content
stringlengths
5
1.05M
#!/usr/bin/env python """ Copyright (C) 2014 Ivan Gregor This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Note that we could have written some parts of this code in a nicer way, but didn't have time. Be careful when reusing the source code. """ import sys import os import re import subprocess import glob from algbioi.com.config import Config from algbioi.com.csv import forEachLine from algbioi.com.csv import OutFileBuffer from algbioi.com.csv import getMapping from algbioi.com.fasta import fastaFileToDict class MGCluster(): """ Main class """ def __init__(self, config, mgWorkingDir, s16Prefix, sequences, taxonomy, sampleName): self._config = config self._mgWorkingDir = mgWorkingDir self._taxonomicRanks = config.get('taxonomicRanks').split(',') self._minBpToModel = int(config.get('minBpToModel')) self._clustDir = os.path.normpath(os.path.join(mgWorkingDir,'clust')) self._s16Prefix = s16Prefix self._sequences = sequences self._mgToDM = None self._mgToCluster = None self._taxonomy = taxonomy self._sampleName = sampleName self._mgList = None self._mgToMaxThreshold = None self._seqIdToTaxPathDict = None self._seqIdToWeight = None self._initDone = False if not os.path.exists(self._clustDir): try: os.mkdir(self._clustDir) except OSError: print 'Can`t create directory:', self._clust raise #--------------------------------------------------------------------------------- def _init(self, align=True, dm=True, cluster=True): """ Init data, compute: alignment, distance matrix, clusters. """ if self._initDone: return self._initDone = True fastaPathList = [] # fasta files containing regions that correspond to particular marker genes self._mgList = [] # list of names of marker genes mgToFastaPath = dict([]) # marker gene name -> fasta file path #collect regions from Amphora mg for fastaFile in glob.glob(os.path.join(os.path.normpath(self._mgWorkingDir),'*.gff')): fastaPathList.append(fastaFile) for path in fastaPathList: name = re.sub('([^\.]+)\..*$', r'\1' , os.path.basename(path)) mg = re.sub(r'([^_]+)_dna', r'\1',name) dir = os.path.dirname(path) self._mgList.append(mg) mgToFastaPath[mg] = path #add 16S s16List = ['5S_rRNA', '16S_rRNA', '23S_rRNA'] for mg in s16List: mgToFastaPath[mg] = str(self._s16Prefix + '.' + mg + '.fna') self._mgList.append(mg) #For each marker gene create filtered fasta file that contains for each mg and sequence at most one region. mgToFilteredFastaPath = dict([]) mgToSeqNameToTaxPathDict = dict([]) #mg -> seqName (~region name) -> pred for mg in self._mgList: mgToSeqNameToTaxPathDict[mg] = dict([]) for seq in self._sequences.sequences: id = str(str(seq.scaffold.id) + '_' + str(seq.id)) for mg,tag,pred in zip(seq.getCandidateTaxPathSourceList(), seq.getCandidateTaxPathTagList(), seq.getCandidateTaxPathDictList()): mgToSeqNameToTaxPathDict[mg][str(id + '_' + tag)] = pred #for each marker gene: choose only one sequence region for each mg and sequence #all sequences are predicted at least at superkingdom for mg in self._mgList: seqNameToPred = mgToSeqNameToTaxPathDict[mg] #sequence region predictions for this mg seqNameToSeq = fastaFileToDict(mgToFastaPath[mg]) #read the fasta file outPath = os.path.normpath(os.path.join(self._clustDir, str(mg + '.filter.fna'))) mgToFilteredFastaPath[mg] = outPath out = OutFileBuffer(outPath) seqBaseToSeqName = dict([]) # sequence base (scaffId_seqId) -> region name for seqName in seqNameToSeq: seqBase = re.sub(r'^([0-9]+_[0-9]+)[^0-9].*',r'\1', seqName) if seqBase not in seqBaseToSeqName: seqBaseToSeqName[seqBase] = [] seqBaseToSeqName[seqBase].append(seqName) for seqBase in seqBaseToSeqName: seqId = int(re.sub(r'^[0-9]+_([0-9]+)',r'\1', seqBase)) seqBaseTaxPathDict = self._sequences.getSequence(seqId).getTaxonomyPath() list = seqBaseToSeqName[seqBase] candidateSeq = [] # sequence region is predicted at least at rank superkingdom for seqName in list: if seqName not in seqNameToPred: taxPathDict = None else: taxPathDict = seqNameToPred[seqName] if taxPathDict != None: candidateSeq.append(seqName) if len(candidateSeq) == 0: continue candidateSeq2 = [] # sequence regions predicted at least at the same rank as the whole sequence for seqName in candidateSeq: taxPathDict = seqNameToPred[seqName] if ((seqBaseTaxPathDict == None) or (len(taxPathDict) >= len(seqBaseTaxPathDict))): #predict at least at the same level candidateSeq2.append(seqName) if len(candidateSeq2) > 0: #take the longest sequence sMax = candidateSeq2[0] for s in candidateSeq2[1:]: if len(seqNameToSeq[s]) > len(seqNameToSeq[sMax]): sMax = s else: #all sequence regions are predicted higher than the sequence sMax = candidateSeq[0] #sequence region with the most specific prediction for s in candidateSeq[1:]: taxPathDictMax = seqNameToPred[sMax] taxPathDictS = seqNameToPred[s] if taxPathDictS == None: continue if taxPathDictMax == None: sMax = s continue if len(taxPathDictMax) < len(taxPathDictS): sMax = s candidateSeq3 = [] #get all sequence regions with the most specific prediction taxPathDictMax = seqNameToPred[sMax] for s in candidateSeq: taxPathDictS = seqNameToPred[s] if taxPathDictMax == None: candidateSeq3.append(s) elif len(taxPathDictS) == len(taxPathDictMax): candidateSeq3.append(s) sMax = candidateSeq3[0] for s in candidateSeq3[1:]: #take the longest sequence if len(seqNameToSeq[sMax]) < len(seqNameToSeq[s]): sMax = s out.writeText(str('>' + str(sMax) + '\n' + str(seqNameToSeq[sMax]) + '\n')) out.close() mgToAlignPath = dict([]) for mg in self._mgList: mgToAlignPath[mg] = os.path.normpath(os.path.join(self._clustDir, str(mg + '.align.fna'))) #build alignment if align: for mg in self._mgList: alignCmd = str(self._config.get('aligner') + ' -in ' + mgToFilteredFastaPath[mg] + ' -out ' + mgToAlignPath[mg] + ' -quiet') assert os.name == 'posix' predictProc = subprocess.Popen(alignCmd, cwd=self._mgWorkingDir, shell=True, bufsize=-1) #stdout=subprocess.STDOUT, stderr=subprocess.STDOUT) predictProc.wait() print 'Muscle return code for', mg, ':', predictProc.returncode if predictProc.returncode != 0: sys.stderr.write(str(alignCmd + ' \n')) #compute DM if dm: for mg in self._mgList: mothur = os.path.join(os.path.normpath(self._configRRNA16S.get('mothurInstallDir')), 'mothur') mothurCmd = str('time ' + mothur + ' "#dist.seqs(fasta=' + mgToAlignPath[mg] + ', processors=2, countends=F, calc=nogaps, cutoff=0.3, output=lt)"') assert os.name == 'posix' mothurProc = subprocess.Popen(mothurCmd, shell=True, bufsize=-1, cwd=self._mgWorkingDir) mothurProc.wait() print 'Mothur return code dist:', mg, mothurProc.returncode #distFilePath = os.path.join(os.path.dirname(mgToAlignPath[mg]), str(mg + '.align.phylip.dist')) #self._mgToDM[mg] = forEachLine(distFilePath, DM()) #self._mgToDM[mg].printDM() #cluster if cluster: for mg in self._mgList: distFilePath = os.path.join(os.path.dirname(mgToAlignPath[mg]), str(mg + '.align.phylip.dist')) mothur = os.path.join(os.path.normpath(self._configRRNA16S.get('mothurInstallDir')), 'mothur') mothurCmd = str('time ' + mothur + ' "#cluster(phylip=' + distFilePath + ', method=furthest, hard=t, precision=1000)"') assert os.name == 'posix' mothurProc = subprocess.Popen(mothurCmd, shell=True, bufsize=-1, cwd=self._mgWorkingDir) mothurProc.wait() print 'Mothur return code cluster:', mg, mothurProc.returncode #read DM and clusters #sequence predictions self._seqIdToTaxPathDict = dict([]) self._seqIdToWeight = dict([]) for seq in self._sequences.sequences: id = int(seq.id) self._seqIdToTaxPathDict[id] = seq.getTaxonomyPath() self._seqIdToWeight[id] = seq.getTaxonomyPathWeight() #similarity thresholds thresholds = self._configMG.get('mgSimilarityThresholds') self._mgToMaxThreshold = dict([]) tmpDict = getMapping(self._configMG.get('mgSimilarityThresholds'), 0, 1, sep='\t', comment = '#') for k in tmpDict: self._mgToMaxThreshold[k] = float(tmpDict[k][0]) self._mgToDM = dict([]) self._mgToCluster = dict([]) for mg in self._mgList: file = os.path.join(os.path.dirname(mgToAlignPath[mg]), str(mg + '.align.phylip.dist')) self._mgToDM[mg] = forEachLine(file, DM()) file = os.path.join(os.path.dirname(mgToAlignPath[mg]), str(mg + '.align.phylip.fn.list')) self._mgToCluster[mg] = forEachLine(file, MCluster(self._seqIdToTaxPathDict, self._mgToMaxThreshold[mg])) #--------------------------------------------------------------------------------- def refineSpecificPred(self): self._init(align=False, dm=False, cluster=False) seqToCandidatePred = dict([]) for mg in self._mgList: mCluster = self._mgToCluster[mg] tCluster = mCluster.getLastNoConflictClustering() threshold = tCluster.getThreshold() if threshold > self._mgToMaxThreshold[mg]: #just in the case the first clustering was already conflicting continue #seqNameToGroupId = tCluster.getSeqNameToGroupId() groupIdToSeqNameSet = tCluster.getGroupIdToSeqNameSet() for groupId in groupIdToSeqNameSet: group = groupIdToSeqNameSet[groupId] if len(group) < 2: continue seqNameMaxTaxPathDict = None #the lowest prediction within the group (all lie on the common path to the root) seqNameToTaxPathDict = dict([]) #weightList = [] for seqName in group: seqId = int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName)) taxPathDict = self._seqIdToTaxPathDict[seqId] #weightList.append(self._seqIdToWeight[seqId]) seqNameToTaxPathDict[seqName] = taxPathDict if (seqNameMaxTaxPathDict == None) or (len(seqNameToTaxPathDict[seqNameMaxTaxPathDict]) < len(taxPathDict)): seqNameMaxTaxPathDict = seqName maxTaxPathDict = seqNameToTaxPathDict[seqNameMaxTaxPathDict] weightList = [] for seqName in group: if len(seqNameToTaxPathDict[seqName]) >= len(maxTaxPathDict): weightList.append(self._seqIdToWeight[int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName))]) for seqName in group: if seqName == seqNameMaxTaxPathDict: continue if len(seqNameToTaxPathDict[seqName]) < len(maxTaxPathDict): if seqName not in seqToCandidatePred: seqToCandidatePred[seqName] = [] seqToCandidatePred[seqName].append((mg, maxTaxPathDict, min(weightList))) #resolve candidate predictions for seqName in seqToCandidatePred: list = seqToCandidatePred[seqName] if len(list) == 1: taxPathDict = self._taxonomy.replicateTaxPathDict(list[0][1]) weight = list[0][2] else: #get lowest common ancestor taxPathDictList = [] weightList = [] for t in list: taxPathDictList.append(t[1]) weightList.append(t[2]) taxPathDict = self._taxonomy.getLongestCommonPathFromMultipleAssignments(taxPathDictList) weight = min(weightList) seqId = int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName)) scaffoldId = int(re.sub(r'^([0-9]+)_[0-9]+$', r'\1', seqName)) currentTaxPathDict = self._sequences.getSequence(seqId).getTaxonomyPath() if (taxPathDict != None) and (len(currentTaxPathDict) < len(taxPathDict)): print 'Spec. pred override:', seqId, currentTaxPathDict, '->', taxPathDict self._sequences.setTaxonomyPathOverride(seqId, scaffoldId, taxPathDict, weight) #---------------------------------------------------------------- def reconstructOTU(self, mgToConsider = ['16S_rRNA', '23S_rRNA', 'rpoB']): self._init(align=False, dm=False, cluster=False) #collect all ncbids ncbids = set([]) for seq in self._sequences.sequences: taxPathDict = seq.getTaxonomyPath() if taxPathDict != None: for t in taxPathDict: ncbids.add(taxPathDict[t].ncbid) #remove elements that correspond to the superkingdom ncbids.discard(1) #Root ncbids.discard(2) #Bacteria ncbids.discard(2157) #Archaea ncbids.discard(2759) #Eukaryota #for each ncbid collect a list of sequences their lowest assignment is to this ncbid ncbidToSeqList = dict([]) innerNcbidSet = set([]) #set of ncbids that are not leafs speciesNcbidSet = set([]) for seq in self._sequences.sequences: taxPathDict = seq.getTaxonomyPath() if taxPathDict == None: continue ncbid = taxPathDict[self._taxonomicRanks[len(taxPathDict) - 1]] for rankIdx in range(len(taxPathDict)-1): tmp = taxPathDict[self._taxonomicRanks[rankIdx]].ncbid innerNcbidSet.add(tmp) if self._taxonomicRanks[rankIdx] == 'species': speciesNcbidSet.append(tmp) if ncbid not in ncbidToSeqList: ncbidToSeqList[ncbid] = [] ncbidToSeqList[ncbid].append(str(str(seq.scaffold.id) + '_' + str(seq.id))) #try to resolve subclades of all ncbids for ncbid in ncbids: #skip ncbids that are at the rank species !!! if ncbid in speciesNcbidSet: continue if ncbid not in ncbidToSeqList: continue seqNameList = ncbidToSeqList[ncbid] for mg in mgToConsider: tCluster = self._mgToCluster[mg].getLastNoConflictClustering() seqNameToGroupId = tCluster.getSeqNameToGroupId() groupIdToSeqNameSet = tCluster.getGroupIdToSeqNameSet() groupIdToSeqNameMgList = dict([]) for seqName in seqNameList: if seqName in seqNameToGroupId: groupId = seqNameToGroupId[seqName] if groupId not in groupIdToSeqNameMgList: groupIdToSeqNameMgList[groupId] = [] groupIdToSeqNameMgList[groupId].append(seqName) groupIdToBp = dict([]) #for each group store its size for groupId in groupIdToSeqNameMgList: seqNameList = groupIdToSeqNameMgList[groupId] bp = 0 for seqName in seqNameList: seqId = int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName)) bp += self._sequences.getSequence(seqId).seqBp groupIdToBp[groupId] = bp candidateGroupIdOtuSet = set([]) for groupId in groupIdToBp: if groupIdToBp[groupId] >= self._minBpToModel: candidateGroupIdOtuSet.add(groupId) if ((ncbid in innerNcbidSet) and (len(candidateGroupIdOtuSet) >= 1) or (ncbid not in innerNcbidSet) and (len(candidateGroupIdOtuSet) >= 2)): #create new OTUs newNcbid = self._taxonomy.createNewOtuDBEntry(ncbid, self._sampleName, rank='species') taxPathDict = self._taxonomy.getPathToRoot(newNcbid) for groupId in candidateGroupIdOtuSet: seqNameList = groupIdToSeqNameMgList[groupId] weightList = [] for seqName in seqNameList: seqId = int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName)) weightList.append(self._sequences.getSequence(seqId).getTaxonomyPathWeight()) for seqName in seqNameList: seqId = int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName)) scaffoldId = int(re.sub(r'^([0-9]+)_[0-9]+$', r'\1', seqName)) weight = None print 'NewOtu:', ncbid, seqId, self._sequences.getSequence(seqId).getTaxonomyPath(), '->', taxPathDict self._sequences.setTaxonomyPathOverride(seqId, scaffoldId, self._taxonomy.replicateTaxPathDict(taxPathDict), min(weightList)) break # don`t try to infer OTUs for #get all clusters at this node #compute the size of all clusters at this node #try to extend the clusters using other marker genes #store suggested OTUs #get sequences that are predicted to this ncbid but not lower #--------------------------------------------------------------------------------- def reconstructOTU_OLD(self, lowestRank='genus'): self._init(align=False, dm=False, cluster=False) allowedRanks=['root','superkingdom','phylum','class','order','family','genus','species'] #for each clade, write which OTUs could be reconstructed #collect clades ncbids = set([]) for seq in self._sequences.sequences: taxPathDict = seq.getCandidateTaxPathDictList() for t in taxPathDict: print taxPathDict, t ncbids.add(taxPathDict[t].ncbid) seqNodeListD = dict([]) seqLowerListD = dict([]) seqUpperListD = dict([]) for ncbid in ncbids: #if ncbid != 171549: # continue seqNodeListD[ncbid] = set([]) seqLowerListD[ncbid] = set([]) seqUpperListD[ncbid] = set([]) for seq in self._sequences.sequences: path = seq.getTaxonomyPath() if path == None or len(path) <= 1: continue found = False for rank in allowedRanks: if path[rank].node == ncbid: found=True seqNodeListD[ncbid].add(seq.id) elif not found: seqUpperListD[ncbid].add(seq.id) else: seqLowerListD[ncbid].add(seq.id) for ncbid in ncbids: if ncbid != 171549: #!remove then! continue s16Clust = self._mgToCluster['16S_rRNA'] lastThreshold = 0.0 for threshold in s16Clust.thresholdsList: if threshold < 0.3: lastThreshold = threshold continue if threshold > 0.5: lastThreshold = threshold cluster = self.thresholdToTCluster[threshold] #look at each cluster relClustIdSet = set([]) for i in range(cluster.clusterIdCount): #is some sequence from the cluster at my node? filter out clusters for seqId in seqNodeListD[ncbid]: if seqId in cluster.clusterIdToSeqSet[i]: relClustIdSet.add(i) break #inspect relevant clusters "relClustIdSet" filteredClustId = set([]) for i in relClustIdSet: seqs = cluster.clusterIdToSeqSet[i] relSeq = 0 wrongSeq = 0 for s in seqs: if s in seqNodeListD[ncbid] or s in seqUpperListD[ncbid] or s in seqLowerListD[ncbid]: relSeq += 1 else: wrongSeq += 1 if wrongSeq == 0: # corrected wrongSet filteredClustId.add(i) #have clusters to consider: bp = 0 for i in filteredClustId: s = cluster.clusterIdToSeqSet[i] sAtNode = set([]) for seq in s: if seq in seqNodeListD[ncbid]: sAtNode.add(seq) # take just sequences that were at the node bp += self._sequences.getSequence(seq).seqBp print ncbid, 'clust', sAtNode, bp if bp > 100000: #create new OTU and assign all sequences in the cluster to it newNcbid = self._taxonomy.createNewOtuDBEntry(ncbid, self._sampleName, rank='species') for seq in sAtNode: taxPathDictOTU = self._taxonomy.getPathToRoot(newNcbid) self._sequences.setTaxonomyPathOverride(seq.id, seq.scaffold.id, taxPathDictOTU, 100.0) break #--------------------------------------------------------------------------------- class DM(): """ Phylip Distance matrix for a marker gene (and line parser). """ def __init__(self): self._counter = -1 self._seqNum = None self._seqNames = [] self._matrix = [] self._nameToIndex = dict([]) def parse(self, line): if self._counter == -1: self._seqNum = int(line) else: tokens = line.split() name = re.sub(r'^([0-9]+_[0-9]+)_.*',r'\1', tokens[0]) self._seqNames.append(name) self._nameToIndex[name] = self._counter list = [] for e in tokens[1:]: list.append(float(e)) self._matrix.append(list) self._counter += 1 def printDM(self): for name1 in self._seqNames: for name2 in self._seqNames: if name1 != name2: print self.getDist(name1,name2) def getDist(self, seqName1, seqName2): if seqName1 not in self._nameToIndex or seqName2 not in self._nameToIndex: return None idx1 = self._nameToIndex[seqName1] idx2 = self._nameToIndex[seqName2] #print idx1, idx2 return self._matrix[max(idx1,idx2)][min(idx1,idx2)] def getSeqNameList(self): return self._seqNames #--------------------------------------------------------------------------------- class MCluster(): """ Clusters for different thresholds """ def __init__(self, seqIdToTaxPathDict, maxSimilarityThreshold): self._thresholdsList = [] self._thresholdIdxToTCluster = dict([]) self._lineCounter = -1 self._seqIdToTaxPathDict = seqIdToTaxPathDict self._lastNoConflictThresholdIdx = 0 self._maxSimilarityThreshold = maxSimilarityThreshold def parse(self, line): if self._lineCounter == -1: #skip unique clusters pass else: c = TCluster(line) self._thresholdsList.append(c.getThreshold()) self._thresholdIdxToTCluster[self._lineCounter] = c self._lineCounter += 1 def finalize(self): #finds largest threshold at which all groups within a clustering are consistent for i in range(len(self._thresholdsList)): if self._thresholdsList[i] > self._maxSimilarityThreshold: break tCluster = self._thresholdIdxToTCluster[i] if self._isConsistent(tCluster): self._lastNoConflictThresholdIdx = i else: break def getLastNoConflictClustering(self): return self._thresholdIdxToTCluster[self._lastNoConflictThresholdIdx] def _isConsistent(self, tCluster): groupIdToSeqNameSet = tCluster.getGroupIdToSeqNameSet() for groupId in groupIdToSeqNameSet: taxPathDictList = [] maxLenTaxPathDict = None for seqName in groupIdToSeqNameSet[groupId]: t = self._seqIdToTaxPathDict[int(re.sub(r'^[0-9]+_([0-9]+)$', r'\1', seqName))] taxPathDictList.append(t) if (maxLenTaxPathDict == None) or (len(maxLenTaxPathDict) < len(t)): maxLenTaxPathDict = t assert len(taxPathDictList) > 0 if len(taxPathDictList) == 1: continue allowedNcbids = set([]) for node in maxLenTaxPathDict: allowedNcbids.add(node.ncbid) for t in taxPathDictList: for node in t: if node.ncbid not in allowedNcbids: return False return True #for each mg, get the highest threshold at which there is no conflicting cluster with known labels # for mg in mgList: # mCluster = self._mgToCluster[mg] # mCluster.setNoConflictThreshold() def getThresholdsList(self): """ List of thresholds of different clusterings. """ return self._thresholdsList def getClusterAtThreshold(self, thresholdIdx): """ Gets cluster where the thresholdIdx correspond to the index in the array returned from getThresholdsList. """ return self._thresholdIdxToTCluster[thresholdIdx] #--------------------------------------------------------------------------------- class TCluster(): """ One clustering of marker genes at a specific threshold. """ def __init__(self, line): tokens = line.split(',') self._threshold = float(re.sub(r'^([^\t]+)\t[^\t]+\t.*', r'\1', tokens[0])) tokens[0] = re.sub(r'^[^\t]+\t[^\t]+\t(.*)', r'\1', tokens[0]) self.groupIdCount = 0 self.seqNameToGroupId = dict([]) self.groupIdToSeqNameSet = dict([]) for token in tokens: names = token.split('\t') self.groupIdToSeqNameSet[self.groupIdCount] = set([]) for name in names: #print name if re.match(r'^[0-9]+_.*$', name): seqName = re.sub(r'^([0-9]+_[0-9]+)_.*$',r'\1', name) self.seqNameToGroupId[seqName] = self.groupIdCount self.groupIdToSeqNameSet[self.groupIdCount].add(seqName) self.groupIdCount += 1 def getThreshold(self): return self._threshold def getSeqNameToGroupId(self): return self.seqNameToGroupId def getGroupIdToSeqNameSet(self): return self.groupIdToSeqNameSet #--------------------------------------------------------------------------------- def test(): config = Config(open('/Users/ivan/Documents/work/binning/tests/CowRumen/03/config.cfg'), 'pPPS') mgWorkingDir = '/Users/ivan/Documents/work/binning/tests/CowRumen/03/working/mgWorking' s16Prefix = '/Users/ivan/Documents/work/binning/tests/CowRumen/03/working/cow_rumen_fragmented_velvet_assembly_scaffolds.fas.ids' clust = MGCluster(config, mgWorkingDir, s16Prefix) clust.preprocess(align=False, dm=False, cluster=False, readData=True) #clust.buildSpecificPred() clust.reconstructOTU() if __name__ == "__main__": test()
# We start out with an integer. wealth = 1000000000 # We convert it to a string formatted the way we want. formatted = format(wealth, ',d') # Print it out! print(formatted)
from django.urls import path from . import views urlpatterns = [ path('',views.get_room,name='chat'), path('public/',views.get_public_room,name='public-chat'), path('student/<int:pk>',views.chat_with_Student,name='teacher-chat'), path('<str:room_name>/', views.room, name='room'), ]
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic models for testing simple tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from tensor2tensor.layers import common_hparams from tensor2tensor.layers import common_layers from tensor2tensor.utils import registry from tensor2tensor.utils import t2t_model import tensorflow as tf @registry.register_model class BasicConvGen(t2t_model.T2TModel): def body(self, features): hparams = self.hparams filters = hparams.hidden_size kernel1, kernel2 = (3, 3), (4, 4) # Concat frames and down-stride. cur_frame = tf.to_float(features["inputs"]) prev_frame = tf.to_float(features["inputs_prev"]) x = tf.concat([cur_frame, prev_frame], axis=-1) for _ in xrange(hparams.num_compress_steps): x = tf.layers.conv2d(x, filters, kernel2, activation=common_layers.belu, strides=(2, 2), padding="SAME") x = common_layers.layer_norm(x) filters *= 2 # Add embedded action. action = tf.reshape(features["action"], [-1, 1, 1, hparams.hidden_size]) zeros = tf.zeros(common_layers.shape_list(x)[:-1] + [hparams.hidden_size]) x = tf.concat([x, action + zeros], axis=-1) # Run a stack of convolutions. for i in xrange(hparams.num_hidden_layers): with tf.variable_scope("layer%d" % i): y = tf.layers.conv2d(x, filters, kernel1, activation=common_layers.belu, strides=(1, 1), padding="SAME") if i == 0: x = y else: x = common_layers.layer_norm(x + y) # Up-convolve. for _ in xrange(hparams.num_compress_steps): filters //= 2 x = tf.layers.conv2d_transpose( x, filters, kernel2, activation=common_layers.belu, strides=(2, 2), padding="SAME") x = common_layers.layer_norm(x) # Reward prediction. reward_pred_h1 = tf.reduce_mean(x, axis=[1, 2], keep_dims=True) # Rewards are {-1, 0, 1} so we add 1 to the raw gold ones, predict 3. reward_pred = tf.layers.dense(reward_pred_h1, 3, name="reward") reward_gold = tf.expand_dims(tf.to_int32(features["reward_raw"]) + 1, 1) reward_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=reward_gold, logits=reward_pred, name="reward_loss") reward_loss = tf.reduce_mean(reward_loss) return x, {"reward": reward_loss} @registry.register_hparams def basic_conv(): """Basic 2-frame conv model.""" hparams = common_hparams.basic_params1() hparams.hidden_size = 64 hparams.batch_size = 8 hparams.num_hidden_layers = 3 hparams.optimizer = "Adam" hparams.learning_rate_constant = 0.0002 hparams.learning_rate_warmup_steps = 500 hparams.learning_rate_schedule = "constant * linear_warmup" hparams.label_smoothing = 0.05 hparams.initializer = "uniform_unit_scaling" hparams.initializer_gain = 1.0 hparams.weight_decay = 0.0 hparams.add_hparam("num_compress_steps", 2) return hparams @registry.register_hparams def basic_conv_small(): """Small conv model.""" hparams = common_hparams.basic_params1() hparams.hidden_size = 32 return hparams
from django.shortcuts import render, redirect from django.contrib.auth import update_session_auth_hash from django.contrib.auth.decorators import login_required from django.http import * from django.urls import reverse from apps.accounts.models import * from apps.accounts.forms import * @login_required def login_redirect(request): user = request.user if user.usertype == 'school': return redirect(reverse('school-overview')) elif user.usertype == 'student': return redirect(reverse('')) else: return HttpResponse(" We don't have an idea of your user type, \ contact the admin") def register_school(request): if request.method == 'POST': form = SchoolRegistrationForm(request.POST) if form.is_valid(): cleaned = form.cleaned_data username = cleaned['username'] password = cleaned['password'] email = cleaned['email'] school_name = cleaned['school_name'] address = cleaned['address'] user = User.objects.create_user(username=username, email=email, password=password) user.usertype = 'result' user.save() school = School(user=user, name=school_name, address=address, ) school.save() return redirect(reverse('registration-complete', kwargs={'username': username})) else: form = SchoolRegistrationForm return render(request, 'registration.html', {'form': form}) def registration_successful(request, username): try: user = User.objects.get(username=username) except User.DoesNotExist: raise Http404('User not found') try: school = School.objects.get(user=user) except School.DoesNotExist: raise Http404("School not found, contact the Admin!") context = { 'username': username, 'name': school.name } return render(request, 'registration-complete.html', context) def recover_password(request): if request.method == 'POST': # TODO: work on the remaining part of this block pass else: form = PassWordRecoveryForm context = { 'form': form } return render(request, 'forgot-password.html', context) @login_required def change_password(request): if request.method == 'POST': form = ChangePassWordForm(request.POST) if form.is_valid(): cleaned = form.cleaned_data current_password = cleaned['current_password'] new_password = cleaned['new_password'] reentered_password = cleaned['reentered_password'] user = User.objects.get(pk=request.user.pk) if user.check_password(current_password): if new_password == reentered_password: user.set_password(new_password) user.save() update_session_auth_hash(request, user) return redirect(reverse('password-change-success')) else: return render(request, 'change-password.html', {'form': form, 'error': 'new password and re-entered \ password not the same, correct it'}) else: return render(request, 'change-password.html', {'form': form, 'error': 'You entered a wrong current \ password'}) else: form = ChangePassWordForm context = { 'form': form } return render(request, 'change-password.html', context) @login_required def password_change_successful(request): return render(request, 'password-change-success.html', {})
"""Contains pytest fixtures.""" import os import pytest from ase_notebook.data import get_example_atoms @pytest.fixture(scope="function") def get_test_filepath(): """Fixture to return a path to a file in the raw files folder.""" dirpath = os.path.abspath(os.path.dirname(__file__)) def _get_test_filepath(*path): return os.path.join(dirpath, "raw_files", *path) return _get_test_filepath @pytest.fixture(scope="function") def get_test_atoms(): """Fixture to return an ase.Atoms instance by name.""" return get_example_atoms
class Order: def __init__(self, order_number, customer_id, lp_number, category, pickup_date, return_date, price, insurance, actual_return_date): self.__order_number = order_number self.__customer_id = customer_id self.__lp_number = lp_number self.__category = category self.__pickup_date = pickup_date self.__return_date = return_date self.__price = price self.__insurance = insurance self.__actual_return_date = actual_return_date def __str__(self): return "{},{},{},{},{},{},{},{},{}".format(self.__order_number, self.__customer_id, self.__lp_number, self.__category, self.__pickup_date, self.__return_date, self.__price, self.__insurance, self.__actual_return_date) def get_order_number(self): return self.__order_number def get_customer_id(self): return self.__customer_id def get_lp_number(self): return self.__lp_number def get_category(self): return self.__category def get_pickup_date(self): return self.__pickup_date def get_return_date(self): return self.__return_date def get_price(self): return self.__price def get_insurance(self): return self.__insurance def get_actual_return_date(self): return self.__actual_return_date
from moderate.queue.serialization import pack, unpack class BaseQueue(object): def put(self, name, *args, **kw): pass def get(self): pass def pack(self, name, args, kw): return pack({'name': name, 'args': args, 'kw': kw}) def unpack(self, msg): return unpack(msg)
# Generated by Django 2.2.3 on 2019-07-17 18:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('products', '0001_initial'), ] operations = [ migrations.CreateModel( name='Bug', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('bugname', models.CharField(max_length=64, verbose_name='bug 名称')), ('bugdetail', models.CharField(max_length=200, verbose_name='详情')), ('bugstatus', models.CharField(choices=[('激活', '激活'), ('已解决', '已解决'), ('已关闭', '已关闭')], default='激活', max_length=200, null=True, verbose_name='解决状态')), ('buglevel', models.CharField(choices=[('1', '1'), ('2', '2'), ('3', '3')], default='3', max_length=200, null=True, verbose_name='严重程度')), ('bugcreater', models.CharField(max_length=200, verbose_name='创建人')), ('bugassign', models.CharField(max_length=200, verbose_name='分配给')), ('created_time', models.DateTimeField(auto_now=True, verbose_name='创建时间')), ('Product', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='products.Product')), ], options={ 'verbose_name': 'bug 管理', 'verbose_name_plural': 'bug 管理', }, ), ]
from pathlib import Path import sys TEST_MODE = bool(len(sys.argv) > 1 and sys.argv[1] == "test") def phase1(v): return next(v[i]*v[j] for i in range(len(v)) for j in range(i,len(v)) if v[i]+v[j] == 2020) def phase2(v): return next(v[i]*v[j]*v[k] for i in range(len(v)) for j in range(i,len(v)) for k in range(j,len(v)) if v[i]+v[j]+v[k] == 2020) if __name__ == "__main__": with Path(__file__).parent.joinpath("input/day1_sample" if TEST_MODE else "input/day1").open() as f: values = [int(i) for i in f] print(f'Phase 1: {phase1(values)}') print(f'Phase 1: {phase2(values)}')
