text
stringlengths
1
2.05k
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import tvm from tvm import te from tvm import rpc from vta import get_bitstream_path, download_bitstream, program_fpga, reconfig_runtime host = os.environ.get("VTA_RPC_HOST", "pynq") port = int(os.environ.get("VTA_RPC_PORT", "9091")) def program_rpc_bitstream(path=None): """Program the FPGA on the RPC server Parameters ---------- path : path to bitstream (optional) """ assert tvm.runtime.enabled("rpc") remote = rpc.connect(host, port) program_fpga(remote, path) def reconfig_rpc_runtime(): """Reconfig the RPC server runtime""" assert tvm.runtime.enabled("rpc") remote = rpc.connect(host, port) reconfig_runtime(remote) program_rpc_bitstream() reconfig_rpc_runtime()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import vta def test_env(): env = vta.get_env() mock = env.mock assert mock.alu == "skip_alu" def test_env_scope(): env = vta.get_env() cfg = env.cfg_dict cfg["TARGET"] = "xyz" with vta.Environment(cfg): assert vta.get_env().TARGET == "xyz" assert vta.get_env().TARGET == env.TARGET if __name__ == "__main__": test_env() test_env_scope()
"""Unit test VTA's instructions """
import tvm from tvm
import te
import numpy as np from tvm
import topi from tvm.contrib
import utils
import vta
import vta.testing from vta.testing
import simulator np.random.seed(0xDEADB) def test_save_load_out(): """Test save/store output command""" def _run(env, remote): n = 6 x = te.placeholder((n, n, env.BATCH, env.BLOCK_OUT), name="x", dtype=env.acc_dtype) x_buf = te.compute((n, n, env.BATCH, env.BLOCK_OUT), lambda *i: x(*i), "x_buf") y_buf = te.compute((n, n, env.BATCH, env.BLOCK_OUT), lambda *i: x_buf(*i) >> 0, "y_buf") y = te.compute( (n, n, env.BATCH, env.BLOCK_OUT), lambda *i: y_buf(*i).astype(env.inp_dtype), "y" ) s = te.create_schedule(y.op) s[x_buf].set_scope(env.acc_scope) s[x_buf].pragma(x_buf.op.axis[0], env.dma_copy) s[y_buf].set_scope(env.acc_scope) s[y_buf].pragma(y_buf.op.axis[0], env.alu) s[y].pragma(y.op.axis[0], env.dma_copy) with vta.build_config(): m = vta.build(s, [x, y], tvm.target.Target("ext_dev", host=env.target_host)) if not remote: return temp = utils.tempdir() m.save(temp.relpath("load_act.o")) remote.upload(temp.relpath("load_act.o")) f = remote.load_module("load_act.o") dev = remote.ext_dev(0) x_np = np.random.randint(1, 10, size=(n, n, env.BATCH, env.BLOCK_OUT)).astype(x.dtype) y_np = x_np.astype(y.dtype) x_nd = tvm.nd.array(x_np, dev) y_nd = tvm.nd.empty(y_np.shape, device=dev, dtype=y_np.dtype) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() f(x_nd, y_nd) np.testing.assert_equal(y_np, y_nd.numpy()) if env.TARGET in ["sim", "tsim"]: sim_stats = simulator.stats() print("Save load execution statistics:") for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v)) vta.testing.run(_run) def test_padded_load(): """Test padded load.""" def _run(env, remote): def check_padded_load(pad_before, pad_after, test_name=None):
n = 3 m = 5 x = te.placeholder((n, m, env.BATCH, env.BLOCK_OUT), name="x", dtype=env.acc_dtype) x_buf = topi.nn.pad(x, pad_before, pad_after, name="y") y_buf = te.compute( ( n + pad_before[0] + pad_after[0], m + pad_before[1] + pad_after[1], env.BATCH, env.BLOCK_OUT, ), lambda *i: x_buf(*i) >> 0, "y_buf", ) y = te.compute( ( n + pad_before[0] + pad_after[0], m + pad_before[1] + pad_after[1], env.BATCH, env.BLOCK_OUT, ), lambda *i: y_buf(*i).astype(env.inp_dtype), "y", ) s = te.create_schedule(y.op) s[x_buf].set_scope(env.acc_scope) s[x_buf].pragma(x_buf.op.axis[0], env.dma_copy) s[y_buf].set_scope(env.acc_scope) s[y_buf].pragma(y_buf.op.axis[0], env.alu) s[y].pragma(y.op.axis[0], env.dma_copy) with vta.build_config(): mod = vta.build(s, [x, y], tvm.target.Target("ext_dev", host=env.target_host)) if not remote: return temp = utils.tempdir() mod.save(temp.relpath("padded_load.o")) remote.upload(temp.relpath("padded_load.o")) f = remote.load_module("padded_load.o") dev = remote.ext_dev(0) x_np = np.random.randint(0, 10, size=(n, m, env.BATCH, env.BLOCK_OUT)).astype(x.dtype) y_np = np.zeros( ( n + pad_before[0] + pad_after[0], m + pad_before[1] + pad_after[1], env.BATCH, env.BLOCK_OUT, ) ).astype(y.dtype) y_np[pad_before[0] : pad_befor
e[0] + n, pad_before[1] : pad_before[1] + m, :] = x_np x_nd = tvm.nd.array(x_np, dev) y_nd = tvm.nd.empty(y_np.shape, device=dev, dtype=y_np.dtype) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() f(x_nd, y_nd) np.testing.assert_equal(y_np, y_nd.numpy()) if env.TARGET in ["sim", "tsim"]: sim_stats = simulator.stats() print("Padded {} load execution statistics:".format(test_name)) for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v)) check_padded_load([2, 0, 0, 0], [0, 0, 0, 0], test_name="Y0") check_padded_load([0, 2, 0, 0], [0, 0, 0, 0], test_name="Y1") check_padded_load([0, 0, 0, 0], [2, 0, 0, 0], test_name="X0") check_padded_load([0, 0, 0, 0], [0, 2, 0, 0], test_name="X1") check_padded_load([1, 1, 0, 0], [1, 1, 0, 0], test_name="all") vta.testing.run(_run) def test_gemm(): """Test GEMM.""" def _run(env, remote): o = 4 n = 1 m = 4 x = te.placeholder((o, n, env.BATCH, env.BLOCK_IN), name="x", dtype=env.inp_dtype) w = te.placeholder((m, n, env.BLOCK_OUT, env.BLOCK_IN), name="w", dtype=env.wgt_dtype) x_buf = te.compute((o, n, env.BATCH, env.BLOCK_IN), lambda *i: x(*i), "x_buf") w_buf = te.compute((m, n, env.BLOCK_OUT, env.BLOCK_IN), lambda *i: w(*i), "w_buf") ko = te.reduce_axis((0, n), name="ko") ki = te.reduce_axis((0, env.BLOCK_IN), name="ki") y_gem = te.compute( (o, m, env.BATCH, env.BLOCK_OUT), lambda bo, co, bi, ci: te.sum( x_buf[bo, ko, bi, ki].astype(env.acc_dtype) * w_buf[co, ko, ci, ki].astype(env.acc_dtype), axis=[ko, ki], ), name="y_gem", ) y_shf = te.compute( (o, m, env.BATCH, env.BLOCK_OUT), lambda *i: y_gem(*i) >> 8, name="y_shf" ) y_max
