content
stringlengths
5
1.05M
# Make it possible to enable test coverage reporting for Python # code run in children processes. # http://coverage.readthedocs.io/en/latest/subprocess.html import os.path as op from distutils.sysconfig import get_python_lib FILE_CONTENT = """\ import coverage; coverage.process_startup() """ filename = op.join(get_python_lib(), 'coverage_subprocess.pth') with open(filename, mode='w') as f: f.write(FILE_CONTENT) print(f'Installed subprocess coverage support: {filename}')
from django.db import models from django.utils.translation import gettext_lazy as _ from trade_system.users.models import User from trade_system.items.models import Item from trade_system.offers.choises import OrderType class Offer(models.Model): """Request to buy or sell specific stocks""" user = models.ForeignKey(User, blank=True, null=True, on_delete=models.SET_NULL) item = models.ForeignKey(Item, blank=True, null=True, on_delete=models.SET_NULL) entry_quantity = models.IntegerField(_("Requested quantity")) quantity = models.IntegerField(_("Current quantity")) order_type = models.PositiveSmallIntegerField(choices=OrderType) price = models.DecimalField(max_digits=7, decimal_places=2, blank=True, null=True) is_active = models.BooleanField(default=True) def __str__(self): return 'Offer {} {} {} {} {} {}'.format(self.user, self.item, self.quantity, self.price, self.item.currency, self.order_type)
from polylogyx.utils import js class Testjs: def test_pretty_operator(self): assert js.pretty_operator("equal") == "equals" def test_pretty_field(self): assert js.pretty_field("action")=="Action" def test_jinja2_esacpejs_filter_no_input(self): assert js.jinja2_escapejs_filter(None) == "" def test_jinja2_esacpejs_filter(self): assert js.jinja2_escapejs_filter("test") == "test" assert js.jinja2_escapejs_filter("=") == "\\u003D"
from scipy.ndimage import convolve import numpy as np class Solution: def largestOverlap(self, A, B): B = np.pad(B, len(A), mode='constant', constant_values=(0, 0)) return np.amax(convolve(B, np.flip(np.flip(A,1),0), mode='constant'))
import pygame from pygame.sprite import Group from src import game_functions as gf from src.alien import Alien from src.button import Button from src.game_stats import GameStats from src.scoreboard import ScoreBoard from src.settings import Settings from src.ship import Ship def rungame(): # Initialize game,settings and create screen object. pygame.init() sett = Settings() screen = pygame.display.set_mode((sett.screen_width, sett.screen_height)) pygame.display.set_caption("Alien Invasion") """"Instance initialization""" # Make instance of game stats. stats = GameStats(sett) # Make instance of scoreboard. sb = ScoreBoard(sett, screen, stats) # Make the play button. b_play = Button(sett, screen, "PLAY") # Make instance of ship. ship = Ship(sett, screen) # Make a group to store bullets and aliens. aliens = Group() bullets = Group() # Make instance of alien. alien = Alien(sett, screen) gf.create_fleet(sett, screen, ship, aliens) # Start the main loop for the game. while True: # Watch for keyboard and mouse events. gf.check_events(sett, screen, stats, sb, b_play, ship, aliens, bullets) if stats.game_active: ship.update() gf.update_bullets(sett, screen, stats, sb, ship, aliens, bullets) gf.update_aliens(sett, stats, sb, screen, ship, aliens, bullets) # Redraw the screen during each pass through the loop. gf.update_screen(sett, screen, stats, sb, ship, aliens, bullets, b_play) rungame()
# -*- coding: utf-8 -*- """ @time : 2019/5/24 下午10:22 @author : [email protected] @file : cache_man.py @description : local_cache ########################################################## # # # # ########################################################## """ from core.utils.utils import load_yaml from core.utils.udecorator import synchronized import logging from core.utils.ducc_utils import DuccClient import json class Config(object): instance = None @synchronized def __new__(cls, *args, **kwargs): if cls.instance is None: cls.instance = super().__new__(cls) return cls.instance def __init__(self, f): self._config = load_yaml(f) # self.__init_config__() self.contain = {} logging.info('loading app config...%s' % json.dumps(self._config, sort_keys=False, indent=2)) def init_config(self, ducc): req = ducc.querys() data = json.loads(req.content) config_data = data['data'] def __init_config_child(parent, config_data): for key in parent.keys(): if type(parent[key]) is dict: __init_config_child(parent[key], config_data) else: if type(parent[key]) is str and 'ducc:' in str(parent[key]): v = self._find_ducc(str(parent[key]).replace('ducc:', ''), config_data) parent[key] = v for key in self._config.keys(): if type(self._config[key]) is dict: __init_config_child(self._config[key], config_data) else: if type(self._config[key]) is str and 'ducc:' in str(self._config[key]): self._config[key] = self._find_ducc(key, config_data) def _find_ducc(self, key, config_data): for d in config_data: if key == d['key']: v = d['value'] try: v = json.loads(d['value']) except RuntimeError as ex: pass return v return None def get_section(self): return self._config def get_rpcConfig(self): return self.get_section()['rpc'] def get_zkConfig(self): return self.get_section()['zk'] def get_env(self): return self.get_section()['env'] def get_app_section(self): return self._config['app'] def set_contain(self, p): self.contain = p @property def host(self): return self.get_app_section()['host'] @property def port(self): return self.get_app_section()['port'] @property def root_rc_router(self): return self.get_app_section()['root_rc_path'] # # @property # def root_sim_router(self): # return self.get_app_section()['root_sim_path'] def get_cache_local_section(self): return self._config['cache_local'] def get_repo_section(self): return self._config['repo'] def get_rc_section(self): return self._config['rc'] def get_jss_section(self): return self._config['jss'] @property def access_key(self): return self.get_jss_section()['access_key'] @property def secret_key(self): return self.get_jss_section()['secret_key']
from sqlalchemy import Column, Integer, String, Boolean from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, sessionmaker from sqlalchemy import create_engine Base = declarative_base() class Knowledge(Base): __tablename__="knowledge" knowledge_id=Column(Integer, primary_key=True) article=Column(String) topic=Column(String) rating=Column(Integer) def __repr__(self): return( "if you want to learn more about :{}\n" "you should look at the article called:{}\n" "and our rating of that article is:{}\n").format( #self.knowledge_id, self.topic, self.article, self.rating ) # print(repr(Knowledge.__table__)) x=Knowledge(topic="food", article="gmo", rating=8) y=Knowledge(topic="weather", article="rain", rating=5) print(x) print(y)
import logging import os import os.path import shlex import sys import re from io import StringIO from dimcli import CLI, logger cli = CLI() # taken from unittest/python 2.7 def assertDictSubset(actual, expected, msg=None): """Checks whether actual is a superset of expected.""" missing = [] mismatched = [] for key, value in expected.items(): if key not in actual: missing.append(key) elif value != actual[key]: mismatched.append('%s, expected: %s, actual: %s' % (repr(key), repr(value), repr(actual[key]))) if not (missing or mismatched): return msg = '' if missing: msg = 'Missing: %s' % ','.join(repr(m) for m in missing) if mismatched: if msg: msg += '; ' msg += 'Mismatched values: %s' % ','.join(mismatched) raise AssertionError(msg) class NdcliResult(object): def __init__(self, code, stdout, stderr): self.code = code self.stdout = stdout self.stderr = stderr @property def ok(self): return self.code == 0 @property def err(self): return self.code != 0 def __repr__(self): return self.stdout @property def table(self): return [l.split('\t') for l in self.stdout.splitlines()] @property def attrs(self): return dict(l.split(':', 1) for l in self.stdout.splitlines()) def _ndcli(cmd, level=logging.WARNING): stderr = StringIO() stderrHandler = logging.StreamHandler(stderr) stderrHandler.setFormatter(logging.Formatter('%(levelname)s - %(message)s')) stderrHandler.setLevel(level) logger.addHandler(stderrHandler) old_stdout = sys.stdout sys.stdout = stdout = StringIO() code = cli.run(['ndcli'] + shlex.split(cmd)) sys.stdout = old_stdout logger.removeHandler(stderrHandler) return NdcliResult(code, stdout.getvalue(), stderr.getvalue()) # --username needs AUTHENTICATION_METHOD = None in dim.cfg def reset_session(): try: os.remove(os.path.expanduser('~/.ndcli.cookie')) except: pass global cli cli = CLI() def admin(cmd): reset_session() return _ndcli("--username admin --password admin " + cmd) ndcli = admin def net(cmd): reset_session() return _ndcli("--username net --password net " + cmd) def user(cmd): reset_session() return _ndcli("--username user --password user " + cmd) def assert_match_table(table, matching_info): def match(row, info): if len(row) != len(info): return False for i in range(len(row)): if type(info[i]) == str and info[i] != row[i]: return False elif re.match(info[i], row[i]) is None: return False return True matches = {} for t, row in enumerate(table): matched = False for m, info in enumerate(matching_info): if match(row, info): matched = True matches[m] = t break if not matched: raise AssertionError('Cannot match row %r' % row) if len(matches) < len(matching_info): raise AssertionError('Missing rows:\n' + '\n'.join(str(info) for m, info in enumerate(matching_info) if m not in matches))
''' @author: aaditkamat @date: 27/12/2018 ''' def reverse_words(string): new_string = '' for word in string.split(' '): new_string += word[::-1] + ' ' return new_string print("Enter a string: ", end= '') string = input() print("Reverse of string \'", string, "\': ", reverse_words(string), sep='')
# -*- coding: utf-8 -*- import unittest from StringIO import StringIO from mock import patch from yalign.datatypes import Sentence from yalign.train_data_generation import * from yalign.train_data_generation import _aligned_samples, _misaligned_samples, _reorder, _random_range def swap_start_and_end(xs): xs[0], xs[-1] = xs[-1], xs[0] def reader(N): return StringIO('\n'.join([str(x) for x in xrange(N)])) def sentences(xs): return [Sentence([unicode(x)]) for x in xs] class TestTrainingAlignmentsFromDocuments(unittest.TestCase): def test_empty_inputs(self): samples = list(training_alignments_from_documents([], [])) self.assertEquals(0, len(samples)) def test_samples_are_alignments_and_misalignments(self): samples = list(training_alignments_from_documents(sentences([u'A', u'B', u'C']), sentences([u'X', u'Y', u'Z']))) self.assertEquals(6, len(samples)) self.assertEquals(3, len([x for x in samples if x.aligned])) self.assertEquals(3, len([x for x in samples if not x.aligned])) def test_documents_equal_length(self): try: list(training_alignments_from_documents([], sentences([u'A']))) self.assertFalse("Failed to raise exception") except ValueError as e: self.assertEqual("Documents must be the same size", str(e)) class TestAlignedSamples(unittest.TestCase): def test_empty_alignments(self): A, B = [], [] samples = list(_aligned_samples(A, B, [])) self.assertEquals(0, len(samples)) def test_sample_values(self): A, B = sentences([u'A', u'B']), sentences([u'Y', u'Z']) samples = list(_aligned_samples(A, B, [(0, 1), (1, 0)])) # Note alignments swapped so A -> Z and B-> Y s0 = SentencePair(Sentence([u'A']), Sentence([u'Z']), aligned=True) s1 = SentencePair(Sentence([u'B']), Sentence([u'Y']), aligned=True) self.assertEquals(2, len(samples)) self.assertEquals([s0, s1], samples) class TestNonAlignedSamples(unittest.TestCase): def test_empty_alignments(self): A, B = [], [] samples = list(_misaligned_samples(A, B, [])) self.assertEquals(0, len(samples)) def test_one_alignment(self): # no misalignments when we have only one alignment A, B = sentences(['A']), sentences(['Z']) samples = list(_misaligned_samples(A, B, [(0, 0)])) self.assertEquals(0, len(samples)) def test_sample_values(self): A, B = sentences([u'A', u'B']), sentences([u'Y', u'Z']) samples = list(_misaligned_samples(A, B, [(0, 0), (1, 1)])) s0 = SentencePair(Sentence([u'A']), Sentence([u'Z'])) s1 = SentencePair(Sentence([u'B']), Sentence([u'Y'])) self.assertEquals(2, len(samples)) for sample in samples: self.assertTrue(sample in [s0, s1]) def test_randomly(self): for i in xrange(1000): n = random.randint(2, 100) A, B = sentences(xrange(n)), sentences(xrange(n)) alignments = zip(range(n), range(n)) samples = list(_misaligned_samples(A, B, alignments)) self.assertEquals(n, len(samples)) pairs = set([(a[0], b[0]) for a, b in samples]) #No duplicates self.assertEquals(len(pairs), len(samples)) class TestReorder(unittest.TestCase): def test_reoroder(self): self.assertEquals([], _reorder([], [])) self.assertEquals([0], _reorder([0], [0])) self.assertEquals([0, 1], _reorder([0, 1], [0, 1])) self.assertEquals([1, 0], _reorder([0, 1], [1, 0])) self.assertEquals([1, 2, 0], _reorder([0, 1, 2], [2, 0, 1])) def test_indexes_size_correct(self): self.assertRaises(ValueError, _reorder, [1, 2], [0]) self.assertRaises(ValueError, _reorder, [1], [0, 1]) class TestRandomAlign(unittest.TestCase): def test_boundries(self): self.assertEquals(([], [], []), training_scrambling_from_documents([], [])) self.assertEquals((sentences(['Y']), [], [(0, None)]), training_scrambling_from_documents(sentences(['Y']), [])) self.assertEquals(([], sentences(['Z']), [(None, 0)]), training_scrambling_from_documents([], sentences(['Z']))) @patch('random.shuffle') def test_unshuffled(self, mock_shuffle): mock_shuffle.side_effect = lambda x: x A, B = sentences(['A', 'B']), sentences(['Y', 'Z']) self.assertEquals((A, B, [(0, 0), (1, 1)]), training_scrambling_from_documents(A, B)) A, B = sentences(['A', 'B']), sentences(['Y']) self.assertEquals((A, B, [(0, 0), (1, None)]), training_scrambling_from_documents(A, B)) A, B = sentences(['A']), sentences(['Y', 'Z']) self.assertEquals((A, B, [(None, 1), (0, 0)]), training_scrambling_from_documents(A, B)) @patch('random.randint') @patch('random.shuffle') def test_shuffled(self, mock_shuffle, mock_randint): mock_randint.return_value = 2 mock_shuffle.side_effect = swap_start_and_end A, B = sentences(['A', 'B']), sentences(['Y', 'Z']) self.assertEquals((sentences(['B', 'A']), sentences(['Z', 'Y']), [(0, 0), (1, 1)]), training_scrambling_from_documents(A, B)) A, B = sentences(['A', 'B']), sentences(['Y']) self.assertEquals((sentences(['B', 'A']), B, [(0, None), (1, 0)]), training_scrambling_from_documents(A, B)) A, B = sentences(['A']), sentences(['Y', 'Z']) self.assertEquals((A, sentences(['Z', 'Y']), [(None, 0), (0, 1)]), training_scrambling_from_documents(A, B)) class TestRandomRange(unittest.TestCase): def test_boundries(self): self.assertEquals([], _random_range(-1)) self.assertEquals([], _random_range(0)) self.assertEquals([0], _random_range(1)) self.assertEquals(5, len(_random_range(5))) def test_span(self): # any span <= 1 will lead to no shuffling self.assertEquals(range(5), _random_range(5, span=1)) self.assertEquals(range(5), _random_range(5, span=0)) self.assertEquals(range(5), _random_range(5, span=-1)) self.assertEquals(3, len(_random_range(3, span=1000))) def test_some_shuffling_happens(self): self.assertNotEquals(range(100), _random_range(100)) @patch('random.randint') @patch('random.shuffle') def test_shuffling(self, mock_shuffle, mock_randint): mock_randint.return_value = 2 mock_shuffle.side_effect = swap_start_and_end self.assertEquals([1, 0, 3, 2], _random_range(4)) self.assertEquals([1, 0, 3, 2, 4], _random_range(5)) if __name__ == "__main__": unittest.main()
""" pyNRC - Python ETC and Simulator for JWST NIRCam ---------------------------------------------------------------------------- pyNRC is a set of Python-based tools for planning observations with JWST NIRCam, such as an ETC, a simple image slope simulator, and an enhanced data simulator. This package works for a variety of NIRCam observing modes including direct imaging, coronagraphic imaging, slitless grism spectroscopy, DHS observations, and weak lens imaging. All PSFs are generated via WebbPSF (https://webbpsf.readthedocs.io) to reproduce realistic JWST images and spectra. Developed by Jarron Leisenring and contributors at University of Arizona (2015-18). """ from __future__ import absolute_import, division, print_function, unicode_literals from .version import __version__ import astropy from astropy import config as _config import tempfile class Conf(_config.ConfigNamespace): # Path to data files for pynrc. # The environment variable $PYNRC_PATH takes priority. import os on_rtd = os.environ.get('READTHEDOCS') == 'True' if on_rtd: path = tempfile.gettempdir() else: path = os.getenv('PYNRC_PATH') if path is None: print("WARNING: Environment variable $PYNRC_PATH is not set!") print(" Setting PYNRC_PATH to temporary directory.") path = tempfile.gettempdir() print(" {}".format(path)) #raise EnvironmentError("Environment variable $PYNRC_PATH is not set!") if not os.path.isdir(path): #print ("WARNING: PYNRC_PATH ({}) is not a valid directory path!".format(path)) raise IOError("PYNRC_PATH ({}) is not a valid directory path!".format(path)) if '/' not in path[-1]: # Make sure there is a '/' at the end of the path name path = path + '/' PYNRC_PATH = _config.ConfigItem(path, 'Directory path to data files \ required for pynrc calculations.') logging_level = _config.ConfigItem( ['INFO', 'DEBUG', 'WARN', 'WARNING', 'ERROR', 'CRITICAL', 'NONE'], 'Desired logging level for pyNRC.' ) default_logging_level = _config.ConfigItem('INFO', 'Logging verbosity: one of {DEBUG, INFO, WARN, ERROR, or CRITICAL}') logging_filename = _config.ConfigItem("none", "Desired filename to save log messages to.") logging_format_screen = _config.ConfigItem( '[%(name)10s:%(levelname)s] %(message)s', 'Format for lines logged to the screen.' ) logging_format_file = _config.ConfigItem( '%(asctime)s [%(name)s:%(levelname)s] %(filename)s:%(lineno)d: %(message)s', 'Format for lines logged to a file.' ) conf = Conf() from .logging_utils import setup_logging#, restart_logging setup_logging(conf.default_logging_level, verbose=False) from .nrc_utils import (read_filter, pix_noise, bp_2mass, bp_wise, \ stellar_spectrum, source_spectrum, planets_sb12) from .pynrc_core import (DetectorOps, NIRCam) from .obs_nircam import (obs_hci, nrc_hci) from .detops import (multiaccum, det_timing, nrc_header) #from .ngNRC import slope_to_ramp, nproc_use_ng from .maths import * from .simul import ngNRC from .reduce import ref_pixels from .reduce.calib import nircam_dark from .testing import perform_benchmarks def _reload(name="pynrc"): """ Simple reload function to test code changes without restarting python. There may be some weird consequences and bugs that show up, such as functions and attributes deleted from the code still stick around after the reload. Although, this is even true with ``importlib.reload(pynrc)``. Other possible ways to reload on-the-fly: from importlib import reload reload(pynrc) # Delete classes/modules to reload import sys del sys.modules['pynrc.obs_nircam'] """ import imp imp.load_module(name,*imp.find_module(name)) print("{} reloaded".format(name))
""" Tests that are reproductions of bugs found, to avoid regressions. """ from __future__ import print_function from unittest import TestCase, skipIf import numpy as np from numpy.testing import run_module_suite, assert_allclose from pkg_resources import parse_version import gulinalg class TestBugs(TestCase): def test_uninit_gemm(self): a = np.zeros((298, 64)) b = np.zeros((64, 298)) c = np.zeros((298, 298), order='F') c.fill(np.nan) gulinalg.matrix_multiply(a, b, out=c) assert not np.isnan(c).any() def test_zero_K_gemm(self): a = np.zeros((2,0)) b = np.zeros((0,2)) c = np.empty((2,2), order="C") c.fill(np.nan) # make sure that the result is set to zero gulinalg.matrix_multiply(a, b, out=c) assert_allclose(c, np.zeros((2,2))) # make sure that this works also when order is FORTRAN c = np.empty((2,2), order="F") c.fill(np.nan) gulinalg.matrix_multiply(a, b, out=c) assert_allclose(c, np.zeros((2,2))) # check that the correct shape is created as well... d = gulinalg.matrix_multiply(a,b) assert_allclose(d, np.zeros((2,2))) @skipIf(parse_version(np.__version__) < parse_version('1.13'), "prior to numpy 1.13 gufunc machinery raises an error on this code") def test_zero_MN_gemm(self): # check other border cases... e = gulinalg.matrix_multiply(np.zeros((0,2)), np.zeros((2,2))) assert_allclose(e, np.zeros((0,2))) f = gulinalg.matrix_multiply(np.zeros((2,2)), np.zeros((2,0))) assert_allclose(f, np.zeros((2,0))) if __name__ == '__main__': run_module_suite()
from django.utils.translation import ugettext_lazy as _ from django_filters import RangeFilter, Filter from mapentity.filters import MapEntityFilterSet class OptionalRangeFilter(RangeFilter): def __init__(self, *args, **kwargs): super(OptionalRangeFilter, self).__init__(*args, **kwargs) self.field.fields[0].label = _('min %s') % self.field.label self.field.fields[1].label = _('max %s') % self.field.label class YearFilter(Filter): def do_filter(self, qs, year): return qs.filter(**{ '%s__year' % self.field_name: year, }).distinct() def filter(self, qs, value): try: year = int(value) except (ValueError, TypeError): year = -1 return qs if year < 0 else self.do_filter(qs, year) class ValueFilter(Filter): def do_filter(self, qs, value): return qs.filter(**{ '%s' % self.field_name: value, }).distinct() def filter(self, qs, value): try: new_value = int(value) except (ValueError, TypeError): new_value = -1 return qs if new_value < 0 else self.do_filter(qs, new_value) class YearBetweenFilter(YearFilter): def __init__(self, *args, **kwargs): assert len(kwargs['field_name']) == 2 super(YearBetweenFilter, self).__init__(*args, **kwargs) def do_filter(self, qs, year): begin, end = self.field_name qs = qs.filter(**{ '%s__lte' % begin: year, '%s__gte' % end: year, }) return qs class StructureRelatedFilterSet(MapEntityFilterSet): class Meta(MapEntityFilterSet.Meta): fields = MapEntityFilterSet.Meta.fields + ['structure']
# Generated by Django 2.2.3 on 2019-07-13 07:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('rpsite', '0005_remove_evaluation_semaster'), ] operations = [ migrations.RemoveField( model_name='evaluationitem', name='question', ), ]
import warnings warnings.filterwarnings("ignore") import sys import time sys.path.append("../") from helper.utils import pd,random_seed_cpu_gpu,Print,read_pickle from config import * from tqdm import tqdm from os.path import join import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import random import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from tqdm import tqdm random_seed_cpu_gpu(RANDOM_STATE) class Ae_data(Dataset): def __init__( self, data, ids, swap_prob=swap_prob ): self.data=data self.ids=ids self.swap_prob=swap_prob def __getitem__(self, index): x=self.data[index] p=np.random.rand()<=self.swap_prob if p : swap_index=np.random.randint(self.__len__()) return x ,self.data[swap_index] else : return x,x def __len__(self): return len(self.data) def train_func( model, criterion, optimizer, train_data_loader, model_name, n_epochs, init_epoch=0, path="" ): train_losses = [] os.makedirs(path, exist_ok=True) for epoch in range(init_epoch,n_epochs+1): iterator_train = tqdm(train_data_loader) epoch_train_losses = [] tr_loss=0 model.train() for step, (x,y) in enumerate(iterator_train): x = x.to(device).float() y= y.to(device).float() outputs=model(x) loss = torch.sqrt(criterion(y, outputs)) loss.backward() optimizer.step() model.zero_grad() epoch_train_losses.append(loss.item()) tr_loss+=loss.item() iterator_train.set_postfix(epoch=epoch,loss=(loss.item()), loss_total=(tr_loss/((step+1))) ) train_losses.append(np.mean(epoch_train_losses)) if epoch%10==0: torch.save(model.encoder.state_dict(),join(path,"encoder_{}".format(epoch))) torch.save(model.decoder.state_dict(), join(path,"decoder_{}".format(epoch))) return train_losses class encoder_model(nn.Module): def __init__( self, n_input ): super(encoder_model, self).__init__() self.lstm_1 = nn.LSTM(n_input,14, num_layers=1, batch_first=True, bidirectional=True) self.lstm_2 = nn.LSTM(14*2,14, num_layers=1, batch_first=True, bidirectional=True) self.latent = nn.LSTM(14*2,14,batch_first=True) def forward(self, x): lstm_1=self.lstm_1(x)[0] lstm_2=self.lstm_2(lstm_1)[0] latent=self.latent(lstm_2)[0] return latent class decoder_model(nn.Module): def __init__( self, n_input, n_output ): super(decoder_model, self).__init__() self.lstm_1 = nn.LSTM(n_input,14, num_layers=1, batch_first=True, bidirectional=True) self.lstm_2 = nn.LSTM(14*2,14, num_layers=1, batch_first=True, bidirectional=True) self.lstm_3 = nn.LSTM(14*2,14 ,batch_first=True) self.output_layer=nn.Linear(14,n_output) def forward(self, x): lstm_1=self.lstm_1(x)[0] lstm_2=self.lstm_2(lstm_1)[0] lstm_3=self.lstm_3(lstm_2)[0] output_layer=self.output_layer(lstm_3) return output_layer class AE_model(nn.Module): def __init__(self,encoder,decoder ): super(AE_model, self).__init__() self.encoder=encoder self.decoder=decoder def forward(self, x): encoder=self.encoder(x) decoder=self.decoder(encoder) return decoder Print(" "*25+" Train denoising Autoencoder ") Print("") Print("1-Load the seq data ") data=read_pickle(join(proc_data_path,"seq_data.p")) train_batch_size=32 num_workers=8 model_name="final" init_epoch=-1 Print("2- Create torch data loader ") train_set = Ae_data(data=list(data.values()),ids=list(data.keys())) train_loader = DataLoader( train_set, batch_size=train_batch_size, shuffle=True, num_workers=num_workers, drop_last=True, ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") Print("Device to use by torch is : "+ device.type) Print("Create DAE model") encoder=encoder_model(14) decoderl=decoder_model(14,14) ae=AE_model(encoder,decoderl) ae.to(device) optimizer = optim.Adam(ae.parameters(), lr=1e-4, eps=1e-8) criterion = nn.MSELoss() path =join(other_data_path,"ae",model_name) if init_epoch > -1 : ae.encoder.load_state_dict(torch.load(join(path,"encoder_{}".format(epoch)) ,map_location=device)) ae.decoder.load_state_dict(torch.load(join(path,"decoder_{}".format(epoch)) ,map_location=device)) n_epochs=2500 Print("Start training ") start_time=time.time() train_func( ae, criterion, optimizer, train_loader, model_name, n_epochs, init_epoch+1, path=path ) end_time=start_time-time.time()
import os import sys import time import mimetypes from http import HTTPStatus import logging from PIL import Image, ImageOps, ImageColor # from PIL import ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES = True from twms import config from twms import correctify from twms import fetchers from twms import bbox as bbox_utils from twms import projections from twms import viewhtml from twms import viewwms sys.path.append(os.path.join(os.path.dirname(__file__))) install_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '../')) class TWMSMain(object): """Inside tWMS, only EPSG:4326 latlon should be used for transmitting coordinates. WMS http://cite.opengeospatial.org/OGCTestData/wms/1.1.1/spec/wms1.1.1.html TMS https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification https://gis-lab.info/docs/tms-specification-ru.html WMTS Web Map Tile Service Implementation Standard 2010-04-06 1.0.0 http://www.opengeospatial.org/standards/wmts https://sampleserver6.arcgisonline.com/arcgis/rest/services/WorldTimeZones/MapServer/WMTS Usually link to WMTSCapabilities.xml """ def __init__(self): super(TWMSMain, self).__init__() self.cached_objs = dict() # a dict. (layer, z, x, y): PIL image self.cached_hist_list = list() self.fetchers_pool = dict() # self.fetchers_pool[layer['prefix']] def wms_handler(self, data): """Do main TWMS work. Some WMS implementation. data - dictionary of params. returns (HTTP_code, content_type, resp) http://127.0.0.1:8080/?request=GetCapabilities& http://127.0.0.1:8080/?request=GetCapabilities&version=1.0.0 """ # WMS request keys must be case insensitive, values must not data = {k.lower(): v for k, v in data.items()} start_time = time.time() srs = data.get("srs", "EPSG:4326") wkt = data.get("wkt", "") # color = data.get("color", data.get("colour", "")).split(",") req_type = data.get("request", "GetMap") version = data.get("version", "1.1.1") ref = data.get("ref", config.service_url) if req_type == "GetCapabilities": content_type, resp = viewwms.get(version, ref) return HTTPStatus.OK, content_type, resp layer = data.get('layers', config.default_layers).split(",") if 'layers' in data and not layer[0]: layer = ['transparent'] if req_type == "GetCorrections": points = data.get('points', '').split('=') points = [a.split(",") for a in points] points = [(float(a[0]), float(a[1])) for a in points] resp = "" for lay in layer: for point in points: resp += "%s,%s;" % (correctify.rectify(config.layers[lay], point)) resp += "\n" return HTTPStatus.OK, 'text/plain', resp force = data.get("force", "") if force != "": force = force.split(",") force = tuple(force) if layer == [""]: return HTTPStatus.OK, 'text/html', viewhtml.html() # Serving imagery content_type = 'image/jpeg' # Default content type of image to serve try: # Get requested content type from standard WMS 'format' parameter, # https://docs.geoserver.org/stable/en/user/services/wms/outputformats.html content_type = data['format'] if content_type not in mimetypes.types_map.values(): return HTTPStatus.INTERNAL_SERVER_ERROR, 'text/plain', f"Invalid image format '{content_type}' requested" except KeyError: pass width = 0 height = 0 z = int(data.get("z", 0)) x = int(data.get("x", 0)) y = int(data.get("y", 0)) if req_type == "GetTile": # Both TMS and WMS width = 256 height = 256 height = int(data.get("height", height)) width = int(data.get("width", width)) srs = data.get('srs', 'EPSG:3857') # Try to return tile as is, if possible if all(( len(layer) == 1, layer[0] in config.layers, 'cache_ttl' not in config.layers[layer[0]], # Need to check time in fetcher srs == config.layers[layer[0]]['proj'], width == height == 256, not force, not correctify.has_corrections(config.layers[layer[0]]))): tile_path = config.tiles_cache + config.layers[layer[0]]['prefix'] + "/{:.0f}/{:.0f}/{:.0f}{}".format( z, x, y, config.layers[layer[0]]['ext']) logging.debug(f"{layer[0]} z{z}/x{x}/y{y} query cache {tile_path}") if os.path.exists(tile_path): # Not returning HTTP 404 logging.info(f"{layer[0]} z{z}/x{x}/y{y} wms_handler cache hit {tile_path}") with open(tile_path, 'rb') as f: # Note: image file validation performed only in TileFetcher return HTTPStatus.OK, content_type, f.read() req_bbox = projections.from4326(projections.bbox_by_tile(z, x, y, srs), srs) if data.get("bbox", None): req_bbox = tuple(map(float, data.get("bbox", req_bbox).split(","))) req_bbox = projections.to4326(req_bbox, srs) req_bbox, flip_h = bbox_utils.normalize(req_bbox) box = req_bbox width = int(data.get("width", width)) height = int(data.get("height", height)) width = min(width, config.max_width) height = min(height, config.max_height) if width == height == 0: width = 350 imgs = 1.0 ll = layer.pop(0) if ll[-2:] == "!c": ll = ll[:-2] if wkt: wkt = "," + wkt wkt = correctify.corr_wkt(config.layers[ll]) + wkt srs = config.layers[ll]["proj"] try: # WMS image result_img = self.getimg(box, srs, (height, width), config.layers[ll], start_time, force) except KeyError: result_img = Image.new("RGBA", (width, height)) for ll in layer: if ll[-2:] == "!c": ll = ll[:-2] if wkt: wkt = "," + wkt wkt = correctify.corr_wkt(config.layers[ll]) + wkt srs = config.layers[ll]["proj"] im2 = self.getimg(box, srs, (height, width), config.layers[ll], start_time, force) if "empty_color" in config.layers[ll]: ec = ImageColor.getcolor(config.layers[ll]["empty_color"], "RGBA") sec = set(ec) if "empty_color_delta" in config.layers[ll]: delta = config.layers[ll]["empty_color_delta"] for tr in range(-delta, delta): for tg in range(-delta, delta): for tb in range(-delta, delta): if ( (ec[0] + tr) >= 0 and (ec[0] + tr) < 256 and (ec[1] + tr) >= 0 and (ec[1] + tr) < 256 and (ec[2] + tr) >= 0 and (ec[2] + tr) < 256 ): sec.add((ec[0] + tr, ec[1] + tg, ec[2] + tb, ec[3])) i2l = im2.load() for x in range(0, im2.size[0]): for y in range(0, im2.size[1]): t = i2l[x, y] if t in sec: i2l[x, y] = (t[0], t[1], t[2], 0) if not im2.size == result_img.size: im2 = im2.resize(result_img.size, Image.ANTIALIAS) im2 = Image.composite(im2, result_img, im2.split()[3]) # imgs/(imgs+1.)) if 'noblend' in force: result_img = im2 else: result_img = Image.blend(im2, result_img, 0.5) imgs += 1.0 if flip_h: result_img = ImageOps.flip(result_img) return HTTPStatus.OK, content_type, fetchers.im_convert(result_img, content_type) def tiles_handler(self, layer_id, z, x, y, content_type): """Partial slippy map implementation. Serve tiles by index, reproject, if required. Experimental handler. http://localhost:8080/tiles/vesat/0/0/0.jpg Return 404 instead of blank tile. """ logging.debug(f"{layer_id} z{z}/x{x}/y{y} tiles_handler") if config.layers[layer_id]['proj'] != 'EPSG:3857': raise NotImplementedError("Reprojection is not supported, use wms for this tile set") z, x, y = int(z), int(x), int(y) im = self.tile_image(config.layers[layer_id], z, x, y, time.time(), real=True) if im: return HTTPStatus.OK, content_type, fetchers.im_convert(im, content_type) else: return HTTPStatus.NOT_FOUND, 'text/plain', "404 Not Found" def getimg(self, bbox, request_proj, size, layer, start_time, force): """Get tile by a given bbox. """ orig_bbox = bbox ## Making 4-corner maximal bbox bbox_p = projections.from4326(bbox, request_proj) bbox_p = projections.to4326( (bbox_p[2], bbox_p[1], bbox_p[0], bbox_p[3]), request_proj) bbox_4 = ( (bbox_p[2], bbox_p[3]), (bbox[0], bbox[1]), (bbox_p[0], bbox_p[1]), (bbox[2], bbox[3])) if 'nocorrect' not in force: bb4 = [] for point in bbox_4: bb4.append(correctify.rectify(layer, point)) bbox_4 = bb4 bbox = bbox_utils.expand_to_point(bbox, bbox_4) H, W = size max_zoom = layer.get("max_zoom", config.default_max_zoom) min_zoom = layer.get("min_zoom", config.default_min_zoom) zoom = bbox_utils.zoom_for_bbox( bbox, size, layer, min_zoom, max_zoom, (config.max_height, config.max_width) ) from_tile_x, from_tile_y, to_tile_x, to_tile_y = projections.tile_by_bbox( bbox, zoom, layer["proj"] ) cut_from_x = int(256 * (from_tile_x - int(from_tile_x))) cut_from_y = int(256 * (from_tile_y - int(from_tile_y))) cut_to_x = int(256 * (to_tile_x - int(to_tile_x))) cut_to_y = int(256 * (to_tile_y - int(to_tile_y))) from_tile_x, from_tile_y = int(from_tile_x), int(from_tile_y) to_tile_x, to_tile_y = int(to_tile_x), int(to_tile_y) bbox_im = ( cut_from_x, cut_to_y, 256 * (to_tile_x - from_tile_x) + cut_to_x, 256 * (from_tile_y - to_tile_y) + cut_from_y, ) x = 256 * (to_tile_x - from_tile_x + 1) y = 256 * (from_tile_y - to_tile_y + 1) out = Image.new("RGBA", (x, y)) for x in range(from_tile_x, to_tile_x + 1): for y in range(to_tile_y, from_tile_y + 1): im1 = self.tile_image(layer, zoom, x, y, start_time, real=True) if not im1: ec = ImageColor.getcolor( layer.get("empty_color", config.default_background), "RGBA") im1 = Image.new("RGBA", (256, 256), ec) out.paste(im1, ((x - from_tile_x) * 256, (-to_tile_y + y) * 256)) ## TODO: Here's a room for improvement. we could drop this crop in case user doesn't need it. out = out.crop(bbox_im) if "noresize" not in force: if (H == W) and (H == 0): W, H = out.size if H == 0: H = out.size[1] * W // out.size[0] if W == 0: W = out.size[0] * H // out.size[1] # bbox = orig_bbox quad = list() trans_needed = False for point in bbox_4: x = (point[0] - bbox[0]) / (bbox[2] - bbox[0]) * (out.size[0]) y = (1 - (point[1] - bbox[1]) / (bbox[3] - bbox[1])) * (out.size[1]) x = int(round(x)) y = int(round(y)) if (x != 0 and x != out.size[0]) or (y != 0 and y != out.size[1]): trans_needed = True quad.append(x) quad.append(y) if trans_needed: quad = tuple(quad) out = out.transform((W, H), Image.QUAD, quad, Image.BICUBIC) elif (W != out.size[0]) or (H != out.size[1]): "just resize" out = out.resize((W, H), Image.ANTIALIAS) return out def tile_image(self, layer, z, x, y, start_time, trybetter=True, real=False): """Get tile by given coordinates. Returns asked tile (from cache, fetcher, or recursively rescaled). again - is this a second pass on this tile? trybetter - should we try to combine this tile from better ones? real - should we return the tile even in not good quality? dsc.downscale? ups.upscale? Function must return None if image is invalid or unavailable """ tile = None # Dedicated fetcher for each imagery layer - if one fetcher hangs, # others should be responsive if layer['prefix'] not in self.fetchers_pool: self.fetchers_pool[layer['prefix']] = fetchers.TileFetcher(layer) x = x % (2 ** z) if y < 0 or y >= (2 ** z) or z < 0: logging.warning(f"{layer['prefix']}/z{z}/x{x}/y{y} impossible tile coordinates") return None if not bbox_utils.bbox_is_in( projections.bbox_by_tile(z, x, y, layer["proj"]), layer.get('bounds', config.default_bbox), fully=False): logging.info(f"{layer['prefix']}/z{z}/x{x}/y{y} ignoring request for a tile outside configured bounds") return None if 'prefix' in layer: if (layer['prefix'], z, x, y) in self.cached_objs: logging.debug(f"{layer['prefix']}/z{z}/x{x}/y{y} RAM cache hit") return self.cached_objs[(layer["prefix"], z, x, y)] # Working with cache if layer['scalable'] and (z < layer.get('max_zoom', config.default_max_zoom)) and trybetter: # Second, try to glue image of better ones logging.info(f"{layer['prefix']}/z{z}/x{x}/y{y} downscaling from 4 subtiles") # # Load upscaled images # if os.path.exists(local + "ups" + ext): # try: # im = Image.open(local + "ups" + ext) # return im # except OSError: # pass ec = ImageColor.getcolor(layer.get("empty_color", config.default_background), "RGBA") ec = (ec[0], ec[1], ec[2], 0) im = Image.new("RGBA", (512, 512), ec) im1 = self.tile_image(layer, z + 1, x * 2, y * 2, start_time) if im1: im2 = self.tile_image(layer, z + 1, x * 2 + 1, y * 2, start_time) if im2: im3 = self.tile_image(layer, z + 1, x * 2, y * 2 + 1, start_time) if im3: im4 = self.tile_image(layer, z + 1, x * 2 + 1, y * 2 + 1, start_time) if im4: im.paste(im1, (0, 0)) im.paste(im2, (256, 0)) im.paste(im3, (0, 256)) im.paste(im4, (256, 256)) tile = im.resize((256, 256), Image.ANTIALIAS) # if layer.get("cached", True): # try: # im.save(local + "ups" + ext) # except OSError: # pass if tile is None and 'fetch' in layer: seconds_spent = time.time() - start_time if (config.deadline > seconds_spent) or (z < 4): # Try fetching img from outside logging.debug(f"{layer['prefix']}/z{z}/x{x}/y{y} creating dl thread") tile = self.fetchers_pool[layer['prefix']].fetch(z, x, y) if tile is None and real and z > 0: # Downscale? logging.info(f"{layer['prefix']}/z{z}/x{x}/y{y} upscaling from top tile") im = self.tile_image(layer, z - 1, int(x // 2), int(y // 2), start_time, trybetter=False, real=True) if im: im = im.crop( ( 128 * (x % 2), 128 * (y % 2), 128 * (x % 2) + 128, 128 * (y % 2) + 128, ) ) tile = im.resize((256, 256), Image.BILINEAR) # RAM cache. Better use decorator? if (layer['prefix'], z, x, y) not in self.cached_objs: self.cached_objs[(layer['prefix'], z, x, y)] = tile self.cached_hist_list.append((layer['prefix'], z, x, y)) if len(self.cached_objs) >= config.max_ram_cached_tiles: del self.cached_objs[self.cached_hist_list.pop(0)] return tile