# -*- coding: utf-8 -*- # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the # License. # import unittest import random from ask_sdk_model import ( IntentRequest, RequestEnvelope, Intent, SessionEndedRequest, Context) from ask_sdk_model.canfulfill import CanFulfillIntentRequest from ask_sdk_core.utils import ( is_canfulfill_intent_name, is_intent_name, is_request_type, viewport) from ask_sdk_core.handler_input import HandlerInput from ask_sdk_core.exceptions import AskSdkException from ask_sdk_model.interfaces.viewport import ViewportState, Shape def test_is_canfulfill_intent_name_match(): test_canfulfill_intent_name = "TestIntent" test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=CanFulfillIntentRequest( intent=Intent(name=test_canfulfill_intent_name)))) canfulfill_intent_name_wrapper = is_canfulfill_intent_name(test_canfulfill_intent_name) assert canfulfill_intent_name_wrapper( test_handler_input), "is_canfulfill_intent_name matcher didn't match with the " \ "correct intent name" def test_is_canfulfill_intent_name_not_match(): test_canfulfill_intent_name = "TestIntent" test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=CanFulfillIntentRequest( intent=Intent(name=test_canfulfill_intent_name)))) canfulfill_intent_name_wrapper = is_canfulfill_intent_name("TestIntent1") assert not canfulfill_intent_name_wrapper( test_handler_input), "is_canfulfill_intent_name matcher matched with the " \ "incorrect intent name" def test_is_canfulfill_intent_not_match_intent(): test_canfulfill_intent_name = "TestIntent" test_canfulfill_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=CanFulfillIntentRequest( intent=Intent(name=test_canfulfill_intent_name)))) intent_name_wrapper = is_intent_name(test_canfulfill_intent_name) assert not intent_name_wrapper( test_canfulfill_handler_input), "is_intent_name matcher matched with the " \ "incorrect request type" def test_is_intent_not_match_canfulfill_intent(): test_intent_name = "TestIntent" test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=IntentRequest( intent=Intent(name=test_intent_name)))) canfulfill_intent_name_wrapper = is_canfulfill_intent_name(test_intent_name) assert not canfulfill_intent_name_wrapper( test_handler_input), "is_canfulfill_intent_name matcher matched with the " \ "incorrect request type" def test_is_intent_name_match(): test_intent_name = "TestIntent" test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=IntentRequest( intent=Intent(name=test_intent_name)))) intent_name_wrapper = is_intent_name(test_intent_name) assert intent_name_wrapper( test_handler_input), "is_intent_name matcher didn't match with the " \ "correct intent name" def test_is_intent_name_not_match(): test_intent_name = "TestIntent" test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=IntentRequest( intent=Intent(name=test_intent_name)))) intent_name_wrapper = is_intent_name("TestIntent1") assert not intent_name_wrapper( test_handler_input), "is_intent_name matcher matched with the " \ "incorrect intent name" def test_is_request_type_match(): test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=IntentRequest())) request_type_wrapper = is_request_type("IntentRequest") assert request_type_wrapper(test_handler_input), ( "is_request_type matcher didn't match with the correct request type") def test_is_request_type_not_match(): test_handler_input = HandlerInput( request_envelope=RequestEnvelope(request=SessionEndedRequest())) intent_name_wrapper = is_request_type("IntentRequest") assert not intent_name_wrapper(test_handler_input), ( "is_request_type matcher matched with the incorrect request type") class TestViewportOrientation(unittest.TestCase): def test_portrait_orientation(self): width = 0 height = 1 assert (viewport.get_orientation(width=width, height=height) == viewport.Orientation.PORTRAIT), ( "Invalid viewport orientation resolved when width < height") def test_landscape_orientation(self): width = 1 height = 0 assert (viewport.get_orientation(width=width, height=height) == viewport.Orientation.LANDSCAPE), ( "Invalid viewport orientation resolved when width > height") def test_equal_orientation(self): width = 0 height = 0 assert (viewport.get_orientation(width=width, height=height) == viewport.Orientation.EQUAL), ( "Invalid viewport orientation resolved when width == height") class TestViewportSize(unittest.TestCase): def test_xsmall_size(self): size = random.choice(range(0, 600)) assert (viewport.get_size(size=size) == viewport.Size.XSMALL), ( "Invalid viewport size resolved when size = {}".format(size)) def test_small_size(self): size = random.choice(range(600, 960)) assert (viewport.get_size(size=size) == viewport.Size.SMALL), ( "Invalid viewport size resolved when size = {}".format(size)) def test_medium_size(self): size = random.choice(range(960, 1280)) assert (viewport.get_size(size=size) == viewport.Size.MEDIUM), ( "Invalid viewport size resolved when size = {}".format(size)) def test_large_size(self): size = random.choice(range(1280, 1920)) assert (viewport.get_size(size=size) == viewport.Size.LARGE), ( "Invalid viewport size resolved when size = {}".format(size)) def test_xlarge_size(self): size = 1920 assert (viewport.get_size(size=size) == viewport.Size.XLARGE), ( "Invalid viewport size resolved when size = {}".format(size)) def test_unknown_size(self): size = -1 with self.assertRaises(AskSdkException) as exc_info: viewport.get_size(size=size) assert "Unknown size group value: -1" in str(exc_info.exception), ( "Viewport size resolver didn't raise exception on invalid size" ) class TestViewportDpiGroup(unittest.TestCase): def test_xlow_dpi_group(self): dpi = random.choice(range(0, 121)) assert (viewport.get_dpi_group(dpi=dpi) == viewport.Density.XLOW), ( "Invalid viewport dpi_group resolved when dpi = {}".format(dpi)) def test_low_dpi_group(self): dpi = random.choice(range(121, 161)) assert (viewport.get_dpi_group(dpi=dpi) == viewport.Density.LOW), ( "Invalid viewport dpi_group resolved when dpi = {}".format(dpi)) def test_medium_dpi_group(self): dpi = random.choice(range(161, 241)) assert (viewport.get_dpi_group(dpi=dpi) == viewport.Density.MEDIUM), ( "Invalid viewport dpi_group resolved when dpi = {}".format(dpi)) def test_high_dpi_group(self): dpi = random.choice(range(241, 321)) assert (viewport.get_dpi_group(dpi=dpi) == viewport.Density.HIGH), ( "Invalid viewport dpi_group resolved when dpi = {}".format(dpi)) def test_xhigh_dpi_group(self): dpi = random.choice(range(321, 481)) assert (viewport.get_dpi_group(dpi=dpi) == viewport.Density.XHIGH), ( "Invalid viewport dpi_group resolved when dpi = {}".format(dpi)) def test_xxhigh_dpi_group(self): dpi = 481 assert (viewport.get_dpi_group(dpi=dpi) == viewport.Density.XXHIGH), ( "Invalid viewport dpi_group resolved when dpi = {}".format(dpi)) def test_unknown_dpi_group(self): dpi = -1 with self.assertRaises(AskSdkException) as exc_info: viewport.get_dpi_group(dpi=dpi) assert "Unknown dpi group value: -1" in str(exc_info.exception), ( "Viewport dpi group resolver didn't raise exception on invalid dpi" ) class TestViewportProfile(unittest.TestCase): def test_viewport_map_to_hub_round_small(self): viewport_state = ViewportState( shape=Shape.ROUND, dpi=float(160), current_pixel_width=float(300), current_pixel_height=float(300)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.HUB_ROUND_SMALL), ( "Viewport profile couldn't resolve HUB_ROUND_SMALL") def test_viewport_map_to_hub_landscape_medium(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(160), current_pixel_width=float(960), current_pixel_height=float(600)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.HUB_LANDSCAPE_MEDIUM), ( "Viewport profile couldn't resolve HUB_LANDSCAPE_MEDIUM") def test_viewport_map_to_hub_landscape_large(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(160), current_pixel_width=float(1280), current_pixel_height=float(960)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.HUB_LANDSCAPE_LARGE), ( "Viewport profile couldn't resolve HUB_LANDSCAPE_LARGE") def test_viewport_map_to_mobile_landscape_small(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(240), current_pixel_width=float(600), current_pixel_height=float(300)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.MOBILE_LANDSCAPE_SMALL), ( "Viewport profile couldn't resolve MOBILE_LANDSCAPE_SMALL") def test_viewport_map_to_mobile_portrait_small(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(240), current_pixel_width=float(300), current_pixel_height=float(600)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.MOBILE_PORTRAIT_SMALL), ( "Viewport profile couldn't resolve MOBILE_PORTRAIT_SMALL") def test_viewport_map_to_mobile_landscape_medium(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(240), current_pixel_width=float(960), current_pixel_height=float(600)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.MOBILE_LANDSCAPE_MEDIUM), ( "Viewport profile couldn't resolve MOBILE_LANDSCAPE_MEDIUM") def test_viewport_map_to_mobile_portrait_medium(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(240), current_pixel_width=float(600), current_pixel_height=float(960)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.MOBILE_PORTRAIT_MEDIUM), ( "Viewport profile couldn't resolve MOBILE_PORTRAIT_MEDIUM") def test_viewport_map_to_tv_landscape_xlarge(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(320), current_pixel_width=float(1920), current_pixel_height=float(960)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.TV_LANDSCAPE_XLARGE), ( "Viewport profile couldn't resolve TV_LANDSCAPE_XLARGE") def test_viewport_map_to_tv_portrait_medium(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(320), current_pixel_width=float(300), current_pixel_height=float(1920)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.TV_PORTRAIT_MEDIUM), ( "Viewport profile couldn't resolve TV_PORTRAIT_MEDIUM") def test_viewport_map_to_tv_landscape_medium(self): viewport_state = ViewportState( shape=Shape.RECTANGLE, dpi=float(320), current_pixel_width=float(960), current_pixel_height=float(600)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.TV_LANDSCAPE_MEDIUM), ( "Viewport profile couldn't resolve TV_LANDSCAPE_MEDIUM") def test_viewport_map_to_unknown(self): viewport_state = ViewportState( shape=Shape.ROUND, dpi=float(240), current_pixel_width=float(600), current_pixel_height=float(600)) test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.UNKNOWN_VIEWPORT_PROFILE), ( "Viewport profile couldn't resolve UNKNOWN_VIEWPORT_PROFILE") def test_viewport_map_to_unknown_for_no_viewport(self): viewport_state = None test_request_env = RequestEnvelope( context=Context( viewport=viewport_state)) assert (viewport.get_viewport_profile(test_request_env) is viewport.ViewportProfile.UNKNOWN_VIEWPORT_PROFILE), ( "Viewport profile couldn't resolve UNKNOWN_VIEWPORT_PROFILE")
from __future__ import unicode_literals from django.apps import AppConfig class WagerConfig(AppConfig): name = 'Wager'
# -*- coding: utf-8 -*- """This code is a part of Hydra Toolkit .. module:: hydratk.extensions.datagen.translation.en :platform: Unix :synopsis: English language translation for Datagen extension .. moduleauthor:: Petr Czaderna <[email protected]> """ language = { 'name': 'English', 'ISO-639-1': 'en' } msg = { 'datagen_received_cmd': ["Received command: '{0}'"], 'datagen_asn1_compile': ["Compiling ASN.1 specification: '{0}'"], 'datagen_asn1_compiled': ["ASN.1 specification compiled"], 'datagen_asn1_decode': ["Decoding input file: '{0}' from format: '{1}' according to element: '{2}' in specification: '{3}'"], 'datagen_asn1_decoded': ["Decoded to output file: '{0}'"], 'datagen_asn1_encode': ["Encoding input file: '{0}' to format: '{1}' according to element: '{2}' in specification: '{3}'"], 'datagen_asn1_encoded': ["Encoded to output file: '{0}'"], 'datagen_asn1_transcode': ["Transcoding input file: '{0}' from format: '{1}' to format: '{2}' according to element: '{3}' specification: '{4}'"], 'datagen_asn1_transcoded': ["Transcoded to output file: '{0}'"], 'datagen_jsongen_import_spec': ["Importing JSON specification: '{0}'"], 'datagen_jsongen_spec_imported': ["JSON specification imported"], 'datagen_jsongen_write_sample': ["Creating sample JSON document"], 'datagen_jsongen_sample_written': ["Sample written to file: '{0}'"], 'datagen_xmlgen_import_spec': ["Importing XML specification: '{0}'"], 'datagen_xmlgen_spec_imported': ["XML specification imported"], 'datagen_xmlgen_write_sample': ["Creating sample XML document"], 'datagen_xmlgen_sample_written': ["Sample written to file: '{0}'"], 'datagen_adapter_parsing_suite': ["Parsing suite file: '{0}'"], 'datagen_adapter_suite_parsed': ["Suite successfully parsed"], 'datagen_adapter_parsing_test': ["Parsing test file: '{0}'"], 'datagen_adapter_test_parsed': ["Test successfully parsed"], 'datagen_adapter_cmd_unknown': ["Detected unknown command '{0}'"], 'datagen_adapter_cmd_dummy': ["Detected not supported command '{0}'"] }
from django.contrib import admin from .models import City,Question # Register your models here. admin.site.register(City) admin.site.register(Question)
import time import random import string from vectorai import ViClient, ViCollectionClient class TempClient: def __init__(self, client, collection_name: str=None): self.client = client if isinstance(client, ViClient): self.collection_name = collection_name elif isinstance(client, ViCollectionClient): self.collection_name = self.client.collection_name def teardown_collection(self): if self.collection_name in self.client.list_collections(): time.sleep(2) if isinstance(self.client, ViClient): self.client.delete_collection(self.collection_name) elif isinstance(self.client, ViCollectionClient): self.client.delete_collection() def __enter__(self): self.teardown_collection() return self.client def __exit__(self, *exc): self.teardown_collection() class TempClientWithDocs(TempClient): """ Temporary Client With Documents already inserted. """ def __init__(self, client, collection_name: str=None, num_of_docs: int=10): self.client = client if hasattr(self.client, 'collection_name'): self.collection_name = collection_name else: if collection_name is None: collection_name = self.generate_random_collection_name() self.collection_name = collection_name self.client.collection_name = collection_name self.num_of_docs = num_of_docs def generate_random_collection_name(self): return self.generate_random_string(20) def generate_random_string(self, num_of_letters): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(num_of_letters)) def __enter__(self): self.teardown_collection() self.client.insert_documents(self.collection_name, self.client.create_sample_documents(self.num_of_docs)) return self.client
# # voice-skill-sdk # # (C) 2020, Deutsche Telekom AG # # This file is distributed under the terms of the MIT license. # For details see the file LICENSE in the top directory. # # # Caching functions to facilitate L1/L2 caching # from .decorators import CallCache # noqa: F401
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_pympa-core ------------ Tests for `pympa-core` models module. """ import os import shutil import unittest from pympa_core import models class TestPympa_core(unittest.TestCase): def setUp(self): pass def test_something(self): pass def tearDown(self): pass
#!/usr/bin/env python # -*- coding: utf-8 -*- from gBlockChain.lib.database import db, Model, Column, relationship, reference_col class Host(Model): __tablename__ = 'host' id = Column(db.Integer, primary_key=True, autoincrement=True, unique=True) ip = Column(db.String(64), nullable=False, index=True, unique=True) cpu_core_num = Column(db.Integer, default=1) mem_total_size = Column(db.Integer, default=8) disk_total_size = Column(db.Integer, default=40) band_width = Column(db.Integer, default=1) container_limit = Column(db.Integer, default=20) docker_api_port = Column(db.Integer, default=2375) cadvisor_api_port = Column(db.Integer, default=4033) description = Column(db.Text, default="") host_label = Column(db.String(32), default="") cloud_ostype = Column(db.String(32), default="CentOS") cloud_vendor = Column(db.String(32), default="") cloud_region = Column(db.String(32), default="")
# Select an element # Open yaml file with entity types # If parameters are already present, set values according to yaml input import sys import clr import System import rpw import yaml import pprint from System.Collections.Generic import * clr.AddReference("RevitAPI") from Autodesk.Revit.DB import * from rpw.ui.forms import * from Autodesk.Revit.UI.Selection import ObjectType doc = __revit__.ActiveUIDocument.Document uidoc = __revit__.ActiveUIDocument app = doc.Application pp = pprint.PrettyPrinter(indent=1) shared_param_file = app.OpenSharedParameterFile() selection = [doc.GetElement(element_Id) for element_Id in uidoc.Selection.GetElementIds()] def createnewgroup(shared_parameter_file, new_group_name): try: newgroup = shared_parameter_file.Groups.Create(new_group_name) print("Group successfully created with name: {}".format(new_group_name)) except: all_groups = [] for group in shared_parameter_file.Groups: all_groups.append(group.Name) if new_group_name in all_groups: print("A group already exists with the following name: {}".format(new_group_name)) for group in shared_parameter_file.Groups: if group.Name == new_group_name: newgroup = group else: print("Something went wrong. The group with name {} was not created. Please check Shared Parameter File is not read-only.".format(new_group_name)) sys.exit("Script has ended") return newgroup def builtinGroupFromName(builtin_group_name): b_i_groups = System.Enum.GetValues(BuiltInParameterGroup) builtin_group = None for g in b_i_groups: if g.ToString() == builtin_group_name: builtin_group = g if builtin_group != None: return builtin_group else: print("Built-in Group not valid: {}".format(builtin_group_name)) return None def parameterName2ExternalDefinition(sharedParamFile, definitionName): """ Given the name of a parameter, return the definition from the shared parameter file """ externalDefinition = None for group in sharedParamFile.Groups: for definition in group.Definitions: if definition.Name == definitionName: externalDefinition = definition return externalDefinition def NameAndGroup2ExternalDefinition(sharedParamFile, definitionName, groupName): external_definition = None group_found = False group_matches = None for group in sharedParamFile.Groups: if group.Name == groupName: group_found = True group_matches = group if group_found == True: for definition in group_matches.Definitions: if definition.Name == definitionName: external_definition = definition else: print("Group not found with name: {}".format(groupName)) return external_definition def create_definition (group_name, shared_parameter_file, param_name, param_type, usermodifiable, description): new_definition = None group_matches = False group = None definition_matches = False for existing_group in shared_parameter_file.Groups: if existing_group.Name == group_name: group_matches = True group = existing_group print("Group_matches: {}".format(group_matches)) if group_matches == True: for existing_definition in group.Definitions: if existing_definition.Name == param_name: definition_matches = True print("Definition matches:".format(definition_matches)) if definition_matches == False: ext_def_creation_options = ExternalDefinitionCreationOptions(param_name, param_type) ext_def_creation_options.UserModifiable = usermodifiable ext_def_creation_options.Description = description new_definition = group.Definitions.Create(ext_def_creation_options) print("Created external definition \"{}\" in group \"{}\"".format(new_definition.Name, group.Name)) else: print("Extenal definition already exists with name \"{}\" in group \"{}\"".format(param_name, group.Name)) else: print("Group doesn't match") family_instances = [] not_family_instances = [] print("Selected {} items".format(len(selection))) for item in selection: if type(item).__name__ == "FamilyInstance": family_instances.append(item) else: not_family_instances.append(item) print("The following elements are family instances and will receive the parameter values from the ontology:") if family_instances == []: print("None") else: print([item.Id.ToString() for item in family_instances]) print("The following elements are not family instances and will be dropped from the selection:") if not_family_instances == []: print("None") else: print([item.Id.ToString() for item in not_family_instances]) yaml_path = select_file("Yaml File (*.yaml)|*.yaml", "Select the yaml file with the parameters", multiple = False, restore_directory = True) if yaml_path: with open(yaml_path, "r") as stream: ontology_yaml = yaml.safe_load(stream) file_name_split = yaml_path.split("\\") file_name_with_ext = file_name_split[-1] file_name_with_ext_split = file_name_with_ext.split(".") group_name = file_name_with_ext_split[0] canonical_types = dict(filter(lambda elem : elem[1].get("is_canonical") == True, ontology_yaml.items())) parameter_names = [] for canonical_type in canonical_types.items(): implements_params = canonical_type[1]["implements"] for implement_param in implements_params: parameter_names.append(implement_param) parameter_names = list(dict.fromkeys(parameter_names)) param_names_with_prefix = [] for pn in parameter_names: param_name_with_prefix = "Implements_" + pn param_names_with_prefix.append(param_name_with_prefix) param_names_with_prefix.append("Entity_Type") #print(param_names_with_prefix) # Check if item has the parameters: print("Checking if family instances have the required parameters...") for family_instance in family_instances: all_params = family_instance.Parameters all_params_names = [param.Definition.Name for param in all_params] #pp.pprint(all_params_names) missing_params = [] for param_name in param_names_with_prefix: if param_name in all_params_names: pass else: missing_params.append(param_name) if missing_params == []: print("Family instance {} has all required parameters.".format(family_instance.Id.ToString())) else: print("Family instance {} is missing the following parameters".format(family_instance.Id)) pp.pprint(missing_params) family_instances.remove(family_instance) print("Family instance {} removed from the list of objects to modify") # ADD SELECTION OF TYPE THROUGH MENU print("Please select an entity type from the yaml ontology...") form_title = "Select an entity type:" canonical_types = dict(filter(lambda elem : elem[1].get("is_canonical") == True, ontology_yaml.items())) options = canonical_types.keys() entity_type_name = rpw.ui.forms.SelectFromList(form_title,options,description=None,sort=True,exit_on_close=True) entity_type_dict = (dict(filter(lambda elem: elem [0] == entity_type_name, canonical_types.items()))) print("Printing selected entity type:") pp.pprint(entity_type_dict) implements = entity_type_dict[entity_type_name]["implements"] params_to_edit_names = [] for i in implements: params_to_edit_names.append("Implements_"+i) print(params_to_edit_names) print("The following instances will be modified according to Entity Type: {}".format(entity_type_name)) pp.pprint(family_instances) warnings = [] t = Transaction(doc, "Populate BOS parameters") t.Start() for family_instance in family_instances: print("Editing family instance {}...".format(family_instance.Id.ToString())) # MODIFY ENTITY TYPE try: p_entity_type = family_instance.LookupParameter("Entity_Type") p_entity_type.Set(entity_type_name) print("Entity_Type parameter successfully edited for family instance {}.".format(family_instance.Id.ToString())) except: message = "Couldn't edit parameter Entity_Type for family instance {}.".format(family_instance.Id.ToString()) warnings.append(message) # MODIFY YESNO PARAMETERS all_implements_params = [] for p in family_instance.Parameters: if "Implements_" in p.Definition.Name: all_implements_params.append(p) for p in all_implements_params: try: if p.Definition.Name in params_to_edit_names: p.Set(True) else: p.Set(False) print("{} parameter successfully edited for family instance {}.".format(p.Definition.Name, family_instance.Id.ToString())) except: message = "Couldn't edit parameter {} for family instance {}.".format(p.Definition.Name, family_instance.Id.ToString()) warnings.append(message) t.Commit() print("Script has ended") if warnings == []: print("Warnings: None") else: print("Warnings:") for w in warnings: print(w)
from flask import Blueprint, request, render_template, redirect, url_for, g, session authorization = Blueprint("authorization", __name__) @authorization.route("/login", methods=["GET", "POST"]) def login(): # Redirect if already logged in if g.user: return redirect("/") if request.method == "GET": return render_template("login.html", fail=("fail" in request.args)) else: if not ("email" in request.form and "password" in request.form): return redirect(url_for("authorization.login", fail=1)) email = request.form["email"] password = request.form["password"] # Verify that the user exists match = g.users.find_one({ "email": email }) if match: # Verify credentials if password == match["password"]: session["email"] = email return redirect("/") else: return redirect(url_for("authorization.login", fail=1)) else: return redirect(url_for("authorization.login", fail=1)) @authorization.route("/logout", methods=["GET"]) def logout(): session.pop("email") return redirect("/") @authorization.route("/register", methods=["GET", "POST"]) def register(): # Redirect if already logged in if g.user: return redirect("/") if request.method == "GET": return render_template("register.html", fail=("fail" in request.args)) else: if not ("name" in request.form and "email" in request.form and "password" in request.form): return redirect(url_for("authorization.login", fail=1)) name = request.form["name"] email = request.form["email"] password = request.form["password"] # Verify that the user doesn't exist match = g.users.find_one({ "email": email }) if not match: g.users.insert_one({ "name": name, "email": email, "password": password, "category": "user" }) session["email"] = email return redirect("/") else: return redirect(url_for("authorization.register", fail=1))
from django.apps import apps from lru import LRU from .. import settings from . import RecordMetadata, Record, get_offset_backend from botocore.exceptions import ClientError import boto3 import collections import logging import time logger = logging.getLogger(__name__) class KinesisBase(object): _client = None @property def client(self): if not self._client: kwargs = self._get_client_config() self._client = boto3.client('kinesis', **kwargs) return self._client def _get_client_config(self): return { 'region_name': settings.get_aws_region(), } class ModelOffsetStore(object): def commit(self, consumer, message): KinesisOffset = apps.get_model(app_label='logpipe', model_name='KinesisOffset') region = settings.get_aws_region() logger.debug('Commit offset "%s" for region "%s", stream "%s", shard "%s" to %s' % ( message.offset, region, message.topic, message.partition, self.__class__.__name__)) obj, created = KinesisOffset.objects.get_or_create( region=region, stream=message.topic, shard=message.partition) obj.sequence_number = message.offset obj.save() def seek(self, consumer, stream, shard): KinesisOffset = apps.get_model(app_label='logpipe', model_name='KinesisOffset') region = settings.get_aws_region() try: obj = KinesisOffset.objects.get(region=settings.get_aws_region(), stream=stream, shard=shard) logger.debug('Seeking to offset "%s" on region "%s", stream "%s", partition "%s"' % (obj.sequence_number, region, stream, shard)) consumer.seek_to_sequence_number(shard, obj.sequence_number) except KinesisOffset.DoesNotExist: logger.debug('Seeking to beginning of region "%s", stream "%s", partition "%s"' % (region, stream, shard)) consumer.seek_to_sequence_number(shard, None) class Consumer(KinesisBase): def __init__(self, topic_name, **kwargs): self.topic_name = topic_name self.client_kwargs = kwargs self.shards = collections.deque() self.records = collections.deque() self.shard_iters = {} shards = self._list_shard_ids() logger.debug('Found {} kinesis shards.'.format(len(shards))) backend = get_offset_backend() for shard in shards: self.shards.append(shard) backend.seek(self, self.topic_name, shard) def seek_to_sequence_number(self, shard, sequence_number=None): if sequence_number is None: resp = self.client.get_shard_iterator( StreamName=self.topic_name, ShardId=shard, ShardIteratorType='TRIM_HORIZON') else: resp = self.client.get_shard_iterator( StreamName=self.topic_name, ShardId=shard, ShardIteratorType='AFTER_SEQUENCE_NUMBER', StartingSequenceNumber=sequence_number) self.shard_iters[shard] = resp['ShardIterator'] def __iter__(self): return self def __next__(self): # Try and load records. Keep trying until either (1) we have some records or (2) current_lag drops to 0 while len(self.records) <= 0: # Load a page from each shard and sum the shard lags current_lag = 0 for i in range(len(self.shards)): current_lag += self._load_next_page() # If all shards report 0 lag, then give up trying to load records if current_lag <= 0: break # If we've tried all the shards and still don't have any records, stop iteration if len(self.records) == 0: raise StopIteration() # Return the left most record in the queue return self.records.popleft() def _load_next_page(self): # Load a page from the left-most shard in the queue try: shard = self.shards.popleft() except IndexError: return 0 # Get the next shard iterator for the shard shard_iter = self.shard_iters.pop(shard, None) if not shard_iter: return 0 # Fetch the records from Kinesis logger.debug('Loading page of records from {}.{}'.format(self.topic_name, shard)) fetch_limit = settings.get('KINESIS_FETCH_LIMIT', 25) response = self._get_records(shard_iter, fetch_limit) if response is None: return 0 # This default value is mostly just for testing with Moto. Real Kinesis should always return a value for MillisBehindLatest. num_records = len(response['Records']) if 'MillisBehindLatest' in response: current_stream_lag = response['MillisBehindLatest'] else: current_stream_lag = 0 if num_records == 0 else 1 logger.debug('Loaded {} records from {}.{}. Currently {}ms behind stream head.'.format(num_records, self.topic_name, shard, current_stream_lag)) # Add the records page into the queue timestamp = (time.time() * 1000) - current_stream_lag for r in response['Records']: record = Record( topic=self.topic_name, partition=shard, offset=r['SequenceNumber'], timestamp=timestamp, key=r['PartitionKey'], value=r['Data']) self.records.append(record) # Add the shard back to the right of the queue and save the shard iterator for next time we need # to get records from this shard. If NextShardIterator is None, the shard has been closed and # we should remove it from the pool. if response.get('NextShardIterator', None): self.shard_iters[shard] = response['NextShardIterator'] self.shards.append(shard) else: logger.info('Shard {}.{} has been closed. Removing it from the fetch pool.'.format(self.topic_name, shard)) return current_stream_lag def _get_records(self, shard_iter, fetch_limit, retries=1): i = 0 while i <= retries: try: response = self.client.get_records(ShardIterator=shard_iter, Limit=fetch_limit) return response except ClientError as e: if e.response['Error']['Code'] == 'ProvisionedThroughputExceededException': logger.warning("Caught ProvisionedThroughputExceededException. Sleeping for 5 seconds.") time.sleep(5) else: logger.warning("Received {} from AWS API: {}".format(e.response['Error']['Code'], e.response['Error']['Message'])) i += 1 logger.warning("After {} attempts, couldn't get records from Kinesis. Giving up.".format(i)) return None def _list_shard_ids(self): resp = self.client.describe_stream(StreamName=self.topic_name) return [shard['ShardId'] for shard in resp['StreamDescription']['Shards']] class Producer(KinesisBase): _last_sequence_numbers = LRU(settings.get('KINESIS_SEQ_NUM_CACHE_SIZE', 1000)) def send(self, topic_name, key, value): kwargs = { 'StreamName': topic_name, 'Data': value, 'PartitionKey': key, } if topic_name not in self._last_sequence_numbers: self._last_sequence_numbers[topic_name] = {} last_seq_num = self._last_sequence_numbers[topic_name].get(key) if last_seq_num: kwargs['SequenceNumberForOrdering'] = last_seq_num metadata = self._send_and_retry(kwargs) shard_id = metadata['ShardId'] seq_num = str(metadata['SequenceNumber']) self._last_sequence_numbers[topic_name][key] = seq_num return RecordMetadata( topic=topic_name, partition=shard_id, offset=seq_num) def _send_and_retry(self, data, retries=1): i = 0 while i <= retries: try: metadata = self.client.put_record(**data) return metadata except ClientError as e: if e.response['Error']['Code'] == 'ProvisionedThroughputExceededException': logger.warning("Caught ProvisionedThroughputExceededException. Sleeping for 5 seconds.") time.sleep(5) else: logger.warning("Received {} from AWS API: {}".format(e.response['Error']['Code'], e.response['Error']['Message'])) i += 1 logger.warning("After {} attempts, couldn't send message to Kinesis. Giving up.".format(i))
import codecs import datetime import os import pathlib import time from ctd_processing import cnv_column_info from ctd_processing import exceptions from ctd_processing.cnv.cnv_header import CNVheader from ctd_processing.cnv.cnv_parameter import CNVparameter class CNVfileInfo: def __init__(self, file_path): self._path = pathlib.Path(file_path) self.date_format_in_file = '%b %d %Y %H:%M:%S' self._time = None self._lat = None self._lon = None self._station = None self._get_info_from_file() def _get_info_from_file(self): with codecs.open(self._path, encoding='cp1252') as fid: for line in fid: if '* System UTC' in line: self._time = datetime.datetime.strptime(line.split('=')[1].strip(), self.date_format_in_file) elif '* NMEA Latitude' in line: self._lat = line.split('=')[1].strip()[:-1].replace(' ', '') elif '* NMEA Longitude' in line: self._lon = line.split('=')[1].strip()[:-1].replace(' ', '') elif line.startswith('** Station'): self._station = line.split(':')[-1].strip() @property def time(self): return self._time @property def lat(self): return self._lat @property def lon(self): return self._lon @property def station(self): return self._station class CNVfile: def __init__(self, ctd_files=None, cnv_column_info_directory=None, use_cnv_info_format=False, **kwargs): self._ctd_files = ctd_files key = 'cnv_down' self.file_path = self._ctd_files(key) if not self.file_path: raise FileNotFoundError(key) if not self.file_path.exists(): raise FileNotFoundError(self.file_path) self.date_format_in_file = '%b %d %Y %H:%M:%S' self._time = None self._lat = None self._lon = None self._station = None self.instrument_number = self._ctd_files.instrument_number cnv_info_files = cnv_column_info.CnvInfoFiles(cnv_column_info_directory) self.cnv_info_object = cnv_info_files.get_info(self.instrument_number) self.use_cnv_info_format = use_cnv_info_format self.parameters = {} self.header = CNVheader() self.data = {} self.nr_data_lines = None self.linebreak = kwargs.get('linebreak', '\n') self.missing_value = -9.990e-29 self.missing_value_str = '-9.990e-29' self.g = 9.818 # g vid 60 gr nord (dblg) self._load_info() self._save_columns() self._set_active_parameters() @property def time(self): return self._time @property def lat(self): return self._lat @property def lon(self): return self._lon @property def station(self): return self._station def modify(self): self._check_index() self._modify_header_information() self._modify_irradiance() self._modify_fluorescence() self._modify_depth() def save_file(self, file_path, overwrite=False): file_path = pathlib.Path(file_path) if file_path.exists() and not overwrite: raise FileExistsError(file_path) if not file_path.parent.exists(): os.makedirs(file_path.parent) all_rows = [] all_rows.extend(self.header.rows) all_rows.extend(self._get_data_rows()) all_rows.append('') with open(file_path, 'w') as fid: fid.write(self.linebreak.join(all_rows)) def _get_data_rows(self): data_rows = [] for r in range(self.nr_data_lines): line_list = [] for par, obj in self.parameters.items(): value = obj.get_value_as_string_for_index(r) line_list.append(value) line_string = ''.join(line_list) data_rows.append(line_string) return data_rows # def _save_instrument_files_info(self): # self.year = self._ctd_files.year # self.ctry = self._ctd_files.ctry # self.ship = self._ctd_files.ship # self.serie = self._ctd_files.serial_number def _load_info(self): header = True has_set_value_length = False self.nr_data_lines = 0 with open(self.file_path) as fid: for r, line in enumerate(fid): strip_line = line.strip() if '* System UTC' in line: self._time = datetime.datetime.strptime(line.split('=')[1].strip(), self.date_format_in_file) if '* NMEA Latitude' in line: self._lat = line.split('=')[1].strip()[:-1].replace(' ', '') if '* NMEA Longitude' in line: self._lon = line.split('=')[1].strip()[:-1].replace(' ', '') if line.startswith('** Station'): self._station = line.split(':')[-1].strip() if '*END*' in line: self.header.add_row(line) header = False continue if strip_line.startswith('# name'): name, par = [item.strip() for item in strip_line.split('=', 1)] index = name.split(' ')[-1] obj = CNVparameter(use_cnv_info_format=self.use_cnv_info_format, cnv_info_object=self.cnv_info_object[int(index)], index=index, name=par) self.parameters[obj.index] = obj if header: self.header.add_row(line) else: if not line.strip(): continue self.nr_data_lines += 1 split_line = strip_line.split() if not has_set_value_length: tot_len = len(line.rstrip()) value_length = tot_len / len(split_line) int_value_lenght = int(value_length) if int_value_lenght != value_length: raise ValueError('Something is wrong in the file!') for i, value in enumerate(split_line): self.parameters[i].set_value_length(int_value_lenght) has_set_value_length = True for i, value in enumerate(split_line): self.parameters[i].add_data(value) def _save_columns(self): self.col_pres = None self.col_dens = None self.col_dens2 = None self.col_depth = None self.col_sv = None for par in self.parameters.values(): if 'prDM: Pressure, Digiquartz [db]' in par.name: self.col_pres = par.index elif 'sigma-t00: Density [sigma-t' in par.name: self.col_dens = par.index elif 'sigma-t11: Density, 2 [sigma-t' in par.name: self.col_dens2 = par.index elif 'depFM: Depth [fresh water, m]' in par.name: self.col_depth = par.index elif 'depFM: Depth [true depth, m]' in par.name: self.col_depth = par.index elif 'svCM: Sound Velocity [Chen-Millero, m/s]' in par.name: self.col_sv = par.index def _set_active_parameters(self): for i, info in self.cnv_info_object.items(): self.parameters[i].set_active(info.active) def _change_parameter_name(self, current_name, new_name): for par in self.parameters.values(): if par.name == new_name: return for par in self.parameters.values(): if current_name == par.name: par.change_name(new_name) def _get_parameter_name_matching_string(self, match_string): for par in self.parameters.values(): if match_string in par.name: return par.name def _check_index(self): if not self.cnv_info_object: raise exceptions.MissingAttribute('cnv_info_object') for info, cnv in zip(self.cnv_info_object.values(), self.parameters.values()): if 'depFM: Depth [true depth, m], lat' in info.name: continue if info.name not in cnv.name: print(info.name) print(cnv.name) raise exceptions.InvalidParameterIndex(f'Index stämmer inte i cnv för parameter: {info.name}') cnv.active = True # Här borde man kunna definiera sensor_index, dvs första kolumnen i self.cnv_column_info # den kommer automatiskt efter så som DatCnv.psa är inställd # Börjar med att kolla så det iaf är korrekt def _get_pressure_data(self): return self.parameters[self.col_pres].data def _get_depth_data(self): return self.parameters[self.col_depth].data def _get_sound_velocity_data(self): return self.parameters[self.col_sv].data def _get_density_data(self): if self.parameters[self.col_dens].active: return self.parameters[self.col_dens].data elif self.parameters[self.col_dens2].active: return self.parameters[self.col_dens2].data else: return [self.missing_value]*self.nr_data_lines def _get_calculated_true_depth(self): prdM_data = self._get_pressure_data() sigT_data = self._get_density_data() # Beräkning av truedepth # Ersätt depFM med true depth i headern # Start params dens_0 = (sigT_data[0] + 1000.) / 1000. # ' start densitet p_0 = 0 depth = 0 true_depth = [] for q in range(len(prdM_data)): if sigT_data[q] != self.missing_value: # decibar till bar (dblRPres) rpres = prdM_data[q] * 10. # Beräknar densitet (dblDens) dens = (sigT_data[q] + 1000.) / 1000. # Beräknar delta djup (dblDDjup) ddepth = (rpres - p_0) / ((dens + dens_0) / 2. * self.g) # Summerar alla djup och använd framräknande trycket i nästa loop # Om det är första (ej helt relevant kanske) eller sista värdet dela med två enl. trappetsmetoden dens_0 = dens # if q == 0 or q == (len(prdM)-1): # Depth = Depth + DDepth / 2. # else: # Depth = Depth + DDepth # Ändrad av Örjan 2015-02-10 /2. första och sista djupet borttaget. depth = depth + ddepth # Spara framräknat djup för nästa loop p_0 = rpres # Sparar undan TrueDepth true_depth.append(depth) else: true_depth.append(self.missing_value) return true_depth def _get_mean_sound_velocity(self): svCM_data = self._get_sound_velocity_data() return sum(svCM_data) / len(svCM_data) def _modify_header_information(self): svMean = self._get_mean_sound_velocity() now = time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()) after_str = '** Ship' rows_to_insert = [f'** Average sound velocity: {str("%6.2f" % svMean)} m/s', f'** True-depth calculation {now}', # f'** CTD Python Module SMHI /ver 3-12/ feb 2012', # f'** Python Module: ctd_processing, nov 2020' # f'** LIMS Job: {self.year}{self.ctry}{self.ship}-{self.serie}' ] for row in rows_to_insert: if 'True-depth calculation' in row: self.header.insert_row_after(row, after_str, ignore_if_string='True-depth calculation') else: self.header.insert_row_after(row, after_str) after_str = row def _modify_irradiance(self): self.header.append_to_row('par: PAR/Irradiance', ' [µE/(cm^2*s)]') def _modify_fluorescence(self): # Lägger till Chl-a på de fluorometrar som har beteckning som börjar på FLNTURT par_name_1 = self._get_parameter_name_matching_string('Fluorescence, WET Labs ECO-AFL/FL [mg/m^3]') fluo_index_1 = self.header.get_row_index_for_matching_string('Fluorescence, WET Labs ECO-AFL/FL [mg/m^3]') fluo_xml_index_1 = self.header.get_row_index_for_matching_string('Fluorometer, WET Labs ECO-AFL/FL -->') serial_index_1 = self.header.get_row_index_for_matching_string('<SerialNumber>FLNTURT', as_list=True) par_name_2 = self._get_parameter_name_matching_string('Fluorescence, WET Labs ECO-AFL/FL, 2 [mg/m^3]') fluo_index_2 = self.header.get_row_index_for_matching_string('Fluorescence, WET Labs ECO-AFL/FL, 2 [mg/m^3]') fluo_xml_index_2 = self.header.get_row_index_for_matching_string('Fluorometer, WET Labs ECO-AFL/FL, 2 -->') serial_index_2 = self.header.get_row_index_for_matching_string('<SerialNumber>FLPCRTD', as_list=True) if fluo_xml_index_1 and (fluo_xml_index_1 + 2) in serial_index_1: self.header.replace_string_at_index(fluo_xml_index_1, 'Fluorometer', 'Chl-a Fluorometer') self.header.replace_string_at_index(fluo_index_1, 'Fluorescence', 'Chl-a Fluorescence') new_par_name_1 = par_name_1.replace('Fluorescence', 'Chl-a Fluorescence') self._change_parameter_name(par_name_1, new_par_name_1) if fluo_xml_index_2 and (fluo_xml_index_2 + 2) in serial_index_2: self.header.replace_string_at_index(fluo_xml_index_2, 'Fluorometer', 'Phycocyanin Fluorometer') self.header.replace_string_at_index(fluo_index_2, 'Fluorescence', 'Phycocyanin Fluorescence') new_par_name_2 = par_name_2.replace('Fluorescence', 'Phycocyanin Fluorescence') self._change_parameter_name(par_name_2, new_par_name_2) def _modify_depth(self): index = self.header.get_row_index_for_matching_string('depFM: Depth [fresh water, m]') self.header.replace_string_at_index(index, 'fresh water', 'true depth') par_name = self._get_parameter_name_matching_string('depFM: Depth [fresh water, m]') if par_name: new_par_name = par_name.replace('fresh water', 'true depth') self._change_parameter_name(par_name, new_par_name) span_depth_index = self.header.get_row_index_for_matching_string(f'# span {self.col_depth}') true_depth_values = self._get_calculated_true_depth() if int(self.col_depth) < 10: new_line = '# span %s =%11.3f,%11.3f%7s' % (self.col_depth, min(true_depth_values), max(true_depth_values), '') else: new_line = '# span %s =%11.3f,%11.3f%6s' % (self.col_depth, min(true_depth_values), max(true_depth_values), '') self.header.replace_row(span_depth_index, new_line) # Ersätt data i fresh water kolumnen med true depth avrundar true depth till tre decimaler new_depth_data = [] for value in true_depth_values: if value == self.missing_value: new_depth_data.append(self.missing_value_str) else: new_depth_data.append(round(value, 3)) self.parameters[self.col_depth].data = new_depth_data def _modify_span(self): # Justera span för de parametrar som har flaggats som bad for index, info in self.cnv_info_object.items(): if info.active: continue span_index = self.header.get_row_index_for_matching_string(f'# span {info.index}') if int(info.index) < 10: new_line = f'# span {span_index} = {self.missing_value_str}, {self.missing_value_str}{" ": >7}' else: new_line = f'# span {span_index} = {self.missing_value_str}, {self.missing_value_str}{" ": >6}' self.header.replace_row(span_index, new_line)
import unittest from pycoin.cmds import ku from pycoin.coins.bitcoin.networks import BitcoinMainnet from .ToolTest import ToolTest # BRAIN DAMAGE Key = BitcoinMainnet.ui._key_class class KuTest(ToolTest): @classmethod def setUpClass(cls): cls.parser = ku.create_parser() cls.tool_name = "ku" def test_ku_create(self): output = self.launch_tool("ku create -w").split("\n") bip32 = BitcoinMainnet.ui.parse(output[0]) bip32_as_text = bip32.hwif(as_private=True) self.assertEqual(output[0], bip32_as_text) def main(): unittest.main() if __name__ == "__main__": main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import unittest # Add the repo root to the beginning of the Python module path. # Even if the user has installed family_tree locally, the version # next to the test file will be used. sys.path = [os.path.join(os.path.dirname(__file__), '..')] + sys.path from source import family_tree as ft class FamilyTreeTest(unittest.TestCase): def setUp(self): self.family = ft.Family() def testMakeEmptyFamily(self): self.assertEqual(0, self.family.Size()) def testAddOnePerson(self): self.family.Person('John Smith') self.assertEqual(1, self.family.Size()) def testAddOnePersonWithGender(self): p = self.family.Person('John Smith', gender='M') self.assertEqual('M', p.Gender()) def testAddOnePersonWithAttributes(self): p = self.family.Person('John Smith', birth='1942', death='?') self.assertIsNone(p.Gender()) # Gender is unknown yet. self.assertEqual('1942', p.Birth()) self.assertIsNone(p.Death()) self.assertTrue(p.Deceased()) # We know he's deceased as the death is '?'. self.assertEqual(1, self.family.Size()) def testAddPersonWithWife(self): p = self.family.Person('John Smith', wife='Ada Smith') self.assertEqual('M', p.Gender()) # Inferred. q = self.family.Person('Ada Smith') self.assertEqual('F', q.Gender()) # Inferred. wives = p.Wives() self.assertEqual(1, len(wives)) self.assertEqual(q, wives[0]) self.assertEqual(0, len(p.Husbands())) husbands = q.Husbands() self.assertEqual(1, len(husbands)) self.assertEqual(p, husbands[0]) self.assertEqual(0, len(q.Wives())) self.assertEqual(2, self.family.Size()) def testAddPersonWithTwoWives(self): p = self.family.Person('John Smith', wife=('Ada Smith', 'Katty Lam')) self.assertEqual('M', p.Gender()) # Inferred. q = self.family.Person('Ada Smith') self.assertEqual('F', q.Gender()) # Inferred. r = self.family.Person('Katty Lam') self.assertEqual('F', q.Gender()) # Inferred. wives = p.Wives() self.assertEqual(2, len(wives)) self.assertEqual(q, wives[0]) self.assertEqual(r, wives[1]) self.assertEqual(0, len(p.Husbands())) husbands = q.Husbands() self.assertEqual(1, len(husbands)) self.assertEqual(p, husbands[0]) self.assertEqual(0, len(q.Wives())) husbands = r.Husbands() self.assertEqual(1, len(husbands)) self.assertEqual(p, husbands[0]) self.assertEqual(0, len(r.Wives())) self.assertEqual(3, self.family.Size()) def testAddPersonWithHusband(self): q = self.family.Person('Ada Smith', husband='John Smith') self.assertEqual('F', q.Gender()) # Inferred. p = self.family.Person('John Smith') self.assertEqual('M', p.Gender()) # Inferred. wives = p.Wives() self.assertEqual(1, len(wives)) self.assertEqual(q, wives[0]) self.assertEqual(0, len(p.Husbands())) husbands = q.Husbands() self.assertEqual(1, len(husbands)) self.assertEqual(p, husbands[0]) self.assertEqual(0, len(q.Wives())) self.assertEqual(2, self.family.Size()) def testAddPersonWithTwoHusbands(self): p = self.family.Person('Ada Smith', husband=('John Smith', 'Mike Jin')) self.assertEqual('F', p.Gender()) # Inferred. q = self.family.Person('John Smith') self.assertEqual('M', q.Gender()) # Inferred. r = self.family.Person('Mike Jin') self.assertEqual('M', q.Gender()) # Inferred. husbands = p.Husbands() self.assertEqual(2, len(husbands)) self.assertEqual(q, husbands[0]) self.assertEqual(r, husbands[1]) self.assertEqual(0, len(p.Wives())) wives = q.Wives() self.assertEqual(1, len(wives)) self.assertEqual(p, wives[0]) self.assertEqual(0, len(q.Husbands())) wives = r.Wives() self.assertEqual(1, len(wives)) self.assertEqual(p, wives[0]) self.assertEqual(0, len(r.Husbands())) self.assertEqual(3, self.family.Size()) def testAddPersonWithFather(self): p = self.family.Person('John Smith', father='Adam Smith') q = self.family.Person('Adam Smith') self.assertEqual(q, p.Father()) self.assertIsNone(p.Mother()) self.assertEqual(0, len(p.Children())) self.assertEqual('M', q.Gender()) self.assertIsNone(q.Father()) self.assertIsNone(q.Mother()) children = q.Children() self.assertEqual(1, len(children)) self.assertEqual(p, children[0]) self.assertEqual(2, self.family.Size()) def testAddPersonWithMother(self): p = self.family.Person('John Smith', mother='Alice Smith') q = self.family.Person('Alice Smith') self.assertEqual(q, p.Mother()) self.assertIsNone(p.Father()) self.assertEqual(0, len(p.Children())) self.assertEqual('F', q.Gender()) self.assertIsNone(q.Father()) self.assertIsNone(q.Mother()) children = q.Children() self.assertEqual(1, len(children)) self.assertEqual(p, children[0]) self.assertEqual(2, self.family.Size()) def testSortEmptyFamily(self): self.assertEqual([[]], self.family.Sort()) def testSortFamilyOfOne(self): p = self.family.Person('Adam Smith') self.assertEqual([[p]], self.family.Sort()) self.assertEqual(0, p.Generation()) def testSortCouple(self): p = self.family.Person('Adam Smith', wife='Jan Smith') q = self.family.Person('Jan Smith') self.assertEqual([[p, q]], self.family.Sort()) self.assertEqual(0, p.Generation()) self.assertEqual(0, q.Generation()) def testSortCoupleReverse(self): p = self.family.Person('Jan Smith', husband='Mike Smith') q = self.family.Person('Mike Smith') self.assertEqual([[q, p]], self.family.Sort()) self.assertEqual(0, p.Generation()) self.assertEqual(0, q.Generation()) def testSortFatherSon(self): p = self.family.Person('Adam Smith', father='Jim Smith') q = self.family.Person('Jim Smith') self.assertEqual([[q], [p]], self.family.Sort()) self.assertEqual(0, q.Generation()) self.assertEqual(1, p.Generation()) def testSortMultipleWives(self): w2 = self.family.Person('Mary Jones') w1 = self.family.Person('Jan Smith', husband='Mike Smith') h = self.family.Person('Mike Smith', wife='Mary Jones') self.assertEqual([[h, w1, w2]], self.family.Sort()) self.assertEqual(0, h.Generation()) self.assertEqual(0, w1.Generation()) self.assertEqual(0, w2.Generation()) def testDisplayName(self): h = self.family.Person('王 大明', wife='李幺妹') w = self.family.Person('李 幺妹', husband='王大明') self.assertEqual('王大明', h.ID()) self.assertEqual('王 大明', h.Name()) self.assertEqual('李幺妹', w.ID()) self.assertEqual('李 幺妹', w.Name()) self.assertEqual(2, self.family.Size()) if __name__ == '__main__': unittest.main()
"""Macro support for P65. P65 Macros are cached SequenceNodes with arguments set via .alias commands and prevented from escaping with .scope and .scend commands.""" import sys import Ophis.IR as IR import Ophis.CmdLine as Cmd import Ophis.Errors as Err macros = {} currentname = None currentbody = None def newMacro(name): "Start creating a new macro with the specified name." global currentname global currentbody global macros if currentname is not None: Err.log("Internal error! Nested macro attempt!") else: if name in macros: Err.log("Duplicate macro definition '%s'" % name) currentname = name currentbody = [] def registerNode(node): global currentbody currentbody.append(IR.Node(node.ppt, node.nodetype, *node.data)) def endMacro(): global currentname global currentbody global macros if currentname is None: Err.log("Internal error! Ended a non-existent macro!") else: macros[currentname] = currentbody currentname = None currentbody = None def expandMacro(ppt, name, arglist): global macros if name not in macros: Err.log("Undefined macro '%s'" % name) return IR.NullNode argexprs = [IR.Node(ppt, "Label", "_*%d" % i, arg) for (i, arg) in zip(xrange(1, sys.maxint), arglist)] bindexprs = [IR.Node(ppt, "Label", "_%d" % i, IR.LabelExpr("_*%d" % i)) for i in range(1, len(arglist)+1)] body = [IR.Node("%s->%s" % (ppt, node.ppt), node.nodetype, *node.data) for node in macros[name]] invocation = [IR.Node(ppt, "ScopeBegin")] + argexprs + [IR.Node(ppt, "ScopeBegin")] + bindexprs + body + [IR.Node(ppt, "ScopeEnd"), IR.Node(ppt, "ScopeEnd")] return IR.SequenceNode(ppt, invocation) def dump(): global macros for mac in macros: body = macros[mac] print "Macro: "+mac for node in body: print node print ""
#!/usr/bin/env python # # Copyright (c) 2018 [email protected] and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ## import os import unittest import yaml from mock import patch, call, Mock import dovetail.testcase as tcase __author__ = 'Stamatis Katsaounis <[email protected]>' class TestcaseTesting(unittest.TestCase): def setUp(self): test_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(test_path, 'test_testcase.yaml')) as f: self.testcase_yaml = yaml.safe_load(f) def tearDown(self): pass def teardown_method(self, method): tcase.Testcase.logger = None tcase.Testcase.validate_testcase_list = {} tcase.Testcase.testcase_list = {} tcase.Testsuite.testsuite_list = {} @patch('dovetail.testcase.dt_logger') def test_create_log(self, mock_logger): getlogger_obj = Mock() logger_obj = Mock() logger_obj.getLogger.return_value = getlogger_obj mock_logger.Logger.return_value = logger_obj tcase.Testcase.create_log() self.assertEqual(getlogger_obj, tcase.Testcase.logger) @patch('dovetail.testcase.Parser') def test_parse_cmd_no_lines(self, mock_parser): testcase = tcase.YardstickTestcase(self.testcase_yaml) cmds_list = ['cmd'] mock_parser.parse_cmd.return_value = None result = testcase.parse_cmd(cmds_list) mock_parser.parse_cmd.assert_called_once_with( 'cmd', testcase) self.assertEqual(False, result) @patch('dovetail.testcase.Parser') def test_parse_cmd(self, mock_parser): testcase = tcase.BottlenecksTestcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj cmds_list = ['cmd'] mock_parser.parse_cmd.return_value = 'cmd_lines' result = testcase.parse_cmd(cmds_list) mock_parser.parse_cmd.assert_called_once_with( 'cmd', testcase) logger_obj.debug.assert_called_once_with("cmds: ['cmd_lines']") self.assertEqual(['cmd_lines'], testcase.cmds) self.assertEqual(True, result) @patch('dovetail.testcase.dt_cfg') def test_prepare_cmd_no_cmds(self, mock_config): testcase = tcase.ShellTestcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj mock_config.dovetail_config = {} result = testcase.prepare_cmd('type') logger_obj.error.assert_called_once_with( 'Test case {} has no cmds.'.format(testcase.name())) self.assertEqual(False, result) @patch('dovetail.testcase.dt_cfg') @patch.object(tcase.Testcase, 'parse_cmd') def test_prepare_cmd_testcase_cmd(self, mock_parse, mock_config): testcase = tcase.ShellTestcase(self.testcase_yaml) testcase.testcase['validate']['cmds'] = ['cmd'] mock_config.dovetail_config = {} mock_parse.return_value = True result = testcase.prepare_cmd('type') mock_parse.assert_called_once_with(['cmd']) self.assertEqual(True, result) @patch('dovetail.testcase.dt_cfg') @patch.object(tcase.Testcase, 'parse_cmd') def test_prepare_cmd_config_cmd(self, mock_parse, mock_config): testcase = tcase.TestcaseFactory.create('yardstick', self.testcase_yaml) mock_config.dovetail_config = {'type': {'cmds': ['cmd']}} mock_parse.return_value = True result = testcase.prepare_cmd('type') mock_parse.assert_called_once_with(['cmd']) self.assertEqual(True, result) def test_str(self): testcase = tcase.OnapVtpTestcase(self.testcase_yaml) result = testcase.__str__() self.assertEqual(testcase.testcase, result) def test_objective(self): testcase = tcase.OnapVvpTestcase(self.testcase_yaml) testcase.testcase['objective'] = 'objective' result = testcase.objective() self.assertEqual('objective', result) @patch('dovetail.testcase.dt_utils') def test_sub_testcase(self, mock_utils): testcase = tcase.Testcase(self.testcase_yaml) mock_utils.get_value_from_dict.return_value = 'value' result = testcase.sub_testcase() mock_utils.get_value_from_dict.assert_called_once_with( 'report.sub_testcase_list', testcase.testcase) self.assertEqual('value', result) def test_sub_testcase_passed(self): testcase = tcase.Testcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj result = testcase.sub_testcase_passed('name', 'passed') self.assertEqual('passed', result) def test_validate_type(self): testcase = tcase.Testcase(self.testcase_yaml) result = testcase.validate_type() self.assertEqual('functest', result) def test_validate_testcase(self): testcase = tcase.Testcase(self.testcase_yaml) result = testcase.validate_testcase() self.assertEqual('tempest_smoke_serial', result) def test_portal_key_file(self): testcase = tcase.Testcase(self.testcase_yaml) result = testcase.portal_key_file() self.assertEqual('tempest_logs/tempest_smoke_serial.html', result) def test_vnf_type(self): testcase = tcase.OnapVtpTestcase(self.testcase_yaml) result = testcase.vnf_type() self.assertEqual('tosca', result) def test_passed(self): testcase = tcase.Testcase(self.testcase_yaml) result = testcase.passed('passed') self.assertEqual('passed', result) def test_set_get_results(self): testcase = tcase.Testcase(self.testcase_yaml) testcase.set_results('results') self.assertEqual('results', testcase.get_results()) def test_pre_condition_exists(self): testcase = tcase.Testcase(self.testcase_yaml) testcase.testcase['validate']['pre_condition'] = 'pre_condition' result = testcase.pre_condition() self.assertEqual('pre_condition', result) @patch.object(tcase.Testcase, 'pre_condition_cls') def test_pre_condition_not_exists(self, mock_pre_condition): testcase = tcase.Testcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj mock_pre_condition.return_value = False result = testcase.pre_condition() mock_pre_condition.assert_called_once_with('functest') logger_obj.debug.assert_called_once_with( 'Test case: {} pre_condition is empty.'.format(testcase.name())) self.assertEqual(False, result) def test_pre_copy_path(self): testcase = tcase.Testcase(self.testcase_yaml) testcase.testcase['validate']['pre_copy'] = {'key': 'value'} result = testcase.pre_copy_path('key') self.assertEqual('value', result) def test_pre_copy_path_error(self): testcase = tcase.Testcase(self.testcase_yaml) result = testcase.pre_copy_path('key') self.assertEqual(None, result) def test_post_condition_exists(self): testcase = tcase.Testcase(self.testcase_yaml) testcase.testcase['validate']['post_condition'] = 'post_condition' result = testcase.post_condition() self.assertEqual('post_condition', result) @patch.object(tcase.Testcase, 'post_condition_cls') def test_post_condition_not_exists(self, mock_post_condition): testcase = tcase.Testcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj mock_post_condition.return_value = False result = testcase.post_condition() mock_post_condition.assert_called_once_with('functest') logger_obj.debug.assert_called_once_with( 'Test case: {} post_condition is empty.'.format(testcase.name())) self.assertEqual(False, result) @patch('builtins.open') @patch('dovetail.testcase.os.path') @patch('dovetail.testcase.dt_cfg') @patch.object(tcase.Testcase, 'sub_testcase') def test_mk_src_file(self, mock_sub_testcase, mock_config, mock_path, mock_open): testcase = tcase.Testcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj mock_config.dovetail_config = {'result_dir': 'value'} sub_test = 'sub_test' file_path = 'file_path' mock_path.join.return_value = file_path mock_sub_testcase.return_value = [sub_test] file_obj = Mock() mock_open.return_value.__enter__.return_value = file_obj result = testcase.mk_src_file() mock_path.join.assert_called_once_with('value', 'tempest_custom.txt') mock_open.assert_called_once_with(file_path, 'w+') file_obj.write.assert_called_once_with(sub_test + '\n') logger_obj.debug.assert_called_once_with( 'Save test cases to {}'.format(file_path)) self.assertEqual(file_path, result) @patch('builtins.open') @patch('dovetail.testcase.os.path') @patch('dovetail.testcase.dt_cfg') @patch.object(tcase.Testcase, 'sub_testcase') def test_mk_src_file_exception(self, mock_sub_testcase, mock_config, mock_path, mock_open): testcase = tcase.Testcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj mock_config.dovetail_config = {'result_dir': 'value'} sub_test = 'sub_test' file_path = 'file_path' mock_path.join.return_value = file_path mock_sub_testcase.return_value = [sub_test] mock_open.return_value.__enter__.side_effect = Exception() result = testcase.mk_src_file() mock_path.join.assert_called_once_with('value', 'tempest_custom.txt') mock_open.assert_called_once_with(file_path, 'w+') logger_obj.exception('Failed to save: {}'.format(file_path)) self.assertEqual(None, result) @patch('dovetail.testcase.TestRunnerFactory') def test_run(self, mock_factory): testcase = tcase.Testcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj runner_obj = Mock() mock_factory.create.return_value = runner_obj error_msg = 'An error happened!' runner_obj.archive_logs.side_effect = AttributeError(error_msg) testcase.run() runner_obj.run.assert_called_once_with() runner_obj.archive_logs.assert_called_once_with() logger_obj.exception.assert_called_once_with( 'Test case: {} Exception: {}'.format(testcase.name, error_msg)) @patch('dovetail.testcase.dt_cfg') def test_pre_condition_cls(self, mock_config): mock_config.dovetail_config = {'type': {'pre_condition': 'value'}} result = tcase.Testcase.pre_condition_cls('type') self.assertEqual('value', result) @patch('dovetail.testcase.dt_cfg') def test_pre_condition_cls_key_error(self, mock_config): mock_config.dovetail_config = {} result = tcase.Testcase.pre_condition_cls('type') self.assertEqual(None, result) @patch('dovetail.testcase.dt_cfg') def test_post_condition_cls(self, mock_config): mock_config.dovetail_config = {'type': {'post_condition': 'value'}} result = tcase.Testcase.post_condition_cls('type') self.assertEqual('value', result) @patch('dovetail.testcase.dt_cfg') def test_post_condition_cls_key_error(self, mock_config): mock_config.dovetail_config = {} result = tcase.Testcase.post_condition_cls('type') self.assertEqual(None, result) def test_increase_retry(self): testcase = tcase.Testcase(self.testcase_yaml) tcase.Testcase.validate_testcase_list[ 'tempest_smoke_serial'] = {'retry': 0} for _ in range(0, 42): result = testcase.increase_retry() self.assertEqual(42, result) @patch('builtins.open') @patch('dovetail.testcase.yaml') @patch('dovetail.testcase.os') @patch('dovetail.testcase.TestcaseFactory') @patch('dovetail.testcase.constants') def test_load(self, mock_constants, mock_factory, mock_os, mock_yaml, mock_open): testcase = tcase.Testcase(self.testcase_yaml) mock_constants.TESTCASE_PATH = 'abs_path' mock_os.walk.return_value = [('root', ['dir'], ['file'])] mock_os.path.join.return_value = 'testcase_path' file_obj = Mock() mock_open.return_value.__enter__.return_value = file_obj yaml_dict = {'key': {'validate': {'type': 'value'}}} mock_yaml.safe_load.return_value = yaml_dict runner_obj = Mock() mock_factory.create.return_value = runner_obj testcase.load() mock_os.walk.assert_called_once_with('abs_path') mock_os.path.join.assert_called_with('root', 'file') mock_open.assert_called_once_with('testcase_path') mock_yaml.safe_load.assert_called_once_with(file_obj) mock_factory.create.assert_called_once_with('value', yaml_dict) self.assertEqual(runner_obj, tcase.Testcase.get('key')) @patch('builtins.open') @patch('dovetail.testcase.yaml') @patch('dovetail.testcase.os') @patch('dovetail.testcase.TestcaseFactory') @patch('dovetail.testcase.constants') def test_load_no_testcase(self, mock_constants, mock_factory, mock_os, mock_yaml, mock_open): logger_obj = Mock() tcase.Testcase.logger = logger_obj mock_constants.TESTCASE_PATH = 'abs_path' mock_os.walk.return_value = [('root', ['dir'], ['file'])] mock_os.path.join.return_value = 'testcase_path' file_obj = Mock() mock_open.return_value.__enter__.return_value = file_obj yaml_dict = {'key': {'validate': {'type': 'value'}}} mock_yaml.safe_load.return_value = yaml_dict mock_factory.create.return_value = None tcase.Testcase.load() mock_os.walk.assert_called_once_with('abs_path') mock_os.path.join.assert_called_with('root', 'file') mock_open.assert_called_once_with('testcase_path') mock_yaml.safe_load.assert_called_once_with(file_obj) mock_factory.create.assert_called_once_with('value', yaml_dict) logger_obj.error.assert_called_once_with( 'Failed to create test case: file') def test_get_none(self): self.assertEqual(None, tcase.Testcase.get('unknown')) def test_check_testarea_none(self): self.assertEqual((True, ['full']), tcase.Testcase.check_testarea(None)) @patch('dovetail.testcase.dt_cfg') def test_check_testarea_full(self, mock_config): self.assertEqual((True, ['full']), tcase.Testcase.check_testarea(['full'])) @patch('dovetail.testcase.dt_cfg') def test_check_testarea(self, mock_config): self.assertEqual((True, ['area']), tcase.Testcase.check_testarea(['area'])) def test_check_testcase_area(self): self.assertEqual(False, tcase.Testcase.check_testcase_area(None, None)) def test_check_testcase_area_full_or_in_testcase(self): self.assertEqual(True, tcase.Testcase.check_testcase_area(['full'], 'full')) def test_check_testcase_area_not_in_testcase_or_full(self): self.assertEqual(False, tcase.Testcase.check_testcase_area(['full'], 'half')) @patch('dovetail.testcase.dt_utils') def test_get_testcases_for_testsuite_no_testcases(self, mock_utils): mock_utils.get_value_from_dict.return_value = None result = tcase.Testcase.get_testcases_for_testsuite('suite', 'area') mock_utils.get_value_from_dict.assert_has_calls([ call('testcases_list', 'suite'), call('mandatory', None), call('optional', None)]) self.assertEqual([], result) @patch('dovetail.testcase.dt_cfg') @patch('dovetail.testcase.dt_utils') def test_get_testcases_for_testsuite_no_selected_testcases(self, mock_utils, mock_config): logger_obj = Mock() tcase.Testcase.logger = logger_obj testcases_obj = Mock() mock_utils.get_value_from_dict.side_effect = [ testcases_obj, None, None] mock_config.dovetail_config = { 'mandatory': True, 'optional': True } testsuite = {'name': 'test_name'} result = tcase.Testcase.get_testcases_for_testsuite(testsuite, 'area') mock_utils.get_value_from_dict.assert_has_calls([ call('testcases_list', testsuite), call('mandatory', testcases_obj), call('optional', testcases_obj)]) logger_obj.error.assert_has_calls([ call('There is no mandatory test case in test suite {}' .format(testsuite['name'])), call('There is no optional test case in test suite {}' .format(testsuite['name']))]) self.assertEqual(None, result) @patch('dovetail.testcase.dt_cfg') @patch('dovetail.testcase.dt_utils') @patch.object(tcase.Testcase, 'check_testcase_area') def test_get_testcases_for_testsuite(self, mock_check, mock_utils, mock_config): logger_obj = Mock() tcase.Testcase.logger = logger_obj testcases_obj = Mock() mock_utils.get_value_from_dict.side_effect = [ testcases_obj, ['mandatory'], ['optional']] mock_config.dovetail_config = { 'mandatory': True, 'optional': True } mock_check.return_value = True testsuite = {'name': 'test_name'} testarea = ['area'] mandatory_obj = Mock() tcase.Testcase.testcase_list['mandatory'] = mandatory_obj optional_obj = Mock() tcase.Testcase.testcase_list['optional'] = optional_obj result = tcase.Testcase.get_testcases_for_testsuite( testsuite, testarea) mock_utils.get_value_from_dict.assert_has_calls([ call('testcases_list', testsuite), call('mandatory', testcases_obj), call('optional', testcases_obj)]) mock_check.assert_has_calls([ call('mandatory', 'area'), call('optional', 'area')]) self.assertEqual(['mandatory', 'optional'], result) self.assertEqual( True, tcase.Testcase.testcase_list['mandatory'].is_mandatory) self.assertEqual( False, tcase.Testcase.testcase_list['optional'].is_mandatory) @patch('dovetail.testcase.dt_cfg') @patch('dovetail.testcase.dt_utils') @patch.object(tcase.Testcase, 'check_testcase_area') def test_get_testcases_for_testsuite_no_conf(self, mock_check, mock_utils, mock_config): logger_obj = Mock() tcase.Testcase.logger = logger_obj testcases_obj = Mock() mock_utils.get_value_from_dict.side_effect = [ testcases_obj, ['mandatory'], ['optional']] mock_config.dovetail_config = { 'mandatory': False, 'optional': False } mock_check.return_value = True testsuite = {'name': 'test_name'} testarea = ['area'] mandatory_obj = Mock() tcase.Testcase.testcase_list['mandatory'] = mandatory_obj optional_obj = Mock() tcase.Testcase.testcase_list['optional'] = optional_obj result = tcase.Testcase.get_testcases_for_testsuite(testsuite, testarea) mock_utils.get_value_from_dict.assert_has_calls([ call('testcases_list', testsuite), call('mandatory', testcases_obj), call('optional', testcases_obj)]) mock_check.assert_has_calls([ call('mandatory', 'area'), call('optional', 'area')]) self.assertEqual(['mandatory', 'optional'], result) self.assertEqual(True, tcase.Testcase.testcase_list['mandatory'] .is_mandatory) self.assertEqual(False, tcase.Testcase.testcase_list['optional'].is_mandatory) @patch.object(tcase.Testcase, 'prepare_cmd') def test_functest_case_prepare_cmd_false(self, mock_prepare): testcase = tcase.FunctestTestcase(self.testcase_yaml) mock_prepare.return_value = False result = testcase.prepare_cmd('type') mock_prepare.assert_called_once_with('type') self.assertEqual(False, result) @patch('dovetail.testcase.os.path') @patch('dovetail.testcase.dt_cfg') @patch.object(tcase.Testcase, 'prepare_cmd') def test_functest_case_prepare_cmd(self, mock_prepare, mock_config, mock_path): testcase = tcase.FunctestTestcase(self.testcase_yaml) logger_obj = Mock() testcase.logger = logger_obj mock_prepare.return_value = True mock_config.dovetail_config = { 'no_api_validation': True, 'functest': {'patches_dir': 'value'}} mock_path.join.return_value = 'patch_cmd' result = testcase.prepare_cmd('type') mock_path.join.assert_called_once_with( 'value', 'functest', 'disable-api-validation', 'apply.sh') logger_obj.debug.assert_called_once_with( 'Updated list of commands for test run with ' 'disabled API response validation: {}' .format(testcase.cmds)) self.assertEqual(['patch_cmd'], testcase.cmds) self.assertEqual(True, result) def test_testfactory_error(self): self.assertEqual(None, tcase.TestcaseFactory.create('unknown', self.testcase_yaml)) def test_testfactory_k8s(self): k8s_testcase = tcase.TestcaseFactory.create('functest-k8s', self.testcase_yaml) self.assertEqual('functest-k8s', k8s_testcase.type) @patch('dovetail.testcase.dt_logger') def test_testsuite_create_log(self, mock_logger): getlogger_obj = Mock() logger_obj = Mock() logger_obj.getLogger.return_value = getlogger_obj mock_logger.Logger.return_value = logger_obj tcase.Testsuite.create_log() self.assertEqual(getlogger_obj, tcase.Testsuite.logger) def test_testsuite_get_test(self): suite = tcase.Testsuite('suite') suite.testcase_list['testcase'] = 'value' result = suite.get_test('testcase') self.assertEqual('value', result) def test_testsuite_get_test_not_exists(self): suite = tcase.Testsuite('suite') result = suite.get_test('testcase') self.assertEqual(None, result) @patch('builtins.open') @patch('dovetail.testcase.yaml') @patch('dovetail.testcase.os') @patch('dovetail.testcase.constants') def test_testsuite_load(self, mock_constants, mock_os, mock_yaml, mock_open): mock_constants.COMPLIANCE_PATH = 'abs_path' mock_os.walk.return_value = [('root', ['dir'], ['file'])] mock_os.path.join.return_value = 'file_path' mock_yaml.safe_load.return_value = {'testsuite': 'value'} file_obj = Mock() mock_open.return_value.__enter__.return_value = file_obj tcase.Testsuite.load() mock_os.walk.assert_called_once_with('abs_path') mock_os.path.join.assert_called_with('root', 'file') mock_open.assert_called_once_with('file_path') mock_yaml.safe_load.assert_called_once_with(file_obj) self.assertEqual({'testsuite': 'value'}, tcase.Testsuite.testsuite_list) def test_testsuite_get_none(self): self.assertEqual(None, tcase.Testsuite.get('unknown')) def test_testsuite_get(self): tcase.Testsuite.testsuite_list.update({'key': 'value'}) self.assertEqual('value', tcase.Testsuite.get('key')) def test_testsuite_get_all(self): tcase.Testsuite.testsuite_list.update({'key': 'value'}) self.assertEqual({'key': 'value'}, tcase.Testsuite.get_all())
