e) == 3: c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0xE28080 and c <= 0xE2B07F: return True return False pos = 0 result = [] while pos < len(text): end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 candidates = [] # (token_id, token, pos) for e in range(end, pos, -1): wd = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(wd) > 2: candidates = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(candidates) > 0: # the smallest token_id is adopted _, wd, e = sorted(candidates, key=lambda x: x[0])[0] result.append(wd) pos = e else: end = pos + 1 wd = text[pos:end] if check_simbol(wd): result.append("<KIGOU>") elif checku2e(wd): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) pos = end return result def convert_id_to_token(self, index, breakline="\n"): words = [] byte_tokens = [] word = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(byte_tokens) > 0: words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) byte_tokens = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(breakline) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(word) if len(byte_tokens) > 0: words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) text = "".join(words) return text
transformers/src/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py/0
{ "file_path": "transformers/src/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py", "repo_id": "transformers", "token_count": 8502 }
299
# Copyright (c) Microsoft Corporation and HuggingFace # Licensed under the MIT License. from typing import Any, Dict, List, Mapping import numpy as np import torch from ...utils import is_cython_available, requires_backends if is_cython_available(): import pyximport pyximport.install(setup_args={"include_dirs": np.get_include()}) from . import algos_graphormer # noqa E402 def convert_to_single_emb(x, offset: int = 512): feature_num = x.shape[1] if len(x.shape) > 1 else 1 feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64) x = x + feature_offset return x def preprocess_item(item, keep_features=True): requires_backends(preprocess_item, ["cython"]) if keep_features and "edge_attr" in item.keys(): # edge_attr edge_attr = np.asarray(item["edge_attr"], dtype=np.int64) else: edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all if keep_features and "node_feat" in item.keys(): # input_nodes node_feature = np.asarray(item["node_feat"], dtype=np.int64) else: node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all edge_index = np.asarray(item["edge_index"], dtype=np.int64) input_nodes = convert_to_single_emb(node_feature) + 1 num_nodes = item["num_nodes"] if len(edge_attr.shape) == 1: edge_attr = edge_attr[:, None] attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64) attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1 # node adj matrix [num_nodes, num_nodes] bool adj = np.zeros([num_nodes, num_nodes], dtype=bool) adj[edge_index[0], edge_index[1]] = True shortest_path_result, path = algos_graphormer.floyd_warshall(adj) max_dist = np.amax(shortest_path_result) input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type) attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token # combine item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding item["attn_bias"] = attn_bias item["attn_edge_type"] = attn_edge_type item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding item["out_degree"] = item["in_degree"] # for undirected graph item["input_edges"] = input_edges + 1 # we shift all indices by one for padding if "labels" not in item: item["labels"] = item["y"] return item class GraphormerDataCollator: def __init__(self, spatial_pos_max=20, on_the_fly_processing=False): if not is_cython_available(): raise ImportError("Graphormer preprocessing needs Cython (pyximport)") self.spatial_pos_max = spatial_pos_max self.on_the_fly_processing = on_the_fly_processing def __call__(self, features: List[dict]) -> Dict[str, Any]: if self.on_the_fly_processing: features = [preprocess_item(i) for i in features] if not isinstance(features[0], Mapping): features = [vars(f) for f in features] batch = {} max_node_num = max(len(i["input_nodes"]) for i in features) node_feat_size = len(features[0]["input_nodes"][0]) edge_feat_size = len(features[0]["attn_edge_type"][0][0]) max_dist = max(len(i["input_edges"][0][0]) for i in features) edge_input_size = len(features[0]["input_edges"][0][0][0]) batch_size = len(features) batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float) batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long) batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long) batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long) batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long) batch["input_edges"] = torch.zeros( batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long ) for ix, f in enumerate(features): for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]: f[k] = torch.tensor(f[k]) if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0: f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf") batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"] batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[ "attn_edge_type" ] batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"] batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"] batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"] batch["input_edges"][ ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], : ] = f["input_edges"] batch["out_degree"] = batch["in_degree"] sample = features[0]["labels"] if len(sample) == 1: # one task if isinstance(sample[0], float): # regression batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) else: # binary classification batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) else: # multi task classification, left to float to keep the NaNs batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0)) return batch
transformers/src/transformers/models/graphormer/collating_graphormer.py/0
{ "file_path": "transformers/src/transformers/models/graphormer/collating_graphormer.py", "repo_id": "transformers", "token_count": 2694 }
300
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LLaMA model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class LlamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LLaMA-7B. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, Llama 2 up to 4096, CodeLlama up to 16384. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. pretraining_tp (`int`, *optional*, defaults to 1): Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import LlamaModel, LlamaConfig >>> # Initializing a LLaMA llama-7b style configuration >>> configuration = LlamaConfig() >>> # Initializing a model from the llama-7b style configuration >>> model = LlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llama" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self._rope_scaling_validation() self.attention_bias = attention_bias self.attention_dropout = attention_dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/llama/configuration_llama.py/0
{ "file_path": "transformers/src/transformers/models/llama/configuration_llama.py", "repo_id": "transformers", "token_count": 3598 }
301
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team, and the # Lxmert Authors. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 LXMERT model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, get_initializer, keras, keras_serializable, shape_list, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_lxmert import LxmertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased" _CONFIG_FOR_DOC = "LxmertConfig" TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "unc-nlp/lxmert-base-uncased", ] @dataclass class TFLxmertModelOutput(ModelOutput): """ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" encoder") Args: language_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the language encoder. vision_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the visual encoder. pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed by a Linear layer and a Tanh activation function. The Linear language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ language_output: tf.Tensor | None = None vision_output: tf.Tensor | None = None pooled_output: tf.Tensor | None = None language_hidden_states: Tuple[tf.Tensor] | None = None vision_hidden_states: Tuple[tf.Tensor] | None = None language_attentions: Tuple[tf.Tensor] | None = None vision_attentions: Tuple[tf.Tensor] | None = None cross_encoder_attentions: Tuple[tf.Tensor] | None = None @dataclass class TFLxmertForPreTrainingOutput(ModelOutput): """ Output type of [`LxmertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cross_relationship_score (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the textual matching objective (classification) head (scores of True/False continuation before SoftMax). question_answering_score (`tf.Tensor` of shape `(batch_size, n_qa_answers)`): Prediction scores of question answering objective (classification). language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: tf.Tensor | None = None cross_relationship_score: tf.Tensor | None = None question_answering_score: tf.Tensor | None = None language_hidden_states: Tuple[tf.Tensor] | None = None vision_hidden_states: Tuple[tf.Tensor] | None = None language_attentions: Tuple[tf.Tensor] | None = None vision_attentions: Tuple[tf.Tensor] | None = None cross_encoder_attentions: Tuple[tf.Tensor] | None = None class TFLxmertVisualFeatureEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) # Object feature encoding self.visn_fc = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="visn_fc", ) self.visn_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="visn_layer_norm") # Box position encoding self.box_fc = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="box_fc", ) self.box_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="box_layer_norm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.feat_dim = config.visual_feat_dim self.pos_dim = config.visual_pos_dim self.config = config def call(self, visn_input, training=False): feats, boxes = visn_input x = self.visn_fc(feats) x = self.visn_layer_norm(x) y = self.box_fc(boxes) y = self.box_layer_norm(y) output = (x + y) / 2 output = self.dropout(output, training=training) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "visn_fc", None) is not None: with tf.name_scope(self.visn_fc.name): self.visn_fc.build([None, None, self.feat_dim]) if getattr(self, "visn_layer_norm", None) is not None: with tf.name_scope(self.visn_layer_norm.name): self.visn_layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "box_fc", None) is not None: with tf.name_scope(self.box_fc.name): self.box_fc.build([None, None, self.pos_dim]) if getattr(self, "box_layer_norm", None) is not None: with tf.name_scope(self.box_layer_norm.name): self.box_layer_norm.build([None, None, self.config.hidden_size]) class TFLxmertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def call(self, input_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFLxmertAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query", ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value", ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.ctx_dim = config.hidden_size self.config = config def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states, context, attention_mask, output_attentions, training=False): batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFLxmertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.ctx_dim]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.ctx_dim]) class TFLxmertIntermediate(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFLxmertOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFLxmertAttentionOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFLxmertSelfAttentionLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFLxmertAttention(config, name="self") self.attention_output = TFLxmertAttentionOutput(config, name="output") def call(self, input_tensor, attention_mask, output_attentions, training=False): # Self attention attends to itself, thus keys and queries are the same (input_tensor). self_output = self.self(input_tensor, input_tensor, attention_mask, output_attentions) if output_attentions: attention_probs = self_output[1] attention_output = self.attention_output(self_output[0], input_tensor) return (attention_output, attention_probs) if output_attentions else (attention_output,) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "attention_output", None) is not None: with tf.name_scope(self.attention_output.name): self.attention_output.build(None) class TFLxmertCrossAttentionLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.att = TFLxmertAttention(config, name="att") self.attention_output = TFLxmertAttentionOutput(config, name="output") def call( self, input_tensor, ctx_tensor, ctx_att_mask, output_attentions=False, training=False, ): output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions, training=training) if output_attentions: attention_probs = output[1] attention_output = self.attention_output(output[0], input_tensor, training=training) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "att", None) is not None: with tf.name_scope(self.att.name): self.att.build(None) if getattr(self, "attention_output", None) is not None: with tf.name_scope(self.attention_output.name): self.attention_output.build(None) class TFLxmertLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFLxmertSelfAttentionLayer(config, name="attention") self.intermediate = TFLxmertIntermediate(config, name="intermediate") self.transformer_output = TFLxmertOutput(config, name="output") def call(self, hidden_states, attention_mask, output_attentions, training=False): attention_outputs = self.attention(hidden_states, attention_mask, output_attentions, training=training) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.transformer_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "transformer_output", None) is not None: with tf.name_scope(self.transformer_output.name): self.transformer_output.build(None) class TFLxmertXLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.visual_attention = TFLxmertCrossAttentionLayer(config, name="visual_attention") # Self-attention Layers self.lang_self_att = TFLxmertSelfAttentionLayer(config, name="lang_self_att") self.visn_self_att = TFLxmertSelfAttentionLayer(config, name="visn_self_att") # Intermediate and Output Layers (FFNs) self.lang_inter = TFLxmertIntermediate(config, name="lang_inter") self.lang_output = TFLxmertOutput(config, name="lang_output") self.visn_inter = TFLxmertIntermediate(config, name="visn_inter") self.visn_output = TFLxmertOutput(config, name="visn_output") def cross_att( self, lang_input, lang_attention_mask, visn_input, visn_attention_mask, output_attentions, training=False, ): # Cross Attention # Keras saving and loading model *does not work* with the same inputs for two layers. lang_attention_lang_input = tf.identity(lang_input) visn_attention_lang_input = tf.identity(lang_input) lang_attention_visn_input = tf.identity(visn_input) visn_attention_visn_input = tf.identity(visn_input) lang_att_output = self.visual_attention( lang_attention_lang_input, lang_attention_visn_input, visn_attention_mask, output_attentions=output_attentions, training=training, ) visn_att_output = self.visual_attention( visn_attention_visn_input, visn_attention_lang_input, lang_attention_mask, output_attentions=output_attentions, training=training, ) return lang_att_output, visn_att_output def self_att( self, lang_input, lang_attention_mask, visn_input, visn_attention_mask, training=False, ): # Self Attention output_attentions = False lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions, training=training) visn_att_output = self.visn_self_att(visn_input, visn_attention_mask, output_attentions, training=training) return lang_att_output[0], visn_att_output[0] def output_fc(self, lang_input, visn_input, training=False): # FC layers lang_inter_output = self.lang_inter(lang_input) visn_inter_output = self.visn_inter(visn_input) # Layer output lang_output = self.lang_output(lang_inter_output, lang_input, training) visn_output = self.visn_output(visn_inter_output, visn_input, training) return lang_output, visn_output def call( self, lang_feats, lang_attention_mask, visn_feats, visn_attention_mask, output_attentions, training=False, ): lang_att_output = lang_feats visn_att_output = visn_feats lang_att_output, visn_att_output = self.cross_att( lang_att_output, lang_attention_mask, visn_att_output, visn_attention_mask, output_attentions, training=training, ) attention_probs = lang_att_output[1:] lang_att_output, visn_att_output = self.self_att( lang_att_output[0], lang_attention_mask, visn_att_output[0], visn_attention_mask, training=training, ) lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output, training=training) return (lang_output, visn_output, attention_probs[0]) if output_attentions else (lang_output, visn_output) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "visual_attention", None) is not None: with tf.name_scope(self.visual_attention.name): self.visual_attention.build(None) if getattr(self, "lang_self_att", None) is not None: with tf.name_scope(self.lang_self_att.name): self.lang_self_att.build(None) if getattr(self, "visn_self_att", None) is not None: with tf.name_scope(self.visn_self_att.name): self.visn_self_att.build(None) if getattr(self, "lang_inter", None) is not None: with tf.name_scope(self.lang_inter.name): self.lang_inter.build(None) if getattr(self, "lang_output", None) is not None: with tf.name_scope(self.lang_output.name): self.lang_output.build(None) if getattr(self, "visn_inter", None) is not None: with tf.name_scope(self.visn_inter.name): self.visn_inter.build(None) if getattr(self, "visn_output", None) is not None: with tf.name_scope(self.visn_output.name): self.visn_output.build(None) class TFLxmertEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.visn_fc = TFLxmertVisualFeatureEncoder(config, name="visn_fc") # Number of layers self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers # Layers # Using self.layer instead of self.l_layer to support loading BERT weights. self.layer = [TFLxmertLayer(config, name=f"layer_._{i}") for i in range(self.num_l_layers)] self.x_layers = [TFLxmertXLayer(config, name=f"x_layers_._{i}") for i in range(self.num_x_layers)] self.r_layers = [TFLxmertLayer(config, name=f"r_layers_._{i}") for i in range(self.num_r_layers)] self.config = config def call( self, lang_feats=None, lang_attention_mask=None, visual_feats=None, visual_pos=None, visual_attention_mask=None, output_attentions=None, training=False, ): vision_hidden_states = () language_hidden_states = () vision_attentions = () if output_attentions or self.config.output_attentions else None language_attentions = () if output_attentions or self.config.output_attentions else None cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None visual_feats = self.visn_fc([visual_feats, visual_pos], training=training) # Run language layers for layer_module in self.layer: l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions, training=training) lang_feats = l_outputs[0] language_hidden_states = language_hidden_states + (lang_feats,) if language_attentions is not None: language_attentions = language_attentions + (l_outputs[1],) # Run relational layers for layer_module in self.r_layers: v_outputs = layer_module( visual_feats, visual_attention_mask, output_attentions, training=training, ) visual_feats = v_outputs[0] vision_hidden_states = vision_hidden_states + (visual_feats,) if vision_attentions is not None: vision_attentions = vision_attentions + (v_outputs[1],) # Run cross-modality layers for layer_module in self.x_layers: x_outputs = layer_module( lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions, training=training, ) lang_feats, visual_feats = x_outputs[:2] vision_hidden_states = vision_hidden_states + (visual_feats,) language_hidden_states = language_hidden_states + (lang_feats,) if cross_encoder_attentions is not None: cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) visual_encoder_outputs = ( vision_hidden_states, vision_attentions if output_attentions else None, ) lang_encoder_outputs = ( language_hidden_states, language_attentions if output_attentions else None, ) return ( visual_encoder_outputs, lang_encoder_outputs, cross_encoder_attentions if output_attentions else None, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "visn_fc", None) is not None: with tf.name_scope(self.visn_fc.name): self.visn_fc.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "x_layers", None) is not None: for layer in self.x_layers: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "r_layers", None) is not None: for layer in self.r_layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFLxmertMainLayer(keras.layers.Layer): config_class = LxmertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFLxmertEmbeddings(config, name="embeddings") self.encoder = TFLxmertEncoder(config, name="encoder") self.pooler = TFLxmertPooler(config, name="pooler") self.config = config def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError @unpack_inputs def call( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if visual_pos is None or visual_feats is None: raise ValueError("visual_feats and visual_pos cannot be `None` in LXMERT's `call` method.") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) # Positional Word Embeddings embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds, training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) if visual_attention_mask is not None: extended_visual_attention_mask = tf.reshape(visual_attention_mask, (input_shape[0], 1, 1, input_shape[1])) extended_visual_attention_mask = tf.expand_dims(tf.expand_dims(visual_attention_mask, axis=1), axis=1) extended_visual_attention_mask = tf.cast(extended_visual_attention_mask, dtype=embedding_output.dtype) extended_visual_attention_mask = tf.multiply( tf.subtract(one_cst, extended_visual_attention_mask), ten_thousand_cst ) else: extended_visual_attention_mask = None # Run Lxmert encoder encoder_outputs = self.encoder( embedding_output, extended_attention_mask, visual_feats, visual_pos, extended_visual_attention_mask, output_attentions, training, ) visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] vision_hidden_states = visual_encoder_outputs[0] language_hidden_states = lang_encoder_outputs[0] all_attentions = () if output_attentions: language_attentions = lang_encoder_outputs[1] vision_attentions = visual_encoder_outputs[1] cross_encoder_attentions = encoder_outputs[2] all_attentions = ( language_attentions, vision_attentions, cross_encoder_attentions, ) hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () visual_output = vision_hidden_states[-1] lang_output = language_hidden_states[-1] pooled_output = self.pooler(lang_output) if not return_dict: return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions return TFLxmertModelOutput( pooled_output=pooled_output, language_output=lang_output, vision_output=visual_output, language_hidden_states=language_hidden_states if output_hidden_states else None, vision_hidden_states=vision_hidden_states if output_hidden_states else None, language_attentions=language_attentions if output_attentions else None, vision_attentions=vision_attentions if output_attentions else None, cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFLxmertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LxmertConfig base_model_prefix = "lxmert" @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ batch_size = 2 num_visual_features = 10 input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32) visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim)) visual_pos = tf.random.uniform((batch_size, num_visual_features, 4)) return { "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": visual_pos, } @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "visual_feats": tf.TensorSpec((None, None, self.config.visual_feat_dim), tf.float32, name="visual_feats"), "visual_pos": tf.TensorSpec((None, None, 4), tf.float32, name="visual_pos"), "visual_attention_mask": tf.TensorSpec((None, None), tf.int32, name="visual_attention_mask"), "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), } LXMERT_START_DOCSTRING = r""" The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer model, pre-trained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss for question answering attribute prediction, and object tag prediction. This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`LxmertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LXMERT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) visual_feats (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): This input represents visual features. They ROI pooled object features from bounding boxes using a faster-RCNN model) These are currently not provided by the transformers library. visual_pos (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): This input represents spacial features corresponding to their relative (via index) visual features. The pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to 1. These are currently not provided by the transformers library. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) visual_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): MMask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.", LXMERT_START_DOCSTRING, ) class TFLxmertModel(TFLxmertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.lxmert = TFLxmertMainLayer(config, name="lxmert") @unpack_inputs @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLxmertModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, visual_feats: tf.Tensor | None = None, visual_pos: tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, visual_attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFLxmertModelOutput]: outputs = self.lxmert( input_ids, visual_feats, visual_pos, attention_mask, visual_attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict, training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "lxmert", None) is not None: with tf.name_scope(self.lxmert.name): self.lxmert.build(None) class TFLxmertPooler(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Lxmert class TFLxmertPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: LxmertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Lxmert class TFLxmertLMPredictionHead(keras.layers.Layer): def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.transform = TFLxmertPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Lxmert class TFLxmertMLMHead(keras.layers.Layer): def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) class TFLxmertPreTrainingHeads(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions") self.seq_relationship = keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="seq_relationship", ) self.config = config def call(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build([None, None, self.config.hidden_size]) class TFLxmertVisualAnswerHead(keras.layers.Layer): def __init__(self, config, num_labels, **kwargs): super().__init__(**kwargs) hid_dim = config.hidden_size self.dense = keras.layers.Dense( hid_dim * 2, kernel_initializer=get_initializer(config.initializer_range), name="logit_fc_._0", ) self.activation = get_tf_activation("gelu") self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="logit_fc_._2") self.dense_1 = keras.layers.Dense( num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logit_fc_._3", ) self.hid_dim = hid_dim def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.dense_1(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hid_dim]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, self.hid_dim * 2]) if getattr(self, "dense_1", None) is not None: with tf.name_scope(self.dense_1.name): self.dense_1.build([None, None, self.hid_dim * 2]) class TFLxmertVisualObjHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFLxmertPredictionHeadTransform(config, name="transform") # Decide the use of visual losses visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} if config.visual_attr_loss: visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} if config.visual_feat_loss: visual_losses["feat"] = {"shape": (-1, 2048), "num": config.visual_feat_dim} self.visual_losses = visual_losses # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder_dict = { key: keras.layers.Dense( self.visual_losses[key]["num"], kernel_initializer=get_initializer(config.initializer_range), name=f"decoder_dict.{key}", ) for key in self.visual_losses } self.config = config def call(self, hidden_states): hidden_states = self.transform(hidden_states) output = {} for key in self.visual_losses: output[key] = self.decoder_dict[key](hidden_states) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) if getattr(self, "decoder_dict", None) is not None: for layer in self.decoder_dict.values(): with tf.name_scope(layer.name): layer.build([None, None, self.config.hidden_size]) @add_start_docstrings("""Lxmert Model with a `language modeling` head on top.""", LXMERT_START_DOCSTRING) class TFLxmertForPreTraining(TFLxmertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.num_qa_labels = config.num_qa_labels self.visual_loss_normalizer = config.visual_loss_normalizer # Use of pretraining tasks self.task_mask_lm = config.task_mask_lm self.task_obj_predict = config.task_obj_predict self.task_matched = config.task_matched self.task_qa = config.task_qa # Lxmert backbone self.lxmert = TFLxmertMainLayer(config, name="lxmert") # Pre-training heads self.cls = TFLxmertPreTrainingHeads(config, self.lxmert.embeddings, name="cls") if self.task_obj_predict: self.obj_predict_head = TFLxmertVisualObjHead(config, name="obj_predict_head") if self.task_qa: self.answer_head = TFLxmertVisualAnswerHead(config, self.num_qa_labels, name="answer_head") # Loss functions self.loss_fcts = { "l2": keras.losses.Huber(delta=1.0, name="huber_loss"), "visn_ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True), "ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True), } visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = { "shape": (-1,), "num": config.num_object_labels, "loss": "visn_ce", } if config.visual_attr_loss: visual_losses["attr"] = { "shape": (-1,), "num": config.num_attr_labels, "loss": "visn_ce", } if config.visual_feat_loss: visual_losses["feat"] = { "shape": (-1, config.visual_feat_dim), "num": config.visual_feat_dim, "loss": "l2", } self.visual_losses = visual_losses @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ batch_size = 2 num_visual_features = 10 input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32) visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim)) visual_pos = tf.random.uniform((batch_size, num_visual_features, 4)) if self.config.task_obj_predict: obj_labels = {} if self.config.visual_attr_loss and self.config.task_obj_predict: obj_labels["attr"] = ( tf.ones([batch_size, num_visual_features]), tf.ones([batch_size, num_visual_features]), ) if self.config.visual_feat_loss and self.config.task_obj_predict: obj_labels["feat"] = ( tf.ones([batch_size, num_visual_features, self.config.visual_feat_dim]), tf.ones([batch_size, num_visual_features]), ) if self.config.visual_obj_loss and self.config.task_obj_predict: obj_labels["obj"] = ( tf.ones([batch_size, num_visual_features]), tf.ones([batch_size, num_visual_features]), ) return { **{ "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": visual_pos, }, **({"obj_labels": obj_labels} if self.config.task_obj_predict else {}), } def get_lm_head(self): return self.cls.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.cls.name + "/" + self.cls.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, visual_feats: tf.Tensor | None = None, visual_pos: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, visual_attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, masked_lm_labels: tf.Tensor | None = None, obj_labels: Dict[str, Tuple[tf.Tensor, tf.Tensor]] | None = None, matched_label: tf.Tensor | None = None, ans: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> Tuple[tf.Tensor] | TFLxmertForPreTrainingOutput: r""" masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` obj_labels (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`): each key is named after each one of the visual losses and each element of the tuple is of the shape `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and the label score respectively matched_label (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the whether or not the text input matches the image (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates that the sentence does not match the image, - 1 indicates that the sentence does match the image. ans (`tf.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`): a one hot representation hof the correct answer *optional* Returns: """ lxmert_output = self.lxmert( input_ids, visual_feats, visual_pos, attention_mask, visual_attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict, training, ) lang_output, visual_output, pooled_output = ( lxmert_output[0], lxmert_output[1], lxmert_output[2], ) lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) if self.task_qa: answer_score = self.answer_head(pooled_output) else: answer_score = pooled_output[0][0] total_loss = ( None if (masked_lm_labels is None and matched_label is None and obj_labels is None and ans is None) else tf.constant(0.0) ) losses = () if masked_lm_labels is not None and self.task_mask_lm: masked_lm_loss = self.loss_fcts["ce"]( tf.reshape(masked_lm_labels, [-1]), tf.reshape(lang_prediction_scores, [-1, self.config.vocab_size]), ) total_loss += masked_lm_loss losses += (masked_lm_loss,) if matched_label is not None and self.task_matched: matched_loss = self.loss_fcts["ce"]( tf.reshape(matched_label, [-1]), tf.reshape(cross_relationship_score, [-1, 2]), ) total_loss += matched_loss losses += (matched_loss,) if obj_labels is not None and self.task_obj_predict: total_visn_loss = 0.0 visn_prediction_scores_dict = self.obj_predict_head(visual_output) for key, key_info in self.visual_losses.items(): label, mask_conf = obj_labels[key] output_dim = key_info["num"] loss_fct_name = key_info["loss"] label_shape = key_info["shape"] weight = self.visual_loss_normalizer visn_loss_fct = self.loss_fcts[loss_fct_name] visn_prediction_scores = visn_prediction_scores_dict[key] visn_loss = visn_loss_fct( tf.reshape(label, label_shape), tf.reshape(visn_prediction_scores, [-1, output_dim]), ) if visn_loss.ndim > 1: # Regression Losses visn_loss = tf.reduce_mean(visn_loss) visn_loss = tf.reduce_mean(visn_loss * tf.cast(tf.reshape(mask_conf, [-1]), visn_loss.dtype)) * weight total_visn_loss += visn_loss losses += (visn_loss,) total_loss += total_visn_loss if ans is not None and self.task_qa: answer_loss = self.loss_fcts["ce"]( tf.reshape(ans, [-1]), tf.reshape(answer_score, [-1, self.num_qa_labels]) ) # exclude "*2" here to match the effect of QA losses. # Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper) # Now : (loss *1) for 12 epochs # # * 2 # Multiply by 2 because > half of the data will not have label total_loss += answer_loss losses += (answer_loss,) # return total_loss, tf.stack(losses)[tf.new_axis, ...], answer_score.detach() if not return_dict: output = ( lang_prediction_scores, cross_relationship_score, answer_score, ) + lxmert_output[3:] return ((total_loss,) + output) if total_loss is not None else output return TFLxmertForPreTrainingOutput( loss=total_loss, prediction_logits=lang_prediction_scores, cross_relationship_score=cross_relationship_score, question_answering_score=answer_score, language_hidden_states=lxmert_output.language_hidden_states, vision_hidden_states=lxmert_output.vision_hidden_states, language_attentions=lxmert_output.language_attentions, vision_attentions=lxmert_output.vision_attentions, cross_encoder_attentions=lxmert_output.cross_encoder_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "lxmert", None) is not None: with tf.name_scope(self.lxmert.name): self.lxmert.build(None) if getattr(self, "cls", None) is not None: with tf.name_scope(self.cls.name): self.cls.build(None) if getattr(self, "obj_predict_head", None) is not None: with tf.name_scope(self.obj_predict_head.name): self.obj_predict_head.build(None) if getattr(self, "answer_head", None) is not None: with tf.name_scope(self.answer_head.name): self.answer_head.build(None)
transformers/src/transformers/models/lxmert/modeling_tf_lxmert.py/0
{ "file_path": "transformers/src/transformers/models/lxmert/modeling_tf_lxmert.py", "repo_id": "transformers", "token_count": 31854 }
302
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_markuplm": ["MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "MarkupLMConfig"], "feature_extraction_markuplm": ["MarkupLMFeatureExtractor"], "processing_markuplm": ["MarkupLMProcessor"], "tokenization_markuplm": ["MarkupLMTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_markuplm_fast"] = ["MarkupLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_markuplm"] = [ "MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST", "MarkupLMForQuestionAnswering", "MarkupLMForSequenceClassification", "MarkupLMForTokenClassification", "MarkupLMModel", "MarkupLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_markuplm import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP, MarkupLMConfig from .feature_extraction_markuplm import MarkupLMFeatureExtractor from .processing_markuplm import MarkupLMProcessor from .tokenization_markuplm import MarkupLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_markuplm_fast import MarkupLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_markuplm import ( MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST, MarkupLMForQuestionAnswering, MarkupLMForSequenceClassification, MarkupLMForTokenClassification, MarkupLMModel, MarkupLMPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/markuplm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/markuplm/__init__.py", "repo_id": "transformers", "token_count": 1053 }
303
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MaskFormer checkpoints with ResNet backbone from the original repository. URL: https://github.com/facebookresearch/MaskFormer""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_maskformer_config(model_name: str): if "resnet101c" in model_name: # TODO add support for ResNet-C backbone, which uses a "deeplab" stem raise NotImplementedError("To do") elif "resnet101" in model_name: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-101", out_features=["stage1", "stage2", "stage3", "stage4"] ) else: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] ) config = MaskFormerConfig(backbone_config=backbone_config) repo_id = "huggingface/label-files" if "ade20k-full" in model_name: config.num_labels = 847 filename = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: config.num_labels = 150 filename = "ade20k-id2label.json" elif "coco-stuff" in model_name: config.num_labels = 171 filename = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO config.num_labels = 133 filename = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: config.num_labels = 19 filename = "cityscapes-id2label.json" elif "vistas" in model_name: config.num_labels = 65 filename = "mapillary-vistas-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.stem.conv1.weight", "model.pixel_level_module.encoder.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.stem.conv1.norm.weight", "model.pixel_level_module.encoder.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.stem.conv1.norm.bias", "model.pixel_level_module.encoder.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.stem.conv1.norm.running_mean", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.stem.conv1.norm.running_var", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_var")) # fmt: on # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # FPN # fmt: off rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias")) for source_index, target_index in zip(range(3, 0, -1), range(0, 3)): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight")) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias")) # fmt: on # Transformer decoder # fmt: off for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias")) # fmt: on # heads on top # fmt: off rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias")) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight")) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias")) for i in range(3): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight")) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_decoder_q_k_v(state_dict, config): # fmt: off hidden_size = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # fmt: on # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_maskformer_checkpoint( model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our MaskFormer structure. """ config = get_maskformer_config(model_name) # load original state_dict with open(checkpoint_path, "rb") as f: data = pickle.load(f) state_dict = data["model"] # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_decoder_q_k_v(state_dict, config) # update to torch tensors for key, value in state_dict.items(): state_dict[key] = torch.from_numpy(value) # load 🤗 model model = MaskFormerForInstanceSegmentation(config) model.eval() model.load_state_dict(state_dict) # verify results image = prepare_img() if "vistas" in model_name: ignore_index = 65 elif "cityscapes" in model_name: ignore_index = 65535 else: ignore_index = 255 reduce_labels = True if "ade" in model_name else False image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels) inputs = image_processor(image, return_tensors="pt") outputs = model(**inputs) if model_name == "maskformer-resnet50-ade": expected_logits = torch.tensor( [[6.7710, -0.1452, -3.5687], [1.9165, -1.0010, -1.8614], [3.6209, -0.2950, -1.3813]] ) elif model_name == "maskformer-resnet101-ade": expected_logits = torch.tensor( [[4.0381, -1.1483, -1.9688], [2.7083, -1.9147, -2.2555], [3.4367, -1.3711, -2.1609]] ) elif model_name == "maskformer-resnet50-coco-stuff": expected_logits = torch.tensor( [[3.2309, -3.0481, -2.8695], [5.4986, -5.4242, -2.4211], [6.2100, -5.2279, -2.7786]] ) elif model_name == "maskformer-resnet101-coco-stuff": expected_logits = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ) elif model_name == "maskformer-resnet101-cityscapes": expected_logits = torch.tensor( [[-1.8861, -1.5465, 0.6749], [-2.3677, -1.6707, -0.0867], [-2.2314, -1.9530, -0.9132]] ) elif model_name == "maskformer-resnet50-vistas": expected_logits = torch.tensor( [[-6.3917, -1.5216, -1.1392], [-5.5335, -4.5318, -1.8339], [-4.3576, -4.0301, 0.2162]] ) elif model_name == "maskformer-resnet50-ade20k-full": expected_logits = torch.tensor( [[3.6146, -1.9367, -3.2534], [4.0099, 0.2027, -2.7576], [3.3913, -2.3644, -3.9519]] ) elif model_name == "maskformer-resnet101-ade20k-full": expected_logits = torch.tensor( [[3.2211, -1.6550, -2.7605], [2.8559, -2.4512, -2.9574], [2.6331, -2.6775, -2.1844]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor of {model_name} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and image processor of {model_name} to the hub...") model.push_to_hub(f"facebook/{model_name}") image_processor.push_to_hub(f"facebook/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-resnet50-ade", type=str, required=True, choices=[ "maskformer-resnet50-ade", "maskformer-resnet101-ade", "maskformer-resnet50-coco-stuff", "maskformer-resnet101-coco-stuff", "maskformer-resnet101-cityscapes", "maskformer-resnet50-vistas", "maskformer-resnet50-ade20k-full", "maskformer-resnet101-ade20k-full", ], help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", type=str, required=True, help=("Path to the original pickle file (.pkl) of the original checkpoint.",), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py", "repo_id": "transformers", "token_count": 9461 }
304
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart50 import MBart50Tokenizer else: MBart50Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip class MBart50TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Examples: ```python >>> from transformers import MBart50TokenizerFast >>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = MBart50Tokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, src_lang=None, tgt_lang=None, tokenizer_file=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( vocab_file, src_lang=src_lang, tgt_lang=tgt_lang, tokenizer_file=tokenizer_file, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "en_XX" self.tgt_lang = tgt_lang self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.set_src_lang_special_tokens(self._src_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py/0
{ "file_path": "transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py", "repo_id": "transformers", "token_count": 5245 }
305
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mgp-str": 27} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): vocab = dict(self.vocab).copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py/0
{ "file_path": "transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py", "repo_id": "transformers", "token_count": 1683 }
306
# MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ["google/mobilebert-uncased"] def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.replace("ffn_layer", "ffn") name = name.replace("FakeLayerNorm", "LayerNorm") name = name.replace("extra_output_weights", "dense/kernel") name = name.replace("bert", "mobilebert") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig pretrained_model_archive_map = MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/mobilebert/modeling_mobilebert.py/0
{ "file_path": "transformers/src/transformers/models/mobilebert/modeling_mobilebert.py", "repo_id": "transformers", "token_count": 29570 }
307
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_mobilevit"] = ["MobileViTFeatureExtractor"] _import_structure["image_processing_mobilevit"] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mobilevit"] = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_mobilevit"] = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/mobilevit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/mobilevit/__init__.py", "repo_id": "transformers", "token_count": 1380 }
308
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for MPNet.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mpnet import MPNetTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt", }, "tokenizer_file": { "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/mpnet-base": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/mpnet-base": {"do_lower_case": True}, } class MPNetTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" MPNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = MPNetTokenizer model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="[UNK]", pad_token="<pad>", mask_token="<mask>", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get("lowercase", do_lower_case) != do_lower_case or pre_tok_state.get("strip_accents", strip_accents) != strip_accents ): pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) pre_tok_state["lowercase"] = do_lower_case pre_tok_state["strip_accents"] = strip_accents self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) self.do_lower_case = do_lower_case @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the *<mask>*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. This is needed to preserve backward compatibility with all the previously used models based on MPNet. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not make use of token type ids, therefore a list of zeros is returned Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/mpnet/tokenization_mpnet_fast.py/0
{ "file_path": "transformers/src/transformers/models/mpnet/tokenization_mpnet_fast.py", "repo_id": "transformers", "token_count": 3935 }
309
# coding=utf-8 # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Musicgen model.""" import copy import inspect import math import random from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation.configuration_utils import GenerationConfig from ...generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList from ...generation.stopping_criteria import StoppingCriteriaList from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, ModelOutput, Seq2SeqLMOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel from .configuration_musicgen import MusicgenConfig, MusicgenDecoderConfig if TYPE_CHECKING: from ...generation.streamers import BaseStreamer logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MusicgenConfig" _CHECKPOINT_FOR_DOC = "facebook/musicgen-small" MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/musicgen-small", # See all Musicgen models at https://huggingface.co/models?filter=musicgen ] @dataclass class MusicgenUnconditionalInput(ModelOutput): """ Args: encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the text encoder model. attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*): Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**. guidance_scale (`float`, *optional*): Guidance scale for classifier free guidance, setting the balance between the conditional logits (predicted from the prompts) and the unconditional logits (predicted without prompts). """ encoder_outputs: Tuple[torch.FloatTensor] = None attention_mask: torch.LongTensor = None guidance_scale: float = None # Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class MusicgenSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int): super().__init__() self.embedding_dim = embedding_dim self.make_weights(num_positions, embedding_dim) def make_weights(self, num_embeddings: int, embedding_dim: int): emb_weights = self.get_embedding(num_embeddings, embedding_dim) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, codebooks, seq_len = input_ids.size() # Create the position ids from the input token ids. position_ids = (torch.arange(seq_len) + past_key_values_length).to(input_ids.device) # expand embeddings if needed if seq_len > self.weights.size(0): self.make_weights(seq_len + self.offset, self.embedding_dim) return self.weights.index_select(0, position_ids.view(-1)).detach() # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Musicgen class MusicgenAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MusicgenConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class MusicgenDecoderLayer(nn.Module): def __init__(self, config: MusicgenDecoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = MusicgenAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MusicgenAttention( self.embed_dim, config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) self.final_layer_norm = nn.LayerNorm(self.embed_dim) # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class MusicgenPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MusicgenDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MusicgenDecoderLayer", "MusicgenAttention"] def _init_weights(self, module): std = self.config.initializer_factor if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MUSICGEN_START_DOCSTRING = r""" The Musicgen model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an encoder decoder transformer trained on the task of conditional music generation This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MusicgenConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MUSICGEN_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) <Tip warning={true}> The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `decoder_input_ids`. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MUSICGEN_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`): Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are input IDs?](../glossary#input-ids) <Tip warning={true}> The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `input_ids`. </Tip> attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class MusicgenDecoder(MusicgenPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenDecoderLayer`] """ def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.max_target_positions = config.max_position_embeddings self.d_model = config.hidden_size self.num_codebooks = config.num_codebooks self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 embed_dim = config.vocab_size + 1 self.embed_tokens = nn.ModuleList( [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] ) self.embed_positions = MusicgenSinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size, ) self.layers = nn.ModuleList([MusicgenDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input.shape input_shape = (bsz, seq_len) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1:] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {attn_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.forward, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Musicgen decoder model outputting raw hidden-states without any specific head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenModel(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.decoder = MusicgenDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) @add_start_docstrings( "The MusicGen decoder model with a language modelling head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenForCausalLM(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.model = MusicgenModel(config) self.num_codebooks = config.num_codebooks self.lm_heads = nn.ModuleList( [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_heads def set_output_embeddings(self, new_embeddings): self.lm_heads = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) loss = None if labels is not None: raise NotImplementedError("Training is not implemented for Musicgen.") # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=True, delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if delay_pattern_mask is None: input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) input_ids = input_ids.repeat((2, 1)) if attention_mask is not None: attention_mask = attention_mask.repeat((2, 1)) if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, "cross_attn_head_mask": cross_attn_head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None): """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, seq_len)`: - [P, -1, -1, -1, -1, P, P, P] - [P, P, -1, -1, -1, -1, P, P] - [P, P, P, -1, -1, -1, -1, P] - [P, P, P, P, -1, -1, -1, -1] where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the mask is set to the value in the prompt: - [P, a, b, -1, -1, P, P, P] - [P, P, c, d, -1, -1, P, P] - [P, P, P, e, f, -1, -1, P] - [P, P, P, P, g, h, -1, -1] where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 tokens in our prediction. """ # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input_ids.shape max_length = max_length if max_length is not None else self.generation_config.max_length input_ids_shifted = ( torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 ) channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks # we only apply the mask if we have a large enough seq len - otherwise we return as is if max_length < 2 * channel_codebooks - 1: return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) # fill the shifted ids with the prompt entries, offset by the codebook idx for codebook in range(channel_codebooks): if self.config.audio_channels == 1: # mono channel - loop over the codebooks one-by-one input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] else: # left/right channels are interleaved in the generated codebooks, so handle one then the other input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook] input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1] # construct a pattern mask that indicates the positions of padding tokens for each codebook # first fill the upper triangular part (the EOS padding) delay_pattern = torch.triu( torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1 ) # then fill the lower triangular part (the BOS padding) delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool)) if self.config.audio_channels == 2: # for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion delay_pattern = delay_pattern.repeat_interleave(2, dim=0) mask = ~delay_pattern.to(input_ids.device) input_ids = mask * input_ids_shifted + ~mask * pad_token_id # find the first position to start generating - this is the first place we have the -1 token # and will always be in the first codebook (since it has no codebook offset) first_codebook_ids = input_ids[:, 0, :] start_ids = (first_codebook_ids == -1).nonzero()[:, 1] if len(start_ids) > 0: first_start_id = min(start_ids) else: # we have no tokens that need to be filled - return entire matrix of input ids first_start_id = seq_len # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) return input_ids, pattern_mask @staticmethod def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): """Apply a delay pattern mask to the decoder input ids, only preserving predictions where the mask is set to -1, and otherwise setting to the value detailed in the mask.""" seq_len = input_ids.shape[-1] decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) return input_ids @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = input_ids.shape[0] // self.num_codebooks # 4. Define other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( input_ids, generation_config.pad_token_id, generation_config.eos_token_id ) # 5. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation." ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # 6. Prepare `input_ids` which will be used for auto-regressive generation # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) if streamer is not None: streamer.put(input_ids.cpu()) # stash the delay mask so that we don't have to recompute it in each forward pass model_kwargs["delay_pattern_mask"] = delay_pattern_mask # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 11. run greedy search outputs = self.greedy_search( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, **model_kwargs, ) # 12. run sample outputs = self.sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.num_codebooks, -1 ) if generation_config.return_dict_in_generate: outputs.sequences = output_ids return outputs else: return output_ids @add_start_docstrings( "The composite MusicGen model with a text encoder, audio encoder and Musicgen decoder, " "for music generation tasks with one or both of text and audio prompts.", MUSICGEN_START_DOCSTRING, ) class MusicgenForConditionalGeneration(PreTrainedModel): config_class = MusicgenConfig base_model_prefix = "encoder_decoder" main_input_name = "input_ids" supports_gradient_checkpointing = True def __init__( self, config: Optional[MusicgenConfig] = None, text_encoder: Optional[PreTrainedModel] = None, audio_encoder: Optional[PreTrainedModel] = None, decoder: Optional[MusicgenForCausalLM] = None, ): if config is None and (text_encoder is None or audio_encoder is None or decoder is None): raise ValueError( "Either a configuration has to be provided, or all three of text encoder, audio encoder and MusicGen decoder." ) if config is None: config = MusicgenConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the MusicGen decoder's configuration, it has to be equal" f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for" " `config.text_encoder.hidden_size`." ) # initialize with config super().__init__(config) if text_encoder is None: from ..auto.modeling_auto import AutoModelForTextEncoding text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) if audio_encoder is None: from ..auto.modeling_auto import AutoModel audio_encoder = AutoModel.from_config(config.audio_encoder) if decoder is None: decoder = MusicgenForCausalLM(config.decoder) self.text_encoder = text_encoder self.audio_encoder = audio_encoder self.decoder = decoder if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict(): logger.warning( f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:" f" {self.config.text_encoder}" ) if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict(): logger.warning( f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:" f" {self.config.audio_encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.text_encoder.config = self.config.text_encoder self.audio_encoder.config = self.config.audio_encoder self.decoder.config = self.config.decoder # text encoder outputs might need to be projected to different dimension for decoder if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) if self.text_encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" ) decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) # tie text encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie text encoder & decoder if needed if self.config.tie_encoder_decoder: # tie text encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix self._tie_encoder_decoder_weights( self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix ) def get_audio_encoder(self): return self.audio_encoder def get_text_encoder(self): return self.text_encoder def get_encoder(self): # get the text encoder to compute the encoder hidden-states for generation return self.get_text_encoder() def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.text_encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") ```""" # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for MusicgenForConditionalGeneration. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_sub_models_pretrained( cls, text_encoder_pretrained_model_name_or_path: str = None, audio_encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: text_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the text encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `t5-base`, or namespaced under a user or organization name, like `google/flan-t5-base. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. audio_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the audio encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `facebook/encodec_24khz`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `gpt2`, or namespaced under a user or organization name, like `facebook/musicgen-small`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration parameter. - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder >>> model = MusicgenForConditionalGeneration.from_sub_models_pretrained( ... text_encoder_pretrained_model_name_or_path="t5-base", ... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", ... decoder_pretrained_model_name_or_path="facebook/musicgen-small", ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./musicgen-ft") >>> # load fine-tuned model >>> model = MusicgenForConditionalGeneration.from_pretrained("./musicgen-ft") ```""" kwargs_text_encoder = { argument[len("text_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove text encoder, audio encoder and decoder kwargs from kwargs for key in kwargs_text_encoder.keys(): del kwargs["text_encoder_" + key] for key in kwargs_audio_encoder.keys(): del kwargs["audio_encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. text_encoder = kwargs_text_encoder.pop("model", None) if text_encoder is None: if text_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_text_encoder: encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_text_encoder["config"] = encoder_config text_encoder = AutoModel.from_pretrained( text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder ) audio_encoder = kwargs_audio_encoder.pop("model", None) if audio_encoder is None: if audio_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_audio_encoder: encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_audio_encoder["config"] = encoder_config audio_encoder = AutoModel.from_pretrained( audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if isinstance(decoder_config, MusicgenConfig): decoder_config = decoder_config.decoder if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_sub_models_pretrained(...)`" ) decoder = MusicgenForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = MusicgenConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config, **kwargs ) return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.BoolTensor] = None, input_values: Optional[torch.FloatTensor] = None, padding_mask: Optional[torch.BoolTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MusicgenForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small") >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> pad_token_id = model.generation_config.pad_token_id >>> decoder_input_ids = ( ... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) ... * pad_token_id ... ) >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits >>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size) torch.Size([8, 1, 2048]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_text_encoder = { argument[len("text_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_text_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if attention_mask is not None: encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) elif decoder_input_ids is None and decoder_inputs_embeds is None: audio_encoder_outputs = self.audio_encoder( input_values=input_values, padding_mask=padding_mask, **kwargs_audio_encoder, ) audio_codes = audio_encoder_outputs.audio_codes frames, bsz, codebooks, seq_len = audio_codes.shape if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2: # mono input through encodec that we convert to stereo audio_codes = audio_codes.repeat_interleave(2, dim=2) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) loss = None if labels is not None: logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_attention_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, decoder_delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if decoder_delay_pattern_mask is None: decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( decoder_input_ids, self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) decoder_input_ids = decoder_input_ids.repeat((2, 1)) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat((2, 1)) if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) if device is None: device = self.device decoder_input_ids_start = ( torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _prepare_text_encoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None, guidance_scale: Optional[float] = None, ) -> Dict[str, Any]: # 1. get text encoder encoder = self.get_text_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor last_hidden_state = encoder(**encoder_kwargs).last_hidden_state # for classifier free guidance we need to add a 'null' input to our encoder hidden states if guidance_scale is not None and guidance_scale > 1: last_hidden_state = torch.concatenate([last_hidden_state, torch.zeros_like(last_hidden_state)], dim=0) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = torch.concatenate( [model_kwargs["attention_mask"], torch.zeros_like(model_kwargs["attention_mask"])], dim=0 ) model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=last_hidden_state) return model_kwargs def _prepare_audio_encoder_kwargs_for_generation( self, input_values, model_kwargs, model_input_name: Optional[str] = None ): # 1. get audio encoder encoder = self.get_audio_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name encoder_kwargs["return_dict"] = True if self.decoder.config.audio_channels == 1: encoder_kwargs[model_input_name] = input_values audio_encoder_outputs = encoder.encode(**encoder_kwargs) audio_codes = audio_encoder_outputs.audio_codes audio_scales = audio_encoder_outputs.audio_scales frames, bsz, codebooks, seq_len = audio_codes.shape else: if input_values.shape[1] != 2: raise ValueError( f"Expected stereo audio (2-channels) but example has {input_values.shape[1]} channel." ) encoder_kwargs[model_input_name] = input_values[:, :1, :] audio_encoder_outputs_left = encoder.encode(**encoder_kwargs) audio_codes_left = audio_encoder_outputs_left.audio_codes audio_scales_left = audio_encoder_outputs_left.audio_scales encoder_kwargs[model_input_name] = input_values[:, 1:, :] audio_encoder_outputs_right = encoder.encode(**encoder_kwargs) audio_codes_right = audio_encoder_outputs_right.audio_codes audio_scales_right = audio_encoder_outputs_right.audio_scales frames, bsz, codebooks, seq_len = audio_codes_left.shape # copy alternating left/right channel codes into stereo codebook audio_codes = audio_codes_left.new_ones((frames, bsz, 2 * codebooks, seq_len)) audio_codes[:, :, ::2, :] = audio_codes_left audio_codes[:, :, 1::2, :] = audio_codes_right if audio_scales_left != [None] or audio_scales_right != [None]: audio_scales = torch.stack([audio_scales_left, audio_scales_right], dim=1) else: audio_scales = [None] * bsz if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) model_kwargs["decoder_input_ids"] = decoder_input_ids model_kwargs["audio_scales"] = audio_scales return model_kwargs def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs[0].size()[:-1] return torch.ones(shape, dtype=torch.long, device=self.device) * -100 if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple: # wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0]) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] # 4. Define other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id ) if "encoder_outputs" not in model_kwargs: # encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_text_encoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, guidance_scale=generation_config.guidance_scale, ) if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs: model_kwargs = self._prepare_audio_encoder_kwargs_for_generation( model_kwargs["input_values"], model_kwargs, ) # 5. Prepare `input_ids` which will be used for auto-regressive generation input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, device=inputs_tensor.device, ) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation." ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute in each forward pass model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask # input_ids are ready to be placed on the streamer (if used) if streamer is not None: streamer.put(input_ids.cpu()) # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 11. run greedy search outputs = self.greedy_search( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 12. run sample outputs = self.sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.decoder.num_codebooks, -1 ) # append the frame dimension back to the audio codes output_ids = output_ids[None, ...] audio_scales = model_kwargs.get("audio_scales") if audio_scales is None: audio_scales = [None] * batch_size if self.decoder.config.audio_channels == 1: output_values = self.audio_encoder.decode( output_ids, audio_scales=audio_scales, ).audio_values else: codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales) output_values_left = codec_outputs_left.audio_values codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales) output_values_right = codec_outputs_right.audio_values output_values = torch.cat([output_values_left, output_values_right], dim=1) if generation_config.return_dict_in_generate: outputs.sequences = output_values return outputs else: return output_values def get_unconditional_inputs(self, num_samples=1): """ Helper function to get null inputs for unconditional generation, enabling the model to be used without the feature extractor or tokenizer. Args: num_samples (int, *optional*): Number of audio samples to unconditionally generate. max_new_tokens (int, *optional*): Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of longer inference (since more audio tokens need to be generated per sample). Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> # get the unconditional (or 'null') inputs for the model >>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1) >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256) ```""" last_hidden_state = torch.zeros( (num_samples, 1, self.config.text_encoder.hidden_size), device=self.device, dtype=self.dtype ) attention_mask = torch.zeros((num_samples, 1), device=self.device, dtype=torch.long) return MusicgenUnconditionalInput( encoder_outputs=(last_hidden_state,), attention_mask=attention_mask, guidance_scale=1.0, )
transformers/src/transformers/models/musicgen/modeling_musicgen.py/0
{ "file_path": "transformers/src/transformers/models/musicgen/modeling_musicgen.py", "repo_id": "transformers", "token_count": 53469 }
310
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Perceiver checkpoints originally implemented in Haiku.""" import argparse import json import pickle from pathlib import Path import haiku as hk import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( PerceiverConfig, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverImageProcessor, PerceiverTokenizer, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def prepare_img(): # We will verify our results on an image of a dog url = "https://storage.googleapis.com/perceiver_io/dalmation.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def rename_keys(state_dict, architecture): for name in list(state_dict): param = state_dict.pop(name) # PREPROCESSORS # rename text preprocessor embeddings (for MLM model) name = name.replace("embed/embeddings", "input_preprocessor.embeddings.weight") if name.startswith("trainable_position_encoding/pos_embs"): name = name.replace( "trainable_position_encoding/pos_embs", "input_preprocessor.position_embeddings.weight" ) # rename image preprocessor embeddings (for image classification model with learned position embeddings) name = name.replace("image_preprocessor/~/conv2_d/w", "input_preprocessor.convnet_1x1.weight") name = name.replace("image_preprocessor/~/conv2_d/b", "input_preprocessor.convnet_1x1.bias") name = name.replace( "image_preprocessor/~_build_network_inputs/trainable_position_encoding/pos_embs", "input_preprocessor.position_embeddings.position_embeddings", ) name = name.replace( "image_preprocessor/~_build_network_inputs/position_encoding_projector/linear/w", "input_preprocessor.positions_projection.weight", ) name = name.replace( "image_preprocessor/~_build_network_inputs/position_encoding_projector/linear/b", "input_preprocessor.positions_projection.bias", ) # rename image preprocessor embeddings (for image classification model with conv processing) if "counter" in name or "hidden" in name: continue name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/conv/w", "input_preprocessor.convnet.conv.weight" ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/offset", "input_preprocessor.convnet.batchnorm.bias" ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/scale", "input_preprocessor.convnet.batchnorm.weight" ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/~/mean_ema/average", "input_preprocessor.convnet.batchnorm.running_mean", ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/~/var_ema/average", "input_preprocessor.convnet.batchnorm.running_var", ) # rename image preprocessor embeddings (for optical flow model) name = name.replace("image_preprocessor/patches_linear/b", "input_preprocessor.conv_after_patches.bias") name = name.replace("image_preprocessor/patches_linear/w", "input_preprocessor.conv_after_patches.weight") # rename multimodal preprocessor embeddings name = name.replace("multimodal_preprocessor/audio_mask_token/pos_embs", "input_preprocessor.mask.audio") name = name.replace("multimodal_preprocessor/audio_padding/pos_embs", "input_preprocessor.padding.audio") name = name.replace("multimodal_preprocessor/image_mask_token/pos_embs", "input_preprocessor.mask.image") name = name.replace("multimodal_preprocessor/image_padding/pos_embs", "input_preprocessor.padding.image") name = name.replace("multimodal_preprocessor/label_mask_token/pos_embs", "input_preprocessor.mask.label") name = name.replace("multimodal_preprocessor/label_padding/pos_embs", "input_preprocessor.padding.label") # DECODERS # rename prefix of decoders # multimodal autoencoding model name = name.replace( "multimodal_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." ) name = name.replace("multimodal_decoder/~decoder_query/audio_padding/pos_embs", "decoder.padding.audio") name = name.replace("multimodal_decoder/~decoder_query/image_padding/pos_embs", "decoder.padding.image") name = name.replace("multimodal_decoder/~decoder_query/label_padding/pos_embs", "decoder.padding.label") name = name.replace("multimodal_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") name = name.replace("multimodal_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") if architecture == "multimodal_autoencoding": name = name.replace( "classification_decoder/~/basic_decoder/~/trainable_position_encoding/pos_embs", "decoder.modalities.label.decoder.output_position_encodings.position_embeddings", ) # flow model name = name.replace( "flow_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." ) name = name.replace("flow_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") name = name.replace("flow_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") # image models name = name.replace( "classification_decoder/~/basic_decoder/~/trainable_position_encoding/pos_embs", "decoder.decoder.output_position_encodings.position_embeddings", ) name = name.replace( "basic_decoder/~/trainable_position_encoding/pos_embs", "decoder.output_position_encodings.position_embeddings", ) name = name.replace( "classification_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." ) name = name.replace("classification_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") name = name.replace("classification_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") name = name = name.replace("classification_decoder/~/basic_decoder/~/", "decoder.decoder.") name = name.replace("basic_decoder/cross_attention/", "decoder.decoding_cross_attention.") name = name.replace("basic_decoder/~/", "decoder.") # POSTPROCESSORS name = name.replace( "projection_postprocessor/linear/b", "output_postprocessor.modalities.image.classifier.bias" ) name = name.replace( "projection_postprocessor/linear/w", "output_postprocessor.modalities.image.classifier.weight" ) name = name.replace( "classification_postprocessor/linear/b", "output_postprocessor.modalities.label.classifier.bias" ) name = name.replace( "classification_postprocessor/linear/w", "output_postprocessor.modalities.label.classifier.weight" ) name = name.replace("audio_postprocessor/linear/b", "output_postprocessor.modalities.audio.classifier.bias") name = name.replace("audio_postprocessor/linear/w", "output_postprocessor.modalities.audio.classifier.weight") # PERCEIVER MODEL # rename latent embeddings name = name.replace("perceiver_encoder/~/trainable_position_encoding/pos_embs", "embeddings.latents") # rename latent embeddings (for multimodal model) name = name.replace("encoder/~/trainable_position_encoding/pos_embs", "embeddings.latents") # rename prefixes if name.startswith("perceiver_encoder/~/"): if "self_attention" in name: suffix = "self_attends." else: suffix = "" name = name.replace("perceiver_encoder/~/", "encoder." + suffix) if name.startswith("encoder/~/"): if "self_attention" in name: suffix = "self_attends." else: suffix = "" name = name.replace("encoder/~/", "encoder." + suffix) # rename layernorm parameters if "offset" in name: name = name.replace("offset", "bias") if "scale" in name: name = name.replace("scale", "weight") # in HuggingFace, the layernorm in between attention + MLP is just called "layernorm" # rename layernorm in between attention + MLP of cross-attention if "cross_attention" in name and "layer_norm_2" in name: name = name.replace("layer_norm_2", "layernorm") # rename layernorm in between attention + MLP of self-attention if "self_attention" in name and "layer_norm_1" in name: name = name.replace("layer_norm_1", "layernorm") # in HuggingFace, the layernorms for queries + keys are called "layernorm1" and "layernorm2" if "cross_attention" in name and "layer_norm_1" in name: name = name.replace("layer_norm_1", "attention.self.layernorm2") if "cross_attention" in name and "layer_norm" in name: name = name.replace("layer_norm", "attention.self.layernorm1") if "self_attention" in name and "layer_norm" in name: name = name.replace("layer_norm", "attention.self.layernorm1") # rename special characters by dots name = name.replace("-", ".") name = name.replace("/", ".") # rename keys, queries, values and output of attention layers if ("cross_attention" in name or "self_attention" in name) and "mlp" not in name: if "linear.b" in name: name = name.replace("linear.b", "self.query.bias") if "linear.w" in name: name = name.replace("linear.w", "self.query.weight") if "linear_1.b" in name: name = name.replace("linear_1.b", "self.key.bias") if "linear_1.w" in name: name = name.replace("linear_1.w", "self.key.weight") if "linear_2.b" in name: name = name.replace("linear_2.b", "self.value.bias") if "linear_2.w" in name: name = name.replace("linear_2.w", "self.value.weight") if "linear_3.b" in name: name = name.replace("linear_3.b", "output.dense.bias") if "linear_3.w" in name: name = name.replace("linear_3.w", "output.dense.weight") if "self_attention_" in name: name = name.replace("self_attention_", "") if "self_attention" in name: name = name.replace("self_attention", "0") # rename dense layers of 2-layer MLP if "mlp" in name: if "linear.b" in name: name = name.replace("linear.b", "dense1.bias") if "linear.w" in name: name = name.replace("linear.w", "dense1.weight") if "linear_1.b" in name: name = name.replace("linear_1.b", "dense2.bias") if "linear_1.w" in name: name = name.replace("linear_1.w", "dense2.weight") # finally, TRANSPOSE if kernel and not embedding layer, and set value if name[-6:] == "weight" and "embeddings" not in name: param = np.transpose(param) # if batchnorm, we need to squeeze it if "batchnorm" in name: param = np.squeeze(param) if "embedding_decoder" not in name: state_dict["perceiver." + name] = torch.from_numpy(param) else: state_dict[name] = torch.from_numpy(param) @torch.no_grad() def convert_perceiver_checkpoint(pickle_file, pytorch_dump_folder_path, architecture="MLM"): """ Copy/paste/tweak model's weights to our Perceiver structure. """ # load parameters as FlatMapping data structure with open(pickle_file, "rb") as f: checkpoint = pickle.loads(f.read()) state = None if isinstance(checkpoint, dict) and architecture in [ "image_classification", "image_classification_fourier", "image_classification_conv", ]: # the image classification_conv checkpoint also has batchnorm states (running_mean and running_var) params = checkpoint["params"] state = checkpoint["state"] else: params = checkpoint # turn into initial state dict state_dict = {} for scope_name, parameters in hk.data_structures.to_mutable_dict(params).items(): for param_name, param in parameters.items(): state_dict[scope_name + "/" + param_name] = param if state is not None: # add state variables for scope_name, parameters in hk.data_structures.to_mutable_dict(state).items(): for param_name, param in parameters.items(): state_dict[scope_name + "/" + param_name] = param # rename keys rename_keys(state_dict, architecture=architecture) # load HuggingFace model config = PerceiverConfig() subsampling = None repo_id = "huggingface/label-files" if architecture == "MLM": config.qk_channels = 8 * 32 config.v_channels = 1280 model = PerceiverForMaskedLM(config) elif "image_classification" in architecture: config.num_latents = 512 config.d_latents = 1024 config.d_model = 512 config.num_blocks = 8 config.num_self_attends_per_block = 6 config.num_cross_attention_heads = 1 config.num_self_attention_heads = 8 config.qk_channels = None config.v_channels = None # set labels config.num_labels = 1000 filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if architecture == "image_classification": config.image_size = 224 model = PerceiverForImageClassificationLearned(config) elif architecture == "image_classification_fourier": config.d_model = 261 model = PerceiverForImageClassificationFourier(config) elif architecture == "image_classification_conv": config.d_model = 322 model = PerceiverForImageClassificationConvProcessing(config) else: raise ValueError(f"Architecture {architecture} not supported") elif architecture == "optical_flow": config.num_latents = 2048 config.d_latents = 512 config.d_model = 322 config.num_blocks = 1 config.num_self_attends_per_block = 24 config.num_self_attention_heads = 16 config.num_cross_attention_heads = 1 model = PerceiverForOpticalFlow(config) elif architecture == "multimodal_autoencoding": config.num_latents = 28 * 28 * 1 config.d_latents = 512 config.d_model = 704 config.num_blocks = 1 config.num_self_attends_per_block = 8 config.num_self_attention_heads = 8 config.num_cross_attention_heads = 1 config.num_labels = 700 # define dummy inputs + subsampling (as each forward pass is only on a chunk of image + audio data) images = torch.randn((1, 16, 3, 224, 224)) audio = torch.randn((1, 30720, 1)) nchunks = 128 image_chunk_size = np.prod((16, 224, 224)) // nchunks audio_chunk_size = audio.shape[1] // config.samples_per_patch // nchunks # process the first chunk chunk_idx = 0 subsampling = { "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)), "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)), "label": None, } model = PerceiverForMultimodalAutoencoding(config) # set labels filename = "kinetics700-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} else: raise ValueError(f"Architecture {architecture} not supported") model.eval() # load weights model.load_state_dict(state_dict) # prepare dummy input input_mask = None if architecture == "MLM": tokenizer = PerceiverTokenizer.from_pretrained("/Users/NielsRogge/Documents/Perceiver/Tokenizer files") text = "This is an incomplete sentence where some words are missing." encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". Note that the model performs much better if the masked chunk starts with a space. encoding.input_ids[0, 51:60] = tokenizer.mask_token_id inputs = encoding.input_ids input_mask = encoding.attention_mask elif architecture in ["image_classification", "image_classification_fourier", "image_classification_conv"]: image_processor = PerceiverImageProcessor() image = prepare_img() encoding = image_processor(image, return_tensors="pt") inputs = encoding.pixel_values elif architecture == "optical_flow": inputs = torch.randn(1, 2, 27, 368, 496) elif architecture == "multimodal_autoencoding": images = torch.randn((1, 16, 3, 224, 224)) audio = torch.randn((1, 30720, 1)) inputs = {"image": images, "audio": audio, "label": torch.zeros((images.shape[0], 700))} # forward pass if architecture == "multimodal_autoencoding": outputs = model(inputs=inputs, attention_mask=input_mask, subsampled_output_points=subsampling) else: outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits if not isinstance(logits, dict): print("Shape of logits:", logits.shape) else: for k, v in logits.items(): print(f"Shape of logits of modality {k}", v.shape) if architecture == "MLM": expected_slice = torch.tensor( [[-11.8336, -11.6850, -11.8483], [-12.8149, -12.5863, -12.7904], [-12.8440, -12.6410, -12.8646]] ) assert torch.allclose(logits[0, :3, :3], expected_slice) masked_tokens_predictions = logits[0, 51:60].argmax(dim=-1).tolist() expected_list = [38, 115, 111, 121, 121, 111, 116, 109, 52] assert masked_tokens_predictions == expected_list print("Greedy predictions:") print(masked_tokens_predictions) print() print("Predicted string:") print(tokenizer.decode(masked_tokens_predictions)) elif architecture in ["image_classification", "image_classification_fourier", "image_classification_conv"]: print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) # Finally, save files Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pickle_file", type=str, default=None, required=True, help="Path to local pickle file of a Perceiver checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory, provided as a string.", ) parser.add_argument( "--architecture", default="MLM", type=str, help=""" Architecture, provided as a string. One of 'MLM', 'image_classification', image_classification_fourier', image_classification_fourier', 'optical_flow' or 'multimodal_autoencoding'. """, ) args = parser.parse_args() convert_perceiver_checkpoint(args.pickle_file, args.pytorch_dump_folder_path, args.architecture)
transformers/src/transformers/models/perceiver/convert_perceiver_haiku_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/perceiver/convert_perceiver_haiku_to_pytorch.py", "repo_id": "transformers", "token_count": 9000 }
311
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pix2Struct model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class Pix2StructTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50244): Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Dimensionality of the key, query, value projections in each attention head. d_ff (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. layer_norm_epsilon (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string). decoder_start_token_id (`int`, *optional*, defaults to 0): The id of the `decoder_start_token_id` token. use_cache (`bool`, *optional*, defaults to `False`): Whether or not the model should return the last key/values attentions (not used by all models). pad_token_id (`int`, *optional*, defaults to 0): The id of the `padding` token. eos_token_id (`int`, *optional*, defaults to 1): The id of the `end-of-sequence` token. Example: ```python >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration >>> configuration = Pix2StructTextConfig() >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration >>> model = Pix2StructTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pix2struct_text_model" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, vocab_size=50244, hidden_size=768, d_kv=64, d_ff=2048, num_layers=12, num_heads=12, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, dense_act_fn="gelu_new", decoder_start_token_id=0, use_cache=False, pad_token_id=0, eos_token_id=1, tie_word_embeddings=False, is_decoder=True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.use_cache = use_cache self.eos_token_id = eos_token_id self.decoder_start_token_id = decoder_start_token_id # for backwards compatibility self.dense_act_fn = dense_act_fn super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, tie_word_embeddings=tie_word_embeddings, is_decoder=is_decoder, **kwargs, ) @classmethod def from_pretrained( cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type") == "pix2struct": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class Pix2StructVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. patch_embed_hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the input patch_embedding layer in the Transformer encoder. d_ff (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. d_kv (`int`, *optional*, defaults to 64): Dimensionality of the key, query, value projections per attention head. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). seq_len (`int`, *optional*, defaults to 4096): Maximum sequence length (here number of patches) supported by the model. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance (in tokens) to use for each attention layer. Example: ```python >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration >>> configuration = Pix2StructVisionConfig() >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration >>> model = Pix2StructVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pix2struct_vision_model" def __init__( self, hidden_size=768, patch_embed_hidden_size=768, d_ff=2048, d_kv=64, num_hidden_layers=12, num_attention_heads=12, dense_act_fn="gelu_new", layer_norm_eps=1e-6, dropout_rate=0.0, attention_dropout=0.0, initializer_range=1e-10, initializer_factor=1.0, seq_len=4096, relative_attention_num_buckets=32, relative_attention_max_distance=128, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.patch_embed_hidden_size = patch_embed_hidden_size self.d_ff = d_ff self.dropout_rate = dropout_rate self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.dense_act_fn = dense_act_fn self.seq_len = seq_len self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.d_kv = d_kv @classmethod def from_pretrained( cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type") == "pix2struct": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class Pix2StructConfig(PretrainedConfig): r""" [`Pix2StructConfig`] is the configuration class to store the configuration of a [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pix2Struct-base [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Pix2StructTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`]. initializer_factor (`float`, *optional*, defaults to 1.0): Factor to multiply the initialization range with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. is_vqa (`bool`, *optional*, defaults to `False`): Whether the model has been fine-tuned for VQA or not. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration >>> configuration = Pix2StructConfig() >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration >>> model = Pix2StructForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration >>> config_text = Pix2StructTextConfig() >>> config_vision = Pix2StructVisionConfig() >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "pix2struct" def __init__( self, text_config=None, vision_config=None, initializer_factor=1.0, initializer_range=0.02, is_vqa=False, tie_word_embeddings=False, is_encoder_decoder=True, **kwargs, ): super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.") if vision_config is None: vision_config = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.") self.text_config = Pix2StructTextConfig(**text_config) self.vision_config = Pix2StructVisionConfig(**vision_config) self.decoder_start_token_id = self.text_config.decoder_start_token_id self.pad_token_id = self.text_config.pad_token_id self.eos_token_id = self.text_config.eos_token_id self.initializer_factor = initializer_factor self.initializer_range = initializer_range self.text_config.initializer_range = self.initializer_range self.vision_config.initializer_range = self.initializer_range self.is_vqa = is_vqa @classmethod def from_text_vision_configs( cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs ): r""" Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct vision model configuration. Returns: [`Pix2StructConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers/src/transformers/models/pix2struct/configuration_pix2struct.py/0
{ "file_path": "transformers/src/transformers/models/pix2struct/configuration_pix2struct.py", "repo_id": "transformers", "token_count": 6638 }
312
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_essentia_available, is_librosa_available, is_pretty_midi_available, is_scipy_available, is_torch_available, ) _import_structure = { "configuration_pop2piano": ["POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pop2PianoConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_pop2piano"] = [ "POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST", "Pop2PianoForConditionalGeneration", "Pop2PianoPreTrainedModel", ] try: if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_pop2piano"] = ["Pop2PianoFeatureExtractor"] try: if not (is_pretty_midi_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_pop2piano"] = ["Pop2PianoTokenizer"] try: if not ( is_pretty_midi_available() and is_torch_available() and is_librosa_available() and is_essentia_available() and is_scipy_available() ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["processing_pop2piano"] = ["Pop2PianoProcessor"] if TYPE_CHECKING: from .configuration_pop2piano import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP, Pop2PianoConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pop2piano import ( POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST, Pop2PianoForConditionalGeneration, Pop2PianoPreTrainedModel, ) try: if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_pop2piano import Pop2PianoFeatureExtractor try: if not (is_pretty_midi_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_pop2piano import Pop2PianoTokenizer try: if not ( is_pretty_midi_available() and is_torch_available() and is_librosa_available() and is_essentia_available() and is_scipy_available() ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .processing_pop2piano import Pop2PianoProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/pop2piano/__init__.py/0
{ "file_path": "transformers/src/transformers/models/pop2piano/__init__.py", "repo_id": "transformers", "token_count": 1512 }
313
# coding=utf-8 # Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, # Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PVT model.""" import collections import math from typing import Iterable, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_pvt import PvtConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "PvtConfig" _CHECKPOINT_FOR_DOC = "Zetatech/pvt-tiny-224" _EXPECTED_OUTPUT_SHAPE = [1, 50, 512] _IMAGE_CLASS_CHECKPOINT = "Zetatech/pvt-tiny-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" PVT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Zetatech/pvt-tiny-224" # See all PVT models at https://huggingface.co/models?filter=pvt ] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt class PvtDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class PvtPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__( self, config: PvtConfig, image_size: Union[int, Iterable[int]], patch_size: Union[int, Iterable[int]], stride: int, num_channels: int, hidden_size: int, cls_token: bool = False, ): super().__init__() self.config = config image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.position_embeddings = nn.Parameter( torch.randn(1, num_patches + 1 if cls_token else num_patches, hidden_size) ) self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) if cls_token else None self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=stride, stride=patch_size) self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(p=config.hidden_dropout_prob) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: num_patches = height * width if num_patches == self.config.image_size * self.config.image_size: return self.position_embeddings embeddings = embeddings.reshape(1, height, width, -1).permute(0, 3, 1, 2) interpolated_embeddings = F.interpolate(embeddings, size=(height, width), mode="bilinear") interpolated_embeddings = interpolated_embeddings.reshape(1, -1, height * width).permute(0, 2, 1) return interpolated_embeddings def forward(self, pixel_values: torch.Tensor) -> Tuple[torch.Tensor, int, int]: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) patch_embed = self.projection(pixel_values) *_, height, width = patch_embed.shape patch_embed = patch_embed.flatten(2).transpose(1, 2) embeddings = self.layer_norm(patch_embed) if self.cls_token is not None: cls_token = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_token, embeddings), dim=1) position_embeddings = self.interpolate_pos_encoding(self.position_embeddings[:, 1:], height, width) position_embeddings = torch.cat((self.position_embeddings[:, :1], position_embeddings), dim=1) else: position_embeddings = self.interpolate_pos_encoding(self.position_embeddings, height, width) embeddings = self.dropout(embeddings + position_embeddings) return embeddings, height, width class PvtSelfOutput(nn.Module): def __init__(self, config: PvtConfig, hidden_size: int): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class PvtEfficientSelfAttention(nn.Module): """Efficient self-attention mechanism with reduction of the sequence [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__( self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float ): super().__init__() self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.sequences_reduction_ratio = sequences_reduction_ratio if sequences_reduction_ratio > 1: self.sequence_reduction = nn.Conv2d( hidden_size, hidden_size, kernel_size=sequences_reduction_ratio, stride=sequences_reduction_ratio ) self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def transpose_for_scores(self, hidden_states: int) -> torch.Tensor: new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size) hidden_states = hidden_states.view(new_shape) return hidden_states.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False, ) -> Tuple[torch.Tensor]: query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sequences_reduction_ratio > 1: batch_size, seq_len, num_channels = hidden_states.shape # Reshape to (batch_size, num_channels, height, width) hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Apply sequence reduction hidden_states = self.sequence_reduction(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class PvtAttention(nn.Module): def __init__( self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float ): super().__init__() self.self = PvtEfficientSelfAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequences_reduction_ratio=sequences_reduction_ratio, ) self.output = PvtSelfOutput(config, hidden_size=hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class PvtFFN(nn.Module): def __init__( self, config: PvtConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, ): super().__init__() out_features = out_features if out_features is not None else in_features self.dense1 = nn.Linear(in_features, hidden_features) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(hidden_features, out_features) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class PvtLayer(nn.Module): def __init__( self, config: PvtConfig, hidden_size: int, num_attention_heads: int, drop_path: float, sequences_reduction_ratio: float, mlp_ratio: float, ): super().__init__() self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.attention = PvtAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequences_reduction_ratio=sequences_reduction_ratio, ) self.drop_path = PvtDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = PvtFFN(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size) def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False): self_attention_outputs = self.attention( hidden_states=self.layer_norm_1(hidden_states), height=height, width=width, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] attention_output = self.drop_path(attention_output) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states)) mlp_output = self.drop_path(mlp_output) layer_output = hidden_states + mlp_output outputs = (layer_output,) + outputs return outputs class PvtEncoder(nn.Module): def __init__(self, config: PvtConfig): super().__init__() self.config = config # stochastic depth decay rule drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist() # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( PvtPatchEmbeddings( config=config, image_size=config.image_size if i == 0 else self.config.image_size // (2 ** (i + 1)), patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], cls_token=i == config.num_encoder_blocks - 1, ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PvtLayer( config=config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequences_reduction_ratio=config.sequence_reduction_ratios[i], mlp_ratio=config.mlp_ratios[i], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) # Layer norms self.layer_norm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = pixel_values.shape[0] num_blocks = len(self.block) hidden_states = pixel_values for idx, (embedding_layer, block_layer) in enumerate(zip(self.patch_embeddings, self.block)): # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks for block in block_layer: layer_outputs = block(hidden_states, height, width, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if idx != num_blocks - 1: hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class PvtPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PvtConfig base_model_prefix = "pvt" main_input_name = "pixel_values" def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, nn.Linear): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, PvtPatchEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data, mean=0.0, std=self.config.initializer_range, ) if module.cls_token is not None: module.cls_token.data = nn.init.trunc_normal_( module.cls_token.data, mean=0.0, std=self.config.initializer_range, ) PVT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~PvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PVT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PvtImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Pvt encoder outputting raw hidden-states without any specific head on top.", PVT_START_DOCSTRING, ) class PvtModel(PvtPreTrainedModel): def __init__(self, config: PvtConfig): super().__init__(config) self.config = config # hierarchical Transformer encoder self.encoder = PvtEncoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ Pvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, PVT_START_DOCSTRING, ) class PvtForImageClassification(PvtPreTrainedModel): def __init__(self, config: PvtConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.pvt = PvtModel(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor], labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.pvt( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/pvt/modeling_pvt.py/0
{ "file_path": "transformers/src/transformers/models/pvt/modeling_pvt.py", "repo_id": "transformers", "token_count": 12226 }
314
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ REALM model configuration.""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REALM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class RealmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of 1. [`RealmEmbedder`] 2. [`RealmScorer`] 3. [`RealmKnowledgeAugEncoder`] 4. [`RealmRetriever`] 5. [`RealmReader`] 6. [`RealmForOpenQA`] It is used to instantiate an REALM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. retriever_proj_size (`int`, *optional*, defaults to 128): Dimension of the retriever(embedder) projection. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_candidates (`int`, *optional*, defaults to 8): Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. span_hidden_size (`int`, *optional*, defaults to 256): Dimension of the reader's spans. max_span_width (`int`, *optional*, defaults to 10): Max span width of the reader. reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the reader's layer normalization layers. reader_beam_size (`int`, *optional*, defaults to 5): Beam size of the reader. reader_seq_len (`int`, *optional*, defaults to 288+32): Maximum sequence length of the reader. num_block_records (`int`, *optional*, defaults to 13353718): Number of block records. searcher_beam_size (`int`, *optional*, defaults to 5000): Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as *reader_beam_size*. Example: ```python >>> from transformers import RealmConfig, RealmEmbedder >>> # Initializing a REALM realm-cc-news-pretrained-* style configuration >>> configuration = RealmConfig() >>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration >>> model = RealmEmbedder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "realm" def __init__( self, vocab_size=30522, hidden_size=768, retriever_proj_size=128, num_hidden_layers=12, num_attention_heads=12, num_candidates=8, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, span_hidden_size=256, max_span_width=10, reader_layer_norm_eps=1e-3, reader_beam_size=5, reader_seq_len=320, # 288 + 32 num_block_records=13353718, searcher_beam_size=5000, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) # Common config self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.retriever_proj_size = retriever_proj_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_candidates = num_candidates self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps # Reader config self.span_hidden_size = span_hidden_size self.max_span_width = max_span_width self.reader_layer_norm_eps = reader_layer_norm_eps self.reader_beam_size = reader_beam_size self.reader_seq_len = reader_seq_len # Retrieval config self.num_block_records = num_block_records self.searcher_beam_size = searcher_beam_size
transformers/src/transformers/models/realm/configuration_realm.py/0
{ "file_path": "transformers/src/transformers/models/realm/configuration_realm.py", "repo_id": "transformers", "token_count": 3471 }
315
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch RegNet model.""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "RegNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/regnet-y-040" _EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class RegNetConvLayer(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, groups: int = 1, activation: Optional[str] = "relu", ): super().__init__() self.convolution = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=groups, bias=False, ) self.normalization = nn.BatchNorm2d(out_channels) self.activation = ACT2FN[activation] if activation is not None else nn.Identity() def forward(self, hidden_state): hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state class RegNetEmbeddings(nn.Module): """ RegNet Embedddings (stem) composed of a single aggressive convolution. """ def __init__(self, config: RegNetConfig): super().__init__() self.embedder = RegNetConvLayer( config.num_channels, config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act ) self.num_channels = config.num_channels def forward(self, pixel_values): num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) hidden_state = self.embedder(pixel_values) return hidden_state # Copied from transformers.models.resnet.modeling_resnet.ResNetShortCut with ResNet->RegNet class RegNetShortCut(nn.Module): """ RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ def __init__(self, in_channels: int, out_channels: int, stride: int = 2): super().__init__() self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) self.normalization = nn.BatchNorm2d(out_channels) def forward(self, input: Tensor) -> Tensor: hidden_state = self.convolution(input) hidden_state = self.normalization(hidden_state) return hidden_state class RegNetSELayer(nn.Module): """ Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507). """ def __init__(self, in_channels: int, reduced_channels: int): super().__init__() self.pooler = nn.AdaptiveAvgPool2d((1, 1)) self.attention = nn.Sequential( nn.Conv2d(in_channels, reduced_channels, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_channels, in_channels, kernel_size=1), nn.Sigmoid(), ) def forward(self, hidden_state): # b c h w -> b c 1 1 pooled = self.pooler(hidden_state) attention = self.attention(pooled) hidden_state = hidden_state * attention return hidden_state class RegNetXLayer(nn.Module): """ RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1. """ def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1): super().__init__() should_apply_shortcut = in_channels != out_channels or stride != 1 groups = max(1, out_channels // config.groups_width) self.shortcut = ( RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() ) self.layer = nn.Sequential( RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act), RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act), RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None), ) self.activation = ACT2FN[config.hidden_act] def forward(self, hidden_state): residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class RegNetYLayer(nn.Module): """ RegNet's Y layer: an X layer with Squeeze and Excitation. """ def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1): super().__init__() should_apply_shortcut = in_channels != out_channels or stride != 1 groups = max(1, out_channels // config.groups_width) self.shortcut = ( RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() ) self.layer = nn.Sequential( RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act), RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act), RegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4))), RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None), ) self.activation = ACT2FN[config.hidden_act] def forward(self, hidden_state): residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class RegNetStage(nn.Module): """ A RegNet stage composed by stacked layers. """ def __init__( self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, ): super().__init__() layer = RegNetXLayer if config.layer_type == "x" else RegNetYLayer self.layers = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( config, in_channels, out_channels, stride=stride, ), *[layer(config, out_channels, out_channels) for _ in range(depth - 1)], ) def forward(self, hidden_state): hidden_state = self.layers(hidden_state) return hidden_state class RegNetEncoder(nn.Module): def __init__(self, config: RegNetConfig): super().__init__() self.stages = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( config, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], ) ) in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]): self.stages.append(RegNetStage(config, in_channels, out_channels, depth=depth)) def forward( self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> BaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state,) hidden_state = stage_module(hidden_state) if output_hidden_states: hidden_states = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states) class RegNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RegNetConfig base_model_prefix = "regnet" main_input_name = "pixel_values" # Copied from transformers.models.resnet.modeling_resnet.ResNetPreTrainedModel._init_weights def _init_weights(self, module): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) REGNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ REGNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", REGNET_START_DOCSTRING, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class RegNetModel(RegNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embedder = RegNetEmbeddings(config) self.encoder = RegNetEncoder(config) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, REGNET_START_DOCSTRING, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class RegNetForImageClassification(RegNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.regnet = RegNetModel(config) # classification head self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> ImageClassifierOutputWithNoAttention: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.regnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
