text
stringlengths 1
2.05k
|
---|
class Reshape():
def __init__(self, layer):
return
def backward(self, layer, transcript, config):
reshape_layer = {
'layer_type': 'Reshape',
'params': [],
'inp_idxes': [config.gradient_tensor_idx(layer['out_idxes'][0])],
'out_idxes': [config.new_gradient_tensor(layer['inp_idxes'][0])],
'inp_shapes': [layer['out_shapes'][0]],
'out_shapes': [layer['inp_shapes'][0]],
'mask': [],
}
transcript.append(reshape_layer)
def produce_graph():
with open("examples/v2_1.0_224_truncated/model.msgpack", "rb") as data_file:
byte_data = data_file.read()
model = msgpack.unpackb(byte_data)
softmax_output_index = int(np.max(
[[out for out in layer['out_idxes']] for layer in model['layers']] +
[[inp for inp in layer['inp_idxes']] for layer in model['layers']]
)[0])
circuit_config = CircuitConfig(softmax_output_index + 1)
circuit_config.new_label_tensor()
transcript = []
for layer in reversed(model['layers']):
fetched_layer = None
match layer['layer_type']:
case "Conv2D":
fetched_layer = Conv2D(layer)
case "AveragePool2D":
fetched_layer = AveragePool2D(layer)
case "Softmax":
fetched_layer = Softmax(layer)
case _:
fetched_layer = Reshape(layer)
print(layer['layer_type'])
fetched_layer.backward(layer, transcript, circuit_config)
print('----------------')
model['layers'] += transcript
model['inp_idxes'].append(circuit_config.label_tensor_idx)
model['out_idxes'] = [31]
packed = msgpack.packb(model, use_bin_type=True)
with open("./examples/train_graph/train.msgpack", 'wb') as f:
f.write(packed)
print(model.keys())
return model
model = produce_graph()
print(model.keys())
model['tensors'] = ""
print(model['inp_idxes'], model['out_idxes']) |
import tensorflow as tf
import numpy as np
import msgpack
from tensorflow import keras
mnist = tf.keras.datasets.mnist
(images_train, labels_train), (images_test, labels_test) = mnist.load_data()
x = images_test[0]
y = labels_test[0]
print(y)
x = x.flatten() / 255.
x = x.astype(np.float32)
print(x.dtype, x.shape)
np.save('5.npy', x)
|
import argparse |
import ast
from typing |
import Literal, Union |
import tensorflow as tf |
import numpy as np |
import tflite |
import msgpack
def get_shape(interpreter: tf.lite.Interpreter, tensor_idx):
if tensor_idx == -1:
return []
tensor = interpreter.get_tensor(tensor_idx)
return list(tensor.shape)
def handle_numpy_or_literal(inp: Union[np.ndarray, Literal[0]]):
if isinstance(inp, int):
return np.array([inp])
return inp
def get_inputs(op: tflite.Operator):
idxes = handle_numpy_or_literal(op.InputsAsNumpy())
idxes = idxes.tolist()
idxes = list(filter(lambda x: x != -1, idxes))
return idxes
class Converter:
def __init__(
self, model_path, scale_factor, k, num_cols, num_randoms, use_selectors, commit,
expose_output
):
self.model_path = model_path
self.scale_factor = scale_factor
self.k = k
self.num_cols = num_cols
self.num_randoms = num_randoms
self.use_selectors = use_selectors
self.commit = commit
self.expose_output = expose_output
self.interpreter = tf.lite.Interpreter(
model_path=self.model_path,
experimental_preserve_all_tensors=True
)
self.interpreter.allocate_tensors()
with open(self.model_path, 'rb') as f:
buf = f.read()
self.model = tflite.Model.GetRootAsModel(buf, 0)
self.graph = self.model.Subgraphs(0)
def valid_activations(self):
return [
tflite.ActivationFunctionType.NONE,
tflite.ActivationFunctionType.RELU,
tflite.ActivationFunctionType.RELU6,
]
def _convert_add(self, op: tflite.Operator, generated_tensors: set):
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('Add options is None')
opt = tflite.AddOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
params = [opt.FusedActivationFunction()]
inputs = get_inputs(op)
print(generated_tensors)
print('Add inputs: ', inputs)
if len(inputs) != 2:
raise RuntimeError('Add must have 2 inputs')
print(inputs[0] in generated_tensors, inputs[1] in generated_tensors)
if (inputs[0] in generated_tensors) and (inputs[1] in generated_tensors):
retu |
rn ('Add', params)
nb_generated = (inputs[0] in generated_tensors) + (inputs[1] in generated_tensors)
if nb_generated != 1:
raise RuntimeError('Add must have 1 generated tensor')
const_tensor = self.interpreter.get_tensor(inputs[0]) if inputs[0] not in generated_tensors else self.interpreter.get_tensor(inputs[1])
if np.any(const_tensor == -np.inf):
if not np.all(np.logical_or(np.isneginf(const_tensor), const_tensor == 0)):
raise RuntimeError('Add constant tensor must be -inf and 0 only')
mask = (const_tensor == -np.inf).astype(np.int64)
params = [len(mask.shape)] + list(mask.shape)
params += mask.flatten().tolist()
return ('MaskNegInf', params)
else:
return ('Add', params)
def to_dict(self, start_layer, end_layer):
interpreter = self.interpreter
model = self.model
graph = self.graph
if graph is None:
raise RuntimeError('Graph is None')
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
for inp_detail in input_details:
inp = np.zeros(inp_detail['shape'], dtype=inp_detail['dtype'])
interpreter.set_tensor(inp_detail['index'], inp)
interpreter.invoke()
generated_tensor_idxes = set()
for inp in input_details:
generated_tensor_idxes.add(inp['index'])
layers = []
keep_tensors = set()
adjusted_tensors = {}
for op_idx in range(graph.OperatorsLength()):
op = graph.Operators(op_idx)
if op is None:
raise RuntimeError('Operator is None')
model_opcode = model.OperatorCodes(op.OpcodeIndex())
if model_opcode is None:
raise RuntimeError('Operator code is None')
op_code = model_opcode.BuiltinCode()
for output in handle_numpy_or_literal(op.OutputsAsNumpy()):
generated_tensor_idxes.add(output)
if op_idx < start_layer:
continue
if op_idx > end_layer:
break
for input in handle_numpy_or_literal(op |
.InputsAsNumpy()):
keep_tensors.add(input)
if op_code == tflite.BuiltinOperator.AVERAGE_POOL_2D:
layer_type = 'AveragePool2D'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('AvgPool2D options is None')
opt = tflite.Pool2DOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
params = [opt.FilterHeight(), opt.FilterWidth(), opt.StrideH(), opt.StrideW()]
elif op_code == tflite.BuiltinOperator.MAX_POOL_2D:
layer_type = 'MaxPool2D'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('MaxPool2D options is None')
opt = tflite.Pool2DOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
if opt.Padding() == tflite.Padding.SAME:
raise NotImplementedError('SAME padding is not supported')
if opt.FusedActivationFunction() != tflite.ActivationFunctionType.NONE:
raise NotImplementedError('Fused activation is not supported')
params = [opt.FilterHeight(), opt.FilterWidth(), opt.StrideH(), opt.StrideW()]
elif op_code == tflite.BuiltinOperator.CUSTOM:
layer_type = 'Conv2D'
activation = 0
weights = self.interpreter.get_tensor(op.Inputs(1))
weights = np.transpose(weights, (3, 0, 1, 2))
weights = (weights * self.scale_factor).round().astype(np.int64)
adjusted_tensors[op.Inputs(1)] = weights
params = [0, 1, activation, 1, 1]
elif op_code == tflite.BuiltinOperator.CONV_2D:
layer_type = 'Conv2D'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('Conv2D options is None')
opt = tflite.Conv2DOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
if opt.DilationHFactor() != 1 or opt.DilationWFactor() != 1:
raise NotImplementedError('Dilation is not supported')
if opt.FusedActivationFunction() not in self.valid_activations():
raise NotImplementedError('Unsupported activation fun |
ction at layer {op_idx}')
params = \
[0] + \
[opt.Padding()] + \
[opt.FusedActivationFunction()] + \
[opt.StrideH(), opt.StrideW()]
elif op_code == tflite.BuiltinOperator.DEPTHWISE_CONV_2D:
layer_type = 'Conv2D'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('DepthwiseConv2D options is None')
opt = tflite.DepthwiseConv2DOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
if opt.DilationHFactor() != 1 or opt.DilationWFactor() != 1:
raise NotImplementedError('Dilation is not supported')
if opt.FusedActivationFunction() not in self.valid_activations():
raise NotImplementedError('Unsupported activation function at layer {op_idx}')
params = \
[1] + \
[opt.Padding()] + \
[opt.FusedActivationFunction()] + \
[opt.StrideH(), opt.StrideW()]
elif op_code == tflite.BuiltinOperator.FULLY_CONNECTED:
layer_type = 'FullyConnected'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('Fully connected options is None')
opt = tflite.FullyConnectedOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
if opt.FusedActivationFunction() not in self.valid_activations():
raise NotImplementedError(f'Unsupported activation function at layer {op_idx}')
params = [opt.FusedActivationFunction()]
elif op_code == tflite.BuiltinOperator.BATCH_MATMUL:
layer_type = 'BatchMatMul'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('BatchMatMul options is None')
opt = tflite.BatchMatMulOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
if opt.AdjX() is True: raise NotImplementedError('AdjX is not supported')
params = [int(opt.AdjX()), int(opt.AdjY())]
elif op_code == tflite.BuiltinOperator.ADD:
layer_type, params = self._convert_ |
add(op, generated_tensor_idxes)
elif op_code == tflite.BuiltinOperator.MUL:
layer_type = 'Mul'
params = []
elif op_code == tflite.BuiltinOperator.SUB:
sub_val = interpreter.get_tensor(op.Inputs(1))
if np.any(np.isin(sub_val, 10000)):
layer_type = 'MaskNegInf'
mask = (sub_val == 10000).astype(np.int64)
params = [len(mask.shape)] + list(mask.shape)
params += mask.flatten().tolist()
else:
layer_type = 'Sub'
params = []
elif op_code == tflite.BuiltinOperator.DIV:
layer_type = 'Mul'
div_val = interpreter.get_tensor(op.Inputs(1))
if type(div_val) != np.float32: raise NotImplementedError('Only support one divisor')
adjusted_tensors[op.Inputs(1)] = np.array([(self.scale_factor / div_val).round().astype(np.int64)])
params = []
elif op_code == tflite.BuiltinOperator.PAD:
layer_type = 'Pad'
tensor_idx = op.Inputs(1)
tensor = interpreter.get_tensor(tensor_idx).flatten().astype(np.int64)
params = tensor.tolist()
elif op_code == tflite.BuiltinOperator.SOFTMAX:
layer_type = 'Softmax'
if layers[-1]['layer_type'] == 'MaskNegInf':
params = layers[-1]['params']
elif layers[-2]['layer_type'] == 'MaskNegInf':
params = layers[-2]['params']
params = [params[0] - 1] + params[2:]
else:
params = []
elif op_code == tflite.BuiltinOperator.MEAN:
layer_type = 'Mean'
inp_shape = interpreter.get_tensor(op.Inputs(0)).shape
mean_idxes = interpreter.get_tensor(op.Inputs(1)).flatten().astype(np.int64)
if len(mean_idxes) + 2 != len(inp_shape):
raise NotImplementedError(f'Only mean over all but one axis is supported: {op_idx}')
params = mean_idxes.tolist()
elif op_code == tflite.BuiltinOperator.SQUARE:
layer_type = 'Square'
para |
ms = []
elif op_code == tflite.BuiltinOperator.SQUARED_DIFFERENCE:
layer_type = 'SquaredDifference'
params = []
elif op_code == tflite.BuiltinOperator.RSQRT:
layer_type = 'Rsqrt'
params = []
elif op_code == tflite.BuiltinOperator.LOGISTIC:
layer_type = 'Logistic'
params = []
elif op_code == tflite.BuiltinOperator.TANH:
layer_type = 'Tanh'
params = []
elif op_code == tflite.BuiltinOperator.POW:
layer_type = 'Pow'
power = interpreter.get_tensor(op.Inputs(1)).flatten().astype(np.float32)
if power != 3.: raise NotImplementedError(f'Only support power 3')
power = power.round().astype(np.int64)
if len(power) != 1: raise NotImplementedError(f'Only scalar power is supported: {op_idx}')
params = power.tolist()
elif op_code == tflite.BuiltinOperator.SHAPE:
layer_type = 'Noop'
params = [0]
elif op_code == tflite.BuiltinOperator.GATHER:
layer_type = 'Noop'
params = [0]
elif op_code == tflite.BuiltinOperator.REDUCE_PROD:
layer_type = 'Noop'
params = [0]
elif op_code == tflite.BuiltinOperator.STRIDED_SLICE:
layer_type = 'Noop'
params = [0]
elif op_code == tflite.BuiltinOperator.BROADCAST_ARGS:
layer_type = 'Noop'
params = [0]
elif op_code == tflite.BuiltinOperator.BROADCAST_TO:
layer_type = 'Noop'
params = [0]
elif op_code == tflite.BuiltinOperator.RESHAPE:
layer_type = 'Reshape'
params = []
elif op_code == tflite.BuiltinOperator.TRANSPOSE:
layer_type = 'Transpose'
params = get_shape(interpreter, op.Inputs(0)) + interpreter.get_tensor(op.Inputs(1)).flatten().astype(np.int64).tolist()
elif op_code == tflite.BuiltinOperator.CONCATENATION:
layer_type = 'Concatenation'
op_opt = op.BuiltinOptions()
if op_opt is None: |
raise RuntimeError('Concatenation options is None')
opt = tflite.ConcatenationOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
params = [opt.Axis()]
elif op_code == tflite.BuiltinOperator.PACK:
layer_type = 'Pack'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('Pack options is None')
opt = tflite.PackOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
params = [opt.Axis()]
if params[0] > 1: raise NotImplementedError(f'Only axis=0,1 supported at layer {op_idx}')
elif op_code == tflite.BuiltinOperator.SPLIT:
layer_type = 'Split'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('Split options is None')
opt = tflite.SplitOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
axis = interpreter.get_tensor(op.Inputs(0)).flatten().astype(np.int64)[0]
num_splits = opt.NumSplits()
inp = interpreter.get_tensor(op.Inputs(1))
if inp.shape[axis] % num_splits != 0:
raise NotImplementedError(f'Only equal splits supported at layer {op_idx}')
params = [int(axis), num_splits]
elif op_code == tflite.BuiltinOperator.SLICE:
layer_type = 'Slice'
begin = interpreter.get_tensor(op.Inputs(1)).flatten().astype(np.int64).tolist()
size = interpreter.get_tensor(op.Inputs(2)).flatten().astype(np.int64).tolist()
params = begin + size
elif op_code == tflite.BuiltinOperator.RESIZE_NEAREST_NEIGHBOR:
layer_type = 'ResizeNearestNeighbor'
op_opt = op.BuiltinOptions()
if op_opt is None:
raise RuntimeError('ResizeNearestNeighbor options is None')
opt = tflite.ResizeNearestNeighborOptions()
opt.Init(op_opt.Bytes, op_opt.Pos)
if opt.AlignCorners():
raise NotImplementedError(f'Align corners not supported at layer {op_idx}')