"""Base class for undirected graphs. The Graph class allows any hashable object as a node and can associate key/value attribute pairs with each undirected edge. Self-loops are allowed but multiple edges are not (see MultiGraph). For directed graphs see DiGraph and MultiDiGraph. """ # Copyright (C) 2004-2011 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. from copy import deepcopy import networkx as nx from networkx.exception import NetworkXError import networkx.convert as convert __author__ = """\n""".join(['Aric Hagberg ([email protected])', 'Pieter Swart ([email protected])', 'Dan Schult([email protected])']) class Graph(object): """ Base class for undirected graphs. A Graph stores nodes and edges with optional data, or attributes. Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. Parameters ---------- data : input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- DiGraph MultiGraph MultiDiGraph Examples -------- Create an empty graph structure (a "null graph") with no nodes and no edges. >>> G = nx.Graph() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node(1) Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.Graph() >>> H.add_path([0,1,2,3,4,5,6,7,8,9]) >>> G.add_nodes_from(H) In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. >>> G.add_node(H) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge(1, 2) a list of edges, >>> G.add_edges_from([(1,2),(1,3)]) or a collection of edges, >>> G.add_edges_from(H.edges()) If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. >>> G = nx.Graph(day="Friday") >>> G.graph {'day': 'Friday'} Add node attributes using add_node(), add_nodes_from() or G.node >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> G.nodes(data=True) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. >>> G.add_edge(1, 2, weight=4.7 ) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2]['weight'] = 4.7 >>> G.edge[1][2]['weight'] = 4 **Shortcuts:** Many common graph features allow python syntax to speed reporting. >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient. >>> for n,nbrsdict in G.adjacency_iter(): ... for nbr,eattr in nbrsdict.items(): ... if 'weight' in eattr: ... (n,nbr,eattr['weight']) (1, 2, 4) (2, 1, 4) (2, 3, 8) (3, 2, 8) >>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ] [(1, 2, 4), (2, 3, 8)] **Reporting:** Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. """ def __init__(self, data=None, **attr): """Initialize a graph with edges, name, graph attributes. Parameters ---------- data : input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. name : string, optional (default='') An optional name for the graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name='my graph') >>> e = [(1,2),(2,3),(3,4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G=nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} """ self.graph = {} # dictionary for graph attributes self.node = {} # empty node dict (created before convert) self.adj = {} # empty adjacency dict # attempt to load graph with data if data is not None: convert.to_networkx_graph(data,create_using=self) # load graph attributes (must be after convert) self.graph.update(attr) self.edge = self.adj @property def name(self): return self.graph.get('name','') @name.setter def name(self, s): self.graph['name']=s def __str__(self): """Return the graph name. Returns ------- name : string The name of the graph. Examples -------- >>> G = nx.Graph(name='foo') >>> str(G) 'foo' """ return self.name def __iter__(self): """Iterate over the nodes. Use the expression 'for n in G'. Returns ------- niter : iterator An iterator over all nodes in the graph. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) """ return iter(self.node) def __contains__(self,n): """Return True if n is a node, False otherwise. Use the expression 'n in G'. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> 1 in G True """ try: return n in self.node except TypeError: return False def __len__(self): """Return the number of nodes. Use the expression 'len(G)'. Returns ------- nnodes : int The number of nodes in the graph. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> len(G) 4 """ return len(self.node) def __getitem__(self, n): """Return a dict of neighbors of node n. Use the expression 'G[n]'. Parameters ---------- n : node A node in the graph. Returns ------- adj_dict : dictionary The adjacency dictionary for nodes connected to n. Notes ----- G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0] {1: {}} """ return self.adj[n] def add_node(self, n, attr_dict=None, **attr): """Add a single node n and update node attributes. Parameters ---------- n : node A node can be any hashable Python object except None. attr_dict : dictionary, optional (default= no attributes) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. attr : keyword arguments, optional Set or change attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ # set up attribute dict if attr_dict is None: attr_dict=attr else: try: attr_dict.update(attr) except AttributeError: raise NetworkXError(\ "The attr_dict argument must be a dictionary.") if n not in self.node: self.adj[n] = {} self.node[n] = attr_dict else: # update attr even if node already exists self.node[n].update(attr_dict) def add_nodes_from(self, nodes, **attr): """Add multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally. See Also -------- add_node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 """ for n in nodes: try: if n not in self.node: self.adj[n] = {} self.node[n] = attr.copy() else: self.node[n].update(attr) except TypeError: nn,ndict = n if nn not in self.node: self.adj[nn] = {} newdict = attr.copy() newdict.update(ndict) self.node[nn] = newdict else: olddict = self.node[nn] olddict.update(attr) olddict.update(ndict) def remove_node(self,n): """Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. Parameters ---------- n : node A node in the graph Raises ------- NetworkXError If n is not in the graph. See Also -------- remove_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.edges() [(0, 1), (1, 2)] >>> G.remove_node(1) >>> G.edges() [] """ adj = self.adj try: nbrs = list(adj[n].keys()) # keys handles self-loops (allow mutation later) del self.node[n] except KeyError: # NetworkXError if n not in self raise NetworkXError("The node %s is not in the graph."%(n,)) for u in nbrs: del adj[u][n] # remove all edges n-u in graph del adj[n] # now remove node def remove_nodes_from(self, nodes): """Remove multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. See Also -------- remove_node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> e = G.nodes() >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> G.nodes() [] """ adj = self.adj for n in nodes: try: del self.node[n] for u in list(adj[n].keys()): # keys() handles self-loops del adj[u][n] #(allows mutation of dict in loop) del adj[n] except KeyError: pass def nodes_iter(self, data=False): """Return an iterator over the nodes. Parameters ---------- data : boolean, optional (default=False) If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary Returns ------- niter : iterator An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary) Notes ----- If the node data is not required it is simpler and equivalent to use the expression 'for n in G'. >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> [d for n,d in G.nodes_iter(data=True)] [{}, {}, {}] """ if data: return iter(self.node.items()) return iter(self.node) def nodes(self, data=False): """Return a list of the nodes in the graph. Parameters ---------- data : boolean, optional (default=False) If False return a list of nodes. If True return a two-tuple of node and node data dictionary Returns ------- nlist : list A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary). Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.nodes() [0, 1, 2] >>> G.add_node(1, time='5pm') >>> G.nodes(data=True) [(0, {}), (1, {'time': '5pm'}), (2, {})] """ return list(self.nodes_iter(data=data)) def number_of_nodes(self): """Return the number of nodes in the graph. Returns ------- nnodes : int The number of nodes in the graph. See Also -------- order, __len__ which are identical Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> len(G) 3 """ return len(self.node) def order(self): """Return the number of nodes in the graph. Returns ------- nnodes : int The number of nodes in the graph. See Also -------- number_of_nodes, __len__ which are identical """ return len(self.node) def has_node(self, n): """Return True if the graph contains the node n. Parameters ---------- n : node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.has_node(0) True It is more readable and simpler to use >>> 0 in G True """ try: return n in self.node except TypeError: return False def add_edge(self, u, v, attr_dict=None, **attr): """Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below. Parameters ---------- u,v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr_dict : dictionary, optional (default= no attributes) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'. Examples -------- The following all add the edge e=(1,2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from( [(1,2)] ) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) """ # set up attribute dictionary if attr_dict is None: attr_dict=attr else: try: attr_dict.update(attr) except AttributeError: raise NetworkXError(\ "The attr_dict argument must be a dictionary.") # add nodes if u not in self.node: self.adj[u] = {} self.node[u] = {} if v not in self.node: self.adj[v] = {} self.node[v] = {} # add the edge datadict=self.adj[u].get(v,{}) datadict.update(attr_dict) self.adj[u][v] = datadict self.adj[v][u] = datadict def add_edges_from(self, ebunch, attr_dict=None, **attr): """Add all the edges in ebunch. Parameters ---------- ebunch : container of edges Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data. attr_dict : dictionary, optional (default= no attributes) Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges as a tuple take precedence over attributes specified generally. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') """ # set up attribute dict if attr_dict is None: attr_dict=attr else: try: attr_dict.update(attr) except AttributeError: raise NetworkXError(\ "The attr_dict argument must be a dictionary.") # process ebunch for e in ebunch: ne=len(e) if ne==3: u,v,dd = e elif ne==2: u,v = e dd = {} else: raise NetworkXError(\ "Edge tuple %s must be a 2-tuple or 3-tuple."%(e,)) if u not in self.node: self.adj[u] = {} self.node[u] = {} if v not in self.node: self.adj[v] = {} self.node[v] = {} datadict=self.adj[u].get(v,{}) datadict.update(attr_dict) datadict.update(dd) self.adj[u][v] = datadict self.adj[v][u] = datadict def add_weighted_edges_from(self, ebunch, weight='weight', **attr): """Add all the edges in ebunch as weighted edges with specified weights. Parameters ---------- ebunch : container of edges Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. weight : string, optional (default= 'weight') The attribute name for the edge weights to be added. attr : keyword arguments, optional (default= no attributes) Edge attributes to add/update for all edges. See Also -------- add_edge : add a single edge add_edges_from : add multiple edges Notes ----- Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) """ self.add_edges_from(((u,v,{weight:d}) for u,v,d in ebunch),**attr) def remove_edge(self, u, v): """Remove the edge between u and v. Parameters ---------- u,v: nodes Remove the edge between nodes u and v. Raises ------ NetworkXError If there is not an edge between u and v. See Also -------- remove_edges_from : remove a collection of edges Examples -------- >>> G = nx.Graph() # or DiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2,3,{'weight':7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple """ try: del self.adj[u][v] if u != v: # self-loop needs only one entry removed del self.adj[v][u] except KeyError: raise NetworkXError("The edge %s-%s is not in the graph"%(u,v)) def remove_edges_from(self, ebunch): """Remove all edges specified in ebunch. Parameters ---------- ebunch: list or container of edge tuples Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) edge between u and v. - 3-tuples (u,v,k) where k is ignored. See Also -------- remove_edge : remove a single edge Notes ----- Will fail silently if an edge in ebunch is not in the graph. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) """ adj=self.adj for e in ebunch: u,v = e[:2] # ignore edge data if present if u in adj and v in adj[u]: del adj[u][v] if u != v: # self loop needs only one entry removed del adj[v][u] def has_edge(self, u, v): """Return True if the edge (u,v) is in the graph. Parameters ---------- u,v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. Returns ------- edge_ind : bool True if edge is in the graph, False otherwise. Examples -------- Can be called either using two nodes u,v or edge tuple (u,v) >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> e = (0,1,{'weight':7}) >>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary) True The following syntax are all equivalent: >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True """ try: return v in self.adj[u] except KeyError: return False def neighbors(self, n): """Return a list of the nodes connected to the node n. Parameters ---------- n : node A node in the graph Returns ------- nlist : list A list of nodes that are adjacent to n. Raises ------ NetworkXError If the node n is not in the graph. Notes ----- It is usually more convenient (and faster) to access the adjacency dictionary as G[n]: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=7) >>> G['a'] {'b': {'weight': 7}} Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.neighbors(0) [1] """ try: return list(self.adj[n]) except KeyError: raise NetworkXError("The node %s is not in the graph."%(n,)) def neighbors_iter(self, n): """Return an iterator over all neighbors of node n. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [n for n in G.neighbors_iter(0)] [1] Notes ----- It is faster to use the idiom "in G[0]", e.g. >>> G = nx.path_graph(4) >>> [n for n in G[0]] [1] """ try: return iter(self.adj[n]) except KeyError: raise NetworkXError("The node %s is not in the graph."%(n,)) def edges(self, nbunch=None, data=False): """Return a list of edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data : bool, optional (default=False) Return two tuples (u,v) (False) or three-tuples (u,v,data) (True). Returns -------- edge_list: list of edge tuples Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified. See Also -------- edges_iter : return an iterator over the edges Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.edges() [(0, 1), (1, 2), (2, 3)] >>> G.edges(data=True) # default edge data is {} (empty dictionary) [(0, 1, {}), (1, 2, {}), (2, 3, {})] >>> G.edges([0,3]) [(0, 1), (3, 2)] >>> G.edges(0) [(0, 1)] """ return list(self.edges_iter(nbunch, data)) def edges_iter(self, nbunch=None, data=False): """Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data : bool, optional (default=False) If True, return edge attribute dict in 3-tuple (u,v,data). Returns ------- edge_iter : iterator An iterator of (u,v) or (u,v,d) tuples of edges. See Also -------- edges : return a list of edges Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. Examples -------- >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1,2,3]) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {})] >>> list(G.edges_iter([0,3])) [(0, 1), (3, 2)] >>> list(G.edges_iter(0)) [(0, 1)] """ seen={} # helper dict to keep track of multiply stored edges if nbunch is None: nodes_nbrs = self.adj.items() else: nodes_nbrs=((n,self.adj[n]) for n in self.nbunch_iter(nbunch)) if data: for n,nbrs in nodes_nbrs: for nbr,data in nbrs.items(): if nbr not in seen: yield (n,nbr,data) seen[n]=1 else: for n,nbrs in nodes_nbrs: for nbr in nbrs: if nbr not in seen: yield (n,nbr) seen[n] = 1 del seen def get_edge_data(self, u, v, default=None): """Return the attribute dictionary associated with edge (u,v). Parameters ---------- u,v : nodes default: any Python object (default=None) Value to return if the edge (u,v) is not found. Returns ------- edge_dict : dictionary The edge attribute dictionary. Notes ----- It is faster to use G[u][v]. >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0][1] {} Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, >>> G[0][1]['weight'] = 7 >>> G[0][1]['weight'] 7 >>> G[1][0]['weight'] 7 Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.get_edge_data(0,1) # default edge data is {} {} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 """ try: return self.adj[u][v] except KeyError: return default def adjacency_list(self): """Return an adjacency list representation of the graph. The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included. Returns ------- adj_list : lists of lists The adjacency structure of the graph as a list of lists. See Also -------- adjacency_iter Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.adjacency_list() # in order given by G.nodes() [[1], [0, 2], [1, 3], [2]] """ return list(map(list,iter(self.adj.values()))) def adjacency_iter(self): """Return an iterator of (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. Returns ------- adj_iter : iterator An iterator of (node, adjacency dictionary) for all nodes in the graph. See Also -------- adjacency_list Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] """ return iter(self.adj.items()) def degree(self, nbunch=None, weight=None): """Return the degree of a node or nodes. The node degree is the number of edges adjacent to that node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd : dictionary, or number A dictionary with nodes as keys and degree as values or a number if a single node is specified. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.degree(0) 1 >>> G.degree([0,1]) {0: 1, 1: 2} >>> list(G.degree([0,1]).values()) [1, 2] """ if nbunch in self: # return a single node return next(self.degree_iter(nbunch,weight))[1] else: # return a dict return dict(self.degree_iter(nbunch,weight)) def degree_iter(self, nbunch=None, weight=None): """Return an iterator for (node, degree). The node degree is the number of edges adjacent to the node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, degree). See Also -------- degree Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> list(G.degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.degree_iter([0,1])) [(0, 1), (1, 2)] """ if nbunch is None: nodes_nbrs = self.adj.items() else: nodes_nbrs=((n,self.adj[n]) for n in self.nbunch_iter(nbunch)) if weight is None: for n,nbrs in nodes_nbrs: yield (n,len(nbrs)+(n in nbrs)) # return tuple (n,degree) else: # edge weighted graph - degree is sum of nbr edge weights for n,nbrs in nodes_nbrs: yield (n, sum((nbrs[nbr].get(weight,1) for nbr in nbrs)) + (n in nbrs and nbrs[n].get(weight,1))) def clear(self): """Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.clear() >>> G.nodes() [] >>> G.edges() [] """ self.name = '' self.adj.clear() self.node.clear() self.graph.clear() def copy(self): """Return a copy of the graph. Returns ------- G : Graph A copy of the graph. See Also -------- to_directed: return a directed copy of the graph. Notes ----- This makes a complete copy of the graph including all of the node or edge attributes. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.copy() """ return deepcopy(self) def is_multigraph(self): """Return True if graph is a multigraph, False otherwise.""" return False def is_directed(self): """Return True if graph is directed, False otherwise.""" return False def to_directed(self): """Return a directed representation of the graph. Returns ------- G : DiGraph A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data). Notes ----- This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Examples -------- >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] If already directed, return a (deep) copy >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)] """ from networkx import DiGraph G=DiGraph() G.name=self.name G.add_nodes_from(self) G.add_edges_from( ((u,v,deepcopy(data)) for u,nbrs in self.adjacency_iter() for v,data in nbrs.items()) ) G.graph=deepcopy(self.graph) G.node=deepcopy(self.node) return G def to_undirected(self): """Return an undirected copy of the graph. Returns ------- G : Graph/MultiGraph A deepcopy of the graph. See Also -------- copy, add_edge, add_edges_from Notes ----- This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Examples -------- >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> G2.edges() [(0, 1)] """ return deepcopy(self) def subgraph(self, nbunch): """Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters ---------- nbunch : list, iterable A container of nodes which will be iterated through once. Returns ------- G : Graph A subgraph of the graph with the same edge attributes. Notes ----- The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n not in set(nbunch)]) Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.subgraph([0,1,2]) >>> H.edges() [(0, 1), (1, 2)] """ bunch =self.nbunch_iter(nbunch) # create new graph and copy subgraph into it H = self.__class__() # copy node and attribute dictionaries for n in bunch: H.node[n]=self.node[n] # namespace shortcuts for speed H_adj=H.adj self_adj=self.adj # add nodes and edges (undirected method) for n in H.node: Hnbrs={} H_adj[n]=Hnbrs for nbr,d in self_adj[n].items(): if nbr in H_adj: # add both representations of edge: n-nbr and nbr-n Hnbrs[nbr]=d H_adj[nbr][n]=d H.graph=self.graph return H def nodes_with_selfloops(self): """Return a list of nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. Returns ------- nodelist : list A list of nodes with self loops. See Also -------- selfloop_edges, number_of_selfloops Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.nodes_with_selfloops() [1] """ return [ n for n,nbrs in self.adj.items() if n in nbrs ] def selfloop_edges(self, data=False): """Return a list of selfloop edges. A selfloop edge has the same node at both ends. Parameters ----------- data : bool, optional (default=False) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data) (data=True) Returns ------- edgelist : list of edge tuples A list of all selfloop edges. See Also -------- nodes_with_selfloops, number_of_selfloops Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.selfloop_edges() [(1, 1)] >>> G.selfloop_edges(data=True) [(1, 1, {})] """ if data: return [ (n,n,nbrs[n]) for n,nbrs in self.adj.items() if n in nbrs ] else: return [ (n,n) for n,nbrs in self.adj.items() if n in nbrs ] def number_of_selfloops(self): """Return the number of selfloop edges. A selfloop edge has the same node at both ends. Returns ------- nloops : int The number of selfloops. See Also -------- nodes_with_selfloops, selfloop_edges Examples -------- >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 """ return len(self.selfloop_edges()) def size(self, weight=None): """Return the number of edges. Parameters ---------- weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. Returns ------- nedges : int The number of edges or sum of edge weights in the graph. See Also -------- number_of_edges Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.size() 3 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 """ s=sum(self.degree(weight=weight).values())/2 if weight is None: return int(s) else: return float(s) def number_of_edges(self, u=None, v=None): """Return the number of edges between two nodes. Parameters ---------- u,v : nodes, optional (default=all edges) If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. Returns ------- nedges : int The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. See Also -------- size Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 """ if u is None: return int(self.size()) if v in self.adj[u]: return 1 else: return 0 def add_star(self, nodes, **attr): """Add a star. The first node in nodes is the middle of the star. It is connected to all other nodes. Parameters ---------- nodes : iterable container A container of nodes. attr : keyword arguments, optional (default= no attributes) Attributes to add to every edge in star. See Also -------- add_path, add_cycle Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_star([0,1,2,3]) >>> G.add_star([10,11,12],weight=2) """ nlist = list(nodes) v=nlist[0] edges=((v,n) for n in nlist[1:]) self.add_edges_from(edges, **attr) def add_path(self, nodes, **attr): """Add a path. Parameters ---------- nodes : iterable container A container of nodes. A path will be constructed from the nodes (in order) and added to the graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to every edge in path. See Also -------- add_star, add_cycle Examples -------- >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.add_path([10,11,12],weight=7) """ nlist = list(nodes) edges=zip(nlist[:-1],nlist[1:]) self.add_edges_from(edges, **attr) def add_cycle(self, nodes, **attr): """Add a cycle. Parameters ---------- nodes: iterable container A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to every edge in cycle. See Also -------- add_path, add_star Examples -------- >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_cycle([0,1,2,3]) >>> G.add_cycle([10,11,12],weight=7) """ nlist = list(nodes) edges=zip(nlist,nlist[1:]+[nlist[0]]) self.add_edges_from(edges, **attr) def nbunch_iter(self, nbunch=None): """Return an iterator of nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. Returns ------- niter : iterator An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. Raises ------ NetworkXError If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. See Also -------- Graph.__iter__ Notes ----- When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. """ if nbunch is None: # include all nodes via iterator bunch=iter(self.adj.keys()) elif nbunch in self: # if nbunch is a single node bunch=iter([nbunch]) else: # if nbunch is a sequence of nodes def bunch_iter(nlist,adj): try: for n in nlist: if n in adj: yield n except TypeError as e: message=e.args[0] import sys sys.stdout.write(message) # capture error for non-sequence/iterator nbunch. if 'iter' in message: raise NetworkXError(\ "nbunch is not a node or a sequence of nodes.") # capture error for unhashable node. elif 'hashable' in message: raise NetworkXError(\ "Node %s in the sequence nbunch is not a valid node."%n) else: raise bunch=bunch_iter(nbunch,self.adj) return bunch
from django.urls import path from playgroup import views app_name = 'playgroup' urlpatterns = [ path('', views.dashboard, name='dashboard'), path('create/', views.manage, name="create"), path('<int:group_id>/', views.details, name="details"), path('<int:group_id>/edit/', views.manage, name="edit"), path('<int:group_id>/newevent/', views.newevent, name="newevent"), ]
def validate_base_sequence(base_sequence, RNAflag=False): """Return True if the string base_sequence contains only upper- or lowercase T (or U, if RNAflag), C, A, G characters, otherwise False""" seq = base_sequence.upper() result = len(seq) == (seq.count('A') + seq.count('U' if RNAflag else 'T') + seq.count('G') + seq.count('C')) return print(result) # USAGE validate_base_sequence("TTAAGGCC")
import sys var.verboseRead = 0 var.warnReadNoFile = 0 var.nexus_allowAllDigitNames = True # put it somewhere else read(sys.argv[2]) d = Data() d.compoSummary() read(sys.argv[3]) t = var.trees[0] t.data = d c1 = t.newComp(free=1, spec='empirical') c2 = t.newComp(free=1, spec='empirical') # Put the c1 comp on all the nodes of the tree. Then put c2 on the # root, over-riding c1 that is already there. t.setModelThing(c1, node=0, clade=1) t.setModelThing(c2, node=0, clade=0) t.newRMatrix(free=0, spec='lg') #maybe try altering this t.setNGammaCat(nGammaCat=4) t.newGdasrv(free=1, val=1.0) t.setPInvar(free=0, val=0.0) t.optLogLike() t.tPickle(sys.argv[3] + '_optTree')
from hydroDL.data import gageII from hydroDL import kPath from hydroDL.app import waterQuality from hydroDL.post import axplot import pandas as pd import numpy as np import time import os import matplotlib.pyplot as plt import importlib # read slope data dirCQ = os.path.join(kPath.dirWQ, 'C-Q') mapFolder = os.path.join(dirCQ, 'slopeMap') boxFolder = os.path.join(dirCQ, 'slopeBox') dfSa = pd.read_csv(os.path.join(dirCQ, 'slope_a'), dtype={ 'siteNo': str}).set_index('siteNo') dfSb = pd.read_csv(os.path.join(dirCQ, 'slope_b'), dtype={ 'siteNo': str}).set_index('siteNo') dfCeq = pd.read_csv(os.path.join(dirCQ, 'kate_ceq'), dtype={ 'siteNo': str}).set_index('siteNo') dfDw = pd.read_csv(os.path.join(dirCQ, 'kate_dw'), dtype={ 'siteNo': str}).set_index('siteNo') dfN = pd.read_csv(os.path.join(dirCQ, 'nSample'), dtype={ 'siteNo': str}).set_index('siteNo') siteNoLst = dfN.index.tolist() codeLst = dfN.columns.tolist() dfPLst = [dfSa, dfSb, dfCeq, dfDw] strPLst = ['slope-a', 'slope-b', 'ceq', 'dw'] if not os.path.exists(mapFolder): os.mkdir(mapFolder) if not os.path.exists(boxFolder): os.mkdir(boxFolder) # code='00955' # v = dfSb[code].values # v = dfDw[code].values # fig, ax = plt.subplots(1, 1) # temp = v[~np.isnan(v)] # ax.hist(temp, bins=200, range=[ # np.percentile(temp, 5), np.percentile(temp, 95)]) # fig.show() # # plot map importlib.reload(axplot) codePdf = waterQuality.codePdf dfCrd = gageII.readData(varLst=['LAT_GAGE', 'LNG_GAGE'], siteNoLst=siteNoLst) for code in codeLst: for dfP, strP in zip(dfPLst, strPLst): pAry = dfP[code].values nAry = dfN[code].values strTitle = '{} of {} [{}]'.format( strP, codePdf['srsName'][code], codePdf['unit'][code]) strFile = strP+'_'+codePdf['shortName'][code] ind = np.where((~np.isnan(pAry)) & (nAry > 10))[0] lat = dfCrd['LAT_GAGE'][ind] lon = dfCrd['LNG_GAGE'][ind] data = pAry[ind] vr = np.max([np.abs(np.percentile(data, 5)), np.abs(np.percentile(data, 95))]) fig, ax = plt.subplots(1, 1, figsize=(12, 6)) axplot.mapPoint(ax, lat, lon, data, title=strTitle, vRange=[-vr, vr], s=15) # fig.show() fig.savefig(os.path.join(mapFolder, strFile)) # plot box codePdf = waterQuality.codePdf groupLst = codePdf.group.unique().tolist() for group in groupLst: print(group) codeLst = codePdf[codePdf.group == group].index.tolist() pos = list(range(0, len(codeLst))) for rmExtreme in [True, False]: for dfP, strP in zip(dfPLst, strPLst): dataLst = list() for code in codeLst: pAry = dfP[code].values nAry = dfN[code].values ind = np.where((~np.isnan(pAry)) & (nAry > 10))[0] vr = np.max([np.abs(np.percentile(pAry[ind], 10)), np.abs(np.percentile(pAry[ind], 90))]) if rmExtreme is True: ind = np.where((~np.isnan(pAry)) & (nAry > 10) & ( pAry <= vr) & (pAry >= -vr))[0] dataLst.append(pAry[ind]) fig, ax = plt.subplots(1, 1, figsize=(12, 6)) ax.violinplot(dataLst, pos, points=500, widths=1, showmeans=True, showextrema=True) ax.set_xticks(pos) ax.set_xticklabels(codePdf.shortName[codeLst].tolist()) if rmExtreme is True: ax.set_title('{} of {} variables, 10\%-90\%'.format(strP,group)) fig.savefig(os.path.join(boxFolder, group+'_'+strP+'_rmE')) else: ax.set_title('{} of {} variables'.format(strP,group)) fig.savefig(os.path.join(boxFolder, group+'_'+strP)) # fig.show()
#!/usr/bin/env python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import shutil import tensorflow.contrib.learn as tflearn import tensorflow.contrib.layers as tflayers from tensorflow.contrib.learn.python.learn import learn_runner import tensorflow.contrib.metrics as metrics import tensorflow.contrib.rnn as rnn tf.logging.set_verbosity(tf.logging.INFO) SEQ_LEN = 10 DEFAULTS = [[0.0] for x in xrange(0, SEQ_LEN)] BATCH_SIZE = 20 TIMESERIES_COL = 'rawdata' N_OUTPUTS = 2 # in each sequence, 1-8 are features, and 9-10 is label N_INPUTS = SEQ_LEN - N_OUTPUTS # read data and convert to needed format def read_dataset(filename, mode=tf.contrib.learn.ModeKeys.TRAIN): def _input_fn(): num_epochs = 100 if mode == tf.contrib.learn.ModeKeys.TRAIN else 1 # could be a path to one file or a file pattern. input_file_names = tf.train.match_filenames_once(filename) filename_queue = tf.train.string_input_producer( input_file_names, num_epochs=num_epochs, shuffle=True) reader = tf.TextLineReader() _, value = reader.read_up_to(filename_queue, num_records=BATCH_SIZE) value_column = tf.expand_dims(value, -1) print 'readcsv={}'.format(value_column) # all_data is a list of tensors all_data = tf.decode_csv(value_column, record_defaults=DEFAULTS) inputs = all_data[:len(all_data)-N_OUTPUTS] # first few values label = all_data[len(all_data)-N_OUTPUTS : ] # last few values # from list of tensors to tensor with one more dimension inputs = tf.concat(inputs, axis=1) label = tf.concat(label, axis=1) print 'inputs={}'.format(inputs) return {TIMESERIES_COL: inputs}, label # dict of features, label return _input_fn LSTM_SIZE = 3 # number of hidden layers in each of the LSTM cells # create the inference model def simple_rnn(features, targets, mode): # 0. Reformat input shape to become a sequence x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1) #print 'x={}'.format(x) # 1. configure the RNN lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias=1.0) outputs, _ = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) # slice to keep only the last cell of the RNN outputs = outputs[-1] #print 'last outputs={}'.format(outputs) # output is result of linear activation of last layer of RNN weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS])) bias = tf.Variable(tf.random_normal([N_OUTPUTS])) predictions = tf.matmul(outputs, weight) + bias # 2. loss function, training/eval ops if mode == tf.contrib.learn.ModeKeys.TRAIN or mode == tf.contrib.learn.ModeKeys.EVAL: loss = tf.losses.mean_squared_error(targets, predictions) train_op = tf.contrib.layers.optimize_loss( loss=loss, global_step=tf.contrib.framework.get_global_step(), learning_rate=0.01, optimizer="SGD") eval_metric_ops = { "rmse": tf.metrics.root_mean_squared_error(targets, predictions) } else: loss = None train_op = None eval_metric_ops = None # 3. Create predictions predictions_dict = {"predicted": predictions} # 4. return ModelFnOps return tflearn.ModelFnOps( mode=mode, predictions=predictions_dict, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops) def serving_input_fn(): feature_placeholders = { TIMESERIES_COL: tf.placeholder(tf.float32, [None, N_INPUTS]) } features = { key: tf.expand_dims(tensor, -1) for key, tensor in feature_placeholders.items() } features[TIMESERIES_COL] = tf.squeeze(features[TIMESERIES_COL], axis=[2]) return tflearn.utils.input_fn_utils.InputFnOps( features, None, feature_placeholders )
#!/usr/bin/python # -*- coding: utf-8 -*- def xpath_soup(element): """ Generate xpath from BeautifulSoup4 element :param element: BeautifulSoup4 element. :type element: bs4.element.Tag or bs4.element.NavigableString :return: xpath as string :rtype: str Usage: >>> import bs4 >>> html = ( ... '<html><head><title>title</title></head>' ... '<body><p>p <i>1</i></p><p>p <i>2</i></p></body></html>' ... ) >>> soup = bs4.BeautifulSoup(html, 'html.parser') >>> xpath_soup(soup.html.body.p.i) '/html/body/p[1]/i' """ components = [] child = element if element.name else element.parent for parent in child.parents: """ @type parent: bs4.element.Tag """ siblings = parent.find_all(child.name, recursive=False) components.append( child.name if siblings == [child] else '%s[%d]' % (child.name, 1 + siblings.index(child)) ) child = parent components.reverse() return '/%s' % '/'.join(components) if __name__ == '__main__': import doctest doctest.testmod(verbose=True)
# NeoPixel Color Picker demo - wire up some NeoPixels and set their color # using Adafruit Bluefruit Connect App on your phone import time import busio import board from digitalio import DigitalInOut from adafruit_bluefruitspi import BluefruitSPI import neopixel ADVERT_NAME = b"BlinkaNeoLamp" # 16 neopixels on a digital pin, adjust as necessary! pixels = neopixel.NeoPixel(board.D5, 16) pixels.fill(0) spi_bus = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO) cs = DigitalInOut(board.D8) irq = DigitalInOut(board.D7) rst = DigitalInOut(board.D4) bluefruit = BluefruitSPI(spi_bus, cs, irq, rst, debug=False) def init_bluefruit(): # Initialize the device and perform a factory reset print("Initializing the Bluefruit LE SPI Friend module") bluefruit.init() bluefruit.command_check_OK(b"AT+FACTORYRESET", delay=1) # Print the response to 'ATI' (info request) as a string print(str(bluefruit.command_check_OK(b"ATI"), "utf-8")) # Change advertised name bluefruit.command_check_OK(b"AT+GAPDEVNAME=" + ADVERT_NAME) def wait_for_connection(): print("Waiting for a connection to Bluefruit LE Connect ...") # Wait for a connection ... dotcount = 0 while not bluefruit.connected: print(".", end="") dotcount = (dotcount + 1) % 80 if dotcount == 79: print("") time.sleep(0.5) # This code will check the connection but only query the module if it has been # at least 'n_sec' seconds. Otherwise it 'caches' the response, to keep from # hogging the Bluefruit connection with constant queries connection_timestamp = None is_connected = None def check_connection(n_sec): # pylint: disable=global-statement global connection_timestamp, is_connected if (not connection_timestamp) or (time.monotonic() - connection_timestamp > n_sec): connection_timestamp = time.monotonic() is_connected = bluefruit.connected return is_connected # Unlike most circuitpython code, this runs in two loops # one outer loop manages reconnecting bluetooth if we lose connection # then one inner loop for doing what we want when connected! while True: # Initialize the module try: # Wireless connections can have corrupt data or other runtime failures # This try block will reset the module if that happens init_bluefruit() wait_for_connection() print("\n *Connected!*") # Once connected, check for incoming BLE UART data while check_connection(3): # Check our connection status every 3 seconds # OK we're still connected, see if we have any data waiting resp = bluefruit.read_packet() if not resp: continue # nothin' print("Read packet", resp) # Look for a 'C'olor packet if resp[0] != "C": continue # Set the neopixels to the three bytes in the packet pixels.fill(resp[1:4]) print("Connection lost.") except RuntimeError as e: print(e) # Print what happened continue # retry!