transformers/src/transformers/models/regnet/modeling_regnet.py/0
{ "file_path": "transformers/src/transformers/models/regnet/modeling_regnet.py", "repo_id": "transformers", "token_count": 7184 }
316
# coding=utf-8 # Copyright 2022 WeChatAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RoCBert.""" import collections import itertools import json import os import unicodedata from typing import Dict, List, Optional, Tuple, Union from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, BatchEncoding, EncodedInput, EncodedInputPair, PaddingStrategy, PreTokenizedInput, PreTokenizedInputPair, TensorType, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import add_end_docstrings, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "word_shape_file": "word_shape.json", "word_pronunciation_file": "word_pronunciation.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/vocab.txt" }, "word_shape_file": { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/word_shape.json" }, "word_pronunciation_file": { "weiweishi/roc-bert-base-zh": ( "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/word_pronunciation.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "weiweishi/roc-bert-base-zh": 512, } PRETRAINED_INIT_CONFIGURATION = { "weiweishi/roc-bert-base-zh": {"do_lower_case": True}, } # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class RoCBertTokenizer(PreTrainedTokenizer): r""" Args: Construct a RoCBert tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. vocab_file (`str`): File containing the vocabulary. word_shape_file (`str`): File containing the word => shape info. word_pronunciation_file (`str`): File containing the word => pronunciation info. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, word_shape_file, word_pronunciation_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): for cur_file in [vocab_file, word_shape_file, word_pronunciation_file]: if cur_file is None or not os.path.isfile(cur_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google " "pretrained model use `tokenizer = RoCBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) with open(word_shape_file, "r", encoding="utf8") as in_file: self.word_shape = json.load(in_file) with open(word_pronunciation_file, "r", encoding="utf8") as in_file: self.word_pronunciation = json.load(in_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = RoCBertBasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = RoCBertWordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, **kwargs) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): if is_split_into_words: tokens = list( itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) ) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids else: tokens_ids = self.convert_tokens_to_ids(text) tokens_shape_ids = self.convert_tokens_to_shape_ids(text) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(text) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text, [0] * len(text), [0] * len(text) # shape and proun id is pad_value else: if is_split_into_words: raise ValueError( f"Input {text} is not valid. Should be a string or a list/tuple of strings when" " `is_split_into_words=True`." ) else: raise ValueError( f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of" " integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) first_ids, first_shape_ids, first_proun_ids = get_input_ids(text) if text_pair is not None: second_ids, second_shape_ids, second_proun_ids = get_input_ids(text_pair) else: second_ids, second_shape_ids, second_proun_ids = None, None, None return self.prepare_for_model( first_ids, first_shape_ids, first_proun_ids, pair_ids=second_ids, pair_shape_ids=second_shape_ids, pair_pronunciation_ids=second_proun_ids, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, ids: List[int], shape_ids: List[int], pronunciation_ids: List[int], pair_ids: Optional[List[int]] = None, pair_shape_ids: Optional[List[int]] = None, pair_pronunciation_ids: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_id` methods. shape_ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_shape_id` methods. pronunciation_ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_pronunciation_id` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_id` methods. pair_shape_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_shape_id` methods. pair_pronunciation_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_pronunciation_id` methods. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) shape_ids, pair_shape_ids, _ = self.truncate_sequences( shape_ids, pair_ids=pair_shape_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) pronunciation_ids, pair_pronunciation_ids, _ = self.truncate_sequences( pronunciation_ids, pair_ids=pair_pronunciation_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) input_shape_ids = self.build_inputs_with_special_tokens( shape_ids, pair_shape_ids, self.word_shape["[UNK]"], self.word_shape["[UNK]"] ) input_pronunciation_ids = self.build_inputs_with_special_tokens( pronunciation_ids, pair_pronunciation_ids, self.word_pronunciation["[UNK]"], self.word_pronunciation["[UNK]"], ) else: sequence = ids + pair_ids if pair_ids else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair_ids else []) input_shape_ids = shape_ids + pair_shape_ids if pair_shape_ids else shape_ids input_pronunciation_ids = ( pronunciation_ids + pair_pronunciation_ids if pair_pronunciation_ids else pronunciation_ids ) # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["input_shape_ids"] = input_shape_ids encoded_inputs["input_pronunciation_ids"] = input_pronunciation_ids if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference for key in ["input_shape_ids", "input_pronunciation_ids"]: if key in encoded_inputs: encoded_inputs[key] = encoded_inputs[key] + [self.pad_token_id] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] for key in ["input_shape_ids", "input_pronunciation_ids"]: if key in encoded_inputs: encoded_inputs[key] = [self.pad_token_id] * difference + encoded_inputs[key] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, **kwargs) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): if is_split_into_words: tokens = list( itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) ) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids else: tokens_ids = self.convert_tokens_to_ids(text) tokens_shape_ids = self.convert_tokens_to_shape_ids(text) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(text) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text, [0] * len(text), [0] * len(text) # shape and proun id is pad_value else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) input_ids = [] input_shape_ids = [] input_pronunciation_ids = [] for ids_or_pair_ids in batch_text_or_text_pairs: if not isinstance(ids_or_pair_ids, (list, tuple)): ids, pair_ids = ids_or_pair_ids, None elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)): ids, pair_ids = ids_or_pair_ids, None else: ids, pair_ids = ids_or_pair_ids first_ids, first_shape_ids, first_proun_ids = get_input_ids(ids) if pair_ids is not None: second_ids, second_shape_ids, second_proun_ids = get_input_ids(pair_ids) else: second_ids, second_shape_ids, second_proun_ids = None, None, None input_ids.append((first_ids, second_ids)) input_shape_ids.append((first_shape_ids, second_shape_ids)) input_pronunciation_ids.append((first_proun_ids, second_proun_ids)) batch_outputs = self._batch_prepare_for_model( input_ids, batch_shape_ids_pairs=input_shape_ids, batch_pronunciation_ids_pairs=input_pronunciation_ids, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], batch_shape_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], batch_pronunciation_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs batch_shape_ids_pairs: list of tokenized input shape ids or input shape ids pairs batch_pronunciation_ids_pairs: list of tokenized input pronunciation ids or input pronunciation ids pairs """ batch_outputs = {} for i, (first_ids, second_ids) in enumerate(batch_ids_pairs): first_shape_ids, second_shape_ids = batch_shape_ids_pairs[i] first_pronunciation_ids, second_pronunciation_ids = batch_pronunciation_ids_pairs[i] outputs = self.prepare_for_model( first_ids, first_shape_ids, first_pronunciation_ids, pair_ids=second_ids, pair_shape_ids=second_shape_ids, pair_pronunciation_ids=second_pronunciation_ids, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_token_to_shape_id(self, token): """Converts a token (str) in an shape_id using the shape vocab.""" return self.word_shape.get(token, self.word_shape.get(self.unk_token)) def convert_tokens_to_shape_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: if tokens is None: return None ids = [] for token in tokens: ids.append(self._convert_token_to_shape_id(token)) return ids def _convert_token_to_pronunciation_id(self, token): """Converts a token (str) in an shape_id using the shape vocab.""" return self.word_pronunciation.get(token, self.word_pronunciation.get(self.unk_token)) def convert_tokens_to_pronunciation_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: if tokens is None: return None ids = [] for token in tokens: ids.append(self._convert_token_to_pronunciation_id(token)) return ids # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, cls_token_id: int = None, sep_token_id: int = None, ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ cls = [self.cls_token_id] if cls_token_id is None else [cls_token_id] sep = [self.sep_token_id] if sep_token_id is None else [sep_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str, str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"], ) word_shape_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["word_shape_file"], ) word_pronunciation_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["word_pronunciation_file"], ) else: raise ValueError( f"Can't find a directory at path '{save_directory}'. To load the vocabulary from a Google " "pretrained model use `tokenizer = RoCBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 with open(word_shape_file, "w", encoding="utf8") as writer: json.dump(self.word_shape, writer, ensure_ascii=False, indent=4, separators=(", ", ": ")) with open(word_pronunciation_file, "w", encoding="utf8") as writer: json.dump(self.word_pronunciation, writer, ensure_ascii=False, indent=4, separators=(", ", ": ")) return ( vocab_file, word_shape_file, word_pronunciation_file, ) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer with BasicTokenizer->RoCBertBasicTokenizer class RoCBertBasicTokenizer(object): """ Constructs a RoCBertBasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer with WordpieceTokenizer->RoCBertWordpieceTokenizer class RoCBertWordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
transformers/src/transformers/models/roc_bert/tokenization_roc_bert.py/0
{ "file_path": "transformers/src/transformers/models/roc_bert/tokenization_roc_bert.py", "repo_id": "transformers", "token_count": 23589 }
317
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert SAM checkpoints from the original repository. """ import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) KEYS_TO_MODIFY_MAPPING = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def replace_keys(state_dict): model_state_dict = {} state_dict.pop("pixel_mean", None) state_dict.pop("pixel_std", None) output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) if re.match(output_hypernetworks_mlps_pattern, key): layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2)) if layer_nb == 0: key = key.replace("layers.0", "proj_in") elif layer_nb == 1: key = key.replace("layers.1", "layers.0") elif layer_nb == 2: key = key.replace("layers.2", "proj_out") model_state_dict[key] = value model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def convert_sam_checkpoint(model_name, pytorch_dump_folder, push_to_hub, model_hub_id="ybelkada/segment-anything"): checkpoint_path = hf_hub_download(model_hub_id, f"checkpoints/{model_name}.pth") if "sam_vit_b" in model_name: config = SamConfig() elif "sam_vit_l" in model_name: vision_config = SamVisionConfig( hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) config = SamConfig( vision_config=vision_config, ) elif "sam_vit_h" in model_name: vision_config = SamVisionConfig( hidden_size=1280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) config = SamConfig( vision_config=vision_config, ) state_dict = torch.load(checkpoint_path, map_location="cpu") state_dict = replace_keys(state_dict) image_processor = SamImageProcessor() processor = SamProcessor(image_processor=image_processor) hf_model = SamModel(config) hf_model.load_state_dict(state_dict) hf_model = hf_model.to("cuda") img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") input_points = [[[400, 650]]] input_labels = [[1]] inputs = processor(images=np.array(raw_image), return_tensors="pt").to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 inputs = processor( images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 input_boxes = ((75, 275, 1725, 850),) inputs = processor(images=np.array(raw_image), input_boxes=input_boxes, return_tensors="pt").to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. input_points = [[[400, 650], [800, 650]]] input_labels = [[1, 1]] inputs = processor( images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": parser = argparse.ArgumentParser() choices = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) args = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
transformers/src/transformers/models/sam/convert_sam_original_to_hf_format.py/0
{ "file_path": "transformers/src/transformers/models/sam/convert_sam_original_to_hf_format.py", "repo_id": "transformers", "token_count": 3032 }
318
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SeamlessM4Tv2 model.""" import copy import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...deepspeed import is_deepspeed_zero3_enabled from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Wav2Vec2BaseModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_seamless_m4t_v2 import SeamlessM4Tv2Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "" _CONFIG_FOR_DOC = "SeamlessM4Tv2Config" SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/seamless-m4t-v2-large", # See all SeamlessM4T-v2 models at https://huggingface.co/models?filter=seamless_m4t_v2 ] SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = { "microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json", } @dataclass # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TGenerationOutput with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2GenerationOutput(ModelOutput): """ Class defining the generated outputs from [`SeamlessM4Tv2Model`], [`SeamlessM4Tv2ForTextToText`], [`SeamlessM4Tv2ForTextToSpeech`], [`SeamlessM4Tv2ForSpeechToSpeech`] and [`SeamlessM4Tv2ForTextToSpeech`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): The final audio waveform predicted by the model. waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*): The length in samples of each element in the `waveform` batch. sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The generated translated sequences. This is the output of the text-to-text or the speech-to-text models. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*): The generated translated unit sequences. This is the output of the text-to-units model. The second dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished early due to the `t2u_eos_token_id`. """ waveform: Optional[torch.FloatTensor] = None waveform_lengths: Optional[torch.IntTensor] = None sequences: Optional[Tuple[torch.FloatTensor]] = None unit_sequences: Optional[Tuple[torch.FloatTensor]] = None @dataclass class SeamlessM4Tv2TextToUnitDecoderOutput(ModelOutput): """ Class defining the outputs from [`SeamlessM4Tv2TextToUnitDecoder`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None padding_mask: Optional[torch.Tensor] = None @dataclass class SeamlessM4Tv2TextToUnitOutput(ModelOutput): """ Class defining the outputs from [`SeamlessM4Tv2TextToUnitForConditionalGeneration`] and [`SeamlessM4Tv2TextToUnitModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. """ last_hidden_state: torch.FloatTensor = None padding_mask: Optional[torch.Tensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None loss: Optional[torch.FloatTensor] = None SEAMLESS_M4T_V2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~SeamlessM4Tv2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEAMLESS_M4T_V2_MULTIMODAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. """ M4T_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ M4T_SPEECH_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. """ SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING = r""" attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_V2_MULTIMODAL_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING M4T_TEXT_INPUTS_DOCSTRING = M4T_TEXT_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING M4T_SPEECH_INPUTS_DOCSTRING = M4T_SPEECH_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING M4T_TEXT_TO_UNITS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) char_input_ids (`torch.LongTensor` of shape `(batch_size, char_sequence_length)`): Character indices. The correspondence between characters and indices can be found in `char_to_id`, a dictionary in the generation configuration. char_count_per_id (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Number of characters per input id. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ ############ UTILS ################ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor): """ Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that stops at the corresponding element in `seq_lens`. Args: hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`): The sequences to mask, where `*` is any number of sequence-specific dimensions including none. seq_lens (`torch.Tensor` of shape `(batch)`: Each element represents the length of the sequence at the same index in `hidden_states` Returns: `torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)` """ batch_size, mask_seq_len = hidden_states.shape[:2] indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1) bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len) mask = hidden_states.new_ones((batch_size, mask_seq_len)) mask = mask.masked_fill(bool_mask, 0) return mask # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.format_speech_generation_kwargs with SeamlessM4T->SeamlessM4Tv2 def format_speech_generation_kwargs(kwargs): """ Format kwargs for SeamlessM4Tv2 models that generate speech, attribute kwargs to either the text generation or the speech generation models. Args: kwargs (`dict`)`: Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. """ # attribute kwargs to models kwargs_text = {} kwargs_speech = {} for key, value in kwargs.items(): if key.startswith("text_"): key = key[len("text_") :] kwargs_text[key] = value elif key.startswith("speech_"): key = key[len("speech_") :] kwargs_speech[key] = value else: # If the key is already in a specific config, then it's been set with a # submodules specific value and we don't override if key not in kwargs_text: kwargs_text[key] = value if key not in kwargs_speech: kwargs_speech[key] = value return kwargs_text, kwargs_speech ############ SPEECH ENCODER related code ################ class SeamlessM4Tv2ConformerFeatureProjection(nn.Module): # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerFeatureProjection.__init__ def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps) self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size) self.dropout = nn.Dropout(config.speech_encoder_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states.to(self.layer_norm.weight.dtype)) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerFeedForward with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2ConformerFeedForward(nn.Module): def __init__(self, config, act_fn=None, dropout=None): super().__init__() dropout = dropout if dropout is not None else config.speech_encoder_dropout act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act self.intermediate_dropout = nn.Dropout(dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size) self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class SeamlessM4Tv2ConformerConvolutionModule(nn.Module): """Convolution block used in the conformer block. Uses a causal depthwise convolution similar to that described in Section 2.1 of `https://doi.org/10.48550/arxiv.1609.03499""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=0, groups=config.hidden_size, bias=False, ) self.depthwise_layer_norm = nn.LayerNorm(config.hidden_size) self.activation = ACT2FN[config.speech_encoder_hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.speech_encoder_dropout) def forward(self, hidden_states, attention_mask=None): hidden_states = self.layer_norm(hidden_states) # Ensure that we do not leak padded positions in depthwise convolution. # Put 0 where necessary if attention_mask is not None: hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # Pad the sequence entirely on the left because of causal convolution. hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0)) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class SeamlessM4Tv2ConformerSelfAttention(nn.Module): """Construct a SeamlessM4Tv2ConformerSelfAttention object. Can be enhanced with relative position embeddings. """ def __init__(self, config, use_position_embeddings=True): super().__init__() self.head_size = config.hidden_size // config.speech_encoder_attention_heads self.num_heads = config.speech_encoder_attention_heads self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(p=config.speech_encoder_dropout) if self.position_embeddings_type == "relative_key": self.left_max_position_embeddings = config.left_max_position_embeddings self.right_max_position_embeddings = config.right_max_position_embeddings num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1 self.distance_embedding = nn.Embedding(num_positions, self.head_size) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) attn_weights = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) if self.position_embeddings_type == "relative_key": query_length, key_length = query.shape[2], key.shape[2] position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_r - position_ids_l distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings) positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings) positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding) attn_weights = attn_weights + (relative_position_attn_weights / math.sqrt(self.head_size)) # apply attention_mask if necessary if attention_mask is not None: attn_weights = attn_weights + attention_mask # => (batch, head, time1, time2) attn_weights = torch.softmax(attn_weights, dim=-1) attn_weights = self.dropout(attn_weights) # => (batch, head, time1, d_k) attn_output = torch.matmul(attn_weights, value) # => (batch, time1, hidden_size) attn_output = attn_output.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) attn_output = self.linear_out(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class SeamlessM4Tv2ConformerEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4Tv2, attention_dropout->speech_encoder_dropout, torch.nn->nn def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.speech_encoder_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = SeamlessM4Tv2ConformerFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = nn.Dropout(dropout) self.self_attn = SeamlessM4Tv2ConformerSelfAttention(config) # Conformer Convolution self.conv_module = SeamlessM4Tv2ConformerConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = SeamlessM4Tv2ConformerFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, conv_attention_mask: Optional[torch.Tensor] = None, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weights class SeamlessM4Tv2ConformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dropout = nn.Dropout(config.speech_encoder_dropout) self.layers = nn.ModuleList( [SeamlessM4Tv2ConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)] ) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def _apply_chunk_attention(self, attention_mask, hidden_states): """ Creates a chunk attention mask. It creates a mask to prevent attention across chunks, ensuring that each position attends only to positions within its own chunk. If a left chunk overlap is specified (`speech_encoder_chunk_size` in the configuration), the attention mask is adjusted accordingly to allow each position to also attends the `speech_encoder_chunk_size - 1` previous chunks. """ sequence_len = hidden_states.shape[1] chunk_indices = torch.arange(sequence_len, device=hidden_states.device) chunk_indices = torch.div(chunk_indices, self.config.speech_encoder_chunk_size).long() start_indices = torch.full_like(chunk_indices, 0) if self.config.speech_encoder_left_chunk_num >= 0: start_indices = (chunk_indices - self.config.speech_encoder_left_chunk_num).clamp_(min=0) start_indices = start_indices * self.config.speech_encoder_chunk_size start_indices = start_indices start_indices = start_indices.unsqueeze(1).expand(-1, sequence_len) end_indices = ((chunk_indices + 1) * self.config.speech_encoder_chunk_size).clamp_(max=sequence_len) end_indices = end_indices.unsqueeze(1).expand(-1, sequence_len) indices = torch.arange(sequence_len, device=hidden_states.device).unsqueeze(0).expand(sequence_len, -1) chunk_mask = (indices < start_indices) | (indices >= end_indices) chunk_mask = chunk_mask.unsqueeze(0).unsqueeze(0) attention_mask = chunk_mask if attention_mask is None else (attention_mask.bool() | chunk_mask) attention_mask = attention_mask.to(dtype=hidden_states.dtype) return attention_mask def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None conv_attention_mask = attention_mask if attention_mask is not None: # make sure padded tokens output 0 hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) if self.config.speech_encoder_chunk_size is not None: attention_mask = self._apply_chunk_attention(attention_mask, hidden_states) if attention_mask is not None: attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = ( True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False ) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, conv_attention_mask=conv_attention_mask, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerAdapterLayer with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2ConformerAdapterLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.adaptor_dropout self.kernel_size = config.adaptor_kernel_size self.stride = config.adaptor_stride # 1. residual convolution self.residual_layer_norm = nn.LayerNorm(embed_dim) self.residual_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.activation = nn.GLU(dim=1) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.self_attn = SeamlessM4Tv2ConformerSelfAttention(config, use_position_embeddings=False) self.self_attn_dropout = nn.Dropout(dropout) # Feed-forward self.ffn_layer_norm = nn.LayerNorm(embed_dim) self.ffn = SeamlessM4Tv2ConformerFeedForward(config, act_fn="relu", dropout=dropout) def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask): pad = self.kernel_size // 2 seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1) seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1 return seq_lens.floor() def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): residual = self.residual_layer_norm(hidden_states) # Apply pooling to the residual to match the sequence length of the # multi-head attention output. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) residual = residual.transpose(1, 2) residual = self.residual_conv(residual) residual = self.activation(residual) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) residual = residual.transpose(1, 2) hidden_states = self.self_attn_layer_norm(hidden_states) # Apply pooling before feeding to the multihead-attention layer. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.self_attn_conv(hidden_states) hidden_states = self.activation(hidden_states) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) hidden_states = hidden_states.transpose(1, 2) if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( hidden_states.device ) attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths) attention_mask = _prepare_4d_attention_mask( attention_mask, hidden_states.dtype, ) # The rest of the computation is identical to a vanilla Transformer # encoder layer. hidden_states, attn_weigths = self.self_attn( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) + residual return hidden_states # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerAdapter with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2ConformerAdapter(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList( SeamlessM4Tv2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers) ) def forward(self, hidden_states, attention_mask): # down project hidden_states if necessary for layer in self.layers: hidden_states = layer(hidden_states, attention_mask) return hidden_states ############ TEXT / UNITS related code ################ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding class SeamlessM4Tv2SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward( self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0 ): if input_ids is not None: bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) else: bsz, seq_len = inputs_embeds.size()[:-1] position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length class SeamlessM4Tv2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4Tv2 def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[SeamlessM4Tv2Config] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" is_cross_attention = encoder_hidden_states is not None batch_size, seq_length = hidden_states.shape[:2] # use encoder_hidden_states if cross attention current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states # checking that the `sequence_length` of the `past_key_value` is the same as the he provided # `encoder_hidden_states` to support prefix tuning if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] else: key_states = self._shape(self.k_proj(current_states)) value_states = self._shape(self.v_proj(current_states)) if past_key_value is not None and not is_cross_attention: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) query_states = self._shape(self.q_proj(hidden_states) * self.scaling) attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) if attention_mask is not None: attention_scores = attention_scores + attention_mask # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # attn_output = torch.bmm(attn_probs, value_states) ? context_states = torch.matmul(attn_weights, value_states) # attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ? context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) attn_output = self.out_proj(context_states) if output_attentions: return attn_output, attn_weights, past_key_value else: return attn_output, None, past_key_value # Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4Tv2,DenseActDense->FeedForwardNetwork, d_model->hidden_size class SeamlessM4Tv2FeedForwardNetwork(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, ffn_dim: int): super().__init__() self.fc1 = nn.Linear(config.hidden_size, ffn_dim) self.fc2 = nn.Linear(ffn_dim, config.hidden_size) self.dropout = nn.Dropout(config.activation_dropout) self.act = ACT2FN[config.activation_function] def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.fc2.weight, torch.Tensor) and hidden_states.dtype != self.fc2.weight.dtype and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8) ): hidden_states = hidden_states.to(self.fc2.weight.dtype) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TEncoderLayer with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2EncoderLayer(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, encoder_ffn_dim=None, encoder_attention_heads=None): super().__init__() encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim encoder_attention_heads = ( config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads ) self.embed_dim = config.hidden_size self.self_attn = SeamlessM4Tv2Attention( embed_dim=self.embed_dim, num_heads=encoder_attention_heads, dropout=config.attention_dropout, ) self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.ffn = SeamlessM4Tv2FeedForwardNetwork(config, ffn_dim=encoder_ffn_dim) self.ffn_layer_norm = nn.LayerNorm(config.hidden_size) self.ffn_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) hidden_states = self.ffn_dropout(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TDecoderLayer with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2DecoderLayer(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, decoder_ffn_dim=None, decoder_attention_heads=None): super().__init__() decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim decoder_attention_heads = ( config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads ) self.embed_dim = config.hidden_size self.self_attn = SeamlessM4Tv2Attention( embed_dim=self.embed_dim, num_heads=decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.cross_attention = SeamlessM4Tv2Attention( self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True ) self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim) self.ffn = SeamlessM4Tv2FeedForwardNetwork(config, ffn_dim=decoder_ffn_dim) self.ffn_layer_norm = nn.LayerNorm(config.hidden_size) self.ffn_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.cross_attention_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, past_key_value=cross_attn_past_key_value, attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value += cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) hidden_states = self.ffn_dropout(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states, present_key_value) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class SeamlessM4Tv2TextToUnitDecoderLayer(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, decoder_ffn_dim=None, decoder_attention_heads=None): super().__init__() decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim decoder_attention_heads = ( config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads ) self.dropout = config.dropout self.embed_dim = config.hidden_size self.self_attn = SeamlessM4Tv2Attention( embed_dim=self.embed_dim, num_heads=decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.conv1 = nn.Conv1d(self.embed_dim, self.embed_dim, kernel_size=7, stride=1, padding="same") self.activation_fn = ACT2FN[config.activation_function] self.conv2 = nn.Conv1d(self.embed_dim, self.embed_dim, kernel_size=7, stride=1, padding="same") self.conv_layer_norm = nn.LayerNorm(config.hidden_size) self.conv_dropout = nn.Dropout(self.dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Conv residual = hidden_states # Apply padding mask to avoid leaking padded positions in the convolution layer if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.conv1(hidden_states.transpose(1, 2)).transpose(1, 2) if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.activation_fn(hidden_states) hidden_states = self.conv2(hidden_states.transpose(1, 2)).transpose(1, 2) hidden_states = self.conv_dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.conv_layer_norm(hidden_states) outputs = (hidden_states, present_key_value) if output_attentions: outputs += self_attn_weights return outputs ############ SUB-MODELS related code ################ class SeamlessM4Tv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SeamlessM4Tv2Config base_model_prefix = "seamless_m4t_v2" supports_gradient_checkpointing = True _no_split_modules = [ "SeamlessM4Tv2EncoderLayer", "SeamlessM4Tv2DecoderLayer", "SeamlessM4Tv2ConformerEncoderLayer", "SeamlessM4Tv2TextToUnitDecoderLayer", ] def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, SeamlessM4Tv2ConformerSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, SeamlessM4Tv2ConformerFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Conv1d, nn.ConvTranspose1d)): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TPreTrainedModel._compute_sub_sample_lengths_from_attention_mask def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask): kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride pad = kernel_size // 2 seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1) seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1 return seq_lens.floor() def _indices_to_subwords(self, input_ids): """ Returns the corresponding text string for each input id. """ if not hasattr(self.generation_config, "id_to_text"): raise ValueError( """This model generation config doesn't have a `id_to_text` key which maps token ids to subwords. Make sure to load the right generation config.""" ) batch_size, sequence_len = input_ids.shape subwords_batch = [] for batch_id in range(batch_size): subwords = [] for i in range(sequence_len): subword = self.generation_config.id_to_text.get(str(input_ids[batch_id, i].item())) subwords.append(str(subword)) subwords_batch.append(subwords) return subwords_batch def _count_character_length_in_subword( self, input_ids, subwords_batch, merge_space_with_prev_subword=False, pad_token_id=0, unk_token_id=1, space="▁", ): """ Counts the number of characters per text string associated with the input token id. Args: input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. subwords_batch (`List[List[str]]` of shape `(batch_size, sequence_length)`): Corresponding text string for each input id. merge_space_with_prev_subword (`bool`, *optional*, defaults to `False`): Indicates if the space character is merged with the previous subword. If `False`, it will be merged with the next subword. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. If it is encountered when calculating the length of a subword sample, the lengths of subsequent subwords will be set to 0. unk_token_id (`int`, *optional*, defaults to 1): The id of the _unknown_ text token. Associated to a subword of length 1. space (`str`, *optional*, defaults to `"▁"`): The space character. """ batch_size, _ = input_ids.shape char_count_per_id = input_ids.new_zeros(input_ids.size()) subword_lens = input_ids.ne(pad_token_id).sum(1) for batch_id in range(batch_size): # We slice out the tensor till the padding index. subword_indices = input_ids[batch_id, : subword_lens[batch_id]] subwords = subwords_batch[batch_id][: subword_lens[batch_id]] is_next_start_with_space = [ len(subwords[i + 1]) > 1 and subwords[i + 1][0] == space if i < len(subwords) - 1 else False for i in range(len(subwords)) ] is_punc = [ len(subwords[i]) == 1 and not subwords[i].isalpha() and not subwords[i].isnumeric() and subwords[i] != space for i in range(len(subwords)) ] for i, (subword_idx, subword) in enumerate(zip(subword_indices, subwords)): if subword_idx == pad_token_id: break if subword_idx == unk_token_id: # We set char_len to 1 for an unk token. char_len = 1 if merge_space_with_prev_subword and is_next_start_with_space[i]: char_len += 1 else: # By default, spaces are merged with the next subword. # char_len includes the space. char_len = len(subword) if merge_space_with_prev_subword: # Add the space for the next subword. if is_next_start_with_space[i]: char_len += 1 # Subtract the space for the current subword. if i > 0 and is_next_start_with_space[i - 1]: char_len -= 1 else: # Merge space with punctuation mark by default. if is_punc[i] and is_next_start_with_space[i]: char_len += 1 # Subtract the space for the subword succeeding the punctuation mark. elif i > 0 and is_punc[i - 1] and is_next_start_with_space[i - 1]: char_len -= 1 char_count_per_id[batch_id, i] = char_len return char_count_per_id def _get_char_input_ids(self, input_ids, subwords_batch, char_count_per_id, pad_token_id=0, unk_token_id=1): """ Returns the corresponding character input id for each character of `subwords_batch`. Args: input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. subwords_batch (`List[List[str]]` of shape `(batch_size, sequence_length)`): Corresponding text string for each input id. char_count_per_id (`torch.Tensor` of shape `(batch_size, sequence_length)`): Number of characters per input id. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. If it is encountered when calculating the length of a subword sample, the lengths of subsequent subwords will be set to 0. unk_token_id (`int`, *optional*, defaults to 1): The id of the _unknown_ text token. Associated to a subword of length 1. Returns: `torch.Tensor`: Tensor of shape `(batch_size, char_sequence_length)` containing the id of each character. """ if not hasattr(self.generation_config, "char_to_id"): raise ValueError( """This model generation config doesn't have a `char_to_id` key which maps characters to character ids. Make sure to load the right generation config.""" ) batch_size = input_ids.shape[0] max_len = int(char_count_per_id.sum(1).max().item()) char_seqs = input_ids.new_zeros((batch_size, max_len)).fill_(pad_token_id) subword_lens = input_ids.ne(pad_token_id).sum(1) for batch_id in range(batch_size): total = 0 subword_indices = input_ids[batch_id, : subword_lens[batch_id]] subwords = subwords_batch[batch_id][: subword_lens[batch_id]] for subword_idx, subword in zip(subword_indices, subwords): if subword_idx == unk_token_id: char_ids = [unk_token_id] else: # Get char token indices corresponding to the subwords. char_ids = [self.generation_config.char_to_id.get(ch, unk_token_id) for ch in list(subword)] char_seq_len = len(char_ids) char_seqs[batch_id, total : total + char_seq_len] = torch.tensor(char_ids).to(char_seqs) total += char_seq_len return char_seqs def _hard_upsample(self, hidden_states, durations): """ Repeats the time dimension of each sample in the batch based on the corresponding duration. Args: hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, *)`, *optional*): The sequence to repeat, where `*` is any number of sequence-specific dimensions including none. durations (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates how many times to repeat time segments. """ if hidden_states.size(0) == 1: hidden_states = torch.repeat_interleave(hidden_states, durations.view(-1), dim=1) else: # if batched sample, need to interleave per sample, and pad -> loss of parallelism if hidden_states.shape[0] > 1 and self.training: logger.warning_once( """`self.training=True` and you use batching. You lose parallelism during the hifigan forward pass because the samples are interleaved.""" ) hidden_states = [ torch.repeat_interleave(hidden_state, duration, dim=0) for (hidden_state, duration) in zip(hidden_states, durations) ] hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True) return hidden_states @add_start_docstrings( """Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers. Each layer is a [`SeamlessM4Tv2ConformerEncoderLayer`].""", SEAMLESS_M4T_V2_START_DOCSTRING, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TSpeechEncoder with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2SpeechEncoder(SeamlessM4Tv2PreTrainedModel): main_input_name = "input_features" def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.feature_projection = SeamlessM4Tv2ConformerFeatureProjection(config) self.encoder = SeamlessM4Tv2ConformerEncoder(config) self.intermediate_ffn = SeamlessM4Tv2ConformerFeedForward(config, act_fn="relu", dropout=0.0) self.adapter = SeamlessM4Tv2ConformerAdapter(config) if config.add_adapter else None self.inner_layer_norm = nn.LayerNorm(config.hidden_size) # Initialize weights and apply final processing self.post_init() def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_features is None: raise ValueError( """Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4Tv2SpeechEncoder.forward`. Make sure one of them is not `None`.""" ) hidden_states = self.feature_projection(input_features) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] expanded_hidden_states = self.intermediate_ffn(hidden_states) hidden_states = hidden_states + 0.5 * expanded_hidden_states if self.adapter is not None: hidden_states = self.adapter(hidden_states, attention_mask=attention_mask) hidden_states = self.inner_layer_norm(hidden_states) if not return_dict: return (hidden_states,) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # inspired from MBart and NllbMoe @add_start_docstrings( "Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4Tv2EncoderLayer`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding is_t2u_encoder (`bool`, *optional*, defaults to `False`): indicates if it belongs to the text-to-units model, in which case it won't have input embeddings """, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TEncoder with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2Encoder(SeamlessM4Tv2PreTrainedModel): def __init__( self, config: SeamlessM4Tv2Config, embed_tokens: Optional[nn.Embedding] = None, is_t2u_encoder: bool = False, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id embed_dim = config.hidden_size self.is_t2u_encoder = is_t2u_encoder self.max_source_positions = config.max_position_embeddings if not self.is_t2u_encoder: self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, ) layers = [] for _ in range(config.encoder_layers): layers.append( SeamlessM4Tv2EncoderLayer( config, encoder_attention_heads=config.encoder_attention_heads, encoder_ffn_dim=config.encoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and self.is_t2u_encoder: raise ValueError( "You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead." ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale if not self.is_t2u_encoder: embed_pos = self.embed_positions(input) hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device) else: hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.forward, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @add_start_docstrings( "Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4Tv2DecoderLayer`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding """, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TDecoder with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2Decoder(SeamlessM4Tv2PreTrainedModel): def __init__( self, config: SeamlessM4Tv2Config, embed_tokens: Optional[nn.Embedding] = None, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 if embed_tokens is not None: # if embed_tokens defined, use its shape instead self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx) self.embed_tokens.weight = embed_tokens.weight else: self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx) self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) layers = [] for _ in range(config.decoder_layers): layers.append( SeamlessM4Tv2DecoderLayer( config, decoder_attention_heads=config.decoder_attention_heads, decoder_ffn_dim=config.decoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[1],) if output_attentions: all_self_attns += (layer_outputs[2],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[3],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4Tv2DecoderLayer`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding """, ) class SeamlessM4Tv2TextToUnitDecoder(SeamlessM4Tv2PreTrainedModel): def __init__( self, config: SeamlessM4Tv2Config, embed_tokens: Optional[nn.Embedding] = None, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 if embed_tokens is not None: # if embed_tokens defined, use its shape instead self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx) self.embed_tokens.weight = embed_tokens.weight else: self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx) self.embed_char = nn.Embedding(config.char_vocab_size, config.hidden_size) self.embed_char_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) self.pos_emb_alpha_char = nn.Parameter(torch.ones(1)) self.pos_emb_alpha = nn.Parameter(torch.ones(1)) self.duration_predictor = SeamlessM4Tv2VariancePredictor( config.variance_predictor_embed_dim, config.variance_predictor_hidden_dim, config.variance_predictor_kernel_size, config.variance_pred_dropout, ) self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) layers = [] for _ in range(config.decoder_layers): layers.append( SeamlessM4Tv2TextToUnitDecoderLayer( config, decoder_attention_heads=config.decoder_attention_heads, decoder_ffn_dim=config.decoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, char_input_ids: torch.LongTensor = None, char_count_per_id: torch.LongTensor = None, encoder_hidden_states: torch.FloatTensor = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SeamlessM4Tv2TextToUnitDecoderOutput]: r""" Args: char_input_ids (`torch.LongTensor` of shape `(batch_size, char_sequence_length)`): Character indices. The correspondence between characters and indices can be found in `char_to_id`, a dictionary in the generation configuration. char_count_per_id (`torch.Tensor` of shape `(batch_size, encoder_sequence_length)`): Number of characters per text input id. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # create padding mask for character lengths char_padding_mask = _compute_new_attention_mask(char_input_ids, char_count_per_id.sum(1)) # upsample hidden states according to characters sequence lengths char_hidden_states = self._hard_upsample(encoder_hidden_states, char_count_per_id) # embed char positions char_positions = self.pos_emb_alpha_char * self.embed_char_positions(inputs_embeds=char_hidden_states) # update char hidden states with positions and char embeddings char_hidden_states = self.embed_char(char_input_ids) * self.embed_scale + char_positions + char_hidden_states # predict duration log_dur_pred = self.duration_predictor(char_hidden_states, padding_mask=char_padding_mask) dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1) dur_out = dur_out.masked_fill(~char_padding_mask.bool(), 0.0) # upsample char hidden states according to predicted duration char_hidden_states = self._hard_upsample(char_hidden_states, dur_out) positions = self.pos_emb_alpha * self.embed_positions(inputs_embeds=char_hidden_states) hidden_states = char_hidden_states + positions padding_mask = _compute_new_attention_mask(hidden_states, dur_out.sum(1)) attention_mask = _prepare_4d_attention_mask(padding_mask, hidden_states.dtype) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, padding_mask, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, padding_mask=padding_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns, padding_mask] if v is not None) return SeamlessM4Tv2TextToUnitDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, padding_mask=padding_mask, ) @add_start_docstrings( "Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4Tv2Encoder`] without embeddings and the decoder is a [`SeamlessM4Tv2TextToUnitDecoder`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder. """, ) class SeamlessM4Tv2TextToUnitModel(SeamlessM4Tv2PreTrainedModel): # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitModel.__init__ with SeamlessM4T->SeamlessM4Tv2, Decoder->TextToUnitDecoder def __init__( self, config: SeamlessM4Tv2Config, embed_tokens_decoder: Optional[nn.Embedding] = None, ): super().__init__(config) self.encoder = SeamlessM4Tv2Encoder(config, is_t2u_encoder=True) self.decoder = SeamlessM4Tv2TextToUnitDecoder(config, embed_tokens_decoder) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, char_input_ids: torch.LongTensor = None, char_count_per_id: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, dec_hidden, dec_attn, padding_mask) decoder_outputs = self.decoder( char_input_ids=char_input_ids, char_count_per_id=char_count_per_id, encoder_hidden_states=encoder_outputs[0], output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return SeamlessM4Tv2TextToUnitOutput( last_hidden_state=decoder_outputs.last_hidden_state, padding_mask=decoder_outputs.padding_mask, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4Tv2TextToUnitModel`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder. """, ) class SeamlessM4Tv2TextToUnitForConditionalGeneration(SeamlessM4Tv2PreTrainedModel): _keys_to_ignore_on_load_missing = [ "vocoder", "speech_encoder", "text_encoder", "text_decoder", ] _tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__( self, config: SeamlessM4Tv2Config, embed_tokens_decoder: Optional[nn.Embedding] = None, ): # update config - used principaly for bos_token_id etc. config = copy.deepcopy(config) for param, val in config.to_dict().items(): if param.startswith("t2u_"): config.__setattr__(param[4:], val) super().__init__(config) self.model = SeamlessM4Tv2TextToUnitModel(config, embed_tokens_decoder) self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_encoder def get_encoder(self): return self.model.encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_decoder def get_decoder(self): return self.model.decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_input_embeddings def get_input_embeddings(self): return self.model.decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.set_input_embeddings def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value @add_start_docstrings_to_model_forward(M4T_TEXT_TO_UNITS_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, char_input_ids: torch.LongTensor = None, char_count_per_id: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, char_input_ids=char_input_ids, char_count_per_id=char_count_per_id, attention_mask=attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return SeamlessM4Tv2TextToUnitOutput( last_hidden_state=lm_logits, padding_mask=outputs.padding_mask, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, loss=masked_lm_loss, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration._tie_weights def _tie_weights(self) -> None: if getattr(self.config, "tie_word_embeddings", True): output_embeddings = self.get_output_embeddings() if output_embeddings is not None: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) ############ VOCODER related code ################ HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SeamlessM4Tv2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): for layer in self.convs1: nn.utils.weight_norm(layer) for layer in self.convs2: nn.utils.weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states class SeamlessM4Tv2VariancePredictor(nn.Module): def __init__(self, embed_dim, hidden_dim, kernel_size, var_pred_dropout): super().__init__() self.conv1 = nn.Conv1d( embed_dim, hidden_dim, kernel_size=kernel_size, padding="same", ) self.activation_fuction = nn.ReLU() self.ln1 = nn.LayerNorm(hidden_dim) self.dropout_module = nn.Dropout(p=var_pred_dropout) self.conv2 = nn.Conv1d( hidden_dim, hidden_dim, kernel_size=kernel_size, padding="same", ) self.ln2 = nn.LayerNorm(hidden_dim) self.proj = nn.Linear(hidden_dim, 1) def forward(self, hidden_states: Tensor, padding_mask: Tensor = None) -> Tensor: # Input: B x T x C; Output: B x T if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.conv1(hidden_states.transpose(1, 2)) hidden_states = self.activation_fuction(hidden_states).transpose(1, 2) hidden_states = self.dropout_module(self.ln1(hidden_states)) if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.conv2(hidden_states.transpose(1, 2)) hidden_states = self.activation_fuction(hidden_states).transpose(1, 2) hidden_states = self.dropout_module(self.ln2(hidden_states)) return self.proj(hidden_states).squeeze(dim=2) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4THifiGan with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2HifiGan(nn.Module): def __init__(self, config: SeamlessM4Tv2Config): super().__init__() model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim self.leaky_relu_slope = config.leaky_relu_slope self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim` is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ hidden_states = self.conv_pre(input_embeds) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform @add_start_docstrings( """Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""", HIFIGAN_START_DOCSTRING, ) class SeamlessM4Tv2CodeHifiGan(PreTrainedModel): config_class = SeamlessM4Tv2Config main_input_name = "input_embeds" _no_split_modules = [] def __init__(self, config): super().