= te.compute( (o, m, env.BATCH, env.BLOCK_OUT), lambda *i: tvm.te.max(y_shf(*i), 0), "y_max" ) y_min = te.compute( (o, m, env.BATCH, env.BLOCK_OUT), lambda *i: tvm.te.min(y_max(*i), (1 << (env.INP_WIDTH - 1)) - 1), "y_min", ) y = te.compute( (o, m, env.BATCH, env.BLOCK_OUT), lambda *i: y_min(*i).astype(env.inp_dtype), name="y" ) if not remote: return def verify(s, name=None): with vta.build_config(disabled_pass={"tir.CommonSubexprElimTIR"}): mod = vta.build(s, [x, w, y], tvm.target.Target("ext_dev", host=env.target_host)) temp = utils.tempdir() mod.save(temp.relpath("gemm.o")) remote.upload(temp.relpath("gemm.o")) f = remote.load_module("gemm.o") dev = remote.ext_dev(0) x_np = np.random.randint(-128, 128, size=(o, n, env.BATCH, env.BLOCK_IN)).astype( x.dtype ) w_np = np.random.randint(-128, 128, size=(m, n, env.BLOCK_OUT, env.BLOCK_IN)).astype( w.dtype ) y_np = np.zeros((o, m, env.BATCH, env.BLOCK_OUT)).astype(y.dtype) x_nd = tvm.nd.array(x_np, dev) w_nd = tvm.nd.array(w_np, dev) y_nd = tvm.nd.array(y_np, dev) y_np = y_np.astype(env.acc_dtype) for b in range(o): for i in range(m): for j in range(n): y_np[b, i, :] += np.dot( x_np[b, j, :].astype(env.acc_dtype), w_np[i, j].T.astype(env.acc_dtype) ) y_np = np.right_shift(y_np, 8) y_np = np.clip(y_np, 0, (1 << (env.INP_WIDTH - 1)) - 1).astype(y.dtype) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() f(x_nd, w_nd, y_nd) np.testing.assert_equal(y_np, y_nd.numpy()) if
env.TARGET in ["sim", "tsim"]: sim_stats = simulator.stats() print("GEMM schedule:{} execution statistics:".format(name)) for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v)) def test_schedule1(): s = te.create_schedule(y.op) s[x_buf].set_scope(env.inp_scope) s[w_buf].set_scope(env.wgt_scope) s[y_gem].set_scope(env.acc_scope) s[y_shf].set_scope(env.acc_scope) s[y_max].set_scope(env.acc_scope) s[y_min].set_scope(env.acc_scope) s[x_buf].compute_at(s[y_gem], ko) s[x_buf].pragma(s[x_buf].op.axis[0], env.dma_copy) s[w_buf].compute_at(s[y_gem], ko) s[w_buf].pragma(s[w_buf].op.axis[0], env.dma_copy) s[y_shf].pragma(s[y_shf].op.axis[0], env.alu) s[y_max].pragma(s[y_max].op.axis[0], env.alu) s[y_min].pragma(s[y_min].op.axis[0], env.alu) s[y].pragma(s[y].op.axis[0], env.dma_copy) s[y_gem].reorder( ko, s[y_gem].op.axis[0], s[y_gem].op.axis[1], s[y_gem].op.axis[2], s[y_gem].op.axis[3], ki, ) s[y_gem].tensorize(s[y_gem].op.axis[2], env.gemm) verify(s, name="default") def test_smt(): s = te.create_schedule(y.op) s[x_buf].set_scope(env.inp_scope) s[w_buf].set_scope(env.wgt_scope) s[y_gem].set_scope(env.acc_scope) s[y_shf].set_scope(env.acc_scope) s[y_max].set_scope(env.acc_scope) s[y_min].set_scope(env.acc_scope) abo, aco, abi, aci = s[y].op.axis abo1, abo2 = s[y].split(abo, nparts=2) s[y].bind(abo1, te.thread_axis("cthread")) s[y_gem].compute_at(s[y], abo1) s[y_shf].compute_at(s[y], abo1) s
[y_max].compute_at(s[y], abo1) s[y_min].compute_at(s[y], abo1) s[y_gem].reorder( ko, s[y_gem].op.axis[0], s[y_gem].op.axis[1], s[y_gem].op.axis[2], s[y_gem].op.axis[3], ki, ) s[y_gem].tensorize(s[y_gem].op.axis[2], env.gemm) s[y_shf].pragma(s[y_shf].op.axis[0], env.alu) s[y_max].pragma(s[y_max].op.axis[0], env.alu) s[y_min].pragma(s[y_min].op.axis[0], env.alu) s[x_buf].compute_at(s[y_gem], ko) s[x_buf].pragma(s[x_buf].op.axis[0], env.dma_copy) s[w_buf].compute_at(s[y_gem], ko) s[w_buf].pragma(s[w_buf].op.axis[0], env.dma_copy) s[y].pragma(abo2, env.dma_copy) verify(s, name="smt") test_schedule1() test_smt() vta.testing.run(_run) def test_alu(): def _run(env, remote): def check_alu(tvm_op, np_op=None, use_imm=False, test_name=None): """Test ALU""" m = 8 n = 8 imm = np.random.randint(1, 5) a = te.placeholder((m, n, env.BATCH, env.BLOCK_OUT), name="a", dtype=env.acc_dtype) a_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: a(*i), "a_buf" ) if use_imm: res_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: tvm_op(a_buf(*i), imm), "res_buf" ) else: b = te.placeholder((m, n, env.BATCH, env.BLOCK_OUT), name="b", dtype=env.acc_dtype) b_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: b(*i), "b_buf" ) res_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: tvm_op(a_buf(*i), b_buf(*i)), "res_buf", ) res = te.compute(