# Consult the ruby example
# Copyright (c) 2016 Ericsson AB. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import time from cinderclient import client as ci_client from keystoneclient.auth.identity import v3 from keystoneclient import session from keystoneclient.v3 import client as ks_client from kingbirdclient.api.v1 import client as kb_client from neutronclient.neutron import client as nt_client from novaclient import client as nv_client from oslo_log import log as logging from tempest import config CONF = config.CONF NOVA_API_VERSION = "2.1" NEUTRON_API_VERSION = "2.0" CINDER_API_VERSION = "2" VOLUME_SIZE = 1 VOLUME_NAME = "kb_test_volume" FLAVOR_NAME = "kb_test_flavor" NETWORK_NAME = "kb_test_network" SUBNET_NAME = "kb_test_subnet" SERVER_NAME = "kb_test_server" SUBNET_RANGE = "192.168.199.0/24" KINGBIRD_URL = CONF.kingbird.endpoint_url + CONF.kingbird.api_version LOG = logging.getLogger(__name__) def get_session(): return get_current_session( CONF.auth.admin_username, CONF.auth.admin_password, CONF.auth.admin_project_name ) def get_current_session(username, password, tenant_name): auth = v3.Password( auth_url=CONF.identity.uri_v3, username=username, password=password, project_name=tenant_name, user_domain_name=CONF.auth.admin_domain_name, project_domain_name=CONF.auth.admin_domain_name) sess = session.Session(auth=auth) return sess def get_openstack_drivers(keystone_client, region, project_name, user_name, password, target_project_name, target_user_name): resources = dict() # Create Project, User and assign role to new user project = keystone_client.projects.create(project_name, CONF.auth.admin_domain_name) user = keystone_client.users.create(user_name, CONF.auth.admin_domain_name, project.id, password) target_project = keystone_client.projects.create( target_project_name, CONF.auth.admin_domain_name) target_user = keystone_client.users.create(target_user_name, CONF.auth.admin_domain_name, target_project.id, password) admin_role = [current_role.id for current_role in keystone_client.roles.list() if current_role.name == 'admin'][0] mem_role = [current_role.id for current_role in keystone_client.roles.list() if current_role.name == 'Member'][0] keystone_client.roles.grant(admin_role, user=user, project=project) keystone_client.roles.grant(mem_role, user=target_user, project=target_project) session = get_current_session(user_name, password, project_name) target_session = get_current_session(target_user_name, password, target_project_name) target_keystone_client = ks_client.Client(session=target_session) target_token = target_keystone_client.session.get_token() new_keystone_client = ks_client.Client(session=session) token = new_keystone_client.session.get_token() nova_client = nv_client.Client(NOVA_API_VERSION, session=session, region_name=region) neutron_client = nt_client.Client(NEUTRON_API_VERSION, session=session, region_name=region) cinder_client = ci_client.Client(CINDER_API_VERSION, session=session, region_name=region) kingbird_client = kb_client.Client(kingbird_url=KINGBIRD_URL, auth_token=token, project_id=project.id) dummy_kingbird_client = kb_client.Client(kingbird_url=KINGBIRD_URL, auth_token='fake_token', project_id=project.id) resources = {"user_id": user.id, "project_id": project.id, "session": session, "token": token, "target_token": target_token, "target_project_id": target_project.id, "target_user_id": target_user.id, "os_drivers": {'keystone': keystone_client, 'nova': nova_client, 'neutron': neutron_client, 'cinder': cinder_client, 'kingbird': kingbird_client, 'dummy_kb': dummy_kingbird_client}} return resources def get_keystone_client(session): return ks_client.Client(session=session) def create_instance(openstack_drivers, resource_ids, count=1): nova_client = openstack_drivers['nova'] server_ids = [] image = nova_client.images.find(id=CONF.compute.image_ref) flavor = nova_client.flavors.find(id=resource_ids['flavor_id']) try: for x in range(count): server = nova_client.servers.create( SERVER_NAME, image, flavor, nics=[{'net-id': resource_ids['network_id']}]) server_ids.append(server.id) return server_ids except Exception as e: e.args = tuple(server_ids) raise e def create_custom_kingbird_quota(openstack_drivers, project_id, new_quota): kingbird_client = openstack_drivers['kingbird'] kwargs = new_quota response = kingbird_client.quota_manager.\ update_global_limits(project_id, **kwargs) result = {i._data: i._Limit for i in response} return result def get_kingbird_quota_another_tenant(openstack_drivers, project_id): kingbird_client = openstack_drivers['kingbird'] response = kingbird_client.quota_manager.\ global_limits(project_id) result = {i._data: i._Limit for i in response} return result def get_own_kingbird_quota(token, project_id): kingbird_client = kb_client.Client(kingbird_url=KINGBIRD_URL, auth_token=token, project_id=project_id) response = kingbird_client.quota_manager.\ global_limits(project_id) result = {i._data: i._Limit for i in response} return result def delete_custom_kingbird_quota(openstack_drivers, target_project_id): kingbird_client = openstack_drivers['kingbird'] kingbird_client.quota_manager.delete_quota(target_project_id) def get_default_kingbird_quota(token, project_id): kingbird_client = kb_client.Client(kingbird_url=KINGBIRD_URL, auth_token=token, project_id=project_id) response = kingbird_client.quota_manager.\ list_defaults() result = {i._data: i._Limit for i in response} return result def kingbird_create_quota_wrong_token(openstack_drivers, project_id, new_quota): kingbird_client = openstack_drivers['dummy_kb'] kwargs = new_quota kingbird_client.quota_manager.\ update_global_limits(project_id, **kwargs) def quota_sync_for_project(openstack_drivers, project_id): kingbird_client = openstack_drivers['kingbird'] kingbird_client.quota_manager.sync_quota(project_id) def get_quota_usage_for_project(openstack_drivers, project_id): kingbird_client = openstack_drivers['kingbird'] data = kingbird_client.quota_manager.quota_detail(project_id) response = {items._data: [items._Limit, items._Usage] for items in data} return response def get_regions(keystone_client): return [current_region.id for current_region in keystone_client.regions.list()] def delete_resource_with_timeout(service_client, resource_ids, service_type): # Delete the resources based on service_type argument for resource_id in resource_ids: if service_type == 'nova': # Delete nova servers service_client.servers.delete(resource_id) elif service_type == 'cinder': # Delete cinder volumes service_client.volumes.delete(resource_id) else: LOG.exception('Invalid service type: %s' % service_type) return retries = 6 # Delete may take time, So wait(with timeout) till the # resources are deleted while retries > 0: LOG.debug("waiting for resources to get deleted") time.sleep(1) if service_type == 'nova': resource_list = [current_server.id for current_server in service_client.servers.list()] elif service_type == 'cinder': resource_list = [current_volume.id for current_volume in service_client.volumes.list()] # Check if there is any resource left in resource list if len(set(resource_ids) & set(resource_list)): continue else: # Deleted all the resources return LOG.exception('Resource deleting failed, manually delete with IDs %s' % resource_ids) def delete_instance(openstack_drivers, resource_ids): delete_resource_with_timeout( openstack_drivers['nova'], resource_ids['server_ids'], 'nova') resource_ids['server_ids'] = [] def delete_volume(openstack_drivers, resource_ids): delete_resource_with_timeout( openstack_drivers['cinder'], resource_ids['volume_ids'], 'cinder') resource_ids['volume_ids'] = [] def resource_cleanup(openstack_drivers, resource_ids): keystone_client = openstack_drivers['keystone'] nova_client = openstack_drivers['nova'] neutron_client = openstack_drivers['neutron'] delete_instance(openstack_drivers, resource_ids) delete_volume(openstack_drivers, resource_ids) nova_client.flavors.delete(resource_ids['flavor_id']) neutron_client.delete_subnet(resource_ids['subnet_id']) neutron_client.delete_network(resource_ids['network_id']) keystone_client.projects.delete(resource_ids['project_id']) keystone_client.projects.delete(resource_ids['target_project_id']) keystone_client.users.delete(resource_ids['user_id']) keystone_client.users.delete(resource_ids['target_user_id']) def get_usage_from_os_client(session, regions, project_id): resource_usage_all = collections.defaultdict(dict) neutron_opts = {'tenant_id': project_id} cinder_opts = {'all_tenants': 1, 'project_id': project_id} for current_region in regions: resource_usage = collections.defaultdict(dict) nova_client = nv_client.Client(NOVA_API_VERSION, session=session, region_name=current_region) neutron_client = nt_client.Client(NEUTRON_API_VERSION, session=session, region_name=current_region) cinder_client = ci_client.Client(CINDER_API_VERSION, session=session, region_name=current_region) limits = nova_client.limits.get().to_dict() # Read nova usages resource_usage['ram'] = limits['absolute']['totalRAMUsed'] resource_usage['cores'] = limits['absolute']['totalCoresUsed'] resource_usage['instances'] = limits['absolute']['totalInstancesUsed'] resource_usage['key_pairs'] = len(nova_client.keypairs.list()) # Read neutron usages resource_usage['network'] = len(neutron_client.list_networks( **neutron_opts)['networks']) resource_usage['subnet'] = len(neutron_client.list_subnets( **neutron_opts)['subnets']) # Read cinder usages resource_usage['volumes'] = len(cinder_client.volumes.list( search_opts=cinder_opts)) resource_usage_all[current_region] = resource_usage return resource_usage_all def get_actual_limits(session, regions, project_id): resource_usage = collections.defaultdict(dict) for current_region in regions: nova_client = nv_client.Client(NOVA_API_VERSION, session=session, region_name=current_region) neutron_client = nt_client.Client(NEUTRON_API_VERSION, session=session, region_name=current_region) cinder_client = ci_client.Client(CINDER_API_VERSION, session=session, region_name=current_region) updated_nova_quota = nova_client.quotas.get(project_id) updated_neutron_quota = neutron_client.show_quota( project_id)['quota']['network'] updated_cinder_quota = cinder_client.quotas.get(project_id) resource_usage.update({current_region: [updated_nova_quota.instances, updated_neutron_quota, updated_cinder_quota.volumes]}) return resource_usage def create_resources(openstack_drivers): nova_client = openstack_drivers['nova'] neutron_client = openstack_drivers['neutron'] cinder_client = openstack_drivers['cinder'] volume = cinder_client.volumes.create(VOLUME_SIZE, name=VOLUME_NAME) flavor = nova_client.flavors.create( FLAVOR_NAME, 128, 1, 1, flavorid='auto') network_body = {'network': {'name': NETWORK_NAME, 'admin_state_up': True}} network = neutron_client.create_network(body=network_body) body_create_subnet = { "subnets": [ { 'cidr': SUBNET_RANGE, 'ip_version': 4, 'network_id': network['network']['id'], 'name': SUBNET_NAME } ] } subnet = neutron_client.create_subnet(body=body_create_subnet) return { 'subnet_id': subnet['subnets'][0]['id'], 'network_id': network['network']['id'], 'flavor_id': flavor.id, 'volume_ids': [volume.id] } def set_default_quota(session, regions, project_id, **quota_to_set): for current_region in regions: nova_client = nv_client.Client(NOVA_API_VERSION, session=session, region_name=current_region) nova_client.quotas.update(project_id, **quota_to_set) def update_quota_for_class(openstack_drivers, class_name, new_quota_values): kingbird_client = openstack_drivers['kingbird'] kwargs = new_quota_values response = kingbird_client.quota_class_manager.\ quota_class_update(class_name, **kwargs) result = {i._data: i._Limit for i in response} return result def get_quota_for_class(openstack_drivers, class_name): kingbird_client = openstack_drivers['kingbird'] response = kingbird_client.quota_class_manager.\ list_quota_class(class_name) result = {i._data: i._Limit for i in response} return result def delete_quota_for_class(openstack_drivers, class_name): kingbird_client = openstack_drivers['kingbird'] kingbird_client.quota_class_manager.\ delete_quota_class(class_name)
from .bloom_filter import BloomFilter from .counting_bloom_filter import CountingBloomFilter __all__ = ["BloomFilter", "CountingBloomFilter"]
import json from typing import Dict, Any, List, Optional from app.components.servers.game_server import GameServer from app.components.servers.server_config import ServerConfig class Config: def __init__(self, config_text: Optional[str]) -> None: if config_text is None: self.servers = [] else: config = json.loads(config_text) self.servers = self.load_server_configs(config) @staticmethod def load_server_configs(config: Dict[str, Any]) -> List[ServerConfig]: return [ServerConfig(server_data) for server_data in config['servers']] def create_servers(self) -> Dict[str, GameServer]: return {server_config.name: server_config.get_server() for server_config in self.servers}
from rest_framework import serializers from .models import Profile,Post from django.contrib.auth.models import User class ProfileSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = ('name', 'bio','photo') class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('username', 'email') class PostSerializer(serializers.ModelSerializer): class Meta: model = Post fields = ('title', 'description','url','category','image')
#!/usr/bin/env python3 import fileinput import math if __name__ == '__main__': factor = 1 / (2. * math.pi) for n in fileinput.input(): n = int(n) if n == 0: break print('%.2f' % (math.pow(n, 2)*factor))
from flask import render_template def city404(func): def wrapper(): try: return func() except KeyError: return render_template('error.html') return wrapper
#!/usr/bin/env python3 # # Copyright (c) 2020 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 from gdbstubs.arch.x86 import GdbStub_x86 from gdbstubs.arch.x86_64 import GdbStub_x86_64 from gdbstubs.arch.arm_cortex_m import GdbStub_ARM_CortexM from gdbstubs.arch.risc_v import GdbStub_RISC_V from gdbstubs.arch.xtensa import GdbStub_Xtensa class TgtCode: UNKNOWN = 0 X86 = 1 X86_64 = 2 ARM_CORTEX_M = 3 RISC_V = 4 XTENSA = 5 def get_gdbstub(logfile, elffile): stub = None tgt_code = logfile.log_hdr['tgt_code'] if tgt_code == TgtCode.X86: stub = GdbStub_x86(logfile=logfile, elffile=elffile) elif tgt_code == TgtCode.X86_64: stub = GdbStub_x86_64(logfile=logfile, elffile=elffile) elif tgt_code == TgtCode.ARM_CORTEX_M: stub = GdbStub_ARM_CortexM(logfile=logfile, elffile=elffile) elif tgt_code == TgtCode.RISC_V: stub = GdbStub_RISC_V(logfile=logfile, elffile=elffile) elif tgt_code == TgtCode.XTENSA: stub = GdbStub_Xtensa(logfile=logfile, elffile=elffile) return stub
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: pogoprotos/data/pokemon_display.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from pogoprotos.enums import costume_pb2 as pogoprotos_dot_enums_dot_costume__pb2 from pogoprotos.enums import form_pb2 as pogoprotos_dot_enums_dot_form__pb2 from pogoprotos.enums import gender_pb2 as pogoprotos_dot_enums_dot_gender__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pogoprotos/data/pokemon_display.proto', package='pogoprotos.data', syntax='proto3', serialized_pb=_b('\n%pogoprotos/data/pokemon_display.proto\x12\x0fpogoprotos.data\x1a\x1epogoprotos/enums/costume.proto\x1a\x1bpogoprotos/enums/form.proto\x1a\x1dpogoprotos/enums/gender.proto\"\x9b\x01\n\x0ePokemonDisplay\x12*\n\x07\x63ostume\x18\x01 \x01(\x0e\x32\x19.pogoprotos.enums.Costume\x12(\n\x06gender\x18\x02 \x01(\x0e\x32\x18.pogoprotos.enums.Gender\x12\r\n\x05shiny\x18\x03 \x01(\x08\x12$\n\x04\x66orm\x18\x04 \x01(\x0e\x32\x16.pogoprotos.enums.Formb\x06proto3') , dependencies=[pogoprotos_dot_enums_dot_costume__pb2.DESCRIPTOR,pogoprotos_dot_enums_dot_form__pb2.DESCRIPTOR,pogoprotos_dot_enums_dot_gender__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _POKEMONDISPLAY = _descriptor.Descriptor( name='PokemonDisplay', full_name='pogoprotos.data.PokemonDisplay', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='costume', full_name='pogoprotos.data.PokemonDisplay.costume', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='gender', full_name='pogoprotos.data.PokemonDisplay.gender', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shiny', full_name='pogoprotos.data.PokemonDisplay.shiny', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='form', full_name='pogoprotos.data.PokemonDisplay.form', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=151, serialized_end=306, ) _POKEMONDISPLAY.fields_by_name['costume'].enum_type = pogoprotos_dot_enums_dot_costume__pb2._COSTUME _POKEMONDISPLAY.fields_by_name['gender'].enum_type = pogoprotos_dot_enums_dot_gender__pb2._GENDER _POKEMONDISPLAY.fields_by_name['form'].enum_type = pogoprotos_dot_enums_dot_form__pb2._FORM DESCRIPTOR.message_types_by_name['PokemonDisplay'] = _POKEMONDISPLAY PokemonDisplay = _reflection.GeneratedProtocolMessageType('PokemonDisplay', (_message.Message,), dict( DESCRIPTOR = _POKEMONDISPLAY, __module__ = 'pogoprotos.data.pokemon_display_pb2' # @@protoc_insertion_point(class_scope:pogoprotos.data.PokemonDisplay) )) _sym_db.RegisterMessage(PokemonDisplay) # @@protoc_insertion_point(module_scope)
import csv #------------------------------------------------------------------------------- def dSdt(beta, gamma, N, t_n, s_n, i_n): return (-beta*i_n*s_n)/N def dIdt(beta, gamma, N, t_n, s_n, i_n): return ((beta*i_n*s_n)/N)-gamma*i_n def dRdt(beta, gamma, N, t_n, s_n, i_n): return gamma*i_n #------------------------------------------------------------------------------- def Runge_Kutta(beta, gamma, N, dF, F, t_n, s_n, i_n, r_n, dt): k1 = dF(beta, gamma, N, t_n, s_n, i_n) k2 = dF(beta, gamma, N, t_n + dt/2, s_n + dt*k1/2, i_n + dt*k1/2) k3 = dF(beta, gamma, N, t_n + dt/2, s_n + dt*k2/2, i_n + dt*k2/2) k4 = dF(beta, gamma, N, t_n + dt, s_n + dt*k3, i_n + dt*k3) F_n_plus_one= F[-1] + dt/6*(k1 + 2*k2 + 2*k3 + k4) F.append(F_n_plus_one) #------------------------------------------------------------------------------- def Create_Table(T, S, I, R): myFile = open('Tabla_SIR.csv', 'w') with myFile: writer = csv.writer(myFile) writer.writerow(["t", "S(t)", "I(t)", "R(t)", "N"]) for t_n in T: writer.writerow([t_n, S[t_n], I[t_n], R[t_n], S[t_n]+I[t_n]+R[t_n]]) #-------------------------------------------------------------------------------
from unittest import TestCase from unittest import main from integer_difference import int_diff class TestIntegerDifference(TestCase): def test_int_diff(self): ptr = [ ([1, 1, 5, 6, 9, 16, 27], 4, 3), ([1, 1, 3, 3], 2, 4), ] for inp, d, exp in ptr: with self.subTest(inp=inp, d=d, exp=exp): self.assertEqual(int_diff(arr=inp, n=d), exp) if __name__ == "__main__": main(verbosity=2)
import torch # TODO: write docstrings class SimpleDynamics(torch.nn.Module): def __init__(self, dynamics_function, divergence_estimator): super().__init__() self._dynamics_function = dynamics_function self._divergence_estimator = divergence_estimator def forward(self, *xs, compute_divergence=True): if compute_divergence: *dxs, divergence = self._divergence_estimator( self._dynamics_function, *xs ) else: dxs = self._dynamics_function(xs) divergence = None return (*dxs, divergence)
from DealUUIDGenerator import DealUUIDGenerator class TestClass(object): def test_singleExchangeConstantProfit(self): dealUUIDGenerator = DealUUIDGenerator() id1 = dealUUIDGenerator.getUUID(timestamp=1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id2 = dealUUIDGenerator.getUUID(timestamp=2, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id3 = dealUUIDGenerator.getUUID(timestamp=7, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id4 = dealUUIDGenerator.getUUID(timestamp=12.1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id5 = dealUUIDGenerator.getUUID(timestamp=12.2, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id6 = dealUUIDGenerator.getUUID(timestamp=12.3, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.51) assert id1 == id2 == id3 != id4 == id5 != id6 assert id5[:-2] == id6[:-2] def test_variedExchangesConstantProfit(self): dealUUIDGenerator = DealUUIDGenerator() id1 = dealUUIDGenerator.getUUID(timestamp=1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id2 = dealUUIDGenerator.getUUID(timestamp=2, volBTC=1, nodesStr="coinbasepro-BTC,coinbasepro-EUR,kraken-EUR,kraken-BTC,coinbasepro-BTC", profitPerc=0.5) id3 = dealUUIDGenerator.getUUID(timestamp=7, volBTC=1, nodesStr="coinbasepro-BTC,coinbasepro-EUR,kraken-EUR,kraken-BTC,coinbasepro-BTC", profitPerc=0.5) id4 = dealUUIDGenerator.getUUID(timestamp=12.1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id5 = dealUUIDGenerator.getUUID(timestamp=12.2, volBTC=1, nodesStr="coinbasepro-BTC,coinbasepro-EUR,kraken-EUR,kraken-BTC,coinbasepro-BTC", profitPerc=0.51) assert id1 != id2 == id3 != id4 != id5 assert id4[:-2] != id5[:-2]
from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives import hashes import gc class RSA_key_gen(): def __init__(self): self.person = input('What is your name? ') self.save_pass = input("Please enter one-time pass for saving credentials. SAVE IT. This won't be restored. ") def generate_pem(self): print('Generating your private key...') private_key = rsa.generate_private_key( public_exponent=65537, key_size=4048, backend=default_backend()) chosen_pass = self.save_pass # serialize the key for saving pem = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.BestAvailableEncryption(chosen_pass.encode('utf-8')) ) # save key print('Saving to pem file...') with open(f'{self.person}_key.pem','w') as f: f.write(pem.decode("utf-8")) print('Done!') print('Generating public keys...') public_key = private_key.public_key() pubkey = public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) print(f'You public key is: \n {pubkey.decode("utf-8")}') print('Saving the public key to file...') with open(f'pubkey.pem','w') as f: f.write(pubkey.decode('utf-8')) print('Public key saved as well!') del pem gc.collect() if __name__ == '__main__': keygen = RSA_key_gen() keygen.generate_pem()
from . import deploy
import time root = 'own/' buffer = 'buffer.txt' memory = 'memory.txt' # python own/test.py | ./pokemon-showdown simulate-battle > own/buffer.txt def empty_files(): fmemory = open(root + buffer, mode='w') fmemory.close() fbuffer = open(root + memory, mode='w') fbuffer.close() def read_last_showdown_message(): fbuffer = open(root + buffer, mode='r+') fbuffer.seek(0) output = fbuffer.read() fbuffer.close() return output def send_message_to_showdown(message): # write to stdout (which is piped directly into stdin of pokemon-showdown) print(message, end='', flush=True) def record_message_to_memory(message): fmemory = open(root + memory, mode='a') fmemory.write(message) fmemory.close() # empty files empty_files() inputs = [ '>start {"formatid":"gen7randombattle"}', '>player p1 {"name":"Scott"}', '>player p2 {"name":"Lars"}' ] for line in inputs: #time.sleep(0.5) # send to showdown send_message_to_showdown(line + '\n') record_message_to_memory(line + '\n') # receive from showdown time.sleep(0.5) message = read_last_showdown_message() record_message_to_memory(message + '\n')
# -*- coding: utf-8 -*- """Forms to process attributes and sharing.""" from django import forms from django.contrib.auth import get_user_model from django.utils.translation import ugettext_lazy as _ from ontask import is_legal_name from ontask.models import Condition CHAR_FIELD_SIZE = 1024 class AttributeItemForm(forms.Form): """Form to get a key/value pair as attribute.""" key = forms.CharField( max_length=CHAR_FIELD_SIZE, strip=True, required=True, label=_('Name')) # Field for the value attr_value = forms.CharField(max_length=CHAR_FIELD_SIZE, label='Value') def __init__(self, *args, **kwargs): """Set keys and values.""" self.keys = kwargs.pop('keys') self.workflow = kwargs.pop('workflow', None) key = kwargs.pop('key', '') att_value = kwargs.pop('value', '') super().__init__(*args, **kwargs) self.fields['key'].initial = key self.fields['attr_value'].initial = att_value def clean(self): """Check that the name is correct and is not duplicated.""" form_data = super().clean() attr_name = form_data['key'] # Name is legal msg = is_legal_name(attr_name) if msg: self.add_error('key', msg) return form_data if attr_name in self.keys: self.add_error( 'key', _('Name has to be different from all existing ones.')) return form_data # Enforce the property that Attribute names, column names and # condition names cannot overlap. if attr_name in self.workflow.get_column_names(): self.add_error( 'key', _('There is a column with this name. Please change.'), ) return form_data # Check if there is a condition with that name if ( Condition.objects.filter( action__workflow=self.workflow, name=attr_name, ).exists() ): self.add_error( 'key', _('There is a condition already with this name.'), ) return form_data return form_data class SharedForm(forms.Form): """Form to ask for a user email to add to those sharing the workflow. The form uses two parameters: :param user: The user making the request (to detect self-sharing) :param workflow: The workflow to share (to detect users already in the list) """ user_email = forms.CharField( max_length=CHAR_FIELD_SIZE, strip=True, label=_('User email')) def __init__(self, *args, **kwargs): """Set the request user, workflow.""" self.request_user = kwargs.pop('user', None) self.workflow = kwargs.pop('workflow') self.user_obj = None super().__init__(*args, **kwargs) def clean(self): """Check that the request has the correct user.""" form_data = super().clean() self.user_obj = get_user_model().objects.filter( email__iexact=form_data['user_email'], ).first() if not self.user_obj: self.add_error('user_email', _('User not found')) return form_data if self.user_obj == self.request_user: self.add_error( 'user_email', _('You do not need to add yourself to the share list')) if self.user_obj in self.workflow.shared.all(): self.add_error('user_email', _('User already in the list')) return form_data
from django.shortcuts import render, redirect, get_object_or_404 from django.urls import reverse_lazy from django.views.generic import ListView, DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from .models import Post from .forms import PostForm # Create your views here. class PostListView(ListView): model = Post paginate_by = 6 class PostDetailView(DetailView): model = Post @method_decorator(login_required, name='dispatch') class PostCreateView(CreateView): form_class = PostForm model = Post def form_valid(self, form): post = form.save(commit=False) post.created_by = self.request.user post.save() return redirect('post_detail', pk=post.pk) @method_decorator(login_required, name='dispatch') class PostUpdateView(UpdateView): form_class = PostForm model = Post template_name = 'lost/post_form_update.html' def get_queryset(self): queryset = super().get_queryset() return queryset.filter(created_by=self.request.user) @method_decorator(login_required, name='dispatch') class PostDeleteView(DeleteView): model = Post success_url = reverse_lazy('posts')
#!/usr/bin/env python # -*- coding: utf-8 -*- #__author__ = 'ifk' #Refer http://www.wooyun.org/bugs/wooyun-2010-043380 import urlparse def assign(service, arg): if service == "fsmcms": return True, arg def audit(arg): payload = '/setup/index.jsp' code, head, res, errcode, _ = curl.curl2(arg+payload) if code == 200 and '</font><input type="text" name="SetUpPath"' in res : security_hole('FSMCMS网站重装漏洞 '+ arg + payload) if __name__ == '__main__': from dummy import * audit(assign('fsmcms', 'http://www.wuda.gov.cn/')[1])
#!/usr/bin/env python """ nxosm was written to extract and build a road network using OSM data; to build adjacency matrix with geolocation information for each node. Citation Format: Legara, E.F. (2014) nxosm source code (Version 2.0) [source code]. http://www.erikalegara.net """ __author__ = "Erika Fille Legara" __date__ = "22 January 2014" __programname__ = "nxosm.py" __codeversion__ = "2.0" __status__ = "Complete" __datasource__ = "http://labs.geofabrik.de/haiyan/" from itertools import tee, izip from osmread import parse_file, Way, Node #https://github.com/dezhin/osmread # import shapefile import networkx as nx global highway_types ''' For more highway types, visit http://wiki.openstreetmap.org/wiki/Key:highway ''' highway_types = ['secondary', 'secondary_link', 'primary', 'primary_link',\ 'tertiary', 'tertiary_link', 'motorway','motorway_link','trunk','trunk_link',\ 'residential','road','track','Track'] def load_osm_pbf(): return parse_file('latest.osm.pbf') def load_osm(path): return parse_file(path) # def load_intersection_nodes_file(): # ''' # The intersection file can be generated using QGIS. # ''' # #shp = shapefile.Reader("small_set_intersection.shp") # shp = shapefile.Reader("For HaiyanPH Paper.shp") # shp_iter = shp.iterRecords() # return shp_iter # def load_road_shapefile(): # shp = shapefile.Reader("latest.shp/roads") # fields = shp.fields # return shp, fields def pairwise(nodes): ''' From a list of nodes = [1,2,3,4,5], produce: (1,2), (2,3), (3,4), (4,5)''' a, b = tee(nodes) next(b, None) return izip(a,b) def build_road_network(pbf): G = nx.Graph() node_locations = {} for entity in pbf: if isinstance(entity, Way) and 'highway' in entity.tags: if entity.tags['highway'] in highway_types: nodes = list(entity.nodes) edges = pairwise(nodes) edges = [e for e in edges] G.add_edges_from(edges) for e in edges: G.edge[e[0]][e[1]]['tipo'] = entity.tags['highway'] elif isinstance(entity,Node): node_locations[entity.id] = (entity.lon, entity.lat) return G, node_locations def build_road_network_2(fil): G = nx.Graph() ndes = {} segments = [] node_locations = {} for entity in fil: if isinstance (entity, Way) and 'highway' in entity.tags: #print "highway", entity.tags['highway'] if entity.tags['highway'] in highway_types: nodes = list(entity.nodes) for n in nodes: # Set flag that node n does belong to the road network ndes[n]['way_part'] = True edges = pairwise(nodes) edges = [e for e in edges] G.add_edges_from(edges) for e in edges: segment = {} segment['node_1'] = e[0] segment['node_2'] = e[1] segment['highway_type'] = entity.tags['highway'] segment['status'] = 'ok' G.edge[e[0]][e[1]]['highway_type'] = entity.tags['highway'] G.edge[e[0]][e[1]]['status'] = 'ok' # initialize road segment status tag such that we don't get a KeyError if 'status' in entity.tags: G.edge[e[0]][e[1]]['status'] = entity.tags['status'] segment['status'] = entity.tags['status'] segments.append(segment) elif isinstance(entity, Node): #print "Node!" #print entity.id. entity.lat, entity.lon node_locations[entity.id] = (entity.lat, entity.lon) #print node_locations[entity.id] nde = {} nde['nodeid'] = entity.id #print nde['nodeid'] nde['latitude'] = entity.lat #print nde['latitude'] nde['longitude'] = entity.lon #print nde['longitude'] # Default node isn't a barrier so None. set otherwise nde['barrier'] = 'None' if 'barrier' in entity.tags: nde['barrier'] = entity.tags['barrier'] #print nde['barrier'] #print nde # Set flag that this node does not belong to the road network. # Since in an OSM file nodes are listed ahead of ways, the way-handling code # above will set to true. nde['way_part'] = False ndes[entity.id] = nde # check for bug later # Before returning, remove all nodes in ndes which are not in G. # nodes_in_graph = [ndes[entry] for entry in G.nodes()] #return G, nodes_in_graph, node_locations, segments return G, ndes.values(), node_locations, segments def get_nodes_locations(G): pbf = load_osm_pbf() nodes = G.nodes() node_attrib = {} for entity in pbf: if isinstance(entity, Node) and entity.id in nodes: node_attrib[entity.id] = (entity.lon, entity.lat) return node_attrib def reduce_nodes(G): ''' The reduce_nodes() function reduces the bigger and more complete graph G by identifying all nodes with degree 2 and removing them in the graph, and connecting their adjacent nodes to one another. ''' g = G.copy() degree2 = [] #list of all nodes with degree 2 for n in G.nodes(): if G.degree(n) == 2: degree2.append(n) for v in degree2: edges = g.edges(v) try: first_edge = edges[0] last_edge = edges[-1] type1 = G[first_edge[1]][first_edge[0]]['tipo'] type2 = G[last_edge[0]][last_edge[1]]['tipo'] if type1 == type2: g.add_edge(first_edge[1],last_edge[1], tipo = type1) g.remove_edge(first_edge[0], first_edge[1]) g.remove_edge(last_edge[0], last_edge[1]) except: pass for v in degree2: if g.degree(v) == 0: g.remove_node(v) return g if __name__ == "__main__": pbf = load_osm_pbf() G, node_locations = build_road_network(pbf) #shp = load_intersection_nodes_file() #node_attrib = get_nodes_locations(G) latlong_ids = {} for n in G.nodes(): lat, lng = node_locations[n][1], node_locations[n][0] G.node[n]['latitude'] = node_locations[n][1] G.node[n]['longitude'] = node_locations[n][0] latlong_ids[(lat,lng)] = n ''' The reduce_nodes() function reduces the bigger and more complete graph G by identifying all nodes with degree 2 and removing them in the graph, and connecting their adjacent nodes. ''' #small_g = reduce_nodes(G) ''' Here, we are writing out the network data structures to .gexf format. ''' #nx.write_gexf(G,'road_network_all_nodes.gexf') #nx.write_gexf(small_g,'road_network_reduced.gexf') #np.save("all_nodes.npy",G.nodes())
# Generated by Django 2.1.9 on 2019-07-23 08:14 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [("terra_layer", "0032_auto_20190718_1742")] operations = [ migrations.AddField( model_name="layergroup", name="settings", field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ) ]
# https://leetcode.com/problems/pascals-triangle-ii/ # Related Topics: Array # Difficulty: Easy # Initial thoughts: # The naive solution is to handle this problem like with did Pascal's Triangle where we create a two dimensional array # with the values of Pascal's triangle up to the row that we need to return and then return the last row. # Optimization: # Since we only need the last row, we can have a one dimensional array that initially holds the first row of # Pascal's triangle and build uppon it by changing the values in place. This way we will decrease the space complexity # by a factor of n. # Time complexity: O(n^2) where n === index of the required row # Space complexity: O(n) where n === index of the required row from typing import List class Solution: def getRow(self, rowIndex: int) -> List[int]: result = [1] for i in range(1, rowIndex+1): prev = result[0] for j in range(1, len(result)): curr = result[j] result[j] = curr+prev prev = curr result.append(1) return result
import unittest import euler class TestGCD(unittest.TestCase): def test_gcd(self): self.assertEqual(euler.gcd(3, 5), 1) self.assertEqual(euler.gcd(5, 13), 1) self.assertEqual(euler.gcd(2, 10), 2) self.assertEqual(euler.gcd(5, 10), 5) self.assertEqual(euler.gcd(10, 25), 5)
########################################################################### # # Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### import re from starthinker.util.project import project from starthinker.util.sheets import sheets_read, sheets_tab_copy from starthinker.util.bigquery import get_schema, query_to_view from starthinker.util.csv import rows_to_type, rows_to_csv TEMPLATE_SHEET = 'https://docs.google.com/spreadsheets/d/1_faknNlaPlltLwsleMyQH0Gis5ixJODLGJHLovY3Ycg/edit?usp=sharing' TEMPLATE_TAB = 'Mapping' RE_SQLINJECT = re.compile(r'[^a-z0-9_\-, ]+', re.UNICODE|re.IGNORECASE) @project.from_parameters def mapping(): if project.verbose: print('MAPPING') # create the sheet from template if it does not exist sheets_tab_copy(project.task['auth'], TEMPLATE_SHEET, TEMPLATE_TAB, project.task['sheet'], project.task['tab']) # move if specified dimensions = {} defaults = {} rows = sheets_read(project.task['auth'], project.task['sheet'], project.task['tab'], 'A1:D') # if rows don't exist, query is still created without mapping ( allows blank maps ) if rows: # sanitize mapping # 0 = Dimension, 1 = Tag, 2 = Column, 3 = Keyword for row in rows[1:]: if project.verbose: print('ROW: ', row) # sanitize row #row = map(lambda c: RE_SQLINJECT.sub('', c.strip()), row) row = [RE_SQLINJECT.sub('', r.strip()) for r in row] if len(row) == 2: # default defaults.setdefault(row[0], row[1]) else: # tag dimensions.setdefault(row[0], {}) # dimension dimensions[row[0]].setdefault(row[1], {}) dimensions[row[0]].setdefault(row[1], {}) # tag dimensions[row[0]][row[1]].setdefault(row[2], []) # column dimensions[row[0]][row[1]][row[2]].extend([k.strip() for k in row[3].split(',') if k]) # keywords # construct query query = 'SELECT\n *,\n' for dimension, tags in dimensions.items(): query += ' CASE\n' for tag, columns in tags.items(): query += ' WHEN ' for column, keywords in columns.items(): for count, keyword in enumerate(keywords): if count != 0: query += 'OR ' query += '%s CONTAINS "%s" ' % (column, keyword) query += 'THEN "%s"\n' % tag query += ' ELSE "%s"\n END AS %s,\n' % (defaults.get(dimension, ''), dimension) query += 'FROM [%s.%s]' % (project.task['in']['dataset'], project.task['in']['table']) if project.verbose: print('QUERY: ', query) # write to view query_to_view( project.task['out']['auth'], project.id, project.task['out']['dataset'], project.task['out']['view'], query, replace=True ) if __name__ == "__main__": mapping()
import typing from ParadoxTrading.Fetch.ChineseFutures.FetchBase import FetchBase from ParadoxTrading.Utils import DataStruct class FetchInstrumentTickData(FetchBase): def __init__( self, _mongo_host='localhost', _psql_host='localhost', _psql_user='', _psql_password='', _cache_path='cache' ): super().__init__( _mongo_host, _psql_host, _psql_user, _psql_password, _cache_path ) self.psql_dbname: str = 'ChineseFuturesInstrumentTickData' self.market_key: str = 'ChineseFuturesInstrumentTickData_{}_{}' self.columns = [ 'tradingday', 'lastprice', 'highestprice', 'lowestprice', 'volume', 'turnover', 'openinterest', 'upperlimitprice', 'lowerlimitprice', 'askprice', 'askvolume', 'bidprice', 'bidvolume', 'happentime', ]
""" Syntax ^^^^^^ lambda arguments : expression """ fx = lambda: print("This is lambda") fx() fx = lambda arg: print(f'This is {arg}') fx("lambda") # Variable Arguments (Positional) fx = lambda *arg: print(f'This is {arg[0]}') fx("lambda1", "lambda2") # Variable Arguments (Key Value pairs) fx = lambda **arg: print(f'This is {arg["key2"]}') fx(key1="lambda1", key2="lambda2") # Implicit return fx = lambda k: k ** 2 print(fx(10)) # 100 # Implicit return dict fx = lambda k, v : {k:v} d1 = fx("key", "value") print(d1) print(type(d1)) # <class 'dict'> # Implicit return set fx = lambda k, v : {k, v} d1 = fx("key", "value") print(d1) print(type(d1)) # <class 'set'> print(type(fx)) # <class 'function'> # Both do same thing - One is a pythonic way !! - https://realpython.com/python-lambda/#alternatives-to-lambdas print(list(map(lambda x: x.capitalize(), ['cat', 'dog', 'cow']))) print([x.capitalize() for x in ['cat', 'dog', 'cow']]) # Examples of Default arguments fx = lambda v, k="Key" : {k: v} print(fx(10)) # {'Key': 10} print(fx(10, "myKey")) # {'myKey': 10} # Variable list of arguments fx = lambda *args : max(args) print(fx(1,2,3,4))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import hmac import requests from time import time from hashlib import sha256 from .exceptions import AuthorizedError class _TuyaApi: """ Private class for API requests """ def __init__(self, client_id: str, secret_key: str, region_key: str): self._client_id = client_id self._secret_key = secret_key self._region_key = region_key self._base_url = f"https://openapi.tuya{self._region_key}.com/v1.0" self.__sign_method: str = "HMAC-SHA256" self.__access_token = self.__token() @staticmethod def __generate_signature(msg: str, key: str) -> str: """ Generates the signature required to send the request. :param msg: hmac.new(msg) :param key: hmac.new(key) :return: hexdigest string """ output = ( hmac.new( msg=bytes(msg, "latin-1"), key=bytes(key, "latin-1"), digestmod=sha256 ) .hexdigest() .upper() ) return output @staticmethod def __get_timestamp() -> str: """ Return the current timestamp * 1000. :return: timestamp * 1000 """ timestamp = str(int(time() * 1000)) return timestamp def __request_template(self) -> dict: """ Default request type. :return: default headers """ t = self.__get_timestamp() sign = self.__generate_signature( self._client_id + self.__access_token + t, self._secret_key ) default_headers = { "client_id": self._client_id, "access_token": self.__access_token, "sign_method": self.__sign_method, "sign": sign, "t": t, } return default_headers def __token(self) -> str: """ Get the access token. :return: access token """ t = self.__get_timestamp() uri = self._base_url + "/token?grant_type=1" sign = self.__generate_signature(self._client_id + t, self._secret_key) headers_pattern = { "client_id": self._client_id, "secret": self._secret_key, "sign_method": self.__sign_method, "sign": sign, "t": t, } try: response = requests.get(uri, headers=headers_pattern).json() except Exception: raise Exception else: if not response["success"]: raise AuthorizedError( target=response["code"], msg=str(response["msg"]).capitalize() ) try: token = response["result"]["access_token"] except KeyError: raise KeyError("Failed to get access_token") return token def _get(self, postfix: str) -> dict: """ Performs a GET request at the specified address. :param postfix: request address. Example: /device/{device_id}/commands :return: response dict """ uri = self._base_url + postfix headers = self.__request_template() try: response = requests.get(uri, headers=headers).json() except Exception: raise Exception return response def _post(self, postfix: str, body=None) -> dict: """ Performs a POST request at specified address. :param postfix: request address. Example: /device/{device_id}/commands :param body: request body :return: response dict """ if body is None: body = {} body = json.dumps(body) uri = self._base_url + postfix headers = self.__request_template() try: response = requests.post(uri, headers=headers, data=body).json() except Exception: raise Exception return response