if not opt.HalfPixelCenters():
raise NotImplementedError(f'Half pixel centers not |
supported at layer {op_idx}')
params = [int(opt.AlignCorners()), int(opt.HalfPixelCenters())]
else:
op_name = None
for attr in dir(tflite.BuiltinOperator):
if not attr.startswith('__'):
if getattr(tflite.BuiltinOperator, attr) == op_code:
op_name = attr
raise NotImplementedError('Unsupported operator at layer {}: {}, {}'.format(op_idx, op_code, op_name))
inp_idxes = get_inputs(op)
rsqrt_overflows = [99, 158, 194, 253, 289, 348]
if op_idx in rsqrt_overflows:
if op_code == tflite.BuiltinOperator.RSQRT:
mask = [0, 1]
else:
mask = []
else:
mask = []
layers.append({
'layer_type': layer_type,
'inp_idxes': inp_idxes,
'inp_shapes': [get_shape(interpreter, inp_idx) for inp_idx in inp_idxes],
'out_idxes': [op.Outputs(i) for i in range(op.OutputsLength())],
'out_shapes': [get_shape(interpreter, op.Outputs(i)) for i in range(op.OutputsLength())],
'params': params,
'mask': mask,
})
print(layers)
print()
print('keep tensors:', keep_tensors)
tensors = []
for tensor_idx in range(graph.TensorsLength()):
if tensor_idx not in keep_tensors:
continue
tensor = graph.Tensors(tensor_idx)
if tensor is None:
raise NotImplementedError('Tensor is None')
if tensor_idx in generated_tensor_idxes:
print(f'skipping generated tensor: {format(tensor_idx)}, {tensor.Name()}')
continue
shape = []
for i in range(tensor.ShapeLength()):
shape.append(int(tensor.Shape(i)))
if shape == []:
shape = [1]
tensor_data = interpreter.get_tensor(tensor_idx)
if tensor.Type() == tflite.TensorType.FLOAT32:
tensor_data = (tensor_data * self.scale_factor).round().astype(np.int64)
elif tensor.Type() == tflite.TensorType.INT32:
tensor_data = tensor_data.astype(np.int64)
elif tensor |
.Type() == tflite.TensorType.INT64:
continue
else:
raise NotImplementedError('Unsupported tensor type: {}'.format(tensor.Type()))
if tensor_idx in adjusted_tensors:
tensor_data = adjusted_tensors[tensor_idx]
shape = tensor_data.shape
tensors.append({
'idx': tensor_idx,
'shape': shape,
'data': tensor_data.flatten().tolist(),
})
commit_before = []
commit_after = []
if self.commit:
input_tensors = [inp['index'] for inp in input_details]
weight_tensors = [tensor['idx'] for tensor in tensors if tensor['idx'] not in input_tensors]
commit_before = [weight_tensors, input_tensors]
output_tensors = [out['index'] for out in output_details]
commit_after = [output_tensors]
out_idxes = layers[-1]['out_idxes'] if self.expose_output else []
d = {
'global_sf': self.scale_factor,
'k': self.k,
'num_cols': self.num_cols,
'num_random': self.num_randoms,
'inp_idxes': [inp['index'] for inp in input_details],
'out_idxes': out_idxes,
'layers': layers,
'tensors': tensors,
'use_selectors': self.use_selectors,
'commit_before': commit_before,
'commit_after': commit_after,
}
print()
print(d['layers'][-1])
print(d.keys())
print(d['out_idxes'])
return d
def to_msgpack(self, start_layer, end_layer, use_selectors=True):
d = self.to_dict(start_layer, end_layer)
model_packed = msgpack.packb(d, use_bin_type=True)
d['tensors'] = []
config_packed = msgpack.packb(d, use_bin_type=True)
return model_packed, config_packed
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--model_output', type=str, required=True)
parser.add_argument('--config_output', type=str, required=True)
parser.add_argument('--scale_factor', type=int, default=2**16)
parser.add_argument('--k', type=int, default=19)
parser.add_ar |
gument('--eta', type=float, default=0.001)
parser.add_argument('--num_cols', type=int, default=6)
parser.add_argument('--use_selectors', action=argparse.BooleanOptionalAction, required=False, default=True)
parser.add_argument('--commit', action=argparse.BooleanOptionalAction, required=False, default=False)
parser.add_argument('--expose_output', action=argparse.BooleanOptionalAction, required=False, default=True)
parser.add_argument('--start_layer', type=int, default=0)
parser.add_argument('--end_layer', type=int, default=10000)
parser.add_argument('--num_randoms', type=int, default=20001)
args = parser.parse_args()
converter = Converter(
args.model,
args.scale_factor,
args.k,
args.num_cols,
args.num_randoms,
args.use_selectors,
args.commit,
args.expose_output,
)
model_packed, config_packed = converter.to_msgpack(
start_layer=args.start_layer,
end_layer=args.end_layer,
)
if model_packed is None:
raise Exception('Failed to convert model')
with open(args.model_output, 'wb') as f:
f.write(model_packed)
with open(args.config_output, 'wb') as f:
f.write(config_packed)
if __name__ == '__main__':
main() |
import argparse
import ast
import numpy as np
import msgpack
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_config', type=str, required=True)
parser.add_argument('--inputs', type=str, required=True)
parser.add_argument('--output', type=str, required=True)
args = parser.parse_args()
inputs = args.inputs.split(',')
with open(args.model_config, 'rb') as f:
model_config = msgpack.unpackb(f.read())
input_idxes = model_config['inp_idxes']
scale_factor = model_config['global_sf']
# Get the input shapes from the layers
input_shapes = [[0] for _ in input_idxes]
for layer in model_config['layers']:
for layer_inp_idx, layer_shape in zip(layer['inp_idxes'], layer['inp_shapes']):
for index, inp_idx in enumerate(input_idxes):
if layer_inp_idx == inp_idx:
input_shapes[index] = layer_shape
tensors = []
for inp, shape, idx in zip(inputs, input_shapes, input_idxes):
tensor = np.load(inp).reshape(shape)
tensor = (tensor * scale_factor).round().astype(np.int64)
tensors.append({
'idx': idx,
'shape': shape,
'data': tensor.flatten().tolist(),
})
packed = msgpack.packb(tensors, use_bin_type=True)
with open(args.output, 'wb') as f:
f.write(packed)
if __name__ == '__main__':
main() |
# A converter for training data
# Performs the conversion npy -> msgpack
# TODO: Ensure that training works with models that take in multiple input shapes
#
# Shortcut:
# `python3 python/training_converter.py --input_shapes 7,7,320 --input_idxes 1,0 --output training_data/inputs.msgpack --labels_output training_data/labels.msgpack`
#
import argparse
import ast
import numpy as np
import msgpack
import os
NUM_LOADS = 1
SF = 1 << 17
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input_shapes', type=str, required=True)
parser.add_argument('--output', type=str, required=True)
TRAINING_DIRECTORY = './testing/data/pre_last_conv/flowers/train'
args = parser.parse_args()
input_shapes = ast.literal_eval(args.input_shapes)
loaded = 0
tensors = []
num_classes = os.listdir(TRAINING_DIRECTORY)
first_file = "0.npy"
for file_name in os.listdir(TRAINING_DIRECTORY):
if loaded == NUM_LOADS:
break
label = int(first_file[:-4])
data_array = np.load(TRAINING_DIRECTORY + '/' + first_file)
input_shape = input_shapes
for idx in range(data_array.shape[0]):
print(SF)
print((np.vstack(data_array) * SF).round().astype(np.int64))
tensors.append({
'idx': 0,
'shape': input_shape,
'data': list(map(lambda x: int(x), list((data_array[idx] * SF).round().astype(np.int64).flatten()))),
})
# represent the label as a one hot encoding
one_hot = np.zeros(102)
one_hot[label] = SF
print("IMPORTANT LABEL", label)
print("IMPORTANT LABEL", data_array[idx].flatten()[:500])
# print(one_hot.shape())
tensors.append({
'idx': 11,
'shape': (1, 102),
'data': list(map(lambda x: int(x), one_hot)),
})
loaded += 1
if loaded == NUM_LOADS:
break
packed_inputs = msgpack.packb(tensors, use_bin_type=True)
# print(tensors)
with open(args.output, 'wb') as f:
f.write(packed_inputs)
if __name__ == '__main__':
main()
|
use halo2_proofs::{dev::MockProver, halo2curves::bn256::Fr};
use zkml::{
model::ModelCircuit,
utils::{
helpers::get_public_values,
loader::{load_model_msgpack, ModelMsgpack},
},
};
fn main() {
let config_fname = std::env::args().nth(1).expect("config file path");
let inp_fname = std::env::args().nth(2).expect("input file path");
let config: ModelMsgpack = load_model_msgpack(&config_fname, &inp_fname);
let circuit = ModelCircuit::<Fr>::generate_from_file(&config_fname, &inp_fname);
let _prover = MockProver::run(config.k.try_into().unwrap(), &circuit, vec![vec![]]).unwrap();
let public_vals = get_public_values();
let prover = MockProver::run(config.k.try_into().unwrap(), &circuit, vec![public_vals]).unwrap();
assert_eq!(prover.verify(), Ok(()));
}
|
use halo2_proofs::halo2curves::{bn256::Fr, pasta::Fp};
use zkml::{
model::ModelCircuit,
utils::{proving_ipa::time_circuit_ipa, proving_kzg::time_circuit_kzg},
};
fn main() {
let config_fname = std::env::args().nth(1).expect("config file path");
let inp_fname = std::env::args().nth(2).expect("input file path");
let kzg_or_ipa = std::env::args().nth(3).expect("kzg or ipa");
if kzg_or_ipa != "kzg" && kzg_or_ipa != "ipa" {
panic!("Must specify kzg or ipa");
}
if kzg_or_ipa == "kzg" {
let circuit = ModelCircuit::<Fr>::generate_from_file(&config_fname, &inp_fname);
time_circuit_kzg(circuit);
} else {
let circuit = ModelCircuit::<Fp>::generate_from_file(&config_fname, &inp_fname);
time_circuit_ipa(circuit);
}
}
|
use halo2_proofs::halo2curves::bn256::Fr;
use zkml::{
model::ModelCircuit,
utils::{loader::load_config_msgpack, proving_kzg::verify_circuit_kzg},
};
fn main() {
let config_fname = std::env::args().nth(1).expect("config file path");
let vkey_fname = std::env::args().nth(2).expect("verification key file path");
let proof_fname = std::env::args().nth(3).expect("proof file path");
let public_vals_fname = std::env::args().nth(4).expect("public values file path");
let kzg_or_ipa = std::env::args().nth(5).expect("kzg or ipa");
if kzg_or_ipa != "kzg" && kzg_or_ipa != "ipa" {
panic!("Must specify kzg or ipa");
}
if kzg_or_ipa == "kzg" {
let config = load_config_msgpack(&config_fname);
let circuit = ModelCircuit::<Fr>::generate_from_msgpack(config, false);
println!("Loaded configuration");
verify_circuit_kzg(circuit, &vkey_fname, &proof_fname, &public_vals_fname);
} else {
// Serialization of the verification key doesn't seem to be supported for IPA
panic!("Not implemented");
}
}
|
use std::fs::File;
use halo2_proofs::{dev::MockProver, halo2curves::bn256::Fr};
use zkml::{
model::ModelCircuit,
utils::{
helpers::get_public_values,
loader::{load_config_msgpack, ModelMsgpack, TensorMsgpack},
},
};
fn main() {
let config_fname = std::env::args().nth(1).expect("config file path");
let wav_fname = std::env::args().nth(2).expect("wav file path");
let mut wav_file = File::open(wav_fname).unwrap();
let (_header, data) = wav::read(&mut wav_file).unwrap();
let data = match data {
wav::BitDepth::Sixteen(data) => data,
_ => panic!("Unsupported bit depth"),
};
let data: Vec<i64> = data.iter().map(|x| *x as i64).collect();
let base_config = load_config_msgpack(&config_fname);
let config = ModelMsgpack {
tensors: vec![TensorMsgpack {
idx: 0,
shape: vec![1, data.len().try_into().unwrap()],
data: data,
}],
inp_idxes: vec![0],
out_idxes: vec![],
layers: vec![],
commit_before: Some(vec![]),
commit_after: Some(vec![vec![0]]),
..base_config
};
println!("Config: {:?}", config);
let k = config.k;
let circuit = ModelCircuit::<Fr>::generate_from_msgpack(config, false);
let _prover = MockProver::run(k.try_into().unwrap(), &circuit, vec![vec![]]).unwrap();
let public_vals: Vec<Fr> = get_public_values();
println!("Public values: {:?}", public_vals);
}
|
pub mod commit;
pub mod packer;
pub mod poseidon_commit;
|
use std::{collections::HashMap, rc::Rc};
use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error};
use crate::{gadgets::gadget::GadgetConfig, layers::layer::CellRc};
pub trait Commit<F: PrimeField> {
fn commit(
&self,
layouter: impl Layouter<F>,
gadget_config: Rc<GadgetConfig>,
constants: &HashMap<i64, CellRc<F>>,
values: &Vec<CellRc<F>>,
blinding: CellRc<F>,
) -> Result<Vec<CellRc<F>>, Error>;
}
|
use std::{
cmp::{max, min},
collections::{BTreeMap, HashMap},
marker::PhantomData,
rc::Rc,
};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Value},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use ndarray::{Array, IxDyn};
use crate::{
gadgets::gadget::{GadgetConfig, GadgetType},
layers::layer::{AssignedTensor, CellRc},
};
const NUM_BITS_PER_FIELD_ELEM: usize = 254;
pub struct PackerConfig<F: PrimeField> {
pub num_bits_per_elem: usize,
pub num_elem_per_packed: usize,
pub num_packed_per_row: usize,
pub exponents: Vec<F>,
_marker: PhantomData<F>,
}
pub struct PackerChip<F: PrimeField> {
pub config: PackerConfig<F>,
}
impl<F: PrimeField> PackerChip<F> {
pub fn get_exponents(num_bits_per_elem: usize, num_exponents: usize) -> Vec<F> {
let mul_val = F::from(1 << num_bits_per_elem);
let mut exponents = vec![F::ONE];
for _ in 1..num_exponents {
exponents.push(exponents[exponents.len() - 1] * mul_val);
}
exponents
}
pub fn construct(num_bits_per_elem: usize, gadget_config: &GadgetConfig) -> PackerConfig<F> {
let columns = &gadget_config.columns;
let num_elem_per_packed = if NUM_BITS_PER_FIELD_ELEM / num_bits_per_elem > columns.len() - 1 {
columns.len() - 1
} else {
NUM_BITS_PER_FIELD_ELEM / num_bits_per_elem
};
println!("column len: {}", columns.len());
println!("num_bits_per_elem: {}", num_bits_per_elem);
println!("NUM_BITS_PER_FIELD_ELEM: {}", NUM_BITS_PER_FIELD_ELEM);
println!("num_elem_per_packed: {}", num_elem_per_packed);
let num_packed_per_row = max(
1,
columns.len() / (num_elem_per_packed * (num_bits_per_elem + 1)),
);
println!("num_packed_per_row: {}", num_packed_per_row);
let exponents = Self::get_exponents(num_bits_per_elem, num_elem_per_packed);
let config = PackerConfig {
num_bits_per_elem,
num_elem_per_packed,
num_packed_per_row,
exponents,
_marker: PhantomData,
}; |
config
}
pub fn configure(
meta: &mut ConstraintSystem<F>,
packer_config: PackerConfig<F>,
gadget_config: GadgetConfig,
) -> GadgetConfig {
let selector = meta.complex_selector();
let columns = gadget_config.columns;
let lookup = gadget_config.tables.get(&GadgetType::InputLookup).unwrap()[0];
let exponents = &packer_config.exponents;