(m, n, env.BATCH, env.BLOCK_OUT), lambda *i: res_buf(*i).astype(env.inp_dtype), "res", ) s = te.create_schedule(res.op) s[a_buf].set_scope(env.acc_scope) s[a_buf].pragma(a_buf.op.axis[0], env.dma_copy) s[res_buf].set_scope(env.acc_scope) s[res_buf].pragma(res_buf.op.axis[0], env.alu) s[res].pragma(res.op.axis[0], env.dma_copy) if not use_imm: s[b_buf].set_scope(env.acc_scope) s[b_buf].pragma(b_buf.op.axis[0], env.dma_copy) if not remote: return with vta.build_config(): if use_imm: mod = vta.build(s, [a, res], tvm.target.Target("ext_dev", host=env.target_host)) else: mod = vta.build( s, [a, b, res], tvm.target.Target("ext_dev", host=env.target_host) ) temp = utils.tempdir() mod.save(temp.relpath("load_act.o")) remote.upload(temp.relpath("load_act.o")) f = remote.load_module("load_act.o") dev = remote.ext_dev(0) a_np = np.random.randint(-16, 16, size=(m, n, env.BATCH, env.BLOCK_OUT)).astype(a.dtype) if use_imm: res_np = np_op(a_np, imm) if np_op else tvm_op(a_np, imm) else: b_np = np.random.randint(-16, 16, size=(m, n, env.BATCH, env.BLOCK_OUT)).astype( b.dtype ) res_np = np_op(a_np, b_np) if np_op else tvm_op(a_np, b_np) res_np = res_np.astype(res.dtype) a_nd = tvm.nd.array(a_np, dev) res_nd = tvm.nd.array(np.zeros((m, n, env.BATCH, env.BLOCK_OUT)).astype(res.dtype), dev) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() if use_imm: f(a_nd, res_nd) else:
b_nd = tvm.nd.array(b_np, dev) f(a_nd, b_nd, res_nd) np.testing.assert_equal(res_np, res_nd.numpy()) if env.TARGET in ["sim", "tsim"]: sim_stats = simulator.stats() print("ALU {} execution statistics:".format(test_name)) for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v)) check_alu(lambda x, y: x << y, np.left_shift, use_imm=True, test_name="SHL") check_alu(tvm.te.max, np.maximum, use_imm=True, test_name="MAX") check_alu(tvm.te.max, np.maximum, test_name="MAX") check_alu(lambda x, y: x + y, use_imm=True, test_name="ADD") check_alu(lambda x, y: x + y, test_name="ADD") check_alu(lambda x, y: x >> y, np.right_shift, use_imm=True, test_name="SHR") vta.testing.run(_run) def test_relu(): """Test RELU on ALU""" def _run(env, remote): m = 8 n = 10 a = te.placeholder((m, n, env.BATCH, env.BLOCK_OUT), name="a", dtype=env.acc_dtype) a_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: a(*i), "a_buf" ) max_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: tvm.te.max(a_buf(*i), 0), "res_buf" ) min_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: tvm.te.min(max_buf(*i), (1 << (env.INP_WIDTH - 1)) - 1), "max_buf", ) res = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: min_buf(*i).astype(env.inp_dtype), "min_buf", ) s = te.create_schedule(res.op) s[a_buf].set_scope(env.acc_scope) s[a_buf].pragma(a_buf.op.axis[0], env.dma_copy) s[max_buf].set_scope(env.acc_scope) s[min_buf].set_scope(env.acc_scope) s[max_buf].pragma(max_buf.op.axis[0], env.alu) s[min_buf].pragma(min_buf.op.axis[0], env.alu) s[res
].pragma(res.op.axis[0], env.dma_copy) with vta.build_config(): mod = vta.build(s, [a, res], tvm.target.Target("ext_dev", host=env.target_host)) if not remote: return temp = utils.tempdir() mod.save(temp.relpath("load_act.o")) remote.upload(temp.relpath("load_act.o")) f = remote.load_module("load_act.o") dev = remote.ext_dev(0) a_np = np.random.randint(-256, 256, size=(m, n, env.BATCH, env.BLOCK_OUT)).astype(a.dtype) res_np = np.clip(a_np, 0, (1 << (env.INP_WIDTH - 1)) - 1).astype(res.dtype) a_nd = tvm.nd.array(a_np, dev) res_nd = tvm.nd.array(np.zeros((m, n, env.BATCH, env.BLOCK_OUT)).astype(res.dtype), dev) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() f(a_nd, res_nd) np.testing.assert_equal(res_np, res_nd.numpy()) if env.TARGET in ["sim", "tsim"]: sim_stats = simulator.stats() print("Relu execution statistics:") for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v)) vta.testing.run(_run) def test_shift_and_scale(): """Test shift and scale on ALU""" def _run(env, remote): m = 2 n = 8 imm_shift = np.random.randint(0, 8) imm_scale = np.random.randint(1, 5) a = te.placeholder((m, n, env.BATCH, env.BLOCK_OUT), name="a", dtype=env.acc_dtype) a_buf = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: a(*i), "a_buf" ) res_shift = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: a_buf(*i) + imm_shift, "res_shift" ) res_scale = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: res_shift(*i) >> imm_scale, "res_scale" ) res = te.compute( (m, n, env.BATCH, env.BLOCK_OUT), lambda *i: res_scale(*i).astype(env.inp_dtype), "res" ) s = te.create_schedule(
res.op) s[a_buf].set_scope(env.acc_scope) s[res_shift].set_scope(env.acc_scope) s[res_scale].set_scope(env.acc_scope) s[a_buf].pragma(a_buf.op.axis[0], env.dma_copy) s[res_shift].pragma(res_shift.op.axis[0], env.alu) s[res_scale].pragma(res_scale.op.axis[0], env.alu) s[res].pragma(res.op.axis[0], env.dma_copy) mod = vta.build(s, [a, res], tvm.target.Target("ext_dev", host=env.target_host)) if not remote: return temp = utils.tempdir() mod.save(temp.relpath("load_act.o")) remote.upload(temp.relpath("load_act.o")) f = remote.load_module("load_act.o") dev = remote.ext_dev(0) a_np = np.random.randint(-10, 10, size=(m, n, env.BATCH, env.BLOCK_OUT)).astype(a.dtype) res_np = np.right_shift((a_np + imm_shift), imm_scale) res_np = res_np.astype(res.dtype) a_nd = tvm.nd.array(a_np, dev) res_nd = tvm.nd.array(np.zeros((m, n, env.BATCH, env.BLOCK_OUT)).astype(res.dtype), dev) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() f(a_nd, res_nd) np.testing.assert_equal(res_np, res_nd.numpy()) if env.TARGET in ["sim", "tsim"]: sim_stats = simulator.stats() print("Shift and scale execution statistics:") for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v)) vta.testing.run(_run) def test_runtime_array(): def _run(env, remote): n = 100 dev = remote.ext_dev(0) x_np = np.random.randint(1, 10, size=(n, n, env.BATCH, env.BLOCK_OUT)).astype("int8") x_nd = tvm.nd.array(x_np, dev) np.testing.assert_equal(x_np, x_nd.numpy()) vta.testing.run(_run) if __name__ == "__main__": test_runtime_array() test_save_load_out() test_padded_load() test_gemm() test_alu() test_relu() test_shift_and_scale()
