text
stringlengths 0
2.2M
|
---|
void handle(Allocate* allocate) final {
|
switch (allocate->memoryType()) {
|
case MemoryType::Global:
|
summary_.global_allocations.push_back(allocate);
|
break;
|
case MemoryType::Shared:
|
if (ExpressionEvaluator::isConst(allocate->size())) {
|
summary_.static_smem_allocations.push_back(allocate);
|
} else {
|
summary_.dynamic_smem_allocations.push_back(allocate);
|
}
|
break;
|
case MemoryType::Local:
|
if (!ExpressionEvaluator::isConst(allocate->size())) {
|
summary_.has_dynamic_local_memory_allocations = true;
|
summary_.dynamic_lmem_allocations.emplace_back(allocate);
|
}
|
break;
|
}
|
}
|
void handle(UnaryOp* unary_op) final {
|
if (unary_op->getUnaryOpType() == UnaryOpType::RandLike) {
|
// This kernel is using random numbers
|
summary_.is_stochastic = true;
|
}
|
}
|
void handle(TensorIndex* tensor_index) final {
|
const auto tv = tensor_index->view();
|
const auto domain = tv->domain();
|
// Do we have any reductions?
|
summary_.has_block_reductions =
|
summary_.has_block_reductions || domain->hasBlockReduction();
|
// Update the largest smem data type
|
if (domain->hasBlockReduction() || domain->hasGridReduction() ||
|
tv->getMemoryType() == MemoryType::Shared) {
|
const auto data_type = tv->dtype();
|
const size_t type_size = dataTypeSize(data_type);
|
if (type_size > max_smem_type_size_) {
|
max_smem_type_size_ = type_size;
|
summary_.largest_smem_data_type = data_type;
|
}
|
}
|
}
|
void handle(WelfordOp* welford_op) final {
|
summary_.has_welford = true;
|
TORCH_INTERNAL_ASSERT(welford_op->outAvg()->isA<TensorIndex>());
|
auto out_dom = welford_op->outAvg()->as<TensorIndex>()->view()->domain();
|
summary_.has_block_welford =
|
summary_.has_block_welford || out_dom->hasBlockReduction();
|
}
|
void handle(GridWelford* grid_welford) final {
|
summary_.has_welford = true;
|
summary_.has_grid_welford = true;
|
const auto dom =
|
grid_welford->welford_op()->out()->as<TensorIndex>()->view()->domain();
|
updateGridReductionInLoop(dom);
|
}
|
void handle(GridReduction* grid_reduction) final {
|
summary_.has_grid_reductions = true;
|
const auto dom = grid_reduction->reduction_op()
|
->out()
|
->as<TensorIndex>()
|
->view()
|
->domain();
|
updateGridReductionInLoop(dom);
|
}
|
void handle(GridBroadcast* grid_broadcast) final {
|
summary_.has_cooperative_grid_reduction = true;
|
handle(grid_broadcast->broadcast_op());
|
}
|
void handle(BroadcastOp* bop) final {
|
const ParallelTypeBitmap parallel_types =
|
GpuLower::current()->threadPredMap().getParallelBroadcastDomains(
|
bop->out()->as<TensorIndex>()->view());
|
summary_.broadcast_parallel_types.emplace(bop, parallel_types);
|
// Do we have block broadcasts?
|
summary_.has_block_broadcasts =
|
summary_.has_block_broadcasts || parallel_types.hasTID();
|
// Do we have grid broadcasts?
|
summary_.has_grid_broadcasts =
|
summary_.has_grid_broadcasts || parallel_types.hasBID();
|
}
|
private:
|
size_t max_smem_type_size_ = 0;
|
KernelSummary summary_;
|
private:
|
void updateGridReductionInLoop(TensorDomain* dom) {
|
summary_.has_grid_reductions = true;
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.