__init__(config) self.pad_token_id = config.t2u_pad_token_id embed_dim = config.unit_embed_dim kernel_size = config.variance_predictor_kernel_size var_pred_dropout = config.var_pred_dropout self.dur_predictor = SeamlessM4Tv2VariancePredictor(embed_dim, embed_dim, kernel_size, var_pred_dropout) self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim) self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim) self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim) self.hifi_gan = SeamlessM4Tv2HifiGan(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._get_dur_output_lengths def _get_dur_output_lengths(self, input_ids, dur_out): """ Computes the output length after the duration layer. """ unit_lengths = (input_ids != self.pad_token_id).sum(1) # take care of edge cases where no padding or too many padding unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1) cumulative_dur_out = torch.cumsum(dur_out, dim=1) unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze() return unit_lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._get_output_hifigan_lengths def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the hifigan convolutional layers """ def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return ( torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1 ) def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1): return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1 # conv_pre input_lengths = _conv_out_length(input_lengths, 7, 1, 3) # upsampler for i, (upsample_rate, kernel_size) in enumerate( zip(self.config.upsample_rates, self.config.upsample_kernel_sizes) ): input_lengths = _transpose_conv_out_length( input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2 ) # resblock for i in range(len(self.config.upsample_rates)): for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes): for dil in dilation: input_lengths = _conv_out_length( input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil ) for dil in dilation: input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1) # conv_post input_lengths = _conv_out_length(input_lengths, 7, 1, 3) return input_lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.forward with SeamlessM4T->SeamlessM4Tv2, spkr_id->speaker_id def forward( self, input_ids: torch.LongTensor, speaker_id: torch.Tensor, lang_id: torch.Tensor ) -> Tuple[torch.Tensor]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4Tv2TextToUnitForConditionalGeneration`]. [What are input IDs?](../glossary#input-ids) speaker_id (`int`, *optional*): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. tgt_lang (`str`, *optional*): The language id to use as target language for translation. """ hidden_states = self.unit_embedding(input_ids).transpose(1, 2) spkr = self.speaker_embedding(speaker_id).transpose(1, 2) lang = self.language_embedding(lang_id).transpose(1, 2) log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2)) dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1) # B x C x T if hidden_states.size(0) == 1: hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2) else: # if batched sample, need to interleave per sample, and pad -> loss of parallelism if hidden_states.shape[0] > 1 and self.training: logger.warning( """`self.training=True` and you use batching. You lose parallelism during the hifigan forward pass because the samples are interleaved.""" ) hidden_states = [ torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1) for (hidden_state, duration) in zip(hidden_states, dur_out) ] hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2) spkr = spkr.repeat(1, 1, hidden_states.shape[-1]) lang = lang.repeat(1, 1, hidden_states.shape[-1]) hidden_states = torch.cat([lang, hidden_states, spkr], dim=1) hidden_states = self.hifi_gan(hidden_states) unit_lengths = self._get_dur_output_lengths(input_ids, dur_out) lengths = self._get_output_hifigan_lengths(unit_lengths) return hidden_states, lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._init_weights def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.apply_weight_norm def apply_weight_norm(self): nn.utils.weight_norm(self.hifi_gan.conv_pre) for layer in self.hifi_gan.upsampler: nn.utils.weight_norm(layer) for layer in self.hifi_gan.resblocks: layer.apply_weight_norm() nn.utils.weight_norm(self.hifi_gan.conv_post) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.remove_weight_norm def remove_weight_norm(self): nn.utils.remove_weight_norm(self.hifi_gan.conv_pre) for layer in self.hifi_gan.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.hifi_gan.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.hifi_gan.conv_post) ############ WHOLE MODEL related code ################ @add_start_docstrings( "The text-to-text SeamlessM4Tv2 Model transformer which can be used for T2TT.", SEAMLESS_M4T_V2_START_DOCSTRING, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToText with SeamlessM4T->SeamlessM4Tv2,SeamlessM4Tv2Tokenizer->SeamlessM4TTokenizer, SeamlessM4Tv2Processor->SeamlessM4TProcessor class SeamlessM4Tv2ForTextToText(SeamlessM4Tv2PreTrainedModel): _keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"] main_input_name = "input_ids" _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.text_encoder def get_decoder(self): return self.text_decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def generate( self, input_ids=None, tgt_lang=None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, **kwargs, ): """ Generates sequences of token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) tgt_lang (`str`, *optional*): The language to use as target language for translation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # prepare text_decoder_input_ids text_decoder_input_ids = kwargs.pop("decoder_input_ids", None) # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")) if hasattr(self.generation_config, "text_decoder_lang_to_code_id"): # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}""" ) # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device) else: raise ValueError( """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) else: # only a warning, otherwise errors appear in the tests logger.warning( """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get a correct generation, otherwise the generation will probably make no sense.""" ) return super().generate( input_ids, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, decoder_input_ids=text_decoder_input_ids, **kwargs, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The speech-to-text SeamlessM4Tv2 Model transformer which can be used for S2TT.", SEAMLESS_M4T_V2_START_DOCSTRING, ) class SeamlessM4Tv2ForSpeechToText(SeamlessM4Tv2PreTrainedModel): _keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"] main_input_name = "input_features" _tied_weights_keys = [ "lm_head.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_encoder def get_encoder(self): return self.speech_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_decoder def get_decoder(self): return self.text_decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.set_input_embeddings def set_input_embeddings(self, value): self.text_decoder.embed_tokens = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.forward def forward( self, input_features: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.generate def generate( self, input_features=None, tgt_lang=None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, **kwargs, ): """ Generates sequences of token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. tgt_lang (`str`, *optional*): The language to use as target language for translation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ text_decoder_input_ids = kwargs.pop("decoder_input_ids", None) # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: inputs = kwargs.get("input_embeds") if input_features is None else input_features inputs = ( inputs if inputs is not None else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"] ) batch_size = len(inputs) if hasattr(self.generation_config, "text_decoder_lang_to_code_id"): # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}""" ) # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device) else: raise ValueError( """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) else: # only a warning, otherwise errors appear in the tests logger.warning( """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get a correct generation, otherwise the generation will probably make no sense.""" ) return super().generate( input_features, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, decoder_input_ids=text_decoder_input_ids, **kwargs, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The text-to-speech SeamlessM4Tv2 Model transformer which can be used for T2ST.", SEAMLESS_M4T_V2_START_DOCSTRING, ) class SeamlessM4Tv2ForTextToSpeech(SeamlessM4Tv2PreTrainedModel): _keys_to_ignore_on_load_missing = ["speech_encoder"] main_input_name = "input_ids" _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4Tv2CodeHifiGan(config) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_encoder def get_encoder(self): return self.text_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_decoder def get_decoder(self): return self.text_decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.set_input_embeddings def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.forward with SeamlessM4T->SeamlessM4Tv2 def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This is the same forward method as `SeamlessM4Tv2ForTextToText`." "It doesn't use the text-to-unit model `SeamlessM4Tv2TextToUnitForConditionalGeneration`." "If you want to generate speech, use the `.generate` method." ) encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, speaker_id: Optional[int] = 0, **kwargs, ) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]: """ Generates translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. tgt_lang (`str`, *optional*): The language to use as target language for translation. speaker_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor]]`: - If `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`]. - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. """ batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")) if tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") else: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports more languages for text translation than for speech synthesis.""" ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation text_generation_output = super().generate(input_ids, **kwargs_text) sequences = text_generation_output.sequences # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) if attention_mask is not None: # repeat attention mask alongside batch dimension attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0) encoder_hidden_states = text_generation_output.encoder_hidden_states[-1] # repeat attention mask alongside batch dimension encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0) # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences[:, :-1], # Manually trim the final EOS token encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # REMOVE EOS and lang_id t2u_input_ids = sequences[:, 2:-1] # replace every other EOS t2u_input_ids = torch.masked_fill( t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id ) # compute t2u_char_input_ids t2u_subwords = self._indices_to_subwords(t2u_input_ids) t2u_char_count_per_id = self._count_character_length_in_subword( t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id ) # Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode. pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1)) t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1) t2u_char_input_ids = self._get_char_input_ids( t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id ) # second pass t2u_output = self.t2u_model( inputs_embeds=t2u_input_embeds, char_input_ids=t2u_char_input_ids, char_count_per_id=t2u_char_count_per_id, **kwargs_speech, ) t2u_logits = t2u_output[0] padding_mask = t2u_output[1].bool() # The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature temperature = kwargs_speech.get("temperature", None) if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False): unit_ids = t2u_logits.argmax(dim=-1) else: t2u_logits = t2u_logits / temperature # apply softmax probs = nn.functional.softmax(t2u_logits, dim=-1) # reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size) probs = probs.reshape((-1, probs.shape[2])) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1) output_unit_ids = unit_ids.detach().clone() replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask) # replace eos per pad unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id) # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device) speaker_id = torch.tensor([[speaker_id]] * len(unit_ids)).to(self.device) waveform, waveform_lengths = self.vocoder( input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id ) if return_intermediate_token_ids: return SeamlessM4Tv2GenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The speech-to-speech SeamlessM4Tv2 Model transformer which can be used for S2ST.", SEAMLESS_M4T_V2_START_DOCSTRING, ) class SeamlessM4Tv2ForSpeechToSpeech(SeamlessM4Tv2PreTrainedModel): _keys_to_ignore_on_load_missing = ["text_encoder"] main_input_name = "input_features" _tied_weights_keys = [ "lm_head.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4Tv2CodeHifiGan(config) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_encoder def get_encoder(self): return self.speech_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_decoder def get_decoder(self): return self.text_decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.set_input_embeddings def set_input_embeddings(self, value): self.text_decoder.embed_tokens = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.forward with SeamlessM4T->SeamlessM4Tv2 def forward( self, input_features: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This is the same forward method as `SeamlessM4Tv2ForSpeechToText`. It doesn't use `self.t2u_model`." "If you want to generate speech, use the `generate` method." ) encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_features: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, speaker_id: Optional[int] = 0, **kwargs, ) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]: """ Generates translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. tgt_lang (`str`, *optional*): The language to use as target language for translation. speaker_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor]]`: - If `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`]. - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. """ batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds")) if tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") else: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports more languages for text translation than for speech synthesis.""" ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation text_generation_output = super().generate(input_features, **kwargs_text) sequences = text_generation_output.sequences # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) # get last_hidden_state from encoder encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0] # input modality = speech so new attention mask for the decoder if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_hidden_states.device ) attention_mask = _compute_new_attention_mask( hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths ) # repeat attention mask alongside batch dimension attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0) # repeat attention mask alongside batch dimension encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0) # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences[:, :-1], # Manually trim the final EOS token encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # REMOVE EOS and lang_id t2u_input_ids = sequences[:, 2:-1] # replace every other EOS t2u_input_ids = torch.masked_fill( t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id ) # compute t2u_char_input_ids t2u_subwords = self._indices_to_subwords(t2u_input_ids) t2u_char_count_per_id = self._count_character_length_in_subword( t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id ) # Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode. pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1)) t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1) t2u_char_input_ids = self._get_char_input_ids( t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id ) # second pass t2u_output = self.t2u_model( inputs_embeds=t2u_input_embeds, char_input_ids=t2u_char_input_ids, char_count_per_id=t2u_char_count_per_id, **kwargs_speech, ) t2u_logits = t2u_output[0] padding_mask = t2u_output[1].bool() # The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature temperature = kwargs_speech.get("temperature", None) if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False): unit_ids = t2u_logits.argmax(dim=-1) else: t2u_logits = t2u_logits / temperature # apply softmax probs = nn.functional.softmax(t2u_logits, dim=-1) # reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size) probs = probs.reshape((-1, probs.shape[2])) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1) output_unit_ids = unit_ids.detach().clone() replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask) # replace eos per pad unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id) # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device) speaker_id = torch.tensor([[speaker_id]] * len(unit_ids)).to(self.device) waveform, waveform_lengths = self.vocoder( input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id ) if return_intermediate_token_ids: return SeamlessM4Tv2GenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, } @add_start_docstrings( "The original SeamlessM4Tv2 Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).", SEAMLESS_M4T_V2_START_DOCSTRING, """ current_modality (`str`, *optional*, defaults to `"text"`): Default modality. Used only to initialize the model. It can be set to `"text"` or `"speech"`. This will be updated automatically according to the modality passed to the forward and generate passes (`input_ids` for text and `input_features` for audio). """, ) class SeamlessM4Tv2Model(SeamlessM4Tv2PreTrainedModel): _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config, current_modality="text"): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared) self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.current_modality = current_modality if current_modality == "speech": self.main_input_name = "input_features" # these models already call post_init in their initialization self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4Tv2CodeHifiGan(config) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_modality def set_modality(self, modality="text"): if modality == "text": self.main_input_name = "input_ids" self.current_modality = "text" elif modality == "speech": self.main_input_name = "input_features" self.current_modality = "speech" else: raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.") # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_encoder def get_encoder(self): if self.current_modality == "text": return self.text_encoder else: return self.speech_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_input_embeddings def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.forward with SeamlessM4T->SeamlessM4Tv2 def forward( self, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None: raise ValueError( "`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not." ) elif input_features is not None: if input_ids is not None: logger.warning( "`input_ids` is not `None` but `input_features` has been given." "`input_features` will be used in priority through the `speech_encoder`. " "Make sure that `input_features` and `input_ids` are mutually exclusive." ) if inputs_embeds is not None: logger.warning( "`inputs_embeds` is not `None` but `input_features` has been given." "`input_features` will be used in priority through `speech_encoder`. " "`inputs_embeds` will be ignored." ) # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This calls the same method `forward` as `SeamlessM4Tv2ForTextToText` and `SeamlessM4Tv2ForSpeechToText`" "depending on the input modality. If you want to generate speech, use the `generate` method." ) self.set_modality("speech") encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif input_ids is not None or inputs_embeds is not None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This calls the same method `forward` as `SeamlessM4Tv2ForTextToText` and `SeamlessM4Tv2ForSpeechToText`" "depending on the input modality. If you want to generate speech, use the `generate` method." ) self.set_modality("text") encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # input modality = speech so new attention mask if self.current_modality == "speech" and attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, input_features: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, speaker_id: Optional[int] = 0, generate_speech: Optional[bool] = True, **kwargs, ) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]: """ Generates translated token ids and/or translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be ignored. tgt_lang (`str`, *optional*): The language to use as target language for translation. speaker_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. generate_speech (`bool`, *optional*, defaults to `True`): If `False`, will only returns the text tokens and won't generate speech. kwargs (*optional*): Remaining dictioy of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor], ModelOutput]`: - If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`]. - If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. - If `generate_speech=False`, it will returns `ModelOutput`. """ if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None: raise ValueError( "`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not." ) if generate_speech and tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") if tgt_lang is not None: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if generate_speech: keys_to_check = ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"] else: keys_to_check = ["text_decoder_lang_to_code_id"] for key in keys_to_check: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports more languages for text translation than for speech synthesis.""" ) batch_size = ( len(input_features) if input_features is not None else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))) ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation if input_features is not None: self.set_modality("speech") if input_ids is not None: logger.warning( "`input_features` and `input_ids` are both non empty. `input_features` will be used in priority " "through the speech encoder. Make sure `input_features=None` if you want to use the text encoder." ) text_generation_output = super().generate(input_features=input_features, **kwargs_text) else: self.set_modality("text") text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text) sequences = text_generation_output.sequences if not generate_speech: return text_generation_output # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) # get encoder last hidden states if self.current_modality == "speech": # get last_hidden_state from encoder - must do a pass through the speech encoder encoder_hidden_states = self.speech_encoder( input_features=input_features, attention_mask=attention_mask ).last_hidden_state # input modality = speech so new attention mask for the decoder if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_hidden_states.device ) attention_mask = _compute_new_attention_mask( hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths ) else: encoder_hidden_states = text_generation_output.encoder_hidden_states[-1] if attention_mask is not None: # repeat attention mask alongside batch dimension attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0) # repeat attention mask alongside batch dimension encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0) # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences[:, :-1], # Manually trim the final EOS token encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # REMOVE EOS and lang_id t2u_input_ids = sequences[:, 2:-1] # replace every other EOS t2u_input_ids = torch.masked_fill( t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id ) # compute t2u_char_input_ids t2u_subwords = self._indices_to_subwords(t2u_input_ids) t2u_char_count_per_id = self._count_character_length_in_subword( t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id ) # Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode. pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1)) t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1) t2u_char_input_ids = self._get_char_input_ids( t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id ) # second pass t2u_output = self.t2u_model( inputs_embeds=t2u_input_embeds, char_input_ids=t2u_char_input_ids, char_count_per_id=t2u_char_count_per_id, **kwargs_speech, ) t2u_logits = t2u_output[0] padding_mask = t2u_output[1].bool() # The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature temperature = kwargs_speech.get("temperature", None) if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False): unit_ids = t2u_logits.argmax(dim=-1) else: t2u_logits = t2u_logits / temperature # apply softmax probs = nn.functional.softmax(t2u_logits, dim=-1) # reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size) probs = probs.reshape((-1, probs.shape[2])) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1) output_unit_ids = unit_ids.detach().clone() replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask) # replace eos per pad unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id) # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device) speaker_id = torch.tensor([[speaker_id]] * len(unit_ids)).to(self.device) waveform, waveform_lengths = self.vocoder( input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id ) if return_intermediate_token_ids: return SeamlessM4Tv2GenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
transformers/src/transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py", "repo_id": "transformers", "token_count": 101055 }
319
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_siglip": [ "SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "SiglipConfig", "SiglipTextConfig", "SiglipVisionConfig", ], "processing_siglip": ["SiglipProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_siglip"] = ["SiglipTokenizer"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_siglip"] = ["SiglipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_siglip"] = [ "SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "SiglipModel", "SiglipPreTrainedModel", "SiglipTextModel", "SiglipVisionModel", ] if TYPE_CHECKING: from .configuration_siglip import ( SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, SiglipConfig, SiglipTextConfig, SiglipVisionConfig, ) from .processing_siglip import SiglipProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_siglip import SiglipTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_siglip import SiglipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_siglip import ( SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST, SiglipModel, SiglipPreTrainedModel, SiglipTextModel, SiglipVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/siglip/__init__.py/0
{ "file_path": "transformers/src/transformers/models/siglip/__init__.py", "repo_id": "transformers", "token_count": 1201 }
320
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Speech2Text """ from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, is_speech_available, logging if is_speech_available(): import torch import torchaudio.compliance.kaldi as ta_kaldi logger = logging.get_logger(__name__) class Speech2TextFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Speech2Text feature extractor. This feature extractor inherits from [`Speech2TextFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy otherwise, and applies utterance-level cepstral mean and variance normalization to the extracted features. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). num_mel_bins (`int`, *optional*, defaults to 80): Number of Mel-frequency bins. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding vectors. do_ceptral_normalize (`bool`, *optional*, defaults to `True`): Whether or not to apply utterance-level cepstral mean and variance normalization to extracted features. normalize_means (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean normalize the extracted features. normalize_vars (`bool`, *optional*, defaults to `True`): Whether or not to unit-variance normalize the extracted features. """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=16000, num_mel_bins=80, padding_value=0.0, do_ceptral_normalize=True, normalize_means=True, normalize_vars=True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.num_mel_bins = num_mel_bins self.do_ceptral_normalize = do_ceptral_normalize self.normalize_means = normalize_means self.normalize_vars = normalize_vars self.return_attention_mask = True if not is_speech_available(): mel_filters = mel_filter_bank( num_frequency_bins=256, num_mel_filters=self.num_mel_bins, min_frequency=20, max_frequency=sampling_rate // 2, sampling_rate=sampling_rate, norm=None, mel_scale="kaldi", triangularize_in_mel_space=True, ) self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0))) self.window = window_function(400, "povey", periodic=False) def _extract_fbank_features( self, waveform: np.ndarray, ) -> np.ndarray: """ Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized before feature extraction. """ waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers if is_speech_available(): waveform = torch.from_numpy(waveform).unsqueeze(0) features = ta_kaldi.fbank(waveform, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate) features = features.numpy() else: waveform = np.squeeze(waveform) features = spectrogram( waveform, self.window, frame_length=400, hop_length=160, fft_length=512, power=2.0, center=False, preemphasis=0.97, mel_filters=self.mel_filters, log_mel="log", mel_floor=1.192092955078125e-07, remove_dc_offset=True, ).T return features @staticmethod def utterance_cmvn( x: np.ndarray, input_length: int, normalize_means: Optional[bool] = True, normalize_vars: Optional[bool] = True, padding_value: float = 0.0, ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: mean = x[:input_length].mean(axis=0) x = np.subtract(x, mean) if normalize_vars: std = x[:input_length].std(axis=0) x = np.divide(x, std) if input_length < x.shape[0]: x[input_length:] = padding_value # make sure array is in float32 x = x.astype(np.float32) return x def normalize( self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None ) -> List[np.ndarray]: lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(x, n, self.normalize_means, self.normalize_vars, self.padding_value) for x, n in zip(input_features, lengths) ] def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, return_attention_mask: Optional[bool] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Speech2TextTransformer models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. padding_value (`float`, defaults to 0.0): The value that is used to fill the padding values / vectors. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features features = [self._extract_fbank_features(waveform) for waveform in raw_speech] # convert into correct format for padding encoded_inputs = BatchFeature({"input_features": features}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, **kwargs, ) # make sure list is in array format input_features = padded_inputs.get("input_features") if isinstance(input_features[0], list): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: attention_mask = ( np.array(attention_mask, dtype=np.int32) if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_features"] = self.normalize( padded_inputs["input_features"], attention_mask=attention_mask ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
transformers/src/transformers/models/speech_to_text/feature_extraction_speech_to_text.py/0
{ "file_path": "transformers/src/transformers/models/speech_to_text/feature_extraction_speech_to_text.py", "repo_id": "transformers", "token_count": 5608 }
321
# coding=utf-8 # Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Number Normalizer class for SpeechT5.""" import re class EnglishNumberNormalizer: def __init__(self): self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] self.teens = [ "", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] self.tens = ["", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] self.thousands = [ "", "thousand", "million", "billion", "trillion", "quadrillion", "quintillion", "sextillion", "septillion", "octillion", "nonillion", "decillion", ] # Define a dictionary to map currency symbols to their names # Top most traded currencies according to # https://en.wikipedia.org/wiki/Template:Most_traded_currencies self.currency_symbols = { "$": " dollars", "€": " euros", "£": " pounds", "¢": " cents", "¥": " japanese yen", "﷼": " saudi riyal", "₹": " indian rupees", "₽": " russian rubles", "฿": " thai baht", "₺": " turkish liras", "₴": " ukrainian hryvnia", "₣": " swiss francs", "₡": " costa rican colon", "₱": " philippine peso", "₪": " israeli shekels", "₮": " mongolian tögrög", "₩": " south korean won", "₦": " nigerian naira", "₫": " vietnamese Đồng", } def spell_number(self, num): if num == 0: return "zero" parts = [] for i in range(0, len(self.thousands)): if num % 1000 != 0: part = "" hundreds = num % 1000 // 100 tens_units = num % 100 if hundreds > 0: part += self.ones[hundreds] + " hundred" if tens_units > 0: part += " and " if tens_units > 10 and tens_units < 20: part += self.teens[tens_units - 10] else: tens_digit = self.tens[tens_units // 10] ones_digit = self.ones[tens_units % 10] if tens_digit: part += tens_digit if ones_digit: if tens_digit: part += " " part += ones_digit parts.append(part) num //= 1000 return " ".join(reversed(parts)) def convert(self, number): """ Converts an individual number passed in string form to spelt-out form """ if "." in number: integer_part, decimal_part = number.split(".") else: integer_part, decimal_part = number, "00" # Extract currency symbol if present currency_symbol = "" for symbol, name in self.currency_symbols.items(): if integer_part.startswith(symbol): currency_symbol = name integer_part = integer_part[len(symbol) :] break if integer_part.startswith("-"): if integer_part[1:].startswith(symbol): currency_symbol = name integer_part = "-" + integer_part[len(symbol) + 1 :] break # Extract 'minus' prefix for negative numbers minus_prefix = "" if integer_part.startswith("-"): minus_prefix = "minus " integer_part = integer_part[1:] elif integer_part.startswith("minus"): minus_prefix = "minus " integer_part = integer_part[len("minus") :] percent_suffix = "" if "%" in integer_part or "%" in decimal_part: percent_suffix = " percent" integer_part = integer_part.replace("%", "") decimal_part = decimal_part.replace("%", "") integer_part = integer_part.zfill(3 * ((len(integer_part) - 1) // 3 + 1)) parts = [] for i in range(0, len(integer_part), 3): chunk = int(integer_part[i : i + 3]) if chunk > 0: part = self.spell_number(chunk) unit = self.thousands[len(integer_part[i:]) // 3 - 1] if unit: part += " " + unit parts.append(part) spelled_integer = " ".join(parts) # Format the spelt-out number based on conditions, such as: # If it has decimal parts, currency symbol, minus prefix, etc if decimal_part == "00": return ( f"{minus_prefix}{spelled_integer}{percent_suffix}{currency_symbol}" if minus_prefix or currency_symbol else f"{spelled_integer}{percent_suffix}" ) else: spelled_decimal = " ".join([self.spell_number(int(digit)) for digit in decimal_part]) return ( f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}{currency_symbol}" if minus_prefix or currency_symbol else f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}" ) def __call__(self, text): """ Convert numbers / number-like quantities in a string to their spelt-out counterparts """ # Form part of the pattern for all currency symbols pattern = r"(?<!\w)(-?\$?\€?\£?\¢?\¥?\₹?\₽?\฿?\₺?\₴?\₣?\₡?\₱?\₪?\₮?\₩?\₦?\₫?\﷼?\d+(?:\.\d{1,2})?%?)(?!\w)" # Find and replace commas in numbers (15,000 -> 15000, etc) text = re.sub(r"(\d+,\d+)", lambda match: match.group(1).replace(",", ""), text) # Use regex to find and replace numbers in the text converted_text = re.sub(pattern, lambda match: self.convert(match.group(1)), text) converted_text = re.sub(" +", " ", converted_text) return converted_text
transformers/src/transformers/models/speecht5/number_normalizer.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/number_normalizer.py", "repo_id": "transformers", "token_count": 3534 }
322
# coding=utf-8 # Copyright 2023 MBZUAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SwiftFormer model.""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2CLS from ...modeling_outputs import ( BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_swiftformer import SwiftFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SwiftFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "MBZUAI/swiftformer-xs" _EXPECTED_OUTPUT_SHAPE = [1, 220, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "MBZUAI/swiftformer-xs" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "MBZUAI/swiftformer-xs", # See all SwiftFormer models at https://huggingface.co/models?filter=swiftformer ] class SwiftFormerPatchEmbedding(nn.Module): """ Patch Embedding Layer constructed of two 2D convolutional layers. Input: tensor of shape `[batch_size, in_channels, height, width]` Output: tensor of shape `[batch_size, out_channels, height/4, width/4]` """ def __init__(self, config: SwiftFormerConfig): super().__init__() in_chs = config.num_channels out_chs = config.embed_dims[0] self.patch_embedding = nn.Sequential( nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_chs // 2, eps=config.batch_norm_eps), nn.ReLU(), nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_chs, eps=config.batch_norm_eps), nn.ReLU(), ) def forward(self, x): return self.patch_embedding(x) # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Swiftformer class SwiftFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SwiftFormerEmbeddings(nn.Module): """ Embeddings layer consisting of a single 2D convolutional and batch normalization layer. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height/stride, width/stride]` """ def __init__(self, config: SwiftFormerConfig, index: int): super().__init__() patch_size = config.down_patch_size stride = config.down_stride padding = config.down_pad embed_dims = config.embed_dims in_chans = embed_dims[index] embed_dim = embed_dims[index + 1] patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding) self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) def forward(self, x): x = self.proj(x) x = self.norm(x) return x class SwiftFormerConvEncoder(nn.Module): """ `SwiftFormerConvEncoder` with 3*3 and 1*1 convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int): super().__init__() hidden_dim = int(config.mlp_ratio * dim) self.depth_wise_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim) self.norm = nn.BatchNorm2d(dim, eps=config.batch_norm_eps) self.point_wise_conv1 = nn.Conv2d(dim, hidden_dim, kernel_size=1) self.act = nn.GELU() self.point_wise_conv2 = nn.Conv2d(hidden_dim, dim, kernel_size=1) self.drop_path = nn.Identity() self.layer_scale = nn.Parameter(torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True) def forward(self, x): input = x x = self.depth_wise_conv(x) x = self.norm(x) x = self.point_wise_conv1(x) x = self.act(x) x = self.point_wise_conv2(x) x = input + self.drop_path(self.layer_scale * x) return x class SwiftFormerMlp(nn.Module): """ MLP layer with 1*1 convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, in_features: int): super().__init__() hidden_features = int(in_features * config.mlp_ratio) self.norm1 = nn.BatchNorm2d(in_features, eps=config.batch_norm_eps) self.fc1 = nn.Conv2d(in_features, hidden_features, 1) act_layer = ACT2CLS[config.hidden_act] self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, in_features, 1) self.drop = nn.Dropout(p=0.0) def forward(self, x): x = self.norm1(x) x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class SwiftFormerEfficientAdditiveAttention(nn.Module): """ Efficient Additive Attention module for SwiftFormer. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int = 512): super().__init__() self.to_query = nn.Linear(dim, dim) self.to_key = nn.Linear(dim, dim) self.w_g = nn.Parameter(torch.randn(dim, 1)) self.scale_factor = dim**-0.5 self.proj = nn.Linear(dim, dim) self.final = nn.Linear(dim, dim) def forward(self, x): query = self.to_query(x) key = self.to_key(x) query = torch.nn.functional.normalize(query, dim=-1) key = torch.nn.functional.normalize(key, dim=-1) query_weight = query @ self.w_g scaled_query_weight = query_weight * self.scale_factor scaled_query_weight = scaled_query_weight.softmax(dim=-1) global_queries = torch.sum(scaled_query_weight * query, dim=1) global_queries = global_queries.unsqueeze(1).repeat(1, key.shape[1], 1) out = self.proj(global_queries * key) + query out = self.final(out) return out class SwiftFormerLocalRepresentation(nn.Module): """ Local Representation module for SwiftFormer that is implemented by 3*3 depth-wise and point-wise convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int): super().__init__() self.depth_wise_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim) self.norm = nn.BatchNorm2d(dim, eps=config.batch_norm_eps) self.point_wise_conv1 = nn.Conv2d(dim, dim, kernel_size=1) self.act = nn.GELU() self.point_wise_conv2 = nn.Conv2d(dim, dim, kernel_size=1) self.drop_path = nn.Identity() self.layer_scale = nn.Parameter(torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True) def forward(self, x): input = x x = self.depth_wise_conv(x) x = self.norm(x) x = self.point_wise_conv1(x) x = self.act(x) x = self.point_wise_conv2(x) x = input + self.drop_path(self.layer_scale * x) return x class SwiftFormerEncoderBlock(nn.Module): """ SwiftFormer Encoder Block for SwiftFormer. It consists of (1) Local representation module, (2) SwiftFormerEfficientAdditiveAttention, and (3) MLP block. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels,height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int, drop_path: float = 0.0) -> None: super().__init__() layer_scale_init_value = config.layer_scale_init_value use_layer_scale = config.use_layer_scale self.local_representation = SwiftFormerLocalRepresentation(config, dim=dim) self.attn = SwiftFormerEfficientAdditiveAttention(config, dim=dim) self.linear = SwiftFormerMlp(config, in_features=dim) self.drop_path = SwiftFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter( layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True ) self.layer_scale_2 = nn.Parameter( layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True ) def forward(self, x): x = self.local_representation(x) batch_size, channels, height, width = x.shape if self.use_layer_scale: x = x + self.drop_path( self.layer_scale_1 * self.attn(x.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)) .reshape(batch_size, height, width, channels) .permute(0, 3, 1, 2) ) x = x + self.drop_path(self.layer_scale_2 * self.linear(x)) else: x = x + self.drop_path( self.attn(x.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)) .reshape(batch_size, height, width, channels) .permute(0, 3, 1, 2) ) x = x + self.drop_path(self.linear(x)) return x class SwiftFormerStage(nn.Module): """ A Swiftformer stage consisting of a series of `SwiftFormerConvEncoder` blocks and a final `SwiftFormerEncoderBlock`. Input: tensor in shape `[batch_size, channels, height, width]` Output: tensor in shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, index: int) -> None: super().__init__() layer_depths = config.depths dim = config.embed_dims[index] depth = layer_depths[index] blocks = [] for block_idx in range(depth): block_dpr = config.drop_path_rate * (block_idx + sum(layer_depths[:index])) / (sum(layer_depths) - 1) if depth - block_idx <= 1: blocks.append(SwiftFormerEncoderBlock(config, dim=dim, drop_path=block_dpr)) else: blocks.append(SwiftFormerConvEncoder(config, dim=dim)) self.blocks = nn.ModuleList(blocks) def forward(self, input): for block in self.blocks: input = block(input) return input class SwiftFormerEncoder(nn.Module): def __init__(self, config: SwiftFormerConfig) -> None: super().__init__() self.config = config embed_dims = config.embed_dims downsamples = config.downsamples layer_depths = config.depths # Transformer model network = [] for i in range(len(layer_depths)): stage = SwiftFormerStage(config=config, index=i) network.append(stage) if i >= len(layer_depths) - 1: break if downsamples[i] or embed_dims[i] != embed_dims[i + 1]: # downsampling between two stages network.append(SwiftFormerEmbeddings(config, index=i)) self.network = nn.ModuleList(network) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_hidden_states = (hidden_states,) if output_hidden_states else None for block in self.network: hidden_states = block(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) class SwiftFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SwiftFormerConfig base_model_prefix = "swiftformer" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, (nn.LayerNorm)): nn.init.constant_(module.bias, 0) nn.init.constant_(module.weight, 1.0) SWIFTFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SwiftFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWIFTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SwiftFormer Model transformer outputting raw hidden-states without any specific head on top.", SWIFTFORMER_START_DOCSTRING, ) class SwiftFormerModel(SwiftFormerPreTrainedModel): def __init__(self, config: SwiftFormerConfig): super().__init__(config) self.config = config self.patch_embed = SwiftFormerPatchEmbedding(config) self.encoder = SwiftFormerEncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWIFTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: r""" """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.patch_embed(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return tuple(v for v in encoder_outputs if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ SwiftFormer Model transformer with an image classification head on top (e.g. for ImageNet). """, SWIFTFORMER_START_DOCSTRING, ) class SwiftFormerForImageClassification(SwiftFormerPreTrainedModel): def __init__(self, config: SwiftFormerConfig) -> None: super().__init__(config) embed_dims = config.embed_dims self.num_labels = config.num_labels self.swiftformer = SwiftFormerModel(config) # Classifier head self.norm = nn.BatchNorm2d(embed_dims[-1], eps=config.batch_norm_eps) self.head = nn.Linear(embed_dims[-1], self.num_labels) if self.num_labels > 0 else nn.Identity() self.dist_head = nn.Linear(embed_dims[-1], self.num_labels) if self.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWIFTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # run base model outputs = self.swiftformer( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs.last_hidden_state if return_dict else outputs[0] # run classification head sequence_output = self.norm(sequence_output) sequence_output = sequence_output.flatten(2).mean(-1) cls_out = self.head(sequence_output) distillation_out = self.dist_head(sequence_output) logits = (cls_out + distillation_out) / 2 # calculate loss loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, )
transformers/src/transformers/models/swiftformer/modeling_swiftformer.py/0
{ "file_path": "transformers/src/transformers/models/swiftformer/modeling_swiftformer.py", "repo_id": "transformers", "token_count": 9784 }
323
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TimeSformer checkpoints from the original repository: https://github.com/MCG-NJU/TimeSformer""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import TimesformerConfig, TimesformerForVideoClassification, VideoMAEImageProcessor def get_timesformer_config(model_name): config = TimesformerConfig() if "large" in model_name: config.num_frames = 96 if "hr" in model_name: config.num_frames = 16 config.image_size = 448 repo_id = "huggingface/label-files" if "k400" in model_name: config.num_labels = 400 filename = "kinetics400-id2label.json" elif "k600" in model_name: config.num_labels = 600 filename = "kinetics600-id2label.json" elif "ssv2" in model_name: config.num_labels = 174 filename = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'k400', 'k600' or 'ssv2'.") id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def rename_key(name): if "encoder." in name: name = name.replace("encoder.", "") if "cls_token" in name: name = name.replace("cls_token", "timesformer.embeddings.cls_token") if "pos_embed" in name: name = name.replace("pos_embed", "timesformer.embeddings.position_embeddings") if "time_embed" in name: name = name.replace("time_embed", "timesformer.embeddings.time_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "timesformer.embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "timesformer.embeddings.norm") if "blocks" in name: name = name.replace("blocks", "timesformer.encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name and "bias" not in name and "temporal" not in name: name = name.replace("attn", "attention.self") if "attn" in name and "temporal" not in name: name = name.replace("attn", "attention.attention") if "temporal_norm1" in name: name = name.replace("temporal_norm1", "temporal_layernorm") if "temporal_attn.proj" in name: name = name.replace("temporal_attn", "temporal_attention.output.dense") if "temporal_fc" in name: name = name.replace("temporal_fc", "temporal_dense") if "norm1" in name and "temporal" not in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "norm.weight" in name and "fc" not in name and "temporal" not in name: name = name.replace("norm.weight", "timesformer.layernorm.weight") if "norm.bias" in name and "fc" not in name and "temporal" not in name: name = name.replace("norm.bias", "timesformer.layernorm.bias") if "head" in name: name = name.replace("head", "classifier") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if key.startswith("model."): key = key.replace("model.", "") if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[1]) prefix = "timesformer.encoder.layer." if "temporal" in key: postfix = ".temporal_attention.attention.qkv." else: postfix = ".attention.attention.qkv." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}{postfix}weight"] = val else: orig_state_dict[f"{prefix}{layer_num}{postfix}bias"] = val else: orig_state_dict[rename_key(key)] = val return orig_state_dict # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) def convert_timesformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub): config = get_timesformer_config(model_name) model = TimesformerForVideoClassification(config) # download original checkpoint, hosted on Google Drive output = "pytorch_model.bin" gdown.cached_download(checkpoint_url, output, quiet=False) files = torch.load(output, map_location="cpu") if "model" in files: state_dict = files["model"] elif "module" in files: state_dict = files["module"] else: state_dict = files["model_state"] new_state_dict = convert_state_dict(state_dict, config) model.load_state_dict(new_state_dict) model.eval() # verify model on basic input image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) video = prepare_video() inputs = image_processor(video[:8], return_tensors="pt") outputs = model(**inputs) logits = outputs.logits model_names = [ # Kinetics-400 checkpoints (hr = high resolution input of 448px instead of 224px) "timesformer-base-finetuned-k400", "timesformer-large-finetuned-k400", "timesformer-hr-finetuned-k400", # Kinetics-600 checkpoints (hr = high resolution input of 448px instead of 224px) "timesformer-base-finetuned-k600", "timesformer-large-finetuned-k600", "timesformer-hr-finetuned-k600", # Something-Something-v2 checkpoints (hr = high resolution input of 448px instead of 224px) "timesformer-base-finetuned-ssv2", "timesformer-large-finetuned-ssv2", "timesformer-hr-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "timesformer-base-finetuned-k400": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-0.3016, -0.7713, -0.4205]) elif model_name == "timesformer-base-finetuned-k600": expected_shape = torch.Size([1, 600]) expected_slice = torch.tensor([-0.7267, -0.7466, 3.2404]) elif model_name == "timesformer-base-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([-0.9059, 0.6433, -3.1457]) elif model_name == "timesformer-large-finetuned-k400": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0, 0, 0]) elif model_name == "timesformer-large-finetuned-k600": expected_shape = torch.Size([1, 600]) expected_slice = torch.tensor([0, 0, 0]) elif model_name == "timesformer-large-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([0, 0, 0]) elif model_name == "timesformer-hr-finetuned-k400": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-0.9617, -3.7311, -3.7708]) elif model_name == "timesformer-hr-finetuned-k600": expected_shape = torch.Size([1, 600]) expected_slice = torch.tensor([2.5273, 0.7127, 1.8848]) elif model_name == "timesformer-hr-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([-3.6756, -0.7513, 0.7180]) else: raise ValueError(f"Model name not supported. Should be one of {model_names}") # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4) print("Logits ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") model.push_to_hub(f"fcakyon/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=17yvuYp9L4mn-HpIcK5Zo6K3UoOy1kA5l&export=download", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="timesformer-base-finetuned-k400", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_timesformer_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub )
transformers/src/transformers/models/timesformer/convert_timesformer_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/timesformer/convert_timesformer_to_pytorch.py", "repo_id": "transformers", "token_count": 4205 }
324
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UniSpeechSat checkpoint.""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_unispeech_sat_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = UniSpeechSatConfig.from_pretrained(config_path) else: config = UniSpeechSatConfig() dict_path = "" if is_finetuned: hf_wav2vec = UniSpeechSatForCTC(config) else: hf_wav2vec = UniSpeechSatForPreTraining(config) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) model = model[0].eval() recursively_load_weights(model, hf_wav2vec) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4200 }
325
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Vision-Encoder-Text-Decoder architectures""" from __future__ import annotations import re import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, keras, unpack_inputs from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) VISION_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like image captioning. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical character recognition (OCR) yields a significant performance improvement. After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision's model's image processor. For example, using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ # Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base vision model classes of the library as encoder and another one of the base model classes as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_encoder_decoder" load_weight_prefix = "tf_vision_encoder_decoder_model" main_input_name = "pixel_values" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) @property def input_signature(self): vision_config = self.config.encoder if hasattr(vision_config, "vision_config"): vision_config = vision_config.vision_config if hasattr(vision_config, "image_size"): image_size = vision_config.image_size else: image_size = vision_config.input_size return { "pixel_values": tf.TensorSpec( shape=( None, vision_config.num_channels, image_size, image_size, ), dtype=tf.float32, ), "decoder_input_ids": tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="decoder_input_ids"), } def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def tf_to_pt_weight_rename(self, tf_weight): # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! # This override is only needed in the case where we're crossloading weights from PT. However, since weights are # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it # or not. encoder_model_type = self.config.encoder.model_type if "encoder" in tf_weight and "decoder" not in tf_weight: return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) else: return (tf_weight,) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An example is `google/vit-base-patch16-224-in21k`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFVisionEncoderDecoderModel >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-bert") >>> # load fine-tuned model >>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward( VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoTokenizer, TFVisionEncoderDecoderModel >>> from PIL import Image >>> import requests >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> decoder_tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "gpt2" ... ) >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> img = Image.open(requests.get(url, stream=True).raw) >>> # forward >>> pixel_values = image_processor(images=img, return_tensors="tf").pixel_values # Batch size 1 >>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1 >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) >>> # training >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("vit-gpt2") >>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2") >>> # generation >>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": pixel_values, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) if "input_ids" in encoder_inputs: encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") if encoder_inputs["pixel_values"] is None: raise ValueError("You have to specify pixel_values") # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.decoder.use_cache else None dec_hs = ( tf.convert_to_tensor(output.decoder_hidden_states) if self.config.decoder.output_hidden_states else None ) dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.decoder.output_attentions else None enc_hs = ( tf.convert_to_tensor(output.encoder_hidden_states) if self.config.encoder.output_hidden_states else None ) enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.encoder.output_attentions else None cross_attns = ( tf.convert_to_tensor(output.cross_attentions) if self.config.decoder.output_attentions and output.cross_attentions is not None else None ) return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, cross_attentions=cross_attns, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") input_dict = { "pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported. " "Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))" ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "enc_to_dec_proj", None) is not None: with tf.name_scope(self.enc_to_dec_proj.name): self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py", "repo_id": "transformers", "token_count": 14958 }