""" Auto-tuning a ALU fused op on VTA --------------------------------- """
import os from mxnet.gluon.model_zoo
import vision
import numpy as np from PIL
import Image from tvm
import topi
import tvm from tvm
import te from tvm
import rpc, autotvm, relay from tvm.contrib
import download from tvm.autotvm.measure.measure_methods
import request_remote from tvm.autotvm.tuner
import XGBTuner, GATuner, RandomTuner, GridSearchTuner from tvm.autotvm
import record
import vta from vta.testing
import simulator from vta.top
import graph_pack
import copy def compile_network(env, target, model, start_pack, stop_pack): dtype_dict = {"data": "float32"} shape_dict = {"data": (env.BATCH, 3, 224, 224)} gluon_model = vision.get_model(model, pretrained=True) mod, params = relay.frontend.from_mxnet(gluon_model, shape_dict) shape_dict.update({k: v.shape for k, v in params.items()}) dtype_dict.update({k: str(v.dtype) for k, v in params.items()}) with relay.build_config(opt_level=3): with relay.quantize.qconfig(global_scale=8.0, skip_conv_layers=[0]): mod = relay.quantize.quantize(mod, params=params) if target.device_name == "vta": assert env.BLOCK_IN == env.BLOCK_OUT relay_prog = graph_pack( mod["main"], env.BATCH, env.BLOCK_OUT, env.WGT_WIDTH, start_name=start_pack, stop_name=stop_pack, ) return relay_prog, params tracker_host = os.environ.get("TVM_TRACKER_HOST", "0.0.0.0") tracker_port = int(os.environ.get("TVM_TRACKER_PORT", 9190)) env = vta.get_env() device = "vta" target = env.target if device == "vta" else env.target_vta_cpu network = "resnet50_v2" start_pack = "nn.max_pool2d" stop_pack = "nn.global_avg_pool2d" log_file = "%s.alu.%s.log" % (device, network) tuning_option = { "log_filename": log_file, "tuner": "random", "n_trial": 1000, "early_stopping": None, "measure_option": autotvm.measure_option( builder=autotvm.LocalBuilder(n_parallel=1), runner=autotvm.RPCRunner( env.TARGET, host=tracker_host, port=tracker_port, number=5, timeout=60, ), ), } def log_to_file(file_out, protocol="json"): """Log the tuning records into file. The rows of the log are stored in the format of autotvm.record.encode. for lhs == rhs, we add an extra rhs = [] record Parameters ---------- file_out : str The file to
log to. protocol: str, optional The log protocol. Can be 'json' or 'pickle' Returns ------- callback : callable Callback function to do the logging. """ def _callback(_, inputs, results): with open(file_out, "a") as f: for inp, result in zip(inputs, results): f.write(record.encode(inp, result, protocol) + "\n") if inp.task.args[0] == inp.task.args[1]: args = list(inp.task.args) args[1] = (args[0][0], (), args[0][2]) inp_copy = copy.deepcopy(inp) inp_copy.task.args = tuple(args) f.write(record.encode(inp_copy, result, protocol) + "\n") return _callback def tune_tasks( tasks, measure_option, tuner="xgb", n_trial=10, early_stopping=None, log_filename="tuning.log", use_transfer_learning=True, ): tmp_log_file = log_filename + ".tmp" if os.path.exists(tmp_log_file): os.remove(tmp_log_file) for i, tsk in enumerate(reversed(tasks)): prefix = "[Task %2d/%2d] " % (i + 1, len(tasks)) if tuner == "xgb" or tuner == "xgb-rank": tuner_obj = XGBTuner(tsk, loss_type="rank") elif tuner == "xgb_knob": tuner_obj = XGBTuner(tsk, loss_type="rank", feature_type="knob") elif tuner == "ga": tuner_obj = GATuner(tsk, pop_size=50) elif tuner == "random": tuner_obj = RandomTuner(tsk) elif tuner == "gridsearch": tuner_obj = GridSearchTuner(tsk) else: raise ValueError("Invalid tuner: " + tuner) if use_transfer_learning: if os.path.isfile(tmp_log_file): tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file)) tsk_trial = min(n_trial, len(tsk.config_space)) tuner_obj.tune( n_trial=tsk_trial, early_stopping=early_stopping, measure_op
tion=measure_option, callbacks=[ autotvm.callback.progress_bar(tsk_trial, prefix=prefix), log_to_file(tmp_log_file), ], ) autotvm.record.pick_best(tmp_log_file, log_filename) os.remove(tmp_log_file) def register_vta_tuning_tasks(): from tvm.autotvm.task