from django.urls import path from . import views from django.contrib.auth import views as auth_views from django.conf.urls import url app_name = 'accounts' urlpatterns = [ path('signup/', views.signup_view, name='signup'), path('login/', views.login_view, name='login'), path('logout/', views.logout_view, name='logout'), path('ngo/register/',views.ngo_register,name='ngo_register'), path('accountcreate/',views.accountcreate,name='accountcreate'), path('ngodetail/',views.ngodetail,name='ngodetail'), path('create/', views.edit_view_add, name='edit_view_add'), path('delete/',views.delete_view, name='delete_view'), path('edit/',views.edit_view, name='edit_view'), path('donate/',views.donator_view,name='donator'), path('donate/<phone>/',views.donation_confirm,name='don_confirm'), path('change-password/', views.MyPasswordChangeView.as_view(), name='reset'), path('ngodetail/donators/', views.donators, name='donators'), path('donater/signup/',views.d_signup,name='d_signup'), path('donators/', views.donators, name='donators'), path('contact/',views.contactus, name='contact') ]
start = [8,13,1,0,18,9] last_said = None history = {} def say(num, turn_no): print(f'turn {i}\tsay {num}') for i in range(30000000): if i < len(start): num = start[i] else: # print(f'turn {i} last said {last_said} {history}') if last_said in history: # print('in') num = i - history[last_said] - 1 else: num = 0 # print(history) if last_said is not None: history[last_said] = i - 1 # say(num, i) if i % 1000000 == 0: print(i, num) last_said = num print(i, num)
import torch from torch import Tensor from tree_expectations import N from tree_expectations.utils import device def laplacian(A: 'Tensor[N, N]', rho: 'Tensor[N]') -> 'Tensor[N, N]': """ Compute the root-weighted Laplacian. Function has a runtime of O(N^2). """ L = -A + torch.diag_embed(A.sum(dim=0)).to(device) L[0] = rho return L def lap(w: 'Tensor[N, N]') -> 'Tensor[N, N]': """ Compute the root-weighted Laplacian. Function has a runtime of O(N^2). """ rho = torch.diag(w) A = w * (torch.tensor(1).double().to(device) - torch.eye(w.size(0)).double().to(device)) return laplacian(A, rho) def dlap(k, l): """ Index over sparsity in the Jacobian of the Laplacian Given (k,l), return (i,j) such that for a dL[i,j] / ∂A[k,l] ≠ 0 Done in O(1), see Proposition of paper (see README) """ if k == l: return [(0, k, 1.)] out = [] if l != 0: out.append((l, l, 1.)) if k != 0: out.append((k, l, -1.)) return out def adj(A: 'Tensor[N, N]') -> 'Tensor[N, N]': """ Compute the adjugate of a matrix A. The adjugate can be used for calculating the derivative of a determinants. Function has a runtime of O(N^3). """ Ad = torch.slogdet(A) Ad = Ad[0] * torch.exp(Ad[1]) return Ad * torch.inverse(A).t() def matrix_tree_theorem(w: 'Tensor[N, N]', use_log: bool = False) -> 'Tensor[1]': """ Compute the sum over all spanning trees in W using the Matrix--Tree Theorem. Function has a runtime of O(N^3). This relates to Section 2, Proposition 1 of paper (see README) """ r = torch.diag(w) A = w * (torch.tensor(1).double().to(device) - torch.eye(w.size(0)).double().to(device)) sign, logZ = torch.slogdet(laplacian(A, r)) return logZ if use_log else sign * torch.exp(logZ) def _dz_base(w: 'Tensor[N, N]', B: 'Tensor[N, N]' = None): """ Evaluate the base of the derivative of the Matrix--Tree Theorem using a possibly cached transpoed inverse Laplacian matrix. To get the full derivative, we must multiply by Z. To get mu, we must multiply by w. This function runs in O(N^2) if B is provided and O(N^3) otherwise. """ n = w.size(0) if B is None: B = torch.inverse(lap(w)).t() base = torch.zeros((n, n)).double().requires_grad_(True) for i in range(n): for j in range(n): for i_, j_, dL in dlap(i, j): base[i, j] += B[i_, j_] * dL return base
# Generated by Django 3.1.5 on 2021-04-21 07:38 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('posts', '0001_initial'), ('groups', '0001_initial'), ('profiles', '0001_initial'), ] operations = [ migrations.AddField( model_name='group', name='created_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='group_creator', to='profiles.profile'), ), migrations.AddField( model_name='group', name='members', field=models.ManyToManyField(blank=True, related_name='members', to='profiles.Profile'), ), migrations.AddField( model_name='group', name='posts', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='group_posts', to='posts.post'), ), ]
import torch import torch.nn as nn from block import FC_block sp = torch.zeros((1, 1)) counter = 0 class SNN(nn.Module): def __init__(self, hyperparams, hidden_size, layers=3, sbp=False, bp_mark=None): super(SNN, self).__init__() self.hyperparams = hyperparams self.hidden_size = hidden_size self.layers = nn.ModuleList() self.layers_size = [self.hyperparams[1]] + [self.hidden_size] * (layers - 2) + [self.hyperparams[2], None] print('layers size:', self.layers_size[:-1]) self.len = len(self.layers_size) - 2 self.error = None for i in range(self.len): self.layers.append(FC_block(self.hyperparams, self.layers_size[i], self.layers_size[i + 1], self.layers_size[i + 2])) def hook_fc_backward(module, grad_input, grad_output): global sp, counter # grad_input:[grad_b, grad_x, grad_w] grad_b = grad_input[0] grad_w = grad_input[2] if module.last_layer: # calculate inductor 'sp' from gradients of the last layer counter += 1 sp = torch.diag(torch.sum(grad_w.abs(), 1)) / (grad_w.shape[0] * grad_w.shape[1]) * 0.01 result = (torch.zeros(grad_b.shape).cuda(), grad_input[1], grad_input[2]) else: # use 'sp' to calculate new grad_w grad_b_new = torch.zeros(grad_b.shape).cuda() tp = torch.mm(torch.mm(torch.mm(sp, module.rand), module.error.t()), module.input).t() hebb_use = torch.mm(module.hebb_delta, sp) * 1e-2 grad_w_new = tp + hebb_use result = (grad_b_new, grad_input[1], grad_w_new) if bp_mark and (counter == bp_mark): result = (torch.zeros(grad_b.shape).cuda(), grad_input[1], grad_input[2]) counter = 0 return result if sbp: for name, module in self.layers[i].named_children(): if name is 'fc': module.register_backward_hook(hook_fc_backward) def forward(self, input, labels=None): for step in range(self.hyperparams[4]): if self.hyperparams[5] == 'MNIST': x = input > torch.rand(input.size()).cuda() elif self.hyperparams[5] == 'NETTalk': x = input.cuda() elif self.hyperparams[5] == 'DVSGesture': x = input[:, 0 + step * 5, :] x = x.float() x = x.view(self.hyperparams[0], -1) for i in range(self.len): x = self.layers[i](x) if i != 0: self.layers[i].h_last = self.layers[i - 1].h_now outputs = self.layers[-1].sumspike / self.hyperparams[4] if labels is not None: error = labels - outputs for i in range(self.len): self.layers[i].fc.error = error if i != self.len - 1: self.layers[i].fc.hebb_delta = self.layers[i + 1].hebb_last[-1] + self.layers[i + 1].hebb_last[-2] - self.layers[i + 1].hebb_last[0] - self.layers[i + 1].hebb_last[1] potential = 0 for i in range(self.len - 1): l_potential = torch.mm(self.layers[i + 1].h_now, torch.mm(self.layers[i].fc.weight.data, self.layers[i].h_now.t())).mean() / float(self.layers[i].input_size * self.layers[i].output_size) + torch.mm(self.layers[i + 1].h_now, self.layers[i + 1].h_now.t()).mean() / float(self.layers[i].output_size * self.layers[i].output_size) potential = potential + l_potential.abs() l_potential = torch.mm(x, torch.mm(self.layers[-1].fc.weight.data, self.layers[-1].h_now.t())).mean() / float(self.layers[-1].input_size * self.layers[-1].output_size) + torch.mm(x, x.t()).mean() / float(self.layers[-1].output_size * self.layers[-1].output_size) potential = potential + l_potential.abs() return outputs, potential
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module to handle interactions with Windows Firmware Passwords.""" from cauliflowervest.server import permissions from cauliflowervest.server.handlers import firmware_handler from cauliflowervest.server.models import firmware as firmware_model class WindowsFirmwarePassword(firmware_handler.FirmwarePasswordHandler): """Handler for /windows_firmware URL.""" AUDIT_LOG_MODEL = firmware_model.WindowsFirmwarePasswordAccessLog SECRET_MODEL = firmware_model.WindowsFirmwarePassword PERMISSION_TYPE = permissions.TYPE_WINDOWS_FIRMWARE
""" ********************************************************* * * * Project Name: Recursive Fibonacci Sequence * * Author: github.com/kirigaine * * Description: A simple program to put in how many * * numbers of the Fibonacci Sequence you would like. * * Requirements: Python Standard Library (re) * * * ********************************************************* """ import re def main(): while True: # Prompt user, exit program if "-1" x = userPrompt() if x == -1: break print("------------------------------------------------------------") print(str(fibonacci(x))) print("------------------------------------------------------------\n") def userPrompt(): # Prompt user for nth number to print up to temp_nth = "" regex_passed = None # Accept only integers and negative one while not regex_passed: temp_nth = input("How many digits of the Fibonacci Sequence would you like (-1 to quit): ") regex_passed = re.search("^(([0-9]*)|(-1))$", temp_nth) if not regex_passed: print("Invalid integer. Please try again entering a positive integer (or -1 to quit).\n") return int(temp_nth) def fibonacci(x): # fibonacci(x) == fibonacci(x-1) + fibonacci(x-2) # ... # fibonacci(4) = fibonacci(3) + fibonacci(2) # fibonacci(3) = fibonacci(2) + fibonacci(1) # fibonacci(2) = 1 # fibonacci(1) = 0 if x is not None: if x==0: # If you request none, you get none! return None elif x==1: return 0 elif x==2: return 1 else: # print(f"{x-1} {x-2}") return(fibonacci(x-1) + fibonacci(x-2)) main()
# Copyright 2020 Skillfactory LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from argparse import Namespace TEST_DATA_DIRECTORY = './tests/test_data/' DEFAULT_CONFIG = Namespace(attention_dropout=0.1, batch_size=64, bidirectional_encoder=False, bos_index=1, checkpoint_path='./data/checkpoints/checkpoint', decoder_num_layers=2, directory='./data/', dropout=0.25, embedding_dim=128, encoder_num_layers=2, eos_index=2, epochs=3, gpu=1, learning_rate=0.001, load_data=False, max_length=32, max_norm=3.0, model_dim=256, n_batch_accumulate=1, pad_index=0, project_name='NMT', seed=42, train_n_pairs=5000000, train_tokenizers=False, use_attention=False, valid_n_pairs=25000, verbose=False, vocab_size=30000, weight_decay=0.0, weight_tying=False)
import lionchief import time import logging import sys logging.basicConfig() logging.getLogger('bluetooth').setLevel(logging.DEBUG) # Replace this mac address with the one # belonging to your train #chief = lionchief.LionChief("44:A6:E5:48:7F:73") #steam engine chief = lionchief.LionChief("44:A6:E5:35:54:88") #GE # speed = 0 class LionApi(object): # speed = 0 def __init__(self): self.online=True self._speed=0 self._reverse = False def start(self): try: chief.connect() except Exception as e: print(e) sys.exit(0) def go(self,newSpeed=0): # global speed chief.ramp(self._speed, newSpeed) self._speed = newSpeed def horn(self): chief.set_horn(True) time.sleep(.5) chief.set_horn(False) #trying to emulate a twil horn sound for a steam engine. Can't find a way to make it sound even yet def hornTwil(self): chief.set_horn_pitch(0) chief.set_horn(True) time.sleep(.3) chief.set_horn_pitch(4) time.sleep(2) chief.set_horn(False) def reverse(self): chief.set_reverse(True) print('going in reverse') self._reverse = True self._speed = 0 def forward(self): chief.set_reverse(False) self._reverse = False self._speed = 0
""" set and catch alarm timeout signals in Python; time.sleep doesn't play well with alarm (or signal in general in my Linux PC), so we call signal.pause here to do nothing until a signal is received; """ import sys, signal, time def now(): return time.asctime() def onSignal(signum, stackframe): # python signal handler print('Got alarm', signum, 'at', now()) # most handlers stay in effect while True: print('Setting at', now()) signal.signal(signal.SIGALRM, onSignal) # install signal handler signal.alarm(5) # do signal in 5 seconds signal.pause() # wait for signals; pause() is a built-in function
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests for devappserver2.admin.mail_request_handler.""" import email.message import unittest import google import mox import webapp2 from google.appengine.tools.devappserver2 import dispatcher from google.appengine.tools.devappserver2.admin import mail_request_handler class MailRequestHandlerTest(unittest.TestCase): def setUp(self): self.mox = mox.Mox() def tearDown(self): self.mox.UnsetStubs() def test_generate_email(self): message = mail_request_handler.MailRequestHandler._generate_email( 'to', 'from', 'cc', 'subject', 'body') self.assertEqual('from', message['From']) self.assertEqual('to', message['To']) self.assertEqual('cc', message['Cc']) self.assertEqual('subject', message['Subject']) text, html = message.get_payload() self.assertEqual('text/plain', text.get_content_type()) self.assertEqual('utf-8', text.get_content_charset()) content = text.get_payload() if text['content-transfer-encoding'] != '7bit': content = content.decode(text['content-transfer-encoding']) self.assertEqual('body', content) self.assertEqual('text/html', html.get_content_type()) self.assertEqual('utf-8', html.get_content_charset()) content = html.get_payload() if html['content-transfer-encoding'] != '7bit': content = content.decode(html['content-transfer-encoding']) self.assertEqual('body', content) def test_send_email(self): response = webapp2.Response() handler = mail_request_handler.MailRequestHandler(None, response) message = object() self.mox.StubOutWithMock(handler, '_send') self.mox.StubOutWithMock(handler, '_generate_email') handler._generate_email('to', 'from', 'cc', 'subject', 'body').AndReturn( message) handler._send('/_ah/mail/to', message).AndReturn( dispatcher.ResponseTuple('500 Internal Server Error', [], 'Response')) self.mox.ReplayAll() handler._send_email('to', 'from', 'cc', 'subject', 'body') self.mox.VerifyAll() self.assertEqual(500, response.status_int) def test_send(self): self.mox.StubOutWithMock(mail_request_handler.MailRequestHandler, 'dispatcher') handler = mail_request_handler.MailRequestHandler(None, None) handler.dispatcher = self.mox.CreateMock(dispatcher.Dispatcher) handler.dispatcher.add_request( method='POST', relative_url='URL', headers=[('Content-Type', 'message/rfc822')], body='mail message', source_ip='0.1.0.20') message = self.mox.CreateMock(email.message.Message) message.as_string().AndReturn('mail message') self.mox.ReplayAll() handler._send('URL', message) self.mox.VerifyAll() def test_post(self): request = webapp2.Request.blank('/mail', POST={ 'to': 'to', 'from': 'from', 'cc': 'cc', 'subject': 'subject', 'body': 'body'}) response = webapp2.Response() handler = mail_request_handler.MailRequestHandler(request, response) self.mox.StubOutWithMock(handler, '_send_email') handler._send_email('to', 'from', 'cc', 'subject', 'body') self.mox.ReplayAll() handler.post() self.mox.VerifyAll() if __name__ == '__main__': unittest.main()
from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib import ticker from matplotlib.colors import to_hex import numpy as np import pandas as pd import os import argparse from .utils import str2bool,setColorConf USAGE=""" Desc: script to draw sample-wise silhouette coeffient plot. """ def checkIndexIdenticcal(featureDataFrame,metadataDataFrame): return np.sum(featureDataFrame.index != metadataDataFrame.index) def plotSampleWiseSilhouetteScore(featureDataFrame, metadataDataFrame, cluster_name, features_are_row=True, n_clusters = None, metric = "euclidean", order=None, colors="tab20", xlim=(-1,1), y_lower = 10, interval=15, figsize = (5,10),**kwargs): """ featureDataFrame(Required):,pd.DataFrame row per feature(taxonomy),col per sample. If setting metric = "precomputed", then featureDataFrame should be distance dataframe precomputed. metadataDataFrame(Required): pd.DataFrame metadata containing group information(make sure the index same with featureDataFrame: feature). cluster_name(Required): column name of cluster in the metadataDataFrame. n_clusters(Required): order:list the plot order of each cluster. metric:str default = "precomputed". If metric is a string, it must be one of the options allowed by sklearn.metrics.pairwise.pairwise_distances. If using "precomputed" as the metric, then the featureDataFrame should be the distance dataframe itself. Precomputed distance matrices must have 0 along the diagonal. color:str or list. color of each cluster. If passing str, then calling matplotlib inner palette. If passing list, then using the list color directly. """ # average silhouette_score if features_are_row: featureDataFrame = featureDataFrame.T.sort_index() else: featureDataFrame = featureDataFrame.sort_index() metadataDataFrame = metadataDataFrame.sort_index() unIdenticalNum = checkIndexIdenticcal(featureDataFrame,metadataDataFrame) if unIdenticalNum !=0: raise IndexError("Exist un-identical index between 2 dataframe.") X = featureDataFrame.values if cluster_name not in metadataDataFrame.columns: raise ValueError(cluster_name + " not exist in metadata.") cluster_labels = metadataDataFrame.loc[:,cluster_name].values unique_labels = np.unique(cluster_labels) if not n_clusters: n_clusters = len(unique_labels) if metric =="precomputed": np.fill_diagonal(X, 0) silhouette_avg = silhouette_score(X, cluster_labels,metric=metric) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # visualization plt.rc('font', family='Arial') fig = plt.figure(1, figsize=figsize) ax = fig.add_subplot(1,1,1) ax.set_xlim([xlim[0], xlim[1]]) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels,metric=metric) y_lower = y_lower if not order: # if not specified. order = np.sort(unique_labels) if not set(order).issubset(set(unique_labels)): raise ValueError("provided order does not match the exact cluster label.") # color # if specified by user(passing a list). if isinstance(colors,list): colors_list = colors ## TODO:raise warning if len of list not consistent with ngroups. # if using matplotlib inner palette elif isinstance(colors,str): if colors: colors_list = setColorConf(colors=colors,ngroups = n_clusters) else: colors_list = None for i,cs in enumerate(order): # Aggregate the silhouette scores for samples belonging to cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == cs] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i #color = cm.nipy_spectral(float(i) / n_clusters) ax.fill_betweenx(np.arange(y_lower, y_upper), 0, # start ith_cluster_silhouette_values, # end facecolor=colors_list[i], edgecolor=colors_list[i], alpha=0.7,**kwargs) # Label the silhouette plots with their cluster numbers at the middle ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(cs)) # Compute the new y_lower for next plot y_lower = y_upper + interval #ax1.set_title("The silhouette plot") ax.set_title("Silhouette Coefficient",size=15) #ax.set_xlabel("Silhouette Coefficient",size=15) #ax.set_ylabel("Cluster",size=15,rotation="horizontal") # The vertical line for average silhouette score of all the values #ax.axvline(x=silhouette_avg, color="red", linestyle="--") ax.set_yticks([]) # Clear the yaxis labels / ticks #ax.set_xticks([-0., 0, 0.2, 0.4, 0.6, 0.8, 1]) ## set spines invisible ax.spines['left'].set_color(None) ax.spines['right'].set_color(None) ax.spines['top'].set_color(None) ax.spines['bottom'].set_linewidth(1.5) ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.2)) for i in ax.xaxis.get_ticklines(): i.set_linewidth(1.5) i.set_markeredgewidth(1.5) for i in ax.xaxis.get_ticklabels(): i.set_fontsize(13) #i.set_fontfamily('serif') #plt.show() return fig,ax if __name__ == "__main__": args = argparse.ArgumentParser(description=USAGE) args.add_argument('-f','--featureDataFrame') args.add_argument('-m','--metadataDataFrame') args.add_argument('-x','--metric') args.add_argument('-n','--clustername') args.add_argument('-far','--feature_are_row',default="True",type=str2bool) args.add_argument('-o','--output',default = './SilhouetteScore.pdf') args = args.parse_args() df = args.featureDataFrame metadata = args.metadataDataFrame metric = args.metric far = args.feature_are_row try: if ".csv" in df: df = pd.read_csv(df,index_col=0) elif ".txt" in df: df = pd.read_csv(df,index_col=0,sep="\t") elif ".tsv" in df: df = pd.read_csv(df,index_col=0,sep="\t") elif ".xlsx" in df: df = pd.read_excel(df,index_col=0) except: print("Unrecognized format, please check your feature dataframe.") try: if ".csv" in metadata: metadata = pd.read_csv(metadata,index_col=0) elif ".txt" in metadata: metadata = pd.read_csv(metadata,index_col=0,sep="\t") elif ".tsv" in metadata: metadata = pd.read_csv(metadata,index_col=0,sep="\t") elif ".xlsx" in metadata: metadata = pd.read_excel(metadata,index_col=0) except: print("Unrecognized format, please check your metadata dataframe.") cs = args.clustername fname = args.output fig = plotSampleWiseSilhouetteScore(df,metadata,cluster_name=cs,metric = metric,features_are_row=far) plt.savefig(fname)
from keras.models import Sequential from keras.layers import Dense, LSTM import keras.backend as K import numpy as np import tensorflow as tf a = [1, 0, 0] b = [0, 1, 0] c = [0, 0, 1] seq = [a, b, c, b, a] x = seq[:-1] y = seq[1:] window_size = 1 x = np.array(x).reshape((len(x), window_size, 3)) y = np.array(y) num_fit_loop_iters = 10 eps = 1 bs = 1 lstm_input_layer_num_units = 20 input_tensor_shape = (1, 3) dense_layer_num_units = 3 act_func = "softmax" loss_metric = "mean_squared_error" opt = "adam" array_2_pred_1 = np.array([[a], [b]]) array_2_pred_2 = np.array([[b], [c]]) array_2_pred_3 = np.array([[c], [b]]) # training_method_desc_info = f"""The network is being trained via the combination of the .fit(.) # method and a for loop. The for loop performs {}""" # def run_with_batch_size(batch_size=bs, epochs=eps, num_fit_loop_iters=num_fit_iters): # def run_with_batch_size(batch_size=bs, epochs=eps, num_fit_loop_iters=num_fit_iters): def run_with_batch_size(bs, eps, num_fit_loop_iters): print("~" * 10 + "\tLSTM Network Creation: Start\t" + "~" * 10) model = Sequential() model.add(LSTM(lstm_input_layer_num_units, input_shape=input_tensor_shape)) model.add(Dense(dense_layer_num_units, activation=act_func)) model.compile(loss=loss_metric, optimizer=opt) print(model.summary()) print(f"""\nLSTM Network Parameters (& Hypterparameters?): Batch size: {bs} Epochs: {eps} LSTM input layer number of units (dim of output space): {lstm_input_layer_num_units} Input tensor shape: {input_tensor_shape} Dense (final) layer number of units (dim of output space): {dense_layer_num_units} Dense (final) layer activation function: {act_func} Optimizer: {loss_metric} Loss metric: {opt}""") print(f"""\nData Properties: A single sequence of data: {seq} Window size: {window_size} Shape of training input data, x: {x.shape} Shape of training output data, y: {y.shape}""") print("~" * 10 + "\tLSTM Network Creation: End\t" + "~" * 10) print("\n") print("~"*10+"\tTraining Phase: Start\t"+"~"*10) # print(f"Training methodology detailed description:\n\t{training_method_desc_info}") print("Starting model.fit(.) & for loop training...") for i in range(num_fit_loop_iters): print("Fit Iteration Loop Number #: {0} out of {1}".format(i+1, num_fit_loop_iters)) model.fit(x, y, batch_size=bs, epochs=eps, verbose=2, shuffle=False ) print("Ending of model.fit(.) & for loop training...") print("~" * 10 + "\tTraining Phase: End\t" + "~" * 10) print("\n") print("~" * 10 + "\tPrediction Phase: Start\t" + "~" * 10) print("~" * 5 + "\tPrediction # 1\t" + "~" * 5) print(f"Predicting the array:\n\t{array_2_pred_1}") print(f"Prediction result:\n\t{model.predict(array_2_pred_1, bs)}") print("\n") print("~" * 5 + "\tPrediction # 2\t" + "~" * 5) print(f"Predicting the array:\n\t{array_2_pred_2}") print(f"Prediction result:\n\t{model.predict(array_2_pred_2, bs)}") print("\n") print("~" * 5 + "\tPrediction # 3\t" + "~" * 5) print(f"Predicting the array:\n\t{array_2_pred_3}") print(f"Prediction result:\n\t{model.predict(array_2_pred_3, bs)}") print("~" * 10 + "\tPrediction Phase: End\t" + "~" * 10) # print(f"""\nLSTM Network Parameters (& Hypterparameters?): # Batch size: {bs} # Epochs: {eps} # LSTM input layer number of units (dim of output space): {lstm_input_layer_num_units} # Input tensor shape: {input_tensor_shape} # Dense (final) layer number of units (dim of output space): {dense_layer_num_units} # Dense (final) layer activation function: {act_func} # Optimizer: {loss_metric} # Loss metric: {opt}""") # # print(f"""\nData Properties: # \tA single sequence of data: {seq} # \tWindow size: {window_size} # \tTraining input and output (equivalentX_train &y_train) data properties: # \t\tShape of training input data, x: {x.shape} # \t\tShape of training output data, y: {y.shape}""") print("\nStarting LSTM training and prediction demo...") run_with_batch_size(bs, eps, num_fit_loop_iters) print("\nLSTM training and prediction demo complete!") def print_additional_info(): print("\nAdditional notes on findings from the dude who asked the question:") findings_from_author = """I have an alphabet consisting of a, b, and c I have a sequence which is a,b,c,b,a In this sequence a and c are always followed by b, and b is followed by c (if b was preceded by a) or by a (if b was preceded by c) When my batch_size is 1: I would expect that running model.predict([a, b]) gives the same result for b as when I run model.predict([b, c]) as the state was reset to zero between the two batches The results I get match these expectations When my batch_size is 2: I would expect that when running model.predict([a, b]) the result for b should be affected by the result for a (since the output of a will be fed into the input of b). This means that it should have a different result for b then when I run model.predict([b, c]) The result I get is that actually the two b outputs are identical, implying that within my batch (a, b) the hidden state was reset between my two samples. I'm still pretty fresh to this area, so it's very possible that I'm misunderstanding something. Is the initial state reset between each sample in a batch rather than between each batch?""" print(findings_from_author) print("Source: https://stackoverflow.com/questions/54187504/initial-states-in-keras-lstm") # print('-'*30) # run_with_batch_size(1) # print('**') # run_with_batch_size(2)
from Hw.H8_Seq2Seq.config import configurations from Hw.H8_Seq2Seq.train import train_process import torch import os device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 判斷是用 CPU 還是 GPU 執行運算 config = configurations() if not os.path.isdir(config.store_model_path): os.mkdir(config.store_model_path) print('config:\n', vars(config)) train_losses, val_losses, bleu_scores = train_process(config, device)
# (c) Copyright IBM Corp. 2019. All Rights Reserved. # -*- coding: utf-8 -*- """Generate the Resilient customizations required for fn_service_now""" from __future__ import print_function from resilient_circuits.util import * def codegen_reload_data(): """Parameters to codegen used to generate the fn_service_now package""" reload_params = {"package": u"fn_service_now", "incident_fields": [u"sn_snow_record_id", u"sn_snow_record_link"], "action_fields": [u"sn_assignment_group", u"sn_close_code", u"sn_close_notes", u"sn_initial_note", u"sn_record_state"], "function_params": [u"attachment_id", u"incident_id", u"sn_close_code", u"sn_close_notes", u"sn_close_work_note", u"sn_init_work_note", u"sn_note_text", u"sn_note_type", u"sn_optional_fields", u"sn_query_field", u"sn_query_value", u"sn_record_state", u"sn_res_id", u"sn_resilient_status", u"sn_table_name", u"sn_update_fields", u"task_id"], "datatables": [u"sn_records_dt"], "message_destinations": [u"fn_service_now"], "functions": [u"fn_snow_add_attachment_to_record", u"fn_snow_add_note_to_record", u"fn_snow_close_record", u"fn_snow_create_record", u"fn_snow_helper_add_task_note", u"fn_snow_helper_update_datatable", u"fn_snow_lookup_sysid", u"fn_snow_update_record"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"example_snow_add_attachment_to_record", u"example_snow_add_comment_to_record", u"example_snow_add_worknote_to_record", u"example_snow_close_record_from_data_table", u"example_snow_close_record_incident", u"example_snow_close_record_task", u"example_snow_create_record_incident", u"example_snow_create_record_task", u"example_snow_update_datatable_on_status_change_incident", u"example_snow_update_datatable_on_status_change_task", u"example_snow_update_record_on_severity_change"], "actions": [u"SNOW: Add Attachment to Record", u"SNOW: Close Record [Incident]", u"SNOW: Close Record [Task]", u"SNOW: Close Record from Data Table", u"SNOW: Create Record [Incident]", u"SNOW: Create Record [Task]", u"SNOW: Send as Additional Comment", u"SNOW: Send as Work Note", u"SNOW: Update Data Table on Status Change [Incident]", u"SNOW: Update Data Table on Status Change [Task]", u"SNOW: Update Record on Severity Change"] } return reload_params def customization_data(client=None): """Produce any customization definitions (types, fields, message destinations, etc) that should be installed by `resilient-circuits customize` """ # This import data contains: # Incident fields: # sn_snow_record_id # sn_snow_record_link # Action fields: # sn_assignment_group # sn_close_code # sn_close_notes # sn_initial_note # sn_record_state # Function inputs: # attachment_id # incident_id # sn_close_code # sn_close_notes # sn_close_work_note # sn_init_work_note # sn_note_text # sn_note_type # sn_optional_fields # sn_query_field # sn_query_value # sn_record_state # sn_res_id # sn_resilient_status # sn_table_name # sn_update_fields # task_id # DataTables: # sn_records_dt # Message Destinations: # fn_service_now # Functions: # fn_snow_add_attachment_to_record # fn_snow_add_note_to_record # fn_snow_close_record # fn_snow_create_record # fn_snow_helper_add_task_note # fn_snow_helper_update_datatable # fn_snow_lookup_sysid # fn_snow_update_record # Workflows: # example_snow_add_attachment_to_record # example_snow_add_comment_to_record # example_snow_add_worknote_to_record # example_snow_close_record_from_data_table # example_snow_close_record_incident # example_snow_close_record_task # example_snow_create_record_incident # example_snow_create_record_task # example_snow_update_datatable_on_status_change_incident # example_snow_update_datatable_on_status_change_task # example_snow_update_record_on_severity_change # Rules: # SNOW: Add Attachment to Record # SNOW: Close Record [Incident] # SNOW: Close Record [Task] # SNOW: Close Record from Data Table # SNOW: Create Record [Incident] # SNOW: Create Record [Task] # SNOW: Send as Additional Comment # SNOW: Send as Work Note # SNOW: Update Data Table on Status Change [Incident] # SNOW: Update Data Table on Status Change [Task] # SNOW: Update Record on Severity Change yield ImportDefinition(u""" eyJ0YXNrX29yZGVyIjogW10sICJ3b3JrZmxvd3MiOiBbeyJ1dWlkIjogIjNhMzU3MjEwLTA3NTAt NDZhYS1hZTQ1LTkyMTEyZWQ4MGQ3OCIsICJkZXNjcmlwdGlvbiI6ICJBbiBleGFtcGxlIHdvcmtm bG93IHRoYXQsIHdoZW4gYW4gSW5jaWRlbnQncyBzZXZlcml0eSBpcyBjaGFuZ2VkLCB1cGRhdGVz IGl0cyBhc3NvY2lhdGVkIFNlcnZpY2VOb3cgUmVjb3JkJ3Mgc2V2ZXJpdHkgYW5kIGFkZHMgYSBX b3JrIE5vdGUgdG8gdGhlIFJlY29yZCIsICJvYmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJleHBv cnRfa2V5IjogImV4YW1wbGVfc25vd191cGRhdGVfcmVjb3JkX29uX3NldmVyaXR5X2NoYW5nZSIs ICJ3b3JrZmxvd19pZCI6IDMsICJsYXN0X21vZGlmaWVkX2J5IjogImludGVncmF0aW9uc0BleGFt cGxlLmNvbSIsICJjb250ZW50IjogeyJ4bWwiOiAiPD94bWwgdmVyc2lvbj1cIjEuMFwiIGVuY29k aW5nPVwiVVRGLThcIj8+PGRlZmluaXRpb25zIHhtbG5zPVwiaHR0cDovL3d3dy5vbWcub3JnL3Nw ZWMvQlBNTi8yMDEwMDUyNC9NT0RFTFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6Ly93d3cub21nLm9y Zy9zcGVjL0JQTU4vMjAxMDA1MjQvRElcIiB4bWxuczpvbWdkYz1cImh0dHA6Ly93d3cub21nLm9y Zy9zcGVjL0RELzIwMTAwNTI0L0RDXCIgeG1sbnM6b21nZGk9XCJodHRwOi8vd3d3Lm9tZy5vcmcv c3BlYy9ERC8yMDEwMDUyNC9ESVwiIHhtbG5zOnJlc2lsaWVudD1cImh0dHA6Ly9yZXNpbGllbnQu aWJtLmNvbS9icG1uXCIgeG1sbnM6eHNkPVwiaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hl bWFcIiB4bWxuczp4c2k9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5j ZVwiIHRhcmdldE5hbWVzcGFjZT1cImh0dHA6Ly93d3cuY2FtdW5kYS5vcmcvdGVzdFwiPjxwcm9j ZXNzIGlkPVwiZXhhbXBsZV9zbm93X3VwZGF0ZV9yZWNvcmRfb25fc2V2ZXJpdHlfY2hhbmdlXCIg aXNFeGVjdXRhYmxlPVwidHJ1ZVwiIG5hbWU9XCJFeGFtcGxlOiBTTk9XIFVwZGF0ZSBSZWNvcmQg b24gU2V2ZXJpdHkgQ2hhbmdlXCI+PGRvY3VtZW50YXRpb24+PCFbQ0RBVEFbQW4gZXhhbXBsZSB3 b3JrZmxvdyB0aGF0LCB3aGVuIGFuIEluY2lkZW50J3Mgc2V2ZXJpdHkgaXMgY2hhbmdlZCwgdXBk YXRlcyBpdHMgYXNzb2NpYXRlZCBTZXJ2aWNlTm93IFJlY29yZCdzIHNldmVyaXR5IGFuZCBhZGRz IGEgV29yayBOb3RlIHRvIHRoZSBSZWNvcmRdXT48L2RvY3VtZW50YXRpb24+PHN0YXJ0RXZlbnQg aWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1cIj48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzFwcm9vOHE8 L291dGdvaW5nPjwvc3RhcnRFdmVudD48ZW5kRXZlbnQgaWQ9XCJFbmRFdmVudF8wNm1ndHZnXCI+ PGluY29taW5nPlNlcXVlbmNlRmxvd18wajVsMWViPC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1 ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMXByb284cVwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZl bnRfMTU1YXN4bVwiIHRhcmdldFJlZj1cIlNlcnZpY2VUYXNrXzBvZDhiY3lcIi8+PHNlcnZpY2VU YXNrIGlkPVwiU2VydmljZVRhc2tfMG9kOGJjeVwiIG5hbWU9XCJTTk9XOiBVcGRhdGUgUmVjb3Jk XCIgcmVzaWxpZW50OnR5cGU9XCJmdW5jdGlvblwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxp ZW50OmZ1bmN0aW9uIHV1aWQ9XCI5NWQ3ZDRkZi0wZWM4LTRkYmQtYmJjZi05NzU5YjIzOTMwZWJc Ij57XCJpbnB1dHNcIjp7fSxcInBvc3RfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIlxcbiMgQWRkIGEg Tm90ZSB0byB0aGUgSW5jaWRlbnRcXG5ub3RlX3RleHQgPSB1XFxcIlRoZSBTZXZlcml0eSBvZiB0 aGlzIEluY2lkZW50IHdhcyB1cGRhdGVkIHRvIHswfSBpbiBJQk0gUmVzaWxpZW50XFxcIi5mb3Jt YXQoaW5jaWRlbnQuc2V2ZXJpdHlfY29kZSlcXG5pbmNpZGVudC5hZGROb3RlKG5vdGVfdGV4dClc IixcInByZV9wcm9jZXNzaW5nX3NjcmlwdFwiOlwiIyBFeGFtcGxlOiBTTk9XIFVwZGF0ZSBSZWNv cmQgb24gU2V2ZXJpdHkgQ2hhbmdlXFxuXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyMjIyMjXFxuIyMjIERlZmluZSBwcmUtcHJvY2Vzc2luZyBmdW5jdGlvbnMgIyMjXFxuIyMj IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuZGVmIGRpY3RfdG9fanNvbl9z dHIoZCk6XFxuICBcXFwiXFxcIlxcXCJGdW5jdGlvbiB0aGF0IGNvbnZlcnRzIGEgZGljdGlvbmFy eSBpbnRvIGEgSlNPTiBzdHJpbmcuXFxuICAgICBTdXBwb3J0cyB0eXBlczogYmFzZXN0cmluZywg Ym9vbCwgaW50IGFuZCBuZXN0ZWQgZGljdHMuXFxuICAgICBEb2VzIG5vdCBzdXBwb3J0IGxpc3Rz LlxcbiAgICAgSWYgdGhlIHZhbHVlIGlzIE5vbmUsIGl0IHNldHMgaXQgdG8gRmFsc2UuXFxcIlxc XCJcXFwiXFxuXFxuICBqc29uX2VudHJ5ID0gdSdcXFwiezB9XFxcIjp7MX0nXFxuICBqc29uX2Vu dHJ5X3N0ciA9IHUnXFxcInswfVxcXCI6XFxcInsxfVxcXCInXFxuICBlbnRyaWVzID0gW10gXFxu XFxuICBmb3IgZW50cnkgaW4gZDpcXG4gICAga2V5ID0gZW50cnlcXG4gICAgdmFsdWUgPSBkW2Vu dHJ5XVxcblxcbiAgICBpZiB2YWx1ZSBpcyBOb25lOlxcbiAgICAgIHZhbHVlID0gRmFsc2VcXG5c XG4gICAgaWYgaXNpbnN0YW5jZSh2YWx1ZSwgbGlzdCk6XFxuICAgICAgaGVscGVyLmZhaWwoJ2Rp Y3RfdG9fanNvbl9zdHIgZG9lcyBub3Qgc3VwcG9ydCBQeXRob24gTGlzdHMnKVxcblxcbiAgICBp ZiBpc2luc3RhbmNlKHZhbHVlLCBiYXNlc3RyaW5nKTpcXG4gICAgICB2YWx1ZSA9IHZhbHVlLnJl cGxhY2UodSdcXFwiJywgdSdcXFxcXFxcXFxcXCInKVxcbiAgICAgIGVudHJpZXMuYXBwZW5kKGpz b25fZW50cnlfc3RyLmZvcm1hdCh1bmljb2RlKGtleSksIHVuaWNvZGUodmFsdWUpKSlcXG4gICAg ICBcXG4gICAgZWxpZiBpc2luc3RhbmNlKHZhbHVlLCB1bmljb2RlKTpcXG4gICAgICBlbnRyaWVz LmFwcGVuZChqc29uX2VudHJ5LmZvcm1hdCh1bmljb2RlKGtleSksIHVuaWNvZGUodmFsdWUpKSlc XG4gICAgXFxuICAgIGVsaWYgaXNpbnN0YW5jZSh2YWx1ZSwgYm9vbCk6XFxuICAgICAgdmFsdWUg PSAndHJ1ZScgaWYgdmFsdWUgPT0gVHJ1ZSBlbHNlICdmYWxzZSdcXG4gICAgICBlbnRyaWVzLmFw cGVuZChqc29uX2VudHJ5LmZvcm1hdChrZXksIHZhbHVlKSlcXG5cXG4gICAgZWxpZiBpc2luc3Rh bmNlKHZhbHVlLCBpbnQpOlxcbiAgICAgIGVudHJpZXMuYXBwZW5kKGpzb25fZW50cnkuZm9ybWF0 KHVuaWNvZGUoa2V5KSwgdmFsdWUpKVxcblxcbiAgICBlbGlmIGlzaW5zdGFuY2UodmFsdWUsIGRp Y3QpOlxcbiAgICAgIGVudHJpZXMuYXBwZW5kKGpzb25fZW50cnkuZm9ybWF0KGtleSwgZGljdF90 b19qc29uX3N0cih2YWx1ZSkpKVxcblxcbiAgICBlbHNlOlxcbiAgICAgIGhlbHBlci5mYWlsKCdk aWN0X3RvX2pzb25fc3RyIGRvZXMgbm90IHN1cHBvcnQgdGhpcyB0eXBlOiB7MH0nLmZvcm1hdCh0 eXBlKHZhbHVlKSkpXFxuXFxuICByZXR1cm4gdSd7MH0gezF9IHsyfScuZm9ybWF0KHUneycsICcs Jy5qb2luKGVudHJpZXMpLCB1J30nKVxcblxcbiMgTWFwIElCTSBSZXNpbGllbnQgc2V2ZXJpdHkg dmFsdWVzIHRvIFNlcnZpY2VOb3cgc2V2ZXJpdHkgdmFsdWVzXFxuc25fc2V2ZXJpdHlfbWFwID0g e1xcbiAgXFxcIkhpZ2hcXFwiOiAxLFxcbiAgXFxcIk1lZGl1bVxcXCI6IDIsXFxuICBcXFwiTG93 XFxcIjogM1xcbn1cXG5cXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG4jIyMgRGVmaW5lIElucHV0 cyAjIyNcXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5cXG4jIEdldCB0aGUgaWQgb2YgdGhpcyBp bmNpZGVudFxcbmlucHV0cy5pbmNpZGVudF9pZCA9IGluY2lkZW50LmlkXFxuXFxuIyBMaXN0IGFs bCB0aGUgZmllbGRzIHlvdSB3YW50IHRvIHVwZGF0ZSBpbiB0aGUgU2VydmljZU5vdyBSZWNvcmQg aGVyZSB3aXRoIHRoZSBTZXJ2aWNlTm93IGZpZWxkX25hbWUgYmVpbmcgdGhlIGtleVxcbmlucHV0 cy5zbl91cGRhdGVfZmllbGRzID0gZGljdF90b19qc29uX3N0cih7XFxuICBcXFwic2V2ZXJpdHlc XFwiOiBzbl9zZXZlcml0eV9tYXBbaW5jaWRlbnQuc2V2ZXJpdHlfY29kZV0sXFxufSlcIixcInJl c3VsdF9uYW1lXCI6XCJcIn08L3Jlc2lsaWVudDpmdW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRz PjxpbmNvbWluZz5TZXF1ZW5jZUZsb3dfMXByb284cTwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVl bmNlRmxvd18wdm1pZG9hPC9vdXRnb2luZz48L3NlcnZpY2VUYXNrPjxzZXF1ZW5jZUZsb3cgaWQ9 XCJTZXF1ZW5jZUZsb3dfMHZtaWRvYVwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzBvZDhiY3lc IiB0YXJnZXRSZWY9XCJTZXJ2aWNlVGFza18xamExYm9tXCIvPjxzZXJ2aWNlVGFzayBpZD1cIlNl cnZpY2VUYXNrXzFqYTFib21cIiBuYW1lPVwiU05PVzogQWRkIE5vdGUgdG8gUmVjb3JkXCIgcmVz aWxpZW50OnR5cGU9XCJmdW5jdGlvblwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1 bmN0aW9uIHV1aWQ9XCJjNDNmOGNjMS01Y2RjLTQxYTYtYTZiMC1mYTU5ZGQzMmRmMzZcIj57XCJp bnB1dHNcIjp7XCIxOWQ1ZTg1NC1kYzY0LTQzZDQtOWEzOS03YmU5MTQ5MjBhZDZcIjp7XCJpbnB1 dF90eXBlXCI6XCJzdGF0aWNcIixcInN0YXRpY19pbnB1dFwiOntcIm11bHRpc2VsZWN0X3ZhbHVl XCI6W10sXCJzZWxlY3RfdmFsdWVcIjpcImM2NWRlNzdkLWY2YjItNGMxOS05NGViLWNkZmE1Y2Y1 MDM3ZlwifX19LFwicHJlX3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCIjIyMjIyMjIyMjIyMjIyMjIyMj IyNcXG4jIyMgRGVmaW5lIElucHV0cyAjIyNcXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5cXG5p bnB1dHMuaW5jaWRlbnRfaWQgPSBpbmNpZGVudC5pZFxcblxcbmlucHV0cy5zbl9ub3RlX3RleHQg PSB1XFxcIlRoZSBTZXZlcml0eSBvZiB0aGlzIEluY2lkZW50IHdhcyB1cGRhdGVkIHRvIHswfSBp biBJQk0gUmVzaWxpZW50XFxcIi5mb3JtYXQoaW5jaWRlbnQuc2V2ZXJpdHlfY29kZSlcIn08L3Jl c2lsaWVudDpmdW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRzPjxpbmNvbWluZz5TZXF1ZW5jZUZs b3dfMHZtaWRvYTwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVlbmNlRmxvd18wajVsMWViPC9vdXRn b2luZz48L3NlcnZpY2VUYXNrPjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMGo1bDFl YlwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFqYTFib21cIiB0YXJnZXRSZWY9XCJFbmRFdmVu dF8wNm1ndHZnXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzBhNHVoYTRc Ij48dGV4dD48IVtDREFUQVtVcGRhdGVzIHRoZSBTZXZlcml0eSBvZiB0aGUgU2VydmljZU5vdyBS ZWNvcmRcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFzc29j aWF0aW9uXzF5bmR0cXRcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18wb2Q4YmN5XCIgdGFyZ2V0 UmVmPVwiVGV4dEFubm90YXRpb25fMGE0dWhhNFwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0 QW5ub3RhdGlvbl8wdmV3ZGhsXCI+PHRleHQ+PCFbQ0RBVEFbQWRkcyBhIFdvcmsgTm90ZSB0byB0 aGUgU2VydmljZU5vdyBSZWNvcmQgZGV0YWlsaW5nIHRoZSBTZXZlcml0eSBjaGFuZ2Vcbl1dPjwv dGV4dD48L3RleHRBbm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzB2eGI3 cHhcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18xamExYm9tXCIgdGFyZ2V0UmVmPVwiVGV4dEFu bm90YXRpb25fMHZld2RobFwiLz48L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQ TU5EaWFncmFtXzFcIj48YnBtbmRpOkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwi IGlkPVwiQlBNTlBsYW5lXzFcIj48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0 RXZlbnRfMTU1YXN4bVwiIGlkPVwiU3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5k cyBoZWlnaHQ9XCIzNlwiIHdpZHRoPVwiMzZcIiB4PVwiMTYyXCIgeT1cIjE4OFwiLz48YnBtbmRp OkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjE1 N1wiIHk9XCIyMjNcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBt bmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzA2bWd0dmdcIiBpZD1cIkVuZEV2 ZW50XzA2bWd0dmdfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwi IHg9XCI2NjRcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVp Z2h0PVwiMTNcIiB3aWR0aD1cIjBcIiB4PVwiNjgyXCIgeT1cIjIyN1wiLz48L2JwbW5kaTpCUE1O TGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJT ZXF1ZW5jZUZsb3dfMXByb284cVwiIGlkPVwiU2VxdWVuY2VGbG93XzFwcm9vOHFfZGlcIj48b21n ZGk6d2F5cG9pbnQgeD1cIjE5OFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIv PjxvbWdkaTp3YXlwb2ludCB4PVwiMjkxXCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIy MDZcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRo PVwiOTBcIiB4PVwiMTk5LjVcIiB5PVwiMTg0LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBt bmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tf MG9kOGJjeVwiIGlkPVwiU2VydmljZVRhc2tfMG9kOGJjeV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVp Z2h0PVwiODBcIiB3aWR0aD1cIjEwMFwiIHg9XCIyOTFcIiB5PVwiMTY2XCIvPjwvYnBtbmRpOkJQ TU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzB2bWlk b2FcIiBpZD1cIlNlcXVlbmNlRmxvd18wdm1pZG9hX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIz OTFcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48b21nZGk6d2F5cG9pbnQg eD1cIjQ4NFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxicG1uZGk6QlBN TkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjM5Mi41 