"""Module that holds success messages template""" audit_messages = { 'created': 'created a new {} ', 'retrieved': 'retrieved {} successfully', 'updated': 'updated {} with id {} ', 'deleted': 'deleted favorite things with id {}' }
from allennlp.modules.token_embedders.pretrained_transformer_mismatched_embedder import PretrainedTransformerMismatchedEmbedder from allennlp.modules.token_embedders.token_embedder import TokenEmbedder from typing import Optional, Dict, Any, List, Union from .adapters import Adapter, AdapterBertLayer import torch.nn as nn from allennlp.common.checks import ConfigurationError from transformers import BertModel, ElectraModel, RobertaModel @TokenEmbedder.register('adapter_bert') class AdapterBertMismatchedEmbedder(PretrainedTransformerMismatchedEmbedder): def __init__( self, model_name: str, adapters: List[Dict[str, Union[Dict[str, Any], List[int]]]] = [{"layers": [i], "params": dict()} for i in range(12)], max_length: int = None, train_parameters: bool = False, last_layer_only: bool = True, override_weights_file: Optional[str] = None, override_weights_strip_prefix: Optional[str] = None, load_weights: bool = True, gradient_checkpointing: Optional[bool] = None, tokenizer_kwargs: Optional[Dict[str, Any]] = None, transformer_kwargs: Optional[Dict[str, Any]] = None, sub_token_mode: Optional[str] = "avg", ) -> None: super().__init__( model_name, max_length=max_length, train_parameters=train_parameters, last_layer_only=last_layer_only, override_weights_file=override_weights_file, override_weights_strip_prefix=override_weights_strip_prefix, load_weights=load_weights, gradient_checkpointing=gradient_checkpointing, tokenizer_kwargs=tokenizer_kwargs, transformer_kwargs=transformer_kwargs, sub_token_mode=sub_token_mode ) self.adapters_groups = self.insert_adapters(adapters) def insert_adapters( self, adapters: List[Dict[str, Union[List[int], Dict[str, Any]]]] ) -> nn.ModuleList: if not isinstance(self._matched_embedder.transformer_model, (BertModel, ElectraModel, RobertaModel)): raise ConfigurationError("只支持 *BERT 结构") adapters_groups = nn.ModuleList() for adapter in adapters: adapter_a = Adapter(self.get_output_dim(), **adapter['params']) adapter_f = Adapter(self.get_output_dim(), **adapter['params']) for i in adapter['layers']: layer = self._matched_embedder.transformer_model.encoder.layer[i] layer.output = AdapterBertLayer(layer.output, adapter_a) layer.attention.output = AdapterBertLayer(layer.attention.output, adapter_f) adapters_groups.append(nn.ModuleList([adapter_a, adapter_f])) return adapters_groups
import os import xml.etree.ElementTree as ET import sqlite3 import tempfile from . import (AError, ACommandLineTool, AOS) _commandlineTool = ACommandLineTool.CommandLineTool('svn') _commandlineTool.checkExistence() def getCommandLineTool(): return _commandlineTool class SVN_Error(AError.Error): pass class SVN_SubCommandError(SVN_Error): def __init__(self, cmd): self.cmd = cmd def __str__(self): return 'svn: execute sub command(%s) failed' % self.cmd class SVN_NoMessageError(SVN_SubCommandError): def __init__(self, cmd): SVN_SubCommandError.__init__(self, cmd) def __str__(self): return SVN_SubCommandError.__str__(self) + ": message(with -m) can't be empty" class SVN_AlreadyLockedError(SVN_Error): def __init__(self, path, lockOwner, lockComment, lockDate): self.path = path self.lockOwner = lockOwner self.lockComment = lockComment self.lockDate = lockDate def __str__(self): return "svn: path '%s' already locked by user '%s' at %s%s" % ( self.path, self.lockOwner, self.lockDate, '' if self.lockComment == '' else ': ' + self.lockComment ) class SVN_BranchDestinationAlreadyExistError(SVN_Error): def __init__(self, dst): self.dst = dst def __str__(self): return "svn: branch destination '%s' already exist" % self.dst RESOLVE_ACCEPT_BASE = 'base' RESOLVE_ACCEPT_WORKING = 'working' RESOLVE_ACCEPT_MINE_CONFLICT = 'mine-conflict' RESOLVE_ACCEPT_THEIRS_CONFLICT = 'theirs-conflict' RESOLVE_ACCEPT_MINE_FULL = 'mine-full' RESOLVE_ACCEPT_THEIRS_FULL = 'theirs-full' def makeUserPassOptionStr(userpass): s = '' if userpass: s += '--username ' + userpass[0] s += ' --password ' + userpass[1] s += ' --no-auth-cache' return s def makeRevisionOptionStr(revision): """ :param revision: a revision number, or string('HEAD', 'BASE', 'COMMITTED', 'PREV'), or revision range tuple """ if not revision: return '' # some command(svn log...) support revision range if isinstance(revision, tuple) or isinstance(revision, list): return '-r %s:%s' % (revision[0], revision[1]) return '-r %s' % revision def makeMessageOptionStr(message): s = '' if message: s += '-m "%s"' % message return s def execSubCommand(cmdline): cmdline += ' --non-interactive' _commandlineTool.execCommand(cmdline) def execOutputSubCommand(cmdline): cmdline += ' --non-interactive' return _commandlineTool.execOutputCommand(cmdline) def isURL(url): for prefix in ('file:\\\\\\', 'svn://', 'http://', 'https://'): if url.startswith(prefix): return True return False def isSVNPath(path, userpass=None): cmd = 'info' cmd += ' ' + path cmd += makeUserPassOptionStr(userpass) try: execOutputSubCommand(cmd) except AOS.OS_SystemOutputError: return False return True def infoDict(pathOrURL, revision=None, userpass=None): """ :param pathOrURL: working copy path or remote url """ cmd = 'info' cmd += ' ' + pathOrURL cmd += ' --xml' cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + makeUserPassOptionStr(userpass) result = execOutputSubCommand(cmd) root = ET.fromstring(result) entryNode = root.find('entry') ret = {} ret['#kind'] = entryNode.attrib['kind'] ret['#path'] = entryNode.attrib['path'] ret['#revision'] = int(entryNode.attrib['revision']) # 整个工作拷贝的版本号 ret['url'] = entryNode.find('url').text repoNode = entryNode.find('repo') if repoNode is None: repoNode = entryNode.find('repository') # for compatible with old svn version such as v1.7.14 repo = {} ret['repo'] = repo repo['root'] = repoNode.find('root').text repo['uuid'] = repoNode.find('uuid').text relativeURLNode = entryNode.find('relative-url') if relativeURLNode is None: # relative-url not supported by svn 1.7.14(installed by yum in CentOS-7) ret['relative-url'] = '^' + ret['url'][len(repo['root']):] else: ret['relative-url'] = relativeURLNode.text wcInfoNode = entryNode.find('wc-info') if wcInfoNode is not None: # svn info url has no wc-info node wcInfo = {} ret['wc-info'] = wcInfo wcInfo['wcroot-abspath'] = wcInfoNode.find('wcroot-abspath').text wcInfo['uuid'] = wcInfoNode.find('schedule').text wcInfo['depth'] = wcInfoNode.find('depth').text commitNode = entryNode.find('commit') commit = {} ret['commit'] = commit commit['#revision'] = int(commitNode.attrib['revision']) # 当前目录或文件的版本号 commitAuthorNode = commitNode.find('author') # author can be None if the repo has revision 0 if commitAuthorNode != None: commit['author'] = commitAuthorNode.text commit['date'] = commitNode.find('date').text lockNode = entryNode.find('lock') if lockNode is not None: lock = {} ret['lock'] = lock lock['token'] = lockNode.find('token').text lock['owner'] = lockNode.find('owner').text lockCommentNode = lockNode.find('comment') lock['comment'] = '' if lockCommentNode is None else lockCommentNode.text lock['created'] = lockNode.find('created').text return ret def checkout(url, path, revision=None, userpass=None): cmd = 'checkout' cmd += ' ' + url + ' ' + path cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def update(path, revision=None, userpass=None): cmd = 'update' cmd += ' ' + path cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def checkoutOrUpdate(url, path, revision=None, userpass=None): if os.path.exists(path): update(path, revision, userpass) else: checkout(url, path, revision, userpass) def export(pathOrURL, path, revision=None, userpass=None): cmd = 'export' cmd += ' ' + pathOrURL + ' ' + path cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def resolve(path, acceptOption, recursive=True, quiet=True): """ :param acceptOption: RESOLVE_ACCEPT_XXX """ cmd = 'resolve' cmd += ' ' + path if recursive: cmd += ' -R' if quiet: cmd += ' -q' cmd += ' --accept ' + acceptOption execSubCommand(cmd) def clearWorkQueue(path): """ Do this action maybe useful if cleanup failed :param path: must be a working-copy root dir """ conn = sqlite3.connect(os.path.join(path, '.svn', 'wc.db')) conn.execute('DELETE FROM work_queue') def cleanup(path): execSubCommand('cleanup %s' % path) def revert(path, recursive=True): cmd = 'revert ' + path if recursive: cmd += ' -R' execSubCommand(cmd) def easyClearEverything(path): clearWorkQueue(path) cleanup(path) revert(path) def add(path, force=True): """ :param path: can be file or dir """ cmd = 'add' cmd += ' ' + path if force: cmd += ' --force' execSubCommand(cmd) def commit(path, includeExternals=False, message=None, userpass=None): cmd = 'commit' cmd += ' ' + path if includeExternals: cmd += ' --include-externals' cmd += ' ' + makeMessageOptionStr(message) cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def log(pathOrURL, limit=None, verbose=False, searchPattern=None, revision=None, userpass=None): """ :param pathOrURL: working copy path or remote url :param limit: when the revision is a range, limit the record count :param verbose: :param searchPattern: - search in the limited records(by param limit) - matches any of the author, date, log message text, if verbose is True also a changed path - The search pattern use "glob syntax" wildcards ? matches any single character * matches a sequence of arbitrary characters [abc] matches any of the characters listed inside the brackets example: revision=(5, 10) limit=2 output: 5, 6 revision=(10, 5) limit=2 output: 10, 9 :param commonOptions.revision: single revision number or revision range tuple/list - if range specified, format as (5, 10) or (10, 50) are both supported - for (5, 10): return list ordered by 5 -> 10 - for (10, 5): return list ordered by 10 -> 5 - the bound revision 5 or 10 also included """ cmd = 'log' cmd += ' ' + pathOrURL cmd += ' --xml' if limit is not None: cmd += ' -l %s' % limit if verbose: cmd += ' -v' if searchPattern is not None: cmd += ' --search %s' % searchPattern cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + makeUserPassOptionStr(userpass) result = execOutputSubCommand(cmd) root = ET.fromstring(result) ret = [] for logentryNode in root.iterfind('logentry'): logentry = {} ret.append(logentry) logentry['#revision'] = logentryNode.attrib['revision'] logentry['author'] = logentryNode.find('author').text logentry['date'] = logentryNode.find('date').text logentry['msg'] = logentryNode.find('msg').text pathsNode = logentryNode.find('paths') if pathsNode is not None: paths = [] logentry['paths'] = paths for path_node in pathsNode.iterfind('path'): path = {} paths.append(path) path['#'] = path_node.text path['#prop-mods'] = True if path_node.attrib['prop-mods']=='true' else False path['#text-mods'] = True if path_node.attrib['text-mods']=='true' else False path['#kind'] = path_node.attrib['kind'] path['#action'] = path_node.attrib['action'] return ret def removeNotVersioned(path): for line in execOutputSubCommand('status ' + path).splitlines(): if len(line) > 0 and line[0] == '?': AOS.removePath(line[8:]) def propset(path, key, value): execSubCommand('propset svn:%s %s %s' % (key, value, path)) def propsetByTempFile(path, key, value): with AOS.TempFile(value) as f: execSubCommand('propset svn:%s -F %s %s' % (key, f.path, path)) def propsetExternals(dir, externalPairs): """ 设置dir下的子目录外联到其他地方 :param dir: the externals to set on :param externalPairs: list of(subDir, externalDir[, 可选的版本号]) externalDir可以是URL,也可以是工作拷贝中相对于dir的位置 """ value = '' for pair in externalPairs: if len(pair) == 3: value += '-r%s %s %s\n' % (pair[2], pair[1], pair[0]) elif len(pair) == 2: value += '%s %s\n' % (pair[1], pair[0]) else: raise SVN_Error("invalid externalPairs") propsetByTempFile(dir, 'externals', value) def lock(filePath, message=None, userpass=None): """ :except: SVN_AlreadyLockedError: if lock failure """ cmd = 'lock' cmd += ' ' + filePath cmd += ' ' + makeMessageOptionStr(message) cmd += ' ' + makeUserPassOptionStr(userpass) result = execOutputSubCommand(cmd) if result[0:4] == 'svn:': if isURL(filePath): raise SVN_AlreadyLockedError(filePath, 'None', 'None', 'None') else: info = infoDict(filePath, userpass=userpass)['lock'] raise SVN_AlreadyLockedError(filePath, info['owner'], info['comment'], info['created']) def unlock(filePath, userpass=None): cmd = 'unlock' cmd += ' ' + filePath cmd += ' --force' cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def move(src, dst, message=None, userpass=None): cmd = 'move' cmd += ' ' + src + ' ' + dst cmd += ' --force' cmd += ' --parents' cmd += ' ' + makeMessageOptionStr(message) cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def branch(src, dst, message=None, revision=None, userpass=None): try: infoDict(dst) raise SVN_BranchDestinationAlreadyExistError(dst) except AOS.OS_SystemOutputError: pass cmd = 'copy ' + src + ' ' + dst cmd += ' ' + src + ' ' + dst cmd += ' --parents' cmd += ' ' + makeMessageOptionStr(message) cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + makeUserPassOptionStr(userpass) execSubCommand(cmd) def rollback(path, revision): """ rollback path changes made by commits in revision """ if isinstance(revision, tuple) or isinstance(revision, list): startRevision = infoDict(path, revision[0])['#revision'] endRevision = infoDict(path, revision[1])['#revision'] if startRevision < endRevision: startRevision, endRevision = endRevision, startRevision revision = (startRevision, endRevision-1) if isinstance(revision, tuple) else [startRevision, endRevision-1] else: revision = infoDict(path, revision)['#revision'] revision = '-%d' % revision cmd = 'merge ' cmd += ' ' + makeRevisionOptionStr(revision) cmd += ' ' + path cmd += ' ' + path execSubCommand(cmd)
import json from lbrynet.testcase import CommandTestCase class ResolveCommand(CommandTestCase): async def test_resolve(self): tx = await self.channel_create('@abc', '0.01') channel_id = tx['outputs'][0]['claim_id'] # resolving a channel @abc response = await self.resolve('lbry://@abc') self.assertSetEqual({'lbry://@abc'}, set(response)) self.assertIn('certificate', response['lbry://@abc']) self.assertNotIn('claim', response['lbry://@abc']) self.assertEqual(response['lbry://@abc']['certificate']['name'], '@abc') self.assertEqual(response['lbry://@abc']['claims_in_channel'], 0) await self.stream_create('foo', '0.01', channel_id=channel_id) await self.stream_create('foo2', '0.01', channel_id=channel_id) # resolving a channel @abc with some claims in it response = await self.resolve('lbry://@abc') self.assertSetEqual({'lbry://@abc'}, set(response)) self.assertIn('certificate', response['lbry://@abc']) self.assertNotIn('claim', response['lbry://@abc']) self.assertEqual(response['lbry://@abc']['certificate']['name'], '@abc') self.assertEqual(response['lbry://@abc']['claims_in_channel'], 2) # resolving claim foo within channel @abc response = await self.resolve('lbry://@abc/foo') self.assertSetEqual({'lbry://@abc/foo'}, set(response)) claim = response['lbry://@abc/foo'] self.assertIn('certificate', claim) self.assertIn('claim', claim) self.assertEqual(claim['claim']['name'], 'foo') self.assertEqual(claim['claim']['channel_name'], '@abc') self.assertEqual(claim['certificate']['name'], '@abc') self.assertEqual(claim['claims_in_channel'], 0) # resolving claim foo by itself response = await self.resolve('lbry://foo') self.assertSetEqual({'lbry://foo'}, set(response)) claim = response['lbry://foo'] self.assertIn('certificate', claim) self.assertIn('claim', claim) self.assertEqual(claim['claim']['name'], 'foo') self.assertEqual(claim['claim']['channel_name'], '@abc') self.assertEqual(claim['certificate']['name'], '@abc') self.assertEqual(claim['claims_in_channel'], 0) # resolving from the given permanent url new_response = await self.resolve(claim['claim']['permanent_url']) self.assertEqual(new_response[claim['claim']['permanent_url']], claim) # resolving multiple at once response = await self.resolve(['lbry://foo', 'lbry://foo2']) self.assertSetEqual({'lbry://foo', 'lbry://foo2'}, set(response)) claim = response['lbry://foo2'] self.assertIn('certificate', claim) self.assertIn('claim', claim) self.assertEqual(claim['claim']['name'], 'foo2') self.assertEqual(claim['claim']['channel_name'], '@abc') self.assertEqual(claim['certificate']['name'], '@abc') self.assertEqual(claim['claims_in_channel'], 0) # resolve has correct depth tx_details = await self.blockchain.get_raw_transaction(claim['claim']['txid']) self.assertEqual(claim['claim']['depth'], json.loads(tx_details)['confirmations']) # resolve handles invalid data txid = await self.blockchain_claim_name("gibberish", "cafecafe", "0.1") await self.generate(1) response = await self.resolve("lbry://gibberish") self.assertSetEqual({'lbry://gibberish'}, set(response)) claim = response['lbry://gibberish']['claim'] self.assertEqual(claim['name'], 'gibberish') self.assertEqual(claim['hex'], 'cafecafe') self.assertFalse(claim['decoded_claim']) self.assertEqual(claim['txid'], txid) self.assertEqual(claim['effective_amount'], "0.1")
from bot_settings import welcome_channel_id, default_role, server_id from discord.utils import get import logging async def on_ready(client): logging.getLogger('BotEvents').debug(f"Logged in successfully as {client.user}!") async def on_message(client,message): content = message.content if message.content else "(Not printable)" logging.getLogger('BotEvents').debug(f"Message from {message.author}: {content}.") async def on_member_join(client,member): if default_role: server = client.get_guild(server_id) role = get(server.roles,name=default_role) await member.add_roles(role) await client.get_channel(welcome_channel_id).send(f"{member.name} has joined!")
# -*- coding: utf-8 -*- import math import time # 绘图设置 # ELAPSED_DAY_CHAR='H' # 已流逝天数的绘图字符 # ELAPSED_DAY_CHAR="\u2591" # 已流逝天数的绘图字符 ░ # ELAPSED_DAY_CHAR="\u2764" # 已流逝天数的绘图字符 ❤ ELAPSED_DAY_CHAR="\u2665" # 已流逝天数的绘图字符 ♥ # REMAIN_DAY_CHAR='\u002D' # 年度剩余天数的绘图字符 - #REMAIN_DAY_CHAR='\u2500' # 年度剩余天数的绘图字符 ━ REMAIN_DAY_CHAR='\u2661' # 年度剩余天数的绘图字符 ━♡ # Bar的字符数 BAR_NUM = 20 BAR_NUM_FACTOR = round(100/BAR_NUM) Leap_monthDays=[31,29,31,30,31,30,31,31,30,31,30,31] Ping_monthDays=[31,28,31,30,31,30,31,31,30,31,30,31] def isLeapYear(year): retVal=0 if((0 == (year % 4)) and (0 != (year % 100))): retVal = 1 elif(0 == (year % 400)): retVal = 1 return retVal def elapsedDaysInYear(year,mon,day): LeapYear = isLeapYear(year) if(1 == LeapYear): pMonthDaysArray = Leap_monthDays else: pMonthDaysArray = Ping_monthDays sum = 0 i = 0 while(i < (mon -1)): sum += pMonthDaysArray[i] i = i + 1 sum += day - 1 return sum def get_date(): loc_time = time.localtime(time.time()) #print("now datetime:",loc_time.tm_year,"\\",loc_time.tm_mon,"\\,",loc_time.tm_mday, loc_time.tm_hour,":",loc_time.tm_min,":",loc_time.tm_sec,"\n") return loc_time.tm_year,loc_time.tm_mon,loc_time.tm_mday def generateText(): year,mon,day = get_date() # year,mon,day = 2020,12,31 # year,mon,day = 2020,1,2 a = elapsedDaysInYear(year,mon,day) if(1 == isLeapYear(year)): b = 366 else: b = 365 p = a*100/b print(a,b,p) #if(a < 5): # 向上取整 # p=math.ceil(a*100/b) #elif(a > 350): # 向下取整 # p=int(a*100/b) #else: # 四舍五入 # p=round(a*100/b) #print(str(year)+"已经过了"+str(a)+"天,还剩"+str(b-a)+"天\n") #print('%d年已经过%d天了,还剩%d天了。\n' % (year,a,b-a)) text ='{0}年已经过{1}天,还剩{2}天,余额{3:.1f}%。\n'.format(year,a,b-a,100-p) #print(text) return text,p def generateBar(text,percentage): # bar='{0}% ['.format(percentage) bar='' tmp = math.ceil(percentage/BAR_NUM_FACTOR) for i in range(int(100/BAR_NUM_FACTOR)): if(i<tmp): bar=bar+ELAPSED_DAY_CHAR else: bar=bar+REMAIN_DAY_CHAR bar=bar+' {0:.1f}%\n'.format(percentage) bar=text+bar return bar def GetText(): text,p = generateText() #print(text) bar = generateBar(text,p) return bar if __name__ == '__main__': text,p = generateText() print(text) bar = generateBar(text,p) print(bar)
""" Python Daemonizing helper Originally based on code Copyright (C) 2005 Chad J. Schroeder but now heavily modified to allow a function to be daemonized and return for bitbake use by Richard Purdie """ import os import sys import io import traceback def createDaemon(function, logfile): """ Detach a process from the controlling terminal and run it in the background as a daemon, returning control to the caller. """ try: # Fork a child process so the parent can exit. This returns control to # the command-line or shell. It also guarantees that the child will not # be a process group leader, since the child receives a new process ID # and inherits the parent's process group ID. This step is required # to insure that the next call to os.setsid is successful. pid = os.fork() except OSError as e: raise Exception("%s [%d]" % (e.strerror, e.errno)) if (pid == 0): # The first child. # To become the session leader of this new session and the process group # leader of the new process group, we call os.setsid(). The process is # also guaranteed not to have a controlling terminal. os.setsid() try: # Fork a second child and exit immediately to prevent zombies. This # causes the second child process to be orphaned, making the init # process responsible for its cleanup. And, since the first child is # a session leader without a controlling terminal, it's possible for # it to acquire one by opening a terminal in the future (System V- # based systems). This second fork guarantees that the child is no # longer a session leader, preventing the daemon from ever acquiring # a controlling terminal. pid = os.fork() # Fork a second child. except OSError as e: raise Exception("%s [%d]" % (e.strerror, e.errno)) if (pid != 0): # Parent (the first child) of the second child. # exit() or _exit()? # _exit is like exit(), but it doesn't call any functions registered # with atexit (and on_exit) or any registered signal handlers. It also # closes any open file descriptors. Using exit() may cause all stdio # streams to be flushed twice and any temporary files may be unexpectedly # removed. It's therefore recommended that child branches of a fork() # and the parent branch(es) of a daemon use _exit(). os._exit(0) else: os.waitpid(pid, 0) return # The second child. # Replace standard fds with our own si = open('/dev/null', 'r') os.dup2(si.fileno(), sys.stdin.fileno()) try: so = open(logfile, 'a+') se = so os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) except io.UnsupportedOperation: sys.stdout = open(logfile, 'a+') sys.stderr = sys.stdout try: function() except Exception as e: traceback.print_exc() finally: bb.event.print_ui_queue() os._exit(0)
#! /usr/bin/env python import unittest import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from src.kronprod import * class TestKronSparse(unittest.TestCase): # add global stuff here def setUp(self): return def testOnes(self): A1 = [ np.array([[1., 1.], [1.,1.]]), np.array([[1.,1.], [1.,1.]])] x1 = np.array([1.,1.,1.,1.]) y1 = np.array([4.,4.,4.,4.]) kp = KronProd(A1,sparse_flag=True) y = kp.dot(x1) self.assertSequenceEqual(list(y), list(y1)) def testInts(self): A1 = [ np.array([[1.0, 0.0], [0.0,0.0]]), np.array([[1.,1.], [0.,0.]])] x1 = np.array([1.,2.,3.,4.]) big_A = reduce(np.kron, A1) print(big_A) print(x1) big_y = np.matmul(big_A, x1) print("full calc: ",big_y) kp = KronProd(A1,sparse_flag=True) Y = kp.dot(x1) print("efficient calc: ", Y) self.assertSequenceEqual(list(Y), list(big_y)) # this dimensionality pushes the limit of what full rank calc can do def testRandom(self): n = 5 # number of factors p = 5 # dimension of factor r_As = [np.random.rand(p,p) for i in range(n)] As = [m/m.sum(axis=1)[:,None] for m in r_As] # normalize each row x = np.random.rand(p**n) big_A = reduce(np.kron, As) big_y = np.matmul(big_A, x) print("full calc: ",big_y) kp = KronProd(As,sparse_flag=True) Y = kp.dot(x) print("efficient calc: ", Y) np.testing.assert_almost_equal(big_y, Y, decimal=7, verbose=True) def testBig(self): n = 2 # number of factors p = 100 # dimension of factor r_As = [np.random.rand(p,p) for i in range(n)] As = [m/m.sum(axis=1)[:,None] for m in r_As] # normalize each row x = np.random.rand(p**n) kp = KronProd(As,sparse_flag=True) Y = kp.dot(x) print("efficient calc: ", Y)
from rest_pandas import ( PandasView, PandasUnstackedSerializer, PandasScatterSerializer, PandasBoxplotSerializer, ) from .serializers import EventResultSerializer from .filters import ChartFilterBackend import swapper EventResult = swapper.load_model('results', 'EventResult') class ChartView(PandasView): queryset = EventResult.objects.all() serializer_class = EventResultSerializer filter_backends = [ChartFilterBackend] def get_queryset(self): qs = super(ChartView, self).get_queryset() qs = qs.select_related('event_site', 'result_type') return qs class TimeSeriesView(ChartView): pandas_serializer_class = PandasUnstackedSerializer class ScatterView(ChartView): pandas_serializer_class = PandasScatterSerializer class BoxPlotView(ChartView): pandas_serializer_class = PandasBoxplotSerializer
from django.contrib.gis.db import models from django.conf import settings from django.contrib.gis.measure import A, D from lingcod.unit_converter.models import length_in_display_units, area_in_display_units class SpacingPoint(models.Model): name = models.CharField(max_length=200) geometry = models.PointField(srid=settings.GEOMETRY_DB_SRID) objects = models.GeoManager() def __unicode__(self): return unicode(self.name) def all_spacing_points_dict(): """ Returns a dictionary of the form: { point: 'name' } for all objects in SpacingPoint """ return dict( [ (p.geometry,p.name) for p in SpacingPoint.objects.all() ] ) def add_all_spacing_points(in_dict): """ Takes a dictionary of the form: { point: 'name' }, and adds all the objects in SpacingPoint """ in_dict.update(all_spacing_points_dict()) return in_dict def distance_row_dict(from_dict, to_dict): """ from_dict will be a dict with a point as the key and a label as the value. to_dict will be of the same format with multiple entries. will return a dictionary with points as keys and a dictionary as values. NOTE: This method assumes that the projection units are meters. """ from_pnt = from_dict.keys()[0] for s_pnt in SpacingPoint.objects.all(): to_dict.update({s_pnt.geometry:s_pnt.name}) result = {} for point, pnt_label in to_dict.iteritems(): result[point] = { 'label': pnt_label, 'distance': length_in_display_units(point.distance(from_pnt)), 'sort': point.y } return result def distance_row_list(from_pnt, to_list): """ NOTE: This method assumes that the projection units are meters. """ result = [] for point in to_list: result.append(length_in_display_units(point.distance(from_pnt))) return result def distance_matrix(point_list): result = [] for point in point_list: result.append(distance_row_list(point,point_list)) return result def sorted_points_and_labels(in_dict): """ in_dict will look like: { point: 'name' } sorted_points, sorted_labels (both lists) will be returned in a dictionary and they'll be ordered from North to South. """ sorted_points = [] sorted_labels = [] y_dict = {} for point, name in in_dict.iteritems(): y_dict.update( { point.y: point } ) y_list = y_dict.keys() y_list.sort() for y in reversed(y_list): sorted_points.append(y_dict[y]) sorted_labels.append(in_dict[y_dict[y]]) return { 'points': sorted_points, 'labels': sorted_labels } def distance_matrix_and_labels(in_dict,add_spacing_points=True): """ in_dict will look like: { point: 'name' } Will return a dictionary with the keys 'labels' and 'matrix' """ if add_spacing_points: in_dict = add_all_spacing_points(in_dict) spl_dict = sorted_points_and_labels(in_dict) dist_mat = distance_matrix(spl_dict['points']) return { 'labels': spl_dict['labels'], 'matrix': dist_mat }
import random from sys import maxsize from math import sqrt, inf RANDOM_SEED = 1208 LARGE_NUMBER = inf EQUAL_THRESHOLD = 0.0001 class KMeans: def __init__(self, n_clusters): self.n_clusters = n_clusters def initialCentroidsRandomPick(self, X, k): """ :return centroids: dict - {0:[], tag: centroid_coordinate, ...} """ X_length = len(X) random.seed(RANDOM_SEED) idx_centroids = random.sample(range(X_length), k) # centroids = [X[idx] for idx in idx_centroids] centroids = {i: X[idx] for i, idx in enumerate(idx_centroids)} return centroids def computeDistance(self, v1, v2): # Euclidean Distance pingfanghe = 0 for i in range(len(v1)): pingfanghe += (v1[i] - v2[i])**2 return sqrt(pingfanghe) def clusterPoints(self, X, centroids): """ :return clusters: {cluster_idx: [point_idx, ...], ...} """ clusters = {} for i, x in enumerate(X): min_distance = (0, LARGE_NUMBER) for k in centroids: dis = self.computeDistance(x, centroids[k]) if dis < min_distance[1]: min_distance = (k, dis) cid = min_distance[0] if clusters.get(cid) == None: clusters[cid] = [i] else: clusters[cid].append(i) return clusters def computeCentroids(self, X, clusters): dimension = len(X[0]) new_centroids = {} for cid in clusters: cluster = clusters[cid] n = len(cluster) centroid = [0] * dimension for idx in cluster: point = X[idx] for i, v in enumerate(point): centroid[i] += v for i, v in enumerate(centroid): centroid[i] = v / n new_centroids[cid] = centroid return new_centroids def checkClustersChanged(self, clusters, new_clusters): if clusters == None: return True for k in clusters: set1 = set(clusters[k]) set2 = set(new_clusters[k]) if set1 != set2: return True return False def fit(self, X): # when all of clusters don't change, stop """ :param X: [[]] - matrix """ # initial centroids centroids = self.initialCentroidsRandomPick(X, self.n_clusters) # cluster points clusters = None new_clusters = self.clusterPoints(X, centroids) num_iteration = 0 while(self.checkClustersChanged(clusters, new_clusters)): # compute centroids new_centroids = self.computeCentroids(X, new_clusters) clusters = new_clusters # cluster points new_clusters = self.clusterPoints(X, new_centroids) num_iteration += 1 # print(num_iteration) print('number_of_iterations:', num_iteration) return new_clusters def checkCentroidsChanged(self, centroids, new_centroids): if centroids == None: return True for k in centroids: centroid = centroids[k] new_centroid = new_centroids[k] for i in range(len(centroid)): if abs(centroid[i] - new_centroid[i]) > EQUAL_THRESHOLD: return True return False def fit2(self, X): # when all of the positions of centroids don't change, stop """ :param X: [[]] - matrix """ # initial centroids centroids = None new_centroids = self.initialCentroidsRandomPick(X, self.n_clusters) # cluster points clusters = self.clusterPoints(X, new_centroids) # num_iteration = 1 while(self.checkCentroidsChanged(centroids, new_centroids)): # print(num_iteration) # num_iteration += 1 centroids = new_centroids # compute centroids new_centroids = self.computeCentroids(X, clusters) # cluster points clusters = self.clusterPoints(X, new_centroids) return clusters
import logging import sanic.request import sanic.response from sanic_json_logging import setup_json_logging app = sanic.Sanic("app1") setup_json_logging(app, context_var="test1") logger = logging.getLogger("root") async def log(): logger.info("some informational message") @app.route("/endpoint1", methods=["GET"]) async def endpoint1(request: sanic.request.Request) -> sanic.response.BaseHTTPResponse: await log() return sanic.response.text("") app.run()
from django.apps import AppConfig class DBConfig(AppConfig): name = 'db'
import numpy as np import dace as dc import sympy as sp # N, R, K, M1, M2 = (dc.symbol(s) for s in ('N', 'R', 'K', 'M1', 'M2')) R, K, M1, M2 = (dc.symbol(s, dtype=dc.int64, integer=True, positive=True) for s in ('R', 'K', 'M1', 'M2')) N = R**K # TODO: Temporary fix! @dc.program def mgrid1(X: dc.uint32[R, R], Y: dc.uint32[R, R]): for i in range(R): X[i, :] = i for j in range(R): Y[:, j] = j @dc.program def mgrid2(X: dc.uint32[R, N], Y: dc.uint32[R, N]): for i in range(R): X[i, :] = i for j in range(R**K): Y[:, j] = j @dc.program def stockham_fft(x: dc.complex128[R**K], y: dc.complex128[R**K]): # Generate DFT matrix for radix R. # Define transient variable for matrix. # i_coord, j_coord = np.mgrid[0:R, 0:R] i_coord = np.ndarray((R, R), dtype=np.uint32) j_coord = np.ndarray((R, R), dtype=np.uint32) mgrid1(i_coord, j_coord) dft_mat = np.empty((R, R), dtype=np.complex128) dft_mat[:] = np.exp(-2.0j * np.pi * i_coord * j_coord / R) # Move input x to output y # to avoid overwriting the input. y[:] = x[:] # ii_coord, jj_coord = np.mgrid[0:R, 0:R**K] ii_coord = np.ndarray((R, N), dtype=np.uint32) jj_coord = np.ndarray((R, N), dtype=np.uint32) mgrid2(ii_coord, jj_coord) tmp_perm = np.empty_like(y) D = np.empty_like(y) tmp = np.empty_like(y) # Main Stockham loop for i in range(K): # Stride permutation yv = np.reshape(y, (R**i, R, R**(K - i - 1))) # tmp_perm = np.transpose(yv, axes=(1, 0, 2)) tmp_perm[:] = np.reshape(np.transpose(yv, axes=(1, 0, 2)), (N, )) # Twiddle Factor multiplication # D = np.empty((R, R ** i, R ** (K-i-1)), dtype=np.complex128) Dv = np.reshape(D, (R, R**i, R**(K - i - 1))) tmpv = np.reshape(tmp, (R**(K - i - 1), R, R**i)) tmpv[0] = np.exp(-2.0j * np.pi * ii_coord[:, :R**i] * jj_coord[:, :R**i] / R**(i + 1)) for k in range(R**(K - i - 1)): # D[:, :, k] = tmp Dv[:, :, k] = np.reshape(tmpv[0], (R, R**i, 1)) # tmp_twid = np.reshape(tmp_perm, (N, )) * np.reshape(D, (N, )) tmp_twid = tmp_perm * D # Product with Butterfly y[:] = np.reshape(dft_mat @ np.reshape(tmp_twid, (R, R**(K - 1))), (N, ))
import os import sys import click @click.command() @click.argument("state_file", type=str) @click.argument("exit_1", type=int) @click.argument("exit_2", type=int) @click.argument("exit_3", type=int) def main( state_file: str, exit_1: int, exit_2: int, exit_3: int, ): if not os.path.exists(state_file): state = 0 else: with open(state_file, "rt") as fp: state = int(fp.read()) state += 1 with open(state_file, "wt") as fp: fp.write(str(state)) if state == 1: print(f"Exiting with status: {exit_1}") sys.exit(exit_1) if state == 2: print(f"Exiting with status: {exit_2}") sys.exit(exit_2) if state == 3: print(f"Exiting with status: {exit_3}") sys.exit(exit_3) if __name__ == "__main__": main()
str1 = 'I love Python Programming' str2 = 'Python' str3 = 'Java' print(f'"{str1}" contains "{str2}" = {str2 in str1}') print(f'"{str1}" contains "{str2.lower()}" = {str2.lower() in str1}') print(f'"{str1}" contains "{str3}" = {str3 in str1}') if str2 in str1: print(f'"{str1}" contains "{str2}"') else: print(f'"{str1}" does not contain "{str2}"') index = str1.find(str2) if index != -1: print(f'"{str1}" contains "{str2}"') else: print(f'"{str1}" does not contain "{str2}"') index = str1.find(str3) if index is not -1: print(f'"{str1}" contains "{str3}"') else: print(f'"{str1}" does not contain "{str3}"')
from amaranth.back import verilog from register_bank import RegisterBank top = RegisterBank() with open("register_bank.v", "w") as f: f.write(verilog.convert(top, ports=[top.reset, top.regNum0, top.regNum1, top.wRegNum, top.writeEnable, top.dataOut0, top.dataOut1, top.dataIn]))
import sys sys.path.append("yam") import config def test_config_man(): config.setConfigFolder("./") assert config.getConfigFolder() == "./" config.setProperty("test-property", "test-value") assert config.getProperty("test-property") == "test-value" config.deleteConfigFile()
import numpy as np from sklearn.metrics.scorer import _BaseScorer from solnml.components.utils.constants import CLS_TASKS, IMG_CLS from solnml.datasets.base_dl_dataset import DLDataset from solnml.components.evaluators.base_dl_evaluator import get_estimator_with_parameters from solnml.components.ensemble.dl_ensemble.base_ensemble import BaseEnsembleModel from solnml.components.models.img_classification.nn_utils.nn_aug.aug_hp_space import get_test_transforms from functools import reduce class Bagging(BaseEnsembleModel): def __init__(self, stats, ensemble_size: int, task_type: int, max_epoch: int, metric: _BaseScorer, timestamp: float, output_dir=None, device='cpu', **kwargs): super().__init__(stats=stats, ensemble_method='bagging', ensemble_size=ensemble_size, task_type=task_type, max_epoch=max_epoch, metric=metric, timestamp=timestamp, output_dir=output_dir, device=device) if self.task_type == IMG_CLS: self.image_size = kwargs['image_size'] def fit(self, train_data): # Do nothing, models has been trained and saved. return self def predict(self, test_data: DLDataset, mode='test'): model_pred_list = list() final_pred = list() model_cnt = 0 for algo_id in self.stats["include_algorithms"]: model_configs = self.stats[algo_id]['model_configs'] for idx, config in enumerate(model_configs): if self.task_type == IMG_CLS: test_transforms = get_test_transforms(config, image_size=self.image_size) test_data.load_test_data(test_transforms) test_data.load_data(test_transforms, test_transforms) else: test_data.load_test_data() test_data.load_data() if mode == 'test': dataset = test_data.test_dataset else: if test_data.subset_sampler_used: dataset = test_data.train_dataset else: dataset = test_data.val_dataset estimator = get_estimator_with_parameters(self.task_type, config, self.max_epoch, dataset, self.timestamp, device=self.device) if self.task_type in CLS_TASKS: if mode == 'test': model_pred_list.append(estimator.predict_proba(test_data.test_dataset)) else: if test_data.subset_sampler_used: model_pred_list.append( estimator.predict_proba(test_data.train_dataset, sampler=test_data.val_sampler)) else: model_pred_list.append(estimator.predict_proba(test_data.val_dataset)) else: if mode == 'test': model_pred_list.append(estimator.predict(test_data.test_dataset)) else: if test_data.subset_sampler_used: model_pred_list.append( estimator.predict(test_data.train_dataset, sampler=test_data.val_sampler)) else: model_pred_list.append(estimator.predict(test_data.val_dataset)) model_cnt += 1 # Calculate the average of predictions for i in range(len(model_pred_list[0])): sample_pred_list = [model_pred[i] for model_pred in model_pred_list] pred_average = reduce(lambda x, y: x + y, sample_pred_list) / len(sample_pred_list) final_pred.append(pred_average) return np.array(final_pred) def get_ens_model_info(self): raise NotImplementedError