let num_bits_per_elem = packer_config.num_bits_per_elem;
let shift_val = 1 << (num_bits_per_elem - 1);
let shift_val = Expression::Constant(F::from(shift_val as u64));
meta.create_gate("packer", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for i in 0..packer_config.num_packed_per_row {
let offset = i * (packer_config.num_elem_per_packed + 1);
let inps = columns[offset..offset + packer_config.num_elem_per_packed]
.iter()
.map(|col| meta.query_advice(*col, Rotation::cur()))
.collect::<Vec<_>>();
let outp = meta.query_advice(
columns[offset + packer_config.num_elem_per_packed],
Rotation::cur(),
);
let res = inps
.into_iter()
.zip(exponents.iter())
.map(|(inp, exp)| (inp + shift_val.clone()) * (*exp))
.fold(Expression::Constant(F::ZERO), |acc, prod| acc + prod);
constraints.push(s.clone() * (res - outp));
}
constraints
});
for i in 0..packer_config.num_packed_per_row {
let offset = i * (packer_config.num_elem_per_packed + 1);
for j in 0..packer_config.num_elem_per_packed {
meta.lookup("packer lookup", |meta| {
let s = meta.query_selector(selector);
let inp = meta.query_advice(columns[offset + j], Rotation::cur());
vec![(s * (inp + shift_val.clone()), lookup)]
});
}
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::Packer, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_ |
config
}
}
pub fn copy_and_pack_row(
&self,
mut layouter: impl Layouter<F>,
gadget_config: Rc<GadgetConfig>,
cells: Vec<CellRc<F>>,
zero: &AssignedCell<F, F>,
) -> Result<Vec<CellRc<F>>, Error> {
let columns = &gadget_config.columns;
let selector = gadget_config.selectors.get(&GadgetType::Packer).unwrap()[0];
let num_bits_per_elem = gadget_config.num_bits_per_elem;
let shift_val = 1 << (num_bits_per_elem - 1);
let shift_val = F::from(shift_val as u64);
let outp = layouter.assign_region(
|| "pack row",
|mut region| {
if gadget_config.use_selectors {
selector.enable(&mut region, 0)?;
}
let mut packed = vec![];
for i in 0..self.config.num_packed_per_row {
let val_offset = i * self.config.num_elem_per_packed;
let col_offset = i * (self.config.num_elem_per_packed + 1);
let mut vals = cells
[val_offset..min(val_offset + self.config.num_elem_per_packed, cells.len())]
.iter()
.enumerate()
.map(|(i, x)| {
x.copy_advice(|| "", &mut region, columns[col_offset + i], 0)
.unwrap();
x.value().copied()
})
.collect::<Vec<_>>();
let zero_copied = (cells.len()..self.config.num_elem_per_packed)
.map(|i| {
zero
.copy_advice(|| "", &mut region, columns[col_offset + i], 0)
.unwrap();
zero.value().copied()
})
.collect::<Vec<_>>();
vals.extend(zero_copied);
let res = vals.iter().zip(self.config.exponents.iter()).fold(
Value::known(F::ZERO),
|acc, (inp, exp)| {
let res = acc + (*inp + Value::known(shift_val)) * Value::known(*exp);
res
},
);
let outp = region.assign_advice(
|| "",
columns[col_offset + self.config.num_elem_per_packed],
0, |
|| res,
)?;
packed.push(Rc::new(outp));
}
Ok(packed)
},
)?;
Ok(outp)
}
pub fn assign_and_pack_row(
&self,
mut layouter: impl Layouter<F>,
gadget_config: Rc<GadgetConfig>,
values: Vec<&F>,
zero: &AssignedCell<F, F>,
) -> Result<(Vec<CellRc<F>>, Vec<CellRc<F>>), Error> {
let columns = &gadget_config.columns;
let selector = gadget_config.selectors.get(&GadgetType::Packer).unwrap()[0];
let num_bits_per_elem = gadget_config.num_bits_per_elem;
let shift_val = 1 << (num_bits_per_elem - 1);
let shift_val = F::from(shift_val as u64);
let outp = layouter.assign_region(
|| "pack row",
|mut region| {
if gadget_config.use_selectors {
selector.enable(&mut region, 0)?;
}
let mut packed = vec![];
let mut assigned = vec![];
for i in 0..self.config.num_packed_per_row {
let val_offset = i * self.config.num_elem_per_packed;
let col_offset = i * (self.config.num_elem_per_packed + 1);
let mut values = values
[val_offset..min(val_offset + self.config.num_elem_per_packed, values.len())]
.iter()
.map(|x| **x)
.collect::<Vec<_>>();
let vals = values
.iter()
.enumerate()
.map(|(i, x)| {
let tmp = region
.assign_advice(|| "", columns[col_offset + i], 0, || Value::known(*x))
.unwrap();
Rc::new(tmp)
})
.collect::<Vec<_>>();
assigned.extend(vals);
let zero_vals = (values.len()..self.config.num_elem_per_packed)
.map(|i| {
zero
.copy_advice(|| "", &mut region, columns[col_offset + i], 0)
.unwrap();
F::ZERO
})
.collect::<Vec<_>>();
values.extend(zero_vals);
let res =
values
.iter()
.zip(self.c |
onfig.exponents.iter())
.fold(F::ZERO, |acc, (inp, exp)| {
let res = acc + (*inp + shift_val) * (*exp);
res
});
let outp = region.assign_advice(
|| "",
columns[col_offset + self.config.num_elem_per_packed],
0,
|| Value::known(res),
)?;
packed.push(Rc::new(outp));
}
Ok((packed, assigned))
},
)?;
Ok(outp)
}
pub fn assign_and_pack(
&self,
mut layouter: impl Layouter<F>,
gadget_config: Rc<GadgetConfig>,
constants: &HashMap<i64, CellRc<F>>,
tensors: &BTreeMap<i64, Array<F, IxDyn>>,
) -> Result<(BTreeMap<i64, AssignedTensor<F>>, Vec<CellRc<F>>), Error> {
let mut values = vec![];
for (_, tensor) in tensors {
for value in tensor.iter() {
values.push(value);
}
}
let mut packed = vec![];
let mut assigned = vec![];
let zero = constants.get(&0).unwrap().clone();
let num_elems_per_row = self.config.num_packed_per_row * self.config.num_elem_per_packed;
for i in 0..(values.len().div_ceil(num_elems_per_row)) {
let row =
values[i * num_elems_per_row..min((i + 1) * num_elems_per_row, values.len())].to_vec();
let (row_packed, row_assigned) = self
.assign_and_pack_row(
layouter.namespace(|| "pack row"),
gadget_config.clone(),
row,
zero.as_ref(),
)
.unwrap();
packed.extend(row_packed);
assigned.extend(row_assigned);
}
let mut assigned_tensors = BTreeMap::new();
let mut start_idx = 0;
for (tensor_id, tensor) in tensors {
let num_el = tensor.len();
let v = assigned[start_idx..start_idx + num_el].to_vec();
let new_tensor = Array::from_shape_vec(tensor.raw_dim(), v).unwrap();
assigned_tensors.insert(*tensor_id, new_tensor);
start_idx += num_el;
}
Ok((assigned_tensors, packed))
}
pub fn copy_and_pack(
&self,
mut layouter: impl La |
youter<F>,
gadget_config: Rc<GadgetConfig>,
constants: &HashMap<i64, CellRc<F>>,
tensors: &BTreeMap<i64, AssignedTensor<F>>,
) -> Result<Vec<CellRc<F>>, Error> {
let mut values = vec![];
for (_, tensor) in tensors {
for value in tensor.iter() {
values.push(value.clone());
}
}
let mut packed = vec![];
let zero = constants.get(&0).unwrap().clone();
let num_elems_per_row = self.config.num_packed_per_row * self.config.num_elem_per_packed;
for i in 0..(values.len().div_ceil(num_elems_per_row)) {
let row =
values[i * num_elems_per_row..min((i + 1) * num_elems_per_row, values.len())].to_vec();
let row_packed = self
.copy_and_pack_row(
layouter.namespace(|| "pack row"),
gadget_config.clone(),
row,
zero.as_ref(),
)
.unwrap();
packed.extend(row_packed);
}
Ok(packed)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_gadgets::poseidon::{
primitives::{generate_constants, Absorbing, ConstantLength, Domain, Mds, Spec},
PaddedWord, PoseidonSpongeInstructions, Pow5Chip, Pow5Config, Sponge,
};
use halo2_proofs::{
circuit::Layouter,
halo2curves::ff::{FromUniformBytes, PrimeField},
plonk::{Advice, Column, ConstraintSystem, Error},
};
use crate::{gadgets::gadget::GadgetConfig, layers::layer::CellRc};
use super::commit::Commit;
pub const WIDTH: usize = 3;
pub const RATE: usize = 2;
pub const L: usize = 8 - WIDTH - 1;
pub struct PoseidonCommitChip<
F: PrimeField + Ord + FromUniformBytes<64>,
const WIDTH: usize,
const RATE: usize,
const L: usize,
> {
pub poseidon_config: Pow5Config<F, WIDTH, RATE>,
}
pub struct P128Pow5T3Gen<F: PrimeField, const SECURE_MDS: usize>(PhantomData<F>);
impl<F: PrimeField, const SECURE_MDS: usize> P128Pow5T3Gen<F, SECURE_MDS> {
pub fn new() -> Self {
P128Pow5T3Gen(PhantomData::default())
}
}
impl<F: FromUniformBytes<64> + Ord, const SECURE_MDS: usize> Spec<F, 3, 2>
for P128Pow5T3Gen<F, SECURE_MDS>
{
fn full_rounds() -> usize {
8
}
fn partial_rounds() -> usize {
56
}
fn sbox(val: F) -> F {
val.pow_vartime([5])
}
fn secure_mds() -> usize {
SECURE_MDS
}
fn constants() -> (Vec<[F; 3]>, Mds<F, 3>, Mds<F, 3>) {
generate_constants::<_, Self, 3, 2>()
}
}
pub struct MyHash<
F: PrimeField,
PoseidonChip: PoseidonSpongeInstructions<F, S, D, T, RATE>,
S: Spec<F, T, RATE>,
D: Domain<F, RATE>,
const T: usize,
const RATE: usize,
> {
pub sponge: Sponge<F, PoseidonChip, S, Absorbing<PaddedWord<F>, RATE>, D, T, RATE>,
}
impl<F: PrimeField + Ord + FromUniformBytes<64>> PoseidonCommitChip<F, WIDTH, RATE, L> {
pub fn configure(
meta: &mut ConstraintSystem<F>,
_input: [Column<Advice>; L],
state: [Column<Advice>; WIDTH],
partial_sbox: Column<Advice>,
) -> PoseidonCommitChip<F, WIDTH, RATE, L> {
let rc_a = (0..WIDTH).map(|_| meta.fixe |
d_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
meta.enable_constant(rc_b[0]);
PoseidonCommitChip {
poseidon_config: Pow5Chip::configure::<P128Pow5T3Gen<F, 0>>(
meta,
state.try_into().unwrap(),
partial_sbox,
rc_a.try_into().unwrap(),
rc_b.try_into().unwrap(),
),
}
}
}
impl<F: PrimeField + Ord + FromUniformBytes<64>> Commit<F>
for PoseidonCommitChip<F, WIDTH, RATE, L>
{
fn commit(
&self,
mut layouter: impl Layouter<F>,
_gadget_config: Rc<GadgetConfig>,
_constants: &HashMap<i64, CellRc<F>>,
values: &Vec<CellRc<F>>,
blinding: CellRc<F>,
) -> Result<Vec<CellRc<F>>, Error> {
let chip = Pow5Chip::construct(self.poseidon_config.clone());
let mut hasher: MyHash<F, Pow5Chip<F, 3, 2>, P128Pow5T3Gen<F, 0>, ConstantLength<L>, 3, 2> =
Sponge::new(chip, layouter.namespace(|| "sponge"))
.map(|sponge| MyHash { sponge })
.unwrap();
let mut new_vals = values
.iter()
.map(|x| x.clone())
.chain(vec![blinding.clone()])
.collect::<Vec<_>>();
while new_vals.len() % L != 0 {
new_vals.push(blinding.clone());
}
for (i, value) in new_vals
.iter()
.map(|x| PaddedWord::Message((**x).clone()))
.chain(<ConstantLength<L> as Domain<F, RATE>>::padding(L).map(PaddedWord::Padding))
.enumerate()
{
hasher
.sponge
.absorb(layouter.namespace(|| format!("absorb {}", i)), value)
.unwrap();
}
let outp = hasher
.sponge
.finish_absorbing(layouter.namespace(|| "finish absorbing"))
.unwrap()
.squeeze(layouter.namespace(|| "squeeze"))
.unwrap();
let outp = Rc::new(outp);
Ok(vec![outp])
}
} |
pub mod add_pairs;
pub mod adder;
pub mod bias_div_floor_relu6;
pub mod bias_div_round_relu6;
pub mod dot_prod;
pub mod gadget;
pub mod input_lookup;
pub mod max;
pub mod mul_pairs;
pub mod sqrt_big;
pub mod square;
pub mod squared_diff;
pub mod sub_pairs;
pub mod update;
pub mod var_div;
pub mod var_div_big;
pub mod var_div_big3;
// Generics
pub mod nonlinear;
|
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
poly::Rotation,
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type AddPairsConfig = GadgetConfig;
pub struct AddPairsChip<F: PrimeField> {
config: Rc<AddPairsConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> AddPairsChip<F> {
pub fn construct(config: Rc<AddPairsConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = gadget_config.columns;
meta.create_gate("add pair", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for i in 0..columns.len() / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let inp1 = meta.query_advice(columns[offset + 0], Rotation::cur());
let inp2 = meta.query_advice(columns[offset + 1], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
let res = inp1 + inp2;
constraints.append(&mut vec![s.clone() * (res - outp)])
}
constraints
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::AddPairs, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for AddPairsChip<F> {
fn name(&self) -> String {
"add pairs chip".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_ |
inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let inp1 = &vec_inputs[0];
let inp2 = &vec_inputs[1];
assert_eq!(inp1.len(), inp2.len());
let columns = &self.config.columns;
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::AddPairs).unwrap()[0];
selector.enable(region, row_offset)?;
}
let mut outps = vec![];
for i in 0..inp1.len() {
let offset = i * self.num_cols_per_op();
let inp1 = inp1[i].copy_advice(|| "", region, columns[offset + 0], row_offset)?;
let inp2 = inp2[i].copy_advice(|| "", region, columns[offset + 1], row_offset)?;
let outp = inp1.value().map(|x: &F| x.to_owned()) + inp2.value().map(|x: &F| x.to_owned());
let outp = region.assign_advice(|| "", columns[offset + 2], row_offset, || outp)?;
outps.push(outp);
}
Ok(outps)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut inp1 = vec_inputs[0].clone();
let mut inp2 = vec_inputs[1].clone();
let initial_len = inp1.len();
while inp1.len() % self.num_inputs_per_row() != 0 {
inp1.push(zero);
inp2.push(zero);
}
let vec_inputs = vec![inp1, inp2];
let res = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
single_inputs,
)?;
Ok(res[0..initial_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region, Value},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type AdderConfig = GadgetConfig;
pub struct AdderChip<F: PrimeField> {
config: Rc<AdderConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> AdderChip<F> {
pub fn construct(config: Rc<AdderConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = gadget_config.columns;
meta.create_gate("adder gate", |meta| {
let s = meta.query_selector(selector);
let gate_inp = columns[0..columns.len() - 1]
.iter()
.map(|col| meta.query_advice(*col, Rotation::cur()))
.collect::<Vec<_>>();
let gate_output = meta.query_advice(*columns.last().unwrap(), Rotation::cur());
let res = gate_inp
.iter()
.fold(Expression::Constant(F::ZERO), |a, b| a + b.clone());
vec![s * (res - gate_output)]
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::Adder, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for AdderChip<F> {
fn name(&self) -> String {
"adder".to_string()
}
fn num_cols_per_op(&self) -> usize {
self.config.columns.len()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() - 1
}
fn num_outputs_per_row(&self) -> usize {
1