326
# coding=utf-8 # Copyright 2024 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Wav2Vec2Bert model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/w2v-bert-2.0": "https://huggingface.co/facebook/w2v-bert-2.0/resolve/main/config.json", } class Wav2Vec2BertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Wav2Vec2BertModel`]. It is used to instantiate an Wav2Vec2Bert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Bert [facebook/wav2vec2-bert-rel-pos-large](https://huggingface.co/facebook/wav2vec2-bert-rel-pos-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*): Vocabulary size of the Wav2Vec2Bert model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Wav2Vec2BertModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Wav2Vec2BertModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. feature_projection_input_dim (`int`, *optional*, defaults to 160): Input dimension of this model, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`] or [`Wav2Vec2BertProcessor`]. hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the feature projection. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Wav2Vec2BertForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates `mask_time_prob*len(time_axis)/mask_time_length ``independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2): The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks`. mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0): The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Wav2Vec2BertForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Wav2Vec2BertForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2BertForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 768): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. pad_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ token. bos_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ token. eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ token. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional attention network should be stacked on top of the Wav2Vec2Bert Encoder. Can be very useful for warm-starting Wav2Vec2Bert for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 1): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. adapter_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the adapter layers. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. use_intermediate_ffn_before_adapter (`bool`, *optional*, defaults to `False`): Whether an intermediate feed-forward block should be stacked on top of the Wav2Vec2Bert Encoder and before the adapter network. Only relevant if `add_adapter is True`. output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. position_embeddings_type (`str`, *optional*, defaults to `"relative_key"`): Can be specified to : - `rotary`, for rotary position embeddings. - `relative`, for relative position embeddings. - `relative_key`, for relative position embeddings as defined by Shaw in [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). If left to `None`, no relative position embeddings is applied. rotary_embedding_base (`int`, *optional*, defaults to 10000): If `"rotary"` position embeddings are used, defines the size of the embedding base. max_source_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. left_max_position_embeddings (`int`, *optional*, defaults to 64): If `"relative_key"` (aka Shaw) position embeddings are used, defines the left clipping value for relative positions. right_max_position_embeddings (`int`, *optional*, defaults to 8): If `"relative_key"` (aka Shaw) position embeddings are used, defines the right clipping value for relative positions. conv_depthwise_kernel_size (`int`, *optional*, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. conformer_conv_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all convolutional layers in Conformer blocks. Example: ```python >>> from transformers import Wav2Vec2BertConfig, Wav2Vec2BertModel >>> # Initializing a Wav2Vec2Bert facebook/wav2vec2-bert-rel-pos-large style configuration >>> configuration = Wav2Vec2BertConfig() >>> # Initializing a model (with random weights) from the facebook/wav2vec2-bert-rel-pos-large style configuration >>> model = Wav2Vec2BertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "wav2vec2-bert" def __init__( self, vocab_size=None, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, feature_projection_input_dim=160, hidden_act="swish", hidden_dropout=0.0, activation_dropout=0.0, attention_dropout=0.0, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=768, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=1, adapter_act="relu", use_intermediate_ffn_before_adapter=False, output_hidden_size=None, position_embeddings_type="relative_key", rotary_embedding_base=10000, max_source_positions=5000, left_max_position_embeddings=64, right_max_position_embeddings=8, conv_depthwise_kernel_size=31, conformer_conv_dropout=0.1, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.feature_projection_input_dim = feature_projection_input_dim self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.use_weighted_layer_sum = use_weighted_layer_sum self.max_source_positions = max_source_positions if position_embeddings_type is not None and position_embeddings_type not in [ "rotary", "relative", "relative_key", ]: raise ValueError( """ `position_embeddings_type` is not valid. It must be one of the following values: `["rotary", "relative", "relative_key"]` or left as `None`. """ ) self.position_embeddings_type = position_embeddings_type self.rotary_embedding_base = rotary_embedding_base self.left_max_position_embeddings = left_max_position_embeddings self.right_max_position_embeddings = right_max_position_embeddings # Conformer-block related self.conv_depthwise_kernel_size = conv_depthwise_kernel_size self.conformer_conv_dropout = conformer_conv_dropout # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.adapter_act = adapter_act self.output_hidden_size = output_hidden_size if output_hidden_size is not None else hidden_size if use_intermediate_ffn_before_adapter and not add_adapter: raise ValueError("`use_intermediate_ffn_before_adapter` is `True` but `add_adapter` is `False`.") self.use_intermediate_ffn_before_adapter = use_intermediate_ffn_before_adapter # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
transformers/src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py", "repo_id": "transformers", "token_count": 7096 }
327
# coding=utf-8 # Copyright 2021 The Fairseq Authors, Microsoft Research, and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch WavLM model.""" import math import warnings from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_peft_available, logging, ) from .configuration_wavlm import WavLMConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "WavLMConfig" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/wavlm-libri-clean-100h-base-plus" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the aposle of the middle classes and we are glad to welcome his gospel'" _CTC_EXPECTED_LOSS = 12.51 # Frame class docstring _FRAME_CLASS_CHECKPOINT = "microsoft/wavlm-base-plus-sd" _FRAME_EXPECTED_OUTPUT = [0, 0] # Speaker Verification docstring _XVECTOR_CHECKPOINT = "microsoft/wavlm-base-plus-sv" _XVECTOR_EXPECTED_OUTPUT = 0.97 WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/wavlm-base", "microsoft/wavlm-base-plus", "microsoft/wavlm-large", # See all WavLM models at https://huggingface.co/models?filter=wavlm ] # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->WavLM class WavLMNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->WavLM class WavLMLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->WavLM class WavLMGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->WavLM class WavLMPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = WavLMSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->WavLM class WavLMSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->WavLM class WavLMFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [WavLMGroupNormConvLayer(config, layer_id=0)] + [ WavLMNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [WavLMLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class WavLMFeatureExtractor(WavLMFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->WavLM class WavLMFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states class WavLMAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, num_buckets: int = 320, max_distance: int = 800, has_relative_position_bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.out_proj = nn.Linear(embed_dim, embed_dim) self.num_buckets = num_buckets self.max_distance = max_distance self.gru_rel_pos_const = nn.Parameter(torch.ones(1, self.num_heads, 1, 1)) self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8) if has_relative_position_bias: self.rel_attn_embed = nn.Embedding(self.num_buckets, self.num_heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_bias: Optional[torch.Tensor] = None, output_attentions: bool = False, index=0, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Attention layer with relative attention""" bsz, tgt_len, _ = hidden_states.size() # first pass of attention layer creates position bias if position_bias is None: position_bias = self.compute_bias(tgt_len, tgt_len) position_bias = ( position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, tgt_len) ) # Compute relative position bias: # 1) get reshape hidden_states gated_hidden_states = hidden_states.view(hidden_states.shape[:-1] + (self.num_heads, -1)) gated_hidden_states = gated_hidden_states.permute(0, 2, 1, 3) # 2) project hidden states relative_position_proj = self.gru_rel_pos_linear(gated_hidden_states) relative_position_proj = relative_position_proj.view(gated_hidden_states.shape[:-1] + (2, 4)).sum(-1) # 3) compute gate for position bias from projected hidden states gate_a, gate_b = torch.sigmoid(relative_position_proj).chunk(2, dim=-1) gate_output = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0 # 4) apply gate to position bias to compute gated position_bias gated_position_bias = gate_output.view(bsz * self.num_heads, -1, 1) * position_bias gated_position_bias = gated_position_bias.view((-1, tgt_len, tgt_len)) attn_output, attn_weights = self.torch_multi_head_self_attention( hidden_states, attention_mask, gated_position_bias, output_attentions ) return attn_output, attn_weights, position_bias def torch_multi_head_self_attention( self, hidden_states: torch.FloatTensor, attention_mask: Union[torch.LongTensor, torch.BoolTensor], gated_position_bias: torch.FloatTensor, output_attentions: bool, ) -> (torch.FloatTensor, torch.FloatTensor): """simple wrapper around torch's multi_head_attention_forward function""" # self-attention assumes q = k = v query = key = value = hidden_states.transpose(0, 1) key_padding_mask = attention_mask.ne(1) if attention_mask is not None else None # disable bias and add_zero_attn bias_k = bias_v = None add_zero_attn = False # PyTorch 1.3.0 has F.multi_head_attention_forward defined # so no problem with backwards compatibility attn_output, attn_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), bias_k, bias_v, add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, output_attentions, gated_position_bias, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) # [Seq_Len, Batch Size, ...] -> [Batch Size, Seq_Len, ...] attn_output = attn_output.transpose(0, 1) if attn_weights is not None: # IMPORTANT: Attention weights are averaged weights # here which should not be the case. This is an open issue # on PyTorch: https://github.com/pytorch/pytorch/issues/32590 attn_weights = attn_weights[:, None].broadcast_to( attn_weights.shape[:1] + (self.num_heads,) + attn_weights.shape[1:] ) return attn_output, attn_weights def compute_bias(self, query_length: int, key_length: int) -> torch.FloatTensor: context_position = torch.arange(query_length, dtype=torch.long)[:, None] memory_position = torch.arange(key_length, dtype=torch.long)[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_positions_bucket(relative_position) relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device) values = self.rel_attn_embed(relative_position_bucket) values = values.permute([2, 0, 1]) return values def _relative_positions_bucket(self, relative_positions: torch.FloatTensor) -> torch.FloatTensor: num_buckets = self.num_buckets // 2 relative_buckets = (relative_positions > 0).to(torch.long) * num_buckets relative_positions = torch.abs(relative_positions) max_exact = num_buckets // 2 is_small = relative_positions < max_exact relative_positions_if_large = torch.log(relative_positions.float() / max_exact) relative_positions_if_large = relative_positions_if_large / math.log(self.max_distance / max_exact) relative_positions_if_large = relative_positions_if_large * (num_buckets - max_exact) relative_position_if_large = (max_exact + relative_positions_if_large).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_positions, relative_position_if_large) return relative_buckets # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->WavLM class WavLMFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class WavLMEncoderLayer(nn.Module): def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True): super().__init__() self.attention = WavLMAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, num_buckets=config.num_buckets, max_distance=config.max_bucket_distance, has_relative_position_bias=has_relative_position_bias, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = WavLMFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0): attn_residual = hidden_states hidden_states, attn_weights, position_bias = self.attention( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, index=index, ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states, position_bias) if output_attentions: outputs += (attn_weights,) return outputs class WavLMEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True): super().__init__() self.attention = WavLMAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, num_buckets=config.num_buckets, max_distance=config.max_bucket_distance, has_relative_position_bias=has_relative_position_bias, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = WavLMFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, position_bias = self.attention( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) outputs = (hidden_states, position_bias) if output_attentions: outputs += (attn_weights,) return outputs class WavLMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = WavLMPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [WavLMEncoderLayer(config, has_relative_position_bias=(i == 0)) for i in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() position_bias = None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, position_bias, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, index=i, ) hidden_states, position_bias = layer_outputs[:2] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class WavLMEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = WavLMPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [ WavLMEncoderLayerStableLayerNorm(config, has_relative_position_bias=(i == 0)) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to hidden_states[~attention_mask] = 0 position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() position_bias = None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, position_bias, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, position_bias=position_bias, ) hidden_states, position_bias = layer_outputs[:2] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class WavLMGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible" f" by `config.num_codevector_groups` {self.num_groups} " "for concatenation." ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax(hidden_states.float(), tau=self.temperature, hard=True) codevector_probs = codevector_probs.type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->WavLM class WavLMAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(WavLMAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->WavLM class WavLMAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class WavLMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = WavLMConfig base_model_prefix = "wavlm" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, WavLMGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, WavLMPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, WavLMFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask WAVLM_START_DOCSTRING = r""" WavLM was proposed in [WavLM: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Xiangzhan Yu, Furu Wei. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`WavLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAVLM_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare WavLM Model transformer outputting raw hidden-states without any specific head on top.", WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM, WavLMBaseModelOutput->Wav2Vec2BaseModelOutput class WavLMModel(WavLMPreTrainedModel): def __init__(self, config: WavLMConfig): super().__init__(config) self.config = config self.feature_extractor = WavLMFeatureEncoder(config) self.feature_projection = WavLMFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = WavLMEncoderStableLayerNorm(config) else: self.encoder = WavLMEncoder(config) self.adapter = WavLMAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """WavLM Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM class WavLMForCTC(WavLMPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wavlm = WavLMModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `WavLMForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for WavLM so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, WavLM never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ WavLM Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAVLM_START_DOCSTRING, ) class WavLMForSequenceClassification(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of WavLM adapters (config.add_adapter=True)" ) self.wavlm = WavLMModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wavlm def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->wavlm def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->WavLM, wav2vec2->wavlm def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ WavLM Model with a frame classification head on top for tasks like Speaker Diarization. """, WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM class WavLMForAudioFrameClassification(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of WavLM adapters (config.add_adapter=True)" ) self.wavlm = WavLMModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_FRAME_CLASS_CHECKPOINT, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_FRAME_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ WavLM Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM class WavLMForXVector(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.wavlm = WavLMModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_XVECTOR_CHECKPOINT, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_XVECTOR_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wavlm/modeling_wavlm.py/0
{ "file_path": "transformers/src/transformers/models/wavlm/modeling_wavlm.py", "repo_id": "transformers", "token_count": 33888 }
328
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch X-CLIP model.""" from copy import copy from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_x_clip import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/xclip-base-patch32" XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/xclip-base-patch32", # See all X-CLIP models at https://huggingface.co/models?filter=x-clip ] # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->x_clip def x_clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class XCLIPOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for video-text similarity. logits_per_video (`torch.FloatTensor` of shape `(video_batch_size, text_batch_size)`): The scaled dot product scores between `video_embeds` and `text_embeds`. This represents the video-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, video_batch_size)`): The scaled dot product scores between `text_embeds` and `video_embeds`. This represents the text-video similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`]. video_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by applying the projection layer to the pooled output of [`XCLIPVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`XCLIPTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`XCLIPVisionModel`]. mit_output (`BaseModelOutputWithPooling`): The output of `XCLIPMultiframeIntegrationTransformer` (MIT for short). """ loss: Optional[torch.FloatTensor] = None logits_per_video: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None video_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None mit_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output", "mit_output"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->XCLIP class XCLIPVisionEmbeddings(nn.Module): def __init__(self, config: XCLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->XCLIP class XCLIPTextEmbeddings(nn.Module): def __init__(self, config: XCLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->XCLIP class XCLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->XCLIP class XCLIPMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->XCLIP class XCLIPEncoderLayer(nn.Module): def __init__(self, config: XCLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = XCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = XCLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->XCLIP class XCLIPDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class XCLIPVisionEncoderLayer(nn.Module): """ This corresponds to the `CrossFramelAttentionBlock` class in the original implementation. """ def __init__(self, config: XCLIPConfig): super().__init__() self.num_frames = config.num_frames self.embed_dim = config.hidden_size self.message_fc = nn.Linear(self.embed_dim, self.embed_dim) self.message_ln = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.message_attn = XCLIPAttention(config) self.drop_path = XCLIPDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.self_attn = XCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = XCLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ batch_time, seq_length, hidden_size = hidden_states.size() batch_size = batch_time // self.num_frames msg_token = self.message_fc(hidden_states[:, 0, :]) msg_token = msg_token.view(batch_size, self.num_frames, hidden_size) msg_token = msg_token + self.drop_path(self.message_attn(self.message_ln(msg_token))[0]) # add dummy sequence dimension msg_token = msg_token.view(-1, 1, hidden_size) hidden_states = torch.cat([hidden_states, msg_token], dim=1) residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = hidden_states[:, :seq_length, :] residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class XCLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XCLIPConfig base_model_prefix = "x_clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, XCLIPTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, XCLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, XCLIPAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, XCLIPMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, XCLIPModel): factor = self.config.initializer_factor nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * factor, ) nn.init.normal_(module.prompts_visual_projection, mean=0.0, std=module.vision_embed_dim**-0.5 * factor) elif isinstance(module, XCLIPMultiframeIntegrationTransformer): nn.init.normal_(module.position_embedding, std=self.config.initializer_factor) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor) if module.bias is not None: module.bias.data.zero_() X_CLIP_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XCLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ X_CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ X_CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ X_CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->XCLIP class XCLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`XCLIPEncoderLayer`]. Args: config: XCLIPConfig """ def __init__(self, config: XCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([XCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class XCLIPTextTransformer(nn.Module): def __init__(self, config: XCLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = XCLIPTextEmbeddings(config) self.encoder = XCLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # X_CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPTextModel(XCLIPPreTrainedModel): config_class = XCLIPTextConfig def __init__(self, config: XCLIPTextConfig): super().__init__(config) self.text_model = XCLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, XCLIPTextModel >>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class XCLIPVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`XCLIPVisionEncoderLayer`]. Args: config: XCLIPConfig """ def __init__(self, config: XCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([XCLIPVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class XCLIPVisionTransformer(nn.Module): """ This corresponds to the `CrossFrameCommunicationTransformer` class in the original implementation. """ def __init__(self, config: XCLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = XCLIPVisionEmbeddings(config) self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = XCLIPVisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layernorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPVisionModel(XCLIPPreTrainedModel): config_class = XCLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: XCLIPVisionConfig): super().__init__(config) self.vision_model = XCLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, XCLIPVisionModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32") >>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values >>> batch_size, num_frames, num_channels, height, width = pixel_values.shape >>> pixel_values = pixel_values.reshape(-1, num_channels, height, width) >>> outputs = model(pixel_values) >>> last_hidden_state = outputs.last_hidden_state ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class XCLIPMultiframeIntegrationTransformer(nn.Module): """ This corresponds to the `MultiframeIntegrationTransformer` class in the original implementation. """ def __init__(self, config: XCLIPVisionConfig): super().__init__() self.position_embedding = nn.Parameter(torch.empty(1, config.num_frames, config.hidden_size)) self.encoder = XCLIPEncoder(config) def forward( self, hidden_states, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: residual = hidden_states # add position embeddings hidden_states = hidden_states + self.position_embedding encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = last_hidden_state.type(hidden_states.dtype) + residual pooled_output = last_hidden_state.mean(dim=1, keepdim=False) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPCrossAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.num_heads = config.prompt_num_attention_heads dim = config.projection_dim head_dim = dim // self.num_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, dim, bias=False) self.k_proj = nn.Linear(dim, dim, bias=False) self.v_proj = nn.Linear(dim, dim, bias=False) self.attn_drop = nn.Dropout(config.prompt_attention_dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(config.prompt_projection_dropout) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward(self, queries, keys, values): """Input shape: Batch x Time x Channel""" batch_size, query_seq_len, hidden_size = queries.shape batch_size, key_seq_len, hidden_size = keys.shape queries = ( self.q_proj(queries) .reshape(batch_size, query_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) keys = ( self.k_proj(keys) .reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) values = ( self.v_proj(values) .reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) attn = (queries @ keys.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ values).transpose(1, 2).reshape(batch_size, query_seq_len, hidden_size) x = self.proj(x) x = self.proj_drop(x) return x class PromptGeneratorLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.projection_dim self.cross_attn = XCLIPCrossAttention(config) self.norm1 = nn.LayerNorm(embed_dim, eps=config.text_config.layer_norm_eps) self.norm3 = nn.LayerNorm(embed_dim, eps=config.text_config.layer_norm_eps) self.mlp = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), ACT2FN[config.prompt_hidden_act], nn.Dropout(config.prompt_attention_dropout), nn.Linear(embed_dim * 4, embed_dim), ) def forward(self, x, visual): x = x + self.cross_attn(self.norm1(x), visual, visual) x = x + self.mlp(self.norm3(x)) return x class XCLIPPromptGenerator(nn.Module): """This corresponds to the `VideoSpecificPrompt` class in the original implementation.""" def __init__(self, config): super().__init__() embed_dim = config.projection_dim self.layernorm = nn.LayerNorm(embed_dim, eps=config.vision_config.layer_norm_eps) self.decoder = nn.ModuleList([PromptGeneratorLayer(config) for _ in range(config.prompt_layers)]) self.alpha = nn.Parameter(torch.ones(embed_dim) * config.prompt_alpha) def forward(self, text, visual): visual = self.layernorm(visual) for layer in self.decoder: text = layer(text, visual) return self.alpha * text @add_start_docstrings(X_CLIP_START_DOCSTRING) class XCLIPModel(XCLIPPreTrainedModel): config_class = XCLIPConfig def __init__(self, config: XCLIPConfig): super().__init__(config) if not isinstance(config.text_config, XCLIPTextConfig): raise ValueError( "config.text_config is expected to be of type XCLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, XCLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type XCLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = XCLIPTextTransformer(text_config) self.vision_model = XCLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.prompts_visual_layernorm = nn.LayerNorm(self.vision_embed_dim, eps=config.vision_config.layer_norm_eps) self.prompts_visual_projection = nn.Parameter(torch.randn(self.vision_embed_dim, self.projection_dim)) mit_config = copy(vision_config) mit_config.hidden_size = vision_config.mit_hidden_size mit_config.intermediate_size = vision_config.mit_intermediate_size mit_config.num_hidden_layers = vision_config.mit_num_hidden_layers mit_config.num_attention_heads = vision_config.mit_num_attention_heads self.mit = XCLIPMultiframeIntegrationTransformer(mit_config) self.prompts_generator = XCLIPPromptGenerator(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) return text_embeds @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) def get_video_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by applying the projection layer to the pooled output of [`XCLIPVisionModel`] and [`XCLIPMultiframeIntegrationTransformer`]. Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, AutoModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = processor(videos=list(video), return_tensors="pt") >>> video_features = model.get_video_features(**inputs) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(-1, num_channels, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = vision_outputs[1] video_embeds = self.visual_projection(video_embeds) cls_features = video_embeds.view(batch_size, num_frames, -1) mit_outputs = self.mit( cls_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = mit_outputs[1] return video_embeds @add_start_docstrings_to_model_forward(X_CLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XCLIPOutput, config_class=XCLIPConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XCLIPOutput]: r""" Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, AutoModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = processor( ... text=["playing sports", "eating spaghetti", "go shopping"], ... videos=list(video), ... return_tensors="pt", ... padding=True, ... ) >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score >>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities >>> print(probs) tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]]) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(-1, num_channels, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = vision_outputs[1] video_embeds = self.visual_projection(video_embeds) cls_features = video_embeds.view(batch_size, num_frames, -1) mit_outputs = self.mit( cls_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = mit_outputs[1] img_features = vision_outputs[0][:, 1:, :] img_features = self.prompts_visual_layernorm(img_features) img_features = img_features @ self.prompts_visual_projection img_features = img_features.view(batch_size, num_frames, -1, video_embeds.shape[-1]) img_features = img_features.mean(dim=1, keepdim=False) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) text_embeds = text_embeds.unsqueeze(0).expand(batch_size, -1, -1) text_embeds = text_embeds + self.prompts_generator(text_embeds, img_features) # normalized features video_embeds = video_embeds / video_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_video = torch.einsum("bd,bkd->bk", video_embeds, logit_scale * text_embeds) logits_per_text = logits_per_video.T loss = None if return_loss: loss = x_clip_loss(logits_per_text) if not return_dict: output = (logits_per_video, logits_per_text, text_embeds, video_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return XCLIPOutput( loss=loss, logits_per_video=logits_per_video, logits_per_text=logits_per_text, text_embeds=text_embeds, video_embeds=video_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, mit_output=mit_outputs, )
transformers/src/transformers/models/x_clip/modeling_x_clip.py/0
{ "file_path": "transformers/src/transformers/models/x_clip/modeling_x_clip.py", "repo_id": "transformers", "token_count": 30325 }
329
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLNet configuration""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class XLNetConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_inner (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. untie_r (`bool`, *optional*, defaults to `True`): Whether or not to untie relative position biases attn_type (`str`, *optional*, defaults to `"bi"`): The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. mem_len (`int` or `None`, *optional*): The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous forward pass won't be re-computed. See the [quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information. reuse_len (`int`, *optional*): The number of tokens in the current batch to be cached and reused in the future. bi_data (`bool`, *optional*, defaults to `False`): Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False` during finetuning. clamp_len (`int`, *optional*, defaults to -1): Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping. same_length (`bool`, *optional*, defaults to `False`): Whether or not to use the same attention length for each token. summary_type (`str`, *optional*, defaults to "last"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`boo`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_last_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. use_mems_eval (`bool`, *optional*, defaults to `True`): Whether or not the model should make use of the recurrent memory mechanism in evaluation mode. use_mems_train (`bool`, *optional*, defaults to `False`): Whether or not the model should make use of the recurrent memory mechanism in train mode. <Tip> For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to set `use_mems_train` to `False` as discussed [here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to `True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of equal size. </Tip> Examples: ```python >>> from transformers import XLNetConfig, XLNetModel >>> # Initializing a XLNet configuration >>> configuration = XLNetConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = XLNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlnet" keys_to_ignore_at_inference = ["mems"] attribute_map = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=32000, d_model=1024, n_layer=24, n_head=16, d_inner=4096, ff_activation="gelu", untie_r=True, attn_type="bi", initializer_range=0.02, layer_norm_eps=1e-12, dropout=0.1, mem_len=512, reuse_len=None, use_mems_eval=True, use_mems_train=False, bi_data=False, clamp_len=-1, same_length=False, summary_type="last", summary_use_proj=True, summary_activation="tanh", summary_last_dropout=0.1, start_n_top=5, end_n_top=5, pad_token_id=5, bos_token_id=1, eos_token_id=2, **kwargs, ): """Constructs XLNetConfig.""" self.vocab_size = vocab_size self.d_model = d_model self.n_layer = n_layer self.n_head = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) self.d_head = d_model // n_head self.ff_activation = ff_activation self.d_inner = d_inner self.untie_r = untie_r self.attn_type = attn_type self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.dropout = dropout self.mem_len = mem_len self.reuse_len = reuse_len self.bi_data = bi_data self.clamp_len = clamp_len self.same_length = same_length self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.eos_token_id = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", FutureWarning, ) use_mems_eval = kwargs["use_cache"] self.use_mems_eval = use_mems_eval self.use_mems_train = use_mems_train super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def max_position_embeddings(self): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def max_position_embeddings(self, value): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
transformers/src/transformers/models/xlnet/configuration_xlnet.py/0
{ "file_path": "transformers/src/transformers/models/xlnet/configuration_xlnet.py", "repo_id": "transformers", "token_count": 4437 }
330
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import csv import importlib import json import os import pickle import sys import traceback import types import warnings from abc import ABC, abstractmethod from collections import UserDict from contextlib import contextmanager from os.path import abspath, exists from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from ..dynamic_module_utils import custom_object_save from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..modelcard import ModelCard from ..models.auto.configuration_auto import AutoConfig from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( ModelOutput, add_end_docstrings, infer_framework, is_tf_available, is_torch_available, is_torch_cuda_available, is_torch_xpu_available, logging, ) GenericTensor = Union[List["GenericTensor"], "torch.Tensor", "tf.Tensor"] if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TFAutoModel if is_torch_available(): import torch from torch.utils.data import DataLoader, Dataset from ..models.auto.modeling_auto import AutoModel # Re-export for backward compatibility from .pt_utils import KeyDataset else: Dataset = None KeyDataset = None if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) def no_collate_fn(items): if len(items) != 1: raise ValueError("This collate_fn is meant to be used with batch_size=1") return items[0] def _pad(items, key, padding_value, padding_side): batch_size = len(items) if isinstance(items[0][key], torch.Tensor): # Others include `attention_mask` etc... shape = items[0][key].shape dim = len(shape) if key in ["pixel_values", "image"]: # This is probable image so padding shouldn't be necessary # B, C, H, W return torch.cat([item[key] for item in items], dim=0) elif dim == 4 and key == "input_features": # this is probably a mel spectrogram batched return torch.cat([item[key] for item in items], dim=0) max_length = max(item[key].shape[1] for item in items) min_length = min(item[key].shape[1] for item in items) dtype = items[0][key].dtype if dim == 2: if max_length == min_length: # Bypass for `ImageGPT` which doesn't provide a padding value, yet # we can consistently pad since the size should be matching return torch.cat([item[key] for item in items], dim=0) tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value elif dim == 3: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value elif dim == 4: tensor = torch.zeros((batch_size, max_length, shape[-2], shape[-1]), dtype=dtype) + padding_value for i, item in enumerate(items): if dim == 2: if padding_side == "left": tensor[i, -len(item[key][0]) :] = item[key][0].clone() else: tensor[i, : len(item[key][0])] = item[key][0].clone() elif dim == 3: if padding_side == "left": tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :] = item[key][0].clone() elif dim == 4: if padding_side == "left": tensor[i, -len(item[key][0]) :, :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :, :] = item[key][0].clone() return tensor else: return [item[key] for item in items] def pad_collate_fn(tokenizer, feature_extractor): # Tokenizer t_padding_side = None # Feature extractor f_padding_side = None if tokenizer is None and feature_extractor is None: raise ValueError("Pipeline without tokenizer or feature_extractor cannot do batching") if tokenizer is not None: if tokenizer.pad_token_id is None: raise ValueError( "Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with " "`pipe.tokenizer.pad_token_id = model.config.eos_token_id`." ) else: t_padding_value = tokenizer.pad_token_id t_padding_side = tokenizer.padding_side if feature_extractor is not None: # Feature extractor can be images, where no padding is expected f_padding_value = getattr(feature_extractor, "padding_value", None) f_padding_side = getattr(feature_extractor, "padding_side", None) if t_padding_side is not None and f_padding_side is not None and t_padding_side != f_padding_side: raise ValueError( f"The feature extractor, and tokenizer don't agree on padding side {t_padding_side} != {f_padding_side}" ) padding_side = "right" if t_padding_side is not None: padding_side = t_padding_side if f_padding_side is not None: padding_side = f_padding_side def inner(items): keys = set(items[0].keys()) for item in items: if set(item.keys()) != keys: raise ValueError( f"The elements of the batch contain different keys. Cannot batch them ({set(item.keys())} !=" f" {keys})" ) # input_values, input_pixels, input_ids, ... padded = {} for key in keys: if key in {"input_ids"}: # ImageGPT uses a feature extractor if tokenizer is None and feature_extractor is not None: _padding_value = f_padding_value else: _padding_value = t_padding_value elif key in {"input_values", "pixel_values", "input_features"}: _padding_value = f_padding_value elif key in {"p_mask", "special_tokens_mask"}: _padding_value = 1 elif key in {"attention_mask", "token_type_ids"}: _padding_value = 0 else: # This is likely another random key maybe even user provided _padding_value = 0 padded[key] = _pad(items, key, _padding_value, padding_side) return padded return inner def infer_framework_load_model( model, config: AutoConfig, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. config ([`AutoConfig`]): The config associated with the model to help using the correct class model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): model_kwargs["_from_pipeline"] = task class_tuple = () look_pt = is_torch_available() and framework in {"pt", None} look_tf = is_tf_available() and framework in {"tf", None} if model_classes: if look_pt: class_tuple = class_tuple + model_classes.get("pt", (AutoModel,)) if look_tf: class_tuple = class_tuple + model_classes.get("tf", (TFAutoModel,)) if config.architectures: classes = [] for architecture in config.architectures: transformers_module = importlib.import_module("transformers") if look_pt: _class = getattr(transformers_module, architecture, None) if _class is not None: classes.append(_class) if look_tf: _class = getattr(transformers_module, f"TF{architecture}", None) if _class is not None: classes.append(_class) class_tuple = class_tuple + tuple(classes) if len(class_tuple) == 0: raise ValueError(f"Pipeline cannot infer suitable model classes from {model}") all_traceback = {} for model_class in class_tuple: kwargs = model_kwargs.copy() if framework == "pt" and model.endswith(".h5"): kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) try: model = model_class.from_pretrained(model, **kwargs) if hasattr(model, "eval"): model = model.eval() # Stop loading on the first successful load. break except (OSError, ValueError): all_traceback[model_class.__name__] = traceback.format_exc() continue if isinstance(model, str): error = "" for class_name, trace in all_traceback.items(): error += f"while loading with {class_name}, an error is thrown:\n{trace}\n" raise ValueError( f"Could not load model {model} with any of the following classes: {class_tuple}. See the original errors:\n\n{error}\n" ) if framework is None: framework = infer_framework(model.__class__) return framework, model def infer_framework_from_model( model, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **model_kwargs) else: config = model.config return infer_framework_load_model( model, config, model_classes=model_classes, _from_pipeline=task, task=task, framework=framework, **model_kwargs ) def get_framework(model, revision: Optional[str] = None): """ Select framework (TensorFlow or PyTorch) to use. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ warnings.warn( "`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.", FutureWarning, ) if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): if is_torch_available() and not is_tf_available(): model = AutoModel.from_pretrained(model, revision=revision) elif is_tf_available() and not is_torch_available(): model = TFAutoModel.from_pretrained(model, revision=revision) else: try: model = AutoModel.from_pretrained(model, revision=revision) except OSError: model = TFAutoModel.from_pretrained(model, revision=revision) framework = infer_framework(model.__class__) return framework def get_default_model_and_revision( targeted_task: Dict, framework: Optional[str], task_options: Optional[Any] ) -> Union[str, Tuple[str, str]]: """ Select a default model to use for a given task. Defaults to pytorch if ambiguous. Args: targeted_task (`Dict` ): Dictionary representing the given task, that should contain default models framework (`str`, None) "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet. task_options (`Any`, None) Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for translation task. Returns `str` The model string representing the default model for this pipeline """ if is_torch_available() and not is_tf_available(): framework = "pt" elif is_tf_available() and not is_torch_available(): framework = "tf" defaults = targeted_task["default"] if task_options: if task_options not in defaults: raise ValueError(f"The task does not provide any default models for options {task_options}") default_models = defaults[task_options]["model"] elif "model" in defaults: default_models = targeted_task["default"]["model"] else: # XXX This error message needs to be updated to be more generic if more tasks are going to become # parametrized raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"') if framework is None: framework = "pt" return default_models[framework] class PipelineException(Exception): """ Raised by a [`Pipeline`] when handling __call__. Args: task (`str`): The task of the pipeline. model (`str`): The model used by the pipeline. reason (`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model class ArgumentHandler(ABC): """ Base interface for handling arguments for each [`~pipelines.Pipeline`]. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError() class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError(f"{self.output_path} already exists on disk") if input_path is not None: if not exists(abspath(self.input_path)): raise OSError(f"{self.input_path} doesnt exist on disk") @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`dict` or list of `dict`): The data to store. """ raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (`dict` or list of `dict`): The data to store. Returns: `str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of [`~pipelines.PipelineDataFormat`] depending on `format`. Args: format (`str`): The format of the desired pipeline. Acceptable values are `"json"`, `"csv"` or `"pipe"`. output_path (`str`, *optional*): Where to save the outgoing data. input_path (`str`, *optional*): Where to look for the input data. column (`str`, *optional*): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. Returns: [`~pipelines.PipelineDataFormat`]: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError(f"Unknown reader {format} (Available reader are json/csv/pipe)") class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data) class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f) class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (`dict`): The data to store. """ print(data) def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data) class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() def build_pipeline_init_args( has_tokenizer: bool = False, has_feature_extractor: bool = False, has_image_processor: bool = False, supports_binary_output: bool = True, ) -> str: docstring = r""" Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.""" if has_tokenizer: docstring += r""" tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`].""" if has_feature_extractor: docstring += r""" feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode data for the model. This object inherits from [`SequenceFeatureExtractor`].""" if has_image_processor: docstring += r""" image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`].""" docstring += r""" modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`)""" if supports_binary_output: docstring += r""" binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text.""" return docstring PIPELINE_INIT_ARGS = build_pipeline_init_args( has_tokenizer=True, has_feature_extractor=True, has_image_processor=True, supports_binary_output=True ) if is_torch_available(): from transformers.pipelines.pt_utils import ( PipelineChunkIterator, PipelineDataset, PipelineIterator, PipelinePackIterator, ) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_feature_extractor=True, has_image_processor=True)) class Pipeline(_ScikitCompat): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance [`FeatureExtractionPipeline`] (`'feature-extraction'`) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the `binary_output` constructor argument. If set to `True`, the output will be stored in the pickle format. """ default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: Optional[PreTrainedTokenizer] = None, feature_extractor: Optional[PreTrainedFeatureExtractor] = None, image_processor: Optional[BaseImageProcessor] = None, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: Union[int, "torch.device"] = None, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, binary_output: bool = False, **kwargs, ): if framework is None: framework, model = infer_framework_load_model(model, config=model.config) self.task = task self.model = model self.tokenizer = tokenizer self.feature_extractor = feature_extractor self.image_processor = image_processor self.modelcard = modelcard self.framework = framework # `accelerate` device map hf_device_map = getattr(self.model, "hf_device_map", None) if hf_device_map is not None and device is not None: raise ValueError( "The model has been loaded with `accelerate` and therefore cannot be moved to a specific device. Please " "discard the `device` argument when creating your pipeline object." ) if device is None: if hf_device_map is not None: # Take the first device used by `accelerate`. device = next(iter(hf_device_map.values())) else: device = -1 if is_torch_available() and self.framework == "pt": if isinstance(device, torch.device): if device.type == "xpu" and not is_torch_xpu_available(check_device=True): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = device elif isinstance(device, str): if "xpu" in device and not is_torch_xpu_available(check_device=True): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = torch.device(device) elif device < 0: self.device = torch.device("cpu") elif is_torch_cuda_available(): self.device = torch.device(f"cuda:{device}") elif is_torch_xpu_available(check_device=True): self.device = torch.device(f"xpu:{device}") else: raise ValueError(f"{device} unrecognized or not available.") else: self.device = device if device is not None else -1 self.torch_dtype = torch_dtype self.binary_output = binary_output # We shouldn't call `model.to()` for models loaded with accelerate if ( self.framework == "pt" and self.device is not None and not (isinstance(self.device, int) and self.device < 0) and hf_device_map is None ): self.model.to(self.device) # Update config and generation_config with task specific parameters task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: self.model.config.update(task_specific_params.get(task)) if self.model.can_generate(): self.model.generation_config.update(**task_specific_params.get(task)) self.call_count = 0 self._batch_size = kwargs.pop("batch_size", None) self._num_workers = kwargs.pop("num_workers", None) self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs) if self.image_processor is None and self.feature_extractor is not None: if isinstance(self.feature_extractor, BaseImageProcessor): # Backward compatible change, if users called # ImageSegmentationPipeline(.., feature_extractor=MyFeatureExtractor()) # then we should keep working self.image_processor = self.feature_extractor def save_pretrained(self, save_directory: str, safe_serialization: bool = True): """ Save the pipeline's model and tokenizer. Args: save_directory (`str`): A path to the directory where to saved. It will be created if it doesn't exist. safe_serialization (`str`): Whether to save the model using `safetensors` or the traditional way for PyTorch or Tensorflow. """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if hasattr(self, "_registered_impl"): # Add info to the config pipeline_info = self._registered_impl.copy() custom_pipelines = {} for task, info in pipeline_info.items(): if info["impl"] != self.__class__: continue info = info.copy() module_name = info["impl"].__module__ last_module = module_name.split(".")[-1] # Change classes into their names/full names info["impl"] = f"{last_module}.{info['impl'].__name__}" info["pt"] = tuple(c.__name__ for c in info["pt"]) info["tf"] = tuple(c.