import TaskExtractEnv @tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) const_max = tvm.tir.const(a_max, x.dtype) x = te.compute(x.shape, lambda *i: tvm.te.min(x(*i), const_max), name="clipA") x = te.compute(x.shape, lambda *i: tvm.te.max(x(*i), const_min), name="clipB") return x TaskExtractEnv() @autotvm.template("add.vta") def _topi_add(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" A, B = args[:2] with tvm.target.vta(): res = vta.top.op.add_packed(*args, **kwargs) res = my_clip(res, 0, 127) res = topi.cast(res, "int8") if tvm.target.Target.current().device_name == "vta": s = vta.top.op.schedule_add_packed([res]) else: s = te.create_schedule([res.op]) return s, [A, B, res] @autotvm.template("multiply.vta") def _topi_multiply(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" A, B = args[:2] with tvm.target.vta(): res = vta.top.op.multiply_packed(*args, **kwargs) res = my_clip(res, 0, 127) res = topi.cast(res, "int8") if tvm.target.Target.current().device_name == "vta": s = vta.top.op.schedule_multiply_packed([res]) else: s = te.create_schedule([res.op]) return s, [A, B, res] def tune_and_evaluate(tuning_opt): if env.TARGET != "intelfocl": print("ALU only op only available for intelfocl target") return register_vta_tuning_tasks() print("Extract tasks...") relay_prog, params = compile_network(env, target, network, start_pack, stop_pack) mod = tvm.IRModule.from_expr(relay_prog) tasks = autotvm.task.extract_from_program( mod, params=params,
ops=( relay.op.get("add"), relay.op.get("multiply"), ), target=tvm.target.Target(target, host=env.target_host), ) tasks = list(filter(lambda t: len(t.args[0][1]) > 4, tasks)) tasks = list(filter(lambda t: t.args[0][2] != "float32", tasks)) tasks_set = {} print("Extracted {} alu tasks:".format(len(tasks))) for tsk in tasks: print("tsk = ", tsk) if len(tsk.args[1][1]) == 0: args = list(tsk.args) args[1] = args[0] tsk.args = tuple(args) if (tsk.name, tsk.args) in tasks_set: print("task {} already exists".format(tsk)) tasks_set[(tsk.name, tsk.args)] = tsk tasks = list(tasks_set.values()) print("After merged, final print("Tuning...") tune_tasks(tasks, **tuning_opt) tune_and_evaluate(tuning_option)
""" Auto-tuning a convolutional network on VTA ========================================== **Author**: `Lianmin Zheng <https: Auto-tuning for a specific accelerator design is critical for getting the best performance for any given operator. This is a tutorial showcases how to tune a whole convolutional network on VTA. The operator implementation for VTA in TVM is written in template form. The template has many tunable knobs (tile factor, virtual threads, etc). We will tune all convolution operators in the neural network. After tuning, we produce a log file which stores the best schedule parameters for all tuned operators. When the TVM compiler compiles these operators, it will query this log file to get the best knob parameters. """
import os from mxnet.gluon.model_zoo
import vision
import numpy as np from PIL
import Image from tvm
import topi
import tvm from tvm
import te from tvm
import rpc, autotvm, relay from tvm.contrib
import graph_executor, utils, download from tvm.autotvm.measure.measure_methods
import request_remote from tvm.autotvm.tuner
import XGBTuner, GATuner, RandomTuner, GridSearchTuner
import vta from vta.testing
import simulator from vta.top
import graph_pack def compile_network(env, target, model, start_pack, stop_pack): dtype_dict = {"data": "float32"} shape_dict = {"data": (env.BATCH, 3, 224, 224)} gluon_model = vision.get_model(model, pretrained=True) mod, params = relay.frontend.from_mxnet(gluon_model, shape_dict) shape_dict.update({k: v.shape for k, v in params.items()}) dtype_dict.update({k: str(v.dtype) for k, v in params.items()}) with tvm.transform.PassContext(opt_level=3): with relay.quantize.qconfig(global_scale=8.0, skip_conv_layers=[0]): mod = relay.quantize.quantize(mod, params=params) if target.device_name == "vta": assert env.BLOCK_IN == env.BLOCK_OUT relay_prog = graph_pack( mod["main"], env.BATCH, env.BLOCK_OUT, env.WGT_WIDTH, start_name=start_pack, stop_name=stop_pack, ) return relay_prog, params tracker_host = os.environ.get("TVM_TRACKER_HOST", "127.0.0.1") tracker_port = int(os.environ.get("TVM_TRACKER_PORT", 9190)) env = vta.get_env() device = "vta" target = env.target if device == "vta" else env.target_vta_cpu network = "resnet18_v1" start_pack = "nn.max_pool2d" stop_pack = "nn.global_avg_pool2d" log_file = "%s.%s.log" % (device, network) tuning_option = { "log_filename": log_file, "tuner": "random", "n_trial": 1000, "early_stopping": None, "measure_option": autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=autotvm.RPCRunner( env.TARGET, host=tracker_host, port=tracker_port, number=5, timeout=60, module_loader=vta.module_loader(), ), ), } def tune_tasks( tasks, measure_option, tuner="xgb", n_trial=1000, early_stopping=None, log_filename="tuning.log", use_tra
nsfer_learning=True, ): tmp_log_file = log_filename + ".tmp" if os.path.exists(tmp_log_file): os.remove(tmp_log_file) for i, tsk in enumerate(reversed(tasks)): prefix = "[Task %2d/%2d] " % (i + 1, len(tasks)) if tuner == "xgb" or tuner == "xgb-rank": tuner_obj = XGBTuner(tsk, loss_type="rank") elif tuner == "xgb_knob": tuner_obj = XGBTuner(tsk, loss_type="rank", feature_type="knob") elif tuner == "ga": tuner_obj = GATuner(tsk, pop_size=50) elif tuner == "random": tuner_obj = RandomTuner(tsk) elif tuner == "gridsearch": tuner_obj = GridSearchTuner(tsk) else: raise ValueError("Invalid tuner: " + tuner) if use_transfer_learning: if os.path.isfile(tmp_log_file): tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file)) tsk_trial = min(n_trial, len(tsk.config_space)) tuner_obj.tune( n_trial=tsk_trial, early_stopping=early_stopping, measure_option=measure_option, callbacks=[ autotvm.callback.progress_bar(tsk_trial, prefix=prefix), autotvm.callback.log_to_file(tmp_log_file), ], ) autotvm.record.pick_best(tmp_log_file, log_filename) os.remove(tmp_log_file) def register_vta_tuning_tasks(): from tvm.autotvm.task