# -*- coding: utf-8 -*- __version__ = '$Id$' import family # The wikispecies family class Family(family.WikimediaFamily): def __init__(self): super(Family, self).__init__() self.name = 'species' self.langs = { 'species': 'species.wikimedia.org', } self.namespaces[4] = { '_default': [u'Wikispecies', self.namespaces[4]['_default']], } self.namespaces[5] = { '_default': [u'Wikispecies talk', self.namespaces[5]['_default']], } self.interwiki_forward = 'wikipedia'
# 用摄像头捕获视频 # 先创建一个VideoCapture对象. 它的参数可以实设备的索引号 # 或是一个视频文件. # Cap.isOpen检查是否初始化成功 # cap.get(propId)可以获取是平的一些参数信息, propId从0~18代表视频的一个属性 # cap.set(propId, value)可以修改视频属性 import numpy as np import cv2 cap = cv2.VideoCapture(0) # Define the codec and create VideoWriter object # 利用cv2.VideoWriter_fourcc(*’XVID’)定义视频格式,然后创建视频写入对象。 fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('/path/to/output.avi', fourcc, 20, (640, 480)) while(True): # Capture frame-by-frame ret, frame = cap.read() # cap.read()返回True/False print(cap.get(3), cap.get(4)) out.write(frame) # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #Display the resulting frame cv2.imshow('frame', gray) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
#!/usr/bin/python # coding=UTF-8 from math import log import os import re import sys from comparator import calculate_errors from tokenizer import Tokenizer from trainer import Trainer from estimator import Estimator verbose = False class Model(): def __init__(self, tokenizer, estimator): self.tokenizer = tokenizer self.estimator = estimator self.found_names = {} def extract_names(self, tkns, second_passing): self.found_names = {} tkns = [t for t in tkns if not t.tkn in ['dr', 'drs', 'drd', 'mr', 'mrs', 'ms', 'professor', 'dipl', 'prof', 'miss', 'emeritus', 'ing', 'assoc', 'asst', 'lecturer', 'ast', 'res', 'inf', 'diplom', 'jun', 'junprof', 'inform', 'lect', 'senior', 'ass', 'ajarn', 'honorarprof', 'theol', 'math', 'phil', 'doz', 'dphil']] i = 0 while i <= len(tkns) - 4: cur_tkns = tkns[i:i+4] # el = cur_tkns[0].element # cur_tkns = [t for t in cur_tkns if t.element == el] full_probs = self.estimator.get_full_probs(cur_tkns, second_passing) index = full_probs.index(max(full_probs)) arr = [ 'WWWW', 'WWWN', 'WWNW', 'WWNN', 'WNWW', 'WNWN', 'WNNW', 'WNNN', 'NWWW', 'NWWN', 'NWNW', 'NWNN', 'NNWW', 'NNWN', 'NNNW', 'NNNN', 'Nnnn', 'NNnn', 'NNNn' ] name = " ".join([t.tkn for t in tkns[i:i+4]]) probs = [arr[j] + str(full_probs[j]) for j in range(0,19)] # print "xxx", name, probs if index < 12: # Is word. tkns[i].is_name = False i += 1 else: name_length = 2 if (index - 12 == 0) else index - 11 if index == 16: tkns[i].is_name = False i += 1 continue elif index == 17: name_length = 2 elif index == 18: name_length = 3 if name_length > len(cur_tkns): name_length = len(cur_tkns) name_start = int(i) name_end = int(i) + int(name_length) name_tkns = tkns[name_start:name_end] for tkn in name_tkns: tkn.is_name = True name_tkns = [t.tkn for t in name_tkns if re.search('[0-9]', t.tkn) == None] titles = ['dr', 'mr', 'mrs', 'ms', 'professor', 'dipl', 'prof', 'miss', 'emeritus', 'ing'] name_tkns = [t for t in name_tkns if not t in titles] i += name_length if len(name_tkns) <= 1: continue if len([t for t in name_tkns if len(t) > 1]) == 0: continue name = " ".join(name_tkns).encode('utf-8') self.found_names[name] = [full_probs[0], full_probs[index]] return tkns def compare(self, x, y): return int((float(y[0]) - float(y[1])) - (float(x[0]) - float(x[1]))) def print_results(self): # for name in self.found_names: for name in sorted(self.found_names, cmp=self.compare, key=self.found_names.get): if verbose: print name, self.found_names[name] else: print name def extract_html(self, html): tkns = self.tokenizer.tokenize(html) self.estimator.calculate_tkn_incidence(tkns) tkns = self.extract_names(tkns, False) for i in range(0, 2): self.estimator.calculate_secondary_features(tkns) tkns = self.tokenizer.tokenize(html) tkns = self.extract_names(tkns, True) # This method is a faster version of the name extraction # algorithm. It is less efficient, but it is enough to serve # as a feature for the classifier. def extract_html_simple(self, html): tkns = self.tokenizer.tokenize(html) tkns = self.extract_names(tkns, False) def extract(self, filename): with open(filename) as f: html = f.read() self.extract_html(html) fold = 1 def create_model(): tokenizer = Tokenizer() estimator= Estimator(tokenizer) trainer = Trainer(tokenizer) estimator.load_name_cond_probs("data/probabilities/tokenized_authors_prob.txt") estimator.load_word_cond_probs("data/probabilities/conditional_not_a_name_prob.txt") # estimator.load_conditional_probabilities("data/probabilities/conditional_probs_4.txt") estimator.load_conditional_probabilities("data/probabilities/fold_" + str(fold) + ".txt") model = Model(tokenizer, estimator) return model if __name__ == "__main__": model = create_model() trainer = Trainer(Tokenizer()) if len(sys.argv) > 1: if len(sys.argv) > 2 and sys.argv[2] == '-v': verbose = True if sys.argv[1] == 'train': test_path = "downloaded_pages/faculty" expected_path = "data/correct_names" # file_nums = [f[-7:-4] for f in os.listdir(expected_path) if os.path.isfile(os.path.join(expected_path, f))] file_nums = [ '180', '197', '156', '203', '095', '052', '072', '126', '184', '086', '102', '034', '007', '011', '105', '199', '182', '092', '128', '031', '014', '124', '129', '050', '024', '080', '122', '076', '134', '206', '067', '216', '170', '107', '174', '085', '027', '074', '049', '099', '177', '127', '131', '026', '192', '123', '019', '017', '178', '036', '187', '113', '098', '041', '020', '146', '001', '132', '191', '112', '101', '044', '037', '155', '022', '149', '201', '008', '077', '152', '161', '091', '189', '087', '114', '082', '157', '100', '120', '006', '147', '106', '039', '150', '209', '053', '144', '175', '005', '159', '183', '013', '118', '016', '136', '158', '162', '094', '088', '210', '151', '133', '029', '166', '069', '066', '061', '045', '195', '115', '176', '010', '116', '121', '015', '171', '057', '063', '207', '194', # '214', '179', '135', '021', '093', '208', '004', '047', '215', '211', # '025', '038', '033', '071', '190', '160', '108', '141', '096', '202', # '154', '009', '023', '186', '117', '002', '111', '125', '064' ] count = 1 for file_num in file_nums: print "File", file_num, count, 'of', len(file_nums) count += 1 test_file = os.path.join(test_path, file_num + ".html") expected_file = os.path.join(expected_path, "names_" + file_num + ".txt") if not os.path.isfile(test_file): print "Missing file", test_file quit() elif not os.path.isfile(expected_file): print "Missing file", expected_file quit() trainer.train(test_file, expected_file) trainer.compute_probabilities() else: model.extract(sys.argv[1]) model.print_results() else: test_path = "downloaded_pages/faculty" expected_path = "data/correct_names" file_nums = [f[-7:-4] for f in os.listdir(expected_path) if os.path.isfile(os.path.join(expected_path, f))] for i in range(1, 6): fold = i model = create_model() file_nums_fold = [ ['180', '197', '156', '203', '095', '052', '072', '126', '184', '086', '102', '034', '007', '011', '105', '199', '182', '092', '128', '031', '014', '124', '129', '050', '024', '080', '122', '076', '134', '206'], ['067', '216', '170', '107', '174', '085', '027', '074', '049', '099', '177', '127', '131', '026', '192', '123', '019', '017', '178', '036', '187', '113', '098', '041', '020', '146', '001', '132', '191', '112'], ['101', '044', '037', '155', '022', '149', '201', '008', '077', '152', '161', '091', '189', '087', '114', '082', '157', '100', '120', '006', '147', '106', '039', '150', '209', '053', '144', '175', '005', '159'], ['183', '013', '118', '016', '136', '158', '162', '094', '088', '210', '151', '133', '029', '166', '069', '066', '061', '045', '195', '115', '176', '010', '116', '121', '015', '171', '057', '063', '207', '194'], ['214', '179', '135', '021', '093', '208', '004', '047', '215', '211', '025', '038', '033', '071', '190', '160', '108', '141', '096', '202', '154', '009', '023', '186', '117', '002', '111', '125', '064'] ] file_nums = file_nums_fold[fold - 1] type_1_errors = 0 type_2_errors = 0 test_names_count = 0 expected_names_count = 0 for file_num in file_nums: test_file = os.path.join(test_path, file_num + ".html") expected_file = os.path.join(expected_path, "names_" + file_num + ".txt") if not os.path.isfile(test_file): print "Missing file", test_file quit() elif not os.path.isfile(expected_file): print "Missing file", expected_file quit() model.extract(test_file) type_1, type_2, correct_names = calculate_errors(expected_file, model.found_names) type_1_errors += len(type_1) type_2_errors += len(type_2) test_names_count += len(type_1) + len(correct_names) expected_names_count += len(type_2) + len(correct_names) # print "File", test_file precision = 1.0 - float(len(type_1)) / (len(type_1) + len(correct_names)) recall = 1.0 - float(len(type_2)) / (len(type_2) + len(correct_names)) # print precision, ',', recall # print "False positives:", float(len(type_1)), '/', (len(type_1) + len(correct_names)) # print "False negatives:", float(len(type_2)), '/', (len(type_2) + len(correct_names)) # print "Total false positives:", type_1_errors, "/", test_names_count, float(type_1_errors) / test_names_count # print "Total false negatives:", type_2_errors, "/", expected_names_count, float(type_2_errors) / expected_names_count precision = 1.0 - float(type_1_errors) / test_names_count recall = 1.0 - float(type_2_errors) / expected_names_count print precision, ',', recall
import pygame import time import sys from grid import grid # Colors used black = (0, 0, 0) white = (255, 255, 255) gray = (192, 192, 192) MARGIN = 5 # Margin between cells WIDTH = 20 # Cell width HEIGHT = 20 # Cell height ROW = 40 # Random row count COL = 40 # Random column count speed_delta = 10 max_speed = 125 min_speed = 5 speed = min_speed done = False pause = False pygame.init() pygame.display.set_caption("Game of Life") clock = pygame.time.Clock() main = grid() if len(sys.argv) > 1: main.load_map(sys.argv[1]) else: main.load_random(ROW, COL) window_size = [WIDTH * len(main.grid[0]) + MARGIN * len(main.grid[0]) + MARGIN, HEIGHT * len(main.grid)+ MARGIN * len(main.grid) + MARGIN] screen = pygame.display.set_mode(window_size) screen.fill(gray) def draw_grid(): for row in range(len(main.grid)): for col in range(len(main.grid[row])): if main.grid[row][col] == 0: color = white elif main.grid[row][col] == 1: color = black pygame.draw.rect(screen, color, [(MARGIN + WIDTH) * col + MARGIN, (MARGIN + HEIGHT) * row + MARGIN, WIDTH, HEIGHT]) while not done: for event in pygame.event.get(): if event.type == pygame.QUIT: # Quit done = True elif event.type == pygame.KEYDOWN: if event.key == pygame.K_p: # Pause pause = not pause elif event.key == pygame.K_r: # Reset if main.map_type == "random": main.load_random(ROW, COL) else: main.load_map(sys.argv[1]) speed = min_speed if pause: pause = not pause elif event.key == pygame.K_ESCAPE: # Quit done = True elif event.key == pygame.K_RIGHT: # Speed up speed += speed_delta if speed > max_speed: speed = max_speed elif event.key == pygame.K_LEFT: # Speed down speed -= speed_delta if speed < min_speed: speed = min_speed if not pause: screen.fill(gray) draw_grid() main.apply_rules() clock.tick(speed) pygame.display.flip() pygame.quit()
#!/usr/bin/env python #-*- coding: utf-8 -*- import sys from lxml import etree, html def run(bk): count = 0 print('start') for (file_id, _) in bk.text_iter(): modified = True html_original = bk.readfile(file_id) doc = html.fromstring(html_original.encode("utf-8")) for link in doc.xpath("//*[local-name() = 'link']"): if link.attrib['href'] == "../Styles/t2bv2l.css": modified = False break if modified: count += 1 head = doc.xpath("//*[local-name() = 'head']")[0] link = etree.SubElement(head, "link", attrib={'href': "../Styles/t2bv2l.css", 'rel': "stylesheet", 'type': "text/css" }) print("Modified File : ", file_id) bk.writefile(file_id, etree.tostring( doc, encoding="utf-8", xml_declaration=True).decode('utf8')) # css if count > 0: cssdata = ''' html{ direction:rtl; -ms-writing-mode: tb-rl; -epub-writing-mode: vertical-rl; -webkit-writing-mode: vertical-rl; writing-mode: vertical-rl; } body { direction:ltr; word-break: normal; text-align: justify; text-justify: inter-ideograph; vertical-align: baseline; word-wrap: break-word; line-break: normal; -epub-line-break: normal; -webkit-line-break: normal; text-orientation: upright; -webkit-text-orientation: upright; -epub-text-orientation: upright; } .tcy { -epub-text-combine: horizontal; -webkit-text-combine: horizontal; -ms-text-combine-horizontal: all; text-combine-horizontal: all; text-combine-upright: all; } .upright { -epub-text-orientation: rotate-right; -epub-text-orientation: upright; -webkit-text-orientation: upright; -epub-text-combine: horizontal; -webkit-text-combine: horizontal; -ms-text-combine-horizontal: all; text-combine-horizontal: all; text-combine-upright: all; }''' basename = "t2bv2l.css" uid = "t2bv2lcss" mime = "text/css" bk.addfile(uid, basename, cssdata, mime) bk.setspine_ppd('rtl') xml = bk.getmetadataxml() if '<meta name="primary-writing-mode" content="vertical-rl"/>' not in xml: xml = xml.replace('</metadata>', '<meta name="primary-writing-mode" content="vertical-rl"/>\n</metadata>') bk.setmetadataxml(xml) print('end') return 0 def main(): print("I reached main when I should not have\n") return -1 if __name__ == "__main__": sys.exit(main())
from output.models.ms_data.particles.particles_r020_xsd.particles_r020 import ( B, R, Doc, ) from output.models.ms_data.particles.particles_r020_xsd.particles_r020_imp import ( ImpElem1, ImpElem2, ) __all__ = [ "B", "R", "Doc", "ImpElem1", "ImpElem2", ]
from django.contrib import admin from tastie.models import SimpleRest admin.site.register(SimpleRest)
import mysql.connector import csv mydb = mysql.connector.connect( host="localhost", user="root", password="admin123", db="db_TEST" ) mycursor = mydb.cursor() # mycursor.execute("CREATE TABLE customers (customerid INT AUTO_INCREMENT PRIMARY KEY,firstname TEXT,lastname TEXT,companyname TEXT,billingaddress1 TEXT,billingaddress2 TEXT,city TEXT,state TEXT,postalcode TEXT,country TEXT,phonenumber TEXT,emailaddress TEXT,createddate TEXT)") csv_data = csv.reader(file('customer.csv'), delimiter=',') count = 0 for row in csv_data: if count == 0: count +=1 else: mycursor.execute("INSERT INTO customers(customerid,firstname,lastname,companyname,billingaddress1,billingaddress2,city,state,postalcode,country,phonenumber,emailaddress,createddate) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)",row) count += 1 print(row) print "Done" # mycursor.execute("SELECT * FROM customers") # # myresult = mycursor.fetchall() # # for x in myresult: # print(x)
__author__ = 'renderle' def scrambleForecast(fc1, fc2): return (fc1 + fc2) /2;
# Generated by Django 3.1.13 on 2022-01-07 16:23 import django.db.models.deletion from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [("api", "0051_reapply_partition_trigger_func")] operations = [ migrations.AddField( model_name="sources", name="provider", field=models.ForeignKey( db_constraint=False, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="api.provider" ), ), migrations.RunSQL("UPDATE public.api_sources SET provider_id = koku_uuid::uuid"), ]
import itertools from computation.split_and_merge.domain_centers.calculate_domain_centers import calculate_domain_centers as calc_dom from computation.split_and_merge.util.pos_bool_type import PosBoolType from computation.split_and_merge.util.numpy_extension.find_index_of_first_element_not_equivalent import find_index_of_first_element_not_equivalent from computation.split_and_merge.util.node_border_iterator import iterate_node_border_with_adjacent_node_cells it = itertools.count() class ObjectType: DOMAIN = it.next() CAVITY = it.next() def is_homogenous_split(data_part, mask_part): return PosBoolType(find_index_of_first_element_not_equivalent(data_part, mask_part)) def is_homogenous_merge(image_data_part, image_merge_data): def sign(x): return 1 if x > 0 else -1 if x < 0 else 0 return sign(image_data_part[0, 0, 0]) == sign(image_merge_data[0, 0, 0]) def is_relevant_part(hom_image_data_part, object_type): obj_to_func = { ObjectType.DOMAIN: is_domain_part, ObjectType.CAVITY: is_cavity_part } return obj_to_func[object_type](hom_image_data_part) def is_domain_part(hom_image_data_part): return hom_image_data_part[0, 0, 0] == 0 def is_cavity_part(hom_image_data_part): return hom_image_data_part[0, 0, 0] < 0 def is_inside_volume(hom_mask_part): return not bool(hom_mask_part[0, 0, 0]) def is_neighboring(node1, node2): x_, y_, z_ = node1[0] w_, h_, d_ = node1[1] x, y, z = node2[0] w, h, d = node2[1] return x-w_ <= x_ <= x+w and y-h_ <= y_ <= y+h and z-d_ <= z_ <= z+d def split(data, mask, graph, object_type): node = ((0, 0, 0), data.shape) graph.set_initial_node(node) stack = [node] while len(stack) > 0: pos, dim = stack.pop() is_hom = is_homogenous_split(data[pos[0]:pos[0]+dim[0], pos[1]:pos[1]+dim[1], pos[2]:pos[2]+dim[2]], mask[pos[0]:pos[0]+dim[0], pos[1]:pos[1]+dim[1], pos[2]:pos[2]+dim[2]]) if not is_hom: nodes = graph.split_node((pos, dim), is_hom) for node in nodes: stack.append(node) elif (is_relevant_part(data[pos[0]:pos[0]+dim[0], pos[1]:pos[1]+dim[1], pos[2]:pos[2]+dim[2]], object_type) or not is_inside_volume(mask[pos[0]:pos[0]+dim[0], pos[1]:pos[1]+dim[1], pos[2]:pos[2]+dim[2]])): graph.remove_node((pos, dim)) graph.forbid_splitting() def merge(data, graph): for node, neighbors in graph.iteritems(): for neighbor in neighbors: if not graph.is_merged(node, neighbor): pos_node, dim_node = node pos_neighbor, dim_neighbor = neighbor data_node = data[pos_node[0]:pos_node[0]+dim_node[0], pos_node[1]:pos_node[1]+dim_node[1], pos_node[2]:pos_node[2]+dim_node[2]] data_neighbor = data[pos_neighbor[0]:pos_neighbor[0]+dim_neighbor[0], pos_neighbor[1]:pos_neighbor[1]+dim_neighbor[1], pos_neighbor[2]:pos_neighbor[2]+dim_neighbor[2]] if is_homogenous_merge(data_node, data_neighbor): graph.merge_nodes(node, neighbor) def add_periodic_neighbors(graph): border_node_translation_vectors = graph.get_border_node_translation_vectors() border_nodes = border_node_translation_vectors.keys() for i, n in enumerate(border_nodes[:-1]): for m in border_nodes[i+1:]: m_x, m_y, m_z = m[0] for translation_vector in border_node_translation_vectors[m]: translated_node = ((m_x+translation_vector[0], m_y+translation_vector[1], m_z+translation_vector[2]), m[1]) if is_neighboring(n, translated_node): graph.add_neighbors(n, [m], translation_vectors=[translation_vector]) break def merge_periodic_border(data, graph): for border_node, border_neighbors in graph.iter_border_items(): for border_neighbor in border_neighbors: if not graph.is_merged(border_node, border_neighbor, detect_cyclic_merge=True): pos_node, dim_node = border_node pos_neighbor, dim_neighbor = border_neighbor data_node = data[pos_node[0]:pos_node[0]+dim_node[0], pos_node[1]:pos_node[1]+dim_node[1], pos_node[2]:pos_node[2]+dim_node[2]] data_neighbor = data[pos_neighbor[0]:pos_neighbor[0]+dim_neighbor[0], pos_neighbor[1]:pos_neighbor[1]+dim_neighbor[1], pos_neighbor[2]:pos_neighbor[2]+dim_neighbor[2]] if is_homogenous_merge(data_node, data_neighbor): graph.merge_nodes(border_node, border_neighbor) def mark_domain_points(data, areas): for i, area in enumerate(areas): for node in area: x, y, z = node[0] w, h, d = node[1] data[x:x+w, y:y+h, z:z+d] = -(i+1) def calculate_domain_centers(atoms, combined_translation_vectors, areas): return calc_dom(atoms, combined_translation_vectors, areas) def get_domain_area_cells(areas): cell_positions = [[(pos[0] + x, pos[1] + y, pos[2] + z) for pos, dim in area for x, y, z in itertools.product(*(range(c) for c in dim))] for area in areas] return cell_positions def get_domain_surface_cells(data, mask, areas): domain = None def func(border_x, border_y, border_z, adjacent_node_cells): if bool(data[border_x, border_y, border_z]) or bool(mask[border_x, border_y, border_z]): for n in adjacent_node_cells: domain.add(n) domains = [] for area in areas: domain = set() for node in area: iterate_node_border_with_adjacent_node_cells(node, func) domains.append(list(domain)) return domains
# -*- coding: utf-8 -*- __all__ = ["Zero", "Constant"] import theano.tensor as tt class Zero: def __call__(self, x): return tt.zeros_like(x) class Constant: def __init__(self, value): self.value = tt.as_tensor_variable(value) def __call__(self, x): return tt.zeros_like(x) + self.value
# http://soundjax.com/beep-1.html # structure the class # define what the cla<ss does # add comments # # add to string - complexity # impr: # same ingredient twice # keeping sorted the steps # --------------------------------------------------------------- # Imports # --------------------------------------------------------------- from datetime import datetime, timedelta import time import pygame # --------------------------------------------------------------- # Class - RecipeStep # --------------------------------------------------------------- class RecipeStep: """One step in a recipe. Is defined by the time-offset (in minutes) from the start of cooking when we want to do it and the instruction """ # --------------------------------------------------------------- # Initialisation # --------------------------------------------------------------- def __init__(self, instruction, time_offset_min): """Creates a new recipe-step Includes the instruction what to do and the time-offset from the start of the recipe""" self.time_offset_min = time_offset_min self.instruction = instruction # --------------------------------------------------------------- # Interface # --------------------------------------------------------------- def get_string(self, recipe_start_time): """Gets the string representing the step. The time when it should be carried out (computed by the recipe start time) and the instruction """ return str((recipe_start_time + timedelta(0, 60*self.time_offset_min)).time()) + ": " + self.instruction def __str__(self): return "After " + str(self.time_offset_min) + " minutes, " + self.instruction # --------------------------------------------------------------- # Class - Recipe # --------------------------------------------------------------- class Recipe: """Cooking recipe. Is basically a set of ingredients (with their quantities) and a list of steps to carry out during cooking """ # --------------------------------------------------------------- # Constants # --------------------------------------------------------------- QUANTITY = 'quantity' MEASURE = 'measure' # --------------------------------------------------------------- # Initialisation - how do we construct one # --------------------------------------------------------------- def __init__(self, name): """Construct an empty recipe (containing no ingredients of steps to carry out)""" self.name = name self.steps = [] self.ingredients = {} # --------------------------------------------------------------- # Interface - what functionality is offered # --------------------------------------------------------------- def add_ingredient(self, ingredient, quantity=1, measure="pieces"): """Adds some quantity of the ingredient to the recipe""" if ingredient in self.ingredients: self.ingredients[ingredient][self.QUANTITY] += quantity else: self.ingredients[ingredient] = {self.QUANTITY: quantity, self.MEASURE: measure} def print_ingredients(self): """Prints the ingredients of the recipe""" print(self.get_ingredients_str()) def add_step(self, recipe_step): """Adds another cooking step to the recipe""" self.steps.append(recipe_step) def print_steps(self): """Prints the steps of the recipe""" print(self.get_steps_str()) def print_recipe(self): """Prints the whole recipe""" print("Recipe for " + self.name) print(str(self)) print() def run_recipe(self): """Runs the recipe Prints the ingredients and then the individual steps one by one, when their time comes """ self.print_ingredients() self.__sort_steps_by_time() recipe_start_time = datetime.now() print("Making " + self.name + ". Started at " + str(recipe_start_time.time())) for i in range(len(self.steps)): pygame.mixer.music.play() print(str(i + 1) + ": " + self.steps[i].get_string(recipe_start_time)) if i != len(self.steps) - 1: print("\tNext step at " + self.steps[i + 1].get_string(recipe_start_time)) time.sleep(self.steps[i + 1].time_offset_min - self.steps[i].time_offset_min) else: print("\tThis is the last step, don't screw it!") print("Should be ready now, enjoy :-)") # --------------------------------------------------------------- # Implementation # --------------------------------------------------------------- def __str__(self): return self.get_ingredients_str() + "\n" + self.get_steps_str() def get_steps_str(self): """Returns the string with the steps of the recipe""" self.__sort_steps_by_time() steps_str = "Steps for " + self.name + ":\n" for step in self.steps: steps_str += "\t" + str(step) + "\n" return steps_str def get_ingredients_str(self): """Returns the string with the ingredients of the recipe""" ingredients_str = "Ingredients for " + self.name + ":\n" for ingredient in self.ingredients: ingredients_str += "\t" + str(ingredient) + "\n" return ingredients_str def __sort_steps_by_time(self): """Sorts the steps of the recipe by the time when they should be carried out""" self.steps.sort(key=lambda step: step.time_offset_min) # --------------------------------------------------------------- # Main # --------------------------------------------------------------- if __name__ == "__main__": pygame.init() pygame.mixer.music.load("beep.mp3") smoothie = Recipe("Smoothie") smoothie.add_ingredient("mango") smoothie.add_ingredient("banana") smoothie.add_ingredient("ground coconut", 2, "soup spoons") smoothie.add_ingredient("milk", 1, "dl") smoothie.add_step(RecipeStep("Peel mango and cut to pieces", 0)) smoothie.add_step(RecipeStep("Peel bananas and cut to pieces", 1)) smoothie.add_step(RecipeStep("Add everything to the mixer, with milk and coconut", 2)) smoothie.add_step(RecipeStep("Mix for 120 seconds", 3)) smoothie.add_step(RecipeStep("Drink", 5)) print(smoothie) smoothie.run_recipe()
import os import math import argparse import torch import torch.nn as nn import torch.backends.cudnn as cudnn from PIL import Image import numpy as np from torch.autograd import Variable from torchvision.utils import save_image from torch.utils.data import DataLoader from data.dataloader import ErasingData, ErasingData_test from models.sa_gan import STRnet2 parser = argparse.ArgumentParser() parser.add_argument('--numOfWorkers', type=int, default=0, help='workers for dataloader') parser.add_argument('--modelsSavePath', type=str, default='', help='path for saving models') parser.add_argument('--logPath', type=str, default='') parser.add_argument('--batchSize', type=int, default=16) parser.add_argument('--loadSize', type=int, default=512, help='image loading size') parser.add_argument('--dataRoot', type=str, default='') parser.add_argument('--pretrained',type=str, default='', help='pretrained models for finetuning') parser.add_argument('--savePath', type=str, default='./results/sn_tv/') args = parser.parse_args() cuda = torch.cuda.is_available() if cuda: print('Cuda is available!') cudnn.benchmark = True def visual(image): im =(image).transpose(1,2).transpose(2,3).detach().cpu().numpy() Image.fromarray(im[0].astype(np.uint8)).show() batchSize = args.batchSize loadSize = (args.loadSize, args.loadSize) dataRoot = args.dataRoot savePath = args.savePath result_with_mask = savePath + 'WithMaskOutput/' result_straight = savePath + 'StrOuput_t/' #import pdb;pdb.set_trace() # if not os.path.exists(savePath): # os.makedirs(savePath) # os.makedirs(result_with_mask) # os.makedirs(result_straight) Erase_data = ErasingData_test(dataRoot, loadSize, training=False) Erase_data = DataLoader(Erase_data, batch_size=batchSize, shuffle=True, num_workers=args.numOfWorkers, drop_last=False) netG = STRnet2(3) netG.load_state_dict(torch.load(args.pretrained)) # if cuda: netG = netG.cuda() for param in netG.parameters(): param.requires_grad = False print('OK!') import time netG.eval() for imgs, path,h,w in (Erase_data): start = time.time() if cuda: imgs = imgs.cuda() # gt = gt.cuda() # masks = masks.cuda() out1, out2, out3, g_images,mm = netG(imgs) end = time.time() time_one = end-start print(time_one) g_image = g_images.data.cpu() # gt = gt.data.cpu() # mask = masks.data.cpu() # g_image_with_mask = gt * (mask) + g_image * (1- mask) g_image = torch.nn.functional.interpolate(g_image,[h,w]) # save_image(g_image_with_mask, result_with_mask+path[0]) save_image(g_image, result_straight+path[0].replace('jpg','png'))
import glob import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import matplotlib import matplotlib.colors as mcolors import random matplotlib.rc('text', usetex=True) matplotlib.rc('font', size=15) matplotlib.rc('legend', fontsize=14) def read_metrics(filename: str): opinions = [] df = pd.read_csv(filename) for col in df.columns: opinions.append(df[col].values) p_range = df.columns.astype('float').values return p_range, opinions def filter_files_by(files: list, query: str): return [f for f in files if query in f] def plot_experiment(files, with_weighted_opinion=False, show_q=False, col=None): colors = list(dict(mcolors.TABLEAU_COLORS).values()) colors.insert(0, 'k') colors.append('lime') for i, f in enumerate(files): result = pd.read_csv(f) opinion_type = extract_opinion_type(f) if not with_weighted_opinion and 'weighted_mean_opinion' in opinion_type: continue result.columns = ['p_range', opinion_type] plot_label = extract_name(f) + ' ' + opinion_type.replace('_', ' ') plot_label = plot_label.split('/')[-1] if show_q: plot_label += ' ' + extract_q(f) plt.grid(alpha=0.3) if col: colors[i] = col plt.scatter(result['p_range'], result[opinion_type], color=colors[i]) plt.plot(result['p_range'], result[opinion_type], color=colors[i], alpha=0.6) plt.plot([], [], '-o', label=plot_label, color=colors[i]) plt.xlabel('p') plt.ylabel('opinion') plt.legend() def extract_q(file: str): q = re.search(r'q=\d', file) return q.group(0) def extract_opinion_type(file: str): opinion_type = re.search(r'\D+opinion', file) return opinion_type.group(0)[1:] def extract_name(file: str): return file.split('\\')[-1].split('-q')[0].replace('_', ' ') def fetch_files_from(experiment: str): return glob.glob(f"../../../results/{experiment}/*.txt") def convert_old_format_results(path): """ Convert old `.csv` format into simple p_range, mean_opinion dataframe :param path: """ files = glob.glob(path) for f in files: p_range, opinion = read_metrics(f) opinion = np.transpose(opinion)[-1] # last opinion from simulation df = pd.DataFrame(data={'p_range': p_range, 'opinion': opinion}) save_file = f.split('.csv')[0] save_file = save_file + '.txt' df.to_csv(save_file, index=False, header=False) if __name__ == '__main__': # convert_old_format_results("../../../new_results/q-experiment/*.csv") # convert_old_format_results("../../../new_results/preference-sampling-experiment/*.csv") # convert_old_format_results("../../../new_results/majority-voting-experiment/*.csv") convert_old_format_results( "../../../new_results/directed-undirected-experiment/*.csv")