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
assert_eq!(vec_inputs.len(), 1);
let inp = &vec_inputs[0];
if self.config.use_selec |
tors {
let selector = self.config.selectors.get(&GadgetType::Adder).unwrap()[0];
selector.enable(region, row_offset)?;
}
inp
.iter()
.enumerate()
.map(|(i, cell)| cell.copy_advice(|| "", region, self.config.columns[i], row_offset))
.collect::<Result<Vec<_>, _>>()?;
let e = inp.iter().fold(Value::known(F::ZERO), |a, b| {
a + b.value().map(|x: &F| x.to_owned())
});
let res = region.assign_advice(
|| "",
*self.config.columns.last().unwrap(),
row_offset,
|| e,
)?;
Ok(vec![res])
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
assert_eq!(single_inputs.len(), 1);
let mut inputs = vec_inputs[0].clone();
let zero = single_inputs[0].clone();
while inputs.len() % self.num_inputs_per_row() != 0 {
inputs.push(&zero);
}
let mut outputs = self.op_aligned_rows(
layouter.namespace(|| "adder forward"),
&vec![inputs],
single_inputs,
)?;
while outputs.len() != 1 {
while outputs.len() % self.num_inputs_per_row() != 0 {
outputs.push(zero.clone());
}
let tmp = outputs.iter().map(|x| x).collect::<Vec<_>>();
outputs = self.op_aligned_rows(
layouter.namespace(|| "adder forward"),
&vec![tmp],
single_inputs,
)?;
}
Ok(outputs)
}
} |
use std::{collections::HashMap, marker::PhantomData};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use crate::gadgets::gadget::convert_to_u64;
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type BiasDivFloorRelu6Config = GadgetConfig;
const SHIFT_MIN_VAL: i64 = -(1 << 30);
pub struct BiasDivFloorRelu6Chip<F: PrimeField> {
config: BiasDivFloorRelu6Config,
_marker: PhantomData<F>,
}
impl<F: PrimeField> BiasDivFloorRelu6Chip<F> {
pub fn construct(config: BiasDivFloorRelu6Config) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn get_map(scale_factor: u64, num_rows: i64, div_outp_min_val: i64) -> HashMap<i64, i64> {
let div_val = scale_factor;
let div_outp_min_val = div_outp_min_val;
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + div_outp_min_val;
let val = shifted.clamp(0, 6 * div_val as i64);
map.insert(i as i64, val);
}
map
}
pub fn num_cols_per_op() -> usize {
5
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.complex_selector();
let sf = Expression::Constant(F::from(gadget_config.scale_factor));
let columns = gadget_config.columns;
let mod_lookup = meta.lookup_table_column();
let relu_lookup = meta.lookup_table_column();
let div_lookup = meta.lookup_table_column();
meta.create_gate("bias_mul", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for op_idx in 0..columns.len() / Self::num_cols_per_op() {
let offset = op_idx * Self::num_cols_per_op();
let inp = meta.query_advice(columns[offset + 0], Rotation::cur());
let bias = meta.query_advice(columns[offset + 1], Rotation::cur());
let div_res = meta.query_advice(columns[offset + 2], Rotation::cur());
let mod_res = meta.query_advice( |
columns[offset + 3], Rotation::cur());
constraints.push(s.clone() * (inp - (sf.clone() * (div_res - bias) + mod_res)));
}
constraints
});
for op_idx in 0..columns.len() / Self::num_cols_per_op() {
let offset = op_idx * Self::num_cols_per_op();
meta.lookup("bias_div_relu6 lookup", |meta| {
let s = meta.query_selector(selector);
let mod_res = meta.query_advice(columns[offset + 3], Rotation::cur());
vec![(s.clone() * mod_res.clone(), mod_lookup)]
});
meta.lookup("bias_div_relu6 lookup", |meta| {
let s = meta.query_selector(selector);
let div = meta.query_advice(columns[offset + 2], Rotation::cur());
let outp = meta.query_advice(columns[offset + 4], Rotation::cur());
let div_outp_min_val = Expression::Constant(F::from((-SHIFT_MIN_VAL) as u64));
vec![
(s.clone() * outp, relu_lookup),
(s * (div + div_outp_min_val), div_lookup),
]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::BiasDivFloorRelu6, vec![selector]);
let mut tables = gadget_config.tables;
tables.insert(
GadgetType::BiasDivFloorRelu6,
vec![mod_lookup, relu_lookup, div_lookup],
);
let mut maps = gadget_config.maps;
let relu_map = Self::get_map(
gadget_config.scale_factor,
gadget_config.num_rows as i64,
gadget_config.div_outp_min_val,
);
maps.insert(GadgetType::BiasDivFloorRelu6, vec![relu_map]);
GadgetConfig {
columns,
selectors,
tables,
maps,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for BiasDivFloorRelu6Chip<F> {
fn name(&self) -> String {
"BiasDivRelu6".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.num_inputs_per_row()
}
fn op_r |
ow_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let div_val = self.config.scale_factor as i64;
let div_outp_min_val_i64 = -self.config.div_outp_min_val;
let div_inp_min_val_pos_i64 = -SHIFT_MIN_VAL;
let div_inp_min_val_pos = F::from(div_inp_min_val_pos_i64 as u64);
let inp = &vec_inputs[0];
let bias = &vec_inputs[1];
assert_eq!(inp.len(), bias.len());
assert_eq!(inp.len() % self.num_inputs_per_row(), 0);
let relu_map = &self
.config
.maps
.get(&GadgetType::BiasDivFloorRelu6)
.unwrap()[0];
if self.config.use_selectors {
let selector = self
.config
.selectors
.get(&GadgetType::BiasDivFloorRelu6)
.unwrap()[0];
selector.enable(region, row_offset)?;
}
let mut outp_cells = vec![];
for (i, (inp, bias)) in inp.iter().zip(bias.iter()).enumerate() {
let offset = i * self.num_cols_per_op();
let inp_f = inp.value().map(|x: &F| x.to_owned());
let bias_f = bias.value().map(|x: &F| {
let a = *x + div_inp_min_val_pos;
let a = convert_to_u64(&a) as i64 - div_inp_min_val_pos_i64;
a
});
let div_mod_res = inp_f.map(|x: F| {
let x_pos = x + div_inp_min_val_pos;
let inp = convert_to_u64(&x_pos);
let div_res = inp as i64 / div_val - (div_inp_min_val_pos_i64 / div_val);
let mod_res = inp as i64 % div_val;
(div_res, mod_res)
});
let div_res = div_mod_res.map(|x: (i64, i64)| x.0) + bias_f;
let mod_res = div_mod_res.map(|x: (i64, i64)| x.1);
let outp = div_res.map(|x: i64| {
let mut x_pos = x - div_outp_min_val_i64;
if !relu_map.contains_key(&(x_pos)) {
println!("x: {}, x_pos: {}", x, x_pos);
x_pos = 0;
}
let outp_val = relu_map.get(&(x_pos)).unwrap(); |
F::from(*outp_val as u64)
});
inp.copy_advice(|| "", region, self.config.columns[offset + 0], row_offset)?;
bias.copy_advice(|| "", region, self.config.columns[offset + 1], row_offset)?;
let div_res_cell = region
.assign_advice(
|| "div_res",
self.config.columns[offset + 2],
row_offset,
|| {
div_res.map(|x: i64| {
F::from((x - div_outp_min_val_i64) as u64) - F::from(-div_outp_min_val_i64 as u64)
})
},
)
.unwrap();
let _mod_res_cell = region
.assign_advice(
|| "mod_res",
self.config.columns[offset + 3],
row_offset,
|| mod_res.map(|x: i64| F::from(x as u64)),
)
.unwrap();
let outp_cell = region
.assign_advice(
|| "outp",
self.config.columns[offset + 4],
row_offset,
|| outp.map(|x: F| x.to_owned()),
)
.unwrap();
outp_cells.push(outp_cell);
outp_cells.push(div_res_cell);
}
Ok(outp_cells)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let mut inps = vec_inputs[0].clone();
let mut biases = vec_inputs[1].clone();
let default = biases[0].clone();
while inps.len() % self.num_inputs_per_row() != 0 {
inps.push(&default);
biases.push(&default);
}
let res = self.op_aligned_rows(
layouter.namespace(|| "bias_div_relu6"),
&vec![inps, biases],
single_inputs,
)?;
Ok(res)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region, Value},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use crate::gadgets::gadget::convert_to_u64;
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type BiasDivRoundRelu6Config = GadgetConfig;
const NUM_COLS_PER_OP: usize = 5;
pub struct BiasDivRoundRelu6Chip<F: PrimeField> {
config: Rc<BiasDivRoundRelu6Config>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> BiasDivRoundRelu6Chip<F> {
pub fn construct(config: Rc<BiasDivRoundRelu6Config>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn get_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let div_val = scale_factor;
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let val = shifted.clamp(0, 6 * div_val as i64);
map.insert(i as i64, val);
}
map
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.complex_selector();
let sf = Expression::Constant(F::from(gadget_config.scale_factor));
let two = Expression::Constant(F::from(2));
let columns = gadget_config.columns;
let mut tables = gadget_config.tables;
let div_lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
let relu_lookup = meta.lookup_table_column();
meta.create_gate("bias_mul", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for op_idx in 0..columns.len() / NUM_COLS_PER_OP {
let offset = op_idx * NUM_COLS_PER_OP;
let inp = meta.query_advice(columns[offset + 0], Rotation::cur());
let bias = meta.query_advice(columns[offset + 1], Rotation::cur());
let div_res = meta.query_advice(columns[offset + 2], Rotation::cur());
let mod_res = meta.query_advice(columns[offset + 3], Rotation::cur()); |
constraints.push(
s.clone()
* (two.clone() * inp + sf.clone()
- (sf.clone() * two.clone() * (div_res - bias) + mod_res)),
);
}
constraints
});
for op_idx in 0..columns.len() / NUM_COLS_PER_OP {
let offset = op_idx * NUM_COLS_PER_OP;
meta.lookup("bias_div_relu6 lookup", |meta| {
let s = meta.query_selector(selector);
let mod_res = meta.query_advice(columns[offset + 3], Rotation::cur());
vec![(s.clone() * (two.clone() * sf.clone() - mod_res), div_lookup)]
});
meta.lookup("bias_div_relu6 lookup", |meta| {
let s = meta.query_selector(selector);
let div = meta.query_advice(columns[offset + 2], Rotation::cur());
let outp = meta.query_advice(columns[offset + 4], Rotation::cur());
let div_outp_min_val = gadget_config.div_outp_min_val;
let div_outp_min_val = Expression::Constant(F::from((-div_outp_min_val) as u64));
vec![
(s.clone() * (div + div_outp_min_val), div_lookup),
(s.clone() * outp, relu_lookup),
]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::BiasDivRoundRelu6, vec![selector]);
tables.insert(GadgetType::BiasDivRoundRelu6, vec![relu_lookup]);
let mut maps = gadget_config.maps;
let relu_map = Self::get_map(
gadget_config.scale_factor,
gadget_config.min_val,
gadget_config.num_rows as i64,
);
maps.insert(GadgetType::BiasDivRoundRelu6, vec![relu_map]);
GadgetConfig {
columns,
selectors,
tables,
maps,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for BiasDivRoundRelu6Chip<F> {
fn name(&self) -> String {
"BiasDivRelu6".to_string()
}
fn num_cols_per_op(&self) -> usize {
NUM_COLS_PER_OP
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / NUM_COLS_PER_OP
}
fn num_outputs_per_row(&self) -> usize {
self.num_in |
puts_per_row() * 2
}
fn load_lookups(&self, mut layouter: impl Layouter<F>) -> Result<(), Error> {
let map = &self.config.maps[&GadgetType::BiasDivRoundRelu6][0];
let relu_lookup = self.config.tables[&GadgetType::BiasDivRoundRelu6][0];
layouter
.assign_table(
|| "bdr round div/relu lookup",
|mut table| {
for i in 0..self.config.num_rows {
let i = i as i64;
let val = map.get(&i).unwrap();
table
.assign_cell(
|| "relu lookup",
relu_lookup,
i as usize,
|| Value::known(F::from(*val as u64)),
)
.unwrap();
}
Ok(())
},
)
.unwrap();
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let div_val = self.config.scale_factor as i64;
let div_outp_min_val_i64 = self.config.div_outp_min_val;
let div_inp_min_val_pos_i64 = -self.config.shift_min_val;
let div_inp_min_val_pos = F::from(div_inp_min_val_pos_i64 as u64);
let inp = &vec_inputs[0];
let bias = &vec_inputs[1];
assert_eq!(inp.len(), bias.len());
assert_eq!(inp.len() % self.num_inputs_per_row(), 0);
let relu_map = &self
.config
.maps
.get(&GadgetType::BiasDivRoundRelu6)
.unwrap()[0];
if self.config.use_selectors {
let selector = self
.config
.selectors
.get(&GadgetType::BiasDivRoundRelu6)
.unwrap()[0];
selector.enable(region, row_offset).unwrap();
}
let mut outp_cells = vec![];
for (i, (inp, bias)) in inp.iter().zip(bias.iter()).enumerate() {
let offset = i * NUM_COLS_PER_OP;
let inp_f = inp.value().map(|x: &F| x.to_owned());
let bias_f = bias.value().map(|x: &F| {
let a = *x + div_inp_min_val_pos;
l |
et a = convert_to_u64(&a) as i64 - div_inp_min_val_pos_i64;
a
});
let div_mod_res = inp_f.map(|x: F| {
let x_pos = x + div_inp_min_val_pos;
let inp = convert_to_u64(&x_pos) as i64;
let div_inp = 2 * inp + div_val;
let div_res = div_inp / (2 * div_val) - div_inp_min_val_pos_i64 / div_val;
let mod_res = div_inp % (2 * div_val);
(div_res, mod_res)
});
let div_res = div_mod_res.map(|x: (i64, i64)| x.0) + bias_f;
let mod_res = div_mod_res.map(|x: (i64, i64)| x.1);
let outp = div_res.map(|x: i64| {
let mut x_pos = x - div_outp_min_val_i64;
if !relu_map.contains_key(&(x_pos)) {
println!("x: {}, x_pos: {}", x, x_pos);
x_pos = 0;
}
let outp_val = relu_map.get(&(x_pos)).unwrap();
F::from(*outp_val as u64)
});
inp
.copy_advice(|| "", region, self.config.columns[offset + 0], row_offset)
.unwrap();
bias
.copy_advice(|| "", region, self.config.columns[offset + 1], row_offset)
.unwrap();
let div_res_cell = region
.assign_advice(
|| "div_res",
self.config.columns[offset + 2],
row_offset,
|| {
div_res.map(|x: i64| {
F::from((x - div_outp_min_val_i64) as u64) - F::from(-div_outp_min_val_i64 as u64)
})
},
)
.unwrap();
let _mod_res_cell = region
.assign_advice(
|| "mod_res",
self.config.columns[offset + 3],
row_offset,
|| mod_res.map(|x: i64| F::from(x as u64)),
)
.unwrap();
let outp_cell = region
.assign_advice(
|| "outp",
self.config.columns[offset + 4],
row_offset,
|| outp.map(|x: F| x.to_owned()),
)
.unwrap();
outp_cells.push(outp_cell);
outp_cells.push(div_res_cell);
}
Ok(outp_cells)
}
fn forward(
&self,
mut layouter: |
impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let mut inps = vec_inputs[0].clone();
let mut biases = vec_inputs[1].clone();
let initial_len = inps.len();
let default = biases[0].clone();
while inps.len() % self.num_inputs_per_row() != 0 {
inps.push(&default);
biases.push(&default);
}
let res = self
.op_aligned_rows(
layouter.namespace(|| "bias_div_relu6"),
&vec![inps, biases],
single_inputs,
)
.unwrap();