import TaskExtractEnv @tvm.te.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.tir.const(a_min, x.dtype) const_max = tvm.tir.const(a_max, x.dtype) x = te.compute(x.shape, lambda *i: tvm.te.min(x(*i), const_max), name="clipA") x = te.compute(x.shape, lambda *i: tvm.te.max(x(*i), const_min), name="clipB") return x TaskExtractEnv() @autotvm.template("conv2d_packed.vta") def _topi_nn_conv2d(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" A, W = args[:2] with tvm.target.vta(): res = vta.top.conv2d_packed(*args, **kwargs) res = topi.right_shift(res, 8) res = my_clip(res, 0, 127) res = topi.cast(res, "int8") if tvm.target.Target.current().device_name == "vta": s = vta.top.schedule_conv2d_packed([res]) else: s = te.create_schedule([res.op]) return s, [A, W, res] def tune_and_evaluate(tuning_opt): register_vta_tuning_tasks() print("Extract tasks...") relay_prog, params = compile_network(env, target, network, start_pack, stop_pack) mod = tvm.IRModule.from_expr(relay_prog) tasks = autotvm.task.extract_from_program( mod, params=params, ops=(relay.op.get("nn.conv2d"),), target=target, target_host=env.target_host, ) tasks = list(filter(lambda t: len(t.args[0][1]) > 4 and "conv" in t.name, tasks)) assert len(tasks) == 10 print("Extracted {} conv2d tasks:".format(len(tasks))) for tsk in tasks: inp = tsk.args[0][1] wgt = tsk.args[1][1] batch = inp[0] * inp[4] in_filter = inp[1] * inp[5] out_filter = wgt[0] * wgt[4] height, width = inp[2], inp[3] hkernel, wkernel = wgt[2], wgt[3] hstride, wstride = tsk.args[2][0], tsk.args[2][1]
hpad, wpad = tsk.args[3][0], tsk.args[3][1] print( "({}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {})".format( batch, height, width, in_filter, out_filter, hkernel, wkernel, hpad, wpad, hstride, wstride, ) ) return print("Tuning...") tune_tasks(tasks, **tuning_opt) if env.TARGET != "sim": remote = autotvm.measure.request_remote( env.TARGET, tracker_host, tracker_port, timeout=10000 ) vta.reconfig_runtime(remote) vta.program_fpga(remote, bitstream=None) else: remote = rpc.LocalSession() with autotvm.tophub.context(target, extra_files=[log_file]): print("Compile...") if target.device_name != "vta": with tvm.transform.PassContext(opt_level=3, disabled_pass={"AlterOpLayout"}): lib = relay.build( relay_prog, target=target, params=params, target_host=env.target_host ) else: with vta.build_config(opt_level=3, disabled_pass={"AlterOpLayout"}): lib = relay.build( relay_prog, target=target, params=params, target_host=env.target_host ) print("Upload...") temp = utils.tempdir() lib.export_library(temp.relpath("graphlib.tar")) remote.upload(temp.relpath("graphlib.tar")) lib = remote.load_module("graphlib.tar") ctx = remote.ext_dev(0) if device == "vta" else remote.cpu(0) m = graph_executor.GraphModule(lib["default"](ctx)) image = tvm.nd.array((np.random.uniform(size=(1, 3, 224, 224))).astype("float32")) m.set_input("data", image) print("Evaluate inference time cost...") timer = m.module.time_evaluator
("run", ctx, number=1, repeat=10) tcost = timer() prof_res = np.array(tcost.results) * 1000 print( "Mean inference time (std dev): %.2f ms (%.2f ms)" % (np.mean(prof_res), np.std(prof_res)) ) tune_and_evaluate(tuning_option)
""" Deploy Pretrained Vision Model from MxNet on VTA ================================================ **Author**: `Thierry Moreau <https: This tutorial provides an end-to-end demo, on how to run ImageNet classification inference onto the VTA accelerator design to perform ImageNet classification tasks. It showcases Relay as a front end compiler that can perform quantization (VTA only supports int8/32 inference) as well as graph packing (in order to enable tensorization in the core) to massage the compute graph for the hardware target. """ from __future__
import absolute_import, print_function
import argparse, json, os, requests, sys, time from io
import BytesIO from os.path
import join, isfile from PIL
import Image from mxnet.gluon.model_zoo
import vision
import numpy as np from matplotlib
import pyplot as plt
import tvm from tvm
import te from tvm
import rpc, autotvm, relay from tvm.contrib
import graph_executor, utils, download from tvm.contrib.debugger
import debug_executor from tvm.relay
import transform
import vta from vta.testing
import simulator from vta.top
