text
stringlengths 0
2.2M
|
---|
for (const auto i : c10::irange(dom->nDims())) {
|
const auto id = GpuLower::current()->caParallelMap().getConcreteMappedID(
|
dom->domain()[i]);
|
summary_.has_cooperative_grid_reduction =
|
summary_.has_cooperative_grid_reduction ||
|
!(id->isThread() || id->extent()->isOneInt());
|
}
|
}
|
};
|
//! Make sure tensors have valid allocations even when parallelized
|
//! loops potentially have larger iteration counts than the number of
|
//! threads.
|
//!
|
//! When an IterDomain of a tensor is parallelized, the IterDomain
|
//! may not contribute to the allocation of the tensor. For example,
|
//! it is assumed that an allocation of a local-memory tensor does not
|
//! need to be accounted for an parallelied IterDomain. This is true
|
//! when it is guaranteed that each thread only needs to execute the
|
//! loop body once. However, if not, the allocation is invalid as it
|
//! only has a space for one value per thread.
|
//!
|
//! ValidateAllocation checks all tensor allocations and sees if any
|
//! tensor may have a parallelized loop whose iteration count may
|
//! be larger than the number of threads. If so, an error is thrown if
|
//! the tensor is not allocated on thread-shared memories. Note that
|
//! when allocated on a shared memory (i.e., MemoryType::Shared or
|
//! MemoryType::Global for tensors parallelized with threadIdx, or
|
//! MemoryType::Global for tensors parallelized with blockIdx), it is
|
//! assumed that allocation is properly extended for the iteration
|
//! count.
|
class ValidateAllocation : private OptOutConstDispatch {
|
public:
|
static void validate(const Kernel* kernel) {
|
ValidateAllocation validate_allocation(kernel);
|
}
|
private:
|
explicit ValidateAllocation(const Kernel* kernel) {
|
live_allocations_.emplace_back(std::vector<const Allocate*>());
|
for (const auto& expr : kernel->topLevelExprs()) {
|
OptOutConstDispatch::handle(expr);
|
}
|
live_allocations_.pop_back();
|
TORCH_INTERNAL_ASSERT(live_allocations_.empty());
|
}
|
void handle(const Allocate* allocate) final {
|
TORCH_INTERNAL_ASSERT(!live_allocations_.empty());
|
live_allocations_.back().push_back(allocate);
|
}
|
// for_loop is parallelized and its stop value is not guaranteed to
|
// be <= the number of threads, which breaks an assumption made
|
// during in the allocation lowering if it's thread-parallel and not
|
// allocated on shared or global memories, or if it's block-parallel
|
// ando not allocated on global memory.
|
void validate(const ForLoop* for_loop) {
|
const auto loop_id = for_loop->iter_domain();
|
for (const auto& allocations : live_allocations_) {
|
for (const auto& allocate : allocations) {
|
const auto tv = dynamic_cast<TensorView*>(allocate->buffer());
|
if (tv == nullptr) {
|
continue;
|
}
|
for (const auto& axis : tv->domain()->domain()) {
|
if (!GpuLower::current()->caParallelMap().areMapped(loop_id, axis)) {
|
continue;
|
}
|
if (isParallelTypeThreadDim(loop_id->getParallelType())) {
|
TORCH_INTERNAL_ASSERT(
|
tv->getMemoryType() == MemoryType::Shared ||
|
tv->getMemoryType() == MemoryType::Global,
|
"Tensor t",
|
tv->name(),
|
" must be allocated on SMEM or GMEM.");
|
} else if (isParallelTypeBlockDim(loop_id->getParallelType())) {
|
TORCH_INTERNAL_ASSERT(tv->getMemoryType() == MemoryType::Global);
|
}
|
}
|
}
|
}
|
}
|
void handle(const ForLoop* for_loop) final {
|
if (for_loop->stop() != for_loop->iter_domain()->extent() &&
|
isParallelTypeThread(for_loop->iter_domain()->getParallelType())) {
|
validate(for_loop);
|
}
|
live_allocations_.emplace_back(std::vector<const Allocate*>());
|
for (const auto& expr : for_loop->body().exprs()) {
|
OptOutConstDispatch::handle(expr);
|
}
|
live_allocations_.pop_back();
|
}
|
void handle(const IfThenElse* ite) final {
|
for (const auto& expr : ite->thenBody().exprs()) {
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.