__name__ for c in info["tf"]) custom_pipelines[task] = info self.model.config.custom_pipelines = custom_pipelines # Save the pipeline custom code custom_object_save(self, save_directory) self.model.save_pretrained(save_directory, safe_serialization=safe_serialization) if self.tokenizer is not None: self.tokenizer.save_pretrained(save_directory) if self.feature_extractor is not None: self.feature_extractor.save_pretrained(save_directory) if self.image_processor is not None: self.image_processor.save_pretrained(save_directory) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory) def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples: ```python # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) ```""" if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else f"/device:GPU:{self.device}"): yield else: if self.device.type == "cuda": with torch.cuda.device(self.device): yield else: yield def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored): The tensors to place on `self.device`. Recursive on lists **only**. Return: `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device. """ return self._ensure_tensor_on_device(inputs, self.device) def _ensure_tensor_on_device(self, inputs, device): if isinstance(inputs, ModelOutput): return ModelOutput( {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} ) elif isinstance(inputs, dict): return {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} elif isinstance(inputs, UserDict): return UserDict({name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}) elif isinstance(inputs, list): return [self._ensure_tensor_on_device(item, device) for item in inputs] elif isinstance(inputs, tuple): return tuple([self._ensure_tensor_on_device(item, device) for item in inputs]) elif isinstance(inputs, torch.Tensor): if device == torch.device("cpu") and inputs.dtype in {torch.float16, torch.bfloat16}: inputs = inputs.float() return inputs.to(device) else: return inputs def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (`List[str]` or `dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models_names = [] for _, model_name in supported_models.items(): # Mapping can now contain tuples of models for the same configuration. if isinstance(model_name, tuple): supported_models_names.extend(list(model_name)) else: supported_models_names.append(model_name) if hasattr(supported_models, "_model_mapping"): for _, model in supported_models._model_mapping._extra_content.items(): if isinstance(model_name, tuple): supported_models_names.extend([m.__name__ for m in model]) else: supported_models_names.append(model.__name__) supported_models = supported_models_names if self.model.__class__.__name__ not in supported_models: logger.error( f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are" f" {supported_models}." ) @abstractmethod def _sanitize_parameters(self, **pipeline_parameters): """ _sanitize_parameters will be called with any excessive named arguments from either `__init__` or `__call__` methods. It should return 3 dictionnaries of the resolved parameters used by the various `preprocess`, `forward` and `postprocess` methods. Do not fill dictionnaries if the caller didn't specify a kwargs. This let's you keep defaults in function signatures, which is more "natural". It is not meant to be called directly, it will be automatically called and the final parameters resolved by `__init__` and `__call__` """ raise NotImplementedError("_sanitize_parameters not implemented") @abstractmethod def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> Dict[str, GenericTensor]: """ Preprocess will take the `input_` of a specific pipeline and return a dictionary of everything necessary for `_forward` to run properly. It should contain at least one tensor, but might have arbitrary other items. """ raise NotImplementedError("preprocess not implemented") @abstractmethod def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput: """ _forward will receive the prepared dictionary from `preprocess` and run it on the model. This method might involve the GPU or the CPU and should be agnostic to it. Isolating this function is the reason for `preprocess` and `postprocess` to exist, so that the hot path, this method generally can run as fast as possible. It is not meant to be called directly, `forward` is preferred. It is basically the same but contains additional code surrounding `_forward` making sure tensors and models are on the same device, disabling the training part of the code (leading to faster inference). """ raise NotImplementedError("_forward not implemented") @abstractmethod def postprocess(self, model_outputs: ModelOutput, **postprocess_parameters: Dict) -> Any: """ Postprocess will receive the raw outputs of the `_forward` method, generally tensors, and reformat them into something more friendly. Generally it will output a list or a dict or results (containing just strings and numbers). """ raise NotImplementedError("postprocess not implemented") def get_inference_context(self): return torch.no_grad def forward(self, model_inputs, **forward_params): with self.device_placement(): if self.framework == "tf": model_inputs["training"] = False model_outputs = self._forward(model_inputs, **forward_params) elif self.framework == "pt": inference_context = self.get_inference_context() with inference_context(): model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device) model_outputs = self._forward(model_inputs, **forward_params) model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu")) else: raise ValueError(f"Framework {self.framework} is not supported") return model_outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if isinstance(inputs, collections.abc.Sized): dataset = PipelineDataset(inputs, self.preprocess, preprocess_params) else: if num_workers > 1: logger.warning( "For iterable dataset using num_workers>1 is likely to result" " in errors since everything is iterable, setting `num_workers=1`" " to guarantee correctness." ) num_workers = 1 dataset = PipelineIterator(inputs, self.preprocess, preprocess_params) if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator def __call__(self, inputs, *args, num_workers=None, batch_size=None, **kwargs): if args: logger.warning(f"Ignoring args : {args}") if num_workers is None: if self._num_workers is None: num_workers = 0 else: num_workers = self._num_workers if batch_size is None: if self._batch_size is None: batch_size = 1 else: batch_size = self._batch_size preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs) # Fuse __init__ params and __call__ params without modifying the __init__ ones. preprocess_params = {**self._preprocess_params, **preprocess_params} forward_params = {**self._forward_params, **forward_params} postprocess_params = {**self._postprocess_params, **postprocess_params} self.call_count += 1 if self.call_count > 10 and self.framework == "pt" and self.device.type == "cuda": warnings.warn( "You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a" " dataset", UserWarning, ) is_dataset = Dataset is not None and isinstance(inputs, Dataset) is_generator = isinstance(inputs, types.GeneratorType) is_list = isinstance(inputs, list) is_iterable = is_dataset or is_generator or is_list # TODO make the get_iterator work also for `tf` (and `flax`). can_use_iterator = self.framework == "pt" and (is_dataset or is_generator or is_list) if is_list: if can_use_iterator: final_iterator = self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) outputs = list(final_iterator) return outputs else: return self.run_multi(inputs, preprocess_params, forward_params, postprocess_params) elif can_use_iterator: return self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) elif is_iterable: return self.iterate(inputs, preprocess_params, forward_params, postprocess_params) elif self.framework == "pt" and isinstance(self, ChunkPipeline): return next( iter( self.get_iterator( [inputs], num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) ) ) else: return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params): return [self.run_single(item, preprocess_params, forward_params, postprocess_params) for item in inputs] def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): model_inputs = self.preprocess(inputs, **preprocess_params) model_outputs = self.forward(model_inputs, **forward_params) outputs = self.postprocess(model_outputs, **postprocess_params) return outputs def iterate(self, inputs, preprocess_params, forward_params, postprocess_params): # This function should become `get_iterator` again, this is a temporary # easy solution. for input_ in inputs: yield self.run_single(input_, preprocess_params, forward_params, postprocess_params) class ChunkPipeline(Pipeline): def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): all_outputs = [] for model_inputs in self.preprocess(inputs, **preprocess_params): model_outputs = self.forward(model_inputs, **forward_params) all_outputs.append(model_outputs) outputs = self.postprocess(all_outputs, **postprocess_params) return outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" if num_workers > 1: logger.warning( "For ChunkPipeline using num_workers>0 is likely to result in errors since everything is iterable," " setting `num_workers=1` to guarantee correctness." ) num_workers = 1 dataset = PipelineChunkIterator(inputs, self.preprocess, preprocess_params) # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelinePackIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator class PipelineRegistry: def __init__(self, supported_tasks: Dict[str, Any], task_aliases: Dict[str, str]) -> None: self.supported_tasks = supported_tasks self.task_aliases = task_aliases def get_supported_tasks(self) -> List[str]: supported_task = list(self.supported_tasks.keys()) + list(self.task_aliases.keys()) supported_task.sort() return supported_task def check_task(self, task: str) -> Tuple[str, Dict, Any]: if task in self.task_aliases: task = self.task_aliases[task] if task in self.supported_tasks: targeted_task = self.supported_tasks[task] return task, targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = self.supported_tasks["translation"] task = "translation" return task, targeted_task, (tokens[1], tokens[3]) raise KeyError(f"Invalid translation task {task}, use 'translation_XX_to_YY' format") raise KeyError( f"Unknown task {task}, available tasks are {self.get_supported_tasks() + ['translation_XX_to_YY']}" ) def register_pipeline( self, task: str, pipeline_class: type, pt_model: Optional[Union[type, Tuple[type]]] = None, tf_model: Optional[Union[type, Tuple[type]]] = None, default: Optional[Dict] = None, type: Optional[str] = None, ) -> None: if task in self.supported_tasks: logger.warning(f"{task} is already registered. Overwriting pipeline for task {task}...") if pt_model is None: pt_model = () elif not isinstance(pt_model, tuple): pt_model = (pt_model,) if tf_model is None: tf_model = () elif not isinstance(tf_model, tuple): tf_model = (tf_model,) task_impl = {"impl": pipeline_class, "pt": pt_model, "tf": tf_model} if default is not None: if "model" not in default and ("pt" in default or "tf" in default): default = {"model": default} task_impl["default"] = default if type is not None: task_impl["type"] = type self.supported_tasks[task] = task_impl pipeline_class._registered_impl = {task: task_impl} def to_dict(self): return self.supported_tasks
transformers/src/transformers/pipelines/base.py/0
{ "file_path": "transformers/src/transformers/pipelines/base.py", "repo_id": "transformers", "token_count": 22734 }
331
import inspect import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES def sigmoid(_outputs): return 1.0 / (1.0 + np.exp(-_outputs)) def softmax(_outputs): maxes = np.max(_outputs, axis=-1, keepdims=True) shifted_exp = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class ClassificationFunction(ExplicitEnum): SIGMOID = "sigmoid" SOFTMAX = "softmax" NONE = "none" @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True), r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output.""", ) class TextClassificationPipeline(Pipeline): """ Text classification pipeline using any `ModelForSequenceClassification`. See the [sequence classification examples](../task_summary#sequence-classification) for more information. Example: ```python >>> from transformers import pipeline >>> classifier = pipeline(model="distilbert-base-uncased-finetuned-sst-2-english") >>> classifier("This movie is disgustingly good !") [{'label': 'POSITIVE', 'score': 1.0}] >>> classifier("Director tried too much.") [{'label': 'NEGATIVE', 'score': 0.996}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This text classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). If multiple classification labels are available (`model.config.num_labels >= 2`), the pipeline will run a softmax over the results. If there is a single label, the pipeline will run a sigmoid over the result. The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-classification). """ return_all_scores = False function_to_apply = ClassificationFunction.NONE def __init__(self, **kwargs): super().__init__(**kwargs) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, top_k="", **tokenizer_kwargs): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" preprocess_params = tokenizer_kwargs postprocess_params = {} if hasattr(self.model.config, "return_all_scores") and return_all_scores is None: return_all_scores = self.model.config.return_all_scores if isinstance(top_k, int) or top_k is None: postprocess_params["top_k"] = top_k postprocess_params["_legacy"] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.", UserWarning, ) if return_all_scores: postprocess_params["top_k"] = None else: postprocess_params["top_k"] = 1 if isinstance(function_to_apply, str): function_to_apply = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: postprocess_params["function_to_apply"] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self, *args, **kwargs): """ Classify the text(s) given as inputs. Args: args (`str` or `List[str]` or `Dict[str]`, or `List[Dict[str]]`): One or several texts to classify. In order to use text pairs for your classification, you can send a dictionary containing `{"text", "text_pair"}` keys, or a list of those. top_k (`int`, *optional*, defaults to `1`): How many results to return. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: If this argument is not specified, then it will apply the following functions according to the number of labels: - If the model has a single label, will apply the sigmoid function on the output. - If the model has several labels, will apply the softmax function on the output. Possible values are: - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. Return: A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys: - **label** (`str`) -- The label predicted. - **score** (`float`) -- The corresponding probability. If `top_k` is used, one such dictionary is returned per label. """ result = super().__call__(*args, **kwargs) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _legacy = "top_k" not in kwargs if isinstance(args[0], str) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, GenericTensor]: return_tensors = self.framework if isinstance(inputs, dict): return self.tokenizer(**inputs, return_tensors=return_tensors, **tokenizer_kwargs) elif isinstance(inputs, list) and len(inputs) == 1 and isinstance(inputs[0], list) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0], text_pair=inputs[0][1], return_tensors=return_tensors, **tokenizer_kwargs ) elif isinstance(inputs, list): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) def _forward(self, model_inputs): # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False return self.model(**model_inputs) def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: function_to_apply = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: function_to_apply = ClassificationFunction.SOFTMAX elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: function_to_apply = self.model.config.function_to_apply else: function_to_apply = ClassificationFunction.NONE outputs = model_outputs["logits"][0] outputs = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: scores = sigmoid(outputs) elif function_to_apply == ClassificationFunction.SOFTMAX: scores = softmax(outputs) elif function_to_apply == ClassificationFunction.NONE: scores = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()} dict_scores = [ {"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores) ] if not _legacy: dict_scores.sort(key=lambda x: x["score"], reverse=True) if top_k is not None: dict_scores = dict_scores[:top_k] return dict_scores
transformers/src/transformers/pipelines/text_classification.py/0
{ "file_path": "transformers/src/transformers/pipelines/text_classification.py", "repo_id": "transformers", "token_count": 4168 }
332
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Any, Dict, List, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging if is_torch_available(): import torch from ..pytorch_utils import Conv1D logger = logging.get_logger(__name__) class Bnb4BitHfQuantizer(HfQuantizer): """ 4-bit quantization from bitsandbytes.py quantization method: before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: from state dict, as usual; saves weights and `quant_state` components loading: need to locate `quant_state` components and pass to Param4bit constructor """ use_keep_in_fp32_modules = True requires_parameters_quantization = True requires_calibration = False required_packages = ["bitsandbytes", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules def validate_environment(self, *args, **kwargs): if not (is_accelerate_available() and is_bitsandbytes_available()): raise ImportError( "Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` " "and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`" ) if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_lm_head = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to `from_pretrained`. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details. """ ) if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training" " make sure you have the latest version of `bitsandbytes` installed" ) def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): from accelerate.utils import CustomDtype if target_dtype != torch.int8: logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") return CustomDtype.INT4 else: raise ValueError( "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library," "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map" "calculation. You may encounter unexpected behavior, or pass your own device map" ) def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any] ) -> bool: import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): # Add here check for loaded components' dtypes once serialization is implemented return True elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": # bias could be loaded by regular set_module_tensor_to_device() from accelerate, # but it would wrongly use uninitialized weight there. return True else: return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): """ combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device() """ import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) if tensor_name == "bias": if param_value is None: new_value = old_value.to(target_device) else: new_value = param_value.to(target_device) new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) module._parameters[tensor_name] = new_value return if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): raise ValueError("this function only loads `Linear4bit components`") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") # construct `new_value` for the module._parameters[tensor_name]: if self.pre_quantized: # 4bit loading. Collecting components for restoring quantized weight # This can be expanded to make a universal call for any quantized weight loading if not self.is_serializable: raise ValueError( "Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( param_name + ".quant_state.bitsandbytes__nf4" not in state_dict ): raise ValueError( f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." ) quantized_stats = {} for k, v in state_dict.items(): if param_name + "." in k: quantized_stats[k] = v unexpected_keys.remove(k) new_value = bnb.nn.Params4bit.from_prequantized( data=param_value, quantized_stats=quantized_stats, requires_grad=False, device=target_device, ) else: new_value = param_value.to("cpu") # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls, Conv1D): new_value = new_value.T kwargs = old_value.__dict__ new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_device_map def update_device_map(self, device_map): if device_map is None: device_map = {"": torch.cuda.current_device()} logger.info( "The device_map was not initialized. " "Setting device_map to {'':torch.cuda.current_device()}. " "If you want to use the model for inference, please set device_map ='auto' " ) return device_map # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if self.quantization_config.llm_int8_skip_modules is None: self.modules_to_not_convert = get_keys_to_not_convert(model) else: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here model.config.quantization_config = self.quantization_config # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model._is_quantized_training_enabled = self.is_trainable model.is_loaded_in_4bit = True model.is_4bit_serializable = self.is_serializable return model @property def is_serializable(self): _is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3") if not _is_4bit_serializable: logger.warning( "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. " "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed." ) return False return True @property def is_trainable(self) -> bool: return True
transformers/src/transformers/quantizers/quantizer_bnb_4bit.py/0
{ "file_path": "transformers/src/transformers/quantizers/quantizer_bnb_4bit.py", "repo_id": "transformers", "token_count": 6110 }
333
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.util import json import os import time from dataclasses import dataclass from typing import Dict import requests from huggingface_hub import HfFolder, hf_hub_download, list_spaces from ..models.auto import AutoTokenizer from ..utils import is_offline_mode, is_openai_available, is_torch_available, logging from .base import TASK_MAPPING, TOOL_CONFIG_FILE, Tool, load_tool, supports_remote from .prompts import CHAT_MESSAGE_PROMPT, download_prompt from .python_interpreter import evaluate logger = logging.get_logger(__name__) if is_openai_available(): import openai if is_torch_available(): from ..generation import StoppingCriteria, StoppingCriteriaList from ..models.auto import AutoModelForCausalLM else: StoppingCriteria = object _tools_are_initialized = False BASE_PYTHON_TOOLS = { "print": print, "range": range, "float": float, "int": int, "bool": bool, "str": str, } @dataclass class PreTool: task: str description: str repo_id: str HUGGINGFACE_DEFAULT_TOOLS = {} HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [ "image-transformation", "text-download", "text-to-image", "text-to-video", ] def get_remote_tools(organization="huggingface-tools"): if is_offline_mode(): logger.info("You are in offline mode, so remote tools are not available.") return {} spaces = list_spaces(author=organization) tools = {} for space_info in spaces: repo_id = space_info.id resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space") with open(resolved_config_file, encoding="utf-8") as reader: config = json.load(reader) task = repo_id.split("/")[-1] tools[config["name"]] = PreTool(task=task, description=config["description"], repo_id=repo_id) return tools def _setup_default_tools(): global HUGGINGFACE_DEFAULT_TOOLS global _tools_are_initialized if _tools_are_initialized: return main_module = importlib.import_module("transformers") tools_module = main_module.tools remote_tools = get_remote_tools() for task_name, tool_class_name in TASK_MAPPING.items(): tool_class = getattr(tools_module, tool_class_name) description = tool_class.description HUGGINGFACE_DEFAULT_TOOLS[tool_class.name] = PreTool(task=task_name, description=description, repo_id=None) if not is_offline_mode(): for task_name in HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB: found = False for tool_name, tool in remote_tools.items(): if tool.task == task_name: HUGGINGFACE_DEFAULT_TOOLS[tool_name] = tool found = True break if not found: raise ValueError(f"{task_name} is not implemented on the Hub.") _tools_are_initialized = True def resolve_tools(code, toolbox, remote=False, cached_tools=None): if cached_tools is None: resolved_tools = BASE_PYTHON_TOOLS.copy() else: resolved_tools = cached_tools for name, tool in toolbox.items(): if name not in code or name in resolved_tools: continue if isinstance(tool, Tool): resolved_tools[name] = tool else: task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id _remote = remote and supports_remote(task_or_repo_id) resolved_tools[name] = load_tool(task_or_repo_id, remote=_remote) return resolved_tools def get_tool_creation_code(code, toolbox, remote=False): code_lines = ["from transformers import load_tool", ""] for name, tool in toolbox.items(): if name not in code or isinstance(tool, Tool): continue task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id line = f'{name} = load_tool("{task_or_repo_id}"' if remote: line += ", remote=True" line += ")" code_lines.append(line) return "\n".join(code_lines) + "\n" def clean_code_for_chat(result): lines = result.split("\n") idx = 0 while idx < len(lines) and not lines[idx].lstrip().startswith("```"): idx += 1 explanation = "\n".join(lines[:idx]).strip() if idx == len(lines): return explanation, None idx += 1 start_idx = idx while not lines[idx].lstrip().startswith("```"): idx += 1 code = "\n".join(lines[start_idx:idx]).strip() return explanation, code def clean_code_for_run(result): result = f"I will use the following {result}" explanation, code = result.split("Answer:") explanation = explanation.strip() code = code.strip() code_lines = code.split("\n") if code_lines[0] in ["```", "```py", "```python"]: code_lines = code_lines[1:] if code_lines[-1] == "```": code_lines = code_lines[:-1] code = "\n".join(code_lines) return explanation, code class Agent: """ Base class for all agents which contains the main API methods. Args: chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. """ def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): _setup_default_tools() agent_name = self.__class__.__name__ self.chat_prompt_template = download_prompt(chat_prompt_template, agent_name, mode="chat") self.run_prompt_template = download_prompt(run_prompt_template, agent_name, mode="run") self._toolbox = HUGGINGFACE_DEFAULT_TOOLS.copy() self.log = print if additional_tools is not None: if isinstance(additional_tools, (list, tuple)): additional_tools = {t.name: t for t in additional_tools} elif not isinstance(additional_tools, dict): additional_tools = {additional_tools.name: additional_tools} replacements = {name: tool for name, tool in additional_tools.items() if name in HUGGINGFACE_DEFAULT_TOOLS} self._toolbox.update(additional_tools) if len(replacements) > 1: names = "\n".join([f"- {n}: {t}" for n, t in replacements.items()]) logger.warning( f"The following tools have been replaced by the ones provided in `additional_tools`:\n{names}." ) elif len(replacements) == 1: name = list(replacements.keys())[0] logger.warning(f"{name} has been replaced by {replacements[name]} as provided in `additional_tools`.") self.prepare_for_new_chat() @property def toolbox(self) -> Dict[str, Tool]: """Get all tool currently available to the agent""" return self._toolbox def format_prompt(self, task, chat_mode=False): description = "\n".join([f"- {name}: {tool.description}" for name, tool in self.toolbox.items()]) if chat_mode: if self.chat_history is None: prompt = self.chat_prompt_template.replace("<<all_tools>>", description) else: prompt = self.chat_history prompt += CHAT_MESSAGE_PROMPT.replace("<<task>>", task) else: prompt = self.run_prompt_template.replace("<<all_tools>>", description) prompt = prompt.replace("<<prompt>>", task) return prompt def set_stream(self, streamer): """ Set the function use to stream results (which is `print` by default). Args: streamer (`callable`): The function to call when streaming results from the LLM. """ self.log = streamer def chat(self, task, *, return_code=False, remote=False, **kwargs): """ Sends a new request to the agent in a chat. Will use the previous ones in its history. Args: task (`str`): The task to perform return_code (`bool`, *optional*, defaults to `False`): Whether to just return code and not evaluate it. remote (`bool`, *optional*, defaults to `False`): Whether or not to use remote tools (inference endpoints) instead of local ones. kwargs (additional keyword arguments, *optional*): Any keyword argument to send to the agent when evaluating the code. Example: ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.chat("Draw me a picture of rivers and lakes") agent.chat("Transform the picture so that there is a rock in there") ``` """ prompt = self.format_prompt(task, chat_mode=True) result = self.generate_one(prompt, stop=["Human:", "====="]) self.chat_history = prompt + result.strip() + "\n" explanation, code = clean_code_for_chat(result) self.log(f"==Explanation from the agent==\n{explanation}") if code is not None: self.log(f"\n\n==Code generated by the agent==\n{code}") if not return_code: self.log("\n\n==Result==") self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools) self.chat_state.update(kwargs) return evaluate(code, self.cached_tools, self.chat_state, chat_mode=True) else: tool_code = get_tool_creation_code(code, self.toolbox, remote=remote) return f"{tool_code}\n{code}" def prepare_for_new_chat(self): """ Clears the history of prior calls to [`~Agent.chat`]. """ self.chat_history = None self.chat_state = {} self.cached_tools = None def run(self, task, *, return_code=False, remote=False, **kwargs): """ Sends a request to the agent. Args: task (`str`): The task to perform return_code (`bool`, *optional*, defaults to `False`): Whether to just return code and not evaluate it. remote (`bool`, *optional*, defaults to `False`): Whether or not to use remote tools (inference endpoints) instead of local ones. kwargs (additional keyword arguments, *optional*): Any keyword argument to send to the agent when evaluating the code. Example: ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.run("Draw me a picture of rivers and lakes") ``` """ prompt = self.format_prompt(task) result = self.generate_one(prompt, stop=["Task:"]) explanation, code = clean_code_for_run(result) self.log(f"==Explanation from the agent==\n{explanation}") self.log(f"\n\n==Code generated by the agent==\n{code}") if not return_code: self.log("\n\n==Result==") self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools) return evaluate(code, self.cached_tools, state=kwargs.copy()) else: tool_code = get_tool_creation_code(code, self.toolbox, remote=remote) return f"{tool_code}\n{code}" def generate_one(self, prompt, stop): # This is the method to implement in your custom agent. raise NotImplementedError def generate_many(self, prompts, stop): # Override if you have a way to do batch generation faster than one by one return [self.generate_one(prompt, stop) for prompt in prompts] class OpenAiAgent(Agent): """ Agent that uses the openai API to generate code. <Tip warning={true}> The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like `"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version. </Tip> Args: model (`str`, *optional*, defaults to `"text-davinci-003"`): The name of the OpenAI model to use. api_key (`str`, *optional*): The API key to use. If unset, will look for the environment variable `"OPENAI_API_KEY"`. chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py from transformers import OpenAiAgent agent = OpenAiAgent(model="text-davinci-003", api_key=xxx) agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") ``` """ def __init__( self, model="text-davinci-003", api_key=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, ): if not is_openai_available(): raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.") if api_key is None: api_key = os.environ.get("OPENAI_API_KEY", None) if api_key is None: raise ValueError( "You need an openai key to use `OpenAIAgent`. You can get one here: Get one here " "https://openai.com/api/`. If you have one, set it in your env with `os.environ['OPENAI_API_KEY'] = " "xxx." ) else: openai.api_key = api_key self.model = model super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_many(self, prompts, stop): if "gpt" in self.model: return [self._chat_generate(prompt, stop) for prompt in prompts] else: return self._completion_generate(prompts, stop) def generate_one(self, prompt, stop): if "gpt" in self.model: return self._chat_generate(prompt, stop) else: return self._completion_generate([prompt], stop)[0] def _chat_generate(self, prompt, stop): result = openai.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0, stop=stop, ) return result.choices[0].message.content def _completion_generate(self, prompts, stop): result = openai.Completion.create( model=self.model, prompt=prompts, temperature=0, stop=stop, max_tokens=200, ) return [answer["text"] for answer in result["choices"]] class AzureOpenAiAgent(Agent): """ Agent that uses Azure OpenAI to generate code. See the [official documentation](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) to learn how to deploy an openAI model on Azure <Tip warning={true}> The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like `"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version. </Tip> Args: deployment_id (`str`): The name of the deployed Azure openAI model to use. api_key (`str`, *optional*): The API key to use. If unset, will look for the environment variable `"AZURE_OPENAI_API_KEY"`. resource_name (`str`, *optional*): The name of your Azure OpenAI Resource. If unset, will look for the environment variable `"AZURE_OPENAI_RESOURCE_NAME"`. api_version (`str`, *optional*, default to `"2022-12-01"`): The API version to use for this agent. is_chat_mode (`bool`, *optional*): Whether you are using a completion model or a chat model (see note above, chat models won't be as efficient). Will default to `gpt` being in the `deployment_id` or not. chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py from transformers import AzureOpenAiAgent agent = AzureAiAgent(deployment_id="Davinci-003", api_key=xxx, resource_name=yyy) agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") ``` """ def __init__( self, deployment_id, api_key=None, resource_name=None, api_version="2022-12-01", is_chat_model=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, ): if not is_openai_available(): raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.") self.deployment_id = deployment_id openai.api_type = "azure" if api_key is None: api_key = os.environ.get("AZURE_OPENAI_API_KEY", None) if api_key is None: raise ValueError( "You need an Azure openAI key to use `AzureOpenAIAgent`. If you have one, set it in your env with " "`os.environ['AZURE_OPENAI_API_KEY'] = xxx." ) else: openai.api_key = api_key if resource_name is None: resource_name = os.environ.get("AZURE_OPENAI_RESOURCE_NAME", None) if resource_name is None: raise ValueError( "You need a resource_name to use `AzureOpenAIAgent`. If you have one, set it in your env with " "`os.environ['AZURE_OPENAI_RESOURCE_NAME'] = xxx." ) else: openai.api_base = f"https://{resource_name}.openai.azure.com" openai.api_version = api_version if is_chat_model is None: is_chat_model = "gpt" in deployment_id.lower() self.is_chat_model = is_chat_model super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_many(self, prompts, stop): if self.is_chat_model: return [self._chat_generate(prompt, stop) for prompt in prompts] else: return self._completion_generate(prompts, stop) def generate_one(self, prompt, stop): if self.is_chat_model: return self._chat_generate(prompt, stop) else: return self._completion_generate([prompt], stop)[0] def _chat_generate(self, prompt, stop): result = openai.ChatCompletion.create( engine=self.deployment_id, messages=[{"role": "user", "content": prompt}], temperature=0, stop=stop, ) return result["choices"][0]["message"]["content"] def _completion_generate(self, prompts, stop): result = openai.Completion.create( engine=self.deployment_id, prompt=prompts, temperature=0, stop=stop, max_tokens=200, ) return [answer["text"] for answer in result["choices"]] class HfAgent(Agent): """ Agent that uses an inference endpoint to generate code. Args: url_endpoint (`str`): The name of the url endpoint to use. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") ``` """ def __init__( self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None ): self.url_endpoint = url_endpoint if token is None: self.token = f"Bearer {HfFolder().get_token()}" elif token.startswith("Bearer") or token.startswith("Basic"): self.token = token else: self.token = f"Bearer {token}" super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_one(self, prompt, stop): headers = {"Authorization": self.token} inputs = { "inputs": prompt, "parameters": {"max_new_tokens": 200, "return_full_text": False, "stop": stop}, } response = requests.post(self.url_endpoint, json=inputs, headers=headers) if response.status_code == 429: logger.info("Getting rate-limited, waiting a tiny bit before trying again.") time.sleep(1) return self._generate_one(prompt) elif response.status_code != 200: raise ValueError(f"Error {response.status_code}: {response.json()}") result = response.json()[0]["generated_text"] # Inference API returns the stop sequence for stop_seq in stop: if result.endswith(stop_seq): return result[: -len(stop_seq)] return result class LocalAgent(Agent): """ Agent that uses a local model and tokenizer to generate code. Args: model ([`PreTrainedModel`]): The model to use for the agent. tokenizer ([`PreTrainedTokenizer`]): The tokenizer to use for the agent. chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent checkpoint = "bigcode/starcoder" model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(checkpoint) agent = LocalAgent(model, tokenizer) agent.run("Draw me a picture of rivers and lakes.") ``` """ def __init__(self, model, tokenizer, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): self.model = model self.tokenizer = tokenizer super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): """ Convenience method to build a `LocalAgent` from a pretrained checkpoint. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): The name of a repo on the Hub or a local path to a folder containing both model and tokenizer. kwargs (`Dict[str, Any]`, *optional*): Keyword arguments passed along to [`~PreTrainedModel.from_pretrained`]. Example: ```py import torch from transformers import LocalAgent agent = LocalAgent.from_pretrained("bigcode/starcoder", device_map="auto", torch_dtype=torch.bfloat16) agent.run("Draw me a picture of rivers and lakes.") ``` """ model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **kwargs) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(model, tokenizer) @property def _model_device(self): if hasattr(self.model, "hf_device_map"): return list(self.model.hf_device_map.values())[0] for param in self.model.parameters(): return param.device def generate_one(self, prompt, stop): encoded_inputs = self.tokenizer(prompt, return_tensors="pt").to(self._model_device) src_len = encoded_inputs["input_ids"].shape[1] stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop, self.tokenizer)]) outputs = self.model.generate( encoded_inputs["input_ids"], max_new_tokens=200, stopping_criteria=stopping_criteria ) result = self.tokenizer.decode(outputs[0].tolist()[src_len:]) # Inference API returns the stop sequence for stop_seq in stop: if result.endswith(stop_seq): result = result[: -len(stop_seq)] return result class StopSequenceCriteria(StoppingCriteria): """ This class can be used to stop generation whenever a sequence of tokens is encountered. Args: stop_sequences (`str` or `List[str]`): The sequence (or list of sequences) on which to stop execution. tokenizer: The tokenizer used to decode the model outputs. """ def __init__(self, stop_sequences, tokenizer): if isinstance(stop_sequences, str): stop_sequences = [stop_sequences] self.stop_sequences = stop_sequences self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs) -> bool: decoded_output = self.tokenizer.decode(input_ids.tolist()[0]) return any(decoded_output.endswith(stop_sequence) for stop_sequence in self.stop_sequences)
transformers/src/transformers/tools/agents.py/0
{ "file_path": "transformers/src/transformers/tools/agents.py", "repo_id": "transformers", "token_count": 12626 }
334
# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Callbacks to use with the Trainer class and customize the training loop. """ import dataclasses import json from dataclasses import dataclass from typing import Dict, List, Optional, Union import numpy as np from tqdm.auto import tqdm from .trainer_utils import IntervalStrategy, has_length from .training_args import TrainingArguments from .utils import logging logger = logging.get_logger(__name__) @dataclass class TrainerState: """ A class containing the [`Trainer`] inner state that will be saved along the model and optimizer when checkpointing and passed to the [`TrainerCallback`]. <Tip> In all this class, one step is to be understood as one update step. When using gradient accumulation, one update step may require several forward and backward passes: if you use `gradient_accumulation_steps=n`, then one update step requires going through *n* batches. </Tip> Args: epoch (`float`, *optional*): Only set during training, will represent the epoch the training is at (the decimal part being the percentage of the current epoch completed). global_step (`int`, *optional*, defaults to 0): During training, represents the number of update steps completed. max_steps (`int`, *optional*, defaults to 0): The number of update steps to do during the current training. logging_steps (`int`, *optional*, defaults to 500): Log every X updates steps eval_steps (`int`, *optional*): Run an evaluation every X steps. save_steps (`int`, *optional*, defaults to 500): Save checkpoint every X updates steps. train_batch_size (`int`, *optional*): The batch size for the training dataloader. Only needed when `auto_find_batch_size` has been used. num_input_tokens_seen (`int`, *optional*, defaults to 0): The number of tokens seen during training (number of input tokens, not the number of prediction tokens). total_flos (`float`, *optional*, defaults to 0): The total number of floating operations done by the model since the beginning of training (stored as floats to avoid overflow). log_history (`List[Dict[str, float]]`, *optional*): The list of logs done since the beginning of training. best_metric (`float`, *optional*): When tracking the best model, the value of the best metric encountered so far. best_model_checkpoint (`str`, *optional*): When tracking the best model, the value of the name of the checkpoint for the best model encountered so far. is_local_process_zero (`bool`, *optional*, defaults to `True`): Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. is_world_process_zero (`bool`, *optional*, defaults to `True`): Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be `True` for one process). is_hyper_param_search (`bool`, *optional*, defaults to `False`): Whether we are in the process of a hyper parameter search using Trainer.hyperparameter_search. This will impact the way data will be logged in TensorBoard. """ epoch: Optional[float] = None global_step: int = 0 max_steps: int = 0 logging_steps: int = 500 eval_steps: int = 500 save_steps: int = 500 train_batch_size: int = None num_train_epochs: int = 0 num_input_tokens_seen: int = 0 total_flos: float = 0 log_history: List[Dict[str, float]] = None best_metric: Optional[float] = None best_model_checkpoint: Optional[str] = None is_local_process_zero: bool = True is_world_process_zero: bool = True is_hyper_param_search: bool = False trial_name: str = None trial_params: Dict[str, Union[str, float, int, bool]] = None def __post_init__(self): if self.log_history is None: self.log_history = [] def save_to_json(self, json_path: str): """Save the content of this instance in JSON format inside `json_path`.""" json_string = json.dumps(dataclasses.asdict(self), indent=2, sort_keys=True) + "\n" with open(json_path, "w", encoding="utf-8") as f: f.write(json_string) @classmethod def load_from_json(cls, json_path: str): """Create an instance from the content of `json_path`.""" with open(json_path, "r", encoding="utf-8") as f: text = f.read() return cls(**json.loads(text)) @dataclass class TrainerControl: """ A class that handles the [`Trainer`] control flow. This class is used by the [`TrainerCallback`] to activate some switches in the training loop. Args: should_training_stop (`bool`, *optional*, defaults to `False`): Whether or not the training should be interrupted. If `True`, this variable will not be set back to `False`. The training will just stop. should_epoch_stop (`bool`, *optional*, defaults to `False`): Whether or not the current epoch should be interrupted. If `True`, this variable will be set back to `False` at the beginning of the next epoch. should_save (`bool`, *optional*, defaults to `False`): Whether or not the model should be saved at this step. If `True`, this variable will be set back to `False` at the beginning of the next step. should_evaluate (`bool`, *optional*, defaults to `False`): Whether or not the model should be evaluated at this step. If `True`, this variable will be set back to `False` at the beginning of the next step. should_log (`bool`, *optional*, defaults to `False`): Whether or not the logs should be reported at this step. If `True`, this variable will be set back to `False` at the beginning of the next step. """ should_training_stop: bool = False should_epoch_stop: bool = False should_save: bool = False should_evaluate: bool = False should_log: bool = False def _new_training(self): """Internal method that resets the variable for a new training.""" self.should_training_stop = False def _new_epoch(self): """Internal method that resets the variable for a new epoch.""" self.should_epoch_stop = False def _new_step(self): """Internal method that resets the variable for a new step.""" self.should_save = False self.should_evaluate = False self.should_log = False class TrainerCallback: # no-format """ A class for objects that will inspect the state of the training loop at some events and take some decisions. At each of those events the following arguments are available: Args: args ([`TrainingArguments`]): The training arguments used to instantiate the [`Trainer`]. state ([`TrainerState`]): The current state of the [`Trainer`]. control ([`TrainerControl`]): The object that is returned to the [`Trainer`] and can be used to make some decisions. model ([`PreTrainedModel`] or `torch.nn.Module`): The model being trained. tokenizer ([`PreTrainedTokenizer`]): The tokenizer used for encoding the data. optimizer (`torch.optim.Optimizer`): The optimizer used for the training steps. lr_scheduler (`torch.optim.lr_scheduler.LambdaLR`): The scheduler used for setting the learning rate. train_dataloader (`torch.utils.data.DataLoader`, *optional*): The current dataloader used for training. eval_dataloader (`torch.utils.data.DataLoader`, *optional*): The current dataloader used for training. metrics (`Dict[str, float]`): The metrics computed by the last evaluation phase. Those are only accessible in the event `on_evaluate`. logs (`Dict[str, float]`): The values to log. Those are only accessible in the event `on_log`. The `control` object is the only one that can be changed by the callback, in which case the event that changes it should return the modified version. The argument `args`, `state` and `control` are positionals for all events, all the others are grouped in `kwargs`. You can unpack the ones you need in the signature of the event using them. As an example, see the code of the simple [`~transformers.PrinterCallback`]. Example: ```python class PrinterCallback(TrainerCallback): def on_log(self, args, state, control, logs=None, **kwargs): _ = logs.pop("total_flos", None) if state.is_local_process_zero: print(logs) ```""" def on_init_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the end of the initialization of the [`Trainer`]. """ pass def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the beginning of training. """ pass def on_train_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the end of training. """ pass def on_epoch_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the beginning of an epoch. """ pass def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the end of an epoch. """ pass def on_step_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the beginning of a training step. If using gradient accumulation, one training step might take several inputs. """ pass def on_substep_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the end of an substep during gradient accumulation. """ pass def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called at the end of a training step. If using gradient accumulation, one training step might take several inputs. """ pass def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called after an evaluation phase. """ pass def on_predict(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, metrics, **kwargs): """ Event called after a successful prediction. """ pass def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called after a checkpoint save. """ pass def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called after logging the last logs. """ pass def on_prediction_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): """ Event called after a prediction step. """ pass class CallbackHandler(TrainerCallback): """Internal class that just calls the list of callbacks in order.""" def __init__(self, callbacks, model, tokenizer, optimizer, lr_scheduler): self.callbacks = [] for cb in callbacks: self.add_callback(cb) self.model = model self.tokenizer = tokenizer self.optimizer = optimizer self.lr_scheduler = lr_scheduler self.train_dataloader = None self.eval_dataloader = None if not any(isinstance(cb, DefaultFlowCallback) for cb in self.callbacks): logger.warning( "The Trainer will not work properly if you don't have a `DefaultFlowCallback` in its callbacks. You\n" + "should add one before training with `trainer.add_callback(DefaultFlowCallback). The current list of" + "callbacks is\n:" + self.callback_list ) def add_callback(self, callback): cb = callback() if isinstance(callback, type) else callback cb_class = callback if isinstance(callback, type) else callback.__class__ if cb_class in [c.__class__ for c in self.callbacks]: logger.warning( f"You are adding a {cb_class} to the callbacks of this Trainer, but there is already one. The current" + "list of callbacks is\n:" + self.callback_list ) self.callbacks.append(cb) def pop_callback(self, callback): if isinstance(callback, type): for cb in self.callbacks: if isinstance(cb, callback): self.callbacks.remove(cb) return cb else: for cb in self.callbacks: if cb == callback: self.callbacks.remove(cb) return cb def remove_callback(self, callback): if isinstance(callback, type): for cb in self.callbacks: if isinstance(cb, callback): self.callbacks.remove(cb) return else: self.callbacks.remove(callback) @property def callback_list(self): return "\n".join(cb.__class__.__name__ for cb in self.callbacks) def on_init_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): return self.call_event("on_init_end", args, state, control) def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): control.should_training_stop = False return self.call_event("on_train_begin", args, state, control) def on_train_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): return self.call_event("on_train_end", args, state, control) def on_epoch_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): control.should_epoch_stop = False return self.call_event("on_epoch_begin", args, state, control) def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): return self.call_event("on_epoch_end", args, state, control) def on_step_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): control.should_log = False control.should_evaluate = False control.should_save = False return self.call_event("on_step_begin", args, state, control) def on_substep_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): return self.call_event("on_substep_end", args, state, control) def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): return self.call_event("on_step_end", args, state, control) def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, metrics): control.should_evaluate = False return self.call_event("on_evaluate", args, state, control, metrics=metrics) def on_predict(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, metrics): return self.call_event("on_predict", args, state, control, metrics=metrics) def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): control.should_save = False return self.call_event("on_save", args, state, control) def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, logs): control.should_log = False return self.call_event("on_log", args, state, control, logs=logs) def on_prediction_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): return self.call_event("on_prediction_step", args, state, control) def call_event(self, event, args, state, control, **kwargs): for callback in self.callbacks: result = getattr(callback, event)( args, state, control, model=self.model, tokenizer=self.tokenizer, optimizer=self.optimizer, lr_scheduler=self.lr_scheduler, train_dataloader=self.train_dataloader, eval_dataloader=self.eval_dataloader, **kwargs, ) # A Callback can skip the return of `control` if it doesn't change it. if result is not None: control = result return control class DefaultFlowCallback(TrainerCallback): """ A [`TrainerCallback`] that handles the default flow of the training loop for logs, evaluation and checkpoints. """ def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): # Log if state.global_step == 1 and args.logging_first_step: control.should_log = True if args.logging_strategy == IntervalStrategy.STEPS and state.global_step % state.logging_steps == 0: control.should_log = True # Evaluate if ( args.evaluation_strategy == IntervalStrategy.STEPS and state.global_step % state.eval_steps == 0 and args.eval_delay <= state.global_step ): control.should_evaluate = True # Save if ( args.save_strategy == IntervalStrategy.STEPS and state.save_steps > 0 and state.global_step % state.save_steps == 0 ): control.should_save = True # End training if state.global_step >= state.max_steps: control.should_training_stop = True return control def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): # Log if args.logging_strategy == IntervalStrategy.EPOCH: control.should_log = True # Evaluate if args.evaluation_strategy == IntervalStrategy.EPOCH and args.eval_delay <= state.epoch: control.should_evaluate = True # Save if args.save_strategy == IntervalStrategy.EPOCH: control.should_save = True return control class ProgressCallback(TrainerCallback): """ A [`TrainerCallback`] that displays the progress of training or evaluation. """ def __init__(self): self.training_bar = None self.prediction_bar = None def on_train_begin(self, args, state, control, **kwargs): if state.is_world_process_zero: self.training_bar = tqdm(total=state.max_steps, dynamic_ncols=True) self.current_step = 0 def on_step_end(self, args, state, control, **kwargs): if state.is_world_process_zero: self.training_bar.update(state.global_step - self.current_step) self.current_step = state.global_step def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs): if state.is_world_process_zero and has_length(eval_dataloader): if self.prediction_bar is None: self.prediction_bar = tqdm( total=len(eval_dataloader), leave=self.training_bar is None, dynamic_ncols=True ) self.prediction_bar.update(1) def on_evaluate(self, args, state, control, **kwargs): if state.is_world_process_zero: if self.prediction_bar is not None: self.prediction_bar.close() self.prediction_bar = None def on_predict(self, args, state, control, **kwargs): if state.is_world_process_zero: if self.prediction_bar is not None: self.prediction_bar.close() self.prediction_bar = None def on_log(self, args, state, control, logs=None, **kwargs): if state.is_world_process_zero and self.training_bar is not None: _ = logs.pop("total_flos", None) self.training_bar.write(str(logs)) def on_train_end(self, args, state, control, **kwargs): if state.is_world_process_zero: self.training_bar.close() self.training_bar = None class PrinterCallback(TrainerCallback): """ A bare [`TrainerCallback`] that just prints the logs. """ def on_log(self, args, state, control, logs=None, **kwargs): _ = logs.pop("total_flos", None) if state.is_local_process_zero: print(logs) class EarlyStoppingCallback(TrainerCallback): """ A [`TrainerCallback`] that handles early stopping. Args: early_stopping_patience (`int`): Use with `metric_for_best_model` to stop training when the specified metric worsens for `early_stopping_patience` evaluation calls. early_stopping_threshold(`float`, *optional*): Use with TrainingArguments `metric_for_best_model` and `early_stopping_patience` to denote how much the specified metric must improve to satisfy early stopping conditions. ` This callback depends on [`TrainingArguments`] argument *load_best_model_at_end* functionality to set best_metric in [`TrainerState`]. Note that if the [`TrainingArguments`] argument *save_steps* differs from *eval_steps*, the early stopping will not occur until the next save step. """ def __init__(self, early_stopping_patience: int = 1, early_stopping_threshold: Optional[float] = 0.0): self.early_stopping_patience = early_stopping_patience self.early_stopping_threshold = early_stopping_threshold # early_stopping_patience_counter denotes the number of times validation metrics failed to improve. self.early_stopping_patience_counter = 0 def check_metric_value(self, args, state, control, metric_value): # best_metric is set by code for load_best_model operator = np.greater if args.greater_is_better else np.less if state.best_metric is None or ( operator(metric_value, state.best_metric) and abs(metric_value - state.best_metric) > self.early_stopping_threshold ): self.early_stopping_patience_counter = 0 else: self.early_stopping_patience_counter += 1 def on_train_begin(self, args, state, control, **kwargs): assert args.load_best_model_at_end, "EarlyStoppingCallback requires load_best_model_at_end = True" assert ( args.metric_for_best_model is not None ), "EarlyStoppingCallback requires metric_for_best_model is defined" assert ( args.evaluation_strategy != IntervalStrategy.NO ), "EarlyStoppingCallback requires IntervalStrategy of steps or epoch" def on_evaluate(self, args, state, control, metrics, **kwargs): metric_to_check = args.metric_for_best_model if not metric_to_check.startswith("eval_"): metric_to_check = f"eval_{metric_to_check}" metric_value = metrics.get(metric_to_check) if metric_value is None: logger.warning( f"early stopping required metric_for_best_model, but did not find {metric_to_check} so early stopping" " is disabled" ) return self.check_metric_value(args, state, control, metric_value) if self.early_stopping_patience_counter >= self.early_stopping_patience: control.should_training_stop = True