import graph_pack assert tvm.runtime.enabled("rpc") env = vta.get_env() device = "vta" target = env.target if device == "vta" else env.target_vta_cpu pack_dict = { "resnet18_v1": ["nn.max_pool2d", "nn.global_avg_pool2d"], "resnet34_v1": ["nn.max_pool2d", "nn.global_avg_pool2d"], "resnet18_v2": ["nn.max_pool2d", "nn.global_avg_pool2d"], "resnet34_v2": ["nn.max_pool2d", "nn.global_avg_pool2d"], "resnet50_v2": ["nn.max_pool2d", "nn.global_avg_pool2d"], "resnet101_v2": ["nn.max_pool2d", "nn.global_avg_pool2d"], } model = "resnet18_v1" assert model in pack_dict if env.TARGET not in ["sim", "tsim", "intelfocl"]: tracker_host = os.environ.get("TVM_TRACKER_HOST", None) tracker_port = os.environ.get("TVM_TRACKER_PORT", None) device_host = os.environ.get("VTA_RPC_HOST", "192.168.2.99") device_port = os.environ.get("VTA_RPC_PORT", "9091") if not tracker_host or not tracker_port: remote = rpc.connect(device_host, int(device_port)) else: remote = autotvm.measure.request_remote( env.TARGET, tracker_host, int(tracker_port), timeout=10000 ) reconfig_start = time.time() vta.reconfig_runtime(remote) vta.program_fpga(remote, bitstream=None) reconfig_time = time.time() - reconfig_start print("Reconfigured FPGA and RPC runtime in {0:.2f}s!".format(reconfig_time)) else: remote = rpc.LocalSession() if env.TARGET in ["intelfocl"]: vta.program_fpga(remote, bitstream="vta.bitstream") ctx = remote.ext_dev(0) if device == "vta" else remote.cpu(0) with autotvm.tophub.context(target): dtype_dict = {"data": "float32"} shape_dict = {"data": (env.BATCH, 3, 224, 224)} gluon_model = vision.get_model(model, pretrained=True) build_start = time.time() mod, params = relay.frontend.from_mxnet(gluon_model, shape_dict) shape_dict.update({k: v.shape for k, v in params.items()})
dtype_dict.update({k: str(v.dtype) for k, v in params.items()}) if target.device_name == "vta": with tvm.transform.PassContext(opt_level=3): with relay.quantize.qconfig(global_scale=8.0, skip_conv_layers=[0]): mod = relay.quantize.quantize(mod, params=params) assert env.BLOCK_IN == env.BLOCK_OUT relay_prog = graph_pack( mod["main"], env.BATCH, env.BLOCK_OUT, env.WGT_WIDTH, start_name=pack_dict[model][0], stop_name=pack_dict[model][1], device_annot=(env.TARGET == "intelfocl"), ) else: relay_prog = mod["main"] if target.device_name != "vta": with tvm.transform.PassContext(opt_level=3, disabled_pass={"AlterOpLayout"}): graph, lib, params = relay.build( relay_prog, target=tvm.target.Target(target, host=env.target_host), params=params ) else: if env.TARGET == "intelfocl": target = {"cpu": env.target_vta_cpu, "ext_dev": target} with vta.build_config( opt_level=3, disabled_pass={"AlterOpLayout", "tir.CommonSubexprElimTIR"} ): graph, lib, params = relay.build( relay_prog, target=tvm.target.Target(target, host=env.target_host), params=params ) build_time = time.time() - build_start print(model + " inference graph built in {0:.2f}s!".format(build_time)) temp = utils.tempdir() lib.export_library(temp.relpath("graphlib.tar")) remote.upload(temp.relpath("graphlib.tar")) lib = remote.load_module("graphlib.tar") if env.TARGET == "intelfocl": ctxes = [remote.ext_dev(0), remote.cpu(0)] m = graph_executor.create(graph, lib, ctxes) else: m = graph_executor.create(graph, lib, ctx) categ_url = "https: categ_fn = "synset.txt" download.download(joi
n(categ_url, categ_fn), categ_fn) synset = eval(open(categ_fn).read()) image_url = "https: image_fn = "cat.png" download.download(image_url, image_fn) image = Image.open(image_fn).resize((224, 224)) plt.imshow(image) plt.show() image = np.array(image) - np.array([123.0, 117.0, 104.0]) image /= np.array([58.395, 57.12, 57.375]) image = image.transpose((2, 0, 1)) image = image[np.newaxis, :] image = np.repeat(image, env.BATCH, axis=0) m.set_input(**params) m.set_input("data", image) num = 4 rep = 3 timer = m.module.time_evaluator("run", ctx, number=num, repeat=rep) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() timer() sim_stats = simulator.stats() print("\nExecution statistics:") for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v else: tcost = timer() std = np.std(tcost.results) * 1000 mean = tcost.mean * 1000 print("\nPerformed inference in %.2fms (std = %.2f) for %d samples" % (mean, std, env.BATCH)) print("Average per sample inference time: %.2fms" % (mean / env.BATCH)) tvm_output = m.get_output(0, tvm.nd.empty((env.BATCH, 1000), "float32", remote.cpu(0))) for b in range(env.BATCH): top_categories = np.argsort(tvm_output.numpy()[b]) print("\n{} prediction for sample {}".format(model, b)) print("\t print("\t print("\t print("\t print("\t cat_detected = False for k in top_categories[-5:]: if "cat" in synset[k]: cat_detected = True assert cat_detected
""" Deploy Pretrained Vision Detection Model from Darknet on VTA ============================================================ **Author**: `Hua Jiang <https: This tutorial provides an end-to-end demo, on how to run Darknet YoloV3-tiny inference onto the VTA accelerator design to perform Image detection tasks. It showcases Relay as a front end compiler that can perform quantization (VTA only supports int8/32 inference) as well as graph packing (in order to enable tensorization in the core) to massage the compute graph for the hardware target. """ from __future__
import absolute_import, print_function
import sys
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import tvm
import vta from tvm
import rpc, autotvm, relay from tvm.relay.testing
import yolo_detection, darknet from tvm.relay.testing.darknet
import __darknetffi__ from tvm.contrib
import graph_executor, utils from tvm.contrib.download
import download_testdata from vta.testing
import simulator from vta.top