Ok(res[0..initial_len * 2].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{Advice, Column, ConstraintSystem, Error, Expression},
poly::Rotation,
};
use crate::gadgets::adder::AdderChip;
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type DotProductConfig = GadgetConfig;
pub struct DotProductChip<F: PrimeField> {
config: Rc<DotProductConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> DotProductChip<F> {
pub fn construct(config: Rc<DotProductConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn get_input_columns(config: &GadgetConfig) -> Vec<Column<Advice>> {
let num_inputs = (config.columns.len() - 1) / 2;
config.columns[0..num_inputs].to_vec()
}
pub fn get_weight_columns(config: &GadgetConfig) -> Vec<Column<Advice>> {
let num_inputs = (config.columns.len() - 1) / 2;
config.columns[num_inputs..config.columns.len() - 1].to_vec()
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = &gadget_config.columns;
meta.create_gate("dot product gate", |meta| {
let s = meta.query_selector(selector);
let gate_inp = DotProductChip::<F>::get_input_columns(&gadget_config)
.iter()
.map(|col| meta.query_advice(*col, Rotation::cur()))
.collect::<Vec<_>>();
let gate_weights = DotProductChip::<F>::get_weight_columns(&gadget_config)
.iter()
.map(|col| meta.query_advice(*col, Rotation::cur()))
.collect::<Vec<_>>();
let gate_output = meta.query_advice(columns[columns.len() - 1], Rotation::cur());
let res = gate_inp
.iter()
.zip(gate_weights)
.map(|(a, b)| a.clone() * b.clone())
.fold(Expression::Constant(F::ZERO), |a, b| a + b);
vec![s * (res - gate_output)]
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::DotProduct, ve |
c![selector]);
GadgetConfig {
columns: gadget_config.columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for DotProductChip<F> {
fn name(&self) -> String {
"dot product".to_string()
}
fn num_cols_per_op(&self) -> usize {
self.config.columns.len()
}
fn num_inputs_per_row(&self) -> usize {
(self.config.columns.len() - 1) / 2
}
fn num_outputs_per_row(&self) -> usize {
1
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
assert_eq!(vec_inputs.len(), 2);
let inp = &vec_inputs[0];
let weights = &vec_inputs[1];
assert_eq!(inp.len(), weights.len());
assert_eq!(inp.len(), self.num_inputs_per_row());
let zero = &single_inputs[0];
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::DotProduct).unwrap()[0];
selector.enable(region, row_offset).unwrap();
}
let inp_cols = DotProductChip::<F>::get_input_columns(&self.config);
inp
.iter()
.enumerate()
.map(|(i, cell)| cell.copy_advice(|| "", region, inp_cols[i], row_offset))
.collect::<Result<Vec<_>, _>>()
.unwrap();
let weight_cols = DotProductChip::<F>::get_weight_columns(&self.config);
weights
.iter()
.enumerate()
.map(|(i, cell)| cell.copy_advice(|| "", region, weight_cols[i], row_offset))
.collect::<Result<Vec<_>, _>>()
.unwrap();
if self.config.columns.len() % 2 == 0 {
zero
.copy_advice(
|| "",
region,
self.config.columns[self.config.columns.len() - 2],
row_offset,
)
.unwrap();
}
let e = inp
.iter()
.zip(weights.iter())
.map(|(a, b)| a.value().map(|x: &F| *x) * b.value())
.reduce(|a, b| a + b)
.unwrap();
let res = region
.assign_adv |
ice(
|| "",
self.config.columns[self.config.columns.len() - 1],
row_offset,
|| e,
)
.unwrap();
Ok(vec![res])
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
assert_eq!(vec_inputs.len(), 2);
assert_eq!(single_inputs.len(), 1);
let zero = &single_inputs[0];
let mut inputs = vec_inputs[0].clone();
let mut weights = vec_inputs[1].clone();
while inputs.len() % self.num_inputs_per_row() != 0 {
inputs.push(&zero);
weights.push(&zero);
}
let outputs = layouter
.assign_region(
|| "dot prod rows",
|mut region| {
let mut outputs = vec![];
for i in 0..inputs.len() / self.num_inputs_per_row() {
let inp =
inputs[i * self.num_inputs_per_row()..(i + 1) * self.num_inputs_per_row()].to_vec();
let weights =
weights[i * self.num_inputs_per_row()..(i + 1) * self.num_inputs_per_row()].to_vec();
let res = self
.op_row_region(&mut region, i, &vec![inp, weights], &vec![zero.clone()])
.unwrap();
outputs.push(res[0].clone());
}
Ok(outputs)
},
)
.unwrap();
let adder_chip = AdderChip::<F>::construct(self.config.clone());
let tmp = outputs.iter().map(|x| x).collect::<Vec<_>>();
Ok(
adder_chip
.forward(
layouter.namespace(|| "dot prod adder"),
&vec![tmp],
single_inputs,
)
.unwrap(),
)
}
} |
use std::{
collections::{BTreeSet, HashMap},
sync::Arc,
};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::group::ff::PrimeField,
plonk::{Advice, Column, Error, Fixed, Selector, TableColumn},
};
use num_bigint::{BigUint, ToBigUint};
use num_traits::cast::ToPrimitive;
pub enum GadgetType {
AddPairs,
Adder,
BiasDivRoundRelu6,
BiasDivFloorRelu6,
DotProduct,
Exp,
Logistic,
Max,
Pow,
Relu,
Rsqrt,
Sqrt,
SqrtBig,
Square,
SquaredDiff,
SubPairs,
Tanh,
MulPairs,
VarDivRound,
VarDivRoundBig,
VarDivRoundBig3,
Packer,
InputLookup,
Update,
}
pub |
struct GadgetConfig {
pub used_gadgets: Arc<BTreeSet<GadgetType>>,
pub columns: Vec<Column<Advice>>,
pub fixed_columns: Vec<Column<Fixed>>,
pub selectors: HashMap<GadgetType, Vec<Selector>>,
pub tables: HashMap<GadgetType, Vec<TableColumn>>,
pub maps: HashMap<GadgetType, Vec<HashMap<i64, i64>>>,
pub scale_factor: u64,
pub shift_min_val: i64,
pub num_rows: usize,
pub num_cols: usize,
pub k: usize,
pub eta: f64,
pub min_val: i64,
pub max_val: i64,
pub div_outp_min_val: i64,
pub use_selectors: bool,
pub commit_before: Vec<Vec<i64>>,
pub commit_after: Vec<Vec<i64>>,
pub num_bits_per_elem: i64,
}
pub fn convert_to_u64<F: PrimeField>(x: &F) -> u64 {
let big = BigUint::from_bytes_le(x.to_repr().as_ref());
let big_digits = big.to_u64_digits();
if big_digits.len() > 2 {
println!("big_digits: {:?}", big_digits);
}
if big_digits.len() == 1 {
big_digits[0] as u64
} else if big_digits.len() == 0 {
0
} else {
panic!();
}
}
pub fn convert_to_u128<F: PrimeField>(x: &F) -> u128 {
let big = BigUint::from_bytes_le(x.to_repr().as_ref());
big.to_biguint().unwrap().to_u128().unwrap()
}
pub trait Gadget<F: PrimeField> {
fn name(&self) -> String;
fn num_cols_per_op(&self) -> usize;
fn num_inputs_per_row(&self) -> usize;
fn num_outputs_per_row(&self) -> usize;
fn load_lookups(&self, _layouter: impl Layouter<F>) -> Result<(), Error> {
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error>;
fn op_aligned_rows(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
for inp in vec_inputs.iter() {
assert_eq!(inp.len() % self.num_inputs_per_row(), 0);
}
let outputs = layouter.assign_region(
|| format!("gad |
get {}", self.name()),
|mut region| {
let mut outputs = vec![];
for i in 0..vec_inputs[0].len() / self.num_inputs_per_row() {
let mut vec_inputs_row = vec![];
for inp in vec_inputs.iter() {
vec_inputs_row.push(
inp[i * self.num_inputs_per_row()..(i + 1) * self.num_inputs_per_row()].to_vec(),
);
}
let row_outputs = self.op_row_region(&mut region, i, &vec_inputs_row, &single_inputs)?;
assert_eq!(row_outputs.len(), self.num_outputs_per_row());
outputs.extend(row_outputs);
}
Ok(outputs)
},
)?;
Ok(outputs)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
vec_inputs,
single_inputs,
)
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region, Value},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
pub struct InputLookupChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> InputLookupChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let lookup = meta.lookup_table_column();
let mut tables = gadget_config.tables;
tables.insert(GadgetType::InputLookup, vec![lookup]);
GadgetConfig {
tables,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for InputLookupChip<F> {
fn load_lookups(&self, mut layouter: impl Layouter<F>) -> Result<(), Error> {
let lookup = self.config.tables[&GadgetType::InputLookup][0];
layouter
.assign_table(
|| "input lookup",
|mut table| {
for i in 0..self.config.num_rows as i64 {
table
.assign_cell(
|| "mod lookup",
lookup,
i as usize,
|| Value::known(F::from(i as u64)),
)
.unwrap();
}
Ok(())
},
)
.unwrap();
Ok(())
}
fn name(&self) -> String {
panic!("InputLookupChip should not be called directly")
}
fn num_cols_per_op(&self) -> usize {
panic!("InputLookupChip should not be called directly")
}
fn num_inputs_per_row(&self) -> usize {
panic!("InputLookupChip should not be called directly")
}
fn num_outputs_per_row(&self) -> usize {
panic!("InputLookupChip should not be called directly")
}
fn op_row_region(
&self,
_region: &mut Region<F>,
_row_offset: usize,
_vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F> |
>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
panic!("InputLookupChip should not be called directly")
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
poly::Rotation,
};
use crate::gadgets::gadget::convert_to_u64;
use super::gadget::{Gadget, GadgetConfig, GadgetType};
pub struct MaxChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> MaxChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.complex_selector();
let columns = gadget_config.columns;
let tables = gadget_config.tables;
let inp_lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
meta.create_gate("max arithmetic", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for i in 0..columns.len() / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let inp1 = meta.query_advice(columns[offset + 0], Rotation::cur());
let inp2 = meta.query_advice(columns[offset + 1], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
constraints.push(s.clone() * (inp1 - outp.clone()) * (inp2 - outp))
}
constraints
});
for idx in 0..columns.len() / Self::num_cols_per_op() {
meta.lookup("max inp1", |meta| {
let s = meta.query_selector(selector);
let offset = idx * Self::num_cols_per_op();
let inp1 = meta.query_advice(columns[offset + 0], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
vec![(s * (outp - inp1), inp_lookup)]
});
meta.lookup("max inp2", |meta| {
let s = meta.query_selector(selector);
let offset = idx * Self::num_cols_per_op();
let inp2 = meta.query_advice(c |
olumns[offset + 1], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
vec![(s * (outp - inp2), inp_lookup)]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::Max, vec![selector]);
GadgetConfig {
columns,
selectors,
tables,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for MaxChip<F> {
fn name(&self) -> String {
"max".to_string()
}
fn num_cols_per_op(&self) -> usize {
3
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op() * 2
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
assert_eq!(vec_inputs.len(), 1);
let inp = &vec_inputs[0];
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::Max).unwrap()[0];
selector.enable(region, row_offset)?;
}
let min_val_pos = F::from((-self.config.shift_min_val) as u64);
let mut outp = vec![];
let chunks: Vec<&[&AssignedCell<F, F>]> = inp.chunks(self.num_outputs_per_row()).collect();
let i1 = chunks[0];
let i2 = chunks[1];
for (idx, (inp1, inp2)) in i1.iter().zip(i2.iter()).enumerate() {
let offset = idx * self.num_cols_per_op();
inp1
.copy_advice(|| "", region, self.config.columns[offset + 0], row_offset)
.unwrap();
inp2
.copy_advice(|| "", region, self.config.columns[offset + 1], row_offset)
.unwrap();
let max = inp1.value().zip(inp2.value()).map(|(a, b)| {
let a = convert_to_u64(&(*a + min_val_pos));
let b = convert_to_u64(&(*b + min_val_pos));
let max = a.max(b);
let max = F::from(max) - min_val_pos;
max
}); |
let res = region
.assign_advice(|| "", self.config.columns[offset + 2], row_offset, || max)
.unwrap();
outp.push(res);
}
Ok(outp)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let mut inputs = vec_inputs[0].clone();
let first = inputs[0];
while inputs.len() % self.num_inputs_per_row() != 0 {
inputs.push(first);
}
let num_iters = inputs.len().div_ceil(self.num_inputs_per_row()) + self.num_inputs_per_row();
let mut outputs = self.op_aligned_rows(
layouter.namespace(|| "max forward"),
&vec![inputs],
single_inputs,
)?;
for _ in 0..num_iters {
while outputs.len() % self.num_inputs_per_row() != 0 {
outputs.push(first.clone());
}
let tmp = outputs.iter().map(|x| x).collect::<Vec<_>>();
outputs = self.op_aligned_rows(
layouter.namespace(|| "max forward"),
&vec![tmp],
single_inputs,
)?;
}
outputs = vec![outputs.into_iter().next().unwrap()];
Ok(outputs)
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
poly::Rotation,
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type MulPairsConfig = GadgetConfig;
pub struct MulPairsChip<F: PrimeField> {
config: Rc<MulPairsConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> MulPairsChip<F> {
pub fn construct(config: Rc<MulPairsConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = gadget_config.columns;
meta.create_gate("mul pair", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for i in 0..columns.len() / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let inp1 = meta.query_advice(columns[offset + 0], Rotation::cur());
let inp2 = meta.query_advice(columns[offset + 1], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
let res = inp1 * inp2;
constraints.append(&mut vec![s.clone() * (res - outp)])
}
constraints
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::MulPairs, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for MulPairsChip<F> {
fn name(&self) -> String {
"MulPairs".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inp |
uts: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let inp1 = &vec_inputs[0];
let inp2 = &vec_inputs[1];
assert_eq!(inp1.len(), inp2.len());
let columns = &self.config.columns;
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::MulPairs).unwrap()[0];
selector.enable(region, row_offset)?;
}
let mut outps = vec![];
for i in 0..inp1.len() {
let offset = i * self.num_cols_per_op();
let inp1 = inp1[i].copy_advice(|| "", region, columns[offset + 0], row_offset)?;
let inp2 = inp2[i].copy_advice(|| "", region, columns[offset + 1], row_offset)?;