transformers/src/transformers/trainer_callback.py/0
{ "file_path": "transformers/src/transformers/trainer_callback.py", "repo_id": "transformers", "token_count": 9727 }
335
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class Pop2PianoFeatureExtractor(metaclass=DummyObject): _backends = ["music"] def __init__(self, *args, **kwargs): requires_backends(self, ["music"]) class Pop2PianoTokenizer(metaclass=DummyObject): _backends = ["music"] def __init__(self, *args, **kwargs): requires_backends(self, ["music"])
transformers/src/transformers/utils/dummy_music_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_music_objects.py", "repo_id": "transformers", "token_count": 169 }
336
# coding=utf-8 # Copyright 2020 Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def format_time(t): "Format `t` (in seconds) to (h):mm:ss" t = int(t) h, m, s = t // 3600, (t // 60) % 60, t % 60 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def html_progress_bar(value, total, prefix, label, width=300): # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def text_to_html_table(items): "Put the texts in `items` in an HTML table." html_code = """<table border="1" class="dataframe">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class NotebookProgressBar: """ A progress par for display in a notebook. Class attributes (overridden by derived classes) - **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`. - **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed `update_every` seconds. The progress bar uses the average time passed up until now to guess the next value for which it will call the update. Args: total (`int`): The total number of iterations to reach. prefix (`str`, *optional*): A prefix to add before the progress bar. leave (`bool`, *optional*, defaults to `True`): Whether or not to leave the progress bar once it's completed. You can always call the [`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear. parent ([`~notebook.NotebookTrainingTracker`], *optional*): A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle their display. If set, the object passed must have a `display()` method. width (`int`, *optional*, defaults to 300): The width (in pixels) that the bar will take. Example: ```python import time pbar = NotebookProgressBar(100) for val in range(100): pbar.update(val) time.sleep(0.07) pbar.update(100) ```""" warmup = 5 update_every = 0.2 def __init__( self, total: int, prefix: Optional[str] = None, leave: bool = True, parent: Optional["NotebookTrainingTracker"] = None, width: int = 300, ): self.total = total self.prefix = "" if prefix is None else prefix self.leave = leave self.parent = parent self.width = width self.last_value = None self.comment = None self.output = None def update(self, value: int, force_update: bool = False, comment: str = None): """ The main method to update the progress bar to `value`. Args: value (`int`): The value to use. Must be between 0 and `total`. force_update (`bool`, *optional*, defaults to `False`): Whether or not to force and update of the internal state and display (by default, the bar will wait for `value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute since the last update to avoid adding boilerplate). comment (`str`, *optional*): A comment to add on the left of the progress bar. """ self.value = value if comment is not None: self.comment = comment if self.last_value is None: self.start_time = self.last_time = time.time() self.start_value = self.last_value = value self.elapsed_time = self.predicted_remaining = None self.first_calls = self.warmup self.wait_for = 1 self.update_bar(value) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total): if self.first_calls > 0: self.first_calls -= 1 current_time = time.time() self.elapsed_time = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: self.average_time_per_item = self.elapsed_time / (value - self.start_value) else: self.average_time_per_item = None if value >= self.total: value = self.total self.predicted_remaining = None if not self.leave: self.close() elif self.average_time_per_item is not None: self.predicted_remaining = self.average_time_per_item * (self.total - value) self.update_bar(value) self.last_value = value self.last_time = current_time if (self.average_time_per_item is None) or (self.average_time_per_item == 0): self.wait_for = 1 else: self.wait_for = max(int(self.update_every / self.average_time_per_item), 1) def update_bar(self, value, comment=None): spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value) if self.elapsed_time is None: self.label = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: self.label = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" f" {format_time(self.predicted_remaining)}" ) if self.average_time_per_item == 0: self.label += ", +inf it/s" else: self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]" self.display() def display(self): self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: self.output = disp.display(disp.HTML(self.html_code), display_id=True) else: self.output.update(disp.HTML(self.html_code)) def close(self): "Closes the progress bar." if self.parent is None and self.output is not None: self.output.update(disp.HTML("")) class NotebookTrainingTracker(NotebookProgressBar): """ An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics. Args: num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*): The list of column names for the metrics table (will be inferred from the first call to [`~utils.notebook.NotebookTrainingTracker.write_line`] if not set). """ def __init__(self, num_steps, column_names=None): super().__init__(num_steps) self.inner_table = None if column_names is None else [column_names] self.child_bar = None def display(self): self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: self.output = disp.display(disp.HTML(self.html_code), display_id=True) else: self.output.update(disp.HTML(self.html_code)) def write_line(self, values): """ Write the values in the inner table. Args: values (`Dict[str, float]`): The values to display. """ if self.inner_table is None: self.inner_table = [list(values.keys()), list(values.values())] else: columns = self.inner_table[0] for key in values.keys(): if key not in columns: columns.append(key) self.inner_table[0] = columns if len(self.inner_table) > 1: last_values = self.inner_table[-1] first_column = self.inner_table[0][0] if last_values[0] != values[first_column]: # write new line self.inner_table.append([values[c] if c in values else "No Log" for c in columns]) else: # update last line new_values = values for c in columns: if c not in new_values.keys(): new_values[c] = last_values[columns.index(c)] self.inner_table[-1] = [new_values[c] for c in columns] else: self.inner_table.append([values[c] for c in columns]) def add_child(self, total, prefix=None, width=300): """ Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be easily updated). Args: total (`int`): The number of iterations for the child progress bar. prefix (`str`, *optional*): A prefix to write on the left of the progress bar. width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar. """ self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width) return self.child_bar def remove_child(self): """ Closes the child progress bar. """ self.child_bar = None self.display() class NotebookProgressCallback(TrainerCallback): """ A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or Google colab. """ def __init__(self): self.training_tracker = None self.prediction_bar = None self._force_next_update = False def on_train_begin(self, args, state, control, **kwargs): self.first_column = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" self.training_loss = 0 self.last_log = 0 column_names = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss") self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names) def on_step_end(self, args, state, control, **kwargs): epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1, comment=f"Epoch {epoch}/{state.num_train_epochs}", force_update=self._force_next_update, ) self._force_next_update = False def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs): if not has_length(eval_dataloader): return if self.prediction_bar is None: if self.training_tracker is not None: self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader)) else: self.prediction_bar = NotebookProgressBar(len(eval_dataloader)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def on_predict(self, args, state, control, **kwargs): if self.prediction_bar is not None: self.prediction_bar.close() self.prediction_bar = None def on_log(self, args, state, control, logs=None, **kwargs): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: values = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy values["Step"] = state.global_step self.training_tracker.write_line(values) def on_evaluate(self, args, state, control, metrics=None, **kwargs): if self.training_tracker is not None: values = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history): if "loss" in log: values["Training Loss"] = log["loss"] break if self.first_column == "Epoch": values["Epoch"] = int(state.epoch) else: values["Step"] = state.global_step metric_key_prefix = "eval" for k in metrics: if k.endswith("_loss"): metric_key_prefix = re.sub(r"\_loss$", "", k) _ = metrics.pop("total_flos", None) _ = metrics.pop("epoch", None) _ = metrics.pop(f"{metric_key_prefix}_runtime", None) _ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None) _ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None) _ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None) for k, v in metrics.items(): splits = k.split("_") name = " ".join([part.capitalize() for part in splits[1:]]) if name == "Loss": # Single dataset name = "Validation Loss" values[name] = v self.training_tracker.write_line(values) self.training_tracker.remove_child() self.prediction_bar = None # Evaluation takes a long time so we should force the next update. self._force_next_update = True def on_train_end(self, args, state, control, **kwargs): self.training_tracker.update( state.global_step, comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}", force_update=True, ) self.training_tracker = None
transformers/src/transformers/utils/notebook.py/0
{ "file_path": "transformers/src/transformers/utils/notebook.py", "repo_id": "transformers", "token_count": 6938 }
337
# coding=utf-8 # Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ {{cookiecutter.modelname}} model configuration """ from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP = { "{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/config.json", # See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}} } class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~{{cookiecutter.camelcase_modelname}}Model`]. It is used to instantiate an {{cookiecutter.modelname}} model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the {{cookiecutter.modelname}} [{{cookiecutter.checkpoint_identifier}}](https://huggingface.co/{{cookiecutter.checkpoint_identifier}}) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: {% if cookiecutter.is_encoder_decoder_model == "False" -%} vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~{{cookiecutter.camelcase_modelname}}Model`] or [`~TF{{cookiecutter.camelcase_modelname}}Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`~{{cookiecutter.camelcase_modelname}}Model`] or [`~TF{{cookiecutter.camelcase_modelname}}Model`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. {% else -%} vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~{{cookiecutter.camelcase_modelname}}Model`] or [`~TF{{cookiecutter.camelcase_modelname}}Model`]. d_model (`int`, *optional*, defaults to 1024): Dimension of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). {% endif -%} Example: ```python >>> from transformers import {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}Config >>> # Initializing a {{cookiecutter.modelname}} {{cookiecutter.checkpoint_identifier}} style configuration >>> configuration = {{cookiecutter.camelcase_modelname}}Config() >>> # Initializing a model from the {{cookiecutter.checkpoint_identifier}} style configuration >>> model = {{cookiecutter.camelcase_modelname}}Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "{{cookiecutter.lowercase_modelname}}" {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} keys_to_ignore_at_inference = ["past_key_values"] {% endif -%} {% if cookiecutter.is_encoder_decoder_model == "False" %} {%- else %} attribute_map = { "num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model" } {%- endif %} def __init__( self, {% if cookiecutter.is_encoder_decoder_model == "False" -%} vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, {% else -%} vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, classifier_dropout=0.0, scale_embedding=False, {% endif -%} pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings {% if cookiecutter.is_encoder_decoder_model == "False" -%} self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache {% else -%} self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True {% endif -%} super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, {% endif -%} **kwargs )
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/configuration_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/configuration_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 4766 }
338
{ "modelname": "FlaxNewENCDEC", "uppercase_modelname": "FLAX_NEW_ENC_DEC", "lowercase_modelname": "flax_new_enc_dec_template", "camelcase_modelname": "FlaxNewEncDec", "authors": "The HuggingFace Team", "checkpoint_identifier": "new-flax-enc-dec-base", "tokenizer_type": "Based on BART", "generate_tensorflow_pytorch_and_flax": "Flax", "is_encoder_decoder_model": "True" }
transformers/templates/adding_a_new_model/tests/flax-seq-2-seq-bart-tokenizer.json/0
{ "file_path": "transformers/templates/adding_a_new_model/tests/flax-seq-2-seq-bart-tokenizer.json", "repo_id": "transformers", "token_count": 161 }
339
{ "feature_extractor_type": "ViTFeatureExtractor", "size": 30 }
transformers/tests/deepspeed/vit_feature_extractor.json/0
{ "file_path": "transformers/tests/deepspeed/vit_feature_extractor.json", "repo_id": "transformers", "token_count": 32 }
340
# coding=utf-8 # Copyright 2021 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class LogitsProcessorTest(unittest.TestCase): def _get_uniform_logits(self, batch_size: int, length: int): scores = jnp.ones((batch_size, length)) / length return scores def test_temperature_dist_warper(self): input_ids = None length = 20 scores = self._get_uniform_logits(batch_size=2, length=length) # tweak scores to not be uniform anymore scores = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch scores = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax probs = jax.nn.softmax(scores, axis=-1) temp_dist_warper_sharper = FlaxTemperatureLogitsWarper(temperature=0.5) temp_dist_warper_smoother = FlaxTemperatureLogitsWarper(temperature=1.3) warped_prob_sharp = jax.nn.softmax(temp_dist_warper_sharper(input_ids, scores.copy(), cur_len=None), axis=-1) warped_prob_smooth = jax.nn.softmax(temp_dist_warper_smoother(input_ids, scores.copy(), cur_len=None), axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min()) def test_top_k_dist_warper(self): input_ids = None vocab_size = 10 batch_size = 2 # create ramp distribution ramp_logits = np.broadcast_to(np.arange(vocab_size)[None, :], (batch_size, vocab_size)).copy() ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size top_k_warp = FlaxTopKLogitsWarper(3) scores = top_k_warp(input_ids, ramp_logits, cur_len=None) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True]) # check special case length = 5 top_k_warp_safety_check = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3) ramp_logits = np.broadcast_to(np.arange(length)[None, :], (batch_size, length)).copy() scores = top_k_warp_safety_check(input_ids, ramp_logits, cur_len=None) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist(), [2, 2]) def test_top_p_dist_warper(self): input_ids = None vocab_size = 10 batch_size = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) dist = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) top_p_warp = FlaxTopPLogitsWarper(0.8) filtered_dist = np.exp(top_p_warp(input_ids, dist, cur_len=None)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 EXPECTED_FILTERED_DIST = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3)) # check edge cases with negative and extreme logits ramp_logits = np.broadcast_to(np.arange(vocab_size)[None, :], (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme ramp_logits[1] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept top_p_warp = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0) filtered_dist = top_p_warp(input_ids, ramp_logits, cur_len=None) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist(), [3, 2]) def test_min_length_dist_processor(self): vocab_size = 20 batch_size = 4 eos_token_id = 0 min_dist_processor = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id) # check that min length is applied at length 5 input_ids = ids_tensor((batch_size, 20), vocab_size=20) cur_len = 5 scores = self._get_uniform_logits(batch_size, vocab_size) scores_before_min_length = min_dist_processor(input_ids, scores, cur_len=cur_len) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 scores = self._get_uniform_logits(batch_size, vocab_size) cur_len = 15 scores_before_min_length = min_dist_processor(input_ids, scores, cur_len=cur_len) self.assertFalse(jnp.isinf(scores_before_min_length).any()) def test_forced_bos_token_logits_processor(self): vocab_size = 20 batch_size = 4 bos_token_id = 0 logits_processor = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id) # check that all scores are -inf except the bos_token_id score input_ids = ids_tensor((batch_size, 1), vocab_size=20) cur_len = 1 scores = self._get_uniform_logits(batch_size, vocab_size) scores = logits_processor(input_ids, scores, cur_len=cur_len) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 cur_len = 3 scores = self._get_uniform_logits(batch_size, vocab_size) scores = logits_processor(input_ids, scores, cur_len=cur_len) self.assertFalse(jnp.isinf(scores).any()) def test_forced_eos_token_logits_processor(self): vocab_size = 20 batch_size = 4 eos_token_id = 0 max_length = 5 logits_processor = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id) # check that all scores are -inf except the eos_token_id when max_length is reached input_ids = ids_tensor((batch_size, 4), vocab_size=20) cur_len = 4 scores = self._get_uniform_logits(batch_size, vocab_size) scores = logits_processor(input_ids, scores, cur_len=cur_len) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached cur_len = 3 scores = self._get_uniform_logits(batch_size, vocab_size) scores = logits_processor(input_ids, scores, cur_len=cur_len) self.assertFalse(jnp.isinf(scores).any()) def test_processor_list(self): batch_size = 4 sequence_length = 10 vocab_size = 15 eos_token_id = 2 bos_token_id = 1 max_length = 15 # dummy input_ids and scores input_ids = ids_tensor((batch_size, sequence_length), vocab_size) input_ids_comp = input_ids.copy() scores = self._get_uniform_logits(batch_size, vocab_size) scores_comp = scores.copy() # instantiate all dist processors temp_dist_warp = FlaxTemperatureLogitsWarper(temperature=0.5) top_k_warp = FlaxTopKLogitsWarper(3) top_p_warp = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors min_dist_proc = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id) bos_dist_proc = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id) eos_dist_proc = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id) cur_len = 10 # no processor list scores = temp_dist_warp(input_ids, scores, cur_len=cur_len) scores = top_k_warp(input_ids, scores, cur_len=cur_len) scores = top_p_warp(input_ids, scores, cur_len=cur_len) scores = min_dist_proc(input_ids, scores, cur_len=cur_len) scores = bos_dist_proc(input_ids, scores, cur_len=cur_len) scores = eos_dist_proc(input_ids, scores, cur_len=cur_len) # with processor list processor = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) scores_comp = processor(input_ids, scores_comp, cur_len=cur_len) # scores should be equal self.assertTrue(jnp.allclose(scores, scores_comp, atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist()) def test_processor_list_jitted(self): batch_size = 4 sequence_length = 10 vocab_size = 15 eos_token_id = 2 bos_token_id = 1 max_length = 15 # dummy input_ids and scores input_ids = ids_tensor((batch_size, sequence_length), vocab_size) input_ids_comp = input_ids.copy() scores = self._get_uniform_logits(batch_size, vocab_size) scores_comp = scores.copy() # instantiate all dist processors temp_dist_warp = FlaxTemperatureLogitsWarper(temperature=0.5) top_k_warp = FlaxTopKLogitsWarper(3) top_p_warp = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors min_dist_proc = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id) bos_dist_proc = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id) eos_dist_proc = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id) cur_len = 10 # no processor list def run_no_processor_list(input_ids, scores, cur_len): scores = temp_dist_warp(input_ids, scores, cur_len=cur_len) scores = top_k_warp(input_ids, scores, cur_len=cur_len) scores = top_p_warp(input_ids, scores, cur_len=cur_len) scores = min_dist_proc(input_ids, scores, cur_len=cur_len) scores = bos_dist_proc(input_ids, scores, cur_len=cur_len) scores = eos_dist_proc(input_ids, scores, cur_len=cur_len) return scores # with processor list def run_processor_list(input_ids, scores, cur_len): processor = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) scores = processor(input_ids, scores, cur_len=cur_len) return scores jitted_run_no_processor_list = jax.jit(run_no_processor_list) jitted_run_processor_list = jax.jit(run_processor_list) scores = jitted_run_no_processor_list(input_ids, scores, cur_len) scores_comp = jitted_run_processor_list(input_ids, scores_comp, cur_len) # scores should be equal self.assertTrue(jnp.allclose(scores, scores_comp, atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
transformers/tests/generation/test_flax_logits_process.py/0
{ "file_path": "transformers/tests/generation/test_flax_logits_process.py", "repo_id": "transformers", "token_count": 5610 }
341
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ALIGN model. """ import inspect import os import tempfile import unittest import requests from transformers import AlignConfig, AlignProcessor, AlignTextConfig, AlignVisionConfig from transformers.testing_utils import ( is_flax_available, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AlignModel, AlignTextModel, AlignVisionModel, ) from transformers.models.align.modeling_align import ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image if is_flax_available(): pass class AlignVisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, num_channels=3, kernel_sizes=[3, 3, 5], in_channels=[32, 16, 24], out_channels=[16, 24, 30], hidden_dim=64, strides=[1, 1, 2], num_block_repeats=[1, 1, 2], expand_ratios=[1, 6, 6], is_training=True, hidden_act="gelu", ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.kernel_sizes = kernel_sizes self.in_channels = in_channels self.out_channels = out_channels self.hidden_dim = hidden_dim self.strides = strides self.num_block_repeats = num_block_repeats self.expand_ratios = expand_ratios self.is_training = is_training self.hidden_act = hidden_act def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return AlignVisionConfig( num_channels=self.num_channels, kernel_sizes=self.kernel_sizes, in_channels=self.in_channels, out_channels=self.out_channels, hidden_dim=self.hidden_dim, strides=self.strides, num_block_repeats=self.num_block_repeats, expand_ratios=self.expand_ratios, hidden_act=self.hidden_act, ) def create_and_check_model(self, config, pixel_values): model = AlignVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) patch_size = self.image_size // 4 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, config.hidden_dim, patch_size, patch_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, config.hidden_dim)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class AlignVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ALIGN does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (AlignVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = AlignVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=AlignVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="AlignVisionModel does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="AlignVisionModel does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states num_blocks = sum(config.num_block_repeats) * 4 self.assertEqual(len(hidden_states), num_blocks) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = AlignVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class AlignTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = self.get_config() return config, input_ids, token_type_ids, input_mask def get_config(self): return AlignTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, token_type_ids, input_mask): model = AlignTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class AlignTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (AlignTextModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = AlignTextModelTester(self) self.config_tester = ConfigTester(self, config_class=AlignTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="ALIGN does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="AlignTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="AlignTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = AlignTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class AlignModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = AlignTextModelTester(parent, **text_kwargs) self.vision_model_tester = AlignVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): test_config, input_ids, token_type_ids, input_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, token_type_ids, input_mask, pixel_values def get_config(self): return AlignConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, token_type_ids, attention_mask, pixel_values): model = AlignModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask, token_type_ids) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, input_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_torch class AlignModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (AlignModel,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": AlignModel} if is_torch_available() else {} fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = AlignModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Start to fail after using torch `cu118`.") def test_multi_gpu_data_parallel_forward(self): super().test_multi_gpu_data_parallel_forward() @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="AlignModel does not have input/output embeddings") def test_model_common_attributes(self): pass # override as the `temperature` parameter initilization is different for ALIGN def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `temperature` is initilized as per the original implementation if name == "temperature": self.assertAlmostEqual( param.data.item(), 1.0, delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) elif name == "text_projection.weight": self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # ALIGN needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save AlignConfig and check if we can load AlignVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = AlignVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save AlignConfig and check if we can load AlignTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = AlignTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = AlignModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch class AlignModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "kakaobrain/align-base" model = AlignModel.from_pretrained(model_name).to(torch_device) processor = AlignProcessor.from_pretrained(model_name) image = prepare_img() texts = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=texts, images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[9.7093, 3.4679]], device=torch_device) self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
transformers/tests/models/align/test_modeling_align.py/0
{ "file_path": "transformers/tests/models/align/test_modeling_align.py", "repo_id": "transformers", "token_count": 10758 }
342
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPT2Tokenizer, GPT2TokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class AutoTokenizerTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 @slow def test_tokenizer_from_pretrained(self): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): tokenizer = AutoTokenizer.from_pretrained(model_name) self.assertIsNotNone(tokenizer) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(tokenizer), 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): tokenizer = AutoTokenizer.from_pretrained(model_name) self.assertIsNotNone(tokenizer) self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast)) self.assertGreater(len(tokenizer), 0) def test_tokenizer_from_pretrained_identifier(self): tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def test_tokenizer_from_model_type(self): tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 20) def test_tokenizer_from_tokenizer_class(self): config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER) self.assertIsInstance(config, RobertaConfig) # Check that tokenizer_type ≠ model_type tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def test_tokenizer_from_type(self): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False) self.assertIsInstance(tokenizer, BertTokenizer) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json")) shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False) self.assertIsInstance(tokenizer, GPT2Tokenizer) @require_tokenizers def test_tokenizer_from_type_fast(self): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert") self.assertIsInstance(tokenizer, BertTokenizerFast) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json")) shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2") self.assertIsInstance(tokenizer, GPT2TokenizerFast) def test_tokenizer_from_type_incorrect_name(self): with pytest.raises(ValueError): AutoTokenizer.from_pretrained("./", tokenizer_type="xxx") @require_tokenizers def test_tokenizer_identifier_with_correct_config(self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) if isinstance(tokenizer, BertTokenizer): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False) else: self.assertEqual(tokenizer.do_lower_case, False) self.assertEqual(tokenizer.model_max_length, 512) @require_tokenizers def test_tokenizer_identifier_non_existent(self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( EnvironmentError, "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier", ): _ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") def test_model_name_edge_cases_in_mappings(self): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai tokenizers = TOKENIZER_MAPPING.values() tokenizer_names = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(tokenizer_name) @require_tokenizers def test_from_pretrained_use_fast_toggle(self): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast) @require_tokenizers def test_do_lower_case(self): tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", do_lower_case=False) sample = "Hello, world. How are you?" tokens = tokenizer.tokenize(sample) self.assertEqual("[UNK]", tokens[0]) tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False) tokens = tokenizer.tokenize(sample) self.assertEqual("[UNK]", tokens[0]) @require_tokenizers def test_PreTrainedTokenizerFast_from_pretrained(self): tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config") self.assertEqual(type(tokenizer), PreTrainedTokenizerFast) self.assertEqual(tokenizer.model_max_length, 512) self.assertEqual(tokenizer.vocab_size, 30000) self.assertEqual(tokenizer.unk_token, "[UNK]") self.assertEqual(tokenizer.padding_side, "right") self.assertEqual(tokenizer.truncation_side, "right") def test_auto_tokenizer_from_local_folder(self): tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir) self.assertIsInstance(tokenizer2, tokenizer.__class__) self.assertEqual(tokenizer2.vocab_size, 12) def test_auto_tokenizer_fast_no_slow(self): tokenizer = AutoTokenizer.from_pretrained("ctrl") # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(tokenizer, CTRLTokenizer) def test_get_tokenizer_config(self): # Check we can load the tokenizer config of an online model. config = get_tokenizer_config("bert-base-cased") _ = config.pop("_commit_hash", None) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(config, {"do_lower_case": False}) # This model does not have a tokenizer_config so we get back an empty dict. config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER) self.assertDictEqual(config, {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) config = get_tokenizer_config(tmp_dir) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"], "BertTokenizer") def test_new_tokenizer_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer) tokenizer = CustomTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) self.assertIsInstance(new_tokenizer, CustomTokenizer) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def test_new_tokenizer_fast_registration(self): try: AutoConfig.register("custom", CustomConfig) # Can register in two steps AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None)) AutoTokenizer.register(CustomConfig, fast_tokenizer_class=CustomTokenizerFast) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( CustomConfig, slow_tokenizer_class=CustomTokenizer, fast_tokenizer_class=CustomTokenizerFast ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER) bert_tokenizer.save_pretrained(tmp_dir) tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) self.assertIsInstance(new_tokenizer, CustomTokenizerFast) new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False) self.assertIsInstance(new_tokenizer, CustomTokenizer) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_tokenizer(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizerFast") # Test we can also load the slow version tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False ) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True, use_fast=False) self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer") self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer") @require_tokenizers def test_from_pretrained_dynamic_tokenizer_conflict(self): class NewTokenizer(BertTokenizer): special_attribute_present = False class NewTokenizerFast(BertTokenizerFast): slow_tokenizer_class = NewTokenizer special_attribute_present = False try: AutoConfig.register("custom", CustomConfig) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer) AutoTokenizer.register(CustomConfig, fast_tokenizer_class=NewTokenizerFast) # If remote code is not set, the default is to use local tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", use_fast=False) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False, use_fast=False ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertTrue(tokenizer.special_attribute_present) tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_tokenizer_legacy_format(self): tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True ) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") # Test we can also load the slow version tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True, use_fast=False ) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoTokenizer.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_cached_tokenizer_has_minimum_calls_to_head(self): # Make sure we have cached the tokenizer. _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1)
transformers/tests/models/auto/test_tokenization_auto.py/0
{ "file_path": "transformers/tests/models/auto/test_tokenization_auto.py", "repo_id": "transformers", "token_count": 8482 }
343
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import unittest from transformers import BloomConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_accelerator, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomTokenizerFast, ) @require_torch class BloomModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=False, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def get_large_model_config(self): return BloomConfig.from_pretrained("bigscience/bloom") def prepare_config_and_inputs(self, gradient_checkpointing=False): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config(gradient_checkpointing=gradient_checkpointing) return (config, input_ids, input_mask, sequence_labels) def get_config(self, gradient_checkpointing=False, slow_but_exact=True): return BloomConfig( vocab_size=self.vocab_size, seq_length=self.seq_length, hidden_size=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, hidden_dropout=self.hidden_dropout_prob, attention_dropout=self.attention_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, num_labels=self.num_labels, gradient_checkpointing=gradient_checkpointing, slow_but_exact=slow_but_exact, dtype="float32", ) def create_and_check_bloom_model(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_bloom_model_past(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True) outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids)) outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids)) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_bloom_model_attention_mask_past(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_bloom_model_past_large_inputs(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[ "last_hidden_state" ] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args): model = BloomForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args): config.num_labels = self.num_labels model = BloomForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args): model = BloomForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args): model = BloomForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, *args, gradient_checkpointing=False ): model = BloomForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_bloom_weight_initialization(self, config, *args): model = BloomModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask, sequence_labels = config_and_inputs inputs_dict = {"input_ids": input_ids} return config, inputs_dict @require_torch class BloomModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( BloomModel, BloomForCausalLM, BloomForSequenceClassification, BloomForTokenClassification, BloomForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (BloomForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": BloomModel, "question-answering": BloomForQuestionAnswering, "text-classification": BloomForSequenceClassification, "text-generation": BloomForCausalLM, "token-classification": BloomForTokenClassification, "zero-shot": BloomForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_missing_keys = False test_pruning = False test_torchscript = True # torch.autograd functions seems to be not supported def setUp(self): self.model_tester = BloomModelTester(self) self.config_tester = ConfigTester(self, config_class=BloomConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_bloom_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_bloom_model(*config_and_inputs) def test_bloom_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_bloom_model_past(*config_and_inputs) def test_bloom_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_bloom_model_attention_mask_past(*config_and_inputs) def test_bloom_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_bloom_model_past_large_inputs(*config_and_inputs) def test_bloom_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_bloom_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs) def test_bloom_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_token_classification_model(*config_and_inputs) def test_bloom_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_bloom_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_bloom_weight_initialization(*config_and_inputs) @unittest.skip("Bloom has a non-standard KV cache format.") def test_past_key_values_format(self): pass @slow def test_model_from_pretrained(self): for model_name in BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BloomModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_accelerator def test_simple_generation(self): # This test is a bit flaky. For some GPU architectures, pytorch sets by default allow_fp16_reduced_precision_reduction = True and some operations # do not give the same results under this configuration, especially torch.baddmm and torch.bmm. https://pytorch.org/docs/stable/notes/numerical_accuracy.html#fp16-on-mi200 # As we leave the default value (True) for allow_fp16_reduced_precision_reduction , the tests failed when running in half-precision with smaller models (560m) # Please see: https://pytorch.org/docs/stable/notes/cuda.html#reduced-precision-reduction-in-fp16-gemms # This discrepancy is observed only when using small models and seems to be stable for larger models. # Our conclusion is that these operations are flaky for small inputs but seems to be stable for larger inputs (for the functions `baddmm` and `bmm`), and therefore for larger models. # Here is a summary of an ablation study of our observations # EXPECTED_OUTPUT = "I enjoy walking with my cute dog, and I love to watch the kids play. I am a very active person, and I am a very good listener. I am a very good person, and I am a very good person. I am a" # 560m + allow_fp16_reduced_precision_reduction = False + torch.bmm ==> PASS # 560m + allow_fp16_reduced_precision_reduction = False + torch.baddm ==> PASS # 560m + allow_fp16_reduced_precision_reduction = True + torch.baddm ==> PASS # 560m + allow_fp16_reduced_precision_reduction = True + torch.bmm ==> FAIL # EXPECTED_OUTPUT = "I enjoy walking with my cute dog, but I also enjoy hiking, biking, and swimming. I love to cook and bake. I love to cook and bake. I love to cook and bake. I love to cook and bake. I love" # >=1b1 + allow_fp16_reduced_precision_reduction = True + torch.baddm ==> PASS (for use_cache=True and use_cache=False) # >=1b1 + allow_fp16_reduced_precision_reduction = True + torch.bmm ==> PASS # >=1b1 + allow_fp16_reduced_precision_reduction = False + torch.bmm ==> PASS path_560m = "bigscience/bloom-560m" model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").to(torch_device) model = model.eval() tokenizer = BloomTokenizerFast.from_pretrained(path_560m) input_sentence = "I enjoy walking with my cute dog" # This output has been obtained using fp32 model on the huggingface DGX workstation - NVIDIA A100 GPU EXPECTED_OUTPUT = ( "I enjoy walking with my cute dog, and I love to watch the kids play with the kids. I am a very " "active person, and I enjoy working out, and I am a very active person. I am a very active person, and I" ) input_ids = tokenizer.encode(input_sentence, return_tensors="pt") greedy_output = model.generate(input_ids.to(torch_device), max_length=50) self.assertEqual(tokenizer.decode(greedy_output[0], skip_special_tokens=True), EXPECTED_OUTPUT) @slow @require_torch_accelerator def test_batch_generation(self): path_560m = "bigscience/bloom-560m" model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").to(torch_device) model = model.eval() tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") input_sentence = ["I enjoy walking with my cute dog", "I enjoy walking with my cute dog"] inputs = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) attention_mask = inputs["attention_mask"] greedy_output = model.generate(input_ids, attention_mask=attention_mask, max_length=50, do_sample=False) self.assertEqual( tokenizer.decode(greedy_output[0], skip_special_tokens=True), tokenizer.decode(greedy_output[1], skip_special_tokens=True), ) @slow @require_torch_accelerator def test_batch_generation_padd(self): path_560m = "bigscience/bloom-560m" model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").to(torch_device) model = model.eval() tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") input_sentence = ["I enjoy walking with my cute dog", "Hello my name is"] input_sentence_without_pad = "Hello my name is" input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True) input_ids_without_pad = tokenizer.encode(input_sentence_without_pad, return_tensors="pt") input_ids, attention_mask = input_ids["input_ids"].to(torch_device), input_ids["attention_mask"] greedy_output = model.generate(input_ids, attention_mask=attention_mask, max_length=50, do_sample=False) greedy_output_without_pad = model.generate( input_ids_without_pad.to(torch_device), max_length=50, do_sample=False ) # test token values self.assertEqual(greedy_output[-1, 3:].tolist(), greedy_output_without_pad[0, :-3].tolist()) # test reconstructions self.assertEqual( tokenizer.decode(greedy_output[-1, 3:], skip_special_tokens=True), tokenizer.decode(greedy_output_without_pad[0, :-3], skip_special_tokens=True), ) @slow @require_torch_accelerator def test_batch_generated_text(self): path_560m = "bigscience/bloom-560m" model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").to(torch_device) model = model.eval() tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") input_sentences = [ "Hello what is", "Running a quick test with the", ] inputs = tokenizer(input_sentences, return_tensors="pt", padding=True, truncation=True) generated_ids = model.generate( inputs["input_ids"].to(torch_device), attention_mask=inputs["attention_mask"], max_length=20 ) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) # these generations match those of the PyTorch model EXPECTED_GENERATIONS = [ "Hello what is the best way to get the data from the server? I have tried", "Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2", ] self.assertListEqual(generated_text, EXPECTED_GENERATIONS) @require_torch class BloomEmbeddingTest(unittest.TestCase): """ The goal here is to compare the embeddings generated by the model trained using Megatron-LM with the one from the transformers library, with a small GPT2-like model to ensure that the conversion from Megatron-LM to transformers has been done successfully. The script compares the logits of the embedding layer and the transformer layers. WARNING: It is expected that these logits will not have exactly the same statistics when running the code on CPU or GPU. For more info, please visit: - https://github.com/pytorch/pytorch/issues/76052#issuecomment-1103193548 - https://discuss.pytorch.org/t/reproducibility-issue-between-intel-and-amd-cpus/144779/9 You need to install tokenizers following this readme: - https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles Tokenizer used during training: - https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles # TODO change the script (or just add skip) when building the env with tokenizers 0.12.0 """ def setUp(self): super().setUp() self.path_bigscience_model = "bigscience/bigscience-small-testing" @require_torch def test_embeddings(self): # The config in this checkpoint has `bfloat16` as `torch_dtype` -> model in `bfloat16` model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, torch_dtype="auto") model.eval() EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN = { 3478: 0.0002307891845703125, 368: -0.000568389892578125, 109586: -0.0003910064697265625, 35433: -0.000194549560546875, 2: 0.0004138946533203125, 77: 0.000659942626953125, 132619: -0.00031280517578125, 2175: 0.000457763671875, 23714: 0.000263214111328125, 73173: -0.000286102294921875, 144252: 0.00052642822265625, } EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN = { 3478: -0.00921630859375, 368: -0.010009765625, 109586: -0.01031494140625, 35433: -0.01177978515625, 2: -0.0074462890625, 77: -0.00848388671875, 132619: -0.009521484375, 2175: -0.0074462890625, 23714: -0.0145263671875, 73173: -0.007415771484375, 144252: -0.01007080078125, } EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX = { 3478: 0.0128173828125, 368: 0.01214599609375, 109586: 0.0111083984375, 35433: 0.01019287109375, 2: 0.0157470703125, 77: 0.0174560546875, 132619: 0.0078125, 2175: 0.0113525390625, 23714: 0.0146484375, 73173: 0.01116943359375, 144252: 0.01141357421875, } EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM = {"value": 0.08203125} EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN = { 132619: -0.00031256675720214844, 3478: 0.00023090839385986328, 368: -0.0005702972412109375, 109586: -0.00039124488830566406, 35433: -0.000194549560546875, 2: 0.0004146099090576172, 2175: 0.0004572868347167969, 23714: 0.00026416778564453125, 73173: -0.0002865791320800781, 144252: 0.0005254745483398438, 77: 0.0006618499755859375, } EMBEDDINGS_DS_BEFORE_LN_F_16_MIN = { 3478: -0.00921630859375, 368: -0.010009765625, 109586: -0.01031494140625, 35433: -0.01177978515625, 2: -0.0074462890625, 77: -0.00848388671875, 132619: -0.009521484375, 2175: -0.0074462890625, 23714: -0.0145263671875, 73173: -0.007415771484375, 144252: -0.01007080078125, } EMBEDDINGS_DS_BEFORE_LN_F_16_MAX = { 3478: 0.0128173828125, 368: 0.01214599609375, 109586: 0.0111083984375, 35433: 0.01019287109375, 2: 0.0157470703125, 77: 0.0174560546875, 132619: 0.0078125, 2175: 0.0113525390625, 23714: 0.0146484375, 73173: 0.01116943359375, 144252: 0.01141357421875, } EMBEDDINGS_DS_BEFORE_LN_F_16_SUM = {"value": 0.0821533203125} EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN = { 132619: -0.00031267106533050537, 3478: 0.00023087859153747559, 368: -0.0005701072514057159, 109586: -0.0003911703824996948, 35433: -0.0001944899559020996, 2: 0.0004146844148635864, 2175: 0.00045740045607089996, 23714: 0.0002641640603542328, 73173: -0.0002864748239517212, 144252: 0.0005256589502096176, 77: 0.0006617321632802486, } EMBEDDINGS_DS_BEFORE_LN_F_32_MIN = { 3478: -0.00921630859375, 368: -0.010009765625, 109586: -0.01031494140625, 35433: -0.01177978515625, 2: -0.0074462890625, 77: -0.00848388671875, 132619: -0.009521484375, 2175: -0.0074462890625, 23714: -0.0145263671875, 73173: -0.007415771484375, 144252: -0.01007080078125, } EMBEDDINGS_DS_BEFORE_LN_F_32_MAX = { 3478: 0.0128173828125, 368: 0.01214599609375, 109586: 0.0111083984375, 35433: 0.01019287109375, 2: 0.0157470703125, 77: 0.0174560546875, 132619: 0.0078125, 2175: 0.0113525390625, 23714: 0.0146484375, 73173: 0.01116943359375, 144252: 0.01141357421875, } EMBEDDINGS_DS_BEFORE_LN_F_32_SUM = {"value": 0.08217757940292358} TEST_EMBEDDINGS = { "torch.bfloat16": { "mean": EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN, "max": EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX, "min": EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN, "sum": EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM, }, "torch.float32": { "mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN, "max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX, "min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN, "sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM, }, "torch.float": { "mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN, "max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX, "min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN, "sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM, }, "torch.float16": { "mean": EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN, "max": EMBEDDINGS_DS_BEFORE_LN_F_16_MAX, "min": EMBEDDINGS_DS_BEFORE_LN_F_16_MIN, "sum": EMBEDDINGS_DS_BEFORE_LN_F_16_SUM, }, } EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] # fmt: skip EMBEDDINGS_DS_AFTER_LN_MEAN = { 3478: -6.580352783203125e-05, 368: 0.0001316070556640625, 109586: -0.00030517578125, 35433: 4.00543212890625e-05, 2: -7.2479248046875e-05, 77: -8.96453857421875e-05, 132619: 0.0001583099365234375, 2175: 2.1219253540039062e-05, 23714: -0.000247955322265625, 73173: -0.00021839141845703125, 144252: -0.0001430511474609375, } EMBEDDINGS_DS_AFTER_LN_MIN = { 3478: -1.6953125, 368: -1.6875, 109586: -1.6875, 35433: -2.125, 2: -1.390625, 77: -1.5390625, 132619: -1.875, 2175: -1.4609375, 23714: -2.296875, 73173: -1.3515625, 144252: -1.78125, } EMBEDDINGS_DS_AFTER_LN_MAX = { 3478: 2.265625, 368: 2.28125, 109586: 1.953125, 35433: 1.90625, 2: 2.703125, 77: 2.828125, 132619: 1.65625, 2175: 2.015625, 23714: 2.234375, 73173: 2.171875, 144252: 1.828125, } EMBEDDINGS_DS_AFTER_LN = { "mean": EMBEDDINGS_DS_AFTER_LN_MEAN, "min": EMBEDDINGS_DS_AFTER_LN_MIN, "max": EMBEDDINGS_DS_AFTER_LN_MAX, } tensor_ids = torch.LongTensor([EXAMPLE_IDS]) with torch.no_grad(): embeddings = model.transformer.word_embeddings(tensor_ids) embeddings_ln = model.transformer.word_embeddings_layernorm(embeddings) # # first check the embeddings before LN output_dict = {"min": {}, "max": {}, "mean": {}, "sum": {"value": embeddings.sum().item()}} for i, idx in enumerate(EXAMPLE_IDS): output_dict["min"][idx] = embeddings.min(dim=-1).values[0][i].item() output_dict["max"][idx] = embeddings.max(dim=-1).values[0][i].item() output_dict["mean"][idx] = embeddings.mean(dim=-1)[0][i].item() for key in TEST_EMBEDDINGS[str(model.dtype)].keys(): self.assertDictEqual(TEST_EMBEDDINGS[str(model.dtype)][key], output_dict[key]) output_dict_norm = {"min": {}, "max": {}, "mean": {}} for i, idx in enumerate(EXAMPLE_IDS): output_dict_norm["min"][idx] = embeddings_ln.min(dim=-1).values[0][i].item() output_dict_norm["max"][idx] = embeddings_ln.max(dim=-1).values[0][i].item() output_dict_norm["mean"][idx] = embeddings_ln.mean(dim=-1)[0][i].item() # This test does not pass when places = 2 for i, key in enumerate(output_dict_norm.keys()): for j, idx in enumerate(output_dict[key].keys()): self.assertAlmostEqual(EMBEDDINGS_DS_AFTER_LN[key][idx], output_dict_norm[key][idx], places=1) @require_torch def test_hidden_states_transformers(self): cuda_available = torch.cuda.is_available() model = BloomModel.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to( torch_device ) model.eval() EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] # fmt: skip MEAN_VALUE_LAST_LM = -4.3392181396484375e-05 MIN_MAX_DICT = {"min": -2.0625, "max": 2.75} tensor_ids = torch.LongTensor([EXAMPLE_IDS]) with torch.no_grad(): logits = model(tensor_ids.to(torch_device)) output_dict = { "min": logits.last_hidden_state.min(dim=-1).values[0][0].item(), "max": logits.last_hidden_state.max(dim=-1).values[0][0].item(), } if cuda_available: self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=4) else: self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=3) self.assertDictEqual(MIN_MAX_DICT, output_dict) @require_torch def test_logits(self): cuda_available = torch.cuda.is_available() model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to( torch_device ) # load in bf16 model.eval() EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] # fmt: skip MEAN_LOGITS_GPU_1 = -1.823902130126953e-05 MEAN_LOGITS_GPU_2 = 1.9431114196777344e-05 tensor_ids = torch.LongTensor([EXAMPLE_IDS]).to(torch_device) with torch.no_grad(): output = model(tensor_ids).logits output_gpu_1, output_gpu_2 = output.split(125440, dim=-1) if cuda_available: self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6) self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6) else: self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6) # 1e-06 precision!! self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6)