import graph_pack assert tvm.runtime.enabled("rpc") MODEL_NAME = "yolov3-tiny" REPO_URL = "https: cfg_path = download_testdata( "https: MODEL_NAME + ".cfg", module="darknet", ) weights_path = download_testdata( "https: MODEL_NAME + ".weights", module="darknet", ) if sys.platform in ["linux", "linux2"]: darknet_lib_path = download_testdata( REPO_URL + "lib/" + "libdarknet2.0.so" + "?raw=true", "libdarknet2.0.so", module="darknet" ) elif sys.platform == "darwin": darknet_lib_path = download_testdata( REPO_URL + "lib_osx/" + "libdarknet_mac2.0.so" + "?raw=true", "libdarknet_mac2.0.so", module="darknet", ) else: raise NotImplementedError("Darknet lib is not supported on {} platform".format(sys.platform)) coco_path = download_testdata( REPO_URL + "data/" + "coco.names" + "?raw=true", "coco.names", module="data" ) font_path = download_testdata( REPO_URL + "data/" + "arial.ttf" + "?raw=true", "arial.ttf", module="data" ) with open(coco_path) as f: content = f.readlines() names = [x.strip() for x in content] env = vta.get_env() device = "vta" target = env.target if device == "vta" else env.target_vta_cpu pack_dict = { "yolov3-tiny": ["nn.max_pool2d", "cast", 4, 186], } assert MODEL_NAME in pack_dict if env.TARGET not in ["sim", "tsim"]: tracker_host = os.environ.get("TVM_TRACKER_HOST", None) tracker_port = os.environ.get("TVM_TRACKER_PORT", None) device_host = os.environ.get("VTA_RPC_HOST", "192.168.2.99") device_port = os.environ.get("VTA_RPC_PORT", "9091") if not tracker_host or not tracker_port: remote = rpc.connect(device_host, int(device_port)) else: remote = autotvm.measure.request_remote( env.TARGET, tracker_host, int(tracker_port), timeout=10000 ) reconfig_start = time.time() vta.reconfig_runtime(remote) vta.program_fpga(remote, bitstream=None) reconfig_time = tim
e.time() - reconfig_start print("Reconfigured FPGA and RPC runtime in {0:.2f}s!".format(reconfig_time)) else: remote = rpc.LocalSession() ctx = remote.ext_dev(0) if device == "vta" else remote.cpu(0) with autotvm.tophub.context(target): net = __darknetffi__.dlopen(darknet_lib_path).load_network( cfg_path.encode("utf-8"), weights_path.encode("utf-8"), 0 ) dshape = (env.BATCH, net.c, net.h, net.w) dtype = "float32" build_start = time.time() mod, params = relay.frontend.from_darknet(net, dtype=dtype, shape=dshape) if target.device_name == "vta": with tvm.transform.PassContext(opt_level=3): with relay.quantize.qconfig( global_scale=23.0, skip_conv_layers=[0], store_lowbit_output=True, round_for_shift=True, ): mod = relay.quantize.quantize(mod, params=params) mod = graph_pack( mod["main"], env.BATCH, env.BLOCK_OUT, env.WGT_WIDTH, start_name=pack_dict[MODEL_NAME][0], stop_name=pack_dict[MODEL_NAME][1], start_name_idx=pack_dict[MODEL_NAME][2], stop_name_idx=pack_dict[MODEL_NAME][3], ) else: mod = mod["main"] with vta.build_config(disabled_pass={"AlterOpLayout", "tir.CommonSubexprElimTIR"}): lib = relay.build( mod, target=tvm.target.Target(target, host=env.target_host), params=params ) build_time = time.time() - build_start print(MODEL_NAME + " inference graph built in {0:.2f}s!".format(build_time)) temp = utils.tempdir() lib.export_library(temp.relpath("graphlib.tar")) remote.upload(temp.relpath("graphlib.tar")) lib = remote.load_module("graphlib.tar") m = graph_executor.GraphModule(lib["default"](ctx)) [neth, netw] = dshape[2:] test_image = "person.jpg"
img_url = REPO_URL + "data/" + test_image + "?raw=true" img_path = download_testdata(img_url, test_image, "data") data = darknet.load_image(img_path, neth, netw).transpose(1, 2, 0) plt.imshow(data) plt.show() data = data.transpose((2, 0, 1)) data = data[np.newaxis, :] data = np.repeat(data, env.BATCH, axis=0) m.set_input("data", data) num = 4 rep = 3 timer = m.module.time_evaluator("run", ctx, number=num, repeat=rep) if env.TARGET in ["sim", "tsim"]: simulator.clear_stats() timer() sim_stats = simulator.stats() print("\nExecution statistics:") for k, v in sim_stats.items(): print("\t{:<16}: {:>16}".format(k, v else: tcost = timer() std = np.std(tcost.results) * 1000 mean = tcost.mean * 1000 print("\nPerformed inference in %.2fms (std = %.2f) for %d samples" % (mean, std, env.BATCH)) print("Average per sample inference time: %.2fms" % (mean / env.BATCH)) thresh = 0.5 nms_thresh = 0.45 tvm_out = [] for i in range(2): layer_out = {} layer_out["type"] = "Yolo" layer_attr = m.get_output(i * 4 + 3).numpy() layer_out["biases"] = m.get_output(i * 4 + 2).numpy() layer_out["mask"] = m.get_output(i * 4 + 1).numpy() out_shape = (layer_attr[0], layer_attr[1] layer_out["output"] = m.get_output(i * 4).numpy().reshape(out_shape) layer_out["classes"] = layer_attr[4] tvm_out.append(layer_out) thresh = 0.560 img = darknet.load_image_color(img_path) _, im_h, im_w = img.shape dets = yolo_detection.fill_network_boxes((netw, neth), (im_w, im_h), thresh, 1, tvm_out) last_layer = net.layers[net.n - 1] yolo_detection.do_nms_sort(dets, last_layer.classes, nms_thresh) yolo_detection.draw_detections(font_path, img, dets, thresh, names, last_layer.classes) plt.imshow(img.transpose(1, 2, 0)) plt.show()
""" .. _basic-mat-mult: Simple Matrix Multiply ====================== **Author**: `Thierry Moreau <https: In this tutorial, we will build on top of the :ref:`vta-get-started` tutorial and introduce additional concepts required to implement matrix multiplication on VTA with the TVM workflow. """ from __future__
import absolute_import, print_function