let outp = inp1.value().map(|x: &F| x.to_owned()) * inp2.value().map(|x: &F| x.to_owned());
let outp = region.assign_advice(|| "", columns[offset + 2], row_offset, || outp)?;
outps.push(outp);
}
Ok(outps)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut inp1 = vec_inputs[0].clone();
let mut inp2 = vec_inputs[1].clone();
let initial_len = inp1.len();
while inp1.len() % self.num_inputs_per_row() != 0 {
inp1.push(zero);
inp2.push(zero);
}
let vec_inputs = vec![inp1, inp2];
let res = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
single_inputs,
)?;
Ok(res[0..initial_len].to_vec())
}
} |
pub mod exp;
pub mod logistic;
pub mod non_linearity;
pub mod pow;
pub mod relu;
pub mod rsqrt;
pub mod sqrt;
pub mod tanh;
|
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
type ExpGadgetConfig = GadgetConfig;
pub struct ExpGadgetChip<F: PrimeField> {
config: Rc<ExpGadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> ExpGadgetChip<F> {
pub fn construct(config: Rc<ExpGadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<ExpGadgetChip<F> as NonLinearGadget<F>>::configure(meta, gadget_config, GadgetType::Exp)
}
}
impl<F: PrimeField> NonLinearGadget<F> for ExpGadgetChip<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let x = (shifted as f64) / (scale_factor as f64);
let exp = x.exp();
let exp = (exp * ((scale_factor * scale_factor) as f64)).round() as i64;
map.insert(i as i64, exp);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Exp).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Exp).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for ExpGadgetChip<F> {
fn name(&self) -> String {
"Exp".to_string()
}
fn num_cols_per_op(&self) -> usize {
<ExpGadgetChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> {
NonLinearGadget::load_lookups(self, layouter, self.c |
onfig.clone(), GadgetType::Exp)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
pub struct LogisticGadgetChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> LogisticGadgetChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<LogisticGadgetChip<F> as NonLinearGadget<F>>::configure(
meta,
gadget_config,
GadgetType::Logistic,
)
}
}
impl<F: PrimeField> NonLinearGadget<F> for LogisticGadgetChip<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let x = (shifted as f64) / (scale_factor as f64);
let logistic = 1. / (1. + (-x).exp());
let logistic = (logistic * ((scale_factor) as f64)).round() as i64;
map.insert(i as i64, logistic);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Logistic).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Logistic).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for LogisticGadgetChip<F> {
fn name(&self) -> String {
"LogisticChip".to_string()
}
fn num_cols_per_op(&self) -> usize {
<LogisticGadgetChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> { |
NonLinearGadget::load_lookups(self, layouter, self.config.clone(), GadgetType::Logistic)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{collections::HashMap, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region, Value},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression, Selector},
poly::Rotation,
};
use crate::gadgets::gadget::convert_to_u128;
use super::super::gadget::Gadget;
use super::super::gadget::{GadgetConfig, GadgetType};
const NUM_COLS_PER_OP: usize = 2;
pub trait NonLinearGadget<F: PrimeField>: Gadget<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64>;
fn get_map(&self) -> &HashMap<i64, i64>;
fn get_selector(&self) -> Selector;
fn num_cols_per_op() -> usize {
NUM_COLS_PER_OP
}
fn configure(
meta: &mut ConstraintSystem<F>,
gadget_config: GadgetConfig,
gadget_type: GadgetType,
) -> GadgetConfig {
let selector = meta.complex_selector();
let columns = gadget_config.columns;
let mut tables = gadget_config.tables;
let inp_lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
let outp_lookup = meta.lookup_table_column();
for op_idx in 0..columns.len() / NUM_COLS_PER_OP {
let offset = op_idx * NUM_COLS_PER_OP;
meta.lookup("non-linear lookup", |meta| {
let s = meta.query_selector(selector);
let inp = meta.query_advice(columns[offset + 0], Rotation::cur());
let outp = meta.query_advice(columns[offset + 1], Rotation::cur());
let shift_val = gadget_config.min_val;
let shift_val_pos = Expression::Constant(F::from((-shift_val) as u64));
vec![
(s.clone() * (inp + shift_val_pos), inp_lookup),
(s.clone() * outp, outp_lookup),
]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(gadget_type, vec![selector]);
tables.insert(gadget_type, vec![inp_lookup, outp_lookup]);
let mut maps = gadget_config.maps;
let non_linear_map = Self::generate_map(
gadget_config.scale_factor,
gadget_config.min_val,
gadget_config.num_rows as i64,
);
maps |
.insert(gadget_type, vec![non_linear_map]);
GadgetConfig {
columns,
selectors,
tables,
maps,
..gadget_config
}
}
fn load_lookups(
&self,
mut layouter: impl Layouter<F>,
config: Rc<GadgetConfig>,
gadget_type: GadgetType,
) -> Result<(), Error> {
let map = self.get_map();
let table_col = config.tables.get(&gadget_type).unwrap()[1];
let shift_pos_i64 = -config.shift_min_val;
let shift_pos = F::from(shift_pos_i64 as u64);
layouter.assign_table(
|| "non linear table",
|mut table| {
for i in 0..config.num_rows {
let i = i as i64;
let tmp = *map.get(&i).unwrap();
let val = if i == 0 {
F::ZERO
} else {
if tmp >= 0 {
F::from(tmp as u64)
} else {
let tmp = tmp + shift_pos_i64;
F::from(tmp as u64) - shift_pos
}
};
table.assign_cell(
|| "non linear cell",
table_col,
i as usize,
|| Value::known(val),
)?;
}
Ok(())
},
)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
gadget_config: Rc<GadgetConfig>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let columns = &gadget_config.columns;
let inp = &vec_inputs[0];
let map = self.get_map();
let shift_val_pos_i64 = -gadget_config.shift_min_val;
let shift_val_pos = F::from(shift_val_pos_i64 as u64);
let min_val = gadget_config.min_val;
if gadget_config.use_selectors {
let selector = self.get_selector();
selector.enable(region, row_offset)?;
}
let mut outps = vec![];
for i in 0..inp.len() {
let offset = i * 2;
inp[i].copy_advice(|| "", region, columns[offset + 0], row_offset)?;
let outp = inp[i].value().map(|x: &F| {
l |
et pos = convert_to_u128(&(*x + shift_val_pos)) as i128 - shift_val_pos_i64 as i128;
let x = pos as i64 - min_val;
let val = *map.get(&x).unwrap();
if x == 0 {
F::ZERO
} else {
if val >= 0 {
F::from(val as u64)
} else {
let val_pos = val + shift_val_pos_i64;
F::from(val_pos as u64) - F::from(shift_val_pos_i64 as u64)
}
}
});
let outp =
region.assign_advice(|| "nonlinearity", columns[offset + 1], row_offset, || outp)?;
outps.push(outp);
}
Ok(outps)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let inp_len = vec_inputs[0].len();
let mut inp = vec_inputs[0].clone();
while inp.len() % self.num_inputs_per_row() != 0 {
inp.push(zero);
}
let vec_inputs = vec![inp];
let outp = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
&single_inputs,
)?;
Ok(outp[0..inp_len].to_vec())
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
pub struct PowGadgetChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> PowGadgetChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<PowGadgetChip<F> as NonLinearGadget<F>>::configure(meta, gadget_config, GadgetType::Pow)
}
}
impl<F: PrimeField> NonLinearGadget<F> for PowGadgetChip<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let power = 3.;
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let x = (shifted as f64) / (scale_factor as f64);
let y = x.powf(power);
let y = (y * ((scale_factor) as f64)).round() as i64;
map.insert(i as i64, y);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Pow).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Pow).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for PowGadgetChip<F> {
fn name(&self) -> String {
"PowGadgetChip".to_string()
}
fn num_cols_per_op(&self) -> usize {
<PowGadgetChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> {
NonLinearGadget::load_lookups(self, layouter, self.config.clone(), GadgetType::P |
ow)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
pub struct ReluChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> ReluChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<ReluChip<F> as NonLinearGadget<F>>::configure(meta, gadget_config, GadgetType::Relu)
}
}
impl<F: PrimeField> NonLinearGadget<F> for ReluChip<F> {
fn generate_map(_scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let relu = shifted.max(0);
map.insert(i as i64, relu);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Relu).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Relu).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for ReluChip<F> {
fn name(&self) -> String {
"Relu".to_string()
}
fn num_cols_per_op(&self) -> usize {
<ReluChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> {
NonLinearGadget::load_lookups(self, layouter, self.config.clone(), GadgetType::Relu)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inp |
uts: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
pub struct RsqrtGadgetChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> RsqrtGadgetChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<RsqrtGadgetChip<F> as NonLinearGadget<F>>::configure(meta, gadget_config, GadgetType::Rsqrt)
}
}
impl<F: PrimeField> NonLinearGadget<F> for RsqrtGadgetChip<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let x = (shifted as f64) / (scale_factor as f64);
let sqrt = x.sqrt();
let rsqrt = 1.0 / sqrt;
let rsqrt = (rsqrt * (scale_factor as f64)).round() as i64;
map.insert(i as i64, rsqrt);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Rsqrt).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Rsqrt).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for RsqrtGadgetChip<F> {
fn name(&self) -> String {
"RsqrtGadget".to_string()
}
fn num_cols_per_op(&self) -> usize {
<RsqrtGadgetChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> {
NonLinearGadget::load_lookups(self, layouter, self |
.config.clone(), GadgetType::Rsqrt)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
pub struct SqrtGadgetChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> SqrtGadgetChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<SqrtGadgetChip<F> as NonLinearGadget<F>>::configure(meta, gadget_config, GadgetType::Sqrt)
}
}
impl<F: PrimeField> NonLinearGadget<F> for SqrtGadgetChip<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let x = (shifted as f64) / (scale_factor as f64);
let sqrt = x.sqrt();
let sqrt = (sqrt * (scale_factor as f64)).round() as i64;
map.insert(i as i64, sqrt);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Sqrt).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Sqrt).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for SqrtGadgetChip<F> {
fn name(&self) -> String {
"SqrtGadget".to_string()
}
fn num_cols_per_op(&self) -> usize {
<SqrtGadgetChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> {
NonLinearGadget::load_lookups(self, layouter, self.config.clone(), GadgetType::Sqrt)?;
Ok |
(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{collections::HashMap, marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
};
use super::{
super::gadget::{Gadget, GadgetConfig, GadgetType},
non_linearity::NonLinearGadget,
};
pub struct TanhGadgetChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> TanhGadgetChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
<TanhGadgetChip<F> as NonLinearGadget<F>>::configure(meta, gadget_config, GadgetType::Tanh)
}
}
impl<F: PrimeField> NonLinearGadget<F> for TanhGadgetChip<F> {
fn generate_map(scale_factor: u64, min_val: i64, num_rows: i64) -> HashMap<i64, i64> {
let scale_factor = scale_factor as f64;
let mut map = HashMap::new();
for i in 0..num_rows {
let shifted = i + min_val;
let x = (shifted as f64) / scale_factor;
let y = x.tanh();
let y = (y * scale_factor).round() as i64;
map.insert(i as i64, y);
}
map
}
fn get_map(&self) -> &HashMap<i64, i64> {
&self.config.maps.get(&GadgetType::Tanh).unwrap()[0]
}
fn get_selector(&self) -> halo2_proofs::plonk::Selector {
self.config.selectors.get(&GadgetType::Tanh).unwrap()[0]
}
}
impl<F: PrimeField> Gadget<F> for TanhGadgetChip<F> {
fn name(&self) -> String {
"TanhGadgetChip".to_string()
}
fn num_cols_per_op(&self) -> usize {
<TanhGadgetChip<F> as NonLinearGadget<F>>::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn load_lookups(&self, layouter: impl Layouter<F>) -> Result<(), Error> {
NonLinearGadget::load_lookups(self, layouter, self.config.clone(), Gadget |
Type::Tanh)?;
Ok(())
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::op_row_region(
self,
region,
row_offset,
vec_inputs,
single_inputs,
self.config.clone(),
)
}
fn forward(
&self,
layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
NonLinearGadget::forward(self, layouter, vec_inputs, single_inputs)
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use crate::gadgets::gadget::convert_to_u64;
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type SqrtBigConfig = GadgetConfig;
pub struct SqrtBigChip<F: PrimeField> {
config: Rc<SqrtBigConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> SqrtBigChip<F> {
pub fn construct(config: Rc<SqrtBigConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.complex_selector();
let two = Expression::Constant(F::from(2));
let columns = gadget_config.columns;
let tables = gadget_config.tables;
let inp_lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
meta.create_gate("sqrt_big arithm", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for op_idx in 0..columns.len() / Self::num_cols_per_op() {
let offset = op_idx * Self::num_cols_per_op();
let inp = meta.query_advice(columns[offset + 0], Rotation::cur());
let sqrt = meta.query_advice(columns[offset + 1], Rotation::cur());
let rem = meta.query_advice(columns[offset + 2], Rotation::cur());
let lhs = inp.clone();