import torch import torch.nn as nn import numpy as np import sys import disc_span_parser """ class MarginLoss(nn.Module): def __init__(self, complexity, ill_nested, reduction="mean"): super(MarginLoss, self).__init__() self.complexity = complexity self.ill_nested = ill_nested self.mean = (reduction == "mean") # assume that weights are given in a matrix of size (n words + 2, n words + 2) # so the first word will be ignored def forward(self, dep_weights, label_weights, sentences): # remove the first line/col that corresponds to BOS tag dep_weights = {k: v[:, 1:, 1:] for k, v in dep_weights.items()} label_weights = {k: v[:, 1:, 1:] for k, v in label_weights.items()} n_max_words = dep_weights["cont"].shape[1] # it contains bos but they will always be masked n_batch = dep_weights["cont"].shape[0] device = dep_weights["cont"].device # compute gold indices and loss augmented weight loss_augmented_weights = dict() gold_indices = dict() for k in dep_weights.keys(): n_labels = label_weights[k].shape[3] weights = dep_weights[k] + label_weights[k] # the last label will be used as a "fake empty label" value g = torch.empty((n_batch, n_max_words, n_max_words, n_labels), requires_grad=False, device=device).fill_(0.) for b in range(n_batch): x = sentences[b][k + "_spans"][0].to(device) y = sentences[b][k + "_spans"][1].to(device) z = sentences[b][k + "_labels"].to(device) g[b, x, y, z] = 1. gold_indices[k] = g loss_augmented_weights[k] = weights + (1. - g) # compute argmax pred_indices = { k: torch.empty((n_batch, n_max_words, n_max_words, label_weights[k].shape[3]), requires_grad=False, device=device).fill_(0.) for k in dep_weights.keys() } for b in range(n_batch): n_words = len(sentences[b]["words"]) - 2 cont_spans = loss_augmented_weights["cont"][b, :n_words, :n_words] disc_spans = loss_augmented_weights["disc"][b, :n_words, :n_words] gap_spans = loss_augmented_weights["gap"][b, :n_words, :n_words] pred_cst = disc_span_parser.argmax_as_list_parallel( list([cont_spans]), list([disc_spans]), list([gap_spans]), None, self.complexity, self.ill_nested )[0] for label, i, k, l, j in pred_cst: if k < 0: pred_indices["cont"][b, i, j, label] += 1. else: pred_indices["disc"][b, i, j, label] += 1. pred_indices["gap"][b, k+1, l-1, label] += 1. # try to normalize with / gold_indices[k].sum() loss = [loss_augmented_weights[k] * (pred_indices[k] - gold_indices[k]) for k in dep_weights.keys()] loss = [l.sum() for l in loss] loss = sum(loss).sum() if self.mean: loss = loss / n_words return loss class CorrectedBatchUnstructuredProbLoss(nn.Module): def __init__(self, joint=True, reduction="mean"): super(CorrectedBatchUnstructuredProbLoss, self).__init__() self.joint = joint self.builder = nn.BCEWithLogitsLoss(reduction=reduction) # assume that weights are given in a matrix of size (n words + 2, n words + 2) # so the first word will be ignored def forward(self, dep_weights, label_weights, sentences): # remove the first line/col that corresponds to BOS tag dep_weights = {k: v[:, 1:, 1:] for k, v in dep_weights.items()} label_weights = {k: v[:, 1:, 1:] for k, v in label_weights.items()} n_max_words = dep_weights["cont"].shape[1] # it contains bos but they will always be maked n_batch = dep_weights["cont"].shape[0] device = dep_weights["cont"].device # build mask triangle = torch.ones((n_max_words, n_max_words), dtype=bool, device=device, requires_grad=False).triu_(diagonal=0) # dim: (n_batch, max len) sentence_sizes = torch.LongTensor([len(sentence["words"]) for sentence in sentences]).to(device) size_mask = torch.arange(n_max_words, device=device).unsqueeze(0) < sentence_sizes.unsqueeze(1) # our triangular mask! mask = triangle.expand(n_batch, -1, -1) mask = mask * size_mask.unsqueeze(2) mask = mask * size_mask.unsqueeze(1) if self.joint: loss = list() for k in dep_weights.keys(): n_labels = label_weights[k].shape[3] weights = dep_weights[k] + label_weights[k] # the last label will be used as a "fake empty label" value gold_indices = torch.empty((n_batch, n_max_words, n_max_words, n_labels), requires_grad=False, device=device).fill_(0.) for b in range(n_batch): x = sentences[b][k + "_spans"][0].to(device) y = sentences[b][k + "_spans"][1].to(device) z = sentences[b][k + "_labels"].to(device) gold_indices[b, x, y, z] = 1. weights = weights[mask] gold_indices = gold_indices[mask] loss.append(self.builder(weights, gold_indices)) return sum(loss) else: raise NotImplementedError() """ # this is the "correct" loss class BatchUnstructuredApproximateProbLoss(nn.Module): def __init__(self, joint=True, reduction="mean"): super(BatchUnstructuredApproximateProbLoss, self).__init__() self.joint = joint self.builder = nn.CrossEntropyLoss(reduction=reduction) if not joint: self.binary_builder = nn.BCEWithLogitsLoss(reduction=reduction) # assume that weights are given in a matrix of size (n words + 2, n words + 2) # so the first word will be ignored def forward(self, dep_weights, label_weights, sentences): # remove the first line/col that corresponds to BOS tag dep_weights = {k: v[:, 1:, 1:] for k, v in dep_weights.items()} label_weights = {k: v[:, 1:, 1:] for k, v in label_weights.items()} n_max_words = dep_weights["cont"].shape[1] # it contains bos but they will always be maked n_batch = dep_weights["cont"].shape[0] device = dep_weights["cont"].device # build mask triangle = torch.ones((n_max_words, n_max_words), dtype=bool, device=device, requires_grad=False).triu_(diagonal=0) # dim: (n_batch, max len) sentence_sizes = torch.LongTensor([len(sentence["words"]) for sentence in sentences]).to(device) size_mask = torch.arange(n_max_words, device=device).unsqueeze(0) < sentence_sizes.unsqueeze(1) # our triangular mask! mask = triangle.expand(n_batch, -1, -1) mask = mask * size_mask.unsqueeze(2) mask = mask * size_mask.unsqueeze(1) if self.joint: loss = list() for k in dep_weights.keys(): n_labels = label_weights[k].shape[3] weights = dep_weights[k] + label_weights[k] # the last label will be used as a "fake empty label" value gold_indices = torch.empty((n_batch, n_max_words, n_max_words), dtype=torch.long, requires_grad=False, device=device).fill_(n_labels) for b in range(n_batch): x = sentences[b][k + "_spans"][0].to(device) y = sentences[b][k + "_spans"][1].to(device) z = sentences[b][k + "_labels"].to(device) gold_indices[b, x, y] = z weights = weights[mask] # "fake" label weights = torch.cat([weights, torch.zeros((weights.shape[0], 1), device=device)], dim=1) gold_indices = gold_indices[mask] loss.append(self.builder(weights, gold_indices)) return sum(loss) else: loss = list() for k in dep_weights.keys(): n_labels = label_weights[k].shape[3] xs = [sentences[b][k + "_spans"][0].to(device) for b in range(n_batch)] ys = [sentences[b][k + "_spans"][1].to(device) for b in range(n_batch)] # span loss gold_span_indices = torch.zeros((n_batch, n_max_words, n_max_words), dtype=torch.float).to(device) for b in range(n_batch): gold_span_indices[b, xs[b], ys[b]] = 1. gold_span_indices = gold_span_indices[mask] loss.append(self.binary_builder(dep_weights[k].squeeze(-1)[mask], gold_span_indices)) # label loss label_mask = torch.zeros((n_batch, n_max_words, n_max_words), device=device, requires_grad=False, dtype=torch.bool) for b in range(n_batch): label_mask[b, xs[b], ys[b]] = True # this is inefficient, but I do this to ensure the same order after unmasking gold_label_indices = torch.zeros((n_batch, n_max_words, n_max_words), device=device, requires_grad=False, dtype=torch.long) for b in range(n_batch): gold_label_indices[b, xs[b], ys[b]] = sentences[b][k + "_labels"].to(device) loss.append(self.builder(label_weights[k][mask], gold_label_indices[mask])) # maybe it should be this? # return sum(loss) return sum(l.sum() for l in loss) # why is this one wrong? """ class BatchUnstructuredCorrectProbLoss(nn.Module): def __init__(self, joint=True, reduction="mean"): super(BatchUnstructuredCorrectProbLoss, self).__init__() if not joint: raise RuntimeError("Not implemented") self.builder = nn.CrossEntropyLoss(reduction=reduction) def build_indices(self, name, n_words, device): id_x = list() id_y = list() if name == "cont": for i in range(n_words): for j in range(i, n_words): id_x.append(i) id_y.append(j) elif name =="disc" or name == "gap": for i in range(n_words): for j in range(i, n_words): for k in range(i + 1, j): for l in range(k, j): if name == "disc": id_x.append(i) id_y.append(j) else: id_x.append(k) id_y.append(l) else: raise RuntimeError("Invalid name: %s" % name) return ( torch.LongTensor(id_x).to(device), torch.LongTensor(id_y).to(device) ) # assume that weights are given in a matrix of size (n words + 2, n words + 2) # so the first word will be ignored def forward(self, dep_weights, label_weights, sentences): # remove the first line/col that corresponds to BOS tag dep_weights = {k: v[:, 1:, 1:] for k, v in dep_weights.items()} label_weights = {k: v[:, 1:, 1:] for k, v in label_weights.items()} n_batch = dep_weights["cont"].shape[0] device = dep_weights["cont"].device loss = list() weights = {k: dep_weights[k] + label_weights[k] for k in dep_weights.keys()} for k in dep_weights.keys(): n_labels = weights[k].shape[3] for b, sentence in enumerate(sentences): n_words = len(sentence["words"]) - 2 id_x, id_y = self.build_indices(k, n_words, weights[k].device) # the last label will be used as a "fake empty label" value gold_indices = torch.empty((n_words, n_words), dtype=torch.long, requires_grad=False, device=device).fill_(n_labels) x = sentences[b][k + "_spans"][0].to(device) y = sentences[b][k + "_spans"][1].to(device) z = sentences[b][k + "_labels"].to(device) gold_indices[x, y] = z sentence_weights = weights[k][b, id_x, id_y] # "fake" label sentence_weights = torch.cat([sentence_weights, torch.zeros((sentence_weights.shape[0], 1), device=device)], dim=1) gold_indices = gold_indices[id_x, id_y] loss.append(self.builder(sentence_weights, gold_indices)) return sum(loss) """
import collections # Keep indexes of good candidates in deque d. # The indexes in d are from the current window, they're increasing, # and their corresponding nums are decreasing. # Then the first deque element is the index of the largest window value. # For each index i: # 1. Pop (from the end) indexes of smaller elements (they'll be useless). # 2. Append the current index. # 3. Pop (from the front) the index i - k, if it's still in the deque # (it falls out of the window). # 4. If our window has reached size k, # append the current window maximum to the output. def max_sliding_window(nums, k): d = collections.deque() out = [] for i, n in enumerate(nums): while d and nums[d[-1]] < n: d.pop() d += i, if d[0] == i - k: d.popleft() if i >= k - 1: out += nums[d[0]], return out array = [1,3,-1,-3,5,3,6,7] print(max_sliding_window(array))
from distutils.core import setup, Extension import numpy module =Extension('FunNorm', sources = ['FunNorm.c'],libraries=['gsl','gslcblas','m'],include_dirs=[numpy.get_include()+'/numpy']) setup(name = 'Funciones creadas por Nestor: Extensiones de C/Python', version = '1.0', ext_modules = [module])
# Copyright 2013-2014, Simon Kennedy, [email protected] # # Part of 'hiss' the asynchronous notification library import hashlib from os import urandom from binascii import hexlify, unhexlify from hiss.exception import ValidationError DEFAULT_HASH_ALGORITHM = 'SHA256' class HashInfo(): """Records the hash information required to be sent to remote hosts. :param algorithm: The algorithm used to generate the hash :type algorithm: str :param key_hash: The hash of the key. Generated by the hash algorithm :type key_hash: bytes :param salt: The salt added to the key to generate the key_hash :type salt: bytes """ def __init__(self, algorithm, key_hash, salt): self._algorithm = None self._key_hash = None self._salt = None self.algorithm = algorithm self.key_hash = key_hash self.salt = salt @property def algorithm(self): """Hash algorithm. One of MD5, SHA1 or SHA256""" return self._algorithm @algorithm.setter def algorithm(self, value): if isinstance(value, (bytes, bytearray)): value = value.decode('UTF-8') value = value.upper() if value not in ['MD5', 'SHA1', 'SHA256']: raise ValidationError('Unknown hash algorithm %s specified.' % value) self._algorithm = value @property def key_hash(self): """algorithm(password + salt)""" return self._key_hash @key_hash.setter def key_hash(self, value): if isinstance(value, str): value = unhexlify(value.encode('UTF-8')) self._key_hash = value @property def salt(self): """Salt used to compute the key_hash.""" return self._salt @salt.setter def salt(self, value): if isinstance(value, str): value = unhexlify(value.encode('UTF-8')) self._salt = value def __eq__(self, other): return self.algorithm == other.algorithm and \ self.key_hash == other.key_hash and \ self.salt == other.salt def __repr__(self): return '%s:%s.%s' % (self.algorithm, hexlify(self.key_hash).decode('UTF-8'), hexlify(self.salt).decode('UTF-8')) def generate_hash(password, hash_algorithm=DEFAULT_HASH_ALGORITHM): """Create a :class:`~hiss.hash.HashInfo` instance for the password using the specified hash algorithm. :param password: The password to generate the hash for. :type password: str or UTF-8 encoded bytes. :param hash_algorithm: The algorithm to use to generate the hash (one of `MD5`, `SHA1`, `SHA256` (default) or `SHA512`) :type hash_algorithm: str :raises HissError: if the hash_algorithm specified is not known """ if hash_algorithm not in ['MD5', 'SHA1', 'SHA256', 'SHA512']: raise ValidationError("Don't know how to handle hash algorithm %s" % hash_algorithm) if isinstance(password, str): password = password.encode('UTF-8') salt = generate_salt() key_basis = password + salt if hash_algorithm == 'MD5': key = hashlib.md5(key_basis).digest() key_hash = hashlib.md5(key).digest() elif hash_algorithm == 'SHA1': key = hashlib.sha1(key_basis).digest() key_hash = hashlib.sha1(key).digest() elif hash_algorithm == 'SHA256': key = hashlib.sha256(key_basis).digest() key_hash = hashlib.sha256(key).digest() elif hash_algorithm == 'SHA512': key = hashlib.sha512(key_basis).digest() key_hash = hashlib.sha512(key).digest() return HashInfo(DEFAULT_HASH_ALGORITHM, key_hash, salt) def validate_hash(password, hash_to_validate): """Validate the information stored in the :class:`~hiss.hash.HashInfo` instance against the password. :param password: The password used to validate the hash. :type password: str or UTF-8 encoded bytes. :param hash_to_validate: The hash to validate :type hash_to_validate: :class:`~hiss.hash.HashInfo` :raises HissError: if the hash validation fails. """ if hash_to_validate.algorithm not in ['MD5', 'SHA1', 'SHA256', 'SHA512']: raise ValueError("Don't know how to validate hash algorithm %s" % hash_to_validate.algorithm) if isinstance(password, str): password = password.encode('UTF-8') key_basis = password + hash_to_validate.salt if hash_to_validate.algorithm == 'MD5': key = hashlib.md5(key_basis).digest() key_hash = hashlib.md5(key).digest() elif hash_to_validate.algorithm == 'SHA1': key = hashlib.sha1(key_basis).digest() key_hash = hashlib.sha1(key).digest() elif hash_to_validate.algorithm == 'SHA256': key = hashlib.sha256(key_basis).digest() key_hash = hashlib.sha256(key).digest() elif hash_to_validate.algorithm == 'SHA512': key = hashlib.sha512(key_basis).digest() key_hash = hashlib.sha512(key).digest() if hash_to_validate.key_hash != key_hash: raise ValidationError('Invalid hash in request') def generate_salt(size=16): return urandom(size)
from .BroadcastInfo import BroadcastInfo from .ConcatInfo import ConcatInfo from .PadInfo import PadInfo from .ReductionInfo import ReductionInfo from .ReshapeInfo import ReshapeInfo from .SliceInfo import SliceInfo from .StackInfo import StackInfo from .TileInfo import TileInfo from .TransposeInfo import TransposeInfo from .Conv2DInfo import Conv2DInfo
from sqlite_random import Sqlite_random
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options def test_home(): options = Options() options.add_argument("--no-sandbox") options.add_argument("--headless") driver = webdriver.Chrome(chrome_options=options) driver.get("http://162.246.157.110:8000/") assert driver.find_element_by_id("name") != None assert driver.find_element_by_id("about") != None assert driver.find_element_by_id("education") != None assert driver.find_element_by_id("skills") != None assert driver.find_element_by_id("work") != None assert driver.find_element_by_id("contact") != None test_home()
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) n = int(readline()) s = read().rstrip().decode() cnt = 0 for i in range(1000): num = str(i).zfill(3) idx = -1 for m in num: idx = s.find(m, idx + 1) if idx == -1: break else: cnt += 1 print(cnt)
# Do not import ir in this Module import typing if typing.TYPE_CHECKING: from spydrnet.ir.element import Element from spydrnet.ir.first_class_element import FirstClassElement from spydrnet.ir.netlist import Netlist from spydrnet.ir.library import Library from spydrnet.ir.definition import Definition from spydrnet.ir.port import Port from spydrnet.ir.cable import Cable from spydrnet.ir.wire import Wire from spydrnet.ir.instance import Instance from spydrnet.ir.innerpin import InnerPin from spydrnet.ir.outerpin import OuterPin from spydrnet.ir.bundle import Bundle from spydrnet.ir.pin import Pin
import unittest from parameterized import parameterized_class from pyfx import PyfxApp from pyfx.config import parse from pyfx.model import DataSourceType from tests.fixtures import FIXTURES_DIR from tests.fixtures.keys import split @parameterized_class([ {"config_file": "configs/basic.yml"}, {"config_file": "configs/emacs.yml"}, {"config_file": "configs/vim.yml"} ]) class AutoCompleteIT(unittest.TestCase): """ Integration tests for query and auto-completion working flow. """ def setUp(self): self.config = parse(FIXTURES_DIR / self.config_file) self.keymap = self.config.view.keymap.mapping def test_autocomplete_select(self): """ Test navigate and select one auto-complete options. """ data = { "alice": "0", "bob": "1", "chuck": "2", "daniel": "3" } app = PyfxApp(self.config) model = app._model model.load(DataSourceType.VARIABLE, data) view = app._view inputs = split([ # 1. enter query bar self.keymap.json_browser.open_query_bar, # 2. input '.' ".", # 3. move down in the autocomplete popup self.keymap.autocomplete_popup.cursor_down, # 4. select option self.keymap.autocomplete_popup.select, # 5. apply query and switch to json browser self.keymap.query_bar.query, # 6. exit self.keymap.exit ], self.keymap.global_command_key) result, err = view.process_input(data, inputs) self.assertEqual(True, result, err) def test_autocomplete_cancel(self): """ Test navigate and cancel auto-complete. """ data = { "alice": "0", "bob": "1", "chuck": "2", "daniel": "3" } app = PyfxApp(self.config) model = app._model model.load(DataSourceType.VARIABLE, data) view = app._view inputs = split([ # 1. enter query bar self.keymap.json_browser.open_query_bar, # 2. input '.' ".", # 3. move down in the autocomplete popup twice self.keymap.autocomplete_popup.cursor_down, self.keymap.autocomplete_popup.cursor_down, # 4. move up in the autocomplete popup self.keymap.autocomplete_popup.cursor_up, # 5. cancel autocomplete self.keymap.autocomplete_popup.cancel, # 6. remove last '.' "backspace", # 7. apply query and switch to json browser self.keymap.query_bar.query, # 8. exit self.keymap.exit ], self.keymap.global_command_key) result, err = view.process_input(data, inputs) self.assertEqual(True, result, err) def test_autocomplete_navigation(self): """ Test navigation in auto-complete, particularly with pressing navigation key at the start or end of the list. """ data = { "alice": "0", "bob": "1" } app = PyfxApp(self.config) model = app._model model.load(DataSourceType.VARIABLE, data) view = app._view inputs = split([ # 1. enter query bar self.keymap.json_browser.open_query_bar, # 2. input '.' ".", # 3. move down in the autocomplete popup third times, # extra navigation key should not have any effect self.keymap.autocomplete_popup.cursor_down, self.keymap.autocomplete_popup.cursor_down, self.keymap.autocomplete_popup.cursor_down, # 4. move up in the autocomplete popup, # extra navigation key should not have any effect self.keymap.autocomplete_popup.cursor_up, self.keymap.autocomplete_popup.cursor_up, self.keymap.autocomplete_popup.cursor_up, self.keymap.autocomplete_popup.cursor_up, # 5. select option self.keymap.autocomplete_popup.select, # 6. apply query and switch to json browser self.keymap.query_bar.query, # 7. exit self.keymap.exit ], self.keymap.global_command_key) result, err = view.process_input(data, inputs) self.assertEqual(True, result, err) def test_autocomplete_pass_keypress(self): """ Test autocomplete popup pass keypress to query bar and update itself. """ data = { "alice": "0", "bob": "1" } app = PyfxApp(self.config) model = app._model model.load(DataSourceType.VARIABLE, data) view = app._view inputs = split([ # 1. enter query bar self.keymap.json_browser.open_query_bar, # 2. input '.' ".", # 3. input 'a' "a", # 4. select autocomplete self.keymap.autocomplete_popup.select, # 5. apply query and switch to json browser self.keymap.query_bar.query, # 6. exit self.keymap.exit ], self.keymap.global_command_key) result, err = view.process_input(data, inputs) self.assertEqual(True, result, err)
"""Definitions (types) for style sheets.""" from enum import Enum from typing import Sequence, Tuple, TypedDict, Union Color = Tuple[float, float, float, float] # RGBA Padding = Tuple[float, float, float, float] # top/right/bottom/left Number = Union[int, float] class TextAlign(Enum): LEFT = "left" CENTER = "center" RIGHT = "right" class VerticalAlign(Enum): TOP = "top" MIDDLE = "middle" BOTTOM = "bottom" class FontStyle(Enum): NORMAL = "normal" ITALIC = "italic" class FontWeight(Enum): NORMAL = "normal" BOLD = "bold" class TextDecoration(Enum): NONE = "none" UNDERLINE = "underline" # Style is using SVG properties where possible # https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute Style = TypedDict( "Style", { "background-color": Color, "border-radius": Number, "color": Color, "dash-style": Sequence[Number], "padding": Padding, "font-family": str, "font-size": Union[int, float, str], "font-style": FontStyle, "font-weight": FontWeight, "line-style": Number, "line-width": Number, "min-width": Number, "min-height": Number, "opacity": Number, "text-decoration": TextDecoration, "text-align": TextAlign, "text-color": Color, "vertical-align": VerticalAlign, "vertical-spacing": Number, }, total=False, )
from shapy.framework.commands import * from .stats import *
from unittest import TestCase import numpy as np from model_parameters.KaonParametersFixedRhoOmega import KaonParametersFixedRhoOmega, Parameter class TestModelParametersFixedRhoOmega(TestCase): def setUp(self): self.parameters = KaonParametersFixedRhoOmega( 0.5, 0.6, 0.7, 0.8, 0.1, 0.78266, 0.00868, 0.2, 1.410, 0.29, 0.15, 1.67, 0.315, 0.3, 1.019461, 0.004249, 0.35, 1.680, 0.150, 2.159, 0.137, 0.12, 0.77526, 0.1474, 0.13, 1.465, 0.4, 0.14, 1.720, 0.25, 2.15, 0.3, ) def test___getitem__(self): with self.subTest(): par1 = self.parameters['a_rho_double_prime'] self.assertEqual(par1.value, 0.14) with self.subTest(): par2 = self.parameters['mass_phi_prime'] self.assertEqual(par2.value, 1.680) with self.subTest(): par3 = self.parameters['t_in_isovector'] self.assertEqual(par3.value, 0.8) with self.subTest(): with self.assertRaises(KeyError): _ = self.parameters['non-existent-key'] def test___setitem__(self): with self.subTest(msg='Testing type checking'): with self.assertRaises(TypeError): self.parameters['a_omega'] = 2.0 # type: ignore with self.subTest(msg='Testing parameter name checking'): with self.assertRaises(ValueError): self.parameters['a_omega'] = Parameter(name='new name', value=2.0, is_fixed=True) with self.subTest(msg='Testing a successful call'): self.parameters['a_omega'] = Parameter(name='a_omega', value=95.412, is_fixed=True) self.assertEqual(self.parameters['a_omega'].value, 95.412) self.assertTrue(self.parameters['a_omega'].is_fixed) def test_set_value(self): self.parameters.set_value('a_rho_prime', 0.654321) self.assertEqual(self.parameters['a_rho_prime'].value, 0.654321) def test_fix_parameters(self): self.parameters.release_all_parameters() self.parameters.fix_parameters(['mass_phi_prime', 't_in_isoscalar']) with self.subTest(): self.assertTrue(self.parameters['mass_phi_prime'].is_fixed) with self.subTest(): self.assertTrue(self.parameters['t_in_isoscalar'].is_fixed) def test_release_parameters(self): self.parameters.fix_parameters(['a_rho_double_prime']) self.parameters.release_parameters(['a_rho_double_prime']) self.assertFalse(self.parameters['a_rho_double_prime'].is_fixed) def test_release_all_parameters(self): self.parameters.fix_parameters(['a_phi', 'mass_omega_prime', 't_in_isovector']) self.parameters.release_all_parameters() self.assertFalse(self.parameters['a_phi'].is_fixed) self.assertFalse(self.parameters['mass_omega_prime'].is_fixed) self.assertFalse(self.parameters['t_in_isovector'].is_fixed) def test_fix_all_parameters(self): self.parameters.release_parameters(['a_phi', 'mass_omega_prime', 't_in_isovector']) self.parameters.fix_all_parameters() self.assertTrue(self.parameters['a_phi'].is_fixed) self.assertTrue(self.parameters['mass_omega_prime'].is_fixed) self.assertTrue(self.parameters['t_in_isovector'].is_fixed) def test_get_fixed_values(self): self.parameters.release_all_parameters() self.parameters.fix_parameters(['a_omega_double_prime', 'mass_rho_prime', 't_in_isovector']) self.assertListEqual( self.parameters.get_fixed_values(), [0.5, 0.6, 0.8, 0.78266, 0.00868, 0.15, 0.77526, 0.1474, 1.465], ) def test_get_free_values(self): self.parameters.release_all_parameters() self.parameters.fix_parameters([ 'a_phi', 'mass_phi', 'decay_rate_phi', 'a_phi_prime', 'mass_phi_prime', 'decay_rate_phi_prime', 'mass_phi_double_prime', 'decay_rate_phi_double_prime', 'a_omega', 'a_omega_prime', 'mass_omega_prime', 'decay_rate_omega_prime', 'a_omega_double_prime', 'mass_omega_double_prime', 'decay_rate_omega_double_prime', ]) self.assertListEqual( self.parameters.get_free_values(), [0.7, 0.8, 0.12, 0.13, 1.465, 0.4, 0.14, 1.720, 0.25, 2.15, 0.3], ) def test_get_all_values(self): self.assertListEqual( self.parameters.get_all_values(), [0.5, 0.6, 0.7, 0.8, 0.1, 0.78266, 0.00868, 0.2, 1.410, 0.29, 0.15, 1.67, 0.315, 0.3, 1.019461, 0.004249, 0.35, 1.680, 0.150, 2.159, 0.137, 0.12, 0.77526, 0.1474, 0.13, 1.465, 0.4, 0.14, 1.720, 0.25, 2.15, 0.3], ) def test_update_free_values(self): self.parameters.release_all_parameters() self.parameters.fix_parameters([ 'a_phi', 'mass_phi', 'decay_rate_phi', 'a_phi_prime', 'mass_phi_prime', 'decay_rate_phi_prime', 'mass_phi_double_prime', 'decay_rate_phi_double_prime', 'a_omega', 'a_omega_prime', 'mass_omega_prime', 'decay_rate_omega_prime', 'a_omega_double_prime', 'mass_omega_double_prime', 'decay_rate_omega_double_prime', ]) self.parameters.update_free_values( [0.7, 0.82, 0.12, 0.0, 14.65, 0.4, 0.24, 1.724, 0.25, 0.15, 7.4] ) self.assertListEqual( self.parameters.get_free_values(), [0.7, 0.82, 0.12, 0.0, 14.65, 0.4, 0.24, 1.724, 0.25, 0.15, 7.4] ) def test_update_free_values__length_mismatch(self): self.parameters.release_all_parameters() with self.assertRaises(ValueError): self.parameters.update_free_values([1]) def test___iter__(self): self.assertListEqual( [parameter.value for parameter in self.parameters], self.parameters.get_all_values(), ) def test_get_bounds_for_free_parameters(self): self.parameters.release_all_parameters() self.parameters.fix_parameters([ 't_in_isovector', 'a_phi', 'decay_rate_phi', 'a_phi_prime', 'mass_phi_prime', 'decay_rate_phi_prime', 'mass_phi_double_prime', 'decay_rate_phi_double_prime', 'a_omega', 'a_omega_prime', 'mass_omega_prime', 'decay_rate_omega_prime', 'a_omega_double_prime', 'mass_omega_double_prime', 'decay_rate_omega_double_prime', 'a_rho', 'a_rho_prime', 'mass_rho_prime', 'decay_rate_rho_prime', 'mass_rho_triple_prime', 'decay_rate_rho_triple_prime', ]) lower_bounds, upper_bounds = self.parameters.get_bounds_for_free_parameters(handpicked=False) self.assertListEqual( lower_bounds, [0.5, 0.7071067811865476, -np.inf, 0.7745966692414834, 0.0], ) self.assertListEqual( upper_bounds, [np.inf, np.inf, np.inf, np.inf, np.inf], ) def test_from_list_to_list_consistency(self): list_of_parameters = [ Parameter(name='t_0_isoscalar', value=0.17531904388276887, is_fixed=True), Parameter(name='t_0_isovector', value=0.07791957505900839, is_fixed=True), Parameter(name='t_in_isoscalar', value=1.443968455888137, is_fixed=False), Parameter(name='t_in_isovector', value=2.2187117617810133, is_fixed=False), Parameter(name='a_omega', value=-0.6250308032982322, is_fixed=False), Parameter(name='mass_omega', value=0.9980285527253926, is_fixed=True), Parameter(name='decay_rate_omega', value=0.33979382250306833, is_fixed=True), Parameter(name='a_omega_prime', value=2.5941212472427653, is_fixed=False), Parameter(name='mass_omega_prime', value=1.262175646031432, is_fixed=False), Parameter(name='decay_rate_omega_prime', value=0.29325211379153737, is_fixed=False), Parameter(name='a_omega_double_prime', value=-0.7584476425520864, is_fixed=False), Parameter(name='mass_omega_double_prime', value=1.65208370470636, is_fixed=False), Parameter(name='decay_rate_omega_double_prime', value=0.88444489573003, is_fixed=False), Parameter(name='a_phi', value=-0.7613717224426919, is_fixed=False), Parameter(name='mass_phi', value=1.032465750329927, is_fixed=False), Parameter(name='decay_rate_phi', value=0.007187927884885847, is_fixed=False), Parameter(name='a_phi_prime', value=0.049186367861031886, is_fixed=False), Parameter(name='mass_phi_prime', value=1.798584035817393, is_fixed=False), Parameter(name='decay_rate_phi_prime', value=0.18684970951346638, is_fixed=True), Parameter(name='mass_phi_double_prime', value=2.1701948878602404, is_fixed=False), Parameter(name='decay_rate_phi_double_prime', value=0.018584914300650075, is_fixed=False), Parameter(name='a_rho', value=0.769926083031994, is_fixed=False), Parameter(name='mass_rho', value=1.0785537445043378, is_fixed=True), Parameter(name='decay_rate_rho', value=0.1244368079469832, is_fixed=True), Parameter(name='a_rho_prime', value=-0.26856897443026406, is_fixed=False), Parameter(name='mass_rho_prime', value=1.6384823897203615, is_fixed=False), Parameter(name='decay_rate_rho_prime', value=0.13857062014248653, is_fixed=True), Parameter(name='a_rho_double_prime', value=-0.004875792606689498, is_fixed=False), Parameter(name='mass_rho_double_prime', value=2.245836486713978, is_fixed=False), Parameter(name='decay_rate_rho_double_prime', value=0.1035328301790177, is_fixed=False), Parameter(name='mass_rho_triple_prime', value=3.463509700968759, is_fixed=True), Parameter(name='decay_rate_rho_triple_prime', value=1.4560004801176234, is_fixed=False), ] model_parameters = KaonParametersFixedRhoOmega.from_list(list_of_parameters) self.assertIsInstance(model_parameters, KaonParametersFixedRhoOmega) self.assertListEqual(list_of_parameters, model_parameters.to_list()) def test_to_list_from_list_consistency(self): recreated = KaonParametersFixedRhoOmega.from_list(self.parameters.to_list()) self.assertEqual( recreated['a_rho_double_prime'].value, self.parameters['a_rho_double_prime'].value, ) self.assertEqual( recreated['mass_omega'].value, self.parameters['mass_omega'].value, ) self.assertEqual( recreated['t_0_isovector'].value, self.parameters['t_0_isovector'].value, )
from django.test import TestCase from curious import model_registry from curious.query import Query from curious_tests.models import Blog, Entry, Author from curious_tests import assertQueryResultsEqual import curious_tests.models class TestQueryJoins(TestCase): def setUp(self): names = ('Databases', 'Relational Databases', 'Graph Databases') authors = ('John Smith', 'Jane Doe', 'Joe Plummer') headlines = ('MySQL is a relational DB', 'Postgres is a really good relational DB', 'Neo4J is a graph DB') self.blogs = [Blog(name=name) for name in names] for blog in self.blogs: blog.save() self.entries = [Entry(headline=headline, blog=blog) for headline, blog in zip(headlines, self.blogs)] for entry in self.entries: entry.save() self.authors = [Author(name=name) for name in authors] for author in self.authors: author.save() for i, entry in enumerate(self.entries): entry.authors.add(self.authors[i]) entry.authors.add(self.authors[(i+1)%len(self.authors)]) model_registry.register(curious_tests.models) model_registry.get_manager('Blog').allowed_relationships = ['authors'] def tearDown(self): model_registry.clear() def test_first_set_of_results_are_unique_and_not_separated_by_objects_from_first_relation(self): qs = 'Blog(name__icontains="Databases") Blog.entry_set Entry.authors' query = Query(qs) result = query() self.assertEquals(result[0][0][1], -1) assertQueryResultsEqual(self, result[0][0][0], [(self.authors[0], None), (self.authors[1], None), (self.authors[2], None)]) self.assertEquals(len(result[0]), 1) self.assertEquals(result[1], Author) def test_separates_second_set_of_results_by_objects_from_first_set_of_results(self): qs = 'Blog(name__icontains="Databases"), Blog.entry_set Entry.authors' query = Query(qs) result = query() self.assertEquals(result[0][0][1], -1) assertQueryResultsEqual(self, result[0][0][0], [(self.blogs[0], None), (self.blogs[1], None), (self.blogs[2], None)]) self.assertEquals(result[0][1][1], 0) assertQueryResultsEqual(self, result[0][1][0], [(self.authors[0], self.blogs[0].pk), (self.authors[1], self.blogs[0].pk), (self.authors[1], self.blogs[1].pk), (self.authors[2], self.blogs[1].pk), (self.authors[2], self.blogs[2].pk), (self.authors[0], self.blogs[2].pk)]) self.assertEquals(len(result[0]), 2) self.assertEquals(result[1], Author) def test_outputs_of_filter_query_are_separated_by_inputs_to_filter_query(self): qs = 'Blog(name__icontains="Databases") (Blog.entry_set Entry.authors)' query = Query(qs) result = query() self.assertEquals(result[0][0][1], -1) assertQueryResultsEqual(self, result[0][0][0], [(self.blogs[0], None), (self.blogs[1], None), (self.blogs[2], None)]) self.assertEquals(result[0][1][1], 0) assertQueryResultsEqual(self, result[0][1][0], [(self.authors[0], self.blogs[0].pk), (self.authors[1], self.blogs[0].pk), (self.authors[1], self.blogs[1].pk), (self.authors[2], self.blogs[1].pk), (self.authors[2], self.blogs[2].pk), (self.authors[0], self.blogs[2].pk)]) self.assertEquals(len(result[0]), 2) self.assertEquals(result[1], Blog)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Christian Heider Nielsen" __doc__ = r""" Created on 18/03/2020 """ __all__ = ["get_host_ip"] def get_host_ip() -> str: """Get host ip. Returns: str: The obtained ip. UNKNOWN if failed.""" import socket try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) ip = s.getsockname()[0] except: ip = "UNKNOWN" finally: s.close() return ip if __name__ == "__main__": HOST_IP = get_host_ip()
''' Schema of behavioral information. ''' import re import os from datetime import datetime import pathlib import numpy as np import scipy.io as sio import datajoint as dj import h5py as h5 from . import reference, subject, utilities, stimulation, acquisition, analysis schema = dj.schema(dj.config['custom'].get('database.prefix', '') + 'behavior') sess_data_dir = pathlib.Path(dj.config['custom'].get('intracellular_directory')).as_posix() @schema class LickTrace(dj.Imported): definition = """ -> acquisition.Session --- lick_trace_left: longblob lick_trace_right: longblob lick_trace_start_time: float # (s) first timepoint of lick trace recording lick_trace_sampling_rate: float # (Hz) sampling rate of lick trace recording """ def make(self, key): # ============ Dataset ============ # Get the Session definition from the keys of this session animal_id = key['subject_id'] date_of_experiment = key['session_time'] # Search the files in filenames to find a match for "this" session (based on key) sess_data_file = utilities.find_session_matched_nwbfile(sess_data_dir, animal_id, date_of_experiment) if sess_data_file is None: raise FileNotFoundError(f'BehaviorAcquisition import failed for: {animal_id} - {date_of_experiment}') nwb = h5.File(os.path.join(sess_data_dir, sess_data_file), 'r') # ============= Now read the data and start ingesting ============= print('Insert behavioral data for: subject: {0} - date: {1}'.format(key['subject_id'], key['session_time'])) key['lick_trace_left'] = nwb['acquisition']['timeseries']['lick_trace_L']['data'].value key['lick_trace_right'] = nwb['acquisition']['timeseries']['lick_trace_R']['data'].value lick_trace_time_stamps = nwb['acquisition']['timeseries']['lick_trace_R']['timestamps'].value key['lick_trace_start_time'] = lick_trace_time_stamps[0] key['lick_trace_sampling_rate'] = 1 / np.mean(np.diff(lick_trace_time_stamps)) self.insert1(key) @schema class TrialSegmentedLickTrace(dj.Computed): definition = """ -> LickTrace -> acquisition.TrialSet.Trial -> analysis.TrialSegmentationSetting --- segmented_lt_left: longblob segmented_lt_right: longblob """ def make(self, key): # get event, pre/post stim duration event_name, pre_stim_dur, post_stim_dur = (analysis.TrialSegmentationSetting & key).fetch1( 'event', 'pre_stim_duration', 'post_stim_duration') # get raw fs, first_time_point, lt_left, lt_right = (LickTrace & key).fetch1( 'lick_trace_sampling_rate', 'lick_trace_start_time', 'lick_trace_left', 'lick_trace_right') # segmentation key['segmented_lt_left'] = analysis.perform_trial_segmentation(key, event_name, pre_stim_dur, post_stim_dur, lt_left, fs, first_time_point) key['segmented_lt_right'] = analysis.perform_trial_segmentation(key, event_name, pre_stim_dur, post_stim_dur, lt_right, fs, first_time_point) self.LickTrace.insert1(key) print(f'Perform trial-segmentation of lick traces for trial: {key["trial_id"]}')
#!/usr/bin/env python # -*- coding: utf-8 -*- """Base Taxon of SpeciesEvolver.""" from abc import ABC, abstractmethod class Taxon(ABC): """Base Taxon of SpeciesEvolver. A SpeciesEvolver Taxon represents a group of organisms. Examples of the kind of group represented by a subclass include an analog group (e.g., a specific trout species, seed plants), a taxonomic level (e.g., phylum, species, population). More generally, Taxon subclasses act as approaches to simulate evolution of biologic groups. Taxon can be made of individual organisms, although SpeciesEvolver currently has no built in functionality for individuals. This class is intended to be subclassed. Subclasses must implement the properties and methods of this base class that are designated as abstract. The methods must take the same parameters and both the properties and methods must return the values described in their docstrings. """ def __init__(self): self._extant = True self._uid = None self._parent = None self._children = [] def __repr__(self): return '<{}, uid={}>'.format(self.__class__.__name__, self.uid) @property def uid(self): """The unique identifier of the taxon. The identifier is a unique integer automatically assigned by SpeciesEvolver once the component begins tracking the taxon. It is read-only as it should not be changed once it is assigned. """ return self._uid @property def extant(self): """The living state of the taxon. The taxon lives at the current model time if ``True``. The taxon is extinct as of the current model time if ``False``. """ return self._extant @extant.setter def extant(self, value): """Set the living state of the taxon.""" self._extant = value @property def parent(self): """The parent taxon. The parent is the taxon object that produced this object. A value of ``None`` indicates no parent taxon. """ return self._parent @parent.setter def parent(self, value): """Set the parent taxon. This method also appends this taxon to the list of children belonging to the parent taxon. """ self._parent = value if value is not None: value.children.append(self) @property def children(self): """The immediate descendents of the taxon. The children are the objects produced by this taxon. An empty list indicates no child taxon. """ return self._children @property @abstractmethod def range_mask(self): """A mask of the taxon geographic extent. The range mask is a boolean numpy array where True values indicate where the taxon is located in the model grid associated with a SpeciesEvolver instance. This property must be implemented in a subclass. """ # pragma: no cover @abstractmethod def _evolve(self, dt, stage, record, id): """Run the evolutionary processes of the taxon. SpeciesEvolver loops through the evolution processes of extant taxa in stages during the ``run_one_step`` method of the component. Therefore if a taxon type requires all other taxa to undergo some processing before an evolution process, then the taxon can evolve at a later stage using the ``stage`` parameter. This method must return a boolean indicating if the taxon has completed evolution of all stages. See this method implemented in ``ZoneTaxon`` for an example. This method must be implemented in a subclass. Parameters ---------- dt : float The model time step duration. stage : int The evolution stage of the time step. record : defaultdict The SpeciesEvolver record. Returns ------- boolean Indicates if the taxon is still evolving. When `False` is returned, this method will not be called for the taxon in subsequent stages in the current model time step. """ # pragma: no cover