transformers/tests/models/bloom/test_modeling_bloom.py/0
{ "file_path": "transformers/tests/models/bloom/test_modeling_bloom.py", "repo_id": "transformers", "token_count": 16982 }
344
# coding=utf-8 # Copyright 2021 Google AI and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = CanineTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() tokenizer = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def canine_tokenizer(self): return CanineTokenizer.from_pretrained("google/canine-s") def get_tokenizer(self, **kwargs) -> CanineTokenizer: tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) tokenizer._unicode_vocab_size = 1024 return tokenizer @require_torch def test_prepare_batch_integration(self): tokenizer = self.canine_tokenizer src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."] expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: skip batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) result = list(batch.input_ids.numpy()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 39), batch.input_ids.shape) self.assertEqual((2, 39), batch.attention_mask.shape) @require_torch def test_encoding_keys(self): tokenizer = self.canine_tokenizer src_text = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertIn("token_type_ids", batch) @require_torch def test_max_length_integration(self): tokenizer = self.canine_tokenizer tgt_text = [ "What's the weater?", "It's about 25 degrees.", ] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt" ) self.assertEqual(32, targets["input_ids"].shape[1]) # cannot use default save_and_load_tokenizer test method because tokenizer has no vocab def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" additional_special_tokens = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: new_additional_special_token = chr(0xE007) additional_special_tokens.append(new_additional_special_token) tokenizer.add_special_tokens( {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False ) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) self.assertIn(new_additional_special_token, after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, ids = self.get_clean_sequence(tokenizer) # a special token for Canine can be defined as follows: SPECIAL_TOKEN = 0xE005 special_token = chr(SPECIAL_TOKEN) tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(encoded, input_encoded + special_token_id) decoded = tokenizer.decode(encoded, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_tokenize_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = chr(0xE005) SPECIAL_TOKEN_2 = chr(0xE006) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) @require_tokenizers def test_added_token_serializable(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token = chr(NEW_TOKEN) new_token = AddedToken(new_token, lstrip=True) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer.from_pretrained(tmp_dir_name) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token_1 = chr(NEW_TOKEN) special_tokens_map["additional_special_tokens"] = [new_token_1] tokenizer_config["additional_special_tokens"] = [new_token_1] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir, extra_ids=0) self.assertIn(new_token_1, tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_1], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_1]) ), ) NEW_TOKEN = 0xE007 new_token_2 = chr(NEW_TOKEN) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = [AddedToken(new_token_2, lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, extra_ids=0 ) self.assertIn(new_token_2, tokenizer.additional_special_tokens) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_2], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_2])) ) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input = "hello world" if self.space_between_special_tokens: output = "[CLS] hello world [SEP]" else: output = input encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) # cannot use default `test_tokenizers_common_ids_setters` method because tokenizer has no vocab def test_tokenizers_common_ids_setters(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] token_to_test_setters = "a" token_id_to_test_setters = ord(token_to_test_setters) for attr in attributes_list: setattr(tokenizer, attr + "_id", None) self.assertEqual(getattr(tokenizer, attr), None) self.assertEqual(getattr(tokenizer, attr + "_id"), None) setattr(tokenizer, attr + "_id", token_id_to_test_setters) self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) setattr(tokenizer, "additional_special_tokens_ids", []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) additional_special_token_id = 0xE006 additional_special_token = chr(additional_special_token_id) setattr(tokenizer, "additional_special_tokens_ids", [additional_special_token_id]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [additional_special_token]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [additional_special_token_id]) # tokenizer has a fixed vocab_size (namely all possible unicode code points) def test_add_tokens_tokenizer(self): pass # CanineTokenizer does not support do_lower_case = True, as each character has its own Unicode code point # ("b" and "B" for example have different Unicode code points) def test_added_tokens_do_lower_case(self): pass # CanineModel does not support the get_input_embeddings nor the get_vocab method def test_np_encode_plus_sent_to_model(self): pass # CanineModel does not support the get_input_embeddings nor the get_vocab method def test_torch_encode_plus_sent_to_model(self): pass # tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list def test_pretrained_model_lists(self): pass # tokenizer does not have vocabulary def test_get_vocab(self): pass # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters def test_pretokenized_inputs(self): pass # tests all ids in vocab => vocab doesn't exist so unnecessary to test def test_conversion_reversible(self): pass
transformers/tests/models/canine/test_tokenization_canine.py/0
{ "file_path": "transformers/tests/models/canine/test_tokenization_canine.py", "repo_id": "transformers", "token_count": 7133 }
345
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import backend_empty_cache, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class CTRLModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config(self): return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, dff=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLModel(config=config) model.to(torch_device) model.eval() model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLLMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args): config.num_labels = self.num_labels model = CTRLForSequenceClassification(config) model.to(torch_device) model.eval() sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) @require_torch class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) test_pruning = True test_resize_embeddings = False test_head_masking = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def setUp(self): self.model_tester = CTRLModelTester(self) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() backend_empty_cache(torch_device) def test_config(self): self.config_tester.run_common_tests() def test_ctrl_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*config_and_inputs) def test_ctrl_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CTRLModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass @require_torch class CTRLModelLanguageGenerationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() backend_empty_cache(torch_device) @slow def test_lm_generate_ctrl(self): model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl") model.to(torch_device) input_ids = torch.tensor( [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device ) # Legal the president is expected_output_ids = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
transformers/tests/models/ctrl/test_modeling_ctrl.py/0
{ "file_path": "transformers/tests/models/ctrl/test_modeling_ctrl.py", "repo_id": "transformers", "token_count": 4859 }
346
# coding=utf-8 # Copyright 2018 Microsoft Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import DebertaV2Config, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaV2ForMaskedLM, DebertaV2ForMultipleChoice, DebertaV2ForQuestionAnswering, DebertaV2ForSequenceClassification, DebertaV2ForTokenClassification, DebertaV2Model, ) from transformers.models.deberta_v2.modeling_deberta_v2 import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class DebertaV2ModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, relative_attention=False, position_biased_input=True, pos_att_type="None", num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.relative_attention = relative_attention self.position_biased_input = position_biased_input self.pos_att_type = pos_att_type self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return DebertaV2Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def check_loss_output(self, result): self.parent.assertListEqual(list(result.loss.size()), []) def create_and_check_deberta_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaV2Model(config=config) model.to(torch_device) model.eval() sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def create_and_check_deberta_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaV2ForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_deberta_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaV2ForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(result) def create_and_check_deberta_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaV2ForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_deberta_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaV2ForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_deberta_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaV2ForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DebertaV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DebertaV2Model, DebertaV2ForMaskedLM, DebertaV2ForSequenceClassification, DebertaV2ForTokenClassification, DebertaV2ForQuestionAnswering, DebertaV2ForMultipleChoice, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": DebertaV2Model, "fill-mask": DebertaV2ForMaskedLM, "question-answering": DebertaV2ForQuestionAnswering, "text-classification": DebertaV2ForSequenceClassification, "token-classification": DebertaV2ForTokenClassification, "zero-shot": DebertaV2ForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_torchscript = False test_pruning = False test_head_masking = False is_encoder_decoder = False def setUp(self): self.model_tester = DebertaV2ModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaV2Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_deberta_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DebertaV2Model.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch @require_sentencepiece @require_tokenizers class DebertaV2ModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = DebertaV2Model.from_pretrained("microsoft/deberta-v2-xlarge") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4), f"{output[:, 1:4, 1:4]}")
transformers/tests/models/deberta_v2/test_modeling_deberta_v2.py/0
{ "file_path": "transformers/tests/models/deberta_v2/test_modeling_deberta_v2.py", "repo_id": "transformers", "token_count": 5861 }
347
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch DETA model. """ import inspect import math import unittest from transformers import DetaConfig, ResNetConfig, is_torch_available, is_torchvision_available, is_vision_available from transformers.file_utils import cached_property from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch if is_torchvision_available(): from transformers import DetaForObjectDetection, DetaModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class DetaModelTester: def __init__( self, parent, batch_size=8, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_queries=12, two_stage_num_proposals=12, num_channels=3, image_size=224, n_targets=8, num_labels=91, num_feature_levels=4, encoder_n_points=2, decoder_n_points=6, two_stage=True, assign_first_stage=True, assign_second_stage=True, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.num_queries = num_queries self.two_stage_num_proposals = two_stage_num_proposals self.num_channels = num_channels self.image_size = image_size self.n_targets = n_targets self.num_labels = num_labels self.num_feature_levels = num_feature_levels self.encoder_n_points = encoder_n_points self.decoder_n_points = decoder_n_points self.two_stage = two_stage self.assign_first_stage = assign_first_stage self.assign_second_stage = assign_second_stage # we also set the expected seq length for both encoder and decoder self.encoder_seq_length = ( math.ceil(self.image_size / 8) ** 2 + math.ceil(self.image_size / 16) ** 2 + math.ceil(self.image_size / 32) ** 2 + math.ceil(self.image_size / 64) ** 2 ) self.decoder_seq_length = self.num_queries def prepare_config_and_inputs(self, model_class_name): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device) labels.append(target) config = self.get_config(model_class_name) return config, pixel_values, pixel_mask, labels def get_config(self, model_class_name): resnet_config = ResNetConfig( num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], hidden_act="relu", num_labels=3, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ) two_stage = model_class_name == "DetaForObjectDetection" assign_first_stage = model_class_name == "DetaForObjectDetection" assign_second_stage = model_class_name == "DetaForObjectDetection" return DetaConfig( d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, num_queries=self.num_queries, two_stage_num_proposals=self.two_stage_num_proposals, num_labels=self.num_labels, num_feature_levels=self.num_feature_levels, encoder_n_points=self.encoder_n_points, decoder_n_points=self.decoder_n_points, two_stage=two_stage, assign_first_stage=assign_first_stage, assign_second_stage=assign_second_stage, backbone_config=resnet_config, backbone=None, ) def prepare_config_and_inputs_for_common(self, model_class_name="DetaModel"): config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs(model_class_name) inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def create_and_check_deta_model(self, config, pixel_values, pixel_mask, labels): model = DetaModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size)) def create_and_check_deta_freeze_backbone(self, config, pixel_values, pixel_mask, labels): model = DetaModel(config=config) model.to(torch_device) model.eval() model.freeze_backbone() for _, param in model.backbone.model.named_parameters(): self.parent.assertEqual(False, param.requires_grad) def create_and_check_deta_unfreeze_backbone(self, config, pixel_values, pixel_mask, labels): model = DetaModel(config=config) model.to(torch_device) model.eval() model.unfreeze_backbone() for _, param in model.backbone.model.named_parameters(): self.parent.assertEqual(True, param.requires_grad) def create_and_check_deta_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): model = DetaForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.two_stage_num_proposals, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.two_stage_num_proposals, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.two_stage_num_proposals, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.two_stage_num_proposals, 4)) @require_torchvision class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (DetaModel, DetaForObjectDetection) if is_torchvision_available() else () pipeline_model_mapping = ( {"feature-extraction": DetaModel, "object-detection": DetaForObjectDetection} if is_torchvision_available() else {} ) is_encoder_decoder = True test_torchscript = False test_pruning = False test_head_masking = False test_missing_keys = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "ObjectDetectionPipelineTests": return True return False @unittest.skip("Skip for now. PR #22437 causes some loading issue. See (not merged) #22656 for some discussions.") def test_can_use_safetensors(self): super().test_can_use_safetensors() # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "DetaForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) target["masks"] = torch.ones( self.model_tester.n_targets, self.model_tester.image_size, self.model_tester.image_size, device=torch_device, dtype=torch.float, ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = DetaModelTester(self) self.config_tester = ConfigTester(self, config_class=DetaConfig, has_text_modality=False) def test_config(self): # we don't test common_properties and arguments_init as these don't apply for DETA self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() def test_deta_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaModel") self.model_tester.create_and_check_deta_model(*config_and_inputs) def test_deta_freeze_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaModel") self.model_tester.create_and_check_deta_freeze_backbone(*config_and_inputs) def test_deta_unfreeze_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaModel") self.model_tester.create_and_check_deta_unfreeze_backbone(*config_and_inputs) def test_deta_object_detection_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaForObjectDetection") self.model_tester.create_and_check_deta_object_detection_head_model(*config_and_inputs) @unittest.skip(reason="DETA does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="DETA does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="DETA is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="DETA does not use token embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.encoder_n_points, ], ) out_len = len(outputs) correct_outlen = 8 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Object Detection model returns pred_logits and pred_boxes if model_class.__name__ == "DetaForObjectDetection": correct_outlen += 2 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.decoder_n_points, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.encoder_n_points, ], ) # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) # we take the second output since last_hidden_state is the second item output = outputs[1] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_forward_auxiliary_loss(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.auxiliary_loss = True # only test for object detection and segmentation model for model_class in self.all_model_classes[1:]: model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) outputs = model(**inputs) self.assertIsNotNone(outputs.auxiliary_outputs) self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = ["pixel_values", "pixel_mask"] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else [] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["pixel_values", "pixel_mask"] self.assertListEqual(arg_names[:1], expected_arg_names) @unittest.skip(reason="Model doesn't use tied weights") def test_tied_model_weights_key_ignore(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "DetaBackboneWithPositionalEncodings": backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if ( "level_embed" in name or "sampling_offsets.bias" in name or "value_proj" in name or "output_proj" in name or "reference_points" in name or name in backbone_params ): continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torchvision @require_vision @slow class DetaModelIntegrationTests(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("jozhang97/deta-resnet-50") if is_vision_available() else None def test_inference_object_detection_head(self): model = DetaForObjectDetection.from_pretrained("jozhang97/deta-resnet-50").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [[-7.3978, -2.5406, -4.1668], [-8.2684, -3.9933, -3.8096], [-7.0515, -3.7973, -5.8516]] ).to(torch_device) expected_boxes = torch.tensor( [[0.5043, 0.4973, 0.9998], [0.2542, 0.5489, 0.4748], [0.5490, 0.2765, 0.0570]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_shape_boxes = torch.Size((1, 300, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.3, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.6392, 0.6276, 0.5546, 0.5260, 0.4706], device=torch_device) expected_labels = [75, 17, 17, 75, 63] expected_slice_boxes = torch.tensor([40.5866, 73.2107, 176.1421, 117.1751], device=torch_device) self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) self.assertSequenceEqual(results["labels"].tolist(), expected_labels) self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) def test_inference_object_detection_head_swin_backbone(self): model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ).to(torch_device) expected_boxes = torch.tensor( [[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_shape_boxes = torch.Size((1, 300, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.3, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.6831, 0.6826, 0.5684, 0.5464, 0.4392], device=torch_device) expected_labels = [17, 17, 75, 75, 63] expected_slice_boxes = torch.tensor([345.8478, 23.6754, 639.8562, 372.8265], device=torch_device) self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) self.assertSequenceEqual(results["labels"].tolist(), expected_labels) self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
transformers/tests/models/deta/test_modeling_deta.py/0
{ "file_path": "transformers/tests/models/deta/test_modeling_deta.py", "repo_id": "transformers", "token_count": 11937 }
348
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class DonutImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_thumbnail=True, do_align_axis=False, do_pad=True, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size if size is not None else {"height": 18, "width": 20} self.do_thumbnail = do_thumbnail self.do_align_axis = do_align_axis self.do_pad = do_pad self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class DonutImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = DonutImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = DonutImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_thumbnail")) self.assertTrue(hasattr(image_processing, "do_align_long_axis")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 20}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) # Previous config had dimensions in (width, height) order image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84)) self.assertEqual(image_processor.size, {"height": 84, "width": 42}) @is_flaky() def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), )
transformers/tests/models/donut/test_image_processing_donut.py/0
{ "file_path": "transformers/tests/models/donut/test_image_processing_donut.py", "repo_id": "transformers", "token_count": 3741 }
349
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers import ErnieConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_accelerator, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ) from transformers.models.ernie.modeling_ernie import ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST class ErnieModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): """ Returns a tiny configuration by default. """ return ErnieConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = ErnieModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = ErnieForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_model_for_causal_lm_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = ErnieForCausalLM(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = ErnieForCausalLM(config=config).to(torch_device).eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = ErnieForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = ErnieForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = ErnieForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class ErnieModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ErnieModel, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (ErnieForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": ErnieModel, "fill-mask": ErnieForMaskedLM, "question-answering": ErnieForQuestionAnswering, "text-classification": ErnieForSequenceClassification, "text-generation": ErnieForCausalLM, "token-classification": ErnieForTokenClassification, "zero-shot": ErnieForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = False # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = ErnieModelTester(self) self.config_tester = ConfigTester(self, config_class=ErnieConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ErnieModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_accelerator def test_torchscript_device_change(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # ErnieForMultipleChoice behaves incorrectly in JIT environments. if model_class == ErnieForMultipleChoice: return config.torchscript = True model = model_class(config=config) inputs_dict = self._prepare_for_class(inputs_dict, model_class) traced_model = torch.jit.trace( model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(traced_model, os.path.join(tmp, "ernie.pt")) loaded = torch.jit.load(os.path.join(tmp, "ernie.pt"), map_location=torch_device) loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))
transformers/tests/models/ernie/test_modeling_ernie.py/0
{ "file_path": "transformers/tests/models/ernie/test_modeling_ernie.py", "repo_id": "transformers", "token_count": 10885 }
350
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class TFFlaubertModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_lengths = True self.use_token_type_ids = True self.use_labels = True self.gelu_activation = True self.sinusoidal_embeddings = False self.causal = False self.asm = False self.n_langs = 2 self.vocab_size = 99 self.n_special = 0 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.summary_type = "last" self.use_proj = True self.scope = None self.bos_token_id = 0 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = random_attention_mask([self.batch_size, self.seq_length], dtype=tf.float32) input_lengths = None if self.use_input_lengths: input_lengths = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) sequence_labels = None token_labels = None is_impossible_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, bos_token_id=self.bos_token_id, ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def create_and_check_flaubert_model( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFFlaubertModel(config=config) inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_flaubert_lm_head( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFFlaubertWithLMHeadModel(config) inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_flaubert_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFFlaubertForQuestionAnsweringSimple(config) inputs = {"input_ids": input_ids, "lengths": input_lengths} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_flaubert_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFFlaubertForSequenceClassification(config) inputs = {"input_ids": input_ids, "lengths": input_lengths} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_flaubert_for_token_classification( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_labels = self.num_labels model = TFFlaubertForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_flaubert_for_multiple_choice( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_choices = self.num_choices model = TFFlaubertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class TFFlaubertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) all_generative_model_classes = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable pipeline_model_mapping = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = TFFlaubertModelTester(self) self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37) def test_config(self): self.config_tester.run_common_tests() def test_flaubert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*config_and_inputs) def test_flaubert_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs) def test_flaubert_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*config_and_inputs) def test_flaubert_sequence_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFFlaubertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf @require_sentencepiece @require_tokenizers class TFFlaubertModelIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased") input_ids = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]], dtype=tf.int32, ) # "J'aime flaubert !" output = model(input_ids)[0] expected_shape = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ], dtype=tf.float32, ) self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
transformers/tests/models/flaubert/test_modeling_tf_flaubert.py/0
{ "file_path": "transformers/tests/models/flaubert/test_modeling_tf_flaubert.py", "repo_id": "transformers", "token_count": 6472 }
351
# coding=utf-8 # Copyright 2020 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class FunnelTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = FunnelTokenizer rust_tokenizer_class = FunnelTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizer(self, **kwargs): return FunnelTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9]) def test_token_type_ids(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: inputs = tokenizer("UNwant\u00E9d,running") sentence_len = len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len) inputs = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len)
transformers/tests/models/funnel/test_tokenization_funnel.py/0
{ "file_path": "transformers/tests/models/funnel/test_tokenization_funnel.py", "repo_id": "transformers", "token_count": 1257 }
352
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPT2LMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpt2 import TFGPT2Tokenizer TOKENIZER_CHECKPOINTS = ["gpt2"] TINY_MODEL_CHECKPOINT = "gpt2" if is_tf_available(): class ModelToSave(tf.Module): def __init__(self, tokenizer): super().__init__() self.tokenizer = tokenizer config = AutoConfig.from_pretrained(TINY_MODEL_CHECKPOINT) self.model = TFGPT2LMHeadModel.from_config(config) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name="text"),)) def serving(self, text): tokenized = self.tokenizer(text) input_ids_dense = tokenized["input_ids"].to_tensor() input_mask = tf.cast(input_ids_dense > 0, tf.int32) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) outputs = self.model(input_ids=input_ids_dense, attention_mask=input_mask)["logits"] return outputs @require_tf @require_keras_nlp class GPTTokenizationTest(unittest.TestCase): # The TF tokenizers are usually going to be used as pretrained tokenizers from existing model checkpoints, # so that's what we focus on here. def setUp(self): super().setUp() self.tokenizers = [GPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in (TOKENIZER_CHECKPOINTS)] self.tf_tokenizers = [TFGPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) self.test_sentences = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] self.paired_sentences = list(zip(self.test_sentences, self.test_sentences[::-1])) def test_output_equivalence(self): for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in self.test_sentences: python_outputs = tokenizer([test_inputs], return_tensors="tf") tf_outputs = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors python_outputs_values = python_outputs[key].numpy() tf_outputs_values = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs_values, tf.int64) == tf_outputs_values)) @slow def test_graph_mode(self): for tf_tokenizer in self.tf_tokenizers: compiled_tokenizer = tf.function(tf_tokenizer) for test_inputs in self.test_sentences: test_inputs = tf.constant(test_inputs) compiled_outputs = compiled_tokenizer(test_inputs) eager_outputs = tf_tokenizer(test_inputs) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def test_saved_model(self): for tf_tokenizer in self.tf_tokenizers: model = ModelToSave(tokenizer=tf_tokenizer) test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) out = model.serving(test_inputs) # Build model with some sample inputs with TemporaryDirectory() as tempdir: save_path = Path(tempdir) / "saved.model" tf.saved_model.save(model, save_path, signatures={"serving_default": model.serving}) loaded_model = tf.saved_model.load(save_path) loaded_output = loaded_model.signatures["serving_default"](test_inputs)["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def test_from_config(self): for tf_tokenizer in self.tf_tokenizers: test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) out = tf_tokenizer(test_inputs) # Build model with some sample inputs config = tf_tokenizer.get_config() model_from_config = TFGPT2Tokenizer.from_config(config) from_config_output = model_from_config(test_inputs) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def test_padding(self): for tf_tokenizer in self.tf_tokenizers: # for the test to run tf_tokenizer.pad_token_id = 123123 for max_length in [3, 5, 1024]: test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) out = tf_tokenizer(test_inputs, max_length=max_length) out_length = out["input_ids"].numpy().shape[1] assert out_length == max_length
transformers/tests/models/gpt2/test_tokenization_gpt2_tf.py/0
{ "file_path": "transformers/tests/models/gpt2/test_tokenization_gpt2_tf.py", "repo_id": "transformers", "token_count": 2520 }
353
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import AutoTokenizer, GPTJConfig, is_tf_available from transformers.testing_utils import require_tf, slow, tooslow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.gptj.modeling_tf_gptj import ( TFGPTJForCausalLM, TFGPTJForQuestionAnswering, TFGPTJForSequenceClassification, TFGPTJModel, shape_list, ) class TFGPTJModelTester: def __init__(self, parent): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.rotary_dim = 4 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.bos_token_id = self.vocab_size - 1 self.eos_token_id = self.vocab_size - 1 self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, return_dict=True, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPTJModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPTJModel(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_gptj_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPTJModel(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) def create_and_check_gptj_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPTJModel(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] token_type_ids = token_type_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past_key_values, )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_gptj_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPTJForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFGPTJForCausalLM, TFGPTJForSequenceClassification, TFGPTJForQuestionAnswering, TFGPTJModel) if is_tf_available() else () ) all_generative_model_classes = (TFGPTJForCausalLM,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFGPTJModel, "question-answering": TFGPTJForQuestionAnswering, "text-classification": TFGPTJForSequenceClassification, "text-generation": TFGPTJForCausalLM, "zero-shot": TFGPTJForSequenceClassification, } if is_tf_available() else {} ) test_onnx = False test_pruning = False test_missing_keys = False test_head_masking = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = TFGPTJModelTester(self) self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gptj_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model(*config_and_inputs) def test_gptj_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model_past(*config_and_inputs) def test_gptj_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs) def test_gptj_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs) def test_gptj_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs) @slow @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) > 0, "skip testing on GPU for now to avoid GPU OOM.", ) def test_model_from_pretrained(self): model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True) self.assertIsNotNone(model) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def test_resize_token_embeddings(self): super().test_resize_token_embeddings() @require_tf @tooslow # Marked as @tooslow due to GPU OOM -- but still useful to run locally. Requires ~39GB of RAM. class TFGPTJModelLanguageGenerationTest(unittest.TestCase): def test_lm_generate_gptj(self): model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True) input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32) # The dog # The dog is a man's best friend. It is a loyal companion, and it is a friend expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545] # fmt: skip output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) def test_gptj_sample(self): tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16") model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True) tokenized = tokenizer("Today is a nice day and", return_tensors="tf") # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(**tokenized, do_sample=True, seed=[42, 0]) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = "Today is a nice day and I’m going to go for a walk. I’" self.assertEqual(output_str, EXPECTED_OUTPUT_STR) def _get_beam_search_test_objects(self): model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True) tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16") tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] expected_output_sentences = [ "Hello, my dog is a little over a year old and has been diagnosed with hip dysplasia", "Today, I’m going to be talking about a topic that’", ] return model, tokenizer, sentences, expected_output_sentences def test_batch_beam_search(self): # Confirms that we get the expected results with left-padded beam search model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() inputs = tokenizer(sentences, return_tensors="tf", padding=True) outputs = model.generate(**inputs, do_sample=False, num_beams=2) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(expected_output_sentences, batch_out_sentence) def test_batch_left_padding(self): # Confirms that left-padding is working properly model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() inputs = tokenizer(sentences, return_tensors="tf", padding=True) inputs_non_padded = tokenizer(sentences[0], return_tensors="tf") output_non_padded = model.generate(**inputs_non_padded, do_sample=False, num_beams=2) num_paddings = ( shape_list(inputs_non_padded["input_ids"])[-1] - tf.reduce_sum(tf.cast(inputs["attention_mask"][-1], tf.int64)).numpy() ) inputs_padded = tokenizer(sentences[1], return_tensors="tf") output_padded = model.generate( **inputs_padded, do_sample=False, num_beams=2, max_length=model.config.max_length - num_paddings ) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) self.assertListEqual(expected_output_sentences, [non_padded_sentence, padded_sentence]) def test_xla_beam_search(self): # Confirms that XLA is working properly model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() inputs = tokenizer(sentences, return_tensors="tf", padding=True) xla_generate = tf.function(model.generate, jit_compile=True) outputs_xla = xla_generate(**inputs, do_sample=False, num_beams=2) xla_sentence = tokenizer.batch_decode(outputs_xla, skip_special_tokens=True) self.assertListEqual(expected_output_sentences, xla_sentence)
transformers/tests/models/gptj/test_modeling_tf_gptj.py/0
{ "file_path": "transformers/tests/models/gptj/test_modeling_tf_gptj.py", "repo_id": "transformers", "token_count": 8856 }
354
# coding=utf-8 # Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch KOSMOS-2 model. """ import copy import inspect import os import tempfile import unittest import numpy as np import requests from transformers import AutoModelForVision2Seq, AutoProcessor, Kosmos2Config from transformers.models.kosmos2.configuration_kosmos2 import Kosmos2TextConfig, Kosmos2VisionConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import Kosmos2ForConditionalGeneration, Kosmos2Model from transformers.models.kosmos2.modeling_kosmos2 import KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class Kosmos2VisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, patch_size=4, num_channels=3, is_training=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return Kosmos2VisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict class Kosmos2TextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return Kosmos2TextConfig( vocab_size=self.vocab_size, embed_dim=self.hidden_size, layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict class Kosmos2ModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, latent_query_num=3, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = Kosmos2TextModelTester(parent, **text_kwargs) self.vision_model_tester = Kosmos2VisionModelTester(parent, **vision_kwargs) self.latent_query_num = latent_query_num self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() # build `image_embeds_position_mask` image_embeds_position_mask = torch.zeros_like(input_ids) image_embeds_position_mask[:, 1 : 1 + self.latent_query_num :] = 1 config = self.get_config() return config, input_ids, attention_mask, image_embeds_position_mask, pixel_values def get_config(self): return Kosmos2Config( self.text_model_tester.get_config().to_dict(), self.vision_model_tester.get_config().to_dict(), latent_query_num=self.latent_query_num, ) def create_and_check_model(self, config, input_ids, attention_mask, image_embeds_position_mask, pixel_values): model = Kosmos2Model(config).to(torch_device).eval() with torch.no_grad(): result = model(pixel_values, input_ids, image_embeds_position_mask, attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size), ) self.parent.assertEqual( result.image_embeds.shape, (self.text_model_tester.batch_size, self.latent_query_num, self.text_model_tester.hidden_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, image_embeds_position_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "image_embeds_position_mask": image_embeds_position_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_torch class Kosmos2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Kosmos2Model, Kosmos2ForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (Kosmos2ForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": Kosmos2Model, "image-to-text": Kosmos2ForConditionalGeneration} if is_torch_available() else {} ) fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False # TODO: `image-to-text` pipeline for this model needs Processor. def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return pipeline_test_casse_name == "ImageToTextPipelineTests" def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class.__name__ == "Kosmos2ForConditionalGeneration": inputs_dict["labels"] = torch.zeros( (self.model_tester.text_model_tester.batch_size, self.model_tester.text_model_tester.seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = Kosmos2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Kosmos2Config, hidden_size=37) # overwrite from common to skip `image_to_text_projection.latent_query` def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if name == "image_to_text_projection.latent_query": # The original code use ` nn.Parameter(torch.randn(...))` for which this test won't pass. continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_load_save_without_tied_weights(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.text_config.tie_word_embeddings = False for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as d: model.save_pretrained(d) model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) # Checking the state dicts are correct reloaded_state = model_reloaded.state_dict() for k, v in model.state_dict().items(): self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") torch.testing.assert_close( v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" ) # Checking there was no complain of missing weights self.assertEqual(infos["missing_keys"], []) # overwrite from common in order to use `self.model_tester.text_model_tester.num_hidden_layers` def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.text_model_tester.num_hidden_layers + 1, ) self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.text_model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.text_model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # overwrite from common in order to use `config.text_config.vocab_size` instead of `config.vocab_size` def test_tie_model_weights(self): if not self.test_torchscript: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_same_values(layer_1, layer_2): equal = True for p1, p2 in zip(layer_1.weight, layer_2.weight): if p1.data.ne(p2.data).sum() > 0: equal = False return equal for model_class in self.all_model_classes: config.torchscript = True model_not_tied = model_class(config) if model_not_tied.get_output_embeddings() is None: continue config_tied = copy.deepcopy(config) config_tied.torchscript = False model_tied = model_class(config_tied) params_tied = list(model_tied.parameters()) # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # embeddings.weight.data.div_(2) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # decoding.weight.data.div_(4) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # Check that after resize they remain tied. model_tied.resize_token_embeddings(config.text_config.vocab_size + 10) params_tied_2 = list(model_tied.parameters()) self.assertEqual(len(params_tied_2), len(params_tied)) # decoding.weight.data.mul_(20) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape) # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head)) @slow def test_model_from_pretrained(self): for model_name in KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Kosmos2Model.from_pretrained(model_name) self.assertIsNotNone(model) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) main_input_name = model_class.main_input_name try: main_input = inputs[main_input_name] model(main_input, inputs["input_ids"], inputs["image_embeds_position_mask"]) traced_model = torch.jit.trace( model, (main_input, inputs["input_ids"], inputs["image_embeds_position_mask"]) ) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() # We will verify our results on an image of cute cats def prepare_img(): url = "https://huggingface.co/hf-internal-testing/Kosmos2-test-image/resolve/main/demo.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch @slow class Kosmos2ModelIntegrationTest(unittest.TestCase): def run_example(self, prompt, image, model, processor): inputs = processor(text=prompt, images=image, return_tensors="pt", padding=True).to(torch_device) generation_outputs = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], image_embeds=None, image_embeds_position_mask=inputs["image_embeds_position_mask"], use_cache=True, max_new_tokens=128, output_scores=True, return_dict_in_generate=True, ) scores = generation_outputs.scores generated_ids = generation_outputs.sequences generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) # Specify `cleanup_and_extract=False` in order to see the raw model generation. processed_text = [processor.post_process_generation(x, cleanup_and_extract=False) for x in generated_text] # By default, the generated text is cleanup and the entities are extracted. final_text_with_entities = [processor.post_process_generation(x) for x in generated_text] return scores, generated_ids, generated_text, processed_text, final_text_with_entities def test_snowman_image_captioning(self): url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) image.save("new_image.jpg") image = Image.open("new_image.jpg") model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device) processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") prompt = "<grounding>An image of" scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, image, model, processor ) processed_text = processed_text[0] final_text, entities = final_text_with_entities[0] np.testing.assert_allclose( torch.concat(scores[1:4])[:3, :3].to("cpu").numpy(), np.array( [ [-1.5672581195831299, -5.007406711578369, 4.36448860168457], [-2.147017002105713, -4.966302871704102, 4.592559337615967], [-0.9352350831031799, -4.688288688659668, 6.240612983703613], ] ), atol=1e-5, ) np.testing.assert_allclose( torch.concat(scores[-3:])[-3:, -3:].to("cpu").numpy(), np.array( [ [2.9916205406188965, 2.481820583343506, 4.646594524383545], [-2.8381078243255615, -2.9687185287475586, -2.6926779747009277], [-2.8909168243408203, -3.2228589057922363, -1.7056822776794434], ] ), atol=1e-5, ) # fmt: off EXPECTED_IDS = [ [ 0, 64003, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 64004, 64012, 712, 1648, 9, 64007, 10, 43867, 64008, 64009, 64057, 64876, 64010, 5950, 597, 32, 64007, 10, 646, 64008, 64009, 64018, 64924, 64010, 4, 2 ] ] # fmt: on self.assertListEqual(generated_ids.to("cpu").numpy().tolist(), EXPECTED_IDS) EXPECTED_PROCESSED_TEXT = ( "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> " "warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>." ) self.assertEqual(processed_text, EXPECTED_PROCESSED_TEXT) self.assertEqual(final_text, "An image of a snowman warming himself by a fire.") EXPECTED_ENTITIES = [ ("a snowman", (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ("a fire", (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)]), ] self.assertListEqual(entities, EXPECTED_ENTITIES) # test with the detail caption generation prompt = "<grounding>Describe this image in detail:" scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, image, model, processor ) processed_text = processed_text[0] final_text, entities = final_text_with_entities[0] np.testing.assert_allclose( torch.concat(scores[1:4])[:3, :3].to("cpu").numpy(), np.array( [ [-0.9093570113182068, -4.578373908996582, 5.96360969543457], [2.452126979827881, -4.090598106384277, 8.738677024841309], [-0.7624598741531372, -4.771658897399902, 6.576295852661133], ] ), atol=1e-5, ) np.testing.assert_allclose( torch.concat(scores[-3:])[-3:, -3:].to("cpu").numpy(), np.array( [ [-1.673659086227417, -2.162452220916748, -1.95430588722229], [-2.006824493408203, -2.2038745880126953, -1.24686861038208], [-3.2783470153808594, -2.814181089401245, -1.390632152557373], ] ), atol=1e-5, ) # fmt: off EXPECTED_IDS_LONG = [ [ 0, 64003, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 64004, 64012, 34645, 247, 38, 1648, 12, 3391, 55, 24, 1648, 1338, 10, 43867, 1280, 32, 64007, 10, 30879, 64008, 64009, 64018, 65020, 64010, 12, 5, 1842, 4, 71, 17, 1679, 64007, 10, 3958, 64008, 64009, 64061, 64263, 64010, 6, 64007, 15719, 64008, 64009, 64253, 64617, 64010, 6, 8, 64007, 9626, 64008, 64009, 64413, 64545, 64010, 6, 23, 64007, 10, 4363, 64008, 64009, 64623, 64885, 64010, 2255, 8, 64007, 10, 3486, 64008, 64009, 64809, 65036, 64010, 1560, 2255, 4, 24, 43867, 1684, 7, 27, 3774, 5, 10356, 9, 5, 646, 6, 8, 22, 1684, 7, 30, 10, 2007, 8, 16239, 4337, 4, 2 ] ] # fmt: on self.assertListEqual(generated_ids.to("cpu").numpy().tolist(), EXPECTED_IDS_LONG) EXPECTED_PROCESSED_TEXT_LONG = ( "<grounding> Describe this image in detail: The image features a snowman sitting by<phrase> a campfire" "</phrase><object><patch_index_0005><patch_index_1007></object> in the snow. He is wearing<phrase> a hat" "</phrase><object><patch_index_0048><patch_index_0250></object>,<phrase> scarf</phrase><object>" "<patch_index_0240><patch_index_0604></object>, and<phrase> gloves</phrase><object><patch_index_0400>" "<patch_index_0532></object>, with<phrase> a pot</phrase><object><patch_index_0610><patch_index_0872>" "</object> nearby and<phrase> a cup</phrase><object><patch_index_0796><patch_index_1023></object> placed " "nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy " "atmosphere." ) self.assertEqual(processed_text, EXPECTED_PROCESSED_TEXT_LONG) EXPECTED_FINAL_TEXT_LONG = ( "Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is " "wearing a hat, scarf, and gloves, with a pot nearby and a cup placed nearby. The snowman appears to be " "enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere." ) self.assertEqual(final_text, EXPECTED_FINAL_TEXT_LONG) EXPECTED_ENTITIES_LONG = [ ("a campfire", (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]), ("a hat", (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]), ("scarf", (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]), ("gloves", (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]), ("a pot", (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]), ("a cup", (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)]), ] self.assertListEqual(entities, EXPECTED_ENTITIES_LONG) def test_snowman_image_captioning_batch(self): url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) image.save("new_image.jpg") image = Image.open("new_image.jpg") model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device) prompt = ["<grounding>Describe this image in detail:", "<grounding>An image of"] # left padding processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224", padding_side="left") scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, [image] * len(prompt), model, processor ) all_final_text = [x[0] for x in final_text_with_entities] all_entities = [x[1] for x in final_text_with_entities] # left padding gives identical results as non-padding EXPECTED_PROCESSED_TEXT_0 = ( "<grounding> Describe this image in detail: The image features a snowman sitting by<phrase> a campfire" "</phrase><object><patch_index_0005><patch_index_1007></object> in the snow. He is wearing<phrase> a hat" "</phrase><object><patch_index_0048><patch_index_0250></object>,<phrase> scarf</phrase><object>" "<patch_index_0240><patch_index_0604></object>, and<phrase> gloves</phrase><object><patch_index_0400>" "<patch_index_0532></object>, with<phrase> a pot</phrase><object><patch_index_0610><patch_index_0872>" "</object> nearby and<phrase> a cup</phrase><object><patch_index_0796><patch_index_1023></object> placed " "nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy " "atmosphere." ) EXPECTED_PROCESSED_TEXT_1 = ( "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> " "warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>." ) self.assertListEqual(processed_text, [EXPECTED_PROCESSED_TEXT_0, EXPECTED_PROCESSED_TEXT_1]) EXPECTED_FINAL_TEXT_0 = ( "Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is " "wearing a hat, scarf, and gloves, with a pot nearby and a cup placed nearby. The snowman appears to be " "enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere." ) EXPECTED_FINAL_TEXT_1 = "An image of a snowman warming himself by a fire." self.assertListEqual(all_final_text, [EXPECTED_FINAL_TEXT_0, EXPECTED_FINAL_TEXT_1]) EXPECTED_ENTITIES_0 = [ ("a campfire", (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]), ("a hat", (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]), ("scarf", (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]), ("gloves", (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]), ("a pot", (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]), ("a cup", (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)]), ] EXPECTED_ENTITIES_1 = [ ("a snowman", (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ("a fire", (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)]), ] self.assertListEqual(all_entities, [EXPECTED_ENTITIES_0, EXPECTED_ENTITIES_1]) # right padding processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example( prompt, [image] * len(prompt), model, processor ) all_final_text = [x[0] for x in final_text_with_entities] all_entities = [x[1] for x in final_text_with_entities] # For right padding, only the non-padded sequences will give the same results as non-padding self.assertEqual(processed_text[0], EXPECTED_PROCESSED_TEXT_0) self.assertEqual(all_final_text[0], EXPECTED_FINAL_TEXT_0) self.assertListEqual(all_entities[0], EXPECTED_ENTITIES_0)
transformers/tests/models/kosmos2/test_modeling_kosmos2.py/0
{ "file_path": "transformers/tests/models/kosmos2/test_modeling_kosmos2.py", "repo_id": "transformers", "token_count": 15813 }
355
# coding=utf-8 # Copyright 2018 LXMERT Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class LxmertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = LxmertTokenizer rust_tokenizer_class = LxmertTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids)
transformers/tests/models/lxmert/test_tokenization_lxmert.py/0
{ "file_path": "transformers/tests/models/lxmert/test_tokenization_lxmert.py", "repo_id": "transformers", "token_count": 1286 }
356