let rhs = sqrt.clone() * sqrt.clone() + rem.clone();
constraints.push(s.clone() * (lhs - rhs));
}
constraints
});
for op_idx in 0..columns.len() / Self::num_cols_per_op() {
let offset = op_idx * Self::num_cols_per_op();
meta.lookup("sqrt_big sqrt lookup", |meta| {
let s = meta.query_selector(selector);
let sqrt = meta.query_advice(columns[offset + 1], Rotation::cur());
vec![(s.clone() * sqrt, inp_lookup)]
});
meta.lookup("sqrt_big rem lookup", |meta| |
{
let s = meta.query_selector(selector);
let sqrt = meta.query_advice(columns[offset + 1], Rotation::cur());
let rem = meta.query_advice(columns[offset + 2], Rotation::cur());
vec![(s.clone() * (rem + sqrt), inp_lookup)]
});
meta.lookup("sqrt_big sqrt - rem lookup", |meta| {
let s = meta.query_selector(selector);
let sqrt = meta.query_advice(columns[offset + 1], Rotation::cur());
let rem = meta.query_advice(columns[offset + 2], Rotation::cur());
vec![(s.clone() * (two.clone() * sqrt - rem), inp_lookup)]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::SqrtBig, vec![selector]);
GadgetConfig {
columns,
tables,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for SqrtBigChip<F> {
fn name(&self) -> String {
"sqrt_big".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.num_inputs_per_row()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let inps = &vec_inputs[0];
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::SqrtBig).unwrap()[0];
selector.enable(region, row_offset)?;
}
let mut outp_cells = vec![];
for (i, inp) in inps.iter().enumerate() {
let offset = i * self.num_cols_per_op();
inp.copy_advice(
|| "sqrt_big",
region,
self.config.columns[offset],
row_offset,
)?;
let outp = inp.value().map(|x: &F| {
let inp_val = convert_to_u64(x) as i64;
let fsqrt = (inp_val as f64).sqrt();
let sqrt = fsqrt.round() as i64;
let |
rem = inp_val - sqrt * sqrt;
(sqrt, rem)
});
let sqrt_cell = region.assign_advice(
|| "sqrt_big",
self.config.columns[offset + 1],
row_offset,
|| outp.map(|x| F::from(x.0 as u64)),
)?;
let _rem_cell = region.assign_advice(
|| "sqrt_big",
self.config.columns[offset + 2],
row_offset,
|| {
outp.map(|x| {
let rem_pos = x.1 + x.0;
F::from(rem_pos as u64) - F::from(x.0 as u64)
})
},
)?;
outp_cells.push(sqrt_cell);
}
Ok(outp_cells)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut inp = vec_inputs[0].clone();
let inp_len = inp.len();
while inp.len() % self.num_inputs_per_row() != 0 {
inp.push(zero);
}
let vec_inputs = vec![inp];
let outp = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
single_inputs,
)?;
Ok(outp[0..inp_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
poly::Rotation,
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
pub struct SquareGadgetChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> SquareGadgetChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = gadget_config.columns;
meta.create_gate("square gate", |meta| {
let s = meta.query_selector(selector);
let gate_inp = meta.query_advice(columns[0], Rotation::cur());
let gate_output = meta.query_advice(columns[1], Rotation::cur());
let res = gate_inp.clone() * gate_inp;
vec![s * (res - gate_output)]
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::Square, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for SquareGadgetChip<F> {
fn name(&self) -> String {
"SquareChip".to_string()
}
fn num_cols_per_op(&self) -> usize {
2
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.num_inputs_per_row()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
assert_eq!(vec_inputs.len(), 1);
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::Square).unwrap()[0];
selector.enable(region, row_offset)?;
}
let inps = &vec_inputs[0];
let mut outp = vec![];
for (i |
, inp) in inps.iter().enumerate() {
let offset = i * self.num_cols_per_op();
inp.copy_advice(|| "", region, self.config.columns[offset], row_offset)?;
let outp_val = inp.value().map(|x: &F| x.to_owned() * x.to_owned());
let outp_cell = region.assign_advice(
|| "square output",
self.config.columns[offset + 1],
row_offset,
|| outp_val,
)?;
outp.push(outp_cell);
}
Ok(outp)
}
fn forward(
&self,
mut layouter: impl halo2_proofs::circuit::Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut inp = vec_inputs[0].clone();
let initial_len = inp.len();
while inp.len() % self.num_inputs_per_row() != 0 {
inp.push(zero);
}
let vec_inputs = vec![inp];
let res = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
single_inputs,
)?;
Ok(res[0..initial_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
poly::Rotation,
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type SquaredDiffConfig = GadgetConfig;
pub struct SquaredDiffGadgetChip<F: PrimeField> {
config: Rc<SquaredDiffConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> SquaredDiffGadgetChip<F> {
pub fn construct(config: Rc<SquaredDiffConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = gadget_config.columns;
meta.create_gate("squared diff", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for i in 0..columns.len() / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let inp1 = meta.query_advice(columns[offset + 0], Rotation::cur());
let inp2 = meta.query_advice(columns[offset + 1], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
let res = (inp1 - inp2).square();
constraints.append(&mut vec![s.clone() * (res - outp)])
}
constraints
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::SquaredDiff, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for SquaredDiffGadgetChip<F> {
fn name(&self) -> String {
"SquaredDiff".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn op_row_region(
&self,
regi |
on: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let inp1 = &vec_inputs[0];
let inp2 = &vec_inputs[1];
assert_eq!(inp1.len(), inp2.len());
let columns = &self.config.columns;
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::SquaredDiff).unwrap()[0];
selector.enable(region, row_offset)?;
}
let mut outps = vec![];
for i in 0..inp1.len() {
let offset = i * self.num_cols_per_op();
let inp1 = inp1[i].copy_advice(|| "", region, columns[offset + 0], row_offset)?;
let inp2 = inp2[i].copy_advice(|| "", region, columns[offset + 1], row_offset)?;
let outp = inp1.value().map(|x: &F| x.to_owned()) - inp2.value().map(|x: &F| x.to_owned());
let outp = outp * outp;
let outp = region.assign_advice(|| "", columns[offset + 2], row_offset, || outp)?;
outps.push(outp);
}
Ok(outps)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut inp1 = vec_inputs[0].clone();
let mut inp2 = vec_inputs[1].clone();
let initial_len = inp1.len();
while inp1.len() % self.num_inputs_per_row() != 0 {
inp1.push(zero);
inp2.push(zero);
}
let vec_inputs = vec![inp1, inp2];
let res = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
single_inputs,
)?;
Ok(res[0..initial_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error},
poly::Rotation,
};
use super::gadget::{Gadget, GadgetConfig, GadgetType};
type SubPairsConfig = GadgetConfig;
pub struct SubPairsChip<F: PrimeField> {
config: Rc<SubPairsConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> SubPairsChip<F> {
pub fn construct(config: Rc<SubPairsConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let selector = meta.selector();
let columns = gadget_config.columns;
meta.create_gate("sub pair", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
for i in 0..columns.len() / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let inp1 = meta.query_advice(columns[offset + 0], Rotation::cur());
let inp2 = meta.query_advice(columns[offset + 1], Rotation::cur());
let outp = meta.query_advice(columns[offset + 2], Rotation::cur());
let res = inp1 - inp2;
constraints.append(&mut vec![s.clone() * (res - outp)])
}
constraints
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::SubPairs, vec![selector]);
GadgetConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for SubPairsChip<F> {
fn name(&self) -> String {
"sub pairs chip".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_ |
inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let inp1 = &vec_inputs[0];
let inp2 = &vec_inputs[1];
assert_eq!(inp1.len(), inp2.len());
let columns = &self.config.columns;
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::SubPairs).unwrap()[0];
selector.enable(region, row_offset)?;
}
let mut outps = vec![];
for i in 0..inp1.len() {
let offset = i * self.num_cols_per_op();
let inp1 = inp1[i].copy_advice(|| "", region, columns[offset + 0], row_offset)?;
let inp2 = inp2[i].copy_advice(|| "", region, columns[offset + 1], row_offset)?;
let outp = inp1.value().map(|x: &F| x.to_owned()) - inp2.value().map(|x: &F| x.to_owned());
let outp = region.assign_advice(|| "", columns[offset + 2], row_offset, || outp)?;
outps.push(outp);
}
Ok(outps)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut inp1 = vec_inputs[0].clone();
let mut inp2 = vec_inputs[1].clone();
let initial_len = inp1.len();
while inp1.len() % self.num_inputs_per_row() != 0 {
inp1.push(zero);
inp2.push(zero);
}
let vec_inputs = vec![inp1, inp2];
let res = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec_inputs,
single_inputs,
)?;
Ok(res[0..initial_len].to_vec())
}
} |
use std::marker::PhantomData;
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use crate::gadgets::gadget::{convert_to_u64, GadgetConfig};
use super::gadget::{Gadget, GadgetType};
type UpdateConfig = GadgetConfig;
pub struct UpdateGadgetChip<F: PrimeField> {
config: UpdateConfig,
_marker: PhantomData<F>,
}
impl<F: PrimeField> UpdateGadgetChip<F> {
pub fn construct(config: UpdateConfig) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
4
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> UpdateConfig {
let tables = &gadget_config.tables;
let mod_lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
let columns = gadget_config.columns;
let selector = meta.complex_selector();
let div_val = gadget_config.scale_factor;
let eta: u64 = (gadget_config.scale_factor as f64 * gadget_config.eta) as u64;
meta.create_gate("updater_arith", |meta| {
let s = meta.query_selector(selector);
let sf = Expression::Constant(F::from(div_val as u64));
let eta = Expression::Constant(F::from(eta as u64));
let mut constraints = vec![];
for op_idx in 0..columns.len() / Self::num_cols_per_op() {
let offset = op_idx * Self::num_cols_per_op();
let w = meta.query_advice(columns[offset], Rotation::cur());
let dw = meta.query_advice(columns[offset + 1], Rotation::cur());
let div = meta.query_advice(columns[offset + 2], Rotation::cur());
let mod_res = meta.query_advice(columns[offset + 3], Rotation::cur());
let expr = (w * sf.clone() - dw * eta.clone()) - (div * sf.clone() + mod_res);
constraints.push(s.clone() * expr);
}
constraints
});
for op_idx in 0..columns.len() / Self::num_cols_per_op() {
let offset = op_idx * Self::num_cols_per_op();
meta.lookup("max |
inp1", |meta| {
let s = meta.query_selector(selector);
let mod_res = meta.query_advice(columns[offset + 3], Rotation::cur());
vec![(s.clone() * mod_res.clone(), mod_lookup)]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::Update, vec![selector]);
UpdateConfig {
columns,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField + Ord> Gadget<F> for UpdateGadgetChip<F> {
fn name(&self) -> String {
"updater chip".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.config.columns.len() / self.num_cols_per_op()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
_single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let div_val = self.config.scale_factor as i64;
let div_val_f = F::from(div_val as u64);
let eta = div_val / 1000;
let eta = F::from(eta as u64);
let div_outp_min_val = self.config.div_outp_min_val;
let div_inp_min_val_pos_i64 = -self.config.shift_min_val;
let div_inp_min_val_pos = F::from(div_inp_min_val_pos_i64 as u64);
let columns = &self.config.columns;
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::Update).unwrap()[0];
selector.enable(region, row_offset)?;
}
let w = &vec_inputs[0];
let dw = &vec_inputs[1];
let mut output_cells = vec![];
for i in 0..w.len() {
let offset = i * self.num_cols_per_op();
let _w_cell = w[i].copy_advice(|| "", region, columns[offset + 0], row_offset)?;
let _dw_cell = dw[i].copy_advice(|| "", region, columns[offset + 1], row_offset)?;
let w_val = w[i].value().map(|x: &F| x.to_owned());
let dw_val = dw[i].value().map |
(|x: &F| x.to_owned());
let out_scaled = w_val.zip(dw_val).map(|(w, dw)| w * div_val_f - dw * eta);
let div_mod = out_scaled.map(|x| {
let x_pos = x + div_inp_min_val_pos;
let x_pos = if x_pos > F::ZERO {
x_pos
} else {
x_pos + div_val_f
};
let inp = convert_to_u64(&x_pos);
let div_res = inp as i64 / div_val - (div_inp_min_val_pos_i64 as i64 / div_val);
let mod_res = inp as i64 % div_val;
(div_res, mod_res)
});
let div_res_cell = region
.assign_advice(
|| "div_res",
self.config.columns[offset + 2],
row_offset,
|| {
div_mod.map(|(x, _): (i64, i64)| {
F::from((x - div_outp_min_val as i64) as u64) - F::from(-div_outp_min_val as u64)
})
},
)
.unwrap();
let _mod_res_cell = region
.assign_advice(
|| "mod_res",
self.config.columns[offset + 3],
row_offset,
|| div_mod.map(|(_, x): (i64, i64)| F::from(x as u64)),
)
.unwrap();
output_cells.push(div_res_cell);
}
Ok(output_cells)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let zero = &single_inputs[0];
let mut w = vec_inputs[0].clone();
let mut dw = vec_inputs[1].clone();
let initial_len = w.len();
while !w.len() % self.num_cols_per_op() == 0 {
w.push(zero);
}
while !dw.len() % self.num_cols_per_op() == 0 {
dw.push(zero);
}
let res = self.op_aligned_rows(
layouter.namespace(|| format!("forward row {}", self.name())),
&vec![w, dw],
single_inputs,
)?;
Ok(res[0..initial_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use rounded_div::RoundedDiv;
use super::gadget::{convert_to_u128, Gadget, GadgetConfig, GadgetType};
type VarDivRoundConfig = GadgetConfig;
pub struct VarDivRoundChip<F: PrimeField> {