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from enum import Enum import numpy as np try: import pycocotools.mask as maskUtils except ImportError: maskUtils = None from .base_representation import BaseRepresentation from ..data_readers import BaseReader from ..utils import remove_difficult class GTMaskLoader(Enum): PILLOW = 0 OPENCV = 1 SCIPY = 2 NIFTI = 3 NUMPY = 4 NIFTI_CHANNELS_FIRST = 5 LOADERS_MAPPING = { 'opencv': GTMaskLoader.OPENCV, 'pillow': GTMaskLoader.PILLOW, 'scipy': GTMaskLoader.SCIPY, 'nifti': GTMaskLoader.NIFTI, 'nifti_channels_first': GTMaskLoader.NIFTI_CHANNELS_FIRST, 'numpy': GTMaskLoader.NUMPY } class SegmentationRepresentation(BaseRepresentation): pass class SegmentationAnnotation(SegmentationRepresentation): LOADERS = { GTMaskLoader.PILLOW: 'pillow_imread', GTMaskLoader.OPENCV: 'opencv_imread', GTMaskLoader.SCIPY: 'scipy_imread', GTMaskLoader.NIFTI: 'nifti_reader', GTMaskLoader.NIFTI_CHANNELS_FIRST: {'type': 'nifti_reader', 'channels_first': True}, GTMaskLoader.NUMPY: 'numpy_reader' } def __init__(self, identifier, path_to_mask, mask_loader=GTMaskLoader.PILLOW): """ Args: identifier: object identifier (e.g. image name). path_to_mask: path where segmentation mask should be loaded from. The path is relative to data source. mask_loader: back-end, used to load segmentation masks. """ super().__init__(identifier) self._mask_path = path_to_mask self._mask_loader = mask_loader self._mask = None @property def mask(self): return self._mask if self._mask is not None else self._load_mask() @mask.setter def mask(self, value): self._mask = value def _load_mask(self): if self._mask is None: loader_config = self.LOADERS.get(self._mask_loader) if isinstance(loader_config, str): loader = BaseReader.provide(loader_config, self.metadata['data_source']) else: loader = BaseReader.provide(loader_config['type'], self.metadata['data_source'], config=loader_config) if self._mask_loader == GTMaskLoader.PILLOW: loader.convert_to_rgb = False mask = loader.read(self._mask_path) return mask.astype(np.uint8) return self._mask class SegmentationPrediction(SegmentationRepresentation): def __init__(self, identifiers, mask): """ Args: identifiers: object identifier (e.g. image name). mask: array with shape (n_classes, height, width) of probabilities at each location. """ super().__init__(identifiers) self.mask = mask class BrainTumorSegmentationAnnotation(SegmentationAnnotation): def __init__(self, identifier, path_to_mask, loader=GTMaskLoader.NIFTI, box=None): super().__init__(identifier, path_to_mask, loader) self.box = box class BrainTumorSegmentationPrediction(SegmentationPrediction): def __init__(self, identifiers, mask, label_order=(0, 1, 2, 3)): super().__init__(identifiers, mask) self.label_order = label_order class CoCoInstanceSegmentationRepresentation(SegmentationRepresentation): def __init__(self, identifier, mask, labels): if not maskUtils: raise ValueError('can not create representation') super().__init__(identifier) self.raw_mask = mask self.labels = labels self._mask = None @property def mask(self): return self._mask if self._mask is not None else self._load_mask() def _load_mask(self): masks = [] image_size = self.metadata['image_size'] height, width, _ = image_size if len(np.shape(image_size)) == 1 else image_size[0] for mask in self.raw_mask: converted_mask = self._convert_mask(mask, height, width) masks.append(converted_mask) self._mask = masks return self._mask @staticmethod def _convert_mask(mask, height, width): if maskUtils and isinstance(mask, list): rles = maskUtils.frPyObjects(mask, height, width) rle = maskUtils.merge(rles) elif maskUtils and isinstance(mask['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(mask, height, width) else: rle = mask # rle return rle @mask.setter def mask(self, value): self._mask = value @property def size(self): return len(self.raw_mask) @property def areas(self): precomputed_areas = self.metadata.get('areas') if precomputed_areas: return precomputed_areas masks = self.mask areas = [] for mask in masks: areas.append(maskUtils.area(mask)) return areas class CoCoInstanceSegmentationAnnotation(CoCoInstanceSegmentationRepresentation): pass class CoCocInstanceSegmentationPrediction(CoCoInstanceSegmentationRepresentation): def __init__(self, identifier, mask, labels, scores): super().__init__(identifier, mask, labels) self.scores = scores def remove(self, indexes): self.labels = np.delete(self.labels, indexes) self.mask = np.delete(self.mask, indexes) self.scores = np.delete(self.scores, indexes) difficult_boxes = self.metadata.get('difficult_boxes') if not difficult_boxes: return new_difficult_boxes = remove_difficult(difficult_boxes, indexes) self.metadata['difficult_boxes'] = new_difficult_boxes
""" Simple Facebook Echo bot: Respond with exactly what it receives Standalone version """ import sys, json, traceback, requests from flask import Flask, request application = Flask(__name__) app = application PAT = 'replace_your_own_PAT_here' @app.route('/', methods=['GET']) def handle_verification(): print "Handling Verification." if request.args.get('hub.verify_token', '') == 'your_own_token': print "Webhook verified!" return request.args.get('hub.challenge', '') else: print "Wrong verification token!" # ======================= Bot processing =========================== @app.route('/', methods=['POST']) def handle_messages(): payload = request.get_data() # Handle messages for sender_id, message in messaging_events(payload): # Start processing valid requests try: response = processIncoming(sender_id, message) if response is not None: send_message(PAT, sender_id, response) else: send_message(PAT, sender_id, "Sorry I don't understand that") except Exception, e: print e traceback.print_exc() return "ok" def processIncoming(user_id, message): if message['type'] == 'text': message_text = message['data'] return message_text elif message['type'] == 'location': response = "I've received location (%s,%s) (y)"%(message['data'][0],message['data'][1]) return response elif message['type'] == 'audio': audio_url = message['data'] return "I've received audio %s"%(audio_url) # Unrecognizable incoming, remove context and reset all data to start afresh else: return "*scratch my head*" def send_message(token, user_id, text): """Send the message text to recipient with id recipient. """ r = requests.post("https://graph.facebook.com/v2.6/me/messages", params={"access_token": token}, data=json.dumps({ "recipient": {"id": user_id}, "message": {"text": text.decode('unicode_escape')} }), headers={'Content-type': 'application/json'}) if r.status_code != requests.codes.ok: print r.text # Generate tuples of (sender_id, message_text) from the provided payload. # This part technically clean up received data to pass only meaningful data to processIncoming() function def messaging_events(payload): data = json.loads(payload) messaging_events = data["entry"][0]["messaging"] for event in messaging_events: sender_id = event["sender"]["id"] # Not a message if "message" not in event: yield sender_id, None # Pure text message if "message" in event and "text" in event["message"] and "quick_reply" not in event["message"]: data = event["message"]["text"].encode('unicode_escape') yield sender_id, {'type':'text', 'data': data, 'message_id': event['message']['mid']} # Message with attachment (location, audio, photo, file, etc) elif "attachments" in event["message"]: # Location if "location" == event['message']['attachments'][0]["type"]: coordinates = event['message']['attachments'][ 0]['payload']['coordinates'] latitude = coordinates['lat'] longitude = coordinates['long'] yield sender_id, {'type':'location','data':[latitude, longitude],'message_id': event['message']['mid']} # Audio elif "audio" == event['message']['attachments'][0]["type"]: audio_url = event['message'][ 'attachments'][0]['payload']['url'] yield sender_id, {'type':'audio','data': audio_url, 'message_id': event['message']['mid']} else: yield sender_id, {'type':'text','data':"I don't understand this", 'message_id': event['message']['mid']} # Quick reply message type elif "quick_reply" in event["message"]: data = event["message"]["quick_reply"]["payload"] yield sender_id, {'type':'quick_reply','data': data, 'message_id': event['message']['mid']} else: yield sender_id, {'type':'text','data':"I don't understand this", 'message_id': event['message']['mid']} # Allows running with simple `python <filename> <port>` if __name__ == '__main__': if len(sys.argv) == 2: # Allow running on customized ports app.run(port=int(sys.argv[1])) else: app.run() # Default port 5000
from pwnypack.bytecode import *
from peewee import * from .PWDatabase import PWDatabase from neocore.Cryptography.Crypto import Crypto from neocore.UInt256 import UInt256 from neocore.UInt160 import UInt160 import binascii from neo.Wallets.Coin import CoinReference from neo.Blockchain import GetBlockchain class ModelBase(Model): class Meta: database = PWDatabase.DBProxy() class Account(ModelBase): Id = PrimaryKeyField() PrivateKeyEncrypted = CharField(unique=True) PublicKeyHash = CharField() class Address(ModelBase): Id = PrimaryKeyField() ScriptHash = CharField(unique=True) IsWatchOnly = BooleanField(default=False) def ToString(self): return Crypto.ToAddress(UInt160(data=self.ScriptHash)) class NamedAddress(ModelBase): Id = PrimaryKeyField() ScriptHash = CharField(unique=True) Title = CharField() def UInt160ScriptHash(self): return UInt160(data=self.ScriptHash) def ToString(self): return Crypto.ToAddress(UInt160(data=self.ScriptHash)) class Coin(ModelBase): Id = PrimaryKeyField() TxId = CharField() Index = IntegerField() AssetId = CharField() Value = IntegerField() ScriptHash = CharField() State = IntegerField() Address = ForeignKeyField(Address) class Contract(ModelBase): Id = PrimaryKeyField() RawData = CharField() ScriptHash = CharField() PublicKeyHash = CharField() Account = ForeignKeyField(Account, null=True) Address = ForeignKeyField(Address) class Key(ModelBase): Id = PrimaryKeyField() Name = CharField(unique=True) Value = CharField() class NEP5Token(ModelBase): ContractHash = CharField(unique=True) Name = CharField() Symbol = CharField() Decimals = IntegerField() class Transaction(ModelBase): Id = PrimaryKeyField() Hash = CharField(unique=True) TransactionType = IntegerField() RawData = CharField() Height = IntegerField() DateTime = DateTimeField() class TransactionInfo(ModelBase): Id = PrimaryKeyField() CoreTransaction = ForeignKeyField(Transaction) Height = IntegerField() DateTime = DateTimeField() class VINHold(ModelBase): Id = PrimaryKeyField() Index = IntegerField() Hash = CharField() FromAddress = CharField() ToAddress = CharField() Amount = IntegerField() IsComplete = BooleanField(default=False) @property def Reference(self): reference = CoinReference(prev_hash=self.TXHash, prev_index=self.Index) return reference @property def TXHash(self): data = bytearray(binascii.unhexlify(self.Hash.encode('utf-8'))) data.reverse() return UInt256(data=data) @property def Vin(self): index = bytearray(self.Index.to_bytes(1, 'little')) return self.TXHash.Data + index @property def OutputHash(self): data = bytearray(binascii.unhexlify(self.ToAddress.encode('utf-8'))) data.reverse() return UInt160(data=data) @property def OutputAddr(self): return Crypto.ToAddress(self.OutputHash) @property def AssetId(self): return self.Output.AssetId @property def AssetName(self): if self.AssetId == GetBlockchain().SystemShare().Hash: return 'NEO' elif self.AssetId == GetBlockchain().SystemCoin().Hash: return 'Gas' return 'Unknown' @property def Output(self): tx, height = GetBlockchain().GetTransaction(self.TXHash) output = tx.outputs[self.Index] return output @property def InputHash(self): data = bytearray(binascii.unhexlify(self.FromAddress.encode('utf-8'))) data.reverse() return UInt160(data=data) @property def InputAddr(self): return Crypto.ToAddress(self.InputHash) def ToJson(self): jsn = { 'To': self.OutputAddr, 'From': self.InputHash.ToString(), 'Amount': self.Amount, 'Index': self.Index, 'TxId': self.Hash, 'Complete': self.IsComplete } return jsn
import numpy as np import numpy.linalg as la #This function calculates the SVD and returns S' a resized version of S matrix def SVD(matrix, dimension): A = matrix r = dimension AT = A.T AAT = np.dot(A, AT) evalues1, evectors1 = la.eig(AAT) #calculate out the S matrix nonzero = evalues1[evalues1 !=0] shape = np.shape(A) D = np.diag(nonzero) D.resize(shape) #calculate U and V ATA = np.dot(AT,A) evalues2, evectors2 = la.eig(ATA) #U=evectors1, V=evectors2, S=np.sqrt(D) #resize U, V, & S to the r value, to get U', S', & V' U1 = evectors1[0:(np.size(evectors1, 0)), 0:r] V1 = evectors2[0:(np.size(evectors2,0)), 0:r] S1 = np.sqrt(D)[0:r, 0:r] A1 = U1.dot(S1).dot(V1.T).real return A1 #returns just the real part of A'
import pytest from pyupgrade._data import Settings from pyupgrade._main import _fix_plugins @pytest.mark.parametrize( ('s', 'version'), ( pytest.param( 'foo(*[i for i in bar])\n', (2, 7), id='Not Python3+', ), pytest.param( '2*3', (3,), id='Multiplication star', ), pytest.param( '2**3', (3,), id='Power star', ), pytest.param( 'foo([i for i in bar])', (3,), id='List comp, no star', ), pytest.param( 'foo(*bar)', (3,), id='Starred, no list comp', ), ), ) def test_fix_unpack_argument_list_comp_noop(s, version): assert _fix_plugins(s, settings=Settings(min_version=version)) == s @pytest.mark.parametrize( ('s', 'expected'), ( pytest.param( 'foo(*[i for i in bar])\n', 'foo(*(i for i in bar))\n', id='Starred list comprehension', ), pytest.param( 'foo(\n' ' *\n' ' [i for i in bar]\n' ' )\n', 'foo(\n' ' *\n' ' (i for i in bar)\n' ' )\n', id='Multiline starred list comprehension', ), pytest.param( 'foo(*[i for i in bar], qux, quox=None)\n', 'foo(*(i for i in bar), qux, quox=None)\n', id='Single line, including other args', ), ), ) def test_fix_unpack_argument_list_comp(s, expected): ret = _fix_plugins(s, settings=Settings((3,))) assert ret == expected
from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder def get_column_names_from_ColumnTransformer(column_transformer, orig_cols, verbose=False): col_name = [] # the last transformer is ColumnTransformer's 'remainder' for transformer_in_columns in column_transformer.transformers_[:-1]: if verbose: print('transformer name:', transformer_in_columns[0]) raw_col_name = list(transformer_in_columns[2]) transformer = None if isinstance(transformer_in_columns[1], Pipeline): # if pipeline, get the last transformer transformer = transformer_in_columns[1].steps[-1][1] else: transformer = transformer_in_columns[1] try: if isinstance(transformer, OneHotEncoder): names = list(transformer.get_feature_names(raw_col_name)) else: names = list(transformer.get_feature_names()) except AttributeError as error: names = raw_col_name if verbose: print("Output column names", names) col_name.extend(names) rem_names = [orig_cols[c] for c in column_transformer.transformers_[-1][2]] col_name.extend(rem_names) return col_name
#!/usr/bin/env python # =========================================================================== # Copyright 2017 `Tung Thanh Le` # Email: ttungl at gmail dot com # # Heterogeneous Architecture Configurations Generator for Multi2Sim simulator # (aka, `HeteroArchGen4M2S`) # `HeteroArchGen4M2S` is free software, which is freely to be # redistributed and modified it under the terms of # the GNU General Public License as published by # the Free Software Foundation. # For more details `http://www.gnu.org/licenses` # `HeteroArchGen4M2S` is written to help you configure M2S # easily, but non-warranty and non-mechantability. # ============================================================================ import os ## for chmod import stat def create_shell_script(num_CPU, num_GPU, gpu_type, cpu_max_inst, benchmark, net_max_inst, network_only, numThreads): # assert (benchmark is not empty), "Error benchmark" ## create a shell script in runsimulations folder. # File name f = open('run_simulation_files/run-sim-%0.f-CPU-%0.f-%s-GPU-benchmark-%s.sh' % (num_CPU, num_GPU, gpu_type, benchmark), 'w'); ## content if network_only == 0: ## full system f.write('m2s --x86-sim detailed ') f.write('--x86-report HeteroArchGen4M2S/results/%s_pipeline.out ' % benchmark) f.write('--mem-report HeteroArchGen4M2S/results/%s_mem.out ' % benchmark) f.write('--x86-config ./HeteroArchGen4M2S/configs/x86_cpuconfig ') f.write('--si-sim detailed ') f.write('--si-config ./HeteroArchGen4M2S/configs/si_gpuconfig ') f.write('--mem-config ./HeteroArchGen4M2S/configs/memconfig ') f.write('--net-config ./HeteroArchGen4M2S/configs/netconfig ') f.write('--x86-max-inst %0.f ' % cpu_max_inst) ## network report: ##### Note: This file is generated under m2s directory. f.write('--net-report %s_net_report.out ' % benchmark) else: ## network_only = 1 ## m2s --net-config net-config --net-sim mynet --net-max-cycles 1000000 --report-net report-net ## --net-injection-rate 0.1 f.write('m2s --net-config ./HeteroArchGen4M2S/configs/netconfig ') f.write('--net-sim net-l2-mm ') f.write('--net-max-cycles %0.f '% net_max_inst) f.write('--net-report %s_net_report.out ' % benchmark) ## benchmarks or synthetic workloads # if synthetic_workload == 1: # f.write('--net-report %0.f_net_report.out ' % injection_rate) # f.write('--net-injection-rate %0.f '% injection_rate) ## splash2-benchmarks if benchmark == 'fft': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/fft/fft -m18 -p%0.f -n65536 -l4' % numThreads) if benchmark == 'fmm': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/fmm/fmm.i386 %0.f HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/fmm/input' % numThreads) if benchmark == 'lu': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/lu/lu.i386 -p%0.f -n512 -b16' % numThreads) if benchmark == 'cholesky': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/cholesky/cholesky.i386 -p%0.f HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/cholesky/tk14.O' % numThreads) if benchmark == 'barnes': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/barnes/barnes.i386 %0.f HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/barnes/input' % numThreads) if benchmark == 'ocean': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/ocean/ocean.i386 -n130 -p%0.f -e1e-07 -r20000 -t28800' % numThreads) if benchmark == 'raytrace': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/raytrace/raytrace.i386 -p%0.f HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/raytrace/balls4.env' % numThreads) if benchmark == 'water-nsquared': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/water-nsquared/water-nsquared.i386 %0.f HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/water-nsquared/input' % numThreads) if benchmark == 'water-spatial': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/water-spatial/water-spatial.i386 %0.f HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/water-spatial/input' % numThreads) if benchmark == 'radiosity': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/radiosity/radiosity.i386 -batch -p %0.f -en 0.5' % numThreads) if benchmark == 'radix': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-splash2/radix/radix.i386 -p%0.f -r4096 -n262144 -m524288' % numThreads) ## hetero-mark-benchmarks if benchmark == 'aes': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/aes/aes_hsa -k HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/aes/data/key.data -i HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/aes/data/small.data') # # f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/aes/aes_hsa -k key.data -i small.data data') # if benchmark == 'fir': # f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/fir/fir_hsa') # if benchmark == 'histogram': # f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/histogram/hist_hsa') # if benchmark == 'kmeans': # f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/kmeans/kmeans_hsa -k HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/kmeans/small.data HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/kmeans/data') # if benchmark == 'page_rank': # f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/page_rank/pr_hsa -k HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/page_rank/small.data HeteroArchGen4M2S/benchmarks/m2s-bench-heteromark/page_rank/data') ## amd-sdk-2.5-benchmark if benchmark == 'BinarySearch': f.write('HeteroArchGen4M2S/benchmarks/m2s-bench-amdsdk-2.5/BinarySearch/BinarySearch --load HeteroArchGen4M2S/benchmarks/m2s-bench-amdsdk-2.5/BinarySearch/BinarySearch_Kernels.bin -e') ## Spec2006-benchmarks ## Parsec-3.0-benchmarks ## Parboil-benchmarks ## test benchmark if benchmark == 'default_mm': f.write('HeteroArchGen4M2S/mm_multi/mm_multi_serial %0.f' % numThreads) ## close f.close() ## granted `chmod +x` for this file # if synthetic_workload ==1: # st = os.stat('run_simulation_files/run-sim-%0.f-CPU-%0.f-%s-GPU-synthetic-injection-%0.f.sh' % (num_CPU, num_GPU, gpu_type, injection_rate)) # os.chmod('run_simulation_files/run-sim-%0.f-CPU-%0.f-%s-GPU-synthetic-injection-%0.f.sh' % (num_CPU, num_GPU, gpu_type, injection_rate), st.st_mode | stat.S_IEXEC) # else: st = os.stat('run_simulation_files/run-sim-%0.f-CPU-%0.f-%s-GPU-benchmark-%s.sh' % (num_CPU, num_GPU, gpu_type, benchmark)) os.chmod('run_simulation_files/run-sim-%0.f-CPU-%0.f-%s-GPU-benchmark-%s.sh' % (num_CPU, num_GPU, gpu_type, benchmark), st.st_mode | stat.S_IEXEC) ## tested # create_shell_script(16, 16, 1, 10000000, 'fft', 0)
from datetime import datetime, timedelta from django.test import TestCase from corehq.apps.domain.shortcuts import create_domain from corehq.apps.enterprise.tests.utils import create_enterprise_permissions from corehq.apps.users.dbaccessors import delete_all_users from corehq.apps.users.models import WebUser from corehq.apps.users.tasks import update_domain_date class TasksTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() delete_all_users() # Set up domains cls.domain = create_domain('test') cls.mirror_domain = create_domain('mirror') create_enterprise_permissions('[email protected]', 'test', ['mirror']) # Set up user cls.web_user = WebUser.create( domain='test', username='web', password='secret', created_by=None, created_via=None, ) cls.today = datetime.today().date() cls.last_week = cls.today - timedelta(days=7) @classmethod def tearDownClass(cls): delete_all_users() cls.domain.delete() cls.mirror_domain.delete() super().tearDownClass() def _last_accessed(self, user, domain): domain_membership = user.get_domain_membership(domain, allow_enterprise=False) if domain_membership: return domain_membership.last_accessed return None def test_update_domain_date_web_user(self): self.assertIsNone(self._last_accessed(self.web_user, self.domain.name)) update_domain_date(self.web_user.user_id, self.domain.name) self.web_user = WebUser.get_by_username(self.web_user.username) self.assertEqual(self._last_accessed(self.web_user, self.domain.name), self.today) def test_update_domain_date_web_user_mirror(self): # Mirror domain access shouldn't be updated because user doesn't have a real membership self.assertIsNone(self._last_accessed(self.web_user, self.mirror_domain.name)) update_domain_date(self.web_user.user_id, self.mirror_domain.name) self.web_user = WebUser.get_by_username(self.web_user.username) self.assertIsNone(self._last_accessed(self.web_user, self.mirror_domain.name))
from nested_diff import Differ, handlers def test_diff_handlers(): class FloatHanler(handlers.TypeHandler): handled_type = float def __init__(self, precision=2, *args, **kwargs): super().__init__(*args, **kwargs) self.precision = precision def diff(self, differ, a, b): if round(a, self.precision) == round(b, self.precision): return {'U': a} if differ.op_u else {} return super().diff(differ, a, b) differ = Differ(U=False) differ.set_handler(FloatHanler(precision=1)) a = [0.001, 0.01, 0.1] b = [0.002, 0.02, 0.2] assert {'D': [{'I': 2, 'N': 0.2, 'O': 0.1}]} == differ.diff(a, b) # TODO: rename this file when handlers related deprecation cycle ended # TODO: drop code below when handlers related deprecation cycle ended def test_subclassing(): class CustomDiffer(Differ): """Differ with custom precision for floats.""" def __init__(self, float_precision=2, *args, **kwargs): super().__init__(*args, **kwargs) self.set_differ(float, self.diff_float) self.float_precision = float_precision def diff_float(self, a, b): if round(a, self.float_precision) == round(b, self.float_precision): return {'U': a} if self.op_u else {} return super().diff__default(a, b) differ = CustomDiffer(float_precision=1, U=False) a = [0.001, 0.01, 0.1] b = [0.002, 0.02, 0.2] assert {'D': [{'I': 2, 'N': 0.2, 'O': 0.1}]} == differ.diff(a, b)
from datetime import datetime, timezone from typing import Any, Dict, Iterable, List, Optional, Set from dateutil.rrule import DAILY, rrule from sqlalchemy import not_, or_ from sqlalchemy.orm.attributes import InstrumentedAttribute from sqlalchemy.sql import ClauseElement from athenian.api.controllers.logical_repos import drop_logical_repo from athenian.api.controllers.miners.filters import LabelFilter from athenian.api.controllers.miners.types import MinedPullRequest, PullRequestFacts, \ PullRequestFactsMap from athenian.api.controllers.settings import default_branch_alias, ReleaseMatch, ReleaseSettings from athenian.api.models.metadata.github import PullRequestComment, \ PullRequestCommit, PullRequestReview, PullRequestReviewRequest from athenian.api.models.precomputed.models import GitHubBase def build_days_range(time_from: datetime, time_to: datetime) -> Set[datetime]: """Build the daily range between the two provided times.""" # timezones: date_from and date_to may be not exactly 00:00 date_from_day = datetime.combine( time_from.date(), datetime.min.time(), tzinfo=timezone.utc) date_to_day = datetime.combine( time_to.date(), datetime.min.time(), tzinfo=timezone.utc) # date_to_day will be included return rrule(DAILY, dtstart=date_from_day, until=date_to_day) def append_activity_days_filter(time_from: datetime, time_to: datetime, selected: Set[InstrumentedAttribute], filters: List[ClauseElement], activity_days_column: InstrumentedAttribute, postgres: bool) -> Set[datetime]: """Append the activity days to provided SQL filters.""" date_range = build_days_range(time_from, time_to) if postgres: filters.append(activity_days_column.overlap(list(date_range))) else: selected.add(activity_days_column) date_range = set(date_range) return date_range def collect_activity_days(pr: MinedPullRequest, facts: PullRequestFacts, sqlite: bool): """Collect activity days from mined PR and facts.""" activity_days = set() if facts.released is not None: activity_days.add(facts.released.item().date()) if facts.closed is not None: activity_days.add(facts.closed.item().date()) activity_days.add(facts.created.item().date()) # if they are empty the column dtype is sometimes an object so .dt raises an exception if not pr.review_requests.empty: activity_days.update( pr.review_requests[PullRequestReviewRequest.created_at.name].dt.date) if not pr.reviews.empty: activity_days.update(pr.reviews[PullRequestReview.created_at.name].dt.date) if not pr.comments.empty: activity_days.update(pr.comments[PullRequestComment.created_at.name].dt.date) if not pr.commits.empty: activity_days.update(pr.commits[PullRequestCommit.committed_date.name].dt.date) if sqlite: activity_days = [d.strftime("%Y-%m-%d") for d in sorted(activity_days)] else: # Postgres is "clever" enough to localize them otherwise activity_days = [datetime.combine(d, datetime.min.time(), tzinfo=timezone.utc) for d in activity_days] return activity_days def build_labels_filters(model: GitHubBase, labels: LabelFilter, filters: list, selected: Set[InstrumentedAttribute], postgres: bool) -> None: """Build SQL filter for labels.""" if postgres: if labels.include: singles, multiples = LabelFilter.split(labels.include) or_items = [] if singles: or_items.append(model.labels.has_any(singles)) or_items.extend(model.labels.contains(m) for m in multiples) filters.append(or_(*or_items)) if labels.exclude: filters.append(not_(model.labels.has_any(labels.exclude))) else: selected.add(model.labels) def labels_are_compatible(include_singles: Set[str], include_multiples: List[Set[str]], exclude: Set[str], labels: Iterable[str]) -> bool: """Check labels compatiblity.""" labels = set(labels) return ((include_singles.intersection(labels) or any(m.issubset(labels) for m in include_multiples) or (not include_singles and not include_multiples)) and (not exclude or not exclude.intersection(labels))) def extract_release_match(repo: str, matched_bys: Dict[str, ReleaseMatch], default_branches: Dict[str, str], release_settings: ReleaseSettings, ) -> Optional[str]: """Extract the release match for the given repo and settings.""" try: matched_by = matched_bys[repo] except KeyError: return None return release_settings.native[repo] \ .with_match(matched_by) \ .as_db(default_branches[drop_logical_repo(repo)]) def triage_by_release_match(repo: str, release_match: str, release_settings: ReleaseSettings, default_branches: Dict[str, str], result: Any, ambiguous: Dict[str, Any], ) -> Optional[Any]: """Check the release match of the specified `repo` and return `None` if it is not effective \ according to `release_settings`, or decide between `result` and `ambiguous`.""" # DEV-1451: if we don't have this repository in the release settings, then it is deleted assert repo in release_settings.native, \ f"You must take care of deleted repositories separately: {repo}" if release_match in (ReleaseMatch.rejected.name, ReleaseMatch.force_push_drop.name): return result required_release_match = release_settings.native[repo] match_name, match_by = release_match.split("|", 1) match = ReleaseMatch[match_name] if required_release_match.match != ReleaseMatch.tag_or_branch: if match != required_release_match.match: return None dump = result else: dump = ambiguous[match_name] if match == ReleaseMatch.tag: target = required_release_match.tags elif match == ReleaseMatch.branch: target = required_release_match.branches.replace( default_branch_alias, default_branches.get(repo, default_branch_alias)) elif match == ReleaseMatch.event: target = required_release_match.events else: raise AssertionError("Precomputed DB may not contain Match.tag_or_branch") if target != match_by: return None return dump def remove_ambiguous_prs(prs: PullRequestFactsMap, ambiguous: Dict[str, List[int]], matched_bys: Dict[str, ReleaseMatch]) -> int: """ Delete PRs from `prs` which are released by branch while the effective match is by tag. :return: Number of removed PRs. """ missed = 0 for repo, pr_node_ids in ambiguous.items(): if matched_bys[repo] == ReleaseMatch.tag: for node_id in pr_node_ids: try: del prs[(node_id, repo)] missed += 1 except KeyError: continue return missed
## Backreference re.sub(r'\[(\d+)\]', r'\1', '[52] apples and [31] mangoes') re.sub(r'(_)?_', r'\1', '_foo_ __123__ _baz_') re.sub(r'(\w+),(\w+)', r'\2,\1', 'good,bad 42,24') re.sub(r'\[(\d+)\]', r'(\15)', '[52] apples and [31] mangoes') re.sub(r'\[(\d+)\]', r'(\g<1>5)', '[52] apples and [31] mangoes') re.sub(r'\[(\d+)\]', r'(\1\065)', '[52] apples and [31] mangoes') re.sub(r'[a-z]+', r'{\g<0>}', '[52] apples and [31] mangoes') re.sub(r'.+', r'Hi. \g<0>. Have a nice day', 'Hello world') re.sub(r'\A([^,]+),.+', r'\g<0>,\1', 'fork,42,nice,3.14') words = ['effort', 'flee', 'facade', 'oddball', 'rat', 'tool'] [w for w in words if re.search(r'\b\w*(\w)\1\w*\b', w)] re.sub(r'\b(\w+)( \1)+\b', r'\1', 'aa a a a 42 f_1 f_1 f_13.14') s = 'abcdefghijklmna1d' re.sub(r'(.).*\11', 'X', s) re.sub(r'(.).*\1\x31', 'X', s) re.sub(r'(.)(.)(.)(.)(.)(.)(.)(.)(.)(.)(.)(.).*\11', 'X', s) re.sub(r'(.)(.)(.)(.)(.)(.)(.)(.)(.)(.)(.)(.).*\1\x31', 'X', s) ## Non-capturing groups re.findall(r'\b\w*(?:st|in)\b', 'cost akin more east run against') re.split(r'hand(?:y|ful)?', '123hand42handy777handful500') re.sub(r'\A(([^,]+,){3})([^,]+)', r'\1(\3)', '1,2,3,4,5,6,7') re.sub(r'\A((?:[^,]+,){3})([^,]+)', r'\1(\2)', '1,2,3,4,5,6,7') s = 'hi 123123123 bye 456123456' re.findall(r'(123)+', s) re.findall(r'(?:123)+', s) re.sub(r'(123)+', 'X', s) row = 'one,2,3.14,42,five' re.sub(r'\A([^,]+,){3}([^,]+)', r'\1"\2"', row) re.sub(r'\A((?:[^,]+,){3})([^,]+)', r'\1"\2"', row) words = 'effort flee facade oddball rat tool' repeat_char = re.compile(r'\b\w*(\w)\1\w*\b') repeat_char.findall(words) m_iter = repeat_char.finditer(words) [m[0] for m in m_iter] ## Named capture groups re.sub(r'(?P<fw>\w+),(?P<sw>\w+)', r'\g<sw>,\g<fw>', 'good,bad 42,24') s = 'aa a a a 42 f_1 f_1 f_13.14' re.sub(r'\b(?P<dup>\w+)( (?P=dup))+\b', r'\g<dup>', s) sentence = 'I bought an apple' m = re.search(r'(?P<fruit>\w+)\Z', sentence) m[1] m['fruit'] m.group('fruit') details = '2018-10-25,car,2346' re.search(r'(?P<date>[^,]+),(?P<product>[^,]+)', details).groupdict() re.search(r'(?P<date>[^,]+),([^,]+)', details).groupdict() s = 'good,bad 42,24' [m.groupdict() for m in re.finditer(r'(?P<fw>\w+),(?P<sw>\w+)', s)] ## Conditional groups words = ['"hi"', 'bye', 'bad"', '"good"', '42', '"3'] pat = re.compile(r'(")?\w+(?(1)")') [w for w in words if pat.fullmatch(w)] [w for w in words if re.fullmatch(r'"\w+"|\w+', w)] [w for w in words if re.fullmatch(r'"?\w+"?', w)] [w for w in words if pat.search(w)] words = ['(hi)', 'good-bye', 'bad', '(42)', '-oh', 'i-j', '(-)'] pat = re.compile(r'(\()?\w+(?(1)\)|-\w+)') [w for w in words if pat.fullmatch(w)] ## Match.expand re.sub(r'w(.*)m', r'[\1]', 'awesome') re.search(r'w(.*)m', 'awesome').expand(r'[\1]') dates = '2020/04/25,1986/03/02,77/12/31' m_iter = re.finditer(r'([^/]+)/([^/]+)/[^,]+,?', dates) [m.expand(r'Month:\2, Year:\1') for m in m_iter]
# pylint: disable = import-error, invalid-name """General model classes""" from org.kie.kogito.explainability import ( TestUtils as _TestUtils, Config as _Config, ) from java.util import ArrayList, List TestUtils = _TestUtils Config = _Config def toJList(pyList): """Convert a Python list to a Java ArrayList""" result = ArrayList() for item in pyList: result.add(item) return result
''' read_bovespa.py - helper functions to interpret records from BOVESPA's historical data. Raw data available in http://http://www.bmfbovespa.com.br ''' import pandas as pd from collections import OrderedDict from datetime import date from datetime import datetime as dt from typing import Any, Callable, Iterator, Union, Dict RecordTypes = Union[int, str, float, date] FilePath = str CharStream = Iterator[str] BovespaDateString = str def read_bovespa_file(filename: FilePath) -> pd.DataFrame: '''read a file in the BOVESPA historical records format as a Pandas' DataFrame.''' with open(filename, 'r') as bovespa_file: bovespa_file.readline() # skip file header records = (read_bovespa_record(line) for line in skip_last(bovespa_file)) return pd.DataFrame(records) def read_bovespa_record(line: str) -> Dict[str, RecordTypes]: '''read a line from a BOVESPA style record as a dictionary.''' read = read_from(line) skip = read # just for clarity record: Dict[str, RecordTypes] = OrderedDict() skip(2) # register type code (always "01") record["date"] = read_date(read(8)) skip(2) # BDI code record["symbol"] = read(12) skip(3) # market type code record["company_name"] = read(12) record["type"] = read(10) skip(3) # market time in days record["currency"] = read(4) record["open"] = read_float(read(13)) record["high"] = read_float(read(13)) record["low"] = read_float(read(13)) record["mean"] = read_float(read(13)) record["close"] = read_float(read(13)) skip(13) # best buy offer price skip(13) # best sell offer price skip(5) # number of exchanges for the asset record["quantity"] = int(read(18)) record["volume"] = read_float(read(18)) record["option_strike_price"] = read_float(read(13)) skip(1) # price correction indicator record["option_expiry_date"] = read_date(read(8)) return record def read_from(string: str) -> Callable[[int], str]: '''return a function to read a string as a stream.''' it: CharStream = iter(string) return lambda n: read_n(n, it) def read_n(n: int, iterator: CharStream) -> str: '''read n chars from a string iterator, join them and strip whitespace.''' return ''.join([next(iterator, '') for _ in range(n)]).strip() def read_date(date_string: BovespaDateString) -> date: '''read a string as a date in "YYYYMMDD" format.''' date_format = "%Y%m%d" # from http://strftime.org/ return dt.strptime(date_string, date_format).date() def read_float(value: str, after_comma: int = 2) -> float: '''read a float from a string of integers with decimal place metadata.''' integral_part = value[:-after_comma] fractional_part = value[-after_comma:] return float(f'{integral_part}.{fractional_part}') def skip_last(iterator: Iterator[Any]) -> Iterator[Any]: '''Yield all but the last value of an iterator.''' try: next_value = next(iterator) for element in iterator: yield next_value next_value = element except StopIteration: raise ValueError("Iterator is empty")
from urllib.request import urlopen from bs4 import BeautifulSoup import ssl ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE url = input('Enter URL - ') count = int(input('Enter iterations:')) position = int(input('Enter position:')) for _ in range(count+1): html = urlopen(url, context=ctx).read() print('Retrieving: ', url) soup = BeautifulSoup(html, "html.parser") url = soup('a')[position-1].get('href', None)