config: Rc<VarDivRoundConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> VarDivRoundChip<F> {
pub fn construct(config: Rc<VarDivRoundConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
3
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let columns = gadget_config.columns;
let selector = meta.complex_selector();
let two = Expression::Constant(F::from(2));
let tables = gadget_config.tables;
let lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
meta.create_gate("var_div_arithm", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
let b = meta.query_advice(columns[columns.len() - 1], Rotation::cur());
for i in 0..(columns.len() - 1) / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let a = meta.query_advice(columns[offset], Rotation::cur());
let c = meta.query_advice(columns[offset + 1], Rotation::cur());
let r = meta.query_advice(columns[offset + 2], Rotation::cur());
let lhs = a.clone() * two.clone() + b.clone();
let rhs = b.clone() * two.clone() * c + r;
constraints.push(s.clone() * (lhs - rhs));
}
constraints
});
for i in 0..(columns.len() - 1) / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
meta.lookup("var div range checks r", |meta| {
let s = meta.query_selector(selector);
let r = meta.query_advice(columns[offset + 2], Rotation::cur()); |
vec![(s.clone() * r, lookup)]
});
meta.lookup("var div range checks 2b-r", |meta| {
let s = meta.query_selector(selector);
let b = meta.query_advice(columns[columns.len() - 1], Rotation::cur());
let r = meta.query_advice(columns[offset + 2], Rotation::cur());
vec![(s.clone() * (two.clone() * b - r), lookup)]
});
}
meta.lookup("var div range checks b", |meta| {
let s = meta.query_selector(selector);
let b = meta.query_advice(columns[columns.len() - 1], Rotation::cur());
vec![(s.clone() * b, lookup)]
});
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::VarDivRound, vec![selector]);
GadgetConfig {
columns,
tables,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for VarDivRoundChip<F> {
fn name(&self) -> String {
"VarDivRoundChip".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
(self.config.columns.len() - 1) / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.num_inputs_per_row()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let a_vec = &vec_inputs[0];
let b = &single_inputs[1];
let div_outp_min_val_i64 = self.config.div_outp_min_val;
let div_inp_min_val_pos_i64 = -self.config.shift_min_val;
if self.config.use_selectors {
let selector = self.config.selectors.get(&GadgetType::VarDivRound).unwrap()[0];
selector.enable(region, row_offset)?;
}
b.copy_advice(
|| "",
region,
self.config.columns[self.config.columns.len() - 1],
row_offset,
)?;
let mut div_out = vec![];
for (i, a) in a_vec.iter().enumerate() {
let offset = i * self.num_cols_per_op() |
;
a.copy_advice(|| "", region, self.config.columns[offset], row_offset)?;
let div_mod = a.value().zip(b.value()).map(|(a, b)| {
let b = convert_to_u128(b);
let div_inp_min_val_pos_i64 = div_inp_min_val_pos_i64 / (b as i64) * (b as i64);
let div_inp_min_val_pos = F::from(div_inp_min_val_pos_i64 as u64);
let a_pos = *a + div_inp_min_val_pos;
let a = convert_to_u128(&a_pos);
let c_pos = a.rounded_div(b);
let c = (c_pos as i128 - (div_inp_min_val_pos_i64 as u128 / b) as i128) as i64;
let rem_floor = (a as i128) - (c_pos * b) as i128;
let r = 2 * rem_floor + (b as i128);
let r = r as i64;
(c, r)
});
let div_cell = region.assign_advice(
|| "",
self.config.columns[offset + 1],
row_offset,
|| {
div_mod.map(|(c, _)| {
let offset = F::from(-div_outp_min_val_i64 as u64);
let c = F::from((c - div_outp_min_val_i64) as u64);
c - offset
})
},
)?;
let _mod_cell = region.assign_advice(
|| "",
self.config.columns[offset + 2],
row_offset,
|| div_mod.map(|(_, r)| F::from(r as u64)),
)?;
div_out.push(div_cell);
}
Ok(div_out)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let mut inps = vec_inputs[0].clone();
let initial_len = inps.len();
let default = &single_inputs[0];
while inps.len() % self.num_inputs_per_row() != 0 {
inps.push(&default);
}
let res = self.op_aligned_rows(layouter.namespace(|| "var_div"), &vec![inps], single_inputs)?;
Ok(res[..initial_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use rounded_div::RoundedDiv;
use super::gadget::{convert_to_u128, Gadget, GadgetConfig, GadgetType};
pub struct VarDivRoundBigChip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> VarDivRoundBigChip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
7
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let columns = gadget_config.columns;
let selector = meta.complex_selector();
let two = Expression::Constant(F::from(2));
let range = Expression::Constant(F::from(gadget_config.num_rows as u64));
let tables = gadget_config.tables;
let lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
meta.create_gate("var_div_arithm", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
let b = meta.query_advice(columns[columns.len() - 1], Rotation::cur());
for i in 0..(columns.len() - 1) / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let a = meta.query_advice(columns[offset], Rotation::cur());
let c = meta.query_advice(columns[offset + 1], Rotation::cur());
let r = meta.query_advice(columns[offset + 2], Rotation::cur());
let lhs = a.clone() * two.clone() + b.clone();
let rhs = b.clone() * two.clone() * c + r.clone();
constraints.push(s.clone() * (lhs - rhs));
let br1 = meta.query_advice(columns[offset + 3], Rotation::cur());
let br0 = meta.query_advice(columns[offset + 4], Rotation::cur());
let lhs = b.clone() * two.clone() - r.clone();
let rhs = br1 * range.clone() + br0;
constraints.p |
ush(s.clone() * (lhs - rhs));
let r1 = meta.query_advice(columns[offset + 5], Rotation::cur());
let r0 = meta.query_advice(columns[offset + 6], Rotation::cur());
let lhs = r.clone();
let rhs = r1 * range.clone() + r0;
constraints.push(s.clone() * (lhs - rhs));
}
constraints
});
for i in 0..(columns.len() - 1) / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
meta.lookup("var div big br1", |meta| {
let s = meta.query_selector(selector);
let br1 = meta.query_advice(columns[offset + 3], Rotation::cur());
vec![(s * br1, lookup)]
});
meta.lookup("var div big br0", |meta| {
let s = meta.query_selector(selector);
let br0 = meta.query_advice(columns[offset + 4], Rotation::cur());
vec![(s * br0, lookup)]
});
meta.lookup("var div big r1", |meta| {
let s = meta.query_selector(selector);
let r1 = meta.query_advice(columns[offset + 5], Rotation::cur());
vec![(s * r1, lookup)]
});
meta.lookup("var div big r0", |meta| {
let s = meta.query_selector(selector);
let r0 = meta.query_advice(columns[offset + 6], Rotation::cur());
vec![(s * r0, lookup)]
});
}
let mut selectors = gadget_config.selectors;
selectors.insert(GadgetType::VarDivRoundBig, vec![selector]);
GadgetConfig {
columns,
tables,
selectors,
..gadget_config
}
}
}
impl<F: PrimeField> Gadget<F> for VarDivRoundBigChip<F> {
fn name(&self) -> String {
"VarDivBigRoundChip".to_string()
}
fn num_cols_per_op(&self) -> usize {
Self::num_cols_per_op()
}
fn num_inputs_per_row(&self) -> usize {
(self.config.columns.len() - 1) / self.num_cols_per_op()
}
fn num_outputs_per_row(&self) -> usize {
self.num_inputs_per_row()
}
fn op_row_region(
&self,
region: &mut Region<F>,
row_offset: usize,
vec_inputs: &Vec<Vec<&AssignedCell |
<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let a_vec = &vec_inputs[0];
let b = &single_inputs[1];
let div_outp_min_val_i64 = self.config.div_outp_min_val;
let div_inp_min_val_pos_i64 = -self.config.shift_min_val;
let num_rows = self.config.num_rows as i64;
if self.config.use_selectors {
let selector = self
.config
.selectors
.get(&GadgetType::VarDivRoundBig)
.unwrap()[0];
selector.enable(region, row_offset)?;
}
b.copy_advice(
|| "",
region,
self.config.columns[self.config.columns.len() - 1],
row_offset,
)?;
let mut div_out = vec![];
for (i, a) in a_vec.iter().enumerate() {
let offset = i * self.num_cols_per_op();
a.copy_advice(|| "", region, self.config.columns[offset], row_offset)
.unwrap();
let div_mod = a.value().zip(b.value()).map(|(a, b)| {
let b = convert_to_u128(b);
let div_inp_min_val_pos_i64 = div_inp_min_val_pos_i64 / (b as i64) * (b as i64);
let div_inp_min_val_pos = F::from(div_inp_min_val_pos_i64 as u64);
let a_pos = *a + div_inp_min_val_pos;
let a = convert_to_u128(&a_pos);
let c_pos = a.rounded_div(b);
let c = (c_pos as i128 - (div_inp_min_val_pos_i64 as u128 / b) as i128) as i64;
let rem_floor = (a as i128) - (c_pos * b) as i128;
let r = 2 * rem_floor + (b as i128);
let r = r as i64;
(c, r)
});
let br_split = div_mod.zip(b.value()).map(|((_, r), b)| {
let b = convert_to_u128(b) as i64;
let val = 2 * b - r;
let p1 = val / num_rows;
let p0 = val % num_rows;
(p1, p0)
});
let r_split = div_mod.map(|(_, r)| {
let p1 = r / num_rows;
let p0 = r % num_rows;
(p1, p0)
});
let div_cell = region.assign_advice(
|| "",
self.config.columns[offset + 1], |
row_offset,
|| {
div_mod.map(|(c, _)| {
let offset = F::from(-div_outp_min_val_i64 as u64);
let c = F::from((c - div_outp_min_val_i64) as u64);
c - offset
})
},
)?;
let _mod_cell = region.assign_advice(
|| "",
self.config.columns[offset + 2],
row_offset,
|| div_mod.map(|(_, r)| F::from(r as u64)),
)?;
let _br_split_cell_1 = region.assign_advice(
|| "",
self.config.columns[offset + 3],
row_offset,
|| br_split.map(|(p1, _)| F::from(p1 as u64)),
)?;
let _br_split_cell_2 = region.assign_advice(
|| "",
self.config.columns[offset + 4],
row_offset,
|| br_split.map(|(_, p0)| F::from(p0 as u64)),
)?;
let _r_split_cell_1 = region.assign_advice(
|| "",
self.config.columns[offset + 5],
row_offset,
|| r_split.map(|(p1, _)| F::from(p1 as u64)),
)?;
let _r_split_cell_2 = region.assign_advice(
|| "",
self.config.columns[offset + 6],
row_offset,
|| r_split.map(|(_, p0)| F::from(p0 as u64)),
)?;
div_out.push(div_cell);
}
Ok(div_out)
}
fn forward(
&self,
mut layouter: impl Layouter<F>,
vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>,
single_inputs: &Vec<&AssignedCell<F, F>>,
) -> Result<Vec<AssignedCell<F, F>>, Error> {
let mut inps = vec_inputs[0].clone();
let initial_len = inps.len();
let default = &single_inputs[0];
while inps.len() % self.num_inputs_per_row() != 0 {
inps.push(&default);
}
let res = self.op_aligned_rows(
layouter.namespace(|| "var_div_big"),
&vec![inps],
single_inputs,
)?;
Ok(res[..initial_len].to_vec())
}
} |
use std::{marker::PhantomData, rc::Rc};
use halo2_proofs::{
circuit::{AssignedCell, Layouter, Region},
halo2curves::ff::PrimeField,
plonk::{ConstraintSystem, Error, Expression},
poly::Rotation,
};
use rounded_div::RoundedDiv;
use super::gadget::{convert_to_u128, Gadget, GadgetConfig, GadgetType};
pub struct VarDivRoundBig3Chip<F: PrimeField> {
config: Rc<GadgetConfig>,
_marker: PhantomData<F>,
}
impl<F: PrimeField> VarDivRoundBig3Chip<F> {
pub fn construct(config: Rc<GadgetConfig>) -> Self {
Self {
config,
_marker: PhantomData,
}
}
pub fn num_cols_per_op() -> usize {
9
}
pub fn configure(meta: &mut ConstraintSystem<F>, gadget_config: GadgetConfig) -> GadgetConfig {
let columns = gadget_config.columns;
let selector = meta.complex_selector();
let two = Expression::Constant(F::from(2));
let range = Expression::Constant(F::from(gadget_config.num_rows as u64));
let range_sq = range.clone() * range.clone();
let tables = gadget_config.tables;
let lookup = tables.get(&GadgetType::InputLookup).unwrap()[0];
meta.create_gate("var_div_big3_arithm", |meta| {
let s = meta.query_selector(selector);
let mut constraints = vec![];
let b = meta.query_advice(columns[columns.len() - 1], Rotation::cur());
for i in 0..(columns.len() - 1) / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
let a = meta.query_advice(columns[offset], Rotation::cur());
let c = meta.query_advice(columns[offset + 1], Rotation::cur());
let r = meta.query_advice(columns[offset + 2], Rotation::cur());
let lhs = a.clone() * two.clone() + b.clone();
let rhs = b.clone() * two.clone() * c + r.clone();
constraints.push(s.clone() * (lhs - rhs));
let br2 = meta.query_advice(columns[offset + 3], Rotation::cur());
let br1 = meta.query_advice(columns[offset + 4], Rotation::cur());
let br0 = meta.query_advice(columns[offset + 5], Rotatio |
n::cur());
let lhs = b.clone() * two.clone() - r.clone();
let rhs = br2 * range_sq.clone() + br1 * range.clone() + br0;
constraints.push(s.clone() * (lhs - rhs));
let r2 = meta.query_advice(columns[offset + 6], Rotation::cur());
let r1 = meta.query_advice(columns[offset + 7], Rotation::cur());
let r0 = meta.query_advice(columns[offset + 8], Rotation::cur());
let lhs = r.clone();
let rhs = r2 * range_sq.clone() + r1 * range.clone() + r0;
constraints.push(s.clone() * (lhs - rhs));
}
constraints
});
for i in 0..(columns.len() - 1) / Self::num_cols_per_op() {
let offset = i * Self::num_cols_per_op();
meta.lookup("var div big br2", |meta| {
let s = meta.query_selector(selector);
let br2 = meta.query_advice(columns[offset + 3], Rotation::cur());
vec![(s * br2, lookup)]
});
meta.lookup("var div big br1", |meta| {
let s = meta.query_selector(selector);
let br1 = meta.query_advice(columns[offset + 4], Rotation::cur());
vec![(s * br1, lookup)]
});
meta.lookup("var div big br0", |meta| {
let s = meta.query_selector(selector);
let br0 = meta.query_advice(columns[offset + 5], Rotation::cur());
vec![(s * br0, lookup)]
});
meta.lookup("var div big r2", |meta| {
let s = meta.query_selector(selector);
let r2 = meta.query_advice(columns[offset + 6], Rotation::cur());
vec![(s * r2, lookup)]
});
meta.lookup("var div big r1", |meta| {
let s = meta.query_selector(selector);
let r1 = meta.query_advice(columns[offset + 7], Rotation::cur());
vec![(s * r1, lookup)]
});
meta.lookup("var div big r0", |meta| {
let s = meta.query_selector(selector);
let r0 = meta.query_advice(columns[offset + 8], Rotation::cur());
vec![(s * r0, lookup)]
});
}
let mut selectors = gadget_config.selectors; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.