XCIgeT1cIjE4NC41XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1ORWRnZT48YnBt bmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlNlcnZpY2VUYXNrXzFqYTFib21cIiBpZD1cIlNl cnZpY2VUYXNrXzFqYTFib21fZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjgwXCIgd2lkdGg9 XCIxMDBcIiB4PVwiNDg0XCIgeT1cIjE2NlwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpC UE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18wajVsMWViXCIgaWQ9XCJTZXF1ZW5j ZUZsb3dfMGo1bDFlYl9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNTg0XCIgeHNpOnR5cGU9XCJv bWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI2NjRcIiB4c2k6dHlw ZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91 bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCIwXCIgeD1cIjYyNFwiIHk9XCIxODQuNVwiLz48L2Jw bW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVs ZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8wYTR1aGE0XCIgaWQ9XCJUZXh0QW5ub3RhdGlvbl8wYTR1 aGE0X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI1M1wiIHdpZHRoPVwiMTQxXCIgeD1cIjIy MlwiIHk9XCI0N1wiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxl bWVudD1cIkFzc29jaWF0aW9uXzF5bmR0cXRcIiBpZD1cIkFzc29jaWF0aW9uXzF5bmR0cXRfZGlc Ij48b21nZGk6d2F5cG9pbnQgeD1cIjMyNlwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwi MTY2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMzAyXCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwi IHk9XCIxMDBcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1l bnQ9XCJUZXh0QW5ub3RhdGlvbl8wdmV3ZGhsXCIgaWQ9XCJUZXh0QW5ub3RhdGlvbl8wdmV3ZGhs X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI2MlwiIHdpZHRoPVwiMTY5XCIgeD1cIjU2MVwi IHk9XCI0M1wiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVu dD1cIkFzc29jaWF0aW9uXzB2eGI3cHhcIiBpZD1cIkFzc29jaWF0aW9uXzB2eGI3cHhfZGlcIj48 b21nZGk6d2F5cG9pbnQgeD1cIjU2OFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTY2 XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNjIwXCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9 XCIxMDVcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PC9icG1uZGk6QlBNTlBsYW5lPjwvYnBtbmRpOkJQ TU5EaWFncmFtPjwvZGVmaW5pdGlvbnM+IiwgIndvcmtmbG93X2lkIjogImV4YW1wbGVfc25vd191 cGRhdGVfcmVjb3JkX29uX3NldmVyaXR5X2NoYW5nZSIsICJ2ZXJzaW9uIjogMX0sICJsYXN0X21v ZGlmaWVkX3RpbWUiOiAxNTUwNzYyODkxMTk1LCAiY3JlYXRvcl9pZCI6ICJhZG1pbkBleGFtcGxl LmNvbSIsICJhY3Rpb25zIjogW10sICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nub3df dXBkYXRlX3JlY29yZF9vbl9zZXZlcml0eV9jaGFuZ2UiLCAibmFtZSI6ICJFeGFtcGxlOiBTTk9X IFVwZGF0ZSBSZWNvcmQgb24gU2V2ZXJpdHkgQ2hhbmdlIn0sIHsidXVpZCI6ICI5YTdlNWE2ZC01 NDQ0LTRjMWMtOTU5OC1kN2RhYTlhYzc0OGUiLCAiZGVzY3JpcHRpb24iOiAiQW4gZXhhbXBsZSB3 b3JrZmxvdyBzaG93aW5nIGhvdyB0byBhZGQgYSBSZXNpbGllbnQgTm90ZSB0byBhIFNlcnZpY2VO b3cgUmVjb3JkIGFzIGEgXCJXb3JrIE5vdGVcIi4iLCAib2JqZWN0X3R5cGUiOiAibm90ZSIsICJl eHBvcnRfa2V5IjogImV4YW1wbGVfc25vd19hZGRfd29ya25vdGVfdG9fcmVjb3JkIiwgIndvcmtm bG93X2lkIjogMTEsICJsYXN0X21vZGlmaWVkX2J5IjogImludGVncmF0aW9uc0BleGFtcGxlLmNv bSIsICJjb250ZW50IjogeyJ4bWwiOiAiPD94bWwgdmVyc2lvbj1cIjEuMFwiIGVuY29kaW5nPVwi VVRGLThcIj8+PGRlZmluaXRpb25zIHhtbG5zPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvQlBN Ti8yMDEwMDUyNC9NT0RFTFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVj L0JQTU4vMjAxMDA1MjQvRElcIiB4bWxuczpvbWdkYz1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVj L0RELzIwMTAwNTI0L0RDXCIgeG1sbnM6b21nZGk9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9E RC8yMDEwMDUyNC9ESVwiIHhtbG5zOnJlc2lsaWVudD1cImh0dHA6Ly9yZXNpbGllbnQuaWJtLmNv bS9icG1uXCIgeG1sbnM6eHNkPVwiaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWFcIiB4 bWxuczp4c2k9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZVwiIHRh cmdldE5hbWVzcGFjZT1cImh0dHA6Ly93d3cuY2FtdW5kYS5vcmcvdGVzdFwiPjxwcm9jZXNzIGlk PVwiZXhhbXBsZV9zbm93X2FkZF93b3Jrbm90ZV90b19yZWNvcmRcIiBpc0V4ZWN1dGFibGU9XCJ0 cnVlXCIgbmFtZT1cIkV4YW1wbGU6IFNOT1c6IEFkZCBXb3JrIE5vdGUgdG8gUmVjb3JkXCI+PGRv Y3VtZW50YXRpb24+PCFbQ0RBVEFbQW4gZXhhbXBsZSB3b3JrZmxvdyBzaG93aW5nIGhvdyB0byBh ZGQgYSBSZXNpbGllbnQgTm90ZSB0byBhIFNlcnZpY2VOb3cgUmVjb3JkIGFzIGEgXCJXb3JrIE5v dGVcIi5dXT48L2RvY3VtZW50YXRpb24+PHN0YXJ0RXZlbnQgaWQ9XCJTdGFydEV2ZW50XzE1NWFz eG1cIj48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzFxejM4aGI8L291dGdvaW5nPjwvc3RhcnRFdmVu dD48c2VydmljZVRhc2sgaWQ9XCJTZXJ2aWNlVGFza18wbnFvdnc1XCIgbmFtZT1cIlNOT1c6IEFk ZCBOb3RlIHRvIFJlY29yZFwiIHJlc2lsaWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9u RWxlbWVudHM+PHJlc2lsaWVudDpmdW5jdGlvbiB1dWlkPVwiYzQzZjhjYzEtNWNkYy00MWE2LWE2 YjAtZmE1OWRkMzJkZjM2XCI+e1wiaW5wdXRzXCI6e1wiMTlkNWU4NTQtZGM2NC00M2Q0LTlhMzkt N2JlOTE0OTIwYWQ2XCI6e1wiaW5wdXRfdHlwZVwiOlwic3RhdGljXCIsXCJzdGF0aWNfaW5wdXRc Ijp7XCJtdWx0aXNlbGVjdF92YWx1ZVwiOltdLFwic2VsZWN0X3ZhbHVlXCI6XCJjNjVkZTc3ZC1m NmIyLTRjMTktOTRlYi1jZGZhNWNmNTAzN2ZcIn19fSxcInBvc3RfcHJvY2Vzc2luZ19zY3JpcHRc IjpcIiMgRXhhbXBsZTogU05PVzogQWRkIFdvcmsgTm90ZSB0byBSZWNvcmQgcG9zdC1wcm9jZXNz IHNjcmlwdFxcblxcbiMgSW1wb3J0IERhdGVcXG5mcm9tIGphdmEudXRpbCBpbXBvcnQgRGF0ZVxc blxcbiMgR2V0IHRoZSBjdXJyZW50IHRpbWVcXG5kdF9ub3cgPSBEYXRlKClcXG5cXG4jIFByZXBl bmQgbWVzc2FnZSBhbmQgdGltZSB0byB0aGUgbm90ZVxcbm5vdGUudGV4dCA9IHVcXFwiJmx0O2Im Z3Q7U2VudCB0byBTZXJ2aWNlTm93IGF0IHswfSZsdDsvYiZndDsmbHQ7YnImZ3Q7ezF9XFxcIi5m b3JtYXQoZHRfbm93LCB1bmljb2RlKG5vdGUudGV4dC5jb250ZW50KSlcIixcInByZV9wcm9jZXNz aW5nX3NjcmlwdFwiOlwiIyBFeGFtcGxlOiBTTk9XOiBBZGQgV29yayBOb3RlIHRvIFJlY29yZFxc blxcbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcbiMjIyBEZWZpbmUgcHJl LXByb2Nlc3NpbmcgaW5wdXRzICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjI1xcblxcbiMgVGhlIGlkIG9mIHRoaXMgaW5jaWRlbnRcXG5pbnB1dHMuaW5jaWRlbnRfaWQg PSBpbmNpZGVudC5pZFxcblxcbiMgSWYgdGhpcyBpcyBhIHRhc2sgbm90ZSwgZ2V0IHRoZSB0YXNr SWRcXG5pZiBub3RlLnR5cGUgPT0gJ3Rhc2snOlxcbiAgIyBTZXQgdGhlIHRhc2tfaWRcXG4gIGlu cHV0cy50YXNrX2lkID0gdGFzay5pZFxcblxcbiMgR2V0IHRoZSB0ZXh0IG9mIHRoZSBub3RlXFxu aW5wdXRzLnNuX25vdGVfdGV4dCA9IHVuaWNvZGUobm90ZS50ZXh0LmNvbnRlbnQpXCJ9PC9yZXNp bGllbnQ6ZnVuY3Rpb24+PC9leHRlbnNpb25FbGVtZW50cz48aW5jb21pbmc+U2VxdWVuY2VGbG93 XzFxejM4aGI8L2luY29taW5nPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMGc3Z2gwYTwvb3V0Z29p bmc+PC9zZXJ2aWNlVGFzaz48ZW5kRXZlbnQgaWQ9XCJFbmRFdmVudF8xdnVwNnRsXCI+PGluY29t aW5nPlNlcXVlbmNlRmxvd18wZzdnaDBhPC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1ZW5jZUZs b3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMGc3Z2gwYVwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzBu cW92dzVcIiB0YXJnZXRSZWY9XCJFbmRFdmVudF8xdnVwNnRsXCIvPjxzZXF1ZW5jZUZsb3cgaWQ9 XCJTZXF1ZW5jZUZsb3dfMXF6MzhoYlwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwi IHRhcmdldFJlZj1cIlNlcnZpY2VUYXNrXzBucW92dzVcIi8+PHRleHRBbm5vdGF0aW9uIGlkPVwi VGV4dEFubm90YXRpb25fMHBid2I2cVwiPjx0ZXh0PjwhW0NEQVRBW0lucHV0czogc25fbm90ZV90 ZXh0LCBzbl9ub3RlX3R5cGUsIGluY2lkZW50X2lkL3Rhc2tfaWRcbl1dPjwvdGV4dD48L3RleHRB bm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzBya3o0bzhcIiBzb3VyY2VS ZWY9XCJTZXJ2aWNlVGFza18wbnFvdnc1XCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMHBi d2I2cVwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8wMGp0NjJzXCI+PHRl eHQ+PCFbQ0RBVEFbQWRkcyBOb3RlIHRvIFNlcnZpY2VOb3cgUmVjb3JkXG5cdTAwYTBhcyBXb3Jr IE5vdGUgYW5kIHByZXBlbmRzIGluZm8gdG8gUmVzaWxpZW50IE5vdGVcbl1dPjwvdGV4dD48L3Rl eHRBbm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzF4NHRlMnpcIiBzb3Vy Y2VSZWY9XCJTZXJ2aWNlVGFza18wbnFvdnc1XCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25f MDBqdDYyc1wiLz48L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQTU5EaWFncmFt XzFcIj48YnBtbmRpOkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwiIGlkPVwiQlBN TlBsYW5lXzFcIj48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0RXZlbnRfMTU1 YXN4bVwiIGlkPVwiU3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9 XCIzNlwiIHdpZHRoPVwiMzZcIiB4PVwiMjYxXCIgeT1cIjE4OFwiLz48YnBtbmRpOkJQTU5MYWJl bD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjI1NlwiIHk9XCIy MjNcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5T aGFwZSBicG1uRWxlbWVudD1cIlNlcnZpY2VUYXNrXzBucW92dzVcIiBpZD1cIlNlcnZpY2VUYXNr XzBucW92dzVfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjgwXCIgd2lkdGg9XCIxMDBcIiB4 PVwiNDU3XCIgeT1cIjE2NlwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1OU2hhcGUg YnBtbkVsZW1lbnQ9XCJFbmRFdmVudF8xdnVwNnRsXCIgaWQ9XCJFbmRFdmVudF8xdnVwNnRsX2Rp XCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIzNlwiIHdpZHRoPVwiMzZcIiB4PVwiNzU2XCIgeT1c IjE4OFwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lk dGg9XCI5MFwiIHg9XCI3MjlcIiB5PVwiMjI3XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5k aTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18w ZzdnaDBhXCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMGc3Z2gwYV9kaVwiPjxvbWdkaTp3YXlwb2ludCB4 PVwiNTU3XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBv aW50IHg9XCI3NTZcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRp OkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9XCI2 MTEuNVwiIHk9XCIxODQuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+ PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18xcXozOGhiXCIgaWQ9 XCJTZXF1ZW5jZUZsb3dfMXF6MzhoYl9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMjk3XCIgeHNp OnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI0NTdc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48 b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9XCIzMzJcIiB5PVwiMTg0 LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNo YXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMHBid2I2cVwiIGlkPVwiVGV4dEFubm90 YXRpb25fMHBid2I2cV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNTdcIiB3aWR0aD1cIjE0 MlwiIHg9XCIzMTZcIiB5PVwiNTlcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVk Z2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8wcmt6NG84XCIgaWQ9XCJBc3NvY2lhdGlvbl8w cmt6NG84X2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI0NjdcIiB4c2k6dHlwZT1cIm9tZ2RjOlBv aW50XCIgeT1cIjE2NlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjQxNlwiIHhzaTp0eXBlPVwib21n ZGM6UG9pbnRcIiB5PVwiMTE2XCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBl IGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMDBqdDYyc1wiIGlkPVwiVGV4dEFubm90YXRp b25fMDBqdDYyc19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODFcIiB3aWR0aD1cIjEzOFwi IHg9XCI1NzVcIiB5PVwiNDBcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2Ug YnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8xeDR0ZTJ6XCIgaWQ9XCJBc3NvY2lhdGlvbl8xeDR0 ZTJ6X2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI1NDlcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50 XCIgeT1cIjE2OFwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjYwMlwiIHhzaTp0eXBlPVwib21nZGM6 UG9pbnRcIiB5PVwiMTIxXCIvPjwvYnBtbmRpOkJQTU5FZGdlPjwvYnBtbmRpOkJQTU5QbGFuZT48 L2JwbW5kaTpCUE1ORGlhZ3JhbT48L2RlZmluaXRpb25zPiIsICJ3b3JrZmxvd19pZCI6ICJleGFt cGxlX3Nub3dfYWRkX3dvcmtub3RlX3RvX3JlY29yZCIsICJ2ZXJzaW9uIjogMX0sICJsYXN0X21v ZGlmaWVkX3RpbWUiOiAxNTUwNzYyODkyNDA2LCAiY3JlYXRvcl9pZCI6ICJhZG1pbkByZXMuY29t IiwgImFjdGlvbnMiOiBbXSwgInByb2dyYW1tYXRpY19uYW1lIjogImV4YW1wbGVfc25vd19hZGRf d29ya25vdGVfdG9fcmVjb3JkIiwgIm5hbWUiOiAiRXhhbXBsZTogU05PVzogQWRkIFdvcmsgTm90 ZSB0byBSZWNvcmQifSwgeyJ1dWlkIjogImIwN2I2MTczLTBjODAtNGU4OS1iNjUwLTI4NDU0YWMy OTU0YSIsICJkZXNjcmlwdGlvbiI6ICJBbiBleGFtcGxlIHdvcmtmbG93IHNob3dpbmcgaG93IHRv IGNyZWF0ZSBhIFNlcnZpY2VOb3cgUmVjb3JkIGZyb20gYSBSZXNpbGllbnQgVGFzay4iLCAib2Jq ZWN0X3R5cGUiOiAidGFzayIsICJleHBvcnRfa2V5IjogImV4YW1wbGVfc25vd19jcmVhdGVfcmVj b3JkX3Rhc2siLCAid29ya2Zsb3dfaWQiOiA0LCAibGFzdF9tb2RpZmllZF9ieSI6ICJhZG1pbkBl eGFtcGxlLmNvbSIsICJjb250ZW50IjogeyJ4bWwiOiAiPD94bWwgdmVyc2lvbj1cIjEuMFwiIGVu Y29kaW5nPVwiVVRGLThcIj8+PGRlZmluaXRpb25zIHhtbG5zPVwiaHR0cDovL3d3dy5vbWcub3Jn L3NwZWMvQlBNTi8yMDEwMDUyNC9NT0RFTFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQvRElcIiB4bWxuczpvbWdkYz1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0RELzIwMTAwNTI0L0RDXCIgeG1sbnM6b21nZGk9XCJodHRwOi8vd3d3Lm9tZy5v cmcvc3BlYy9ERC8yMDEwMDUyNC9ESVwiIHhtbG5zOnJlc2lsaWVudD1cImh0dHA6Ly9yZXNpbGll bnQuaWJtLmNvbS9icG1uXCIgeG1sbnM6eHNkPVwiaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxT Y2hlbWFcIiB4bWxuczp4c2k9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0 YW5jZVwiIHRhcmdldE5hbWVzcGFjZT1cImh0dHA6Ly93d3cuY2FtdW5kYS5vcmcvdGVzdFwiPjxw cm9jZXNzIGlkPVwiZXhhbXBsZV9zbm93X2NyZWF0ZV9yZWNvcmRfdGFza1wiIGlzRXhlY3V0YWJs ZT1cInRydWVcIiBuYW1lPVwiRXhhbXBsZTogU05PVzogQ3JlYXRlIFJlY29yZCBbVGFza11cIj48 ZG9jdW1lbnRhdGlvbj5BbiBleGFtcGxlIHdvcmtmbG93IHNob3dpbmcgaG93IHRvIGNyZWF0ZSBh IFNlcnZpY2VOb3cgUmVjb3JkIGZyb20gYSBSZXNpbGllbnQgVGFzay48L2RvY3VtZW50YXRpb24+ PHN0YXJ0RXZlbnQgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1cIj48b3V0Z29pbmc+U2VxdWVuY2VG bG93XzBuYmsyMno8L291dGdvaW5nPjwvc3RhcnRFdmVudD48c2VydmljZVRhc2sgaWQ9XCJTZXJ2 aWNlVGFza18wNDFqZm9oXCIgbmFtZT1cIlNOT1c6IENyZWF0ZSBSZWNvcmRcIiByZXNpbGllbnQ6 dHlwZT1cImZ1bmN0aW9uXCI+PGV4dGVuc2lvbkVsZW1lbnRzPjxyZXNpbGllbnQ6ZnVuY3Rpb24g dXVpZD1cIjA0MWZhOGNhLTcwYmItNDRiMS05OTZiLTg4ZjYxYThhMDY3MVwiPntcImlucHV0c1wi Ont9LFwicG9zdF9wcm9jZXNzaW5nX3NjcmlwdFwiOlwiIyBFeGFtcGxlOiBTTk9XOiBDcmVhdGUg UmVjb3JkIFtUYXNrXSBwb3N0LXByb2Nlc3Npbmcgc2NyaXB0XFxuXFxuaWYgcmVzdWx0cy5zdWNj ZXNzOlxcblxcbiAgbm90ZV90ZXh0ID0gXFxcIlxcXCJcXFwiJmx0O2JyJmd0O1RoaXMgVGFzayBo YXMgYmVlbiBjcmVhdGVkIGluICZsdDtiJmd0O1NlcnZpY2VOb3cmbHQ7L2ImZ3Q7XFxuICAgICAg ICAgICAgICAmbHQ7YnImZ3Q7Jmx0O2ImZ3Q7U2VydmljZU5vdyBJRDombHQ7L2ImZ3Q7ICB7MH1c XG4gICAgICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtTZXJ2aWNlTm93IExpbms6Jmx0Oy9i Jmd0OyAmbHQ7YSBocmVmPSd7MX0nJmd0O3sxfSZsdDsvYSZndDtcXFwiXFxcIlxcXCIuZm9ybWF0 KHJlc3VsdHMuc25fcmVmX2lkLCByZXN1bHRzLnNuX3JlY29yZF9saW5rKVxcblxcbiAgdGFzay5h ZGROb3RlKGhlbHBlci5jcmVhdGVSaWNoVGV4dChub3RlX3RleHQpKVxcblxcbmVsaWYgcmVzdWx0 cy5yZWFzb24gaXMgbm90IE5vbmU6XFxuICB0YXNrLmFkZE5vdGUocmVzdWx0cy5yZWFzb24pXCIs XCJwcmVfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhhbXBsZTogU05PVzogQ3JlYXRlIFJlY29y ZCBbVGFza10gcHJlLXByb2Nlc3Npbmcgc2NyaXB0XFxuXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyMjXFxuIyMjIERlZmluZSBwcmUtcHJvY2Vzc2luZyBmdW5jdGlvbnMg IyMjXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuZGVmIGRpY3Rf dG9fanNvbl9zdHIoZCk6XFxuICBcXFwiXFxcIlxcXCJGdW5jdGlvbiB0aGF0IGNvbnZlcnRzIGEg ZGljdGlvbmFyeSBpbnRvIGEgSlNPTiBzdHJpbmcuXFxuICAgICBTdXBwb3J0cyB0eXBlczogYmFz ZXN0cmluZywgYm9vbCwgaW50IGFuZCBuZXN0ZWQgZGljdHMuXFxuICAgICBEb2VzIG5vdCBzdXBw b3J0IGxpc3RzLlxcbiAgICAgSWYgdGhlIHZhbHVlIGlzIE5vbmUsIGl0IHNldHMgaXQgdG8gRmFs c2UuXFxcIlxcXCJcXFwiXFxuXFxuICBqc29uX2VudHJ5ID0gdSdcXFwiezB9XFxcIjp7MX0nXFxu ICBqc29uX2VudHJ5X3N0ciA9IHUnXFxcInswfVxcXCI6XFxcInsxfVxcXCInXFxuICBlbnRyaWVz ID0gW10gXFxuXFxuICBmb3IgZW50cnkgaW4gZDpcXG4gICAga2V5ID0gZW50cnlcXG4gICAgdmFs dWUgPSBkW2VudHJ5XVxcblxcbiAgICBpZiB2YWx1ZSBpcyBOb25lOlxcbiAgICAgIHZhbHVlID0g RmFsc2VcXG5cXG4gICAgaWYgaXNpbnN0YW5jZSh2YWx1ZSwgbGlzdCk6XFxuICAgICAgaGVscGVy LmZhaWwoJ2RpY3RfdG9fanNvbl9zdHIgZG9lcyBub3Qgc3VwcG9ydCBQeXRob24gTGlzdHMnKVxc blxcbiAgICBpZiBpc2luc3RhbmNlKHZhbHVlLCBiYXNlc3RyaW5nKTpcXG4gICAgICB2YWx1ZSA9 IHZhbHVlLnJlcGxhY2UodSdcXFwiJywgdSdcXFxcXFxcXFxcXCInKVxcbiAgICAgIGVudHJpZXMu YXBwZW5kKGpzb25fZW50cnlfc3RyLmZvcm1hdCh1bmljb2RlKGtleSksIHVuaWNvZGUodmFsdWUp KSlcXG4gICAgICBcXG4gICAgZWxpZiBpc2luc3RhbmNlKHZhbHVlLCB1bmljb2RlKTpcXG4gICAg ICBlbnRyaWVzLmFwcGVuZChqc29uX2VudHJ5LmZvcm1hdCh1bmljb2RlKGtleSksIHVuaWNvZGUo dmFsdWUpKSlcXG4gICAgXFxuICAgIGVsaWYgaXNpbnN0YW5jZSh2YWx1ZSwgYm9vbCk6XFxuICAg ICAgdmFsdWUgPSAndHJ1ZScgaWYgdmFsdWUgPT0gVHJ1ZSBlbHNlICdmYWxzZSdcXG4gICAgICBl bnRyaWVzLmFwcGVuZChqc29uX2VudHJ5LmZvcm1hdChrZXksIHZhbHVlKSlcXG5cXG4gICAgZWxp ZiBpc2luc3RhbmNlKHZhbHVlLCBpbnQpOlxcbiAgICAgIGVudHJpZXMuYXBwZW5kKGpzb25fZW50 cnkuZm9ybWF0KHVuaWNvZGUoa2V5KSwgdmFsdWUpKVxcblxcbiAgICBlbGlmIGlzaW5zdGFuY2Uo dmFsdWUsIGRpY3QpOlxcbiAgICAgIGVudHJpZXMuYXBwZW5kKGpzb25fZW50cnkuZm9ybWF0KGtl eSwgZGljdF90b19qc29uX3N0cih2YWx1ZSkpKVxcblxcbiAgICBlbHNlOlxcbiAgICAgIGhlbHBl ci5mYWlsKCdkaWN0X3RvX2pzb25fc3RyIGRvZXMgbm90IHN1cHBvcnQgdGhpcyB0eXBlOiB7MH0n LmZvcm1hdCh0eXBlKHZhbHVlKSkpXFxuXFxuICByZXR1cm4gdSd7MH0gezF9IHsyfScuZm9ybWF0 KHUneycsICcsJy5qb2luKGVudHJpZXMpLCB1J30nKVxcblxcbiMjIyMjIyMjIyMjIyMjIyMjIyMj I1xcbiMjIyBEZWZpbmUgSW5wdXRzICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcblxcbiMg RGVmYXVsdCB0ZXh0IG9mIHRoZSBpbml0aWFsIG5vdGUgYWRkZWQgdG8gdGhlIFNlcnZpY2VOb3cg UmVjb3JkXFxuaW5pdF9zbm93X25vdGVfdGV4dCA9IHVcXFwiXFxcIlxcXCJSZWNvcmQgY3JlYXRl ZCBmcm9tIElCTSBSZXNpbGllbnQgVGFzayBJRDogezB9LiBBc3NvY2lhdGVkIElCTSBSZXNpbGll bnQgSW5jaWRlbnQgSUQ6IHsxfS5cXFwiXFxcIlxcXCIuZm9ybWF0KHRhc2suaWQsIGluY2lkZW50 LmlkKVxcblxcbiMgSWYgdGhlIHVzZXIgYWRkcyBhIGNvbW1lbnQgd2hlbiB0aGV5IGludm9rZSB0 aGUgcnVsZSwgdGhhdCBjb21tZW50IGdldHMgY29uY2F0ZW5hdGVkIGhlcmVcXG5pZiBydWxlLnBy b3BlcnRpZXMuc25faW5pdGlhbF9ub3RlLmNvbnRlbnQgaXMgbm90IE5vbmU6XFxuICBpbml0X3Nu b3dfbm90ZV90ZXh0ID0gdVxcXCJ7MH1cXFxcblxcXFxuezF9XFxcIi5mb3JtYXQodW5pY29kZShp bml0X3Nub3dfbm90ZV90ZXh0KSwgdW5pY29kZShydWxlLnByb3BlcnRpZXMuc25faW5pdGlhbF9u b3RlLmNvbnRlbnQpKVxcblxcbiMgSUQgb2YgdGhpcyBpbmNpZGVudFxcbmlucHV0cy5pbmNpZGVu dF9pZCA9IGluY2lkZW50LmlkXFxuXFxuIyBJRCBvZiB0aGlzIHRhc2tcXG5pbnB1dHMudGFza19p ZCA9IHRhc2suaWRcXG5cXG4jIEluaXRpYWwgd29yayBub3RlIHRvIGF0dGFjaCB0byBjcmVhdGVk IFNlcnZpY2VOb3cgcmVjb3JkXFxuaW5wdXRzLnNuX2luaXRfd29ya19ub3RlID0gaW5pdF9zbm93 X25vdGVfdGV4dFxcblxcbiMgQW55IGZ1cnRoZXIgaW5mb3JtYXRpb24geW91IHdhbnQgdG8gc2Vu ZCB0byBTZXJ2aWNlTm93LiBFYWNoIEtleS9WYWx1ZSBwYWlyIGlzIGF0dGFjaGVkIHRvIHRoZSBS ZXF1ZXN0IG9iamVjdCBhbmQgYWNjZXNzaWJsZSBpbiBTZXJ2aWNlTm93LlxcbiMgU2VydmljZU5v dyBFeGFtcGxlOjogc2V0VmFsdWUoJ2Fzc2lnbm1lbnRfZ3JvdXAnLCByZXF1ZXN0LmJvZHkuZGF0 YS5zbl9vcHRpb25hbF9maWVsZHMuYXNzaWdubWVudF9ncm91cClcXG5pbnB1dHMuc25fb3B0aW9u YWxfZmllbGRzID0gZGljdF90b19qc29uX3N0cih7XFxuICBcXFwic2hvcnRfZGVzY3JpcHRpb25c XFwiOiB1XFxcIlJFUy17MH0tezF9OiB7Mn1cXFwiLmZvcm1hdChpbmNpZGVudC5pZCwgdGFzay5p ZCwgdW5pY29kZSh0YXNrLm5hbWUpKSxcXG4gIFxcXCJhc3NpZ25tZW50X2dyb3VwXFxcIjogd29y a2Zsb3cucHJvcGVydGllcy5hc3NpZ25tZW50X2dyb3VwLnN5c19pZCxcXG4gIFxcXCJjYWxsZXJf aWRcXFwiOiB3b3JrZmxvdy5wcm9wZXJ0aWVzLmNhbGxlcl9pZC5zeXNfaWRcXG59KVwifTwvcmVz aWxpZW50OmZ1bmN0aW9uPjwvZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5nPlNlcXVlbmNlRmxv d18xd2h6ZHFmPC9pbmNvbWluZz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzBvMWJyb2M8L291dGdv aW5nPjwvc2VydmljZVRhc2s+PGVuZEV2ZW50IGlkPVwiRW5kRXZlbnRfMGxta2c5clwiPjxpbmNv bWluZz5TZXF1ZW5jZUZsb3dfMG8xYnJvYzwvaW5jb21pbmc+PC9lbmRFdmVudD48c2VxdWVuY2VG bG93IGlkPVwiU2VxdWVuY2VGbG93XzBvMWJyb2NcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18w NDFqZm9oXCIgdGFyZ2V0UmVmPVwiRW5kRXZlbnRfMGxta2c5clwiLz48c2VydmljZVRhc2sgaWQ9 XCJTZXJ2aWNlVGFza18wMzl4ZXljXCIgbmFtZT1cIlNOT1c6IExvb2t1cCBzeXNfaWRcIiByZXNp bGllbnQ6dHlwZT1cImZ1bmN0aW9uXCI+PGV4dGVuc2lvbkVsZW1lbnRzPjxyZXNpbGllbnQ6ZnVu Y3Rpb24gdXVpZD1cImU1YWJmOTFjLTU3ZjYtNGQwMS1iZDVhLTUwYmZlMjYxY2IwMVwiPntcImlu cHV0c1wiOnt9LFwicG9zdF9wcm9jZXNzaW5nX3NjcmlwdFwiOlwiIyBTTiBVdGlsaXRpZXM6IEdl dCBzeXNfaWQgcG9zdC1wcm9jZXNzaW5nIHNjcmlwdFxcblxcbiMgSWYgeW91IHdhbnQgdG8gc3Rv cCB3b3JrZmxvdyBpZiBubyBzeXNfaWQgcmV0dXJuZWQsIHVzZSB0aGlzIHVuaWNvZGVcXG5cXG4j IGRlZiByYWlzZV9lcnJvcihtc2cpOlxcbiMgICByYWlzZSBWYWx1ZUVycm9yKG1zZylcXG5cXG4j IGlmIG5vdCByZXN1bHRzLnN1Y2Nlc3M6XFxuIyAgIHJhaXNlX2Vycm9yKFxcXCJHZXR0aW5nIGFz c2lnbm1lbnQgZ3JvdXAgc3lzX2lkIGRpZCBub3Qgc3VjY2VlZFxcXCIpXCIsXCJwcmVfcHJvY2Vz c2luZ19zY3JpcHRcIjpcIiMgU04gVXRpbGl0aWVzOiBHZXQgc3lzX2lkIHByZS1wcm9jZXNzaW5n IHNjcmlwdFxcblxcbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG4jIyMgRGVmaW5lIGlucHV0c3Mg IyMjXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcblxcbiMgVGhlIHRhYmxlIGluIFNlcnZpY2VO b3cgdG8gcXVlcnlcXG5pbnB1dHMuc25fdGFibGVfbmFtZSA9IFxcXCJzeXNfdXNlcl9ncm91cFxc XCJcXG5cXG4jIFRoZSBuYW1lIG9mIHRoZSBmaWVsZC90YWJsZSBjb2x1bW4gdG8gcXVlcnlcXG5p bnB1dHMuc25fcXVlcnlfZmllbGQgPSBcXFwibmFtZVxcXCJcXG5cXG4jIFRoZSB2YWx1ZSB0byBl cXVhdGUgdGhlIGNlbGwgdG9cXG4jIEdldCB0aGUgZ3JvdXAgbmFtZSBmcm9tIHRoZSBSdWxlIEFj dGl2aXR5IEZpZWxkIHdpdGg6XFxuaW5wdXRzLnNuX3F1ZXJ5X3ZhbHVlID0gcnVsZS5wcm9wZXJ0 aWVzLnNuX2Fzc2lnbm1lbnRfZ3JvdXBcXG5cXG4jIyBPUiBTZXQgZ3JvdXAgbmFtZSBzdGF0aWNh bGx5IHdpdGg6XFxuIyMgaW5wdXRzLnNuX3F1ZXJ5X3ZhbHVlID0gXFxcIklUIFNlY3VyaXRpZXNc XFwiXCIsXCJyZXN1bHRfbmFtZVwiOlwiYXNzaWdubWVudF9ncm91cFwifTwvcmVzaWxpZW50OmZ1 bmN0aW9uPjwvZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5nPlNlcXVlbmNlRmxvd18wbmJrMjJ6 PC9pbmNvbWluZz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzFqMDZodzc8L291dGdvaW5nPjwvc2Vy dmljZVRhc2s+PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18wbmJrMjJ6XCIgc291cmNl UmVmPVwiU3RhcnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMDM5eGV5 Y1wiLz48c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzFqMDZodzdcIiBzb3VyY2VSZWY9 XCJTZXJ2aWNlVGFza18wMzl4ZXljXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMGZpM2Fjc1wi Lz48c2VydmljZVRhc2sgaWQ9XCJTZXJ2aWNlVGFza18wZmkzYWNzXCIgbmFtZT1cIlNOT1c6IExv b2t1cCBzeXNfaWRcIiByZXNpbGllbnQ6dHlwZT1cImZ1bmN0aW9uXCI+PGV4dGVuc2lvbkVsZW1l bnRzPjxyZXNpbGllbnQ6ZnVuY3Rpb24gdXVpZD1cImU1YWJmOTFjLTU3ZjYtNGQwMS1iZDVhLTUw YmZlMjYxY2IwMVwiPntcImlucHV0c1wiOnt9LFwicHJlX3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCIj IFNOIFV0aWxpdGllczogR2V0IHN5c19pZCBwcmUtcHJvY2Vzc2luZyBzY3JpcHRcXG5cXG4jIyMj IyMjIyMjIyMjIyMjIyMjIyMjXFxuIyMjIERlZmluZSBpbnB1dHMgIyMjI1xcbiMjIyMjIyMjIyMj IyMjIyMjIyMjIyNcXG5cXG4jIFRoZSB0YWJsZSBpbiBTZXJ2aWNlTm93IHRvIHF1ZXJ5XFxuaW5w dXRzLnNuX3RhYmxlX25hbWUgPSBcXFwic3lzX3VzZXJcXFwiXFxuXFxuIyBUaGUgbmFtZSBvZiB0 aGUgZmllbGQvdGFibGUgY29sdW1uIHRvIHF1ZXJ5XFxuaW5wdXRzLnNuX3F1ZXJ5X2ZpZWxkID0g XFxcImVtYWlsXFxcIlxcblxcbiMgVGhlIHZhbHVlIHRvIGVxdWF0ZSB0aGUgY2VsbCB0b1xcbmlu cHV0cy5zbl9xdWVyeV92YWx1ZSA9IFxcXCJpYm1yZXNpbGllbnRcXFwiICNvdXIgaW50ZWdyYXRp b25zIHVzZXIgaW4gU2VydmljZU5vd1wiLFwicmVzdWx0X25hbWVcIjpcImNhbGxlcl9pZFwifTwv cmVzaWxpZW50OmZ1bmN0aW9uPjwvZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5nPlNlcXVlbmNl Rmxvd18xajA2aHc3PC9pbmNvbWluZz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzF3aHpkcWY8L291 dGdvaW5nPjwvc2VydmljZVRhc2s+PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18xd2h6 ZHFmXCIgc291cmNlUmVmPVwiU2VydmljZVRhc2tfMGZpM2Fjc1wiIHRhcmdldFJlZj1cIlNlcnZp Y2VUYXNrXzA0MWpmb2hcIi8+PHRleHRBbm5vdGF0aW9uIGlkPVwiVGV4dEFubm90YXRpb25fMHp4 eGZpalwiPjx0ZXh0PjwhW0NEQVRBW0dldHMgYXNzaWdubWVudF9ncm91cCBzeXNfaWQgZnJvbSBT ZXJ2aWNlTm93IGZvciBzcGVjaWZpZWQgR3JvdXBcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9u Pjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzAxeHI4d2lcIiBzb3VyY2VSZWY9XCJTZXJ2 aWNlVGFza18wMzl4ZXljXCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMHp4eGZpalwiLz48 dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8wYTRxMzBrXCI+PHRleHQ+PCFbQ0RB VEFbR2V0cyBjYWxsZXJfc3lzX2lkIGZyb20gU2VydmljZU5vdyBmb3Igc3BlY2lmaWVkIHVzZXJf bmFtZVxuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2Np YXRpb25fMDlhbHNkbFwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzBmaTNhY3NcIiB0YXJnZXRS ZWY9XCJUZXh0QW5ub3RhdGlvbl8wYTRxMzBrXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRB bm5vdGF0aW9uXzFhd3cwNG9cIj48dGV4dD48IVtDREFUQVtJbnB1dHM6IGluY2lkZW50X2lkLCB0 YXNrX2lkLCBzbl9pbml0aWFsX3dvcmtfbm90ZSwgc25fb3B0aW9uYWxfZmllbGRzXG5dXT48L3Rl eHQ+PC90ZXh0QW5ub3RhdGlvbj48YXNzb2NpYXRpb24gaWQ9XCJBc3NvY2lhdGlvbl8wd2g5N3Ri XCIgc291cmNlUmVmPVwiU2VydmljZVRhc2tfMDQxamZvaFwiIHRhcmdldFJlZj1cIlRleHRBbm5v dGF0aW9uXzFhd3cwNG9cIi8+PHRleHRBbm5vdGF0aW9uIGlkPVwiVGV4dEFubm90YXRpb25fMW9z c3lsMFwiPjx0ZXh0PjwhW0NEQVRBW0NyZWF0ZXMgYSBSZWNvcmQgaW4gU2VydmljZU5vdyArIGFk ZHMgYSBOb3RlIHRvIFJlc2lsaWVudFxuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29j aWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMTVzdmpmMVwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNr XzA0MWpmb2hcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8xb3NzeWwwXCIvPjwvcHJvY2Vz cz48YnBtbmRpOkJQTU5EaWFncmFtIGlkPVwiQlBNTkRpYWdyYW1fMVwiPjxicG1uZGk6QlBNTlBs YW5lIGJwbW5FbGVtZW50PVwidW5kZWZpbmVkXCIgaWQ9XCJCUE1OUGxhbmVfMVwiPjxicG1uZGk6 QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU3RhcnRFdmVudF8xNTVhc3htXCIgaWQ9XCJTdGFydEV2 ZW50XzE1NWFzeG1fZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwi IHg9XCI5M1wiIHk9XCIxODhcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWln aHQ9XCIwXCIgd2lkdGg9XCI5MFwiIHg9XCI4OFwiIHk9XCIyMjNcIi8+PC9icG1uZGk6QlBNTkxh YmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlNl cnZpY2VUYXNrXzA0MWpmb2hcIiBpZD1cIlNlcnZpY2VUYXNrXzA0MWpmb2hfZGlcIj48b21nZGM6 Qm91bmRzIGhlaWdodD1cIjgwXCIgd2lkdGg9XCIxMDBcIiB4PVwiNzUwXCIgeT1cIjE2NlwiLz48 L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJFbmRFdmVu dF8wbG1rZzlyXCIgaWQ9XCJFbmRFdmVudF8wbG1rZzlyX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWln aHQ9XCIzNlwiIHdpZHRoPVwiMzZcIiB4PVwiMTAwMlwiIHk9XCIxODhcIi8+PGJwbW5kaTpCUE1O TGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiOTBcIiB4PVwiOTc1XCIg eT1cIjIyN1wiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6 QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMG8xYnJvY1wiIGlkPVwiU2VxdWVu Y2VGbG93XzBvMWJyb2NfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjg1MFwiIHhzaTp0eXBlPVwi b21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMTAwMlwiIHhzaTp0 eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpC b3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjg4MVwiIHk9XCIxODQuNVwiLz48 L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1OU2hhcGUgYnBt bkVsZW1lbnQ9XCJTZXJ2aWNlVGFza18wMzl4ZXljXCIgaWQ9XCJTZXJ2aWNlVGFza18wMzl4ZXlj X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI4MFwiIHdpZHRoPVwiMTAwXCIgeD1cIjI1NFwi IHk9XCIxNjZcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1l bnQ9XCJTZXF1ZW5jZUZsb3dfMG5iazIyelwiIGlkPVwiU2VxdWVuY2VGbG93XzBuYmsyMnpfZGlc Ij48b21nZGk6d2F5cG9pbnQgeD1cIjEyOVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwi MjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMTkxXCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwi IHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIxOTFcIiB4c2k6dHlwZT1cIm9tZ2RjOlBv aW50XCIgeT1cIjIwNlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjI1NFwiIHhzaTp0eXBlPVwib21n ZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVp Z2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjE2MVwiIHk9XCIxOTkuNVwiLz48L2JwbW5kaTpC UE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1c IlNlcXVlbmNlRmxvd18xajA2aHc3XCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMWowNmh3N19kaVwiPjxv bWdkaTp3YXlwb2ludCB4PVwiMzU0XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZc Ii8+PG9tZ2RpOndheXBvaW50IHg9XCI0ODRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1c IjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lk dGg9XCI5MFwiIHg9XCIzNzRcIiB5PVwiMTg0LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBt bmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRp b25fMHp4eGZpalwiIGlkPVwiVGV4dEFubm90YXRpb25fMHp4eGZpal9kaVwiPjxvbWdkYzpCb3Vu ZHMgaGVpZ2h0PVwiNjZcIiB3aWR0aD1cIjE3N1wiIHg9XCIxOTVcIiB5PVwiNjVcIi8+PC9icG1u ZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8w MXhyOHdpXCIgaWQ9XCJBc3NvY2lhdGlvbl8wMXhyOHdpX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9 XCIyOTdcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE2NlwiLz48b21nZGk6d2F5cG9p bnQgeD1cIjI5MFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTMxXCIvPjwvYnBtbmRp OkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tfMGZp M2Fjc1wiIGlkPVwiU2VydmljZVRhc2tfMGZpM2Fjc19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0 PVwiODBcIiB3aWR0aD1cIjEwMFwiIHg9XCI0ODRcIiB5PVwiMTY2XCIvPjwvYnBtbmRpOkJQTU5T aGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzF3aHpkcWZc IiBpZD1cIlNlcXVlbmNlRmxvd18xd2h6ZHFmX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI1ODRc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48b21nZGk6d2F5cG9pbnQgeD1c Ijc1MFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxicG1uZGk6QlBNTkxh YmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjYyMlwiIHk9 XCIxODQuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpC UE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8wYTRxMzBrXCIgaWQ9XCJUZXh0 QW5ub3RhdGlvbl8wYTRxMzBrX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI2NlwiIHdpZHRo PVwiMTYwXCIgeD1cIjQ4NlwiIHk9XCIyODJcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6 QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8wOWFsc2RsXCIgaWQ9XCJBc3NvY2lh dGlvbl8wOWFsc2RsX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI1NDZcIiB4c2k6dHlwZT1cIm9t Z2RjOlBvaW50XCIgeT1cIjI0NlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjU1NlwiIHhzaTp0eXBl PVwib21nZGM6UG9pbnRcIiB5PVwiMjgyXCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBN TlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMWF3dzA0b1wiIGlkPVwiVGV4dEFu bm90YXRpb25fMWF3dzA0b19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNjBcIiB3aWR0aD1c IjE3OFwiIHg9XCI2MDdcIiB5PVwiNjhcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBN TkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8wd2g5N3RiXCIgaWQ9XCJBc3NvY2lhdGlv bl8wd2g5N3RiX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI3NjFcIiB4c2k6dHlwZT1cIm9tZ2Rj OlBvaW50XCIgeT1cIjE2NlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjcyNVwiIHhzaTp0eXBlPVwi b21nZGM6UG9pbnRcIiB5PVwiMTI4XCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNo YXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMW9zc3lsMFwiIGlkPVwiVGV4dEFubm90 YXRpb25fMW9zc3lsMF9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNjdcIiB3aWR0aD1cIjEz MlwiIHg9XCI5MTJcIiB5PVwiNjRcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVk Z2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8xNXN2amYxXCIgaWQ9XCJBc3NvY2lhdGlvbl8x NXN2amYxX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI4NTBcIiB4c2k6dHlwZT1cIm9tZ2RjOlBv aW50XCIgeT1cIjE3NlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjkyNVwiIHhzaTp0eXBlPVwib21n ZGM6UG9pbnRcIiB5PVwiMTMxXCIvPjwvYnBtbmRpOkJQTU5FZGdlPjwvYnBtbmRpOkJQTU5QbGFu ZT48L2JwbW5kaTpCUE1ORGlhZ3JhbT48L2RlZmluaXRpb25zPiIsICJ3b3JrZmxvd19pZCI6ICJl eGFtcGxlX3Nub3dfY3JlYXRlX3JlY29yZF90YXNrIiwgInZlcnNpb24iOiA3fSwgImxhc3RfbW9k aWZpZWRfdGltZSI6IDE1NTA3NjQxMzI0MjAsICJjcmVhdG9yX2lkIjogImFkbWluQHJlcy5jb20i LCAiYWN0aW9ucyI6IFtdLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBsZV9zbm93X2NyZWF0 ZV9yZWNvcmRfdGFzayIsICJuYW1lIjogIkV4YW1wbGU6IFNOT1c6IENyZWF0ZSBSZWNvcmQgW1Rh c2tdIn0sIHsidXVpZCI6ICIyZjk4YzkzNS1jZjA0LTRmZmItOGI0My1iNjIyNDQyZDU2MmQiLCAi ZGVzY3JpcHRpb24iOiAiQW4gZXhhbXBsZSB3b3JrZmxvdyBzaG93aW5nIGhvdyB0byBjcmVhdGUg YSBTZXJ2aWNlTm93IFJlY29yZCBmcm9tIGEgUmVzaWxpZW50IEluY2lkZW50LiIsICJvYmplY3Rf dHlwZSI6ICJpbmNpZGVudCIsICJleHBvcnRfa2V5IjogImV4YW1wbGVfc25vd19jcmVhdGVfcmVj b3JkX2luY2lkZW50IiwgIndvcmtmbG93X2lkIjogMiwgImxhc3RfbW9kaWZpZWRfYnkiOiAiaW50 ZWdyYXRpb25zQGV4YW1wbGUuY29tIiwgImNvbnRlbnQiOiB7InhtbCI6ICI8P3htbCB2ZXJzaW9u PVwiMS4wXCIgZW5jb2Rpbmc9XCJVVEYtOFwiPz48ZGVmaW5pdGlvbnMgeG1sbnM9XCJodHRwOi8v d3d3Lm9tZy5vcmcvc3BlYy9CUE1OLzIwMTAwNTI0L01PREVMXCIgeG1sbnM6YnBtbmRpPVwiaHR0 cDovL3d3dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9ESVwiIHhtbG5zOm9tZ2RjPVwiaHR0 cDovL3d3dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQvRENcIiB4bWxuczpvbWdkaT1cImh0dHA6 Ly93d3cub21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RJXCIgeG1sbnM6cmVzaWxpZW50PVwiaHR0 cDovL3Jlc2lsaWVudC5pYm0uY29tL2JwbW5cIiB4bWxuczp4c2Q9XCJodHRwOi8vd3d3LnczLm9y Zy8yMDAxL1hNTFNjaGVtYVwiIHhtbG5zOnhzaT1cImh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1M U2NoZW1hLWluc3RhbmNlXCIgdGFyZ2V0TmFtZXNwYWNlPVwiaHR0cDovL3d3dy5jYW11bmRhLm9y Zy90ZXN0XCI+PHByb2Nlc3MgaWQ9XCJleGFtcGxlX3Nub3dfY3JlYXRlX3JlY29yZF9pbmNpZGVu dFwiIGlzRXhlY3V0YWJsZT1cInRydWVcIiBuYW1lPVwiRXhhbXBsZTogU05PVzogQ3JlYXRlIFJl Y29yZCBbSW5jaWRlbnRdXCI+PGRvY3VtZW50YXRpb24+QW4gZXhhbXBsZSB3b3JrZmxvdyBzaG93 aW5nIGhvdyB0byBjcmVhdGUgYSBTZXJ2aWNlTm93IFJlY29yZCBmcm9tIGEgUmVzaWxpZW50IElu Y2lkZW50LjwvZG9jdW1lbnRhdGlvbj48c3RhcnRFdmVudCBpZD1cIlN0YXJ0RXZlbnRfMTU1YXN4 bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMXg2ZDhuMTwvb3V0Z29pbmc+PC9zdGFydEV2ZW50 PjxzZXJ2aWNlVGFzayBpZD1cIlNlcnZpY2VUYXNrXzFkdmVobnFcIiBuYW1lPVwiU05PVzogQ3Jl YXRlIFJlY29yZFwiIHJlc2lsaWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9uRWxlbWVu dHM+PHJlc2lsaWVudDpmdW5jdGlvbiB1dWlkPVwiMDQxZmE4Y2EtNzBiYi00NGIxLTk5NmItODhm NjFhOGEwNjcxXCI+e1wiaW5wdXRzXCI6e30sXCJwb3N0X3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCIj IEV4YW1wbGU6IFNOT1c6IENyZWF0ZSBSZWNvcmQgW0luY2lkZW50XSBwb3N0LXByb2Nlc3Npbmcg c2NyaXB0XFxuXFxuaWYgcmVzdWx0cy5zdWNjZXNzOlxcblxcbiAgIyBTZXQgaW5jaWRlbnQgZmll bGRzIHNuX3Nub3dfcmVjb3JkX2lkIGFuZCBzbl9zbm93X3JlY29yZF9saW5rXFxuICBpbmNpZGVu dC5zbl9zbm93X3JlY29yZF9pZCA9IHJlc3VsdHMuc25fcmVmX2lkXFxuICBpbmNpZGVudC5zbl9z bm93X3JlY29yZF9saW5rID0gXFxcIlxcXCJcXFwiJmx0O2EgaHJlZj0nezB9JyZndDtMaW5rJmx0 Oy9hJmd0O1xcXCJcXFwiXFxcIi5mb3JtYXQocmVzdWx0cy5zbl9yZWNvcmRfbGluaylcXG4gIFxc biAgbm90ZVRleHQgPSBcXFwiXFxcIlxcXCImbHQ7YnImZ3Q7VGhpcyBJbmNpZGVudCBoYXMgYmVl biBjcmVhdGVkIGluICZsdDtiJmd0O1NlcnZpY2VOb3cmbHQ7L2ImZ3Q7XFxuICAgICAgICAgICAg ICAmbHQ7YnImZ3Q7Jmx0O2ImZ3Q7U2VydmljZU5vdyBJRDombHQ7L2ImZ3Q7ICB7MH1cXG4gICAg ICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtTZXJ2aWNlTm93IExpbms6Jmx0Oy9iJmd0OyAm bHQ7YSBocmVmPSd7MX0nJmd0O3sxfSZsdDsvYSZndDtcXFwiXFxcIlxcXCIuZm9ybWF0KHJlc3Vs dHMuc25fcmVmX2lkLCByZXN1bHRzLnNuX3JlY29yZF9saW5rKVxcblxcbiAgaW5jaWRlbnQuYWRk Tm90ZShoZWxwZXIuY3JlYXRlUmljaFRleHQobm90ZVRleHQpKVwiLFwicHJlX3Byb2Nlc3Npbmdf c2NyaXB0XCI6XCIjIEV4YW1wbGU6IFNOT1c6IENyZWF0ZSBSZWNvcmQgW0luY2lkZW50XSBwcmUt cHJvY2Vzc2luZyBzY3JpcHRcXG5cXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyNcXG4jIyMgRGVmaW5lIHByZS1wcm9jZXNzaW5nIGZ1bmN0aW9ucyAjIyNcXG4jIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5kZWYgZGljdF90b19qc29uX3N0cihk KTpcXG4gIFxcXCJcXFwiXFxcIkZ1bmN0aW9uIHRoYXQgY29udmVydHMgYSBkaWN0aW9uYXJ5IGlu dG8gYSBKU09OIHN0cmluZy5cXG4gICAgIFN1cHBvcnRzIHR5cGVzOiBiYXNlc3RyaW5nLCBib29s LCBpbnQgYW5kIG5lc3RlZCBkaWN0cy5cXG4gICAgIERvZXMgbm90IHN1cHBvcnQgbGlzdHMuXFxu ICAgICBJZiB0aGUgdmFsdWUgaXMgTm9uZSwgaXQgc2V0cyBpdCB0byBGYWxzZS5cXFwiXFxcIlxc XCJcXG5cXG4gIGpzb25fZW50cnkgPSB1J1xcXCJ7MH1cXFwiOnsxfSdcXG4gIGpzb25fZW50cnlf c3RyID0gdSdcXFwiezB9XFxcIjpcXFwiezF9XFxcIidcXG4gIGVudHJpZXMgPSBbXSBcXG5cXG4g IGZvciBlbnRyeSBpbiBkOlxcbiAgICBrZXkgPSBlbnRyeVxcbiAgICB2YWx1ZSA9IGRbZW50cnld XFxuXFxuICAgIGlmIHZhbHVlIGlzIE5vbmU6XFxuICAgICAgdmFsdWUgPSBGYWxzZVxcblxcbiAg ICBpZiBpc2luc3RhbmNlKHZhbHVlLCBsaXN0KTpcXG4gICAgICBoZWxwZXIuZmFpbCgnZGljdF90 b19qc29uX3N0ciBkb2VzIG5vdCBzdXBwb3J0IFB5dGhvbiBMaXN0cycpXFxuXFxuICAgIGlmIGlz aW5zdGFuY2UodmFsdWUsIGJhc2VzdHJpbmcpOlxcbiAgICAgIHZhbHVlID0gdmFsdWUucmVwbGFj ZSh1J1xcXCInLCB1J1xcXFxcXFxcXFxcIicpXFxuICAgICAgZW50cmllcy5hcHBlbmQoanNvbl9l bnRyeV9zdHIuZm9ybWF0KHVuaWNvZGUoa2V5KSwgdW5pY29kZSh2YWx1ZSkpKVxcbiAgICAgIFxc biAgICBlbGlmIGlzaW5zdGFuY2UodmFsdWUsIHVuaWNvZGUpOlxcbiAgICAgIGVudHJpZXMuYXBw ZW5kKGpzb25fZW50cnkuZm9ybWF0KHVuaWNvZGUoa2V5KSwgdW5pY29kZSh2YWx1ZSkpKVxcbiAg ICBcXG4gICAgZWxpZiBpc2luc3RhbmNlKHZhbHVlLCBib29sKTpcXG4gICAgICB2YWx1ZSA9ICd0 cnVlJyBpZiB2YWx1ZSA9PSBUcnVlIGVsc2UgJ2ZhbHNlJ1xcbiAgICAgIGVudHJpZXMuYXBwZW5k KGpzb25fZW50cnkuZm9ybWF0KGtleSwgdmFsdWUpKVxcblxcbiAgICBlbGlmIGlzaW5zdGFuY2Uo dmFsdWUsIGludCk6XFxuICAgICAgZW50cmllcy5hcHBlbmQoanNvbl9lbnRyeS5mb3JtYXQodW5p Y29kZShrZXkpLCB2YWx1ZSkpXFxuXFxuICAgIGVsaWYgaXNpbnN0YW5jZSh2YWx1ZSwgZGljdCk6 XFxuICAgICAgZW50cmllcy5hcHBlbmQoanNvbl9lbnRyeS5mb3JtYXQoa2V5LCBkaWN0X3RvX2pz b25fc3RyKHZhbHVlKSkpXFxuXFxuICAgIGVsc2U6XFxuICAgICAgaGVscGVyLmZhaWwoJ2RpY3Rf dG9fanNvbl9zdHIgZG9lcyBub3Qgc3VwcG9ydCB0aGlzIHR5cGU6IHswfScuZm9ybWF0KHR5cGUo dmFsdWUpKSlcXG5cXG4gIHJldHVybiB1J3swfSB7MX0gezJ9Jy5mb3JtYXQodSd7JywgJywnLmpv aW4oZW50cmllcyksIHUnfScpXFxuXFxuIyBNYXAgSUJNIFJlc2lsaWVudCBzZXZlcml0eSB2YWx1 ZXMgdG8gU2VydmljZU5vdyBzZXZlcml0eSB2YWx1ZXNcXG5zbl9zZXZlcml0eV9tYXAgPSB7XFxu ICBcXFwiSGlnaFxcXCI6IDEsXFxuICBcXFwiTWVkaXVtXFxcIjogMixcXG4gIFxcXCJMb3dcXFwi OiAzXFxufVxcblxcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcbiMjIyBEZWZpbmUgSW5wdXRzICMj I1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcblxcbiMgRGVmYXVsdCB0ZXh0IG9mIHRoZSBpbml0 aWFsIG5vdGUgYWRkZWQgdG8gdGhlIFNlcnZpY2VOb3cgUmVjb3JkXFxuaW5pdF9zbm93X25vdGVf dGV4dCA9IHVcXFwiXFxcIlxcXCJSZWNvcmQgY3JlYXRlZCBmcm9tIGEgSUJNIFJlc2lsaWVudCBJ bmNpZGVudCBJRDogezB9LlxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgU2V2ZXJpdHk6IHsx fVxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgSW5jaWRlbnQgVHlwZShzKTogezJ9XFxcIlxc XCJcXFwiLmZvcm1hdChpbmNpZGVudC5pZCwgaW5jaWRlbnQuc2V2ZXJpdHlfY29kZSwgaW5jaWRl bnQuaW5jaWRlbnRfdHlwZV9pZHMpXFxuXFxuIyBJZiB0aGUgdXNlciBhZGRzIGEgY29tbWVudCB3 aGVuIHRoZXkgaW52b2tlIHRoZSBydWxlLCB0aGF0IGNvbW1lbnQgZ2V0cyBjb25jYXRlbmF0ZWQg aGVyZVxcbmlmIHJ1bGUucHJvcGVydGllcy5zbl9pbml0aWFsX25vdGUuY29udGVudCBpcyBub3Qg Tm9uZTpcXG4gIGluaXRfc25vd19ub3RlX3RleHQgPSB1XFxcInswfVxcXFxuXFxcXG57MX1cXFwi LmZvcm1hdChpbml0X3Nub3dfbm90ZV90ZXh0LCB1bmljb2RlKHJ1bGUucHJvcGVydGllcy5zbl9p bml0aWFsX25vdGUuY29udGVudCkpXFxuXFxuIyBJRCBvZiB0aGlzIGluY2lkZW50XFxuaW5wdXRz LmluY2lkZW50X2lkID0gaW5jaWRlbnQuaWRcXG5cXG4jIEluaXRpYWwgd29yayBub3RlIHRvIGF0 dGFjaCB0byBjcmVhdGVkIFNlcnZpY2VOb3cgUmVjb3JkXFxuaW5wdXRzLnNuX2luaXRfd29ya19u b3RlID0gaW5pdF9zbm93X25vdGVfdGV4dFxcblxcbiMgQW55IGZ1cnRoZXIgaW5mb3JtYXRpb24g eW91IHdhbnQgdG8gc2VuZCB0byBTZXJ2aWNlTm93LiBFYWNoIEtleS9WYWx1ZSBwYWlyIGlzIGF0 dGFjaGVkIHRvIHRoZSBSZXF1ZXN0IG9iamVjdCBhbmQgYWNjZXNzaWJsZSBpbiBTZXJ2aWNlTm93 LlxcbiMgU2VydmljZU5vdyBFeGFtcGxlOjogc2V0VmFsdWUoJ2Fzc2lnbm1lbnRfZ3JvdXAnLCBy ZXF1ZXN0LmJvZHkuZGF0YS5zbl9vcHRpb25hbF9maWVsZHMuYXNzaWdubWVudF9ncm91cClcXG5p bnB1dHMuc25fb3B0aW9uYWxfZmllbGRzID0gZGljdF90b19qc29uX3N0cih7XFxuICBcXFwic2hv cnRfZGVzY3JpcHRpb25cXFwiOiB1XFxcIlJFUy17MH06IHsxfVxcXCIuZm9ybWF0KGluY2lkZW50 LmlkLCB1bmljb2RlKGluY2lkZW50Lm5hbWUpKSxcXG4gIFxcXCJzZXZlcml0eVxcXCI6IHNuX3Nl dmVyaXR5X21hcFtpbmNpZGVudC5zZXZlcml0eV9jb2RlXSxcXG4gIFxcXCJhc3NpZ25tZW50X2dy b3VwXFxcIjogd29ya2Zsb3cucHJvcGVydGllcy5hc3NpZ25tZW50X2dyb3VwLnN5c19pZCxcXG4g IFxcXCJjYWxsZXJfaWRcXFwiOiB3b3JrZmxvdy5wcm9wZXJ0aWVzLmNhbGxlcl9pZC5zeXNfaWRc XG59KVwifTwvcmVzaWxpZW50OmZ1bmN0aW9uPjwvZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5n PlNlcXVlbmNlRmxvd18wZWdrY25sPC9pbmNvbWluZz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzFq Mzc1ZDg8L291dGdvaW5nPjwvc2VydmljZVRhc2s+PGVuZEV2ZW50IGlkPVwiRW5kRXZlbnRfMGI1 bzFma1wiPjxpbmNvbWluZz5TZXF1ZW5jZUZsb3dfMWozNzVkODwvaW5jb21pbmc+PC9lbmRFdmVu dD48c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzFqMzc1ZDhcIiBzb3VyY2VSZWY9XCJT ZXJ2aWNlVGFza18xZHZlaG5xXCIgdGFyZ2V0UmVmPVwiRW5kRXZlbnRfMGI1bzFma1wiLz48c2Vx dWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzF4NmQ4bjFcIiBzb3VyY2VSZWY9XCJTdGFydEV2 ZW50XzE1NWFzeG1cIiB0YXJnZXRSZWY9XCJTZXJ2aWNlVGFza18wbnJrdXNpXCIvPjxzZXJ2aWNl VGFzayBpZD1cIlNlcnZpY2VUYXNrXzBucmt1c2lcIiBuYW1lPVwiU05PVzogTG9va3VwIHN5c19p ZFwiIHJlc2lsaWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9uRWxlbWVudHM+PHJlc2ls aWVudDpmdW5jdGlvbiB1dWlkPVwiZTVhYmY5MWMtNTdmNi00ZDAxLWJkNWEtNTBiZmUyNjFjYjAx XCI+e1wiaW5wdXRzXCI6e30sXCJwcmVfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgU04gVXRpbGl0 aWVzOiBHZXQgc3lzX2lkIHByZS1wcm9jZXNzaW5nIHNjcmlwdFxcblxcbiMjIyMjIyMjIyMjIyMj IyMjIyMjI1xcbiMjIyBEZWZpbmUgaW5wdXRzICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xc blxcbiMgVGhlIHRhYmxlIGluIFNlcnZpY2VOb3cgdG8gcXVlcnlcXG5pbnB1dHMuc25fdGFibGVf bmFtZSA9IFxcXCJzeXNfdXNlcl9ncm91cFxcXCJcXG5cXG4jIFRoZSBuYW1lIG9mIHRoZSBmaWVs ZC90YWJsZSBjb2x1bW4gdG8gcXVlcnlcXG5pbnB1dHMuc25fcXVlcnlfZmllbGQgPSBcXFwibmFt ZVxcXCJcXG5cXG4jIFRoZSB2YWx1ZSB0byBlcXVhdGUgdGhlIGNlbGwgdG9cXG4jIEdldCB0aGUg Z3JvdXAgbmFtZSBmcm9tIHRoZSBSdWxlIEFjdGl2aXR5IEZpZWxkIHdpdGg6XFxuaW5wdXRzLnNu X3F1ZXJ5X3ZhbHVlID0gcnVsZS5wcm9wZXJ0aWVzLnNuX2Fzc2lnbm1lbnRfZ3JvdXBcXG5cXG4j IyBPUiBTZXQgZ3JvdXAgbmFtZSBzdGF0aWNhbGx5IHdpdGg6XFxuIyMgaW5wdXRzLnNuX3F1ZXJ5 X3ZhbHVlID0gXFxcIklUIFNlY3VyaXRpZXNcXFwiXCIsXCJyZXN1bHRfbmFtZVwiOlwiYXNzaWdu bWVudF9ncm91cFwifTwvcmVzaWxpZW50OmZ1bmN0aW9uPjwvZXh0ZW5zaW9uRWxlbWVudHM+PGlu Y29taW5nPlNlcXVlbmNlRmxvd18xeDZkOG4xPC9pbmNvbWluZz48b3V0Z29pbmc+U2VxdWVuY2VG bG93XzFtc3B0dDU8L291dGdvaW5nPjwvc2VydmljZVRhc2s+PHNlcXVlbmNlRmxvdyBpZD1cIlNl cXVlbmNlRmxvd18xbXNwdHQ1XCIgc291cmNlUmVmPVwiU2VydmljZVRhc2tfMG5ya3VzaVwiIHRh cmdldFJlZj1cIlNlcnZpY2VUYXNrXzFiNzFkbzBcIi8+PHNlcnZpY2VUYXNrIGlkPVwiU2Vydmlj ZVRhc2tfMWI3MWRvMFwiIG5hbWU9XCJTTk9XOiBMb29rdXAgc3lzX2lkXCIgcmVzaWxpZW50OnR5 cGU9XCJmdW5jdGlvblwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1bmN0aW9uIHV1 aWQ9XCJlNWFiZjkxYy01N2Y2LTRkMDEtYmQ1YS01MGJmZTI2MWNiMDFcIj57XCJpbnB1dHNcIjp7 fSxcInByZV9wcm9jZXNzaW5nX3NjcmlwdFwiOlwiIyBTTiBVdGlsaXRpZXM6IEdldCBzeXNfaWQg cHJlLXByb2Nlc3Npbmcgc2NyaXB0XFxuXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuIyMjIERl ZmluZSBpbnB1dHMgIyMjXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuXFxuIyBUaGUgdGFibGUg aW4gU2VydmljZU5vdyB0byBxdWVyeVxcbmlucHV0cy5zbl90YWJsZV9uYW1lID0gXFxcInN5c191 c2VyXFxcIlxcblxcbiMgVGhlIG5hbWUgb2YgdGhlIGZpZWxkL3RhYmxlIGNvbHVtbiB0byBxdWVy eVxcbmlucHV0cy5zbl9xdWVyeV9maWVsZCA9IFxcXCJ1c2VyX25hbWVcXFwiXFxuXFxuIyBUaGUg dmFsdWUgdG8gZXF1YXRlIHRoZSBjZWxsIHRvXFxuaW5wdXRzLnNuX3F1ZXJ5X3ZhbHVlID0gXFxc ImlibXJlc2lsaWVudFxcXCIgI291ciBpbnRlZ3JhdGlvbnMgdXNlciBpbiBTZXJ2aWNlTm93XCIs XCJyZXN1bHRfbmFtZVwiOlwiY2FsbGVyX2lkXCJ9PC9yZXNpbGllbnQ6ZnVuY3Rpb24+PC9leHRl bnNpb25FbGVtZW50cz48aW5jb21pbmc+U2VxdWVuY2VGbG93XzFtc3B0dDU8L2luY29taW5nPjxv dXRnb2luZz5TZXF1ZW5jZUZsb3dfMGVna2NubDwvb3V0Z29pbmc+PC9zZXJ2aWNlVGFzaz48c2Vx dWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzBlZ2tjbmxcIiBzb3VyY2VSZWY9XCJTZXJ2aWNl VGFza18xYjcxZG8wXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMWR2ZWhucVwiLz48dGV4dEFu bm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8weG55MTg5XCI+PHRleHQ+PCFbQ0RBVEFbSW5w dXRzOiBpbmNpZGVudF9pZCwgc25faW5pdGlhbF93b3JrX25vdGUsIHNuX29wdGlvbmFsX2ZpZWxk c1xuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRp b25fMHZpcTljNFwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFkdmVobnFcIiB0YXJnZXRSZWY9 XCJUZXh0QW5ub3RhdGlvbl8weG55MTg5XCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5v dGF0aW9uXzA1MWFlbTVcIj48dGV4dD48IVtDREFUQVtDcmVhdGVzIGEgUmVjb3JkIGluIFNlcnZp Y2VOb3csIHVwZGF0ZXMgSW5jaWRlbnQgZmllbGRzIGFuZCBhZGRzIGEgTm90ZSB0byBSZXNpbGll bnRcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0 aW9uXzFsbjI5c2VcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18xZHZlaG5xXCIgdGFyZ2V0UmVm PVwiVGV4dEFubm90YXRpb25fMDUxYWVtNVwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5u b3RhdGlvbl8wZnFnM2w2XCI+PHRleHQ+PCFbQ0RBVEFbR2V0cyBTZXJ2aWNlTm93IHN5c19pZCBm b3Igc3BlY2lmaWVkIGFzc2lnbm1lbnRfZ3JvdXBcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9u Pjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzBrejFxdjVcIiBzb3VyY2VSZWY9XCJTZXJ2 aWNlVGFza18wbnJrdXNpXCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMGZxZzNsNlwiLz48 dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8xbGl3amh0XCI+PHRleHQ+PCFbQ0RB VEFbR2V0cyBTZXJ2aWNlTm93IHN5c19pZCBmb3Igc3BlY2lmaWVkIHVzZXJfbmFtZVxuXV0+PC90 ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMWlxdDdy cFwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFiNzFkbzBcIiB0YXJnZXRSZWY9XCJUZXh0QW5u b3RhdGlvbl8xbGl3amh0XCIvPjwvcHJvY2Vzcz48YnBtbmRpOkJQTU5EaWFncmFtIGlkPVwiQlBN TkRpYWdyYW1fMVwiPjxicG1uZGk6QlBNTlBsYW5lIGJwbW5FbGVtZW50PVwidW5kZWZpbmVkXCIg aWQ9XCJCUE1OUGxhbmVfMVwiPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU3RhcnRF dmVudF8xNTVhc3htXCIgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1fZGlcIj48b21nZGM6Qm91bmRz IGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCIxNjJcIiB5PVwiMTg4XCIvPjxicG1uZGk6 QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMFwiIHdpZHRoPVwiOTBcIiB4PVwiMTU3 XCIgeT1cIjIyM1wiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1u ZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tfMWR2ZWhucVwiIGlkPVwiU2Vy dmljZVRhc2tfMWR2ZWhucV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1c IjEwMFwiIHg9XCI3MDVcIiB5PVwiMTY2XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQ TU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzBiNW8xZmtcIiBpZD1cIkVuZEV2ZW50XzBi NW8xZmtfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI5 MzdcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwi MTNcIiB3aWR0aD1cIjkwXCIgeD1cIjkxMFwiIHk9XCIyMjdcIi8+PC9icG1uZGk6QlBNTkxhYmVs PjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVu Y2VGbG93XzFqMzc1ZDhcIiBpZD1cIlNlcXVlbmNlRmxvd18xajM3NWQ4X2RpXCI+PG9tZ2RpOndh eXBvaW50IHg9XCI4MDVcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48b21n ZGk6d2F5cG9pbnQgeD1cIjkzN1wiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIv PjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkw XCIgeD1cIjgyNlwiIHk9XCIxODQuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBN TkVkZ2U+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18xeDZkOG4x XCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMXg2ZDhuMV9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMTk4 XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9 XCIyNDRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRpOkJQTU5M YWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9XCIxNzZcIiB5 PVwiMTg0LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6 QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tfMG5ya3VzaVwiIGlkPVwiU2Vydmlj ZVRhc2tfMG5ya3VzaV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1cIjEw MFwiIHg9XCIyNDRcIiB5PVwiMTY2XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5F ZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzFtc3B0dDVcIiBpZD1cIlNlcXVlbmNlRmxv d18xbXNwdHQ1X2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIzNDRcIiB4c2k6dHlwZT1cIm9tZ2Rj OlBvaW50XCIgeT1cIjIwNlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjQ2NVwiIHhzaTp0eXBlPVwi b21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMg aGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjM1OS41XCIgeT1cIjE4NC41XCIvPjwvYnBt bmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxl bWVudD1cIlNlcnZpY2VUYXNrXzFiNzFkbzBcIiBpZD1cIlNlcnZpY2VUYXNrXzFiNzFkbzBfZGlc Ij48b21nZGM6Qm91bmRzIGhlaWdodD1cIjgwXCIgd2lkdGg9XCIxMDBcIiB4PVwiNDY1XCIgeT1c IjE2NlwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1c IlNlcXVlbmNlRmxvd18wZWdrY25sXCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMGVna2NubF9kaVwiPjxv bWdkaTp3YXlwb2ludCB4PVwiNTY1XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZc Ii8+PG9tZ2RpOndheXBvaW50IHg9XCI3MDVcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1c IjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lk dGg9XCI5MFwiIHg9XCI1OTBcIiB5PVwiMTg0LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBt bmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRp b25fMHhueTE4OVwiIGlkPVwiVGV4dEFubm90YXRpb25fMHhueTE4OV9kaVwiPjxvbWdkYzpCb3Vu ZHMgaGVpZ2h0PVwiNTRcIiB3aWR0aD1cIjEzMVwiIHg9XCI1ODZcIiB5PVwiNjBcIi8+PC9icG1u ZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8w dmlxOWM0XCIgaWQ9XCJBc3NvY2lhdGlvbl8wdmlxOWM0X2RpXCI+PG9tZ2RpOndheXBvaW50IHg9 XCI3MjFcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE2NlwiLz48b21nZGk6d2F5cG9p bnQgeD1cIjY3NVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTE0XCIvPjwvYnBtbmRp OkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25f MDUxYWVtNVwiIGlkPVwiVGV4dEFubm90YXRpb25fMDUxYWVtNV9kaVwiPjxvbWdkYzpCb3VuZHMg aGVpZ2h0PVwiNzRcIiB3aWR0aD1cIjE2MlwiIHg9XCI4MTlcIiB5PVwiNTBcIi8+PC9icG1uZGk6 QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8xbG4y OXNlXCIgaWQ9XCJBc3NvY2lhdGlvbl8xbG4yOXNlX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI3 OTlcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE3MFwiLz48b21nZGk6d2F5cG9pbnQg eD1cIjg1NlwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTI0XCIvPjwvYnBtbmRpOkJQ TU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMGZx ZzNsNlwiIGlkPVwiVGV4dEFubm90YXRpb25fMGZxZzNsNl9kaVwiPjxvbWdkYzpCb3VuZHMgaGVp Z2h0PVwiNTNcIiB3aWR0aD1cIjE1MVwiIHg9XCIxNTZcIiB5PVwiNjBcIi8+PC9icG1uZGk6QlBN TlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8wa3oxcXY1 XCIgaWQ9XCJBc3NvY2lhdGlvbl8wa3oxcXY1X2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIyNzNc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE2NlwiLz48b21nZGk6d2F5cG9pbnQgeD1c IjI0NlwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTEzXCIvPjwvYnBtbmRpOkJQTU5F ZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMWxpd2po dFwiIGlkPVwiVGV4dEFubm90YXRpb25fMWxpd2podF9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0 PVwiNDhcIiB3aWR0aD1cIjEzM1wiIHg9XCI0MThcIiB5PVwiMjgzXCIvPjwvYnBtbmRpOkJQTU5T aGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMWlxdDdycFwi IGlkPVwiQXNzb2NpYXRpb25fMWlxdDdycF9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNTAzXCIg eHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyNDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI0 OTNcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjI4M1wiLz48L2JwbW5kaTpCUE1ORWRn ZT48L2JwbW5kaTpCUE1OUGxhbmU+PC9icG1uZGk6QlBNTkRpYWdyYW0+PC9kZWZpbml0aW9ucz4i LCAid29ya2Zsb3dfaWQiOiAiZXhhbXBsZV9zbm93X2NyZWF0ZV9yZWNvcmRfaW5jaWRlbnQiLCAi dmVyc2lvbiI6IDF9LCAibGFzdF9tb2RpZmllZF90aW1lIjogMTU1MDc2Mjg5MTAxNiwgImNyZWF0 b3JfaWQiOiAiYWRtaW5AcmVzLmNvbSIsICJhY3Rpb25zIjogW10sICJwcm9ncmFtbWF0aWNfbmFt ZSI6ICJleGFtcGxlX3Nub3dfY3JlYXRlX3JlY29yZF9pbmNpZGVudCIsICJuYW1lIjogIkV4YW1w bGU6IFNOT1c6IENyZWF0ZSBSZWNvcmQgW0luY2lkZW50XSJ9LCB7InV1aWQiOiAiYzJjM2JmNTQt NDgxMC00NmJkLThhODItMDNlMzFkNjZlNmYwIiwgImRlc2NyaXB0aW9uIjogIkFuIGV4YW1wbGUg d29ya2Zsb3cgdGhhdCB1cGRhdGVzIHRoZSAnU2VydmljZU5vdyBSZWNvcmRzJyBEYXRhIFRhYmxl IHdoZW4gYW4gVGFzayBzdGF0dXMgaXMgY2hhbmdlZC4iLCAib2JqZWN0X3R5cGUiOiAidGFzayIs ICJleHBvcnRfa2V5IjogImV4YW1wbGVfc25vd191cGRhdGVfZGF0YXRhYmxlX29uX3N0YXR1c19j aGFuZ2VfdGFzayIsICJ3b3JrZmxvd19pZCI6IDEsICJsYXN0X21vZGlmaWVkX2J5IjogImludGVn cmF0aW9uc0BleGFtcGxlLmNvbSIsICJjb250ZW50IjogeyJ4bWwiOiAiPD94bWwgdmVyc2lvbj1c IjEuMFwiIGVuY29kaW5nPVwiVVRGLThcIj8+PGRlZmluaXRpb25zIHhtbG5zPVwiaHR0cDovL3d3 dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9NT0RFTFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6 Ly93d3cub21nLm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQvRElcIiB4bWxuczpvbWdkYz1cImh0dHA6 Ly93d3cub21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RDXCIgeG1sbnM6b21nZGk9XCJodHRwOi8v d3d3Lm9tZy5vcmcvc3BlYy9ERC8yMDEwMDUyNC9ESVwiIHhtbG5zOnJlc2lsaWVudD1cImh0dHA6 Ly9yZXNpbGllbnQuaWJtLmNvbS9icG1uXCIgeG1sbnM6eHNkPVwiaHR0cDovL3d3dy53My5vcmcv MjAwMS9YTUxTY2hlbWFcIiB4bWxuczp4c2k9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNj aGVtYS1pbnN0YW5jZVwiIHRhcmdldE5hbWVzcGFjZT1cImh0dHA6Ly93d3cuY2FtdW5kYS5vcmcv dGVzdFwiPjxwcm9jZXNzIGlkPVwiZXhhbXBsZV9zbm93X3VwZGF0ZV9kYXRhdGFibGVfb25fc3Rh dHVzX2NoYW5nZV90YXNrXCIgaXNFeGVjdXRhYmxlPVwidHJ1ZVwiIG5hbWU9XCJFeGFtcGxlOiBT Tk9XOiBVcGRhdGUgRGF0YSBUYWJsZSBvbiBTdGF0dXMgQ2hhbmdlIFtUYXNrXVwiPjxkb2N1bWVu dGF0aW9uPjwhW0NEQVRBW0FuIGV4YW1wbGUgd29ya2Zsb3cgdGhhdCB1cGRhdGVzIHRoZSAnU2Vy dmljZU5vdyBSZWNvcmRzJyBEYXRhIFRhYmxlIHdoZW4gYW4gVGFzayBzdGF0dXMgaXMgY2hhbmdl ZC5dXT48L2RvY3VtZW50YXRpb24+PHN0YXJ0RXZlbnQgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1c Ij48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzF5NjBtMHE8L291dGdvaW5nPjwvc3RhcnRFdmVudD48 ZW5kRXZlbnQgaWQ9XCJFbmRFdmVudF8wNXNkeDBhXCI+PGluY29taW5nPlNlcXVlbmNlRmxvd18x NnNjNDBoPC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZs b3dfMXk2MG0wcVwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJlZj1c IlNlcnZpY2VUYXNrXzFleGQyZHNcIi8+PHNlcnZpY2VUYXNrIGlkPVwiU2VydmljZVRhc2tfMWV4 ZDJkc1wiIG5hbWU9XCJTTk9XIEhlbHBlcjogVXBkYXRlIERhdGEgVGFibGVcIiByZXNpbGllbnQ6 dHlwZT1cImZ1bmN0aW9uXCI+PGV4dGVuc2lvbkVsZW1lbnRzPjxyZXNpbGllbnQ6ZnVuY3Rpb24g dXVpZD1cIjYxMzBjMDgzLTE3ZWEtNDI2Mi05ODZiLThkMDczZDNmNzMyOFwiPntcImlucHV0c1wi Ont9LFwicHJlX3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCIjIEV4YW1wbGU6IFNOT1c6IFVwZGF0ZSBE YXRhdGFibGUgb24gU3RhdHVzIENoYW5nZSBbVGFza11cXG5cXG4jIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyNcXG4jIyMgRGVmaW5lIHByZS1wcm9jZXNzaW5nIGlucHV0cyAjIyNc XG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5cXG4jIEdldCB0aGUgaW5j aWRlbnQgaWRcXG5pbnB1dHMuaW5jaWRlbnRfaWQgPSBpbmNpZGVudC5pZFxcblxcbiMgR2V0IHRo ZSB0YXNrIGlkXFxuaW5wdXRzLnRhc2tfaWQgPSB0YXNrLmlkXFxuXFxuIyBHZXQgdGhlIG5ldyBz dGF0dXMgb2YgdGhlIHRhc2tcXG5pbnB1dHMuc25fcmVzaWxpZW50X3N0YXR1cyA9IHRhc2suc3Rh dHVzXCJ9PC9yZXNpbGllbnQ6ZnVuY3Rpb24+PC9leHRlbnNpb25FbGVtZW50cz48aW5jb21pbmc+ U2VxdWVuY2VGbG93XzF5NjBtMHE8L2luY29taW5nPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMTZz YzQwaDwvb3V0Z29pbmc+PC9zZXJ2aWNlVGFzaz48c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVuY2VG bG93XzE2c2M0MGhcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18xZXhkMmRzXCIgdGFyZ2V0UmVm PVwiRW5kRXZlbnRfMDVzZHgwYVwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlv bl8xcG1zZ3pmXCI+PHRleHQ+PCFbQ0RBVEFbSW5wdXRzOiBpbmNpZGVudF9pZCwgdGFza19pZCwg c25fcmVzaWxpZW50X3N0YXR1c1xuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0 aW9uIGlkPVwiQXNzb2NpYXRpb25fMGp4eDkzalwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFl eGQyZHNcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8xcG1zZ3pmXCIvPjx0ZXh0QW5ub3Rh dGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzBxZTIzb3dcIj48dGV4dD48IVtDREFUQVtVcGRhdGVz IHRoZSBzdGF0dXMgaW4gdGhlIERhdGEgVGFibGVcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9u Pjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzBpc3Y2enRcIiBzb3VyY2VSZWY9XCJTZXJ2 aWNlVGFza18xZXhkMmRzXCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMHFlMjNvd1wiLz48 L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQTU5EaWFncmFtXzFcIj48YnBtbmRp OkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwiIGlkPVwiQlBNTlBsYW5lXzFcIj48 YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIGlkPVwi U3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIzNlwiIHdpZHRo PVwiMzZcIiB4PVwiMjAyXCIgeT1cIjEzNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91 bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjE5N1wiIHk9XCIxNzFcIi8+PC9icG1u ZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxl bWVudD1cIkVuZEV2ZW50XzA1c2R4MGFcIiBpZD1cIkVuZEV2ZW50XzA1c2R4MGFfZGlcIj48b21n ZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI1ODRcIiB5PVwiMTM2XCIv PjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkw XCIgeD1cIjU1N1wiIHk9XCIxNzVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5T aGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzF5NjBtMHFc IiBpZD1cIlNlcXVlbmNlRmxvd18xeTYwbTBxX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIyMzhc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE1NFwiLz48b21nZGk6d2F5cG9pbnQgeD1c IjMwN1wiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTU0XCIvPjxvbWdkaTp3YXlwb2lu dCB4PVwiMzA3XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNTRcIi8+PG9tZ2RpOndh eXBvaW50IHg9XCIzNzRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE1NFwiLz48YnBt bmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9 XCIyNzdcIiB5PVwiMTQ3LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdl PjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tfMWV4ZDJkc1wiIGlk PVwiU2VydmljZVRhc2tfMWV4ZDJkc19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3 aWR0aD1cIjEwMFwiIHg9XCIzNzRcIiB5PVwiMTE0XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBt bmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzE2c2M0MGhcIiBpZD1cIlNl cXVlbmNlRmxvd18xNnNjNDBoX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI0NzRcIiB4c2k6dHlw ZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE1NFwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjUyOVwiIHhz aTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTU0XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNTI5 XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNTRcIi8+PG9tZ2RpOndheXBvaW50IHg9 XCI1ODRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE1NFwiLz48YnBtbmRpOkJQTU5M YWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9XCI0OTlcIiB5 PVwiMTQ3LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6 QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMXBtc2d6ZlwiIGlkPVwiVGV4 dEFubm90YXRpb25fMXBtc2d6Zl9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNTJcIiB3aWR0 aD1cIjExNlwiIHg9XCIxOTBcIiB5PVwiMjhcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6 QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8wanh4OTNqXCIgaWQ9XCJBc3NvY2lh dGlvbl8wanh4OTNqX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIzNzRcIiB4c2k6dHlwZT1cIm9t Z2RjOlBvaW50XCIgeT1cIjEyNlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjI5M1wiIHhzaTp0eXBl PVwib21nZGM6UG9pbnRcIiB5PVwiODBcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1O U2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8wcWUyM293XCIgaWQ9XCJUZXh0QW5u b3RhdGlvbl8wcWUyM293X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI1MlwiIHdpZHRoPVwi MTE0XCIgeD1cIjQ5NlwiIHk9XCIyOFwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1O RWRnZSBicG1uRWxlbWVudD1cIkFzc29jaWF0aW9uXzBpc3Y2enRcIiBpZD1cIkFzc29jaWF0aW9u XzBpc3Y2enRfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjQ2OVwiIHhzaTp0eXBlPVwib21nZGM6 UG9pbnRcIiB5PVwiMTE5XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNTE5XCIgeHNpOnR5cGU9XCJv bWdkYzpQb2ludFwiIHk9XCI4MFwiLz48L2JwbW5kaTpCUE1ORWRnZT48L2JwbW5kaTpCUE1OUGxh bmU+PC9icG1uZGk6QlBNTkRpYWdyYW0+PC9kZWZpbml0aW9ucz4iLCAid29ya2Zsb3dfaWQiOiAi ZXhhbXBsZV9zbm93X3VwZGF0ZV9kYXRhdGFibGVfb25fc3RhdHVzX2NoYW5nZV90YXNrIiwgInZl cnNpb24iOiAxfSwgImxhc3RfbW9kaWZpZWRfdGltZSI6IDE1NTA3NjI4OTA3ODEsICJjcmVhdG9y X2lkIjogImFkbWluQHJlcy5jb20iLCAiYWN0aW9ucyI6IFtdLCAicHJvZ3JhbW1hdGljX25hbWUi OiAiZXhhbXBsZV9zbm93X3VwZGF0ZV9kYXRhdGFibGVfb25fc3RhdHVzX2NoYW5nZV90YXNrIiwg Im5hbWUiOiAiRXhhbXBsZTogU05PVzogVXBkYXRlIERhdGEgVGFibGUgb24gU3RhdHVzIENoYW5n ZSBbVGFza10ifSwgeyJ1dWlkIjogIjBmZDljMjc3LWIwZTUtNDcwZC05NTAwLTA3ZjhmODk4MTlk MSIsICJkZXNjcmlwdGlvbiI6ICJBbiBleGFtcGxlIHdvcmtmbG93IHNob3dpbmcgaG93IHRvIGNs b3NlIGEgUmVjb3JkIGluIFNlcnZpY2VOb3cgZnJvbSBhIFJlc2lsaWVudCBUYXNrLiIsICJvYmpl Y3RfdHlwZSI6ICJ0YXNrIiwgImV4cG9ydF9rZXkiOiAiZXhhbXBsZV9zbm93X2Nsb3NlX3JlY29y ZF90YXNrIiwgIndvcmtmbG93X2lkIjogNSwgImxhc3RfbW9kaWZpZWRfYnkiOiAiaW50ZWdyYXRp b25zQGV4YW1wbGUuY29tIiwgImNvbnRlbnQiOiB7InhtbCI6ICI8P3htbCB2ZXJzaW9uPVwiMS4w XCIgZW5jb2Rpbmc9XCJVVEYtOFwiPz48ZGVmaW5pdGlvbnMgeG1sbnM9XCJodHRwOi8vd3d3Lm9t Zy5vcmcvc3BlYy9CUE1OLzIwMTAwNTI0L01PREVMXCIgeG1sbnM6YnBtbmRpPVwiaHR0cDovL3d3 dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9ESVwiIHhtbG5zOm9tZ2RjPVwiaHR0cDovL3d3 dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQvRENcIiB4bWxuczpvbWdkaT1cImh0dHA6Ly93d3cu b21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RJXCIgeG1sbnM6cmVzaWxpZW50PVwiaHR0cDovL3Jl c2lsaWVudC5pYm0uY29tL2JwbW5cIiB4bWxuczp4c2Q9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAx L1hNTFNjaGVtYVwiIHhtbG5zOnhzaT1cImh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1h LWluc3RhbmNlXCIgdGFyZ2V0TmFtZXNwYWNlPVwiaHR0cDovL3d3dy5jYW11bmRhLm9yZy90ZXN0 XCI+PHByb2Nlc3MgaWQ9XCJleGFtcGxlX3Nub3dfY2xvc2VfcmVjb3JkX3Rhc2tcIiBpc0V4ZWN1 dGFibGU9XCJ0cnVlXCIgbmFtZT1cIkV4YW1wbGU6IFNOT1c6IENsb3NlIFJlY29yZCBbVGFza11c Ij48ZG9jdW1lbnRhdGlvbj5BbiBleGFtcGxlIHdvcmtmbG93IHNob3dpbmcgaG93IHRvIGNsb3Nl IGEgUmVjb3JkIGluIFNlcnZpY2VOb3cgZnJvbSBhIFJlc2lsaWVudCBUYXNrLjwvZG9jdW1lbnRh dGlvbj48c3RhcnRFdmVudCBpZD1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiPjxvdXRnb2luZz5TZXF1 ZW5jZUZsb3dfMGQ5MDViNTwvb3V0Z29pbmc+PC9zdGFydEV2ZW50PjxzZXJ2aWNlVGFzayBpZD1c IlNlcnZpY2VUYXNrXzFya2dsdnNcIiBuYW1lPVwiU05PVzogQ2xvc2UgUmVjb3JkXCIgcmVzaWxp ZW50OnR5cGU9XCJmdW5jdGlvblwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1bmN0 aW9uIHV1aWQ9XCJlZGFkZjk1MS00NjUyLTQ4YTktODA2OC05YjcxOWJmNGJmZTRcIj57XCJpbnB1 dHNcIjp7fSxcInBvc3RfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhhbXBsZTogU05PVzogQ2xv c2UgUmVjb3JkIFtUYXNrXSAtIHBvc3QtcHJvY2Vzc2luZyBzY3JpcHRcXG5cXG5ub3RlX3RleHQg PSBOb25lXFxuXFxuaWYgcmVzdWx0cy5zdWNjZXNzOlxcblxcbiAgbm90ZV90ZXh0ID0gdVxcXCJc XFwiXFxcIiZsdDticiZndDtUaGlzIFRhc2sgaGFzIGJlZW4gQ0xPU0VEIGluICZsdDtiJmd0O1Nl cnZpY2VOb3cmbHQ7L2ImZ3Q7XFxuICAgICAgICAgICAgICAmbHQ7YnImZ3Q7Jmx0O2ImZ3Q7U2Vy dmljZU5vdyBJRDombHQ7L2ImZ3Q7IHswfVxcbiAgICAgICAgICAgICAgJmx0O2JyJmd0OyZsdDti Jmd0O1NlcnZpY2VOb3cgUmVjb3JkIFN0YXRlOiZsdDsvYiZndDsgezF9XFxuICAgICAgICAgICAg ICAmbHQ7YnImZ3Q7Jmx0O2ImZ3Q7U2VydmljZU5vdyBDbG9zaW5nIE5vdGVzOiZsdDsvYiZndDsg ezJ9XFxuICAgICAgICAgICAgICAmbHQ7YnImZ3Q7Jmx0O2ImZ3Q7U2VydmljZU5vdyBDbG9zaW5n IENvZGU6Jmx0Oy9iJmd0OyB7M31cXFwiXFxcIlxcXCIuZm9ybWF0KFxcbiAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgdW5pY29kZShyZXN1bHRzLnNuX3JlZl9pZCksXFxuICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1bmljb2RlKHJlc3VsdHMuc25fcmVj b3JkX3N0YXRlKSxcXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVuaWNv ZGUocmVzdWx0cy5pbnB1dHMuc25fY2xvc2Vfbm90ZXMpLFxcbiAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgdW5pY29kZShyZXN1bHRzLmlucHV0cy5zbl9jbG9zZV9jb2RlKSlc XG5cXG4gIFxcbiAgXFxuZWxzZTpcXG4gIG5vdGVfdGV4dCA9IHVcXFwiXFxcIlxcXCImbHQ7YnIm Z3Q7RmFpbGVkIHRvIGNsb3NlIHRoaXMgVGFzayBpbiAmbHQ7YiZndDtTZXJ2aWNlTm93Jmx0Oy9i Jmd0O1xcbiAgICAgICAgICAgICAgJmx0O2JyJmd0OyZsdDtiJmd0O1JlYXNvbjombHQ7L2ImZ3Q7 IHswfVxcXCJcXFwiXFxcIi5mb3JtYXQodW5pY29kZShyZXN1bHRzLnJlYXNvbikpXFxuICBcXG50 YXNrLmFkZE5vdGUoaGVscGVyLmNyZWF0ZVJpY2hUZXh0KG5vdGVfdGV4dCkpXCIsXCJwcmVfcHJv Y2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhhbXBsZTogU05PVzogQ2xvc2UgUmVjb3JkIFtUYXNrXVxc blxcbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcbiMjIyBEZWZpbmUg cHJlLXByb2Nlc3NpbmcgZnVuY3Rpb25zICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyMjIyMjIyMjI1xcblxcbiMgQSBEaWN0aW9uYXJ5IHRoYXQgbWFwcyBSZWNvcmQgU3RhdGVz IHRvIHRoZWlyIGNvcnJlc3BvbmRpbmcgY29kZXNcXG4jIFRoZXNlIGNvZGVzIGFyZSBkZWZpbmVk IGluIFNlcnZpY2VOb3cgYW5kIG1heSBiZSBkaWZmZXJlbnQgZm9yIGVhY2ggU2VydmljZU5vdyBj b25maWd1cmF0aW9uXFxubWFwX3NuX3JlY29yZF9zdGF0ZXMgPSB7XFxuICBcXFwiTmV3XFxcIjog MSxcXG4gIFxcXCJJbiBQcm9ncmVzc1xcXCI6IDIsXFxuICBcXFwiT24gSG9sZFxcXCI6IDMsXFxu ICBcXFwiUmVzb2x2ZWRcXFwiOiA2LFxcbiAgXFxcIkNsb3NlZFxcXCI6IDcsXFxuICBcXFwiQ2Fu Y2VsZWRcXFwiOiA4XFxufVxcblxcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcbiMjIyBEZWZpbmUg SW5wdXRzICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcblxcbiMgSUQgb2YgdGhpcyBpbmNp ZGVudFxcbmlucHV0cy5pbmNpZGVudF9pZCA9IGluY2lkZW50LmlkXFxuXFxuIyBJRCBvZiB0aGlz IHRhc2tcXG5pbnB1dHMudGFza19pZCA9IHRhc2suaWRcXG5cXG4jIFRoZSBzdGF0ZSB0byBjaGFu Z2UgdGhlIHJlY29yZCB0b1xcbiMgaW5wdXRzLnNuX3JlY29yZF9zdGF0ZSA9IG1hcF9zbl9yZWNv cmRfc3RhdGVzW1xcXCJDbG9zZWRcXFwiXVxcbmlucHV0cy5zbl9yZWNvcmRfc3RhdGUgPSBtYXBf c25fcmVjb3JkX3N0YXRlc1tydWxlLnByb3BlcnRpZXMuc25fcmVjb3JkX3N0YXRlXVxcblxcbiMg VGhlIHJlc29sdXRpb24gbm90ZXMgdGhhdCBhcmUgbm9ybWFsbHkgcmVxdWlyZWQgd2hlbiB5b3Ug Y2xvc2UgYSBTZXJ2aWNlTm93IHJlY29yZFxcbiMgaW5wdXRzLnNuX2Nsb3NlX25vdGVzID0gXFxc IlRoaXMgaW5jaWRlbnQgaGFzIGJlZW4gcmVzb2x2ZWQgaW4gUmVzaWxpZW50LiBObyBmdXJ0aGVy IGFjdGlvbiByZXF1aXJlZFxcXCJcXG5pbnB1dHMuc25fY2xvc2Vfbm90ZXMgPSBydWxlLnByb3Bl cnRpZXMuc25fY2xvc2Vfbm90ZXNcXG5cXG4jIFRoZSBTZXJ2aWNlTm93ICdjbG9zZV9jb2RlJyB0 aGF0IHlvdSBub3JtYWxseSBzZWxlY3Qgd2hlbiBjbG9zaW5nIGEgU2VydmljZU5vdyByZWNvcmRc XG4jIGlucHV0cy5zbl9jbG9zZV9jb2RlID0gXFxcIlNvbHZlZCAoUGVybWFuZW50bHkpXFxcIlxc bmlucHV0cy5zbl9jbG9zZV9jb2RlID0gcnVsZS5wcm9wZXJ0aWVzLnNuX2Nsb3NlX2NvZGVcXG5c XG4jIEFkZCBhIFdvcmsgTm90ZSB0byB0aGUgUmVjb3JkIGluIFNlcnZpY2VOb3dcXG5pbnB1dHMu c25fY2xvc2Vfd29ya19ub3RlID0gdVxcXCJUaGlzIHJlY29yZCdzIHN0YXRlIGhhcyBiZSBjaGFu Z2VkIHRvIHswfSBieSBJQk0gUmVzaWxpZW50XFxcIi5mb3JtYXQodW5pY29kZShydWxlLnByb3Bl cnRpZXMuc25fcmVjb3JkX3N0YXRlKSlcIn08L3Jlc2lsaWVudDpmdW5jdGlvbj48L2V4dGVuc2lv bkVsZW1lbnRzPjxpbmNvbWluZz5TZXF1ZW5jZUZsb3dfMGQ5MDViNTwvaW5jb21pbmc+PG91dGdv aW5nPlNlcXVlbmNlRmxvd18xZ2Q2NnpuPC9vdXRnb2luZz48L3NlcnZpY2VUYXNrPjxlbmRFdmVu dCBpZD1cIkVuZEV2ZW50XzAybXozOW9cIj48aW5jb21pbmc+U2VxdWVuY2VGbG93XzFnZDY2em48 L2luY29taW5nPjwvZW5kRXZlbnQ+PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18xZ2Q2 NnpuXCIgc291cmNlUmVmPVwiU2VydmljZVRhc2tfMXJrZ2x2c1wiIHRhcmdldFJlZj1cIkVuZEV2 ZW50XzAybXozOW9cIi8+PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18wZDkwNWI1XCIg c291cmNlUmVmPVwiU3RhcnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tf MXJrZ2x2c1wiLz48dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8xaGx3MmNtXCI+ PHRleHQ+PCFbQ0RBVEFbSW5wdXRzOlxuXHUwMGEwaW5jaWRlbnRfaWQsIHRhc2tfaWQsXG5cdTAw YTBzbl9yZWNvcmRfc3RhdGUsIHNuX2Nsb3NlX25vdGVzLCBzbl9jbG9zZV9jb2RlXG5dXT48L3Rl eHQ+PC90ZXh0QW5ub3RhdGlvbj48YXNzb2NpYXRpb24gaWQ9XCJBc3NvY2lhdGlvbl8xaWs0cHN6 XCIgc291cmNlUmVmPVwiU2VydmljZVRhc2tfMXJrZ2x2c1wiIHRhcmdldFJlZj1cIlRleHRBbm5v dGF0aW9uXzFobHcyY21cIi8+PHRleHRBbm5vdGF0aW9uIGlkPVwiVGV4dEFubm90YXRpb25fMHJh MHBwOVwiPjx0ZXh0PjwhW0NEQVRBW0Nsb3NlcyBSZWNvcmQgaW4gU2VydmljZU5vdyArIGFkZHMg YSBOb3RlIHRvIFJlc2lsaWVudFxuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0 aW9uIGlkPVwiQXNzb2NpYXRpb25fMTRnYXpqbFwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFy a2dsdnNcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8wcmEwcHA5XCIvPjwvcHJvY2Vzcz48 YnBtbmRpOkJQTU5EaWFncmFtIGlkPVwiQlBNTkRpYWdyYW1fMVwiPjxicG1uZGk6QlBNTlBsYW5l IGJwbW5FbGVtZW50PVwidW5kZWZpbmVkXCIgaWQ9XCJCUE1OUGxhbmVfMVwiPjxicG1uZGk6QlBN TlNoYXBlIGJwbW5FbGVtZW50PVwiU3RhcnRFdmVudF8xNTVhc3htXCIgaWQ9XCJTdGFydEV2ZW50 XzE1NWFzeG1fZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9 XCIyODFcIiB5PVwiMTMyXCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0 PVwiMFwiIHdpZHRoPVwiOTBcIiB4PVwiMjc2XCIgeT1cIjE2N1wiLz48L2JwbW5kaTpCUE1OTGFi ZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2Vy dmljZVRhc2tfMXJrZ2x2c1wiIGlkPVwiU2VydmljZVRhc2tfMXJrZ2x2c19kaVwiPjxvbWdkYzpC b3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1cIjEwMFwiIHg9XCI0MTRcIiB5PVwiMTEwXCIvPjwv YnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50 XzAybXozOW9cIiBpZD1cIkVuZEV2ZW50XzAybXozOW9fZGlcIj48b21nZGM6Qm91bmRzIGhlaWdo dD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI2MjVcIiB5PVwiMTMyXCIvPjxicG1uZGk6QlBNTkxh YmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjU5OFwiIHk9 XCIxNzFcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQ TU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzFnZDY2em5cIiBpZD1cIlNlcXVlbmNl Rmxvd18xZ2Q2NnpuX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI1MTRcIiB4c2k6dHlwZT1cIm9t Z2RjOlBvaW50XCIgeT1cIjE1MFwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjU3MFwiIHhzaTp0eXBl PVwib21nZGM6UG9pbnRcIiB5PVwiMTUwXCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNTcwXCIgeHNp OnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNTBcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI2MjVc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE1MFwiLz48YnBtbmRpOkJQTU5MYWJlbD48 b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9XCI1NDBcIiB5PVwiMTQz LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTkVk Z2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMGQ5MDViNVwiIGlkPVwiU2VxdWVuY2VGbG93 XzBkOTA1YjVfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjMxN1wiIHhzaTp0eXBlPVwib21nZGM6 UG9pbnRcIiB5PVwiMTUwXCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMzY2XCIgeHNpOnR5cGU9XCJv bWdkYzpQb2ludFwiIHk9XCIxNTBcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIzNjZcIiB4c2k6dHlw ZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE1MFwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjQxNFwiIHhz aTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTUwXCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdk YzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjMzNlwiIHk9XCIxNDMuNVwi Lz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1OU2hhcGUg YnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8xaGx3MmNtXCIgaWQ9XCJUZXh0QW5ub3RhdGlv bl8xaGx3MmNtX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI1OVwiIHdpZHRoPVwiMjA2XCIg eD1cIjI0OVwiIHk9XCIyXCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJw bW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMWlrNHBzelwiIGlkPVwiQXNzb2NpYXRpb25fMWlrNHBz el9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNDI2XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwi IHk9XCIxMTBcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIzODBcIiB4c2k6dHlwZT1cIm9tZ2RjOlBv aW50XCIgeT1cIjYxXCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5F bGVtZW50PVwiVGV4dEFubm90YXRpb25fMHJhMHBwOVwiIGlkPVwiVGV4dEFubm90YXRpb25fMHJh MHBwOV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNDlcIiB3aWR0aD1cIjE0N1wiIHg9XCI1 NzJcIiB5PVwiLTJcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVs ZW1lbnQ9XCJBc3NvY2lhdGlvbl8xNGdhempsXCIgaWQ9XCJBc3NvY2lhdGlvbl8xNGdhempsX2Rp XCI+PG9tZ2RpOndheXBvaW50IHg9XCI1MTFcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1c IjExN1wiLz48b21nZGk6d2F5cG9pbnQgeD1cIjYxMlwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRc IiB5PVwiNDdcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PC9icG1uZGk6QlBNTlBsYW5lPjwvYnBtbmRp OkJQTU5EaWFncmFtPjwvZGVmaW5pdGlvbnM+IiwgIndvcmtmbG93X2lkIjogImV4YW1wbGVfc25v d19jbG9zZV9yZWNvcmRfdGFzayIsICJ2ZXJzaW9uIjogMX0sICJsYXN0X21vZGlmaWVkX3RpbWUi OiAxNTUwNzYyODkxNTAzLCAiY3JlYXRvcl9pZCI6ICJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20i LCAiYWN0aW9ucyI6IFtdLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBsZV9zbm93X2Nsb3Nl X3JlY29yZF90YXNrIiwgIm5hbWUiOiAiRXhhbXBsZTogU05PVzogQ2xvc2UgUmVjb3JkIFtUYXNr XSJ9LCB7InV1aWQiOiAiZWIxNjU4MmItNDUyZi00NmNiLWJlMDAtNTJjM2RhMTc0YjJiIiwgImRl c2NyaXB0aW9uIjogIkFuIGV4YW1wbGUgd29ya2Zsb3cgdGhhdCBhZGRzIGEgUmVzaWxpZW50IEF0 dGFjaG1lbnQgdG8gYSBTZXJ2aWNlTm93IFJlY29yZCIsICJvYmplY3RfdHlwZSI6ICJhdHRhY2ht ZW50IiwgImV4cG9ydF9rZXkiOiAiZXhhbXBsZV9zbm93X2FkZF9hdHRhY2htZW50X3RvX3JlY29y ZCIsICJ3b3JrZmxvd19pZCI6IDYsICJsYXN0X21vZGlmaWVkX2J5IjogImludGVncmF0aW9uc0Bl eGFtcGxlLmNvbSIsICJjb250ZW50IjogeyJ4bWwiOiAiPD94bWwgdmVyc2lvbj1cIjEuMFwiIGVu Y29kaW5nPVwiVVRGLThcIj8+PGRlZmluaXRpb25zIHhtbG5zPVwiaHR0cDovL3d3dy5vbWcub3Jn L3NwZWMvQlBNTi8yMDEwMDUyNC9NT0RFTFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQvRElcIiB4bWxuczpvbWdkYz1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0RELzIwMTAwNTI0L0RDXCIgeG1sbnM6b21nZGk9XCJodHRwOi8vd3d3Lm9tZy5v cmcvc3BlYy9ERC8yMDEwMDUyNC9ESVwiIHhtbG5zOnJlc2lsaWVudD1cImh0dHA6Ly9yZXNpbGll bnQuaWJtLmNvbS9icG1uXCIgeG1sbnM6eHNkPVwiaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxT Y2hlbWFcIiB4bWxuczp4c2k9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0 YW5jZVwiIHRhcmdldE5hbWVzcGFjZT1cImh0dHA6Ly93d3cuY2FtdW5kYS5vcmcvdGVzdFwiPjxw cm9jZXNzIGlkPVwiZXhhbXBsZV9zbm93X2FkZF9hdHRhY2htZW50X3RvX3JlY29yZFwiIGlzRXhl Y3V0YWJsZT1cInRydWVcIiBuYW1lPVwiRXhhbXBsZTogU05PVzogQWRkIEF0dGFjaG1lbnQgdG8g UmVjb3JkXCI+PGRvY3VtZW50YXRpb24+QW4gZXhhbXBsZSB3b3JrZmxvdyB0aGF0IGFkZHMgYSBS ZXNpbGllbnQgQXR0YWNobWVudCB0byBhIFNlcnZpY2VOb3cgUmVjb3JkPC9kb2N1bWVudGF0aW9u PjxzdGFydEV2ZW50IGlkPVwiU3RhcnRFdmVudF8xNTVhc3htXCI+PG91dGdvaW5nPlNlcXVlbmNl Rmxvd18xM3BrNm95PC9vdXRnb2luZz48L3N0YXJ0RXZlbnQ+PHNlcnZpY2VUYXNrIGlkPVwiU2Vy dmljZVRhc2tfMWduMmV6MlwiIG5hbWU9XCJTTk9XOiBBZGQgQXR0YWNobWVudCB0byBSZWNvcmRc IiByZXNpbGllbnQ6dHlwZT1cImZ1bmN0aW9uXCI+PGV4dGVuc2lvbkVsZW1lbnRzPjxyZXNpbGll bnQ6ZnVuY3Rpb24gdXVpZD1cIjk3NWIxODA5LTIxMTAtNDIwOC04YzM3LTRiOGJhOWFkMzMxYVwi PntcImlucHV0c1wiOnt9LFwicG9zdF9wcm9jZXNzaW5nX3NjcmlwdFwiOlwiIyBTTiBVdGlsaXRp ZXM6IEV4YW1wbGU6IEFkZCBBdHRhY2htZW50IHRvIFNlcnZpY2VOb3cgUmVjb3JkIHBvc3QtcHJv Y2Vzc2luZyBzY3JpcHRcXG5cXG5pZiByZXN1bHRzLnN1Y2Nlc3M6XFxuXFxuICBub3RlVGV4dCA9 IHVcXFwiXFxcIlxcXCImbHQ7YnImZ3Q7ezB9IGhhcyBhZGRlZCBhbiBhdHRhY2htZW50IHRvICZs dDtiJmd0O1NlcnZpY2VOb3cmbHQ7L2ImZ3Q7XFxuICAgICAgICAgICAgICAmbHQ7YnImZ3Q7Jmx0 O2ImZ3Q7QXR0YWNobWVudCBOYW1lOiZsdDsvYiZndDsgIHsxfVxcbiAgICAgICAgICAgICAgJmx0 O2JyJmd0OyZsdDtiJmd0O1NlcnZpY2VOb3cgSUQ6Jmx0Oy9iJmd0OyAgezJ9XFxcIlxcXCJcXFwi LmZvcm1hdCh1bmljb2RlKHByaW5jaXBhbC5kaXNwbGF5X25hbWUpLCB1bmljb2RlKHJlc3VsdHMu YXR0YWNobWVudF9uYW1lKSwgcmVzdWx0cy5zbl9yZWZfaWQpXFxuXFxuICAjIElmIHRoaXMgaXMg YSB0YXNrIGF0dGFjaG1lbnQsIGFkZCBhIG5vdGUgdG8gdGhlIFRhc2tcXG4gIGlmIHRhc2s6XFxu ICAgIHRhc2suYWRkTm90ZShoZWxwZXIuY3JlYXRlUmljaFRleHQobm90ZVRleHQpKVxcbiAgIyBF bHNlIGFkZCB0aGUgbm90ZSB0byB0aGUgSW5jaWRlbnRcXG4gIGVsc2U6XFxuICAgIGluY2lkZW50 LmFkZE5vdGUoaGVscGVyLmNyZWF0ZVJpY2hUZXh0KG5vdGVUZXh0KSlcIixcInByZV9wcm9jZXNz aW5nX3NjcmlwdFwiOlwiIyBFeGFtcGxlOiBTTk9XOiBBZGQgQXR0YWNobWVudCB0byBSZWNvcmRc XG5cXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG4jIyMgRGVmaW5lIHBy ZS1wcm9jZXNzaW5nIGlucHV0cyAjIyNcXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyNcXG5cXG4jIFRoZSBpZCBvZiB0aGlzIGF0dGFjaG1lbnRcXG5pbnB1dHMuYXR0YWNobWVu dF9pZCA9IGF0dGFjaG1lbnQuaWRcXG5cXG4jIFRoZSBpZCBvZiB0aGlzIGluY2lkZW50XFxuaW5w dXRzLmluY2lkZW50X2lkID0gaW5jaWRlbnQuaWRcXG5cXG4jIElmIHRoaXMgaXMgYSB0YXNrIGF0 dGFjaG1lbnQsIGdldCB0aGUgdGFza0lkXFxuaWYgYXR0YWNobWVudC50eXBlID09ICd0YXNrJzpc XG4gIGlucHV0cy50YXNrX2lkID0gdGFzay5pZFxcblwifTwvcmVzaWxpZW50OmZ1bmN0aW9uPjwv ZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5nPlNlcXVlbmNlRmxvd18xM3BrNm95PC9pbmNvbWlu Zz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzBna3pndDM8L291dGdvaW5nPjwvc2VydmljZVRhc2s+ PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18xM3BrNm95XCIgc291cmNlUmVmPVwiU3Rh cnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMWduMmV6MlwiLz48ZW5k RXZlbnQgaWQ9XCJFbmRFdmVudF8xY2lkd2szXCI+PGluY29taW5nPlNlcXVlbmNlRmxvd18wZ2t6 Z3QzPC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3df MGdremd0M1wiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFnbjJlejJcIiB0YXJnZXRSZWY9XCJF bmRFdmVudF8xY2lkd2szXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzBn Y2l3dzhcIj48dGV4dD48IVtDREFUQVtJbnB1dHM6IGF0dGFjaG1lbnRfaWQsIGluY2lkZW50X2lk L3Rhc2tfaWRcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFz c29jaWF0aW9uXzFsZWRlamxcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18xZ24yZXoyXCIgdGFy Z2V0UmVmPVwiVGV4dEFubm90YXRpb25fMGdjaXd3OFwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJU ZXh0QW5ub3RhdGlvbl8xNmN0ZHZoXCI+PHRleHQ+PCFbQ0RBVEFbU2VuZHMgYXR0YWNobWVudCB0 byBTTk9XICsgYWRkcyBOb3RlIHRvIFJlc2lsaWVudFxuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRp b24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMHM5YXpzb1wiIHNvdXJjZVJlZj1cIlNl cnZpY2VUYXNrXzFnbjJlejJcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8xNmN0ZHZoXCIv PjwvcHJvY2Vzcz48YnBtbmRpOkJQTU5EaWFncmFtIGlkPVwiQlBNTkRpYWdyYW1fMVwiPjxicG1u ZGk6QlBNTlBsYW5lIGJwbW5FbGVtZW50PVwidW5kZWZpbmVkXCIgaWQ9XCJCUE1OUGxhbmVfMVwi PjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU3RhcnRFdmVudF8xNTVhc3htXCIgaWQ9 XCJTdGFydEV2ZW50XzE1NWFzeG1fZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lk dGg9XCIzNlwiIHg9XCIxNjJcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpC b3VuZHMgaGVpZ2h0PVwiMFwiIHdpZHRoPVwiOTBcIiB4PVwiMTU3XCIgeT1cIjIyM1wiLz48L2Jw bW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5F bGVtZW50PVwiU2VydmljZVRhc2tfMWduMmV6MlwiIGlkPVwiU2VydmljZVRhc2tfMWduMmV6Ml9k aVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1cIjEwMFwiIHg9XCIzMjVcIiB5 PVwiMTY2XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50 PVwiU2VxdWVuY2VGbG93XzEzcGs2b3lcIiBpZD1cIlNlcXVlbmNlRmxvd18xM3BrNm95X2RpXCI+ PG9tZ2RpOndheXBvaW50IHg9XCIxOThcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIw NlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjMyNVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5 PVwiMjA2XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3 aWR0aD1cIjBcIiB4PVwiMjYxLjVcIiB5PVwiMTg0XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2Jw bW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzFj aWR3azNcIiBpZD1cIkVuZEV2ZW50XzFjaWR3azNfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1c IjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI1NTdcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVs PjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjBcIiB4PVwiNTc1XCIgeT1cIjIy N1wiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVk Z2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMGdremd0M1wiIGlkPVwiU2VxdWVuY2VGbG93 XzBna3pndDNfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjQyNVwiIHhzaTp0eXBlPVwib21nZGM6 UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNTU3XCIgeHNpOnR5cGU9XCJv bWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBo ZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCI0OTFcIiB5PVwiMTg0XCIvPjwvYnBtbmRpOkJQ TU5MYWJlbD48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1c IlRleHRBbm5vdGF0aW9uXzBnY2l3dzhcIiBpZD1cIlRleHRBbm5vdGF0aW9uXzBnY2l3dzhfZGlc Ij48b21nZGM6Qm91bmRzIGhlaWdodD1cIjQxXCIgd2lkdGg9XCIxNjZcIiB4PVwiMTk0XCIgeT1c Ijk3XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwi QXNzb2NpYXRpb25fMWxlZGVqbFwiIGlkPVwiQXNzb2NpYXRpb25fMWxlZGVqbF9kaVwiPjxvbWdk aTp3YXlwb2ludCB4PVwiMzM5XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNjZcIi8+ PG9tZ2RpOndheXBvaW50IHg9XCIzMTRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjEz OFwiLz48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlRl eHRBbm5vdGF0aW9uXzE2Y3RkdmhcIiBpZD1cIlRleHRBbm5vdGF0aW9uXzE2Y3RkdmhfZGlcIj48 b21nZGM6Qm91bmRzIGhlaWdodD1cIjU5XCIgd2lkdGg9XCIxNjFcIiB4PVwiNDU2XCIgeT1cIjg4 XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiQXNz b2NpYXRpb25fMHM5YXpzb1wiIGlkPVwiQXNzb2NpYXRpb25fMHM5YXpzb19kaVwiPjxvbWdkaTp3 YXlwb2ludCB4PVwiNDI1XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNzlcIi8+PG9t Z2RpOndheXBvaW50IHg9XCI0ODRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE0N1wi Lz48L2JwbW5kaTpCUE1ORWRnZT48L2JwbW5kaTpCUE1OUGxhbmU+PC9icG1uZGk6QlBNTkRpYWdy YW0+PC9kZWZpbml0aW9ucz4iLCAid29ya2Zsb3dfaWQiOiAiZXhhbXBsZV9zbm93X2FkZF9hdHRh Y2htZW50X3RvX3JlY29yZCIsICJ2ZXJzaW9uIjogMX0sICJsYXN0X21vZGlmaWVkX3RpbWUiOiAx NTUwNzYyODkxNjQ3LCAiY3JlYXRvcl9pZCI6ICJhbmdlbGFAcmVzLmNvbSIsICJhY3Rpb25zIjog W10sICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nub3dfYWRkX2F0dGFjaG1lbnRfdG9f cmVjb3JkIiwgIm5hbWUiOiAiRXhhbXBsZTogU05PVzogQWRkIEF0dGFjaG1lbnQgdG8gUmVjb3Jk In0sIHsidXVpZCI6ICI4YzczYjkzZC1lMmJlLTRkZjctYTc4Mi0zM2NhMTA5NmQ4ZDQiLCAiZGVz Y3JpcHRpb24iOiAiQW4gZXhhbXBsZSB3b3JrZmxvdyBzaG93aW5nIGhvdyB0byBhZGQgYSBSZXNp bGllbnQgTm90ZSB0byBhIFNlcnZpY2VOb3cgUmVjb3JkIGFzIGFuIFwiQWRkaXRpb25hbCBDb21t ZW50XCIuIiwgIm9iamVjdF90eXBlIjogIm5vdGUiLCAiZXhwb3J0X2tleSI6ICJleGFtcGxlX3Nu b3dfYWRkX2NvbW1lbnRfdG9fcmVjb3JkIiwgIndvcmtmbG93X2lkIjogNywgImxhc3RfbW9kaWZp ZWRfYnkiOiAiaW50ZWdyYXRpb25zQGV4YW1wbGUuY29tIiwgImNvbnRlbnQiOiB7InhtbCI6ICI8 P3htbCB2ZXJzaW9uPVwiMS4wXCIgZW5jb2Rpbmc9XCJVVEYtOFwiPz48ZGVmaW5pdGlvbnMgeG1s bnM9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9CUE1OLzIwMTAwNTI0L01PREVMXCIgeG1sbnM6 YnBtbmRpPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9ESVwiIHhtbG5z Om9tZ2RjPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQvRENcIiB4bWxuczpv bWdkaT1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RJXCIgeG1sbnM6cmVz aWxpZW50PVwiaHR0cDovL3Jlc2lsaWVudC5pYm0uY29tL2JwbW5cIiB4bWxuczp4c2Q9XCJodHRw Oi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYVwiIHhtbG5zOnhzaT1cImh0dHA6Ly93d3cudzMu b3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlXCIgdGFyZ2V0TmFtZXNwYWNlPVwiaHR0cDovL3d3 dy5jYW11bmRhLm9yZy90ZXN0XCI+PHByb2Nlc3MgaWQ9XCJleGFtcGxlX3Nub3dfYWRkX2NvbW1l bnRfdG9fcmVjb3JkXCIgaXNFeGVjdXRhYmxlPVwidHJ1ZVwiIG5hbWU9XCJFeGFtcGxlOiBTTk9X OiBBZGQgQ29tbWVudCB0byBSZWNvcmRcIj48ZG9jdW1lbnRhdGlvbj48IVtDREFUQVtBbiBleGFt cGxlIHdvcmtmbG93IHNob3dpbmcgaG93IHRvIGFkZCBhIFJlc2lsaWVudCBOb3RlIHRvIGEgU2Vy dmljZU5vdyBSZWNvcmQgYXMgYW4gXCJBZGRpdGlvbmFsIENvbW1lbnRcIi5dXT48L2RvY3VtZW50 YXRpb24+PHN0YXJ0RXZlbnQgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1cIj48b3V0Z29pbmc+U2Vx dWVuY2VGbG93XzFjbmJ4Y2g8L291dGdvaW5nPjwvc3RhcnRFdmVudD48c2VydmljZVRhc2sgaWQ9 XCJTZXJ2aWNlVGFza18xZnQwZW0xXCIgbmFtZT1cIlNOT1c6IEFkZCBOb3RlIHRvIFJlY29yZFwi IHJlc2lsaWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9uRWxlbWVudHM+PHJlc2lsaWVu dDpmdW5jdGlvbiB1dWlkPVwiYzQzZjhjYzEtNWNkYy00MWE2LWE2YjAtZmE1OWRkMzJkZjM2XCI+ e1wiaW5wdXRzXCI6e1wiMTlkNWU4NTQtZGM2NC00M2Q0LTlhMzktN2JlOTE0OTIwYWQ2XCI6e1wi aW5wdXRfdHlwZVwiOlwic3RhdGljXCIsXCJzdGF0aWNfaW5wdXRcIjp7XCJtdWx0aXNlbGVjdF92 YWx1ZVwiOltdLFwic2VsZWN0X3ZhbHVlXCI6XCIzY2I0NDhlMC00OGQyLTRhZmItYjUwOS01OWU5 ZGMxOTE2OGVcIn19fSxcInBvc3RfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhhbXBsZTogU05P VzogQWRkIENvbW1lbnQgdG8gUmVjb3JkIHBvc3QtcHJvY2VzcyBzY3JpcHRcXG5cXG4jIEltcG9y dCBEYXRlXFxuZnJvbSBqYXZhLnV0aWwgaW1wb3J0IERhdGVcXG5cXG4jIEdldCB0aGUgY3VycmVu dCB0aW1lXFxuZHRfbm93ID0gRGF0ZSgpXFxuXFxuIyBQcmVwZW5kIG1lc3NhZ2UgYW5kIHRpbWUg dG8gdGhlIG5vdGVcXG5ub3RlLnRleHQgPSB1XFxcIiZsdDtiJmd0O1NlbnQgdG8gU2VydmljZU5v dyBhdCB7MH0mbHQ7L2ImZ3Q7Jmx0O2JyJmd0O3sxfVxcXCIuZm9ybWF0KGR0X25vdywgdW5pY29k ZShub3RlLnRleHQuY29udGVudCkpXCIsXCJwcmVfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhh bXBsZTogU05PVzogQWRkIENvbW1lbnQgdG8gUmVjb3JkXFxuXFxuIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyMjXFxuIyMjIERlZmluZSBwcmUtcHJvY2Vzc2luZyBpbnB1dHMgIyMj XFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuXFxuIyBUaGUgaWQgb2Yg dGhpcyBpbmNpZGVudFxcbmlucHV0cy5pbmNpZGVudF9pZCA9IGluY2lkZW50LmlkXFxuXFxuIyBJ ZiB0aGlzIGlzIGEgdGFzayBub3RlLCBnZXQgdGhlIHRhc2tJZFxcbmlmIG5vdGUudHlwZSA9PSAn dGFzayc6XFxuICAjIFNldCB0aGUgdGFza19pZFxcbiAgaW5wdXRzLnRhc2tfaWQgPSB0YXNrLmlk XFxuXFxuIyBHZXQgdGhlIHRleHQgb2YgdGhlIG5vdGVcXG5pbnB1dHMuc25fbm90ZV90ZXh0ID0g dW5pY29kZShub3RlLnRleHQuY29udGVudClcIixcInJlc3VsdF9uYW1lXCI6XCJcIn08L3Jlc2ls aWVudDpmdW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRzPjxpbmNvbWluZz5TZXF1ZW5jZUZsb3df MWNuYnhjaDwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVlbmNlRmxvd18xdW1yYzczPC9vdXRnb2lu Zz48L3NlcnZpY2VUYXNrPjxlbmRFdmVudCBpZD1cIkVuZEV2ZW50XzFsbGM5NXVcIj48aW5jb21p bmc+U2VxdWVuY2VGbG93XzF1bXJjNzM8L2luY29taW5nPjwvZW5kRXZlbnQ+PHNlcXVlbmNlRmxv dyBpZD1cIlNlcXVlbmNlRmxvd18xdW1yYzczXCIgc291cmNlUmVmPVwiU2VydmljZVRhc2tfMWZ0 MGVtMVwiIHRhcmdldFJlZj1cIkVuZEV2ZW50XzFsbGM5NXVcIi8+PHNlcXVlbmNlRmxvdyBpZD1c IlNlcXVlbmNlRmxvd18xY25ieGNoXCIgc291cmNlUmVmPVwiU3RhcnRFdmVudF8xNTVhc3htXCIg dGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMWZ0MGVtMVwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJU ZXh0QW5ub3RhdGlvbl8wcGh1ZXFmXCI+PHRleHQ+PCFbQ0RBVEFbSW5wdXRzOiBzbl9ub3RlX3Rl eHQsIHNuX25vdGVfdHlwZSwgaW5jaWRlbnRfaWQvdGFza19pZFxuXV0+PC90ZXh0PjwvdGV4dEFu bm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMTN1YXUxdVwiIHNvdXJjZVJl Zj1cIlNlcnZpY2VUYXNrXzFmdDBlbTFcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8wcGh1 ZXFmXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzA4MjlpaHRcIj48dGV4 dD48IVtDREFUQVtBZGRzIE5vdGUgdG8gU2VydmljZU5vdyBSZWNvcmRcblx1MDBhMGFzIEFkZGl0 aW9uYWwgQ29tbWVudCBhbmQgcHJlcGVuZHMgaW5mbyB0byBSZXNpbGllbnQgTm90ZVxuXV0+PC90 ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMGk5MjNt c1wiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFmdDBlbTFcIiB0YXJnZXRSZWY9XCJUZXh0QW5u b3RhdGlvbl8wODI5aWh0XCIvPjwvcHJvY2Vzcz48YnBtbmRpOkJQTU5EaWFncmFtIGlkPVwiQlBN TkRpYWdyYW1fMVwiPjxicG1uZGk6QlBNTlBsYW5lIGJwbW5FbGVtZW50PVwidW5kZWZpbmVkXCIg aWQ9XCJCUE1OUGxhbmVfMVwiPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU3RhcnRF dmVudF8xNTVhc3htXCIgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1fZGlcIj48b21nZGM6Qm91bmRz IGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCIyMjlcIiB5PVwiMTgwXCIvPjxicG1uZGk6 QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMFwiIHdpZHRoPVwiOTBcIiB4PVwiMjI0 XCIgeT1cIjIxNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1u ZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tfMWZ0MGVtMVwiIGlkPVwiU2Vy dmljZVRhc2tfMWZ0MGVtMV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1c IjEwMFwiIHg9XCI0NjRcIiB5PVwiMTU4XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQ TU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzFsbGM5NXVcIiBpZD1cIkVuZEV2ZW50XzFs bGM5NXVfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI3 NzRcIiB5PVwiMTgwXCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwi MTNcIiB3aWR0aD1cIjkwXCIgeD1cIjc0N1wiIHk9XCIyMTlcIi8+PC9icG1uZGk6QlBNTkxhYmVs PjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVu Y2VGbG93XzF1bXJjNzNcIiBpZD1cIlNlcXVlbmNlRmxvd18xdW1yYzczX2RpXCI+PG9tZ2RpOndh eXBvaW50IHg9XCI1NjRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE5OFwiLz48b21n ZGk6d2F5cG9pbnQgeD1cIjc3NFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTk4XCIv PjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkw XCIgeD1cIjYyNFwiIHk9XCIxNzYuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBN TkVkZ2U+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18xY25ieGNo XCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMWNuYnhjaF9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMjY1 XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxOThcIi8+PG9tZ2RpOndheXBvaW50IHg9 XCI0NjRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE5OFwiLz48YnBtbmRpOkJQTU5M YWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCI5MFwiIHg9XCIzMTkuNVwi IHk9XCIxNzYuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5k aTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8wcGh1ZXFmXCIgaWQ9XCJU ZXh0QW5ub3RhdGlvbl8wcGh1ZXFmX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI1NVwiIHdp ZHRoPVwiMTI3XCIgeD1cIjMyOVwiIHk9XCI3MFwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5k aTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIkFzc29jaWF0aW9uXzEzdWF1MXVcIiBpZD1cIkFzc29j aWF0aW9uXzEzdWF1MXVfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjQ3MVwiIHhzaTp0eXBlPVwi b21nZGM6UG9pbnRcIiB5PVwiMTYxXCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNDI2XCIgeHNpOnR5 cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxMjVcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpC UE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8wODI5aWh0XCIgaWQ9XCJUZXh0 QW5ub3RhdGlvbl8wODI5aWh0X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI2MFwiIHdpZHRo PVwiMjM5XCIgeD1cIjU1N1wiIHk9XCI2OFwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpC UE1ORWRnZSBicG1uRWxlbWVudD1cIkFzc29jaWF0aW9uXzBpOTIzbXNcIiBpZD1cIkFzc29jaWF0 aW9uXzBpOTIzbXNfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjU2NFwiIHhzaTp0eXBlPVwib21n ZGM6UG9pbnRcIiB5PVwiMTY4XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNjMwXCIgeHNpOnR5cGU9 XCJvbWdkYzpQb2ludFwiIHk9XCIxMjhcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PC9icG1uZGk6QlBN TlBsYW5lPjwvYnBtbmRpOkJQTU5EaWFncmFtPjwvZGVmaW5pdGlvbnM+IiwgIndvcmtmbG93X2lk IjogImV4YW1wbGVfc25vd19hZGRfY29tbWVudF90b19yZWNvcmQiLCAidmVyc2lvbiI6IDF9LCAi bGFzdF9tb2RpZmllZF90aW1lIjogMTU1MDc2Mjg5MTc3OSwgImNyZWF0b3JfaWQiOiAiYWRtaW5A cmVzLmNvbSIsICJhY3Rpb25zIjogW10sICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nu b3dfYWRkX2NvbW1lbnRfdG9fcmVjb3JkIiwgIm5hbWUiOiAiRXhhbXBsZTogU05PVzogQWRkIENv bW1lbnQgdG8gUmVjb3JkIn0sIHsidXVpZCI6ICIyZTQzNzQ0Ni05ZWM1LTQ0ZTAtOTFmZC03MmYx OGM2YTAyMGMiLCAiZGVzY3JpcHRpb24iOiAiQW4gZXhhbXBsZSB3b3JrZmxvdyB0aGF0IHVwZGF0 ZXMgdGhlICdTZXJ2aWNlTm93IFJlY29yZHMnIERhdGEgVGFibGUgd2hlbiBhbiBJbmNpZGVudCBz dGF0dXMgaXMgY2hhbmdlZC4iLCAib2JqZWN0X3R5cGUiOiAiaW5jaWRlbnQiLCAiZXhwb3J0X2tl eSI6ICJleGFtcGxlX3Nub3dfdXBkYXRlX2RhdGF0YWJsZV9vbl9zdGF0dXNfY2hhbmdlX2luY2lk ZW50IiwgIndvcmtmbG93X2lkIjogOCwgImxhc3RfbW9kaWZpZWRfYnkiOiAiaW50ZWdyYXRpb25z QGV4YW1wbGUuY29tIiwgImNvbnRlbnQiOiB7InhtbCI6ICI8P3htbCB2ZXJzaW9uPVwiMS4wXCIg ZW5jb2Rpbmc9XCJVVEYtOFwiPz48ZGVmaW5pdGlvbnMgeG1sbnM9XCJodHRwOi8vd3d3Lm9tZy5v cmcvc3BlYy9CUE1OLzIwMTAwNTI0L01PREVMXCIgeG1sbnM6YnBtbmRpPVwiaHR0cDovL3d3dy5v bWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9ESVwiIHhtbG5zOm9tZ2RjPVwiaHR0cDovL3d3dy5v bWcub3JnL3NwZWMvREQvMjAxMDA1MjQvRENcIiB4bWxuczpvbWdkaT1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0RELzIwMTAwNTI0L0RJXCIgeG1sbnM6cmVzaWxpZW50PVwiaHR0cDovL3Jlc2ls aWVudC5pYm0uY29tL2JwbW5cIiB4bWxuczp4c2Q9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hN TFNjaGVtYVwiIHhtbG5zOnhzaT1cImh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hLWlu c3RhbmNlXCIgdGFyZ2V0TmFtZXNwYWNlPVwiaHR0cDovL3d3dy5jYW11bmRhLm9yZy90ZXN0XCI+ PHByb2Nlc3MgaWQ9XCJleGFtcGxlX3Nub3dfdXBkYXRlX2RhdGF0YWJsZV9vbl9zdGF0dXNfY2hh bmdlX2luY2lkZW50XCIgaXNFeGVjdXRhYmxlPVwidHJ1ZVwiIG5hbWU9XCJFeGFtcGxlOiBTTk9X OiBVcGRhdGUgRGF0YSBUYWJsZSBvbiBTdGF0dXMgQ2hhbmdlIFtJbmNpZGVudF1cIj48ZG9jdW1l bnRhdGlvbj48IVtDREFUQVtBbiBleGFtcGxlIHdvcmtmbG93IHRoYXQgdXBkYXRlcyB0aGUgJ1Nl cnZpY2VOb3cgUmVjb3JkcycgRGF0YSBUYWJsZSB3aGVuIGFuIEluY2lkZW50IHN0YXR1cyBpcyBj aGFuZ2VkLl1dPjwvZG9jdW1lbnRhdGlvbj48c3RhcnRFdmVudCBpZD1cIlN0YXJ0RXZlbnRfMTU1 YXN4bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMGpiZnF4Zzwvb3V0Z29pbmc+PC9zdGFydEV2 ZW50PjxlbmRFdmVudCBpZD1cIkVuZEV2ZW50XzEybWR2dGRcIj48aW5jb21pbmc+U2VxdWVuY2VG bG93XzB1bDZpa3A8L2luY29taW5nPjwvZW5kRXZlbnQ+PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVl bmNlRmxvd18wamJmcXhnXCIgc291cmNlUmVmPVwiU3RhcnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0 UmVmPVwiU2VydmljZVRhc2tfMDJpODdrdlwiLz48c2VydmljZVRhc2sgaWQ9XCJTZXJ2aWNlVGFz a18wMmk4N2t2XCIgbmFtZT1cIlNOIFV0aWxpdGllczogVXBkYXRlIERhdGF0YWJsZVwiIHJlc2ls aWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9uRWxlbWVudHM+PHJlc2lsaWVudDpmdW5j dGlvbiB1dWlkPVwiNjEzMGMwODMtMTdlYS00MjYyLTk4NmItOGQwNzNkM2Y3MzI4XCI+e1wiaW5w dXRzXCI6e30sXCJwcmVfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhhbXBsZTogU05PVzogVXBk YXRlIERhdGEgVGFibGUgb24gU3RhdHVzIENoYW5nZSBbSW5jaWRlbnRdXFxuXFxuIyMjIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuIyMjIERlZmluZSBwcmUtcHJvY2Vzc2luZyBp bnB1dHMgIyMjXFxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXFxuXFxuIyBH ZXQgdGhlIGluY2lkZW50IGlkXFxuaW5wdXRzLmluY2lkZW50X2lkID0gaW5jaWRlbnQuaWRcXG5c XG4jIEdldCB0aGUgbmV3IHN0YXR1cyBvZiB0aGUgaW5jaWRlbnRcXG5pbnB1dHMuc25fcmVzaWxp ZW50X3N0YXR1cyA9IGluY2lkZW50LnBsYW5fc3RhdHVzXCJ9PC9yZXNpbGllbnQ6ZnVuY3Rpb24+ PC9leHRlbnNpb25FbGVtZW50cz48aW5jb21pbmc+U2VxdWVuY2VGbG93XzBqYmZxeGc8L2luY29t aW5nPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMHVsNmlrcDwvb3V0Z29pbmc+PC9zZXJ2aWNlVGFz az48c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzB1bDZpa3BcIiBzb3VyY2VSZWY9XCJT ZXJ2aWNlVGFza18wMmk4N2t2XCIgdGFyZ2V0UmVmPVwiRW5kRXZlbnRfMTJtZHZ0ZFwiLz48dGV4 dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8wcjBocTRuXCI+PHRleHQ+PCFbQ0RBVEFb SW5wdXRzOiBpbmNpZGVudF9pZCwgc25fcmVzaWxpZW50X3N0YXR1c1xuXV0+PC90ZXh0PjwvdGV4 dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMG43YWNyaFwiIHNvdXJj ZVJlZj1cIlNlcnZpY2VUYXNrXzAyaTg3a3ZcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8w cjBocTRuXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzA5bnZqMzBcIj48 dGV4dD48IVtDREFUQVtVcGRhdGVzIHRoZSBzdGF0dXMgaW4gdGhlIERhdGEgVGFibGVcbl1dPjwv dGV4dD48L3RleHRBbm5vdGF0aW9uPjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzFvbjJw ejBcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18wMmk4N2t2XCIgdGFyZ2V0UmVmPVwiVGV4dEFu bm90YXRpb25fMDludmozMFwiLz48L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQ TU5EaWFncmFtXzFcIj48YnBtbmRpOkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwi IGlkPVwiQlBNTlBsYW5lXzFcIj48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0 RXZlbnRfMTU1YXN4bVwiIGlkPVwiU3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5k cyBoZWlnaHQ9XCIzNlwiIHdpZHRoPVwiMzZcIiB4PVwiMTYyXCIgeT1cIjE4OFwiLz48YnBtbmRp OkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjE1 N1wiIHk9XCIyMjNcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBt bmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzEybWR2dGRcIiBpZD1cIkVuZEV2 ZW50XzEybWR2dGRfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwi IHg9XCI1MzhcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVp Z2h0PVwiMTNcIiB3aWR0aD1cIjBcIiB4PVwiNTU2XCIgeT1cIjIyN1wiLz48L2JwbW5kaTpCUE1O TGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJT ZXF1ZW5jZUZsb3dfMGpiZnF4Z1wiIGlkPVwiU2VxdWVuY2VGbG93XzBqYmZxeGdfZGlcIj48b21n ZGk6d2F5cG9pbnQgeD1cIjE5OFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIv PjxvbWdkaTp3YXlwb2ludCB4PVwiMzE3XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIy MDZcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRo PVwiMFwiIHg9XCIyNTcuNVwiIHk9XCIxODQuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1u ZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJTZXJ2aWNlVGFza18w Mmk4N2t2XCIgaWQ9XCJTZXJ2aWNlVGFza18wMmk4N2t2X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWln aHQ9XCI4MFwiIHdpZHRoPVwiMTAwXCIgeD1cIjMxN1wiIHk9XCIxNjZcIi8+PC9icG1uZGk6QlBN TlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMHVsNmlr cFwiIGlkPVwiU2VxdWVuY2VGbG93XzB1bDZpa3BfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjQx N1wiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4 PVwiNTM4XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PGJwbW5kaTpCUE1O TGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCI0NzcuNVwi IHk9XCIxODRcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6 QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMHIwaHE0blwiIGlkPVwiVGV4 dEFubm90YXRpb25fMHIwaHE0bl9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNTNcIiB3aWR0 aD1cIjEyNlwiIHg9XCIxOTVcIiB5PVwiODFcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6 QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8wbjdhY3JoXCIgaWQ9XCJBc3NvY2lh dGlvbl8wbjdhY3JoX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIzMjVcIiB4c2k6dHlwZT1cIm9t Z2RjOlBvaW50XCIgeT1cIjE2OFwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjI4N1wiIHhzaTp0eXBl PVwib21nZGM6UG9pbnRcIiB5PVwiMTM0XCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBN TlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMDludmozMFwiIGlkPVwiVGV4dEFu bm90YXRpb25fMDludmozMF9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNDVcIiB3aWR0aD1c IjEzMlwiIHg9XCI0MjVcIiB5PVwiNzhcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBN TkVkZ2UgYnBtbkVsZW1lbnQ9XCJBc3NvY2lhdGlvbl8xb24ycHowXCIgaWQ9XCJBc3NvY2lhdGlv bl8xb24ycHowX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCI0MTBcIiB4c2k6dHlwZT1cIm9tZ2Rj OlBvaW50XCIgeT1cIjE2OVwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjQ2NVwiIHhzaTp0eXBlPVwi b21nZGM6UG9pbnRcIiB5PVwiMTIzXCIvPjwvYnBtbmRpOkJQTU5FZGdlPjwvYnBtbmRpOkJQTU5Q bGFuZT48L2JwbW5kaTpCUE1ORGlhZ3JhbT48L2RlZmluaXRpb25zPiIsICJ3b3JrZmxvd19pZCI6 ICJleGFtcGxlX3Nub3dfdXBkYXRlX2RhdGF0YWJsZV9vbl9zdGF0dXNfY2hhbmdlX2luY2lkZW50 IiwgInZlcnNpb24iOiAxfSwgImxhc3RfbW9kaWZpZWRfdGltZSI6IDE1NTA3NjI4OTE5NjUsICJj cmVhdG9yX2lkIjogImFkbWluQHJlcy5jb20iLCAiYWN0aW9ucyI6IFtdLCAicHJvZ3JhbW1hdGlj X25hbWUiOiAiZXhhbXBsZV9zbm93X3VwZGF0ZV9kYXRhdGFibGVfb25fc3RhdHVzX2NoYW5nZV9p bmNpZGVudCIsICJuYW1lIjogIkV4YW1wbGU6IFNOT1c6IFVwZGF0ZSBEYXRhIFRhYmxlIG9uIFN0 YXR1cyBDaGFuZ2UgW0luY2lkZW50XSJ9LCB7InV1aWQiOiAiZWNjMGUzMDktM2VkNC00NDBhLWE0 OTItMTVmNjU2YTMxMDg2IiwgImRlc2NyaXB0aW9uIjogIkFuIGV4YW1wbGUgd29ya2Zsb3cgc2hv d2luZyBob3cgdG8gY2xvc2UgYSBSZWNvcmQgaW4gU2VydmljZU5vdyBmcm9tIGEgUmVzaWxpZW50 IEluY2lkZW50LiIsICJvYmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJleHBvcnRfa2V5IjogImV4 YW1wbGVfc25vd19jbG9zZV9yZWNvcmRfaW5jaWRlbnQiLCAid29ya2Zsb3dfaWQiOiAxMCwgImxh c3RfbW9kaWZpZWRfYnkiOiAiaW50ZWdyYXRpb25zQGV4YW1wbGUuY29tIiwgImNvbnRlbnQiOiB7 InhtbCI6ICI8P3htbCB2ZXJzaW9uPVwiMS4wXCIgZW5jb2Rpbmc9XCJVVEYtOFwiPz48ZGVmaW5p dGlvbnMgeG1sbnM9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9CUE1OLzIwMTAwNTI0L01PREVM XCIgeG1sbnM6YnBtbmRpPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9E SVwiIHhtbG5zOm9tZ2RjPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQvRENc IiB4bWxuczpvbWdkaT1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RJXCIg eG1sbnM6cmVzaWxpZW50PVwiaHR0cDovL3Jlc2lsaWVudC5pYm0uY29tL2JwbW5cIiB4bWxuczp4 c2Q9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYVwiIHhtbG5zOnhzaT1cImh0dHA6 Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlXCIgdGFyZ2V0TmFtZXNwYWNlPVwi aHR0cDovL3d3dy5jYW11bmRhLm9yZy90ZXN0XCI+PHByb2Nlc3MgaWQ9XCJleGFtcGxlX3Nub3df Y2xvc2VfcmVjb3JkX2luY2lkZW50XCIgaXNFeGVjdXRhYmxlPVwidHJ1ZVwiIG5hbWU9XCJFeGFt cGxlOiBTTk9XOiBDbG9zZSBSZWNvcmQgW0luY2lkZW50XVwiPjxkb2N1bWVudGF0aW9uPkFuIGV4 YW1wbGUgd29ya2Zsb3cgc2hvd2luZyBob3cgdG8gY2xvc2UgYSBSZWNvcmQgaW4gU2VydmljZU5v dyBmcm9tIGEgUmVzaWxpZW50IEluY2lkZW50LjwvZG9jdW1lbnRhdGlvbj48c3RhcnRFdmVudCBp ZD1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMHp3cHkzbDwv b3V0Z29pbmc+PC9zdGFydEV2ZW50PjxzZXJ2aWNlVGFzayBpZD1cIlNlcnZpY2VUYXNrXzBnZTNv ZzhcIiBuYW1lPVwiU05PVzogQ2xvc2UgUmVjb3JkXCIgcmVzaWxpZW50OnR5cGU9XCJmdW5jdGlv blwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1bmN0aW9uIHV1aWQ9XCJlZGFkZjk1 MS00NjUyLTQ4YTktODA2OC05YjcxOWJmNGJmZTRcIj57XCJpbnB1dHNcIjp7fSxcInBvc3RfcHJv Y2Vzc2luZ19zY3JpcHRcIjpcIiMgU04gVXRpbGl0aWVzOiBDbG9zZSBJbmNpZGVudCBpbiBTZXJ2 aWNlTm93IHBvc3QtcHJvY2Vzc2luZyBzY3JpcHRcXG5cXG5ub3RlX3RleHQgPSBOb25lXFxuXFxu aWYgcmVzdWx0cy5zdWNjZXNzOlxcblxcbiAgbm90ZV90ZXh0ID0gdVxcXCJcXFwiXFxcIiZsdDti ciZndDtUaGlzIEluY2lkZW50IGhhcyBiZWVuIENMT1NFRCBpbiAmbHQ7YiZndDtTZXJ2aWNlTm93 Jmx0Oy9iJmd0O1xcbiAgICAgICAgICAgICAgJmx0O2JyJmd0OyZsdDtiJmd0O1NlcnZpY2VOb3cg SUQ6Jmx0Oy9iJmd0OyB7MH1cXG4gICAgICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtTZXJ2 aWNlTm93IFJlY29yZCBTdGF0ZTombHQ7L2ImZ3Q7IHsxfVxcbiAgICAgICAgICAgICAgJmx0O2Jy Jmd0OyZsdDtiJmd0O1NlcnZpY2VOb3cgQ2xvc2luZyBOb3RlczombHQ7L2ImZ3Q7IHsyfVxcbiAg ICAgICAgICAgICAgJmx0O2JyJmd0OyZsdDtiJmd0O1NlcnZpY2VOb3cgQ2xvc2luZyBDb2RlOiZs dDsvYiZndDsgezN9XFxcIlxcXCJcXFwiLmZvcm1hdChcXG4gICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgIHVuaWNvZGUocmVzdWx0cy5zbl9yZWZfaWQpLFxcbiAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgdW5pY29kZShyZXN1bHRzLnNuX3JlY29yZF9zdGF0 ZSksXFxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1bmljb2RlKHJlc3Vs dHMuaW5wdXRzLnNuX2Nsb3NlX25vdGVzKSxcXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgIHVuaWNvZGUocmVzdWx0cy5pbnB1dHMuc25fY2xvc2VfY29kZSkpXFxuXFxuZWxz ZTpcXG4gIG5vdGVfdGV4dCA9IHVcXFwiXFxcIlxcXCImbHQ7YnImZ3Q7RmFpbGVkIHRvIGNsb3Nl IHRoaXMgSW5jaWRlbnQgaW4gJmx0O2ImZ3Q7U2VydmljZU5vdyZsdDsvYiZndDtcXG4gICAgICAg ICAgICAgICZsdDticiZndDsmbHQ7YiZndDtSZWFzb246Jmx0Oy9iJmd0OyB7MH1cXFwiXFxcIlxc XCIuZm9ybWF0KHVuaWNvZGUocmVzdWx0cy5yZWFzb24pKVxcbiAgXFxuaW5jaWRlbnQuYWRkTm90 ZShoZWxwZXIuY3JlYXRlUmljaFRleHQobm90ZV90ZXh0KSlcIixcInByZV9wcm9jZXNzaW5nX3Nj cmlwdFwiOlwiIyBFeGFtcGxlOiBTTk9XOiBDbG9zZSBSZWNvcmQgW0luY2lkZW50XVxcblxcbiMj IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcbiMjIyBEZWZpbmUgcHJlLXBy b2Nlc3NpbmcgZnVuY3Rpb25zICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyMjI1xcblxcbiMgQSBEaWN0aW9uYXJ5IHRoYXQgbWFwcyBSZWNvcmQgU3RhdGVzIHRvIHRo ZWlyIGNvcnJlc3BvbmRpbmcgY29kZXNcXG4jIFRoZXNlIGNvZGVzIGFyZSBkZWZpbmVkIGluIFNl cnZpY2VOb3cgYW5kIG1heSBiZSBkaWZmZXJlbnQgZm9yIGVhY2ggU2VydmljZU5vdyBjb25maWd1 cmF0aW9uXFxubWFwX3NuX3JlY29yZF9zdGF0ZXMgPSB7XFxuICBcXFwiTmV3XFxcIjogMSxcXG4g IFxcXCJJbiBQcm9ncmVzc1xcXCI6IDIsXFxuICBcXFwiT24gSG9sZFxcXCI6IDMsXFxuICBcXFwi UmVzb2x2ZWRcXFwiOiA2LFxcbiAgXFxcIkNsb3NlZFxcXCI6IDcsXFxuICBcXFwiQ2FuY2VsZWRc XFwiOiA4XFxufVxcblxcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcbiMjIyBEZWZpbmUgSW5wdXRz ICMjI1xcbiMjIyMjIyMjIyMjIyMjIyMjIyMjI1xcblxcbiMgSUQgb2YgdGhpcyBpbmNpZGVudFxc bmlucHV0cy5pbmNpZGVudF9pZCA9IGluY2lkZW50LmlkXFxuXFxuIyBUaGUgc3RhdGUgdG8gY2hh bmdlIHRoZSByZWNvcmQgdG9cXG4jIGlucHV0cy5zbl9yZWNvcmRfc3RhdGUgPSBtYXBfc25fcmVj b3JkX3N0YXRlc1tcXFwiQ2xvc2VkXFxcIl1cXG5pbnB1dHMuc25fcmVjb3JkX3N0YXRlID0gbWFw X3NuX3JlY29yZF9zdGF0ZXNbcnVsZS5wcm9wZXJ0aWVzLnNuX3JlY29yZF9zdGF0ZV1cXG5cXG4j IFRoZSByZXNvbHV0aW9uIG5vdGVzIHRoYXQgYXJlIG5vcm1hbGx5IHJlcXVpcmVkIHdoZW4geW91 IGNsb3NlIGEgU2VydmljZU5vdyByZWNvcmRcXG4jIGlucHV0cy5zbl9jbG9zZV9ub3RlcyA9IFxc XCJUaGlzIGluY2lkZW50IGhhcyBiZWVuIHJlc29sdmVkIGluIFJlc2lsaWVudC4gTm8gZnVydGhl ciBhY3Rpb24gcmVxdWlyZWRcXFwiXFxuaW5wdXRzLnNuX2Nsb3NlX25vdGVzID0gcnVsZS5wcm9w ZXJ0aWVzLnNuX2Nsb3NlX25vdGVzXFxuXFxuIyBUaGUgU2VydmljZU5vdyAnY2xvc2VfY29kZScg dGhhdCB5b3Ugbm9ybWFsbHkgc2VsZWN0IHdoZW4gY2xvc2luZyBhIFNlcnZpY2VOb3cgcmVjb3Jk XFxuIyBpbnB1dHMuc25fY2xvc2VfY29kZSA9IFxcXCJTb2x2ZWQgKFBlcm1hbmVudGx5KVxcXCJc XG5pbnB1dHMuc25fY2xvc2VfY29kZSA9IHJ1bGUucHJvcGVydGllcy5zbl9jbG9zZV9jb2RlXFxu XFxuIyBBZGQgYSBXb3JrIE5vdGUgdG8gdGhlIFJlY29yZCBpbiBTZXJ2aWNlTm93XFxuaW5wdXRz LnNuX2Nsb3NlX3dvcmtfbm90ZSA9IHVcXFwiVGhpcyByZWNvcmQncyBzdGF0ZSBoYXMgYmUgY2hh bmdlZCB0byB7MH0gYnkgSUJNIFJlc2lsaWVudFxcXCIuZm9ybWF0KHVuaWNvZGUocnVsZS5wcm9w ZXJ0aWVzLnNuX3JlY29yZF9zdGF0ZSkpXCJ9PC9yZXNpbGllbnQ6ZnVuY3Rpb24+PC9leHRlbnNp b25FbGVtZW50cz48aW5jb21pbmc+U2VxdWVuY2VGbG93XzB6d3B5M2w8L2luY29taW5nPjxvdXRn b2luZz5TZXF1ZW5jZUZsb3dfMG1hc2U5cTwvb3V0Z29pbmc+PC9zZXJ2aWNlVGFzaz48ZW5kRXZl bnQgaWQ9XCJFbmRFdmVudF8wb3oxbXZ3XCI+PGluY29taW5nPlNlcXVlbmNlRmxvd18wbWFzZTlx PC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMG1h c2U5cVwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzBnZTNvZzhcIiB0YXJnZXRSZWY9XCJFbmRF dmVudF8wb3oxbXZ3XCIvPjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMHp3cHkzbFwi IHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJlZj1cIlNlcnZpY2VUYXNr XzBnZTNvZzhcIi8+PHRleHRBbm5vdGF0aW9uIGlkPVwiVGV4dEFubm90YXRpb25fMXljeWY5elwi Pjx0ZXh0PjwhW0NEQVRBW0lucHV0czogaW5jaWRlbnRfaWQsIHNuX3JlY29yZF9zdGF0ZSwgc25f Y2xvc2Vfbm90ZXMsIHNuX2Nsb3NlX2NvZGVcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9uPjxh c3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzBqcjA0Z3dcIiBzb3VyY2VSZWY9XCJTZXJ2aWNl VGFza18wZ2Uzb2c4XCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMXljeWY5elwiLz48dGV4 dEFubm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8xeDl5azBsXCI+PHRleHQ+PCFbQ0RBVEFb Q2xvc2VzIHRoZSBSZWNvcmQgaW4gU2VydmljZU5vdyArIGFkZHMgYSBOb3RlIHRvIFJlc2lsaWVu dFxuXHUwMGEwYW5kIGEgV29yayBOb3RlIHRvIHRoZSBTZXJ2aWNlTm93IFJlY29yZFxuXV0+PC90 ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMHc3YmV0 ZVwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzBnZTNvZzhcIiB0YXJnZXRSZWY9XCJUZXh0QW5u b3RhdGlvbl8xeDl5azBsXCIvPjwvcHJvY2Vzcz48YnBtbmRpOkJQTU5EaWFncmFtIGlkPVwiQlBN TkRpYWdyYW1fMVwiPjxicG1uZGk6QlBNTlBsYW5lIGJwbW5FbGVtZW50PVwidW5kZWZpbmVkXCIg aWQ9XCJCUE1OUGxhbmVfMVwiPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU3RhcnRF dmVudF8xNTVhc3htXCIgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1fZGlcIj48b21nZGM6Qm91bmRz IGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCIxNjJcIiB5PVwiMTg4XCIvPjxicG1uZGk6 QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMFwiIHdpZHRoPVwiOTBcIiB4PVwiMTU3 XCIgeT1cIjIyM1wiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1u ZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiU2VydmljZVRhc2tfMGdlM29nOFwiIGlkPVwiU2Vy dmljZVRhc2tfMGdlM29nOF9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1c IjEwMFwiIHg9XCIzMjRcIiB5PVwiMTY2XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQ TU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzBvejFtdndcIiBpZD1cIkVuZEV2ZW50XzBv ejFtdndfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI1 MDNcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwi MTNcIiB3aWR0aD1cIjBcIiB4PVwiNTIxXCIgeT1cIjIyN1wiLz48L2JwbW5kaTpCUE1OTGFiZWw+ PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5j ZUZsb3dfMG1hc2U5cVwiIGlkPVwiU2VxdWVuY2VGbG93XzBtYXNlOXFfZGlcIj48b21nZGk6d2F5 cG9pbnQgeD1cIjQyNFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdk aTp3YXlwb2ludCB4PVwiNTAzXCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+ PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwi IHg9XCI0NjMuNVwiIHk9XCIxODRcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5F ZGdlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMHp3cHkzbFwi IGlkPVwiU2VxdWVuY2VGbG93XzB6d3B5M2xfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE5OFwi IHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwi MzI0XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PGJwbW5kaTpCUE1OTGFi ZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCIyNjFcIiB5PVwi MTg0XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5T aGFwZSBicG1uRWxlbWVudD1cIlRleHRBbm5vdGF0aW9uXzF5Y3lmOXpcIiBpZD1cIlRleHRBbm5v dGF0aW9uXzF5Y3lmOXpfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjY4XCIgd2lkdGg9XCIx NDRcIiB4PVwiMjExXCIgeT1cIjYzXCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5F ZGdlIGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMGpyMDRnd1wiIGlkPVwiQXNzb2NpYXRpb25f MGpyMDRnd19kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMzQxXCIgeHNpOnR5cGU9XCJvbWdkYzpQ b2ludFwiIHk9XCIxNjZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIzMTJcIiB4c2k6dHlwZT1cIm9t Z2RjOlBvaW50XCIgeT1cIjEzMVwiLz48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5TaGFw ZSBicG1uRWxlbWVudD1cIlRleHRBbm5vdGF0aW9uXzF4OXlrMGxcIiBpZD1cIlRleHRBbm5vdGF0 aW9uXzF4OXlrMGxfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjgyXCIgd2lkdGg9XCIxODBc IiB4PVwiNDcyXCIgeT1cIjY3XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdl IGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMHc3YmV0ZVwiIGlkPVwiQXNzb2NpYXRpb25fMHc3 YmV0ZV9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNDI0XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2lu dFwiIHk9XCIxNzlcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI0ODNcIiB4c2k6dHlwZT1cIm9tZ2Rj OlBvaW50XCIgeT1cIjE0OVwiLz48L2JwbW5kaTpCUE1ORWRnZT48L2JwbW5kaTpCUE1OUGxhbmU+ PC9icG1uZGk6QlBNTkRpYWdyYW0+PC9kZWZpbml0aW9ucz4iLCAid29ya2Zsb3dfaWQiOiAiZXhh bXBsZV9zbm93X2Nsb3NlX3JlY29yZF9pbmNpZGVudCIsICJ2ZXJzaW9uIjogMX0sICJsYXN0X21v ZGlmaWVkX3RpbWUiOiAxNTUwNzYyODkyMzAzLCAiY3JlYXRvcl9pZCI6ICJpbnRlZ3JhdGlvbnNA ZXhhbXBsZS5jb20iLCAiYWN0aW9ucyI6IFtdLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBs ZV9zbm93X2Nsb3NlX3JlY29yZF9pbmNpZGVudCIsICJuYW1lIjogIkV4YW1wbGU6IFNOT1c6IENs b3NlIFJlY29yZCBbSW5jaWRlbnRdIn0sIHsidXVpZCI6ICJmNmYwNThiNS05MzE1LTQ3M2MtODNh NC0xN2RmY2I3NzJiYjAiLCAiZGVzY3JpcHRpb24iOiAiQW4gZXhhbXBsZSB3b3JrZmxvdyBzaG93 aW5nIGhvdyB0byBjbG9zZSBhIFJlY29yZCBpbiBTZXJ2aWNlTm93IHRoYXQgaXMgcmVsYXRlZCB0 byBhIFJlc2lsaWVudCBJbmNpZGVudCBmcm9tIHRoZSBTZXJ2aWNlTm93IFJlY29yZHMgRGF0YSBU YWJsZSIsICJvYmplY3RfdHlwZSI6ICJzbl9yZWNvcmRzX2R0IiwgImV4cG9ydF9rZXkiOiAiZXhh bXBsZV9zbm93X2Nsb3NlX3JlY29yZF9mcm9tX2RhdGFfdGFibGUiLCAid29ya2Zsb3dfaWQiOiA5 LCAibGFzdF9tb2RpZmllZF9ieSI6ICJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20iLCAiY29udGVu dCI6IHsieG1sIjogIjw/eG1sIHZlcnNpb249XCIxLjBcIiBlbmNvZGluZz1cIlVURi04XCI/Pjxk ZWZpbml0aW9ucyB4bWxucz1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQv TU9ERUxcIiB4bWxuczpicG1uZGk9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9CUE1OLzIwMTAw NTI0L0RJXCIgeG1sbnM6b21nZGM9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9ERC8yMDEwMDUy NC9EQ1wiIHhtbG5zOm9tZ2RpPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQv RElcIiB4bWxuczpyZXNpbGllbnQ9XCJodHRwOi8vcmVzaWxpZW50LmlibS5jb20vYnBtblwiIHht bG5zOnhzZD1cImh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hXCIgeG1sbnM6eHNpPVwi aHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEtaW5zdGFuY2VcIiB0YXJnZXROYW1lc3Bh Y2U9XCJodHRwOi8vd3d3LmNhbXVuZGEub3JnL3Rlc3RcIj48cHJvY2VzcyBpZD1cImV4YW1wbGVf c25vd19jbG9zZV9yZWNvcmRfZnJvbV9kYXRhX3RhYmxlXCIgaXNFeGVjdXRhYmxlPVwidHJ1ZVwi IG5hbWU9XCJFeGFtcGxlOiBTTk9XOiBDbG9zZSBSZWNvcmQgZnJvbSBEYXRhIFRhYmxlXCI+PGRv Y3VtZW50YXRpb24+QW4gZXhhbXBsZSB3b3JrZmxvdyBzaG93aW5nIGhvdyB0byBjbG9zZSBhIFJl Y29yZCBpbiBTZXJ2aWNlTm93IHRoYXQgaXMgcmVsYXRlZCB0byBhIFJlc2lsaWVudCBJbmNpZGVu dCBmcm9tIHRoZSBTZXJ2aWNlTm93IFJlY29yZHMgRGF0YSBUYWJsZTwvZG9jdW1lbnRhdGlvbj48 c3RhcnRFdmVudCBpZD1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZs b3dfMHZzcnJycjwvb3V0Z29pbmc+PC9zdGFydEV2ZW50PjxlbmRFdmVudCBpZD1cIkVuZEV2ZW50 XzF3MzRldTdcIj48aW5jb21pbmc+U2VxdWVuY2VGbG93XzB0NWNyczY8L2luY29taW5nPjxpbmNv bWluZz5TZXF1ZW5jZUZsb3dfMDg2Z3ZucDwvaW5jb21pbmc+PC9lbmRFdmVudD48c2VxdWVuY2VG bG93IGlkPVwiU2VxdWVuY2VGbG93XzB2c3JycnJcIiBzb3VyY2VSZWY9XCJTdGFydEV2ZW50XzE1 NWFzeG1cIiB0YXJnZXRSZWY9XCJTZXJ2aWNlVGFza18wdzhjaWFjXCIvPjxzZXJ2aWNlVGFzayBp ZD1cIlNlcnZpY2VUYXNrXzB3OGNpYWNcIiBuYW1lPVwiU05PVzogQ2xvc2UgUmVjb3JkXCIgcmVz aWxpZW50OnR5cGU9XCJmdW5jdGlvblwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1 bmN0aW9uIHV1aWQ9XCJlZGFkZjk1MS00NjUyLTQ4YTktODA2OC05YjcxOWJmNGJmZTRcIj57XCJp bnB1dHNcIjp7fSxcInBvc3RfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIiMgRXhhbXBsZTogU05PVzog Q2xvc2UgUmVjb3JkIGZyb20gRGF0YSBUYWJsZSBwb3N0LXByb2Nlc3Npbmcgc2NyaXB0XFxuXFxu IyBJZiB0aGUgUmVzaWxpZW50IGl0ZW0gdHlwZSBpcyBJbmNpZGVudCAoaWYgaXQgaXMgVGFzaywg d2UgcnVuIHRoZSBTTk9XIEhlbHBlcjogQWRkIFRhc2sgTm90ZSBmdW5jdGlvbilcXG5pZiByb3cu c25fcmVjb3Jkc19kdF90eXBlID09IFxcXCJJbmNpZGVudFxcXCI6XFxuXFxuICBub3RlX3RleHQg PSBOb25lXFxuICBcXG4gICMgQW5kIGl0IHdhcyBhIHN1Y2Nlc3MsIHNldCB0aGlzIG5vdGVfdGV4 dFxcbiAgaWYgcmVzdWx0cy5zdWNjZXNzOlxcbiAgICBub3RlX3RleHQgPSB1XFxcIlxcXCJcXFwi Jmx0O2JyJmd0O1RoaXMgSW5jaWRlbnQgaGFzIGJlZW4gQ0xPU0VEIGluICZsdDtiJmd0O1NlcnZp Y2VOb3cmbHQ7L2ImZ3Q7XFxuICAgICAgICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtTZXJ2 aWNlTm93IElEOiZsdDsvYiZndDsgezB9XFxuICAgICAgICAgICAgICAgICZsdDticiZndDsmbHQ7 YiZndDtTZXJ2aWNlTm93IFJlY29yZCBTdGF0ZTombHQ7L2ImZ3Q7IHsxfVxcbiAgICAgICAgICAg ICAgICAmbHQ7YnImZ3Q7Jmx0O2ImZ3Q7U2VydmljZU5vdyBDbG9zaW5nIE5vdGVzOiZsdDsvYiZn dDsgezJ9XFxuICAgICAgICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtTZXJ2aWNlTm93IENs b3NpbmcgQ29kZTombHQ7L2ImZ3Q7IHszfVxcXCJcXFwiXFxcIi5mb3JtYXQoXFxuICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVuaWNvZGUocmVzdWx0cy5zbl9yZWZfaWQp LFxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1bmljb2RlKHJlc3Vs dHMuc25fcmVjb3JkX3N0YXRlKSxcXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgdW5pY29kZShyZXN1bHRzLmlucHV0cy5zbl9jbG9zZV9ub3RlcyksXFxuICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVuaWNvZGUocmVzdWx0cy5pbnB1dHMuc25f Y2xvc2VfY29kZSkpXFxuXFxuICAjIEVsc2UsIGl0IGZhaWxlZCwgc28gc2V0IHRoaXMgbm90ZV90 ZXh0XFxuICBlbHNlOlxcbiAgICBub3RlX3RleHQgPSB1XFxcIlxcXCJcXFwiJmx0O2JyJmd0O0Zh aWxlZCB0byBjbG9zZSB0aGlzIEluY2lkZW50IGluICZsdDtiJmd0O1NlcnZpY2VOb3cmbHQ7L2Im Z3Q7XFxuICAgICAgICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtSZWFzb246Jmx0Oy9iJmd0 OyB7MH1cXFwiXFxcIlxcXCIuZm9ybWF0KHVuaWNvZGUocmVzdWx0cy5yZWFzb24pKVxcbiAgXFxu ICBpbmNpZGVudC5hZGROb3RlKGhlbHBlci5jcmVhdGVSaWNoVGV4dChub3RlX3RleHQpKVwiLFwi cHJlX3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCIjIEV4YW1wbGU6IFNOT1c6IENsb3NlIFJlY29yZCBm cm9tIERUIFtJbmNpZGVudF1cXG5cXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj IyMjIyNcXG4jIyMgRGVmaW5lIHByZS1wcm9jZXNzaW5nIGZ1bmN0aW9ucyAjIyNcXG4jIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5cXG4jIEEgRGljdGlvbmFyeSB0aGF0 IG1hcHMgUmVjb3JkIFN0YXRlcyB0byB0aGVpciBjb3JyZXNwb25kaW5nIGNvZGVzXFxuIyBUaGVz ZSBjb2RlcyBhcmUgZGVmaW5lZCBpbiBTZXJ2aWNlTm93IGFuZCBtYXkgYmUgZGlmZmVyZW50IGZv ciBlYWNoIFNlcnZpY2VOb3cgY29uZmlndXJhdGlvblxcbm1hcF9zbl9yZWNvcmRfc3RhdGVzID0g e1xcbiAgXFxcIk5ld1xcXCI6IDEsXFxuICBcXFwiSW4gUHJvZ3Jlc3NcXFwiOiAyLFxcbiAgXFxc Ik9uIEhvbGRcXFwiOiAzLFxcbiAgXFxcIlJlc29sdmVkXFxcIjogNixcXG4gIFxcXCJDbG9zZWRc XFwiOiA3LFxcbiAgXFxcIkNhbmNlbGVkXFxcIjogOFxcbn1cXG5cXG4jIyMjIyMjIyMjIyMjIyMj IyMjIyNcXG4jIyMgRGVmaW5lIElucHV0cyAjIyNcXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5c XG4jIElEIG9mIHRoaXMgaW5jaWRlbnRcXG5pbnB1dHMuaW5jaWRlbnRfaWQgPSBpbmNpZGVudC5p ZFxcblxcbiMgUkVTIElEIG9mIHRoaXMgU05PVyByZWNvcmQgZnJvbSB0aGUgRGF0YSBUYWJsZSBy b3dcXG5pbnB1dHMuc25fcmVzX2lkID0gcm93LnNuX3JlY29yZHNfZHRfcmVzX2lkXFxuXFxuIyBU aGUgc3RhdGUgdG8gY2hhbmdlIHRoZSByZWNvcmQgdG9cXG5pbnB1dHMuc25fcmVjb3JkX3N0YXRl ID0gbWFwX3NuX3JlY29yZF9zdGF0ZXNbcnVsZS5wcm9wZXJ0aWVzLnNuX3JlY29yZF9zdGF0ZV1c XG5cXG4jIFRoZSByZXNvbHV0aW9uIG5vdGVzIHRoYXQgYXJlIG5vcm1hbGx5IHJlcXVpcmVkIHdo ZW4geW91IGNsb3NlIGEgU2VydmljZU5vdyByZWNvcmRcXG5pbnB1dHMuc25fY2xvc2Vfbm90ZXMg PSBydWxlLnByb3BlcnRpZXMuc25fY2xvc2Vfbm90ZXNcXG5cXG4jIFRoZSBTZXJ2aWNlTm93ICdj bG9zZV9jb2RlJyB0aGF0IHlvdSBub3JtYWxseSBzZWxlY3Qgd2hlbiBjbG9zaW5nIGEgU2Vydmlj ZU5vdyByZWNvcmRcXG5pbnB1dHMuc25fY2xvc2VfY29kZSA9IHJ1bGUucHJvcGVydGllcy5zbl9j bG9zZV9jb2RlXFxuXFxuIyBBZGQgYSBXb3JrIE5vdGUgdG8gdGhlIFJlY29yZCBpbiBTZXJ2aWNl Tm93XFxuaW5wdXRzLnNuX2Nsb3NlX3dvcmtfbm90ZSA9IHVcXFwiVGhpcyByZWNvcmQncyBzdGF0 ZSBoYXMgYmUgY2hhbmdlZCB0byB7MH0gYnkgSUJNIFJlc2lsaWVudFxcXCIuZm9ybWF0KHVuaWNv ZGUocnVsZS5wcm9wZXJ0aWVzLnNuX3JlY29yZF9zdGF0ZSkpXCIsXCJyZXN1bHRfbmFtZVwiOlwi Y2xvc2VfaW5fc25cIn08L3Jlc2lsaWVudDpmdW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRzPjxp bmNvbWluZz5TZXF1ZW5jZUZsb3dfMHZzcnJycjwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVlbmNl Rmxvd18wOG41dGxjPC9vdXRnb2luZz48L3NlcnZpY2VUYXNrPjxzZXF1ZW5jZUZsb3cgaWQ9XCJT ZXF1ZW5jZUZsb3dfMDhuNXRsY1wiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzB3OGNpYWNcIiB0 YXJnZXRSZWY9XCJFeGNsdXNpdmVHYXRld2F5XzB3ZGl1ZDRcIi8+PHNlcnZpY2VUYXNrIGlkPVwi U2VydmljZVRhc2tfMGR6eTU3clwiIG5hbWU9XCJTTk9XIEhlbHBlcjogQWRkIFRhc2sgTm90ZVwi IHJlc2lsaWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9uRWxlbWVudHM+PHJlc2lsaWVu dDpmdW5jdGlvbiB1dWlkPVwiZjAyZDY1ZjAtZjE5YS00MTRhLTgyOGQtNWMzNWRlNTI3MGIxXCI+ e1wiaW5wdXRzXCI6e30sXCJwcmVfcHJvY2Vzc2luZ19zY3JpcHRcIjpcIlxcbm5vdGVfdGV4dCA9 IE5vbmVcXG5cXG5pZiB3b3JrZmxvdy5wcm9wZXJ0aWVzLmNsb3NlX2luX3NuLnN1Y2Nlc3M6XFxu ICBcXG4gICMgSWYgd2Ugc3VjY2Vzc2Z1bGx5IGNsb3NlZCB0aGUgcmVjb3JkLCBzZXQgdGhpcyBu b3RlX3RleHRcXG4gIG5vdGVfdGV4dCA9IHVcXFwiXFxcIlxcXCImbHQ7YnImZ3Q7VGhpcyBUYXNr IGhhcyBiZWVuIENMT1NFRCBpbiAmbHQ7YiZndDtTZXJ2aWNlTm93Jmx0Oy9iJmd0O1xcbiAgICAg ICAgICAgICAgJmx0O2JyJmd0OyZsdDtiJmd0O1NlcnZpY2VOb3cgSUQ6Jmx0Oy9iJmd0OyB7MH1c XG4gICAgICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtTZXJ2aWNlTm93IFJlY29yZCBTdGF0 ZTombHQ7L2ImZ3Q7IHsxfVxcbiAgICAgICAgICAgICAgJmx0O2JyJmd0OyZsdDtiJmd0O1NlcnZp Y2VOb3cgQ2xvc2luZyBOb3RlczombHQ7L2ImZ3Q7IHsyfVxcbiAgICAgICAgICAgICAgJmx0O2Jy Jmd0OyZsdDtiJmd0O1NlcnZpY2VOb3cgQ2xvc2luZyBDb2RlOiZsdDsvYiZndDsgezN9XFxcIlxc XCJcXFwiLmZvcm1hdChcXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVu aWNvZGUod29ya2Zsb3cucHJvcGVydGllcy5jbG9zZV9pbl9zbi5zbl9yZWZfaWQpLFxcbiAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdW5pY29kZSh3b3JrZmxvdy5wcm9wZXJ0 aWVzLmNsb3NlX2luX3NuLnNuX3JlY29yZF9zdGF0ZSksXFxuICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICB1bmljb2RlKHdvcmtmbG93LnByb3BlcnRpZXMuY2xvc2VfaW5fc24u aW5wdXRzLnNuX2Nsb3NlX25vdGVzKSxcXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgIHVuaWNvZGUod29ya2Zsb3cucHJvcGVydGllcy5jbG9zZV9pbl9zbi5pbnB1dHMuc25f Y2xvc2VfY29kZSkpXFxuXFxuZWxzZTpcXG4gICMgRWxzZSwgaXQgZmFpbGVkLCBzbyBzZXQgdGhp cyBub3RlX3RleHRcXG4gIG5vdGVfdGV4dCA9IHVcXFwiXFxcIlxcXCImbHQ7YnImZ3Q7RmFpbGVk IHRvIGNsb3NlIHRoaXMgVGFzayBpbiAmbHQ7YiZndDtTZXJ2aWNlTm93Jmx0Oy9iJmd0O1xcbiAg ICAgICAgICAgICZsdDticiZndDsmbHQ7YiZndDtSZWFzb246Jmx0Oy9iJmd0OyB7MH1cXFwiXFxc IlxcXCIuZm9ybWF0KHVuaWNvZGUod29ya2Zsb3cucHJvcGVydGllcy5jbG9zZV9pbl9zbi5yZWFz b24pKVxcblxcbiMgR2V0IHNuX3Jlc19pZCBmcm9tIHRoZSBEYXRhIFRhYmxlXFxuaW5wdXRzLnNu X3Jlc19pZCA9IHJvdy5zbl9yZWNvcmRzX2R0X3Jlc19pZFxcblxcbiMgU2V0IHRoZSBzbl9ub3Rl X3RleHQgaW5wdXRcXG5pbnB1dHMuc25fbm90ZV90ZXh0ID0gbm90ZV90ZXh0XFxuXCJ9PC9yZXNp bGllbnQ6ZnVuY3Rpb24+PC9leHRlbnNpb25FbGVtZW50cz48aW5jb21pbmc+U2VxdWVuY2VGbG93 XzA5eXUxb3Y8L2luY29taW5nPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMHQ1Y3JzNjwvb3V0Z29p bmc+PC9zZXJ2aWNlVGFzaz48c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzB0NWNyczZc IiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18wZHp5NTdyXCIgdGFyZ2V0UmVmPVwiRW5kRXZlbnRf MXczNGV1N1wiLz48ZXhjbHVzaXZlR2F0ZXdheSBpZD1cIkV4Y2x1c2l2ZUdhdGV3YXlfMHdkaXVk NFwiPjxpbmNvbWluZz5TZXF1ZW5jZUZsb3dfMDhuNXRsYzwvaW5jb21pbmc+PG91dGdvaW5nPlNl cXVlbmNlRmxvd18wOXl1MW92PC9vdXRnb2luZz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzA4Nmd2 bnA8L291dGdvaW5nPjwvZXhjbHVzaXZlR2F0ZXdheT48c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVu Y2VGbG93XzA5eXUxb3ZcIiBuYW1lPVwiXCIgc291cmNlUmVmPVwiRXhjbHVzaXZlR2F0ZXdheV8w d2RpdWQ0XCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMGR6eTU3clwiPjxjb25kaXRpb25FeHBy ZXNzaW9uIGxhbmd1YWdlPVwicmVzaWxpZW50LWNvbmRpdGlvbnNcIiB4c2k6dHlwZT1cInRGb3Jt YWxFeHByZXNzaW9uXCI+PCFbQ0RBVEFbe1wiY29uZGl0aW9uc1wiOlt7XCJldmFsdWF0aW9uX2lk XCI6MSxcImZpZWxkX25hbWVcIjpudWxsLFwibWV0aG9kXCI6XCJzY3JpcHRcIixcInR5cGVcIjpu dWxsLFwidmFsdWVcIjp7XCJzY3JpcHRfdGV4dFwiOlwiIyBJZiB0aGlzIHJlY29yZCBpcyBhIFRh c2ssIGNvbnRpbnVlLCBlbHNlIGVuZFxcbmRvX2NvbnRpbnVlID0gcm93LnNuX3JlY29yZHNfZHRf dHlwZSA9PSBcXFwiVGFza1xcXCJcIixcImZpbmFsX2V4cHJlc3Npb25fdGV4dFwiOlwiZG9fY29u dGludWVcIixcImxhbmd1YWdlXCI6XCJweXRob25cIn19XSxcImN1c3RvbV9jb25kaXRpb25cIjpc IlwiLFwibG9naWNfdHlwZVwiOlwiYWxsXCJ9XV0+PC9jb25kaXRpb25FeHByZXNzaW9uPjwvc2Vx dWVuY2VGbG93PjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMDg2Z3ZucFwiIHNvdXJj ZVJlZj1cIkV4Y2x1c2l2ZUdhdGV3YXlfMHdkaXVkNFwiIHRhcmdldFJlZj1cIkVuZEV2ZW50XzF3 MzRldTdcIi8+PHRleHRBbm5vdGF0aW9uIGlkPVwiVGV4dEFubm90YXRpb25fMG1yNXkzY1wiPjx0 ZXh0PjwhW0NEQVRBW0lucHV0czogaW5jaWRlbnRfaWQsIHNuX3Jlc19pZCwgc25fcmVjb3JkX3N0 YXRlLCBzbl9jbG9zZV9ub3Rlcywgc25fY2xvc2VfY29kZVxuXV0+PC90ZXh0PjwvdGV4dEFubm90 YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMWVpanpyelwiIHNvdXJjZVJlZj1c IlNlcnZpY2VUYXNrXzB3OGNpYWNcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8wbXI1eTNj XCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzFyMmFnY2pcIj48dGV4dD48 IVtDREFUQVtDbG9zZXMgdGhlIFJlY29yZCBpbiBTZXJ2aWNlTm93ICsgYWRkcyBhIE5vdGUgaWYg dGhlIFJlY29yZCBpcyBhbiBJbmNpZGVudFxuXV0+PC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFz c29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMTZ1emo4alwiIHNvdXJjZVJlZj1cIlNlcnZpY2VU YXNrXzB3OGNpYWNcIiB0YXJnZXRSZWY9XCJUZXh0QW5ub3RhdGlvbl8xcjJhZ2NqXCIvPjx0ZXh0 QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzB2a2RwenZcIj48dGV4dD48IVtDREFUQVtJ bnB1dHM6IHNuX3Jlc19pZCwgc25fbm90ZV90ZXh0XG5dXT48L3RleHQ+PC90ZXh0QW5ub3RhdGlv bj48YXNzb2NpYXRpb24gaWQ9XCJBc3NvY2lhdGlvbl8xZXA2dzltXCIgc291cmNlUmVmPVwiU2Vy dmljZVRhc2tfMGR6eTU3clwiIHRhcmdldFJlZj1cIlRleHRBbm5vdGF0aW9uXzB2a2RwenZcIi8+ PHRleHRBbm5vdGF0aW9uIGlkPVwiVGV4dEFubm90YXRpb25fMGppcHZsYVwiPjx0ZXh0PjwhW0NE QVRBW0VuZCBpZiB0aGlzIFJlY29yZCBpcyBhbiBJbmNpZGVudCwgZWxzZSBhZGQgYSBOb3RlIHRv IHRoZSBUYXNrXG5dXT48L3RleHQ+PC90ZXh0QW5ub3RhdGlvbj48YXNzb2NpYXRpb24gaWQ9XCJB c3NvY2lhdGlvbl8wZzF1ZTJuXCIgc291cmNlUmVmPVwiRXhjbHVzaXZlR2F0ZXdheV8wd2RpdWQ0 XCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMGppcHZsYVwiLz48dGV4dEFubm90YXRpb24g aWQ9XCJUZXh0QW5ub3RhdGlvbl8wNmZiMGNpXCI+PHRleHQ+PCFbQ0RBVEFbQWRkcyBhIE5vdGUg dG8gYSBUYXNrIGdpdmVuIHRoZSBzbl9yZXNfaWRcbl1dPjwvdGV4dD48L3RleHRBbm5vdGF0aW9u Pjxhc3NvY2lhdGlvbiBpZD1cIkFzc29jaWF0aW9uXzBlNHVxaGhcIiBzb3VyY2VSZWY9XCJTZXJ2 aWNlVGFza18wZHp5NTdyXCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMDZmYjBjaVwiLz48 L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQTU5EaWFncmFtXzFcIj48YnBtbmRp OkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwiIGlkPVwiQlBNTlBsYW5lXzFcIj48 YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIGlkPVwi U3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIzNlwiIHdpZHRo PVwiMzZcIiB4PVwiMTM0XCIgeT1cIjE0NlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91 bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjEyOVwiIHk9XCIxODFcIi8+PC9icG1u ZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxl bWVudD1cIkVuZEV2ZW50XzF3MzRldTdcIiBpZD1cIkVuZEV2ZW50XzF3MzRldTdfZGlcIj48b21n ZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI5MDdcIiB5PVwiMTQ2XCIv PjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkw XCIgeD1cIjg4MFwiIHk9XCIxODVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5T aGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVuY2VGbG93XzB2c3JycnJc IiBpZD1cIlNlcXVlbmNlRmxvd18wdnNycnJyX2RpXCI+PG9tZ2RpOndheXBvaW50IHg9XCIxNzBc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE2NFwiLz48b21nZGk6d2F5cG9pbnQgeD1c IjI1MlwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTY0XCIvPjxicG1uZGk6QlBNTkxh YmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkwXCIgeD1cIjE2NlwiIHk9 XCIxNDIuNVwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpC UE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJTZXJ2aWNlVGFza18wdzhjaWFjXCIgaWQ9XCJTZXJ2aWNl VGFza18wdzhjaWFjX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI4MFwiIHdpZHRoPVwiMTAw XCIgeD1cIjI1MlwiIHk9XCIxMjRcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVk Z2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMDhuNXRsY1wiIGlkPVwiU2VxdWVuY2VGbG93 XzA4bjV0bGNfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjM1MlwiIHhzaTp0eXBlPVwib21nZGM6 UG9pbnRcIiB5PVwiMTY0XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNTMxXCIgeHNpOnR5cGU9XCJv bWdkYzpQb2ludFwiIHk9XCIxNjRcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBo ZWlnaHQ9XCIxM1wiIHdpZHRoPVwiOTBcIiB4PVwiMzk2LjVcIiB5PVwiMTQyLjVcIi8+PC9icG1u ZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVt ZW50PVwiVGV4dEFubm90YXRpb25fMG1yNXkzY1wiIGlkPVwiVGV4dEFubm90YXRpb25fMG1yNXkz Y19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiODNcIiB3aWR0aD1cIjE0MlwiIHg9XCIxMTlc IiB5PVwiMjRcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1l bnQ9XCJBc3NvY2lhdGlvbl8xZWlqenJ6XCIgaWQ9XCJBc3NvY2lhdGlvbl8xZWlqenJ6X2RpXCI+ PG9tZ2RpOndheXBvaW50IHg9XCIyNTlcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjEy N1wiLz48b21nZGk6d2F5cG9pbnQgeD1cIjIzN1wiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5 PVwiMTA3XCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50 PVwiVGV4dEFubm90YXRpb25fMXIyYWdjalwiIGlkPVwiVGV4dEFubm90YXRpb25fMXIyYWdjal9k aVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNzdcIiB3aWR0aD1cIjEzN1wiIHg9XCIzNTNcIiB5 PVwiMjdcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9 XCJBc3NvY2lhdGlvbl8xNnV6ajhqXCIgaWQ9XCJBc3NvY2lhdGlvbl8xNnV6ajhqX2RpXCI+PG9t Z2RpOndheXBvaW50IHg9XCIzNDZcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjEyOFwi Lz48b21nZGk6d2F5cG9pbnQgeD1cIjM3NVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwi MTA0XCIvPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwi U2VydmljZVRhc2tfMGR6eTU3clwiIGlkPVwiU2VydmljZVRhc2tfMGR6eTU3cl9kaVwiPjxvbWdk YzpCb3VuZHMgaGVpZ2h0PVwiODBcIiB3aWR0aD1cIjEwMFwiIHg9XCI2OTZcIiB5PVwiMTI0XCIv PjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiU2VxdWVu Y2VGbG93XzB0NWNyczZcIiBpZD1cIlNlcXVlbmNlRmxvd18wdDVjcnM2X2RpXCI+PG9tZ2RpOndh eXBvaW50IHg9XCI3OTZcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjE2NFwiLz48b21n ZGk6d2F5cG9pbnQgeD1cIjkwN1wiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTY0XCIv PjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkw XCIgeD1cIjgwNi41XCIgeT1cIjE0Mi41XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpC UE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIkV4Y2x1c2l2ZUdhdGV3YXlf MHdkaXVkNFwiIGlkPVwiRXhjbHVzaXZlR2F0ZXdheV8wd2RpdWQ0X2RpXCIgaXNNYXJrZXJWaXNp YmxlPVwidHJ1ZVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiNTBcIiB3aWR0aD1cIjUwXCIgeD1c IjUzMVwiIHk9XCIxMzlcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9 XCIxM1wiIHdpZHRoPVwiOTBcIiB4PVwiNTExXCIgeT1cIjE5MlwiLz48L2JwbW5kaTpCUE1OTGFi ZWw+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1 ZW5jZUZsb3dfMDl5dTFvdlwiIGlkPVwiU2VxdWVuY2VGbG93XzA5eXUxb3ZfZGlcIj48b21nZGk6 d2F5cG9pbnQgeD1cIjU4MVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTY0XCIvPjxv bWdkaTp3YXlwb2ludCB4PVwiNjk2XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNjRc Ii8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwi OTBcIiB4PVwiNTkzLjVcIiB5PVwiMTQyLjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRp OkJQTU5FZGdlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMDg2 Z3ZucFwiIGlkPVwiU2VxdWVuY2VGbG93XzA4Nmd2bnBfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1c IjU1NlwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTg5XCIvPjxvbWdkaTp3YXlwb2lu dCB4PVwiNTU2XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMjZcIi8+PG9tZ2RpOndh eXBvaW50IHg9XCI5MjVcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIyNlwiLz48b21n ZGk6d2F5cG9pbnQgeD1cIjkyNVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMTgyXCIv PjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjkw XCIgeD1cIjY5NS41XCIgeT1cIjIwNC41XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpC UE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlRleHRBbm5vdGF0aW9uXzB2 a2RwenZcIiBpZD1cIlRleHRBbm5vdGF0aW9uXzB2a2RwenZfZGlcIj48b21nZGM6Qm91bmRzIGhl aWdodD1cIjQxXCIgd2lkdGg9XCIxMTVcIiB4PVwiNjA4XCIgeT1cIjQ1XCIvPjwvYnBtbmRpOkJQ TU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMWVwNnc5 bVwiIGlkPVwiQXNzb2NpYXRpb25fMWVwNnc5bV9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNzE0 XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxMjRcIi8+PG9tZ2RpOndheXBvaW50IHg9 XCI2ODNcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjg2XCIvPjwvYnBtbmRpOkJQTU5F ZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiVGV4dEFubm90YXRpb25fMGppcHZs YVwiIGlkPVwiVGV4dEFubm90YXRpb25fMGppcHZsYV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0 PVwiNjRcIiB3aWR0aD1cIjEzM1wiIHg9XCI0MDBcIiB5PVwiMjE0XCIvPjwvYnBtbmRpOkJQTU5T aGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMGcxdWUyblwi IGlkPVwiQXNzb2NpYXRpb25fMGcxdWUybl9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNTQzXCIg eHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxNzZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI1 MDFcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIxNFwiLz48L2JwbW5kaTpCUE1ORWRn ZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlRleHRBbm5vdGF0aW9uXzA2ZmIwY2lc IiBpZD1cIlRleHRBbm5vdGF0aW9uXzA2ZmIwY2lfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1c IjUzXCIgd2lkdGg9XCIxMzJcIiB4PVwiNzgzXCIgeT1cIjM5XCIvPjwvYnBtbmRpOkJQTU5TaGFw ZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMGU0dXFoaFwiIGlk PVwiQXNzb2NpYXRpb25fMGU0dXFoaF9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNzg3XCIgeHNp OnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIxMjVcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI4MjJc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjkyXCIvPjwvYnBtbmRpOkJQTU5FZGdlPjwv YnBtbmRpOkJQTU5QbGFuZT48L2JwbW5kaTpCUE1ORGlhZ3JhbT48L2RlZmluaXRpb25zPiIsICJ3 b3JrZmxvd19pZCI6ICJleGFtcGxlX3Nub3dfY2xvc2VfcmVjb3JkX2Zyb21fZGF0YV90YWJsZSIs ICJ2ZXJzaW9uIjogMX0sICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTUwNzYyODkyMTQ4LCAiY3Jl YXRvcl9pZCI6ICJhbmdlbGFAcmVzLmNvbSIsICJhY3Rpb25zIjogW10sICJwcm9ncmFtbWF0aWNf bmFtZSI6ICJleGFtcGxlX3Nub3dfY2xvc2VfcmVjb3JkX2Zyb21fZGF0YV90YWJsZSIsICJuYW1l IjogIkV4YW1wbGU6IFNOT1c6IENsb3NlIFJlY29yZCBmcm9tIERhdGEgVGFibGUifV0sICJhY3Rp b25zIjogW3sibG9naWNfdHlwZSI6ICJhbGwiLCAibmFtZSI6ICJTTk9XOiBBZGQgQXR0YWNobWVu dCB0byBSZWNvcmQiLCAidmlld19pdGVtcyI6IFtdLCAidHlwZSI6IDEsICJ3b3JrZmxvd3MiOiBb ImV4YW1wbGVfc25vd19hZGRfYXR0YWNobWVudF90b19yZWNvcmQiXSwgIm9iamVjdF90eXBlIjog ImF0dGFjaG1lbnQiLCAidGltZW91dF9zZWNvbmRzIjogODY0MDAsICJ1dWlkIjogIjhkMjc0ODFi LTA2YWMtNDFmMC1iNTZhLWRhYTI5N2QyZjA5YSIsICJhdXRvbWF0aW9ucyI6IFtdLCAiZXhwb3J0 X2tleSI6ICJTTk9XOiBBZGQgQXR0YWNobWVudCB0byBSZWNvcmQiLCAiY29uZGl0aW9ucyI6IFtd LCAiaWQiOiAxNCwgIm1lc3NhZ2VfZGVzdGluYXRpb25zIjogW119LCB7ImxvZ2ljX3R5cGUiOiAi YWxsIiwgIm5hbWUiOiAiU05PVzogQ2xvc2UgUmVjb3JkIGZyb20gRGF0YSBUYWJsZSIsICJ2aWV3 X2l0ZW1zIjogW3sic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogImFjdGlvbmludm9jYXRp b24iLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwg ImNvbnRlbnQiOiAiOGI1NWVjYzktMTk2ZC00OGZjLTg4MzUtMWJkZWFlMmFkM2M5IiwgInN0ZXBf bGFiZWwiOiBudWxsfSwgeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiYWN0aW9uaW52 b2NhdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1 aWQiLCAiY29udGVudCI6ICIyODk4YzhmMi04YjI4LTQxMGItYjFiMi02ZDc4ZmVlYjYxMzIiLCAi c3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJhY3Rp b25pbnZvY2F0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmll bGRfdXVpZCIsICJjb250ZW50IjogIjI5MzJlNTA1LTQyZDktNGE1Mi04NzkwLTk4MGYyMGQ1MzE4 YSIsICJzdGVwX2xhYmVsIjogbnVsbH1dLCAidHlwZSI6IDEsICJ3b3JrZmxvd3MiOiBbImV4YW1w bGVfc25vd19jbG9zZV9yZWNvcmRfZnJvbV9kYXRhX3RhYmxlIl0sICJvYmplY3RfdHlwZSI6ICJz bl9yZWNvcmRzX2R0IiwgInRpbWVvdXRfc2Vjb25kcyI6IDg2NDAwLCAidXVpZCI6ICI1YWFhMDMy YS1kMWQwLTQxMDUtOTE3OC1iY2ZhMjQ1MzllYjYiLCAiYXV0b21hdGlvbnMiOiBbXSwgImV4cG9y dF9rZXkiOiAiU05PVzogQ2xvc2UgUmVjb3JkIGZyb20gRGF0YSBUYWJsZSIsICJjb25kaXRpb25z IjogW10sICJpZCI6IDE3LCAibWVzc2FnZV9kZXN0aW5hdGlvbnMiOiBbXX0sIHsibG9naWNfdHlw ZSI6ICJhbGwiLCAibmFtZSI6ICJTTk9XOiBDbG9zZSBSZWNvcmQgW0luY2lkZW50XSIsICJ2aWV3 X2l0ZW1zIjogW3sic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogImFjdGlvbmludm9jYXRp b24iLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwg ImNvbnRlbnQiOiAiOGI1NWVjYzktMTk2ZC00OGZjLTg4MzUtMWJkZWFlMmFkM2M5IiwgInN0ZXBf bGFiZWwiOiBudWxsfSwgeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiYWN0aW9uaW52 b2NhdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1 aWQiLCAiY29udGVudCI6ICIyOTMyZTUwNS00MmQ5LTRhNTItODc5MC05ODBmMjBkNTMxOGEiLCAi c3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJhY3Rp b25pbnZvY2F0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmll bGRfdXVpZCIsICJjb250ZW50IjogIjI4OThjOGYyLThiMjgtNDEwYi1iMWIyLTZkNzhmZWViNjEz MiIsICJzdGVwX2xhYmVsIjogbnVsbH1dLCAidHlwZSI6IDEsICJ3b3JrZmxvd3MiOiBbImV4YW1w bGVfc25vd19jbG9zZV9yZWNvcmRfaW5jaWRlbnQiXSwgIm9iamVjdF90eXBlIjogImluY2lkZW50 IiwgInRpbWVvdXRfc2Vjb25kcyI6IDg2NDAwLCAidXVpZCI6ICJkOTFmOTc5OS0wMDdiLTRhNTYt OTdlYy1kMTQ3ZjNiYzM3MjkiLCAiYXV0b21hdGlvbnMiOiBbXSwgImV4cG9ydF9rZXkiOiAiU05P VzogQ2xvc2UgUmVjb3JkIFtJbmNpZGVudF0iLCAiY29uZGl0aW9ucyI6IFt7InR5cGUiOiBudWxs LCAiZXZhbHVhdGlvbl9pZCI6IG51bGwsICJmaWVsZF9uYW1lIjogImluY2lkZW50LnByb3BlcnRp ZXMuc25fc25vd19yZWNvcmRfaWQiLCAibWV0aG9kIjogImhhc19hX3ZhbHVlIiwgInZhbHVlIjog bnVsbH1dLCAiaWQiOiAxNSwgIm1lc3NhZ2VfZGVzdGluYXRpb25zIjogW119LCB7ImxvZ2ljX3R5 cGUiOiAiYWxsIiwgIm5hbWUiOiAiU05PVzogQ2xvc2UgUmVjb3JkIFtUYXNrXSIsICJ2aWV3X2l0 ZW1zIjogW3sic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogImFjdGlvbmludm9jYXRpb24i LCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNv bnRlbnQiOiAiOGI1NWVjYzktMTk2ZC00OGZjLTg4MzUtMWJkZWFlMmFkM2M5IiwgInN0ZXBfbGFi ZWwiOiBudWxsfSwgeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiYWN0aW9uaW52b2Nh dGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQi LCAiY29udGVudCI6ICIyOTMyZTUwNS00MmQ5LTRhNTItODc5MC05ODBmMjBkNTMxOGEiLCAic3Rl cF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJhY3Rpb25p bnZvY2F0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRf dXVpZCIsICJjb250ZW50IjogIjI4OThjOGYyLThiMjgtNDEwYi1iMWIyLTZkNzhmZWViNjEzMiIs ICJzdGVwX2xhYmVsIjogbnVsbH1dLCAidHlwZSI6IDEsICJ3b3JrZmxvd3MiOiBbImV4YW1wbGVf c25vd19jbG9zZV9yZWNvcmRfdGFzayJdLCAib2JqZWN0X3R5cGUiOiAidGFzayIsICJ0aW1lb3V0 X3NlY29uZHMiOiA4NjQwMCwgInV1aWQiOiAiNTY2NzllMjEtZTU3OC00ODNlLWFiNzktNmI5OTUy MzU2OTY5IiwgImF1dG9tYXRpb25zIjogW10sICJleHBvcnRfa2V5IjogIlNOT1c6IENsb3NlIFJl Y29yZCBbVGFza10iLCAiY29uZGl0aW9ucyI6IFtdLCAiaWQiOiAxNiwgIm1lc3NhZ2VfZGVzdGlu YXRpb25zIjogW119LCB7ImxvZ2ljX3R5cGUiOiAiYWxsIiwgIm5hbWUiOiAiU05PVzogQ3JlYXRl IFJlY29yZCBbSW5jaWRlbnRdIiwgInZpZXdfaXRlbXMiOiBbeyJzaG93X2lmIjogbnVsbCwgImZp ZWxkX3R5cGUiOiAiYWN0aW9uaW52b2NhdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2Us ICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICI0MmY2NjU3Zi0yNGE2LTQ2ZjIt YTBiZi0wMDM5MjI4ODdjMmIiLCAic3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYiOiBudWxs LCAiZmllbGRfdHlwZSI6ICJhY3Rpb25pbnZvY2F0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBm YWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogImUwYTM4N2VmLTJhZTMt NDkyZS04NzdkLThkODBiMGNjZjcyYiIsICJzdGVwX2xhYmVsIjogbnVsbH1dLCAidHlwZSI6IDEs ICJ3b3JrZmxvd3MiOiBbImV4YW1wbGVfc25vd19jcmVhdGVfcmVjb3JkX2luY2lkZW50Il0sICJv YmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJ0aW1lb3V0X3NlY29uZHMiOiA4NjQwMCwgInV1aWQi OiAiNDE2NTVlNjUtMDIzYy00NjNhLTg0ZTEtOGUxNTU5NTUzOWNmIiwgImF1dG9tYXRpb25zIjog W10sICJleHBvcnRfa2V5IjogIlNOT1c6IENyZWF0ZSBSZWNvcmQgW0luY2lkZW50XSIsICJjb25k aXRpb25zIjogW3sidHlwZSI6IG51bGwsICJldmFsdWF0aW9uX2lkIjogbnVsbCwgImZpZWxkX25h bWUiOiAiaW5jaWRlbnQucHJvcGVydGllcy5zbl9zbm93X3JlY29yZF9pZCIsICJtZXRob2QiOiAi bm90X2hhc19hX3ZhbHVlIiwgInZhbHVlIjogbnVsbH1dLCAiaWQiOiAxOCwgIm1lc3NhZ2VfZGVz dGluYXRpb25zIjogW119LCB7ImxvZ2ljX3R5cGUiOiAiYWxsIiwgIm5hbWUiOiAiU05PVzogQ3Jl YXRlIFJlY29yZCBbVGFza10iLCAidmlld19pdGVtcyI6IFt7InNob3dfaWYiOiBudWxsLCAiZmll bGRfdHlwZSI6ICJhY3Rpb25pbnZvY2F0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZSwg ImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjQyZjY2NTdmLTI0YTYtNDZmMi1h MGJmLTAwMzkyMjg4N2MyYiIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hvd19pZiI6IG51bGws ICJmaWVsZF90eXBlIjogImFjdGlvbmludm9jYXRpb24iLCAic2hvd19saW5rX2hlYWRlciI6IGZh bHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiZTBhMzg3ZWYtMmFlMy00 OTJlLTg3N2QtOGQ4MGIwY2NmNzJiIiwgInN0ZXBfbGFiZWwiOiBudWxsfV0sICJ0eXBlIjogMSwg IndvcmtmbG93cyI6IFsiZXhhbXBsZV9zbm93X2NyZWF0ZV9yZWNvcmRfdGFzayJdLCAib2JqZWN0 X3R5cGUiOiAidGFzayIsICJ0aW1lb3V0X3NlY29uZHMiOiA4NjQwMCwgInV1aWQiOiAiOGI3Mzkw ZGUtZTU2Ni00NzVmLTk4ODMtYWMzZTZiZTI2OGQzIiwgImF1dG9tYXRpb25zIjogW10sICJleHBv cnRfa2V5IjogIlNOT1c6IENyZWF0ZSBSZWNvcmQgW1Rhc2tdIiwgImNvbmRpdGlvbnMiOiBbXSwg ImlkIjogMTksICJtZXNzYWdlX2Rlc3RpbmF0aW9ucyI6IFtdfSwgeyJsb2dpY190eXBlIjogImFs bCIsICJuYW1lIjogIlNOT1c6IFNlbmQgYXMgQWRkaXRpb25hbCBDb21tZW50IiwgInZpZXdfaXRl bXMiOiBbXSwgInR5cGUiOiAxLCAid29ya2Zsb3dzIjogWyJleGFtcGxlX3Nub3dfYWRkX2NvbW1l bnRfdG9fcmVjb3JkIl0sICJvYmplY3RfdHlwZSI6ICJub3RlIiwgInRpbWVvdXRfc2Vjb25kcyI6 IDg2NDAwLCAidXVpZCI6ICIxN2VjOTE4ZC04ZWQzLTRlZjctOWQ1Ni04ZWMxYzQxNjQ0NzkiLCAi YXV0b21hdGlvbnMiOiBbXSwgImV4cG9ydF9rZXkiOiAiU05PVzogU2VuZCBhcyBBZGRpdGlvbmFs IENvbW1lbnQiLCAiY29uZGl0aW9ucyI6IFt7InR5cGUiOiBudWxsLCAiZXZhbHVhdGlvbl9pZCI6 IG51bGwsICJmaWVsZF9uYW1lIjogIm5vdGUudGV4dCIsICJtZXRob2QiOiAibm90X2NvbnRhaW5z IiwgInZhbHVlIjogIlNlbnQgdG8gU2VydmljZU5vdyBhdCJ9XSwgImlkIjogMjAsICJtZXNzYWdl X2Rlc3RpbmF0aW9ucyI6IFtdfSwgeyJsb2dpY190eXBlIjogImFsbCIsICJuYW1lIjogIlNOT1c6 IFNlbmQgYXMgV29yayBOb3RlIiwgInZpZXdfaXRlbXMiOiBbXSwgInR5cGUiOiAxLCAid29ya2Zs b3dzIjogWyJleGFtcGxlX3Nub3dfYWRkX3dvcmtub3RlX3RvX3JlY29yZCJdLCAib2JqZWN0X3R5 cGUiOiAibm90ZSIsICJ0aW1lb3V0X3NlY29uZHMiOiA4NjQwMCwgInV1aWQiOiAiZDUxYmExMzct NDI0NS00MDg0LTg4ODgtMGY0MDU0Zjk1NDE0IiwgImF1dG9tYXRpb25zIjogW10sICJleHBvcnRf a2V5IjogIlNOT1c6IFNlbmQgYXMgV29yayBOb3RlIiwgImNvbmRpdGlvbnMiOiBbeyJ0eXBlIjog bnVsbCwgImV2YWx1YXRpb25faWQiOiBudWxsLCAiZmllbGRfbmFtZSI6ICJub3RlLnRleHQiLCAi bWV0aG9kIjogIm5vdF9jb250YWlucyIsICJ2YWx1ZSI6ICJTZW50IHRvIFNlcnZpY2VOb3cgYXQi fV0sICJpZCI6IDIxLCAibWVzc2FnZV9kZXN0aW5hdGlvbnMiOiBbXX0sIHsibG9naWNfdHlwZSI6 ICJhbGwiLCAibmFtZSI6ICJTTk9XOiBVcGRhdGUgRGF0YSBUYWJsZSBvbiBTdGF0dXMgQ2hhbmdl IFtJbmNpZGVudF0iLCAidmlld19pdGVtcyI6IFtdLCAidHlwZSI6IDAsICJ3b3JrZmxvd3MiOiBb ImV4YW1wbGVfc25vd191cGRhdGVfZGF0YXRhYmxlX29uX3N0YXR1c19jaGFuZ2VfaW5jaWRlbnQi XSwgIm9iamVjdF90eXBlIjogImluY2lkZW50IiwgInRpbWVvdXRfc2Vjb25kcyI6IDg2NDAwLCAi dXVpZCI6ICIyNmIyODI4ZC1kOWNlLTRlNGQtYmU4YS0zODE0ZGExMTlmN2EiLCAiYXV0b21hdGlv bnMiOiBbXSwgImV4cG9ydF9rZXkiOiAiU05PVzogVXBkYXRlIERhdGEgVGFibGUgb24gU3RhdHVz IENoYW5nZSBbSW5jaWRlbnRdIiwgImNvbmRpdGlvbnMiOiBbeyJ0eXBlIjogbnVsbCwgImV2YWx1 YXRpb25faWQiOiBudWxsLCAiZmllbGRfbmFtZSI6ICJpbmNpZGVudC5wbGFuX3N0YXR1cyIsICJt ZXRob2QiOiAiY2hhbmdlZCIsICJ2YWx1ZSI6IG51bGx9XSwgImlkIjogMjIsICJtZXNzYWdlX2Rl c3RpbmF0aW9ucyI6IFtdfSwgeyJsb2dpY190eXBlIjogImFsbCIsICJuYW1lIjogIlNOT1c6IFVw ZGF0ZSBEYXRhIFRhYmxlIG9uIFN0YXR1cyBDaGFuZ2UgW1Rhc2tdIiwgInZpZXdfaXRlbXMiOiBb XSwgInR5cGUiOiAwLCAid29ya2Zsb3dzIjogWyJleGFtcGxlX3Nub3dfdXBkYXRlX2RhdGF0YWJs ZV9vbl9zdGF0dXNfY2hhbmdlX3Rhc2siXSwgIm9iamVjdF90eXBlIjogInRhc2siLCAidGltZW91 dF9zZWNvbmRzIjogODY0MDAsICJ1dWlkIjogIjk4NDEyZTgwLTNmMDItNDlkNy04YzM5LTcxODUx NWFlMzgyYSIsICJhdXRvbWF0aW9ucyI6IFtdLCAiZXhwb3J0X2tleSI6ICJTTk9XOiBVcGRhdGUg RGF0YSBUYWJsZSBvbiBTdGF0dXMgQ2hhbmdlIFtUYXNrXSIsICJjb25kaXRpb25zIjogW3sidHlw ZSI6IG51bGwsICJldmFsdWF0aW9uX2lkIjogbnVsbCwgImZpZWxkX25hbWUiOiAidGFzay5zdGF0 dXMiLCAibWV0aG9kIjogImNoYW5nZWQiLCAidmFsdWUiOiBudWxsfV0sICJpZCI6IDIzLCAibWVz c2FnZV9kZXN0aW5hdGlvbnMiOiBbXX0sIHsibG9naWNfdHlwZSI6ICJhbGwiLCAibmFtZSI6ICJT Tk9XOiBVcGRhdGUgUmVjb3JkIG9uIFNldmVyaXR5IENoYW5nZSIsICJ2aWV3X2l0ZW1zIjogW10s ICJ0eXBlIjogMCwgIndvcmtmbG93cyI6IFsiZXhhbXBsZV9zbm93X3VwZGF0ZV9yZWNvcmRfb25f c2V2ZXJpdHlfY2hhbmdlIl0sICJvYmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJ0aW1lb3V0X3Nl Y29uZHMiOiA4NjQwMCwgInV1aWQiOiAiMjU0ZjQzZTctNWY1MS00NzZmLTgyYTQtMTYwOTI4Yzhi OTBmIiwgImF1dG9tYXRpb25zIjogW10sICJleHBvcnRfa2V5IjogIlNOT1c6IFVwZGF0ZSBSZWNv cmQgb24gU2V2ZXJpdHkgQ2hhbmdlIiwgImNvbmRpdGlvbnMiOiBbeyJ0eXBlIjogbnVsbCwgImV2 YWx1YXRpb25faWQiOiBudWxsLCAiZmllbGRfbmFtZSI6ICJpbmNpZGVudC5zZXZlcml0eV9jb2Rl IiwgIm1ldGhvZCI6ICJjaGFuZ2VkIiwgInZhbHVlIjogbnVsbH0sIHsidHlwZSI6IG51bGwsICJl dmFsdWF0aW9uX2lkIjogbnVsbCwgImZpZWxkX25hbWUiOiAiaW5jaWRlbnQucHJvcGVydGllcy5z bl9zbm93X3JlY29yZF9pZCIsICJtZXRob2QiOiAiaGFzX2FfdmFsdWUiLCAidmFsdWUiOiBudWxs fV0sICJpZCI6IDI0LCAibWVzc2FnZV9kZXN0aW5hdGlvbnMiOiBbXX1dLCAibGF5b3V0cyI6IFtd LCAiZXhwb3J0X2Zvcm1hdF92ZXJzaW9uIjogMiwgImlkIjogMSwgImluZHVzdHJpZXMiOiBudWxs LCAicGhhc2VzIjogW10sICJhY3Rpb25fb3JkZXIiOiBbXSwgImdlb3MiOiBudWxsLCAibG9jYWxl IjogbnVsbCwgInNlcnZlcl92ZXJzaW9uIjogeyJtYWpvciI6IDMxLCAidmVyc2lvbiI6ICIzMS4w LjQyNTQiLCAiYnVpbGRfbnVtYmVyIjogNDI1NCwgIm1pbm9yIjogMH0sICJ0aW1lZnJhbWVzIjog bnVsbCwgIndvcmtzcGFjZXMiOiBbXSwgImF1dG9tYXRpY190YXNrcyI6IFtdLCAiZnVuY3Rpb25z IjogW3siZGlzcGxheV9uYW1lIjogIlNOT1c6IEFkZCBBdHRhY2htZW50IHRvIFJlY29yZCIsICJk ZXNjcmlwdGlvbiI6IHsiY29udGVudCI6ICJGdW5jdGlvbiB0aGF0IGFkZHMgYSBSZXNpbGllbnQg QXR0YWNobWVudCB0byBhIFNlcnZpY2VOb3cgUmVjb3JkLiIsICJmb3JtYXQiOiAidGV4dCJ9LCAi Y3JlYXRvciI6IHsiZGlzcGxheV9uYW1lIjogIkFuZ2VsYSBWYWxkZXMiLCAidHlwZSI6ICJ1c2Vy IiwgImlkIjogNiwgIm5hbWUiOiAiYW5nZWxhQHJlcy5jb20ifSwgInZpZXdfaXRlbXMiOiBbeyJz aG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtfaGVh ZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICIxNjc3NzE2 YS1hOTVlLTRmNTUtOGUzZS01Mzk5ZTZkM2JkOTYiLCAic3RlcF9sYWJlbCI6IG51bGx9LCB7InNo b3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFk ZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjgxMWU5OWQ3 LWQxOTQtNGNlOC04NmNjLWFmZjVlMDFhYjg1YyIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hv d19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRl ciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiYmEzMTgyNjEt ZWQ2YS00YTM4LWExODctOWUwYjY4ZDE2MDRmIiwgInN0ZXBfbGFiZWwiOiBudWxsfV0sICJleHBv cnRfa2V5IjogImZuX3Nub3dfYWRkX2F0dGFjaG1lbnRfdG9fcmVjb3JkIiwgInV1aWQiOiAiOTc1 YjE4MDktMjExMC00MjA4LThjMzctNGI4YmE5YWQzMzFhIiwgImxhc3RfbW9kaWZpZWRfYnkiOiB7 ImRpc3BsYXlfbmFtZSI6ICJPcmNoZXN0cmF0aW9uIEVuZ2luZSIsICJ0eXBlIjogInVzZXIiLCAi aWQiOiAzOCwgIm5hbWUiOiAiaW50ZWdyYXRpb25zQGV4YW1wbGUuY29tIn0sICJ2ZXJzaW9uIjog MSwgIndvcmtmbG93cyI6IFt7ImRlc2NyaXB0aW9uIjogbnVsbCwgIm9iamVjdF90eXBlIjogImF0 dGFjaG1lbnQiLCAiYWN0aW9ucyI6IFtdLCAibmFtZSI6ICJFeGFtcGxlOiBTTk9XOiBBZGQgQXR0 YWNobWVudCB0byBSZWNvcmQiLCAid29ya2Zsb3dfaWQiOiA2LCAicHJvZ3JhbW1hdGljX25hbWUi OiAiZXhhbXBsZV9zbm93X2FkZF9hdHRhY2htZW50X3RvX3JlY29yZCIsICJ1dWlkIjogbnVsbH1d LCAibGFzdF9tb2RpZmllZF90aW1lIjogMTU1MDc2Mjg5MDI5OCwgImRlc3RpbmF0aW9uX2hhbmRs ZSI6ICJmbl9zZXJ2aWNlX25vdyIsICJpZCI6IDM0LCAibmFtZSI6ICJmbl9zbm93X2FkZF9hdHRh Y2htZW50X3RvX3JlY29yZCJ9LCB7ImRpc3BsYXlfbmFtZSI6ICJTTk9XOiBBZGQgTm90ZSB0byBS ZWNvcmQiLCAiZGVzY3JpcHRpb24iOiB7ImNvbnRlbnQiOiAiRnVuY3Rpb24gdGhhdCBhZGRzIGEg Tm90ZSB0byBhIFNlcnZpY2VOb3cgUmVjb3JkLiBPcHRpb24gdG8gYWRkIHRoZSBub3RlIGFzIGEg J1dvcmsgTm90ZScgb3IgJ0FkZGl0aW9uYWwgQ29tbWVudCcuIiwgImZvcm1hdCI6ICJ0ZXh0In0s ICJjcmVhdG9yIjogeyJkaXNwbGF5X25hbWUiOiAiQWRtaW4gVXNlciIsICJ0eXBlIjogInVzZXIi LCAiaWQiOiAzLCAibmFtZSI6ICJhZG1pbkByZXMuY29tIn0sICJ2aWV3X2l0ZW1zIjogW3sic2hv d19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRl ciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiODExZTk5ZDct ZDE5NC00Y2U4LTg2Y2MtYWZmNWUwMWFiODVjIiwgInN0ZXBfbGFiZWwiOiBudWxsfSwgeyJzaG93 X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtfaGVhZGVy IjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICJiYTMxODI2MS1l ZDZhLTRhMzgtYTE4Ny05ZTBiNjhkMTYwNGYiLCAic3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3df aWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIi OiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjkwOGUyYmQxLWQ2 ODItNDRlMS05MjQwLWVmYjVjMmJmMjNhMSIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hvd19p ZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6 IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiMTlkNWU4NTQtZGM2 NC00M2Q0LTlhMzktN2JlOTE0OTIwYWQ2IiwgInN0ZXBfbGFiZWwiOiBudWxsfV0sICJleHBvcnRf a2V5IjogImZuX3Nub3dfYWRkX25vdGVfdG9fcmVjb3JkIiwgInV1aWQiOiAiYzQzZjhjYzEtNWNk Yy00MWE2LWE2YjAtZmE1OWRkMzJkZjM2IiwgImxhc3RfbW9kaWZpZWRfYnkiOiB7ImRpc3BsYXlf bmFtZSI6ICJPcmNoZXN0cmF0aW9uIEVuZ2luZSIsICJ0eXBlIjogInVzZXIiLCAiaWQiOiAzOCwg Im5hbWUiOiAiaW50ZWdyYXRpb25zQGV4YW1wbGUuY29tIn0sICJ2ZXJzaW9uIjogMSwgIndvcmtm bG93cyI6IFt7ImRlc2NyaXB0aW9uIjogbnVsbCwgIm9iamVjdF90eXBlIjogImluY2lkZW50Iiwg ImFjdGlvbnMiOiBbXSwgIm5hbWUiOiAiRXhhbXBsZTogU05PVyBVcGRhdGUgUmVjb3JkIG9uIFNl dmVyaXR5IENoYW5nZSIsICJ3b3JrZmxvd19pZCI6IDMsICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJl eGFtcGxlX3Nub3dfdXBkYXRlX3JlY29yZF9vbl9zZXZlcml0eV9jaGFuZ2UiLCAidXVpZCI6IG51 bGx9LCB7ImRlc2NyaXB0aW9uIjogbnVsbCwgIm9iamVjdF90eXBlIjogIm5vdGUiLCAiYWN0aW9u cyI6IFtdLCAibmFtZSI6ICJFeGFtcGxlOiBTTk9XOiBBZGQgQ29tbWVudCB0byBSZWNvcmQiLCAi d29ya2Zsb3dfaWQiOiA3LCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBsZV9zbm93X2FkZF9j b21tZW50X3RvX3JlY29yZCIsICJ1dWlkIjogbnVsbH0sIHsiZGVzY3JpcHRpb24iOiBudWxsLCAi b2JqZWN0X3R5cGUiOiAibm90ZSIsICJhY3Rpb25zIjogW10sICJuYW1lIjogIkV4YW1wbGU6IFNO T1c6IEFkZCBXb3JrIE5vdGUgdG8gUmVjb3JkIiwgIndvcmtmbG93X2lkIjogMTEsICJwcm9ncmFt bWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nub3dfYWRkX3dvcmtub3RlX3RvX3JlY29yZCIsICJ1dWlk IjogbnVsbH1dLCAibGFzdF9tb2RpZmllZF90aW1lIjogMTU1MDc2Mjg5MDI5OCwgImRlc3RpbmF0 aW9uX2hhbmRsZSI6ICJmbl9zZXJ2aWNlX25vdyIsICJpZCI6IDM1LCAibmFtZSI6ICJmbl9zbm93 X2FkZF9ub3RlX3RvX3JlY29yZCJ9LCB7ImRpc3BsYXlfbmFtZSI6ICJTTk9XOiBDbG9zZSBSZWNv cmQiLCAiZGVzY3JpcHRpb24iOiB7ImNvbnRlbnQiOiAiRnVuY3Rpb24gdGhhdCB1c2VzIHRoZSAn L2Nsb3NlX3JlY29yZCcgY3VzdG9tIGVuZHBvaW50IGluIFNlcnZpY2VOb3cgdG8gY2hhbmdlIHRo ZSBzdGF0ZSBvZiBhIFNlcnZpY2VOb3cgUmVjb3JkIGFuZCBhZGQgQ2xvc2UgTm90ZXMgYW5kIGEg Q2xvc2UgQ29kZSB0byB0aGUgUmVjb3JkLiIsICJmb3JtYXQiOiAidGV4dCJ9LCAiY3JlYXRvciI6 IHsiZGlzcGxheV9uYW1lIjogIk9yY2hlc3RyYXRpb24gRW5naW5lIiwgInR5cGUiOiAidXNlciIs ICJpZCI6IDM4LCAibmFtZSI6ICJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20ifSwgInZpZXdfaXRl bXMiOiBbeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93 X2xpbmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6 ICI4MTFlOTlkNy1kMTk0LTRjZTgtODZjYy1hZmY1ZTAxYWI4NWMiLCAic3RlcF9sYWJlbCI6IG51 bGx9LCB7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3df bGlua19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50Ijog ImJhMzE4MjYxLWVkNmEtNGEzOC1hMTg3LTllMGI2OGQxNjA0ZiIsICJzdGVwX2xhYmVsIjogbnVs bH0sIHsic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19s aW5rX2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAi MzMxNTVkMjMtODNmNS00YTJiLWIwMTMtMGJhYTc4NjZjNjJkIiwgInN0ZXBfbGFiZWwiOiBudWxs fSwgeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xp bmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICJm MGViMTVmNS1mYjM2LTRjNmQtYjQ4OS0zNTJiZWZiZTNlYTMiLCAic3RlcF9sYWJlbCI6IG51bGx9 LCB7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlu a19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogImYy MzRkYjJmLWRmZTgtNDAxZi1hM2I5LWY1Zjg3OTIxZTIxZiIsICJzdGVwX2xhYmVsIjogbnVsbH0s IHsic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5r X2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiYmZm ZGQ3NjUtZDBjMS00MmJkLThiOTMtNzk4NDM2Y2ZhYjkzIiwgInN0ZXBfbGFiZWwiOiBudWxsfSwg eyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtf aGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICI5OTM5 ZjA2MS04NWEyLTQyYWMtODc1YS00NjE2ODk5OGYzYjYiLCAic3RlcF9sYWJlbCI6IG51bGx9XSwg ImV4cG9ydF9rZXkiOiAiZm5fc25vd19jbG9zZV9yZWNvcmQiLCAidXVpZCI6ICJlZGFkZjk1MS00 NjUyLTQ4YTktODA2OC05YjcxOWJmNGJmZTQiLCAibGFzdF9tb2RpZmllZF9ieSI6IHsiZGlzcGxh eV9uYW1lIjogIk9yY2hlc3RyYXRpb24gRW5naW5lIiwgInR5cGUiOiAidXNlciIsICJpZCI6IDM4 LCAibmFtZSI6ICJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20ifSwgInZlcnNpb24iOiAxLCAid29y a2Zsb3dzIjogW3siZGVzY3JpcHRpb24iOiBudWxsLCAib2JqZWN0X3R5cGUiOiAiaW5jaWRlbnQi LCAiYWN0aW9ucyI6IFtdLCAibmFtZSI6ICJFeGFtcGxlOiBTTk9XOiBDbG9zZSBSZWNvcmQgW0lu Y2lkZW50XSIsICJ3b3JrZmxvd19pZCI6IDEwLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBs ZV9zbm93X2Nsb3NlX3JlY29yZF9pbmNpZGVudCIsICJ1dWlkIjogbnVsbH0sIHsiZGVzY3JpcHRp b24iOiBudWxsLCAib2JqZWN0X3R5cGUiOiAidGFzayIsICJhY3Rpb25zIjogW10sICJuYW1lIjog IkV4YW1wbGU6IFNOT1c6IENsb3NlIFJlY29yZCBbVGFza10iLCAid29ya2Zsb3dfaWQiOiA1LCAi cHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBsZV9zbm93X2Nsb3NlX3JlY29yZF90YXNrIiwgInV1 aWQiOiBudWxsfSwgeyJkZXNjcmlwdGlvbiI6IG51bGwsICJvYmplY3RfdHlwZSI6ICJzbl9yZWNv cmRzX2R0IiwgImFjdGlvbnMiOiBbXSwgIm5hbWUiOiAiRXhhbXBsZTogU05PVzogQ2xvc2UgUmVj b3JkIGZyb20gRGF0YSBUYWJsZSIsICJ3b3JrZmxvd19pZCI6IDksICJwcm9ncmFtbWF0aWNfbmFt ZSI6ICJleGFtcGxlX3Nub3dfY2xvc2VfcmVjb3JkX2Zyb21fZGF0YV90YWJsZSIsICJ1dWlkIjog bnVsbH1dLCAibGFzdF9tb2RpZmllZF90aW1lIjogMTU1MDc2Mjg5MDI5OCwgImRlc3RpbmF0aW9u X2hhbmRsZSI6ICJmbl9zZXJ2aWNlX25vdyIsICJpZCI6IDM2LCAibmFtZSI6ICJmbl9zbm93X2Ns b3NlX3JlY29yZCJ9LCB7ImRpc3BsYXlfbmFtZSI6ICJTTk9XOiBDcmVhdGUgUmVjb3JkIiwgImRl c2NyaXB0aW9uIjogeyJjb250ZW50IjogIkZ1bmN0aW9uIHRoYXQgdXNlcyB0aGUgJy9jcmVhdGUn IGN1c3RvbSBlbmRwb2ludCBpbiBTZXJ2aWNlTm93IHRvIGNyZWF0ZSBhIFNlcnZpY2VOb3cgUmVj b3JkIGZyb20gYW4gSUJNIFJlc2lsaWVudCBJbmNpZGVudCBvciBUYXNrLiIsICJmb3JtYXQiOiAi dGV4dCJ9LCAiY3JlYXRvciI6IHsiZGlzcGxheV9uYW1lIjogIkFkbWluIFVzZXIiLCAidHlwZSI6 ICJ1c2VyIiwgImlkIjogMywgIm5hbWUiOiAiYWRtaW5AcmVzLmNvbSJ9LCAidmlld19pdGVtcyI6 IFt7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlu a19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjgx MWU5OWQ3LWQxOTQtNGNlOC04NmNjLWFmZjVlMDFhYjg1YyIsICJzdGVwX2xhYmVsIjogbnVsbH0s IHsic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5r X2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiYmEz MTgyNjEtZWQ2YS00YTM4LWExODctOWUwYjY4ZDE2MDRmIiwgInN0ZXBfbGFiZWwiOiBudWxsfSwg eyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtf aGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICI5ZmIw NzBkNy1mYzVhLTRjYTEtOGUyZS1mYzk0MGU1M2M4NTciLCAic3RlcF9sYWJlbCI6IG51bGx9LCB7 InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19o ZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjBiNzM5 MjEzLTA4OTYtNGVlOC1iZDVhLWZkMjYyODYxODViYSIsICJzdGVwX2xhYmVsIjogbnVsbH1dLCAi ZXhwb3J0X2tleSI6ICJmbl9zbm93X2NyZWF0ZV9yZWNvcmQiLCAidXVpZCI6ICIwNDFmYThjYS03 MGJiLTQ0YjEtOTk2Yi04OGY2MWE4YTA2NzEiLCAibGFzdF9tb2RpZmllZF9ieSI6IHsiZGlzcGxh eV9uYW1lIjogIk9yY2hlc3RyYXRpb24gRW5naW5lIiwgInR5cGUiOiAidXNlciIsICJpZCI6IDM4 LCAibmFtZSI6ICJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20ifSwgInZlcnNpb24iOiAxLCAid29y a2Zsb3dzIjogW3siZGVzY3JpcHRpb24iOiBudWxsLCAib2JqZWN0X3R5cGUiOiAiaW5jaWRlbnQi LCAiYWN0aW9ucyI6IFtdLCAibmFtZSI6ICJFeGFtcGxlOiBTTk9XOiBDcmVhdGUgUmVjb3JkIFtJ bmNpZGVudF0iLCAid29ya2Zsb3dfaWQiOiAyLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBs ZV9zbm93X2NyZWF0ZV9yZWNvcmRfaW5jaWRlbnQiLCAidXVpZCI6IG51bGx9LCB7ImRlc2NyaXB0 aW9uIjogbnVsbCwgIm9iamVjdF90eXBlIjogInRhc2siLCAiYWN0aW9ucyI6IFtdLCAibmFtZSI6 ICJFeGFtcGxlOiBTTk9XOiBDcmVhdGUgUmVjb3JkIFtUYXNrXSIsICJ3b3JrZmxvd19pZCI6IDQs ICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nub3dfY3JlYXRlX3JlY29yZF90YXNrIiwg InV1aWQiOiBudWxsfV0sICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTUwNzYyODkwMjk4LCAiZGVz dGluYXRpb25faGFuZGxlIjogImZuX3NlcnZpY2Vfbm93IiwgImlkIjogMzcsICJuYW1lIjogImZu X3Nub3dfY3JlYXRlX3JlY29yZCJ9LCB7ImRpc3BsYXlfbmFtZSI6ICJTTk9XIEhlbHBlcjogQWRk IFRhc2sgTm90ZSIsICJkZXNjcmlwdGlvbiI6IHsiY29udGVudCI6ICJBIGhlbHBlciBmdW5jdGlv biB0byBhZGQgYSBOb3RlIHRvIGEgVGFzayBmcm9tIGEgV29ya2Zsb3cgd2l0aCBhIGRpZmZlcmVu dCBwYXJlbnQgb2JqZWN0IHR5cGUuIiwgImZvcm1hdCI6ICJ0ZXh0In0sICJjcmVhdG9yIjogeyJk aXNwbGF5X25hbWUiOiAiQW5nZWxhIFZhbGRlcyIsICJ0eXBlIjogInVzZXIiLCAiaWQiOiA2LCAi bmFtZSI6ICJhbmdlbGFAcmVzLmNvbSJ9LCAidmlld19pdGVtcyI6IFt7InNob3dfaWYiOiBudWxs LCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZSwg ImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjMzMTU1ZDIzLTgzZjUtNGEyYi1i MDEzLTBiYWE3ODY2YzYyZCIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hvd19pZiI6IG51bGws ICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlLCAi ZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiOTA4ZTJiZDEtZDY4Mi00NGUxLTky NDAtZWZiNWMyYmYyM2ExIiwgInN0ZXBfbGFiZWwiOiBudWxsfV0sICJleHBvcnRfa2V5IjogImZu X3Nub3dfaGVscGVyX2FkZF90YXNrX25vdGUiLCAidXVpZCI6ICJmMDJkNjVmMC1mMTlhLTQxNGEt ODI4ZC01YzM1ZGU1MjcwYjEiLCAibGFzdF9tb2RpZmllZF9ieSI6IHsiZGlzcGxheV9uYW1lIjog Ik9yY2hlc3RyYXRpb24gRW5naW5lIiwgInR5cGUiOiAidXNlciIsICJpZCI6IDM4LCAibmFtZSI6 ICJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20ifSwgInZlcnNpb24iOiAxLCAid29ya2Zsb3dzIjog W3siZGVzY3JpcHRpb24iOiBudWxsLCAib2JqZWN0X3R5cGUiOiAic25fcmVjb3Jkc19kdCIsICJh Y3Rpb25zIjogW10sICJuYW1lIjogIkV4YW1wbGU6IFNOT1c6IENsb3NlIFJlY29yZCBmcm9tIERh dGEgVGFibGUiLCAid29ya2Zsb3dfaWQiOiA5LCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBs ZV9zbm93X2Nsb3NlX3JlY29yZF9mcm9tX2RhdGFfdGFibGUiLCAidXVpZCI6IG51bGx9XSwgImxh c3RfbW9kaWZpZWRfdGltZSI6IDE1NTA3NjI4OTAyOTgsICJkZXN0aW5hdGlvbl9oYW5kbGUiOiAi Zm5fc2VydmljZV9ub3ciLCAiaWQiOiAzOCwgIm5hbWUiOiAiZm5fc25vd19oZWxwZXJfYWRkX3Rh c2tfbm90ZSJ9LCB7ImRpc3BsYXlfbmFtZSI6ICJTTk9XIEhlbHBlcjogVXBkYXRlIERhdGEgVGFi bGUiLCAiZGVzY3JpcHRpb24iOiB7ImNvbnRlbnQiOiAiQSBoZWxwZXIgZnVuY3Rpb24gdGhhdCB1 cGRhdGVzIHRoZSBTZXJ2aWNlTm93IFJlY29yZHMgRGF0YSBUYWJsZSB3aGVuIHRoZSBzdGF0dXMg b2YgYW4gSW5jaWRlbnQvVGFzayBpcyBjaGFuZ2VkLiIsICJmb3JtYXQiOiAidGV4dCJ9LCAiY3Jl YXRvciI6IHsiZGlzcGxheV9uYW1lIjogIkFkbWluIFVzZXIiLCAidHlwZSI6ICJ1c2VyIiwgImlk IjogMywgIm5hbWUiOiAiYWRtaW5AcmVzLmNvbSJ9LCAidmlld19pdGVtcyI6IFt7InNob3dfaWYi OiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBm YWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjgxMWU5OWQ3LWQxOTQt NGNlOC04NmNjLWFmZjVlMDFhYjg1YyIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hvd19pZiI6 IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6IGZh bHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiYmEzMTgyNjEtZWQ2YS00 YTM4LWExODctOWUwYjY4ZDE2MDRmIiwgInN0ZXBfbGFiZWwiOiBudWxsfSwgeyJzaG93X2lmIjog bnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFs c2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICI3MmE0ZTVhZC02ZGY3LTQ4 MzktYTExNC1mMDgxZDRjMDA5NzMiLCAic3RlcF9sYWJlbCI6IG51bGx9XSwgImV4cG9ydF9rZXki OiAiZm5fc25vd19oZWxwZXJfdXBkYXRlX2RhdGF0YWJsZSIsICJ1dWlkIjogIjYxMzBjMDgzLTE3 ZWEtNDI2Mi05ODZiLThkMDczZDNmNzMyOCIsICJsYXN0X21vZGlmaWVkX2J5IjogeyJkaXNwbGF5 X25hbWUiOiAiT3JjaGVzdHJhdGlvbiBFbmdpbmUiLCAidHlwZSI6ICJ1c2VyIiwgImlkIjogMzgs ICJuYW1lIjogImludGVncmF0aW9uc0BleGFtcGxlLmNvbSJ9LCAidmVyc2lvbiI6IDEsICJ3b3Jr Zmxvd3MiOiBbeyJkZXNjcmlwdGlvbiI6IG51bGwsICJvYmplY3RfdHlwZSI6ICJpbmNpZGVudCIs ICJhY3Rpb25zIjogW10sICJuYW1lIjogIkV4YW1wbGU6IFNOT1c6IFVwZGF0ZSBEYXRhIFRhYmxl IG9uIFN0YXR1cyBDaGFuZ2UgW0luY2lkZW50XSIsICJ3b3JrZmxvd19pZCI6IDgsICJwcm9ncmFt bWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nub3dfdXBkYXRlX2RhdGF0YWJsZV9vbl9zdGF0dXNfY2hh bmdlX2luY2lkZW50IiwgInV1aWQiOiBudWxsfSwgeyJkZXNjcmlwdGlvbiI6IG51bGwsICJvYmpl Y3RfdHlwZSI6ICJ0YXNrIiwgImFjdGlvbnMiOiBbXSwgIm5hbWUiOiAiRXhhbXBsZTogU05PVzog VXBkYXRlIERhdGEgVGFibGUgb24gU3RhdHVzIENoYW5nZSBbVGFza10iLCAid29ya2Zsb3dfaWQi OiAxLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBsZV9zbm93X3VwZGF0ZV9kYXRhdGFibGVf b25fc3RhdHVzX2NoYW5nZV90YXNrIiwgInV1aWQiOiBudWxsfV0sICJsYXN0X21vZGlmaWVkX3Rp bWUiOiAxNTUwNzYyODkwMjk4LCAiZGVzdGluYXRpb25faGFuZGxlIjogImZuX3NlcnZpY2Vfbm93 IiwgImlkIjogMzksICJuYW1lIjogImZuX3Nub3dfaGVscGVyX3VwZGF0ZV9kYXRhdGFibGUifSwg eyJkaXNwbGF5X25hbWUiOiAiU05PVzogTG9va3VwIHN5c19pZCIsICJkZXNjcmlwdGlvbiI6IHsi Y29udGVudCI6ICJGdW5jdGlvbiB0aGF0IGdldHMgdGhlICdzeXNfaWQnIG9mIGEgU2VydmljZU5v dyBSZWNvcmQuIiwgImZvcm1hdCI6ICJ0ZXh0In0sICJjcmVhdG9yIjogeyJkaXNwbGF5X25hbWUi OiAiQWRtaW4gVXNlciIsICJ0eXBlIjogInVzZXIiLCAiaWQiOiAzLCAibmFtZSI6ICJhZG1pbkBy ZXMuY29tIn0sICJ2aWV3X2l0ZW1zIjogW3sic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjog Il9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVs ZF91dWlkIiwgImNvbnRlbnQiOiAiMTA3ZWRjNWQtZTQ0NC00Mzk4LWE1OTYtMDBkNjFkYjRjM2Zk IiwgInN0ZXBfbGFiZWwiOiBudWxsfSwgeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAi X19mdW5jdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxk X3V1aWQiLCAiY29udGVudCI6ICJhNDgzYTVmYi0wMDY0LTQ3NjAtOWZlOC03ZDgzMTJlZDFkZDIi LCAic3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJf X2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRf dXVpZCIsICJjb250ZW50IjogImFkMzdjMDA0LWRhNzMtNGI0OS05NTc1LWEzMzA5Mzg5NzM0MyIs ICJzdGVwX2xhYmVsIjogbnVsbH1dLCAiZXhwb3J0X2tleSI6ICJmbl9zbm93X2xvb2t1cF9zeXNp ZCIsICJ1dWlkIjogImU1YWJmOTFjLTU3ZjYtNGQwMS1iZDVhLTUwYmZlMjYxY2IwMSIsICJsYXN0 X21vZGlmaWVkX2J5IjogeyJkaXNwbGF5X25hbWUiOiAiT3JjaGVzdHJhdGlvbiBFbmdpbmUiLCAi dHlwZSI6ICJ1c2VyIiwgImlkIjogMzgsICJuYW1lIjogImludGVncmF0aW9uc0BleGFtcGxlLmNv bSJ9LCAidmVyc2lvbiI6IDEsICJ3b3JrZmxvd3MiOiBbeyJkZXNjcmlwdGlvbiI6IG51bGwsICJv YmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJhY3Rpb25zIjogW10sICJuYW1lIjogIkV4YW1wbGU6 IFNOT1c6IENyZWF0ZSBSZWNvcmQgW0luY2lkZW50XSIsICJ3b3JrZmxvd19pZCI6IDIsICJwcm9n cmFtbWF0aWNfbmFtZSI6ICJleGFtcGxlX3Nub3dfY3JlYXRlX3JlY29yZF9pbmNpZGVudCIsICJ1 dWlkIjogbnVsbH0sIHsiZGVzY3JpcHRpb24iOiBudWxsLCAib2JqZWN0X3R5cGUiOiAidGFzayIs ICJhY3Rpb25zIjogW10sICJuYW1lIjogIkV4YW1wbGU6IFNOT1c6IENyZWF0ZSBSZWNvcmQgW1Rh c2tdIiwgIndvcmtmbG93X2lkIjogNCwgInByb2dyYW1tYXRpY19uYW1lIjogImV4YW1wbGVfc25v d19jcmVhdGVfcmVjb3JkX3Rhc2siLCAidXVpZCI6IG51bGx9XSwgImxhc3RfbW9kaWZpZWRfdGlt ZSI6IDE1NTA3NjI4OTAyOTgsICJkZXN0aW5hdGlvbl9oYW5kbGUiOiAiZm5fc2VydmljZV9ub3ci LCAiaWQiOiA0MCwgIm5hbWUiOiAiZm5fc25vd19sb29rdXBfc3lzaWQifSwgeyJkaXNwbGF5X25h bWUiOiAiU05PVzogVXBkYXRlIFJlY29yZCIsICJkZXNjcmlwdGlvbiI6IHsiY29udGVudCI6ICJG dW5jdGlvbiB0aGF0IHVzZXMgdGhlICcvdXBkYXRlJyBjdXN0b20gZW5kcG9pbnQgaW4gU2Vydmlj ZU5vdyB0byB1cGRhdGUgYSBTZXJ2aWNlTm93IFJlY29yZCB3aXRoIGEgZ2l2ZW4gZGljdGlvbmFy eSBvZiBmaWVsZCBuYW1lL3ZhbHVlIHBhaXJzLiIsICJmb3JtYXQiOiAidGV4dCJ9LCAiY3JlYXRv ciI6IHsiZGlzcGxheV9uYW1lIjogIkFkbWluIFVzZXIiLCAidHlwZSI6ICJ1c2VyIiwgImlkIjog NzEsICJuYW1lIjogImFkbWluQGV4YW1wbGUuY29tIn0sICJ2aWV3X2l0ZW1zIjogW3sic2hvd19p ZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6 IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiODExZTk5ZDctZDE5 NC00Y2U4LTg2Y2MtYWZmNWUwMWFiODVjIiwgInN0ZXBfbGFiZWwiOiBudWxsfSwgeyJzaG93X2lm IjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjog ZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICJiYTMxODI2MS1lZDZh LTRhMzgtYTE4Ny05ZTBiNjhkMTYwNGYiLCAic3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYi OiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBm YWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjMzMTU1ZDIzLTgzZjUt NGEyYi1iMDEzLTBiYWE3ODY2YzYyZCIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hvd19pZiI6 IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6IGZh bHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiNGJmMDBiMTYtYzI4OS00 YTk2LTkwNjYtNzQyMmZjMThiNzhhIiwgInN0ZXBfbGFiZWwiOiBudWxsfV0sICJleHBvcnRfa2V5 IjogImZuX3Nub3dfdXBkYXRlX3JlY29yZCIsICJ1dWlkIjogIjk1ZDdkNGRmLTBlYzgtNGRiZC1i YmNmLTk3NTliMjM5MzBlYiIsICJsYXN0X21vZGlmaWVkX2J5IjogeyJkaXNwbGF5X25hbWUiOiAi T3JjaGVzdHJhdGlvbiBFbmdpbmUiLCAidHlwZSI6ICJ1c2VyIiwgImlkIjogMzgsICJuYW1lIjog ImludGVncmF0aW9uc0BleGFtcGxlLmNvbSJ9LCAidmVyc2lvbiI6IDEsICJ3b3JrZmxvd3MiOiBb eyJkZXNjcmlwdGlvbiI6IG51bGwsICJvYmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJhY3Rpb25z IjogW10sICJuYW1lIjogIkV4YW1wbGU6IFNOT1cgVXBkYXRlIFJlY29yZCBvbiBTZXZlcml0eSBD aGFuZ2UiLCAid29ya2Zsb3dfaWQiOiAzLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiZXhhbXBsZV9z bm93X3VwZGF0ZV9yZWNvcmRfb25fc2V2ZXJpdHlfY2hhbmdlIiwgInV1aWQiOiBudWxsfV0sICJs YXN0X21vZGlmaWVkX3RpbWUiOiAxNTUwNzYyODkwMjk4LCAiZGVzdGluYXRpb25faGFuZGxlIjog ImZuX3NlcnZpY2Vfbm93IiwgImlkIjogNDEsICJuYW1lIjogImZuX3Nub3dfdXBkYXRlX3JlY29y ZCJ9XSwgIm5vdGlmaWNhdGlvbnMiOiBudWxsLCAicmVndWxhdG9ycyI6IG51bGwsICJpbmNpZGVu dF90eXBlcyI6IFt7ImNyZWF0ZV9kYXRlIjogMTU1MDc2NDI2MDE4OCwgImRlc2NyaXB0aW9uIjog IkN1c3RvbWl6YXRpb24gUGFja2FnZXMgKGludGVybmFsKSIsICJleHBvcnRfa2V5IjogIkN1c3Rv bWl6YXRpb24gUGFja2FnZXMgKGludGVybmFsKSIsICJpZCI6IDAsICJuYW1lIjogIkN1c3RvbWl6 YXRpb24gUGFja2FnZXMgKGludGVybmFsKSIsICJ1cGRhdGVfZGF0ZSI6IDE1NTA3NjQyNjAxODgs ICJ1dWlkIjogImJmZWVjMmQ0LTM3NzAtMTFlOC1hZDM5LTRhMDAwNDA0NGFhMCIsICJlbmFibGVk IjogZmFsc2UsICJzeXN0ZW0iOiBmYWxzZSwgInBhcmVudF9pZCI6IG51bGwsICJoaWRkZW4iOiBm YWxzZX1dLCAic2NyaXB0cyI6IFtdLCAidHlwZXMiOiBbeyJkaXNwbGF5X25hbWUiOiAiU2Vydmlj ZU5vdyBSZWNvcmRzIiwgInV1aWQiOiAiOGQzNGVlNzctNGM1NC00MDM0LWI2OGItMjNjYmY5MDg4 ZTExIiwgInR5cGVfaWQiOiA4LCAiZmllbGRzIjogeyJzbl9yZWNvcmRzX2R0X3Nub3dfc3RhdHVz IjogeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTAwMCwgIm9wZXJhdGlvbl9wZXJtcyI6 IHt9LCAidGV4dCI6ICJTTk9XIFN0YXR1cyIsICJibGFua19vcHRpb24iOiB0cnVlLCAicHJlZml4 IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxNzUsICJyZWFkX29ubHkiOiBmYWxz ZSwgInV1aWQiOiAiZmE3MTU5ZGItNzNlNC00NjRlLThiYmQtNWU3ZWY5OWY1NGU5IiwgImNob3Nl biI6IHRydWUsICJpbnB1dF90eXBlIjogInRleHRhcmVhIiwgInRvb2x0aXAiOiAiVGhlIGN1cnJl bnQgc3RhdHVzIG9mIHRoZSByZWNvcmQgaW4gU05PVyIsICJ3aWR0aCI6IDUyLCAiaW50ZXJuYWwi OiBmYWxzZSwgInJpY2hfdGV4dCI6IHRydWUsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9rZXki OiAic25fcmVjb3Jkc19kdC9zbl9yZWNvcmRzX2R0X3Nub3dfc3RhdHVzIiwgImhpZGVfbm90aWZp Y2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9yZWNvcmRzX2R0 X3Nub3dfc3RhdHVzIiwgImRlcHJlY2F0ZWQiOiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5X3Nl cnZlciI6IGZhbHNlLCAidmFsdWVzIjogW10sICJvcmRlciI6IDZ9LCAic25fcmVjb3Jkc19kdF9u YW1lIjogeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTAwMCwgIm9wZXJhdGlvbl9wZXJt cyI6IHt9LCAidGV4dCI6ICJOYW1lIiwgImJsYW5rX29wdGlvbiI6IHRydWUsICJwcmVmaXgiOiBu dWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDE3NiwgInJlYWRfb25seSI6IGZhbHNlLCAi dXVpZCI6ICJiODFiNmRkMS03OGMwLTRlMzUtOWZjMC0yODgzYjAwMzc4OTAiLCAiY2hvc2VuIjog dHJ1ZSwgImlucHV0X3R5cGUiOiAidGV4dCIsICJ0b29sdGlwIjogIlRoZSBuYW1lIG9mIHRoZSBy ZWNvcmQiLCAid2lkdGgiOiAxMzYsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFs c2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAic25fcmVjb3Jkc19kdC9zbl9yZWNv cmRzX2R0X25hbWUiLCAiaGlkZV9ub3RpZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjog IiIsICJuYW1lIjogInNuX3JlY29yZHNfZHRfbmFtZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJk ZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdLCAib3JkZXIiOiAx fSwgInNuX3JlY29yZHNfZHRfdGltZSI6IHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDEw MDAsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAiTGFzdCBVcGRhdGVkIiwgImJsYW5r X29wdGlvbiI6IHRydWUsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6 IDE3NywgInJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICIzZGEwYzBiYi1iMWZhLTQwYzktOTg1 OS1hYTg0NTgyMTFiYTYiLCAiY2hvc2VuIjogdHJ1ZSwgImlucHV0X3R5cGUiOiAiZGF0ZXRpbWVw aWNrZXIiLCAidG9vbHRpcCI6ICJUaGUgdGltZSB0aGlzIHJvdyB3YXMgbGFzdCB1cGRhdGVkIiwg IndpZHRoIjogNjQsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1w bGF0ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAic25fcmVjb3Jkc19kdC9zbl9yZWNvcmRzX2R0X3Rp bWUiLCAiaGlkZV9ub3RpZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1l IjogInNuX3JlY29yZHNfZHRfdGltZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2No b3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdLCAib3JkZXIiOiAwfSwgInNuX3Jl Y29yZHNfZHRfcmVzX3N0YXR1cyI6IHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDEwMDAs ICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAiUkVTIFN0YXR1cyIsICJibGFua19vcHRp b24iOiB0cnVlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxNzgs ICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiYzk5ZDI1ZjItODA2Ni00MTJhLWJhODktNGYx MjI2YjZhZjVlIiwgImNob3NlbiI6IHRydWUsICJpbnB1dF90eXBlIjogInRleHRhcmVhIiwgInRv b2x0aXAiOiAiVGhlIGN1cnJlbnQgc3RhdHVzIG9mIHRoZSBJbmNpZGVudC9UYXNrIGluIFJlc2ls aWVudCIsICJ3aWR0aCI6IDU3LCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IHRydWUs ICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAic25fcmVjb3Jkc19kdC9zbl9yZWNvcmRz X2R0X3Jlc19zdGF0dXMiLCAiaGlkZV9ub3RpZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVy IjogIiIsICJuYW1lIjogInNuX3JlY29yZHNfZHRfcmVzX3N0YXR1cyIsICJkZXByZWNhdGVkIjog ZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdLCAi b3JkZXIiOiA1fSwgInNuX3JlY29yZHNfZHRfbGlua3MiOiB7Im9wZXJhdGlvbnMiOiBbXSwgInR5 cGVfaWQiOiAxMDAwLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogIkxpbmtzIiwgImJs YW5rX29wdGlvbiI6IHRydWUsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJp ZCI6IDE3OSwgInJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICI3ZmFmY2MyMy0xYjhkLTQ0ZTAt YTE5Mi0zMzZiZGQ0MTM3YjIiLCAiY2hvc2VuIjogdHJ1ZSwgImlucHV0X3R5cGUiOiAidGV4dGFy ZWEiLCAidG9vbHRpcCI6ICJPcGVucyB0aGUgcmVjb3JkIGluIGEgbmV3IHRhYiBpbiBlaXRoZXIg UmVzaWxpZW50IG9yIFNOT1ciLCAid2lkdGgiOiA0NSwgImludGVybmFsIjogZmFsc2UsICJyaWNo X3RleHQiOiB0cnVlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogInNuX3JlY29yZHNf ZHQvc25fcmVjb3Jkc19kdF9saW5rcyIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxh Y2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAic25fcmVjb3Jkc19kdF9saW5rcyIsICJkZXByZWNhdGVk IjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtd LCAib3JkZXIiOiA3fSwgInNuX3JlY29yZHNfZHRfdHlwZSI6IHsib3BlcmF0aW9ucyI6IFtdLCAi dHlwZV9pZCI6IDEwMDAsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAiVHlwZSIsICJi bGFua19vcHRpb24iOiB0cnVlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAi aWQiOiAxODAsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiOWZkNzg2YmItY2M4ZC00OWM4 LThkZjEtZjAyOTIxZTM2NTc4IiwgImNob3NlbiI6IHRydWUsICJpbnB1dF90eXBlIjogInRleHQi LCAidG9vbHRpcCI6ICJFaXRoZXIgSW5jaWRlbnQgb3IgVGFzayIsICJ3aWR0aCI6IDY1LCAiaW50 ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBv cnRfa2V5IjogInNuX3JlY29yZHNfZHQvc25fcmVjb3Jkc19kdF90eXBlIiwgImhpZGVfbm90aWZp Y2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9yZWNvcmRzX2R0 X3R5cGUiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjog ZmFsc2UsICJ2YWx1ZXMiOiBbXSwgIm9yZGVyIjogMn0sICJzbl9yZWNvcmRzX2R0X3NuX3JlZl9p ZCI6IHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDEwMDAsICJvcGVyYXRpb25fcGVybXMi OiB7fSwgInRleHQiOiAiU05PVyBJRCIsICJibGFua19vcHRpb24iOiB0cnVlLCAicHJlZml4Ijog bnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxODEsICJyZWFkX29ubHkiOiBmYWxzZSwg InV1aWQiOiAiY2Q5YzllMTMtZWJiZi00YjVlLWE0MzgtYTdhOTY5YzFmOWZkIiwgImNob3NlbiI6 IHRydWUsICJpbnB1dF90eXBlIjogInRleHQiLCAidG9vbHRpcCI6ICJJRCBvZiByZWNvcmQgaW4g U05PVywgdW5pcXVlIHRvIGl0cyB0YWJsZSBpbiBTTk9XIiwgIndpZHRoIjogODMsICJpbnRlcm5h bCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9r ZXkiOiAic25fcmVjb3Jkc19kdC9zbl9yZWNvcmRzX2R0X3NuX3JlZl9pZCIsICJoaWRlX25vdGlm aWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAic25fcmVjb3Jkc19k dF9zbl9yZWZfaWQiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2Vy dmVyIjogZmFsc2UsICJ2YWx1ZXMiOiBbXSwgIm9yZGVyIjogNH0sICJzbl9yZWNvcmRzX2R0X3Jl c19pZCI6IHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDEwMDAsICJvcGVyYXRpb25fcGVy bXMiOiB7fSwgInRleHQiOiAiUkVTIElEIiwgImJsYW5rX29wdGlvbiI6IHRydWUsICJwcmVmaXgi OiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDE4MiwgInJlYWRfb25seSI6IGZhbHNl LCAidXVpZCI6ICI3NzA5ZTJiNS1mNjZjLTQwM2QtYThiYS1jNDM4ODM3Yjc4YzkiLCAiY2hvc2Vu IjogdHJ1ZSwgImlucHV0X3R5cGUiOiAidGV4dCIsICJ0b29sdGlwIjogIlVuaXF1ZSBJRCBvZiBS ZXNpbGllbnQgSW5jaWRlbnQgb3IgVGFzayIsICJ3aWR0aCI6IDY5LCAiaW50ZXJuYWwiOiBmYWxz ZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogInNu X3JlY29yZHNfZHQvc25fcmVjb3Jkc19kdF9yZXNfaWQiLCAiaGlkZV9ub3RpZmljYXRpb24iOiBm YWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1lIjogInNuX3JlY29yZHNfZHRfcmVzX2lkIiwg ImRlcHJlY2F0ZWQiOiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5X3NlcnZlciI6IGZhbHNlLCAi dmFsdWVzIjogW10sICJvcmRlciI6IDN9fSwgInBhcmVudF90eXBlcyI6IFsiaW5jaWRlbnQiXSwg InR5cGVfbmFtZSI6ICJzbl9yZWNvcmRzX2R0IiwgImV4cG9ydF9rZXkiOiAic25fcmVjb3Jkc19k dCIsICJmb3JfY3VzdG9tX2ZpZWxkcyI6IGZhbHNlLCAiYWN0aW9ucyI6IFtdLCAiaWQiOiBudWxs LCAiZm9yX2FjdGlvbnMiOiBmYWxzZSwgImZvcl9ub3RpZmljYXRpb25zIjogZmFsc2UsICJzY3Jp cHRzIjogW10sICJwcm9wZXJ0aWVzIjogeyJmb3Jfd2hvIjogW10sICJjYW5fZGVzdHJveSI6IGZh bHNlLCAiY2FuX2NyZWF0ZSI6IGZhbHNlfX1dLCAibWVzc2FnZV9kZXN0aW5hdGlvbnMiOiBbeyJ1 dWlkIjogIjU5YzQxZjNkLThhOTMtNDIwNS1hMjNkLTE3MDZjMWU0OGY2MSIsICJleHBvcnRfa2V5 IjogImZuX3NlcnZpY2Vfbm93IiwgIm5hbWUiOiAiZm5fc2VydmljZV9ub3ciLCAiZGVzdGluYXRp b25fdHlwZSI6IDAsICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJmbl9zZXJ2aWNlX25vdyIsICJleHBl Y3RfYWNrIjogdHJ1ZSwgInVzZXJzIjogWyJpbnRlZ3JhdGlvbnNAZXhhbXBsZS5jb20iXX1dLCAi aW5jaWRlbnRfYXJ0aWZhY3RfdHlwZXMiOiBbXSwgInJvbGVzIjogW10sICJmaWVsZHMiOiBbeyJv cGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMCwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4 dCI6ICJTTk9XIFJlY29yZCBJRCIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6ICJw cm9wZXJ0aWVzIiwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxNzQsICJyZWFkX29ubHkiOiBm YWxzZSwgInV1aWQiOiAiZWM2NWZkNGQtYjRjNS00NjMyLWE1MDQtZDM5MGY0NWJlNzE1IiwgImNo b3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgInRvb2x0aXAiOiAiSUQgb2YgU2Vy dmljZU5vdyBSZWNvcmQiLCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAi dGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogImluY2lkZW50L3NuX3Nub3dfcmVjb3JkX2lk IiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6 ICJzbl9zbm93X3JlY29yZF9pZCIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nl bl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0 eXBlX2lkIjogMCwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJTTk9XIFJlY29yZCIs ICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6ICJwcm9wZXJ0aWVzIiwgImNoYW5nZWFi bGUiOiB0cnVlLCAiaWQiOiAxNzMsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiNmU2OWEw MjUtNjU5Ny00OTk0LTliMWItNTU3ZWY3MzZkNDVlIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRf dHlwZSI6ICJ0ZXh0YXJlYSIsICJ0b29sdGlwIjogIkxpbmsgdG8gU2VydmljZU5vdyBSZWNvcmQi LCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IHRydWUsICJ0ZW1wbGF0ZXMiOiBbXSwg ImV4cG9ydF9rZXkiOiAiaW5jaWRlbnQvc25fc25vd19yZWNvcmRfbGluayIsICJoaWRlX25vdGlm aWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAic25fc25vd19yZWNv cmRfbGluayIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIi OiBmYWxzZSwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogNiwg Im9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJTTiBDbG9zZSBOb3RlcyIsICJibGFua19v cHRpb24iOiBmYWxzZSwgInByZWZpeCI6ICJwcm9wZXJ0aWVzIiwgImNoYW5nZWFibGUiOiB0cnVl LCAiaWQiOiAxODcsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiMjg5OGM4ZjItOGIyOC00 MTBiLWIxYjItNmQ3OGZlZWI2MTMyIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0 ZXh0IiwgInRvb2x0aXAiOiAiIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQiOiBmYWxz ZSwgInRlbXBsYXRlcyI6IFtdLCAiZXhwb3J0X2tleSI6ICJhY3Rpb25pbnZvY2F0aW9uL3NuX2Ns b3NlX25vdGVzIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIi LCAibmFtZSI6ICJzbl9jbG9zZV9ub3RlcyIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0 X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInJlcXVpcmVkIjogImFsd2F5cyIsICJ2YWx1ZXMi OiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDYsICJvcGVyYXRpb25fcGVybXMi OiB7fSwgInRleHQiOiAiU04gQ2xvc2UgQ29kZSIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInBy ZWZpeCI6ICJwcm9wZXJ0aWVzIiwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxODUsICJyZWFk X29ubHkiOiBmYWxzZSwgInV1aWQiOiAiMjkzMmU1MDUtNDJkOS00YTUyLTg3OTAtOTgwZjIwZDUz MThhIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJzZWxlY3QiLCAidG9vbHRpcCI6 ICIiLCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjog W10sICJleHBvcnRfa2V5IjogImFjdGlvbmludm9jYXRpb24vc25fY2xvc2VfY29kZSIsICJoaWRl X25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAic25fY2xv c2VfY29kZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIi OiBmYWxzZSwgInJlcXVpcmVkIjogImFsd2F5cyIsICJ2YWx1ZXMiOiBbeyJ1dWlkIjogIjY0NjVl N2FkLTU2ZDAtNGVlOS04MzA3LWFiZjhiNzcwZjUzNyIsICJkZWZhdWx0IjogZmFsc2UsICJlbmFi bGVkIjogdHJ1ZSwgInZhbHVlIjogMTc1OSwgImxhYmVsIjogIlNvbHZlZCAoV29yayBBcm91bmQp IiwgImhpZGRlbiI6IGZhbHNlLCAicHJvcGVydGllcyI6IG51bGx9LCB7InV1aWQiOiAiNzdjNTc1 OGUtNTdjZS00NGI0LWFiZjItYjViM2M5ZGMxNGJmIiwgImRlZmF1bHQiOiB0cnVlLCAiZW5hYmxl ZCI6IHRydWUsICJ2YWx1ZSI6IDE3NjAsICJsYWJlbCI6ICJTb2x2ZWQgKFBlcm1hbmVudGx5KSIs ICJoaWRkZW4iOiBmYWxzZSwgInByb3BlcnRpZXMiOiBudWxsfSwgeyJ1dWlkIjogImFkNGM4MjI5 LWVhOGQtNGY3Ny04NTVmLTE5MDgyZWI5MjI3YSIsICJkZWZhdWx0IjogZmFsc2UsICJlbmFibGVk IjogdHJ1ZSwgInZhbHVlIjogMTc2MSwgImxhYmVsIjogIk5vdCBTb2x2ZWQgKE5vdCBSZXByb2R1 Y2libGUpIiwgImhpZGRlbiI6IGZhbHNlLCAicHJvcGVydGllcyI6IG51bGx9LCB7InV1aWQiOiAi OTNmNjY5NjEtMmU1Ny00MjcxLTg0ZTAtZDMyMGI5Zjc5NjlmIiwgImRlZmF1bHQiOiBmYWxzZSwg ImVuYWJsZWQiOiB0cnVlLCAidmFsdWUiOiAxNzYyLCAibGFiZWwiOiAiTm90IFNvbHZlZCAoVG9v IENvc3RseSkiLCAiaGlkZGVuIjogZmFsc2UsICJwcm9wZXJ0aWVzIjogbnVsbH0sIHsidXVpZCI6 ICJlN2FkMmZmNC1kYzJmLTQ4ZGYtYTRhMS04NmIzYmE3N2RiMTMiLCAiZGVmYXVsdCI6IGZhbHNl LCAiZW5hYmxlZCI6IHRydWUsICJ2YWx1ZSI6IDE3NjMsICJsYWJlbCI6ICJDbG9zZWQvUmVzb2x2 ZWQgYnkgQ2FsbGVyIiwgImhpZGRlbiI6IGZhbHNlLCAicHJvcGVydGllcyI6IG51bGx9XX0sIHsi b3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDYsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRl eHQiOiAiU04gUmVjb3JkIFN0YXRlIiwgImJsYW5rX29wdGlvbiI6IGZhbHNlLCAicHJlZml4Ijog InByb3BlcnRpZXMiLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDE4MywgInJlYWRfb25seSI6 IGZhbHNlLCAidXVpZCI6ICI4YjU1ZWNjOS0xOTZkLTQ4ZmMtODgzNS0xYmRlYWUyYWQzYzkiLCAi Y2hvc2VuIjogZmFsc2UsICJpbnB1dF90eXBlIjogInNlbGVjdCIsICJ0b29sdGlwIjogIiIsICJp bnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4 cG9ydF9rZXkiOiAiYWN0aW9uaW52b2NhdGlvbi9zbl9yZWNvcmRfc3RhdGUiLCAiaGlkZV9ub3Rp ZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1lIjogInNuX3JlY29yZF9z dGF0ZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBm YWxzZSwgInJlcXVpcmVkIjogImFsd2F5cyIsICJ2YWx1ZXMiOiBbeyJ1dWlkIjogImUxMThiYTVh LWQ1YzYtNDA5Ny04NGM5LTc2ODJkMzI1ZTQ2ZCIsICJkZWZhdWx0IjogdHJ1ZSwgImVuYWJsZWQi OiB0cnVlLCAidmFsdWUiOiAxNzUwLCAibGFiZWwiOiAiUmVzb2x2ZWQiLCAiaGlkZGVuIjogZmFs c2UsICJwcm9wZXJ0aWVzIjogbnVsbH0sIHsidXVpZCI6ICIxYjg3MjZiZC1kNTc0LTQyYTItYmIy Yy0wN2RmZGY4NjFiZWYiLCAiZGVmYXVsdCI6IGZhbHNlLCAiZW5hYmxlZCI6IHRydWUsICJ2YWx1 ZSI6IDE3NTEsICJsYWJlbCI6ICJDbG9zZWQiLCAiaGlkZGVuIjogZmFsc2UsICJwcm9wZXJ0aWVz IjogbnVsbH0sIHsidXVpZCI6ICIzZDAzZmQwYi0yN2U5LTRhNDUtOWFlZC0xMTBiYzI0ODc1ZGMi LCAiZGVmYXVsdCI6IGZhbHNlLCAiZW5hYmxlZCI6IHRydWUsICJ2YWx1ZSI6IDE3NTIsICJsYWJl bCI6ICJDYW5jZWxlZCIsICJoaWRkZW4iOiBmYWxzZSwgInByb3BlcnRpZXMiOiBudWxsfV19LCB7 Im9wZXJhdGlvbnMiOiBbXSwgInR5cGVfaWQiOiA2LCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0 ZXh0IjogIlNOIEFzc2lnbm1lbnQgR3JvdXAiLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJwcmVm aXgiOiAicHJvcGVydGllcyIsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTg0LCAicmVhZF9v bmx5IjogZmFsc2UsICJ1dWlkIjogIjQyZjY2NTdmLTI0YTYtNDZmMi1hMGJmLTAwMzkyMjg4N2My YiIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5cGUiOiAic2VsZWN0IiwgInRvb2x0aXAiOiAi VGhlIGdyb3VwIHRoaXMgcmVjb3JkIHdpbGwgYmUgYXNzaWduZWQgdG8gaW4gU2VydmljZU5vdyIs ICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwg ImV4cG9ydF9rZXkiOiAiYWN0aW9uaW52b2NhdGlvbi9zbl9hc3NpZ25tZW50X2dyb3VwIiwgImhp ZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9h c3NpZ25tZW50X2dyb3VwIiwgImRlcHJlY2F0ZWQiOiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5 X3NlcnZlciI6IGZhbHNlLCAicmVxdWlyZWQiOiAiYWx3YXlzIiwgInZhbHVlcyI6IFt7InV1aWQi OiAiM2UyNmM1Y2EtZTljOS00NzM4LThhOWQtZjU4MmJmNWZjNmI3IiwgImRlZmF1bHQiOiBmYWxz ZSwgImVuYWJsZWQiOiB0cnVlLCAidmFsdWUiOiAxNzUzLCAibGFiZWwiOiAiSVQgU2VjdXJpdGll cyIsICJoaWRkZW4iOiBmYWxzZSwgInByb3BlcnRpZXMiOiBudWxsfSwgeyJ1dWlkIjogIjZhNDA4 NDk0LTY5ZWUtNDhjOC04ZWE1LTBmNTliNWU2MGQ1NyIsICJkZWZhdWx0IjogZmFsc2UsICJlbmFi bGVkIjogdHJ1ZSwgInZhbHVlIjogMTc1NCwgImxhYmVsIjogIk5ldHdvcmsiLCAiaGlkZGVuIjog ZmFsc2UsICJwcm9wZXJ0aWVzIjogbnVsbH0sIHsidXVpZCI6ICJiNmU1NmM3OS05MDM5LTQyMzEt OGNiNy05MjFkOTU4NGJkNzAiLCAiZGVmYXVsdCI6IGZhbHNlLCAiZW5hYmxlZCI6IHRydWUsICJ2 YWx1ZSI6IDE3NTUsICJsYWJlbCI6ICJIYXJkd2FyZSIsICJoaWRkZW4iOiBmYWxzZSwgInByb3Bl cnRpZXMiOiBudWxsfSwgeyJ1dWlkIjogImU5ZWQyM2Q2LTZjZjQtNGNjMi1hODI5LTY1M2M5ZWYz MjMyOSIsICJkZWZhdWx0IjogZmFsc2UsICJlbmFibGVkIjogdHJ1ZSwgInZhbHVlIjogMTc1Niwg ImxhYmVsIjogIlNvZnR3YXJlIiwgImhpZGRlbiI6IGZhbHNlLCAicHJvcGVydGllcyI6IG51bGx9 LCB7InV1aWQiOiAiZTQwMDZmNDAtNWRlOS00NDViLThiMmItNDMxNDc2NTM3NDM2IiwgImRlZmF1 bHQiOiBmYWxzZSwgImVuYWJsZWQiOiB0cnVlLCAidmFsdWUiOiAxNzU3LCAibGFiZWwiOiAiRGF0 YWJhc2UiLCAiaGlkZGVuIjogZmFsc2UsICJwcm9wZXJ0aWVzIjogbnVsbH0sIHsidXVpZCI6ICI3 NTRjZWI4ZC1kNGMzLTQ3MjQtODU0Zi1kM2IxNGNkZWM1NmQiLCAiZGVmYXVsdCI6IHRydWUsICJl bmFibGVkIjogdHJ1ZSwgInZhbHVlIjogMTc1OCwgImxhYmVsIjogIkluY2lkZW50IE1hbmFnZW1l bnQiLCAiaGlkZGVuIjogZmFsc2UsICJwcm9wZXJ0aWVzIjogbnVsbH1dfSwgeyJvcGVyYXRpb25z IjogW10sICJ0eXBlX2lkIjogNiwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJTTiBJ bml0aWFsIE5vdGUiLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJwcmVmaXgiOiAicHJvcGVydGll cyIsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTg2LCAicmVhZF9vbmx5IjogZmFsc2UsICJ1 dWlkIjogImUwYTM4N2VmLTJhZTMtNDkyZS04NzdkLThkODBiMGNjZjcyYiIsICJjaG9zZW4iOiBm YWxzZSwgImlucHV0X3R5cGUiOiAidGV4dGFyZWEiLCAidG9vbHRpcCI6ICIiLCAiaW50ZXJuYWwi OiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5 IjogImFjdGlvbmludm9jYXRpb24vc25faW5pdGlhbF9ub3RlIiwgImhpZGVfbm90aWZpY2F0aW9u IjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9pbml0aWFsX25vdGUiLCAi ZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFsc2UsICJ2 YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3BlcmF0aW9u X3Blcm1zIjoge30sICJ0ZXh0IjogImluY2lkZW50X2lkIiwgImJsYW5rX29wdGlvbiI6IGZhbHNl LCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxODgsICJyZWFkX29u bHkiOiBmYWxzZSwgInV1aWQiOiAiODExZTk5ZDctZDE5NC00Y2U4LTg2Y2MtYWZmNWUwMWFiODVj IiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJudW1iZXIiLCAidG9vbHRpcCI6ICIi LCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10s ICJleHBvcnRfa2V5IjogIl9fZnVuY3Rpb24vaW5jaWRlbnRfaWQiLCAiaGlkZV9ub3RpZmljYXRp b24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1lIjogImluY2lkZW50X2lkIiwgImRl cHJlY2F0ZWQiOiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5X3NlcnZlciI6IGZhbHNlLCAicmVx dWlyZWQiOiAiYWx3YXlzIiwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0eXBl X2lkIjogMTEsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAic25faW5pdF93b3JrX25v dGUiLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6 IHRydWUsICJpZCI6IDIwMywgInJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICI5ZmIwNzBkNy1m YzVhLTRjYTEtOGUyZS1mYzk0MGU1M2M4NTciLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1dF90eXBl IjogInRleHQiLCAidG9vbHRpcCI6ICJBIGN1c3RvbSBzdHJpbmcgb2YgdGV4dCB0byBiZSBhZGRl ZCBhcyBpbml0aWFsIHdvcmtfbm90ZSBpbiBTZXJ2aWNlTm93IiwgImludGVybmFsIjogZmFsc2Us ICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBsYXRlcyI6IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1 bmN0aW9uL3NuX2luaXRfd29ya19ub3RlIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJw bGFjZWhvbGRlciI6ICJUaGlzIEluY2lkZW50IG9yaWdpbmF0ZWQgZnJvbSBvdXIgQ3liZXIgU2Vj dXJpdHkgVGVhbSB1c2luZyB0aGUgSUJNIFJlc2lsaWVudCBwbGF0Zm9ybSIsICJuYW1lIjogInNu X2luaXRfd29ya19ub3RlIiwgImRlcHJlY2F0ZWQiOiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5 X3NlcnZlciI6IGZhbHNlLCAidmFsdWVzIjogW119LCB7Im9wZXJhdGlvbnMiOiBbXSwgInR5cGVf aWQiOiAxMSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJzbl9jbG9zZV9ub3RlcyIs ICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1 ZSwgImlkIjogMTkyLCAicmVhZF9vbmx5IjogZmFsc2UsICJ1dWlkIjogImYyMzRkYjJmLWRmZTgt NDAxZi1hM2I5LWY1Zjg3OTIxZTIxZiIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5cGUiOiAi dGV4dCIsICJ0b29sdGlwIjogIlRoZSByZWFzb24gZm9yIHJlc29sdmluZyB0aGlzIHJlY29yZCIs ICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwg ImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9zbl9jbG9zZV9ub3RlcyIsICJoaWRlX25vdGlmaWNh dGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiSW5jaWRlbnQgcmVzb2x2ZWQgaW4gUmVzaWxp ZW50LiBObyBmdXJ0aGVyIGFjdGlvbiBuZWVkZWQiLCAibmFtZSI6ICJzbl9jbG9zZV9ub3RlcyIs ICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwg InZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTEsICJvcGVyYXRp b25fcGVybXMiOiB7fSwgInRleHQiOiAiYXR0YWNobWVudF9pZCIsICJibGFua19vcHRpb24iOiBm YWxzZSwgInByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTk1LCAicmVh ZF9vbmx5IjogZmFsc2UsICJ1dWlkIjogIjE2Nzc3MTZhLWE5NWUtNGY1NS04ZTNlLTUzOTllNmQz YmQ5NiIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5cGUiOiAibnVtYmVyIiwgInRvb2x0aXAi OiAiIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBsYXRlcyI6 IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL2F0dGFjaG1lbnRfaWQiLCAiaGlkZV9ub3Rp ZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1lIjogImF0dGFjaG1lbnRf aWQiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFs c2UsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3Bl cmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogInNuX2Nsb3NlX2NvZGUiLCAiYmxhbmtfb3B0aW9u IjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDE5NCwg InJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICJiZmZkZDc2NS1kMGMxLTQyYmQtOGI5My03OTg0 MzZjZmFiOTMiLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1dF90eXBlIjogInRleHQiLCAidG9vbHRp cCI6ICJUaGUgU2VydmljZU5vdyBjbG9zZV9jb2RlIGkuZS4gXCJTb2x2ZWQgKFBlcm1hbmVudGx5 KVwiIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBsYXRlcyI6 IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL3NuX2Nsb3NlX2NvZGUiLCAiaGlkZV9ub3Rp ZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjogIlNvbHZlZCAoUGVybWFuZW50bHkpIiwg Im5hbWUiOiAic25fY2xvc2VfY29kZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2No b3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10s ICJ0eXBlX2lkIjogMTEsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAic25fcXVlcnlf ZmllbGQiLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJs ZSI6IHRydWUsICJpZCI6IDIwNCwgInJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICJhNDgzYTVm Yi0wMDY0LTQ3NjAtOWZlOC03ZDgzMTJlZDFkZDIiLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1dF90 eXBlIjogInRleHQiLCAidG9vbHRpcCI6ICJUaGUgbmFtZSBvZiB0aGUgU2VydmljZU5vdyBGaWVs ZCB0byBxdWVyeSIsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1w bGF0ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9zbl9xdWVyeV9maWVsZCIsICJo aWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAic3RhdGUiLCAibmFtZSI6 ICJzbl9xdWVyeV9maWVsZCIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9i eV9zZXJ2ZXIiOiBmYWxzZSwgInJlcXVpcmVkIjogImFsd2F5cyIsICJ2YWx1ZXMiOiBbXX0sIHsi b3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0 ZXh0IjogInNuX3JlY29yZF9zdGF0ZSIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6 IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTk3LCAicmVhZF9vbmx5IjogZmFsc2Us ICJ1dWlkIjogImYwZWIxNWY1LWZiMzYtNGM2ZC1iNDg5LTM1MmJlZmJlM2VhMyIsICJjaG9zZW4i OiBmYWxzZSwgImlucHV0X3R5cGUiOiAibnVtYmVyIiwgInRvb2x0aXAiOiAiVGhlIG51bWVyaWMg dmFsdWUgb2YgdGhlIHN0YXRlIG9mIHRoZSByZWNvcmQgaW4gU2VydmljZU5vdyIsICJpbnRlcm5h bCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9r ZXkiOiAiX19mdW5jdGlvbi9zbl9yZWNvcmRfc3RhdGUiLCAiaGlkZV9ub3RpZmljYXRpb24iOiBm YWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1lIjogInNuX3JlY29yZF9zdGF0ZSIsICJkZXBy ZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInJlcXVp cmVkIjogImFsd2F5cyIsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9p ZCI6IDExLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogInNuX3F1ZXJ5X3ZhbHVlIiwg ImJsYW5rX29wdGlvbiI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVl LCAiaWQiOiAxOTgsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiYWQzN2MwMDQtZGE3My00 YjQ5LTk1NzUtYTMzMDkzODk3MzQzIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0 ZXh0IiwgInRvb2x0aXAiOiAiVGhlIHZhbHVlIHRvIGJlIGNvbXBhcmVkIiwgImludGVybmFsIjog ZmFsc2UsICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBsYXRlcyI6IFtdLCAiZXhwb3J0X2tleSI6 ICJfX2Z1bmN0aW9uL3NuX3F1ZXJ5X3ZhbHVlIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2Us ICJwbGFjZWhvbGRlciI6ICJcIkluIFByb2dyZXNzXCIiLCAibmFtZSI6ICJzbl9xdWVyeV92YWx1 ZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxz ZSwgInJlcXVpcmVkIjogImFsd2F5cyIsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtd LCAidHlwZV9pZCI6IDExLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogInNuX3VwZGF0 ZV9maWVsZHMiLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdl YWJsZSI6IHRydWUsICJpZCI6IDE5MSwgInJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICI0YmYw MGIxNi1jMjg5LTRhOTYtOTA2Ni03NDIyZmMxOGI3OGEiLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1 dF90eXBlIjogInRleHQiLCAidG9vbHRpcCI6ICJBIEpTT04gU3RyaW5nIG9mIFNOT1cgZmllbGQg bmFtZXMgYW5kIHZhbHVlcyB0byB1cGRhdGUiLCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4 dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogIl9fZnVuY3Rpb24vc25f dXBkYXRlX2ZpZWxkcyIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIi OiAiIiwgIm5hbWUiOiAic25fdXBkYXRlX2ZpZWxkcyIsICJkZXByZWNhdGVkIjogZmFsc2UsICJk ZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInJlcXVpcmVkIjogImFsd2F5cyIsICJ2 YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3BlcmF0aW9u X3Blcm1zIjoge30sICJ0ZXh0IjogInNuX3Jlc19pZCIsICJibGFua19vcHRpb24iOiBmYWxzZSwg InByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMjAxLCAicmVhZF9vbmx5 IjogZmFsc2UsICJ1dWlkIjogIjMzMTU1ZDIzLTgzZjUtNGEyYi1iMDEzLTBiYWE3ODY2YzYyZCIs ICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5cGUiOiAidGV4dCIsICJ0b29sdGlwIjogIlRoZSBy ZXNfaWQgb2YgYSBTTk9XIHJlY29yZCBpbiBzbl9yZWNvcmRzX2R0IERhdGEgVGFibGUiLCAiaW50 ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBv cnRfa2V5IjogIl9fZnVuY3Rpb24vc25fcmVzX2lkIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFs c2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9yZXNfaWQiLCAiZGVwcmVjYXRlZCI6 IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFsc2UsICJ2YWx1ZXMiOiBbXX0s IHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3BlcmF0aW9uX3Blcm1zIjoge30s ICJ0ZXh0IjogInNuX25vdGVfdHlwZSIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6 IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTkzLCAicmVhZF9vbmx5IjogZmFsc2Us ICJ1dWlkIjogIjE5ZDVlODU0LWRjNjQtNDNkNC05YTM5LTdiZTkxNDkyMGFkNiIsICJjaG9zZW4i OiBmYWxzZSwgImlucHV0X3R5cGUiOiAic2VsZWN0IiwgInRvb2x0aXAiOiAiV2hlbiBzZW5kaW5n IGEgTm90ZSwgc2hvdWxkIGl0IGJlIGFkZGVkIGFzIGEgXCJ3b3JrX25vdGVcIiBvciBcImFkZGl0 aW9uYWxfY29tbWVudFwiIGluIFNlcnZpY2VOb3cuIERlZmF1bHQ6IFwid29ya19ub3RlXCIiLCAi aW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJl eHBvcnRfa2V5IjogIl9fZnVuY3Rpb24vc25fbm90ZV90eXBlIiwgImhpZGVfbm90aWZpY2F0aW9u IjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9ub3RlX3R5cGUiLCAiZGVw cmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFsc2UsICJyZXF1 aXJlZCI6ICJhbHdheXMiLCAidmFsdWVzIjogW3sidXVpZCI6ICJjNjVkZTc3ZC1mNmIyLTRjMTkt OTRlYi1jZGZhNWNmNTAzN2YiLCAiZGVmYXVsdCI6IHRydWUsICJlbmFibGVkIjogdHJ1ZSwgInZh bHVlIjogMTc2NCwgImxhYmVsIjogIndvcmtfbm90ZSIsICJoaWRkZW4iOiBmYWxzZSwgInByb3Bl cnRpZXMiOiBudWxsfSwgeyJ1dWlkIjogIjNjYjQ0OGUwLTQ4ZDItNGFmYi1iNTA5LTU5ZTlkYzE5 MTY4ZSIsICJkZWZhdWx0IjogZmFsc2UsICJlbmFibGVkIjogdHJ1ZSwgInZhbHVlIjogMTc2NSwg ImxhYmVsIjogImFkZGl0aW9uYWxfY29tbWVudCIsICJoaWRkZW4iOiBmYWxzZSwgInByb3BlcnRp ZXMiOiBudWxsfV19LCB7Im9wZXJhdGlvbnMiOiBbXSwgInR5cGVfaWQiOiAxMSwgIm9wZXJhdGlv bl9wZXJtcyI6IHt9LCAidGV4dCI6ICJzbl9yZXNpbGllbnRfc3RhdHVzIiwgImJsYW5rX29wdGlv biI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxODks ICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiNzJhNGU1YWQtNmRmNy00ODM5LWExMTQtZjA4 MWQ0YzAwOTczIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgInRvb2x0 aXAiOiAiIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBsYXRl cyI6IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL3NuX3Jlc2lsaWVudF9zdGF0dXMiLCAi aGlkZV9ub3RpZmljYXRpb24iOiBmYWxzZSwgInBsYWNlaG9sZGVyIjogIiIsICJuYW1lIjogInNu X3Jlc2lsaWVudF9zdGF0dXMiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5f Ynlfc2VydmVyIjogZmFsc2UsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlw ZV9pZCI6IDExLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogInNuX2Nsb3NlX3dvcmtf bm90ZSIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxl IjogdHJ1ZSwgImlkIjogMTkwLCAicmVhZF9vbmx5IjogZmFsc2UsICJ1dWlkIjogIjk5MzlmMDYx LTg1YTItNDJhYy04NzVhLTQ2MTY4OTk4ZjNiNiIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5 cGUiOiAidGV4dCIsICJ0b29sdGlwIjogIkEgb3B0aW9uYWwgbm90ZSB0byBhZGQgdG8gdGhlIFNl cnZpY2VOb3cgUmVjb3JkIHdoZW4gaXQgaXMgY2xvc2VkIGZyb20gd2l0aGluIElCTSBSZXNpbGll bnQiLCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjog W10sICJleHBvcnRfa2V5IjogIl9fZnVuY3Rpb24vc25fY2xvc2Vfd29ya19ub3RlIiwgImhpZGVf bm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9jbG9z ZV93b3JrX25vdGUiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2Vy dmVyIjogZmFsc2UsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6 IDExLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogInNuX29wdGlvbmFsX2ZpZWxkcyIs ICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1 ZSwgImlkIjogMjAwLCAicmVhZF9vbmx5IjogZmFsc2UsICJ1dWlkIjogIjBiNzM5MjEzLTA4OTYt NGVlOC1iZDVhLWZkMjYyODYxODViYSIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5cGUiOiAi dGV4dCIsICJ0b29sdGlwIjogIkpTT04gc3RyaW5nIGNvbnRhaW5pbmcgdGhlIGFwaV9uYW1lIGFu ZCB2YWx1ZSBvZiB0aGUgZmllbGRzIHlvdSB3YW50IHRvIHNldCB3aXRoaW4gU2VydmljZU5vdyBh ZnRlciBjcmVhdGluZyB0aGUgcmVjb3JkIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQi OiBmYWxzZSwgInRlbXBsYXRlcyI6IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL3NuX29w dGlvbmFsX2ZpZWxkcyIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIi OiAiXCJcIlwie1wiYXNzaWdubWVudF9ncm91cFwiOiBcIklUIFNlY3VyaXR5XCJ9XCJcIlwiIiwg Im5hbWUiOiAic25fb3B0aW9uYWxfZmllbGRzIiwgImRlcHJlY2F0ZWQiOiBmYWxzZSwgImRlZmF1 bHRfY2hvc2VuX2J5X3NlcnZlciI6IGZhbHNlLCAidmFsdWVzIjogW119LCB7Im9wZXJhdGlvbnMi OiBbXSwgInR5cGVfaWQiOiAxMSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJzbl90 YWJsZV9uYW1lIiwgImJsYW5rX29wdGlvbiI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5n ZWFibGUiOiB0cnVlLCAiaWQiOiAyMDIsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiMTA3 ZWRjNWQtZTQ0NC00Mzk4LWE1OTYtMDBkNjFkYjRjM2ZkIiwgImNob3NlbiI6IGZhbHNlLCAiaW5w dXRfdHlwZSI6ICJ0ZXh0IiwgInRvb2x0aXAiOiAiTmFtZSBvZiB0aGUgdGFibGUgaW4gU2Vydmlj ZU5vdyIsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMi OiBbXSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9zbl90YWJsZV9uYW1lIiwgImhpZGVfbm90 aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICJpbmNpZGVudCIsICJuYW1lIjogInNu X3RhYmxlX25hbWUiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2Vy dmVyIjogZmFsc2UsICJyZXF1aXJlZCI6ICJhbHdheXMiLCAidmFsdWVzIjogW119LCB7Im9wZXJh dGlvbnMiOiBbXSwgInR5cGVfaWQiOiAxMSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6 ICJ0YXNrX2lkIiwgImJsYW5rX29wdGlvbiI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5n ZWFibGUiOiB0cnVlLCAiaWQiOiAxOTksICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiYmEz MTgyNjEtZWQ2YS00YTM4LWExODctOWUwYjY4ZDE2MDRmIiwgImNob3NlbiI6IGZhbHNlLCAiaW5w dXRfdHlwZSI6ICJudW1iZXIiLCAidG9vbHRpcCI6ICIiLCAiaW50ZXJuYWwiOiBmYWxzZSwgInJp Y2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogIl9fZnVuY3Rp b24vdGFza19pZCIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAi IiwgIm5hbWUiOiAidGFza19pZCIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nl bl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0 eXBlX2lkIjogMTEsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAic25fbm90ZV90ZXh0 IiwgImJsYW5rX29wdGlvbiI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0 cnVlLCAiaWQiOiAxOTYsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiOTA4ZTJiZDEtZDY4 Mi00NGUxLTkyNDAtZWZiNWMyYmYyM2ExIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6 ICJ0ZXh0IiwgInRvb2x0aXAiOiAiVGhlIHRleHQgb2YgdGhlIENvbW1lbnQiLCAiaW50ZXJuYWwi OiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5 IjogIl9fZnVuY3Rpb24vc25fbm90ZV90ZXh0IiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2Us ICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJzbl9ub3RlX3RleHQiLCAiZGVwcmVjYXRlZCI6 IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFsc2UsICJyZXF1aXJlZCI6ICJh bHdheXMiLCAidmFsdWVzIjogW119XSwgIm92ZXJyaWRlcyI6IFtdLCAiZXhwb3J0X2RhdGUiOiAx NTUwNzY0MjMwNDUxfQ== """ )
# Copyright 2021 STC-Innovation LTD (Author: Anton Mitrofanov) import sys import logging import os def setup_logger(exp_dir=None, log_fn="training.log", stream=sys.stdout, logger_level=logging.INFO, logfile_mode="w"): logger = logging.getLogger() logger.setLevel(logger_level) logger.handlers.clear() # default output c_handler = logging.StreamHandler(stream) c_format = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") c_handler.setFormatter(c_format) logger.addHandler(c_handler) # Also writes logs to the experiment directory if exp_dir is not None: os.makedirs(exp_dir, exist_ok=True) log_path = os.path.join(exp_dir, log_fn) f_handler =logging.FileHandler(log_path, mode=logfile_mode, encoding="utf-8") f_format = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") f_handler.setFormatter(f_format) logger.addHandler(f_handler)
[262144, 18, 0, 0, 0, 0.43696], [262440, 3, 8, 1, 0, 0.626528], [262500, 2, 1, 5, 1, 0.828288], [263424, 8, 1, 0, 3, 0.762944], [264600, 3, 3, 2, 2, 0.691968], [268800, 9, 1, 2, 1, 0.71488], [268912, 4, 0, 0, 5, 0.754944], [270000, 4, 3, 4, 0, 0.609312], [272160, 5, 5, 1, 1, 0.72368], [273375, 0, 7, 3, 0, 0.7416], [274400, 5, 0, 2, 3, 0.697472], [275562, 1, 9, 0, 1, 0.834784], [275625, 0, 2, 4, 2, 0.821088], [276480, 11, 3, 1, 0, 0.60752], [277830, 1, 4, 1, 3, 0.921216], [279936, 7, 7, 0, 0, 0.568544], [280000, 6, 0, 4, 1, 0.635552], [281250, 1, 2, 6, 0, 0.920672], [282240, 7, 2, 1, 2, 0.734048], [283500, 2, 4, 3, 1, 0.779296], [285768, 3, 6, 0, 2, 0.759712], [286720, 13, 0, 1, 1, 0.63344], [288000, 8, 2, 3, 0, 0.689024], [288120, 3, 1, 1, 4, 0.946432], [290304, 9, 4, 0, 1, 0.644096], [291600, 4, 6, 2, 0, 0.671488], [294000, 4, 1, 3, 2, 0.839776], [294912, 15, 2, 0, 0, 0.57632], [295245, 0, 10, 1, 0, 0.854848], [296352, 5, 3, 0, 3, 0.764352], [297675, 0, 5, 2, 2, 0.812928], [300000, 5, 1, 5, 0, 0.777472], [300125, 0, 0, 3, 4, 0.897024], [301056, 11, 1, 0, 2, 0.723328], [302400, 6, 3, 2, 1, 0.71104], [302526, 1, 2, 0, 5, 1.04768], [303750, 1, 5, 4, 0, 0.87456], [306180, 2, 7, 1, 1, 0.891776], [306250, 1, 0, 5, 2, 0.962688], [307200, 12, 1, 2, 0, 0.657056], [307328, 7, 0, 0, 4, 0.757728], [308700, 2, 2, 2, 3, 0.961792], [311040, 8, 5, 1, 0, 0.766368], [312500, 2, 0, 7, 0, 0.808192], [313600, 8, 0, 2, 2, 0.74464], [314928, 4, 9, 0, 0, 0.696768], [315000, 3, 2, 4, 1, 0.859072], [317520, 4, 4, 1, 2, 0.79968], [320000, 9, 0, 4, 0, 0.676224], [321489, 0, 8, 0, 2, 0.827488], [322560, 10, 2, 1, 1, 0.822176], [324000, 5, 4, 3, 0, 0.700576], [324135, 0, 3, 1, 4, 1.03693], [326592, 6, 6, 0, 1, 0.780384], [327680, 16, 0, 1, 0, 0.66928], [328050, 1, 8, 2, 0, 0.858656], [328125, 0, 1, 6, 1, 1.0952], [329280, 6, 1, 1, 3, 0.98784], [330750, 1, 3, 3, 2, 1.05946], [331776, 12, 4, 0, 0, 0.581664], [333396, 2, 5, 0, 3, 0.962752], [336000, 7, 1, 3, 1, 0.929888], [336140, 2, 0, 1, 5, 1.12787], [337500, 2, 3, 5, 0, 0.911488], [338688, 8, 3, 0, 2, 0.792576], [340200, 3, 5, 2, 1, 0.895296], [343000, 3, 0, 3, 3, 0.992064], [344064, 14, 1, 0, 1, 0.784384], [345600, 9, 3, 2, 0, 0.74832], [345744, 4, 2, 0, 4, 0.944576], [349920, 5, 7, 1, 0, 0.816544], [350000, 4, 0, 5, 1, 0.888736], [351232, 10, 0, 0, 3, 0.843392], [352800, 5, 2, 2, 2, 0.875456], [352947, 0, 1, 0, 6, 1.1753], [354294, 1, 11, 0, 0, 0.935808], [354375, 0, 4, 4, 1, 0.960032], [357210, 1, 6, 1, 2, 1.15962], [358400, 11, 0, 2, 1, 0.756704], [360000, 6, 2, 4, 0, 0.7872], [360150, 1, 1, 2, 4, 1.25658], [362880, 7, 4, 1, 1, 0.867456], [364500, 2, 6, 3, 0, 0.990304], [367416, 3, 8, 0, 1, 0.88048], [367500, 2, 1, 4, 2, 1.11981], [368640, 13, 2, 1, 0, 0.791488], [370440, 3, 3, 1, 3, 1.13638], [373248, 9, 6, 0, 0, 0.829408], [375000, 3, 1, 6, 0, 1.09638], [376320, 9, 1, 1, 2, 1.06707], [378000, 4, 3, 3, 1, 0.982528], [381024, 5, 5, 0, 2, 0.916512], [382725, 0, 7, 2, 1, 1.05133], [384000, 10, 1, 3, 0, 0.948128], [384160, 5, 0, 1, 4, 1.05648], [385875, 0, 2, 3, 3, 1.27629], [387072, 11, 3, 0, 1, 0.840704], [388800, 6, 5, 2, 0, 0.838912], [388962, 1, 4, 0, 4, 1.19744], [390625, 0, 0, 8, 0, 1.11078], [392000, 6, 0, 3, 2, 0.934944], [393216, 17, 1, 0, 0, 0.817312], [393660, 2, 9, 1, 0, 1.03222], [393750, 1, 2, 5, 1, 1.30106], [395136, 7, 2, 0, 3, 1.01866], [396900, 2, 4, 2, 2, 1.05302], [400000, 7, 0, 5, 0, 0.876352], [401408, 13, 0, 0, 2, 0.782592], [403200, 8, 2, 2, 1, 0.98736], [403368, 3, 1, 0, 5, 1.32064], [405000, 3, 4, 4, 0, 0.919168], [408240, 4, 6, 1, 1, 1.12378], [409600, 14, 0, 2, 0, 0.733408], [411600, 4, 1, 2, 3, 1.20467], [413343, 0, 10, 0, 1, 1.19501], [414720, 10, 4, 1, 0, 0.88768], [416745, 0, 5, 1, 3, 1.31299], [419904, 6, 8, 0, 0, 0.782592], [420000, 5, 1, 4, 1, 1.11338], [420175, 0, 0, 2, 5, 1.33197], [421875, 0, 3, 6, 0, 1.29891], [423360, 6, 3, 1, 2, 1.06323], [425250, 1, 5, 3, 1, 1.36528], [428652, 2, 7, 0, 2, 1.14733], [428750, 1, 0, 4, 3, 1.38381], [430080, 12, 1, 1, 1, 1.11104], [432000, 7, 3, 3, 0, 0.954976], [432180, 2, 2, 1, 4, 1.4193], [435456, 8, 5, 0, 1, 1.03856], [437400, 3, 7, 2, 0, 1.01946], [437500, 2, 0, 6, 1, 1.25754], [439040, 8, 0, 1, 3, 1.19645], [441000, 3, 2, 3, 2, 1.26557], [442368, 14, 3, 0, 0, 0.791008], [444528, 4, 4, 0, 3, 1.11907], [448000, 9, 0, 3, 1, 1.1049], [450000, 4, 2, 5, 0, 1.12864], [451584, 10, 2, 0, 2, 1.07002], [453600, 5, 4, 2, 1, 1.0176], [453789, 0, 3, 0, 5, 1.46678], [455625, 0, 6, 4, 0, 1.22861], [458752, 16, 0, 0, 1, 0.905568], [459270, 1, 8, 1, 1, 1.40307], [459375, 0, 1, 5, 2, 1.41923], [460800, 11, 2, 2, 0, 0.95056], [460992, 6, 1, 0, 4, 1.27693], [463050, 1, 3, 2, 3, 1.49744], [466560, 7, 6, 1, 0, 1.09859], [468750, 1, 1, 7, 0, 1.49709], [470400, 7, 1, 2, 2, 1.18842], [470596, 2, 0, 0, 6, 1.46054], [472392, 3, 10, 0, 0, 1.17683], [472500, 2, 3, 4, 1, 1.31808], [476280, 3, 5, 1, 2, 1.36534], [480000, 8, 1, 4, 0, 1.14605], [480200, 3, 0, 2, 4, 1.33302], [483840, 9, 3, 1, 1, 1.2648], [486000, 4, 5, 3, 0, 1.18051], [489888, 5, 7, 0, 1, 1.13453], [490000, 4, 0, 4, 2, 1.17818], [491520, 15, 1, 1, 0, 1.14269], [492075, 0, 9, 2, 0, 1.22752], [493920, 5, 2, 1, 3, 1.43798], [496125, 0, 4, 3, 2, 1.44906], [497664, 11, 5, 0, 0, 1.03872], [500000, 5, 0, 6, 0, 1.21072], [500094, 1, 6, 0, 3, 1.6256], [501760, 11, 0, 1, 2, 1.18643], [504000, 6, 2, 3, 1, 1.28646], [504210, 1, 1, 1, 5, 1.93453], [506250, 1, 4, 5, 0, 1.46701], [508032, 7, 4, 0, 2, 1.0976], [510300, 2, 6, 2, 1, 1.45069], [512000, 12, 0, 3, 0, 1.11594], [514500, 2, 1, 3, 3, 1.70774], [516096, 13, 2, 0, 1, 1.09984], [518400, 8, 4, 2, 0, 1.05312], [518616, 3, 3, 0, 4, 1.4697], [524288, 19, 0, 0, 0, 0.849568], [524880, 4, 8, 1, 0, 1.17779], [525000, 3, 1, 5, 1, 1.59027], [526848, 9, 1, 0, 3, 1.50435], [529200, 4, 3, 2, 2, 1.30362], [531441, 0, 12, 0, 0, 1.22979], [535815, 0, 7, 1, 2, 1.57542], [537600, 10, 1, 2, 1, 1.37117], [537824, 5, 0, 0, 5, 1.47171], [540000, 5, 3, 4, 0, 1.18614], [540225, 0, 2, 2, 4, 1.69997], [544320, 6, 5, 1, 1, 1.39693], [546750, 1, 7, 3, 0, 1.60931], [546875, 0, 0, 7, 1, 1.6033], [548800, 6, 0, 2, 3, 1.3521], [551124, 2, 9, 0, 1, 1.50038], [551250, 1, 2, 4, 2, 1.7487], [552960, 12, 3, 1, 0, 1.17334], [555660, 2, 4, 1, 3, 1.71344], [559872, 8, 7, 0, 0, 1.13398], [560000, 7, 0, 4, 1, 1.24144], [562500, 2, 2, 6, 0, 1.65094], [564480, 8, 2, 1, 2, 1.48112], [567000, 3, 4, 3, 1, 1.47667], [571536, 4, 6, 0, 2, 1.43834], [573440, 14, 0, 1, 1, 1.25386], [576000, 9, 2, 3, 0, 1.39501], [576240, 4, 1, 1, 4, 1.81469], [580608, 10, 4, 0, 1, 1.2417], [583200, 5, 6, 2, 0, 1.31357], [583443, 0, 5, 0, 4, 1.71818], [588000, 5, 1, 3, 2, 1.64227], [588245, 0, 0, 1, 6, 1.88752], [589824, 16, 2, 0, 0, 1.14096], [590490, 1, 10, 1, 0, 1.87194], [590625, 0, 3, 5, 1, 1.80973], [592704, 6, 3, 0, 3, 1.49181], [595350, 1, 5, 2, 2, 1.81507], [600000, 6, 1, 5, 0, 1.51085], [600250, 1, 0, 3, 4, 2.01411], [602112, 12, 1, 0, 2, 1.40406], [604800, 7, 3, 2, 1, 1.37978], [605052, 2, 2, 0, 5, 1.99862], [607500, 2, 5, 4, 0, 1.53168], [612360, 3, 7, 1, 1, 1.69891], [612500, 2, 0, 5, 2, 1.71875], [614400, 13, 1, 2, 0, 1.29306], [614656, 8, 0, 0, 4, 1.52179], [617400, 3, 2, 2, 3, 1.81446], [622080, 9, 5, 1, 0, 1.52938], [625000, 3, 0, 7, 0, 1.56528], [627200, 9, 0, 2, 2, 1.47226], [629856, 5, 9, 0, 0, 1.33754], [630000, 4, 2, 4, 1, 1.62368], [635040, 5, 4, 1, 2, 1.5784], [637875, 0, 6, 3, 1, 1.9991], [640000, 10, 0, 4, 0, 1.30442], [642978, 1, 8, 0, 2, 1.82189], [643125, 0, 1, 4, 3, 2.07856], [645120, 11, 2, 1, 1, 1.632], [648000, 6, 4, 3, 0, 1.36195], [648270, 1, 3, 1, 4, 2.20838], [653184, 7, 6, 0, 1, 1.52224], [655360, 17, 0, 1, 0, 1.34589], [656100, 2, 8, 2, 0, 1.55667], [656250, 1, 1, 6, 1, 2.34765], [658560, 7, 1, 1, 3, 1.96096], [661500, 2, 3, 3, 2, 1.91754], [663552, 13, 4, 0, 0, 1.13875], [666792, 3, 5, 0, 3, 1.90326], [672000, 8, 1, 3, 1, 1.8576], [672280, 3, 0, 1, 5, 2.17146], [675000, 3, 3, 5, 0, 1.74947], [677376, 9, 3, 0, 2, 1.6319], [680400, 4, 5, 2, 1, 1.70189], [686000, 4, 0, 3, 3, 1.90419], [688128, 15, 1, 0, 1, 1.57293], [688905, 0, 9, 1, 1, 1.99674], [691200, 10, 3, 2, 0, 1.45165], [691488, 5, 2, 0, 4, 1.86874], [694575, 0, 4, 2, 3, 2.03424], [699840, 6, 7, 1, 0, 1.57235], [700000, 5, 0, 5, 1, 1.74573], [702464, 11, 0, 0, 3, 1.6536], [703125, 0, 2, 7, 0, 2.06678], [705600, 6, 2, 2, 2, 1.70746], [705894, 1, 1, 0, 6, 2.56944], [708588, 2, 11, 0, 0, 1.71248], [708750, 1, 4, 4, 1, 2.08621], [714420, 2, 6, 1, 2, 2.20317], [716800, 12, 0, 2, 1, 1.48314], [720000, 7, 2, 4, 0, 1.57434], [720300, 2, 1, 2, 4, 2.35587], [725760, 8, 4, 1, 1, 1.74986], [729000, 3, 6, 3, 0, 1.91962], [734832, 4, 8, 0, 1, 1.65162], [735000, 3, 1, 4, 2, 2.14307], [737280, 14, 2, 1, 0, 1.5681], [740880, 4, 3, 1, 3, 2.16358], [746496, 10, 6, 0, 0, 1.61075], [750000, 4, 1, 6, 0, 2.12218], [750141, 0, 7, 0, 3, 2.20538], [752640, 10, 1, 1, 2, 2.11098], [756000, 5, 3, 3, 1, 1.92429], [756315, 0, 2, 1, 5, 2.62474], [759375, 0, 5, 5, 0, 2.1095], [762048, 6, 5, 0, 2, 1.78685], [765450, 1, 7, 2, 1, 2.28662], [765625, 0, 0, 6, 2, 2.37469], [768000, 11, 1, 3, 0, 1.89914], [768320, 6, 0, 1, 4, 2.06544], [771750, 1, 2, 3, 3, 2.7328], [774144, 12, 3, 0, 1, 1.64512], [777600, 7, 5, 2, 0, 1.63936], [777924, 2, 4, 0, 4, 2.23552], [781250, 1, 0, 8, 0, 2.5056], [784000, 7, 0, 3, 2, 1.85296], [786432, 18, 1, 0, 0, 1.60173], [787320, 3, 9, 1, 0, 2.04259], [787500, 2, 2, 5, 1, 2.41411], [790272, 8, 2, 0, 3, 2.08646], [793800, 3, 4, 2, 2, 1.98851], [800000, 8, 0, 5, 0, 1.78886], [802816, 14, 0, 0, 2, 1.55379], [806400, 9, 2, 2, 1, 2.0375], [806736, 4, 1, 0, 5, 2.5552], [810000, 4, 4, 4, 0, 1.72864], [816480, 5, 6, 1, 1, 2.21658], [819200, 15, 0, 2, 0, 1.49936], [820125, 0, 8, 3, 0, 2.19242], [823200, 5, 1, 2, 3, 2.37504], [823543, 0, 0, 0, 7, 2.82941], [826686, 1, 10, 0, 1, 2.66435], [826875, 0, 3, 4, 2, 2.39478], [829440, 11, 4, 1, 0, 1.73507], [833490, 1, 5, 1, 3, 2.91322], [839808, 7, 8, 0, 0, 1.53091], [840000, 6, 1, 4, 1, 2.17821], [840350, 1, 0, 2, 5, 2.90634], [843750, 1, 3, 6, 0, 2.70032], [846720, 7, 3, 1, 2, 2.11946], [850500, 2, 5, 3, 1, 2.40125], [857304, 3, 7, 0, 2, 2.19728], [857500, 2, 0, 4, 3, 2.56835], [860160, 13, 1, 1, 1, 2.2201], [864000, 8, 3, 3, 0, 1.95734], [864360, 3, 2, 1, 4, 2.75664], [870912, 9, 5, 0, 1, 2.13037], [874800, 4, 7, 2, 0, 1.92096], [875000, 3, 0, 6, 1, 2.5024], [878080, 9, 0, 1, 3, 2.47901], [882000, 4, 2, 3, 2, 2.42525], [884736, 15, 3, 0, 0, 1.62557], [885735, 0, 11, 1, 0, 2.38915], [889056, 5, 4, 0, 3, 2.19613], [893025, 0, 6, 2, 2, 2.60739], [896000, 10, 0, 3, 1, 2.19299], [900000, 5, 2, 5, 0, 2.21587], [900375, 0, 1, 3, 4, 2.98384], [903168, 11, 2, 0, 2, 2.10429], [907200, 6, 4, 2, 1, 1.98957], [907578, 1, 3, 0, 5, 3.11005], [911250, 1, 6, 4, 0, 2.63126], [917504, 17, 0, 0, 1, 1.86394], [918540, 2, 8, 1, 1, 2.5967], [918750, 1, 1, 5, 2, 3.15856], [921600, 12, 2, 2, 0, 1.86998], [921984, 7, 1, 0, 4, 2.53075], [926100, 2, 3, 2, 3, 2.81056], [933120, 8, 6, 1, 0, 2.24822], [937500, 2, 1, 7, 0, 2.80454], [940800, 8, 1, 2, 2, 2.4407], [941192, 3, 0, 0, 6, 2.84816], [944784, 4, 10, 0, 0, 2.27248], [945000, 3, 3, 4, 1, 2.53677], [952560, 4, 5, 1, 2, 2.62928], [960000, 9, 1, 4, 0, 2.4015], [960400, 4, 0, 2, 4, 2.55478], [964467, 0, 9, 0, 2, 2.63942], [967680, 10, 3, 1, 1, 2.4969], [972000, 5, 5, 3, 0, 2.31322], [972405, 0, 4, 1, 4, 3.06464], [979776, 6, 7, 0, 1, 2.20483], [980000, 5, 0, 4, 2, 2.33376], [983040, 16, 1, 1, 0, 2.32086], [984150, 1, 9, 2, 0, 2.76688], [984375, 0, 2, 6, 1, 3.25674], [987840, 6, 2, 1, 3, 2.8319], [992250, 1, 4, 3, 2, 3.108], [995328, 12, 5, 0, 0, 2.28227], [1000000, 6, 0, 6, 0, 2.3753], [1000188, 2, 6, 0, 3, 3.08381], [1003520, 12, 0, 1, 2, 2.3097], [1008000, 7, 2, 3, 1, 2.55894], [1008420, 2, 1, 1, 5, 3.74643], [1012500, 2, 4, 5, 0, 2.63856], [1016064, 8, 4, 0, 2, 2.24301], [1020600, 3, 6, 2, 1, 2.79795], [1024000, 13, 0, 3, 0, 2.18605], [1029000, 3, 1, 3, 3, 3.38019], [1032192, 14, 2, 0, 1, 2.19011], [1036800, 9, 4, 2, 0, 2.17232], [1037232, 4, 3, 0, 4, 2.81901], [1048576, 20, 0, 0, 0, 1.79008], [1049760, 5, 8, 1, 0, 2.32083], [1050000, 4, 1, 5, 1, 3.07494], [1053696, 10, 1, 0, 3, 2.97002], [1058400, 5, 3, 2, 2, 2.58963], [1058841, 0, 2, 0, 6, 3.5232], [1062882, 1, 12, 0, 0, 2.73008], [1063125, 0, 5, 4, 1, 3.04106], [1071630, 1, 7, 1, 2, 3.4521], [1071875, 0, 0, 5, 3, 3.41763], [1075200, 11, 1, 2, 1, 2.70691], [1075648, 6, 0, 0, 5, 2.90086], [1080000, 6, 3, 4, 0, 2.31091], [1080450, 1, 2, 2, 4, 3.68438], [1088640, 7, 5, 1, 1, 2.7848], [1093500, 2, 7, 3, 0, 2.9], [1093750, 1, 0, 7, 1, 3.57494], [1097600, 7, 0, 2, 3, 2.67558], [1102248, 3, 9, 0, 1, 2.87779], [1102500, 2, 2, 4, 2, 3.28579], [1105920, 13, 3, 1, 0, 2.34211], [1111320, 3, 4, 1, 3, 3.30896], [1119744, 9, 7, 0, 0, 2.41754], [1120000, 8, 0, 4, 1, 2.59043], [1125000, 3, 2, 6, 0, 3.22214], [1128960, 9, 2, 1, 2, 3.14624], [1134000, 4, 4, 3, 1, 2.86045], [1143072, 5, 6, 0, 2, 2.84602], [1146880, 15, 0, 1, 1, 2.572], [1148175, 0, 8, 2, 1, 3.0777], [1152000, 10, 2, 3, 0, 2.7783], [1152480, 5, 1, 1, 4, 3.61274], [1157625, 0, 3, 3, 3, 3.79904], [1161216, 11, 4, 0, 1, 2.4385], [1166400, 6, 6, 2, 0, 2.58141], [1166886, 1, 5, 0, 4, 3.84925], [1171875, 0, 1, 8, 0, 3.81043], [1176000, 6, 1, 3, 2, 3.2312], [1176490, 1, 0, 1, 6, 4.23466], [1179648, 17, 2, 0, 0, 2.37485], [1180980, 2, 10, 1, 0, 3.30176], [1181250, 1, 3, 5, 1, 3.84211], [1185408, 7, 3, 0, 3, 2.96067], [1190700, 2, 5, 2, 2, 3.28195], [1200000, 7, 1, 5, 0, 3.02022], [1200500, 2, 0, 3, 4, 3.64518], [1204224, 13, 1, 0, 2, 2.82058], [1209600, 8, 3, 2, 1, 2.82803], [1210104, 3, 2, 0, 5, 3.87859], [1215000, 3, 5, 4, 0, 3.02864], [1224720, 4, 7, 1, 1, 3.27402], [1225000, 3, 0, 5, 2, 3.39408], [1228800, 14, 1, 2, 0, 2.62845], [1229312, 9, 0, 0, 4, 3.20435], [1234800, 4, 2, 2, 3, 3.50851], [1240029, 0, 11, 0, 1, 3.38704], [1244160, 10, 5, 1, 0, 3.05722], [1250000, 4, 0, 7, 0, 3.03008], [1250235, 0, 6, 1, 3, 4.19437], [1254400, 10, 0, 2, 2, 2.90995], [1259712, 6, 9, 0, 0, 2.62131], [1260000, 5, 2, 4, 1, 3.22499], [1260525, 0, 1, 2, 5, 4.37466], [1265625, 0, 4, 6, 0, 3.75482], [1270080, 6, 4, 1, 2, 3.13034], [1275750, 1, 6, 3, 1, 4.19616], [1280000, 11, 0, 4, 0, 2.57597], [1285956, 2, 8, 0, 2, 3.39974], [1286250, 1, 1, 4, 3, 4.65565], [1290240, 12, 2, 1, 1, 3.23267], [1296000, 7, 4, 3, 0, 2.70355], [1296540, 2, 3, 1, 4, 4.2512], [1306368, 8, 6, 0, 1, 3.15059], [1310720, 18, 0, 1, 0, 2.66582], [1312200, 3, 8, 2, 0, 2.95107], [1312500, 2, 1, 6, 1, 4.34598], [1317120, 8, 1, 1, 3, 4.04557], [1323000, 3, 3, 3, 2, 3.75952], [1327104, 14, 4, 0, 0, 2.42205], [1333584, 4, 5, 0, 3, 3.68608], [1344000, 9, 1, 3, 1, 3.87626], [1344560, 4, 0, 1, 5, 4.2159], [1350000, 4, 3, 5, 0, 3.35606], [1354752, 10, 3, 0, 2, 3.22307], [1360800, 5, 5, 2, 1, 3.36387], [1361367, 0, 4, 0, 5, 4.31363], [1366875, 0, 7, 4, 0, 3.5897], [1372000, 5, 0, 3, 3, 3.76189], [1376256, 16, 1, 0, 1, 3.2433], [1377810, 1, 9, 1, 1, 4.50992], [1378125, 0, 2, 5, 2, 4.40176], [1382400, 11, 3, 2, 0, 2.86787], [1382976, 6, 2, 0, 4, 3.6967], [1389150, 1, 4, 2, 3, 4.43488], [1399680, 7, 7, 1, 0, 3.13011], [1400000, 6, 0, 5, 1, 3.45965], [1404928, 12, 0, 0, 3, 3.23917], [1406250, 1, 2, 7, 0, 4.53539], [1411200, 7, 2, 2, 2, 3.4207], [1411788, 2, 1, 0, 6, 4.97386], [1417176, 3, 11, 0, 0, 3.28026], [1417500, 2, 4, 4, 1, 3.88013], [1428840, 3, 6, 1, 2, 4.29306], [1433600, 13, 0, 2, 1, 2.96282], [1440000, 8, 2, 4, 0, 3.26141], [1440600, 3, 1, 2, 4, 4.58122], [1451520, 9, 4, 1, 1, 3.74163], [1458000, 4, 6, 3, 0, 3.70544], [1469664, 5, 8, 0, 1, 3.26445], [1470000, 4, 1, 4, 2, 4.15104], [1474560, 15, 2, 1, 0, 3.27203], [1476225, 0, 10, 2, 0, 4.09203], [1481760, 5, 3, 1, 3, 4.32173], [1488375, 0, 5, 3, 2, 4.52986], [1492992, 11, 6, 0, 0, 3.18419], [1500000, 5, 1, 6, 0, 4.21741], [1500282, 1, 7, 0, 3, 4.84867], [1500625, 0, 0, 4, 4, 4.6793], [1505280, 11, 1, 1, 2, 4.21354], [1512000, 6, 3, 3, 1, 3.81072], [1512630, 1, 2, 1, 5, 5.81053], [1518750, 1, 5, 5, 0, 4.75942], [1524096, 7, 5, 0, 2, 3.55594], [1530900, 2, 7, 2, 1, 4.27344], [1531250, 1, 0, 6, 2, 5.34733], [1536000, 12, 1, 3, 0, 3.98618], [1536640, 7, 0, 1, 4, 4.14534], [1543500, 2, 2, 3, 3, 5.15299], [1548288, 13, 3, 0, 1, 3.29334], [1555200, 8, 5, 2, 0, 3.41283], [1555848, 3, 4, 0, 4, 4.31171], [1562500, 2, 0, 8, 0, 4.36883], [1568000, 8, 0, 3, 2, 3.89379], [1572864, 19, 1, 0, 0, 3.23712], [1574640, 4, 9, 1, 0, 3.96278], [1575000, 3, 2, 5, 1, 4.70566], [1580544, 9, 2, 0, 3, 4.43738], [1587600, 4, 4, 2, 2, 3.82147], [1594323, 0, 13, 0, 0, 3.99824], [1600000, 9, 0, 5, 0, 3.81046], [1605632, 15, 0, 0, 2, 3.24518], [1607445, 0, 8, 1, 2, 4.70832], [1612800, 10, 2, 2, 1, 4.03072], [1613472, 5, 1, 0, 5, 5.08515], [1620000, 5, 4, 4, 0, 3.43386], [1620675, 0, 3, 2, 4, 5.10733], [1632960, 6, 6, 1, 1, 4.38045], [1638400, 16, 0, 2, 0, 3.2544], [1640250, 1, 8, 3, 0, 4.76202], [1640625, 0, 1, 7, 1, 5.28176], [1646400, 6, 1, 2, 3, 4.68515], [1647086, 1, 0, 0, 7, 6.05494], [1653372, 2, 10, 0, 1, 4.6553], [1653750, 1, 3, 4, 2, 5.15885], [1658880, 12, 4, 1, 0, 3.48627], [1666980, 2, 5, 1, 3, 5.35568], [1679616, 8, 8, 0, 0, 3.2481], [1680000, 7, 1, 4, 1, 4.35661], [1680700, 2, 0, 2, 5, 5.46922], [1687500, 2, 3, 6, 0, 4.90102], [1693440, 8, 3, 1, 2, 4.40362], [1701000, 3, 5, 3, 1, 4.856], [1714608, 4, 7, 0, 2, 4.23606], [1715000, 3, 0, 4, 3, 4.95363], [1720320, 14, 1, 1, 1, 4.44723], [1728000, 9, 3, 3, 0, 4.21728], [1728720, 4, 2, 1, 4, 5.38522], [1741824, 10, 5, 0, 1, 4.29568], [1749600, 5, 7, 2, 0, 3.82877], [1750000, 4, 0, 6, 1, 4.91942], [1750329, 0, 6, 0, 4, 5.52682], [1756160, 10, 0, 1, 3, 4.93725], [1764000, 5, 2, 3, 2, 4.81603], [1764735, 0, 1, 1, 6, 6.37981], [1769472, 16, 3, 0, 0, 3.41405], [1771470, 1, 11, 1, 0, 5.30435], [1771875, 0, 4, 5, 1, 5.4271], [1778112, 6, 4, 0, 3, 4.3536], [1786050, 1, 6, 2, 2, 5.63037], [1792000, 11, 0, 3, 1, 4.42477], [1800000, 6, 2, 5, 0, 4.38778], [1800750, 1, 1, 3, 4, 6.6239], [1806336, 12, 2, 0, 2, 4.12557], [1814400, 7, 4, 2, 1, 3.96429], [1815156, 2, 3, 0, 5, 6.00054], [1822500, 2, 6, 4, 0, 5.00877], [1835008, 18, 0, 0, 1, 3.71798], [1837080, 3, 8, 1, 1, 5.01203], [1837500, 2, 1, 5, 2, 5.99978], [1843200, 13, 2, 2, 0, 3.77136], [1843968, 8, 1, 0, 4, 5.22256], [1852200, 3, 3, 2, 3, 5.46832], [1866240, 9, 6, 1, 0, 4.86544], [1875000, 3, 1, 7, 0, 5.52246], [1881600, 9, 1, 2, 2, 5.24941], [1882384, 4, 0, 0, 6, 5.52131], [1889568, 5, 10, 0, 0, 4.48573], [1890000, 4, 3, 4, 1, 4.90675], [1905120, 5, 5, 1, 2, 5.19562], [1913625, 0, 7, 3, 1, 5.83424], [1920000, 10, 1, 4, 0, 4.77104], [1920800, 5, 0, 2, 4, 5.0921], [1928934, 1, 9, 0, 2, 5.94714], [1929375, 0, 2, 4, 3, 6.37408], [1935360, 11, 3, 1, 1, 4.9735], [1944000, 6, 5, 3, 0, 4.57312], [1944810, 1, 4, 1, 4, 6.71517], [1953125, 0, 0, 9, 0, 6.4832], [1959552, 7, 7, 0, 1, 4.38784], [1960000, 6, 0, 4, 2, 4.63437], [1966080, 17, 1, 1, 0, 4.89811], [1968300, 2, 9, 2, 0, 4.97274], [1968750, 1, 2, 6, 1, 7.18], [1975680, 7, 2, 1, 3, 5.6913], [1984500, 2, 4, 3, 2, 5.7031], [1990656, 13, 5, 0, 0, 4.43955], [2000000, 7, 0, 6, 0, 4.77072], [2000376, 3, 6, 0, 3, 6.03978], [2007040, 13, 0, 1, 2, 4.64397], [2016000, 8, 2, 3, 1, 5.28429], [2016840, 3, 1, 1, 5, 7.37168], [2025000, 3, 4, 5, 0, 5.13194], [2032128, 9, 4, 0, 2, 4.83926], [2041200, 4, 6, 2, 1, 5.41594], [2048000, 14, 0, 3, 0, 4.74554], [2058000, 4, 1, 3, 3, 6.59965], [2064384, 15, 2, 0, 1, 4.58582], [2066715, 0, 10, 1, 1, 6.77258], [2073600, 10, 4, 2, 0, 4.3023], [2074464, 5, 3, 0, 4, 5.62384], [2083725, 0, 5, 2, 3, 6.53571], [2097152, 21, 0, 0, 0, 4.22941], [2099520, 6, 8, 1, 0, 4.56861], [2100000, 5, 1, 5, 1, 6.13136], [2100875, 0, 0, 3, 5, 7.21318], [2107392, 11, 1, 0, 3, 5.8911], [2109375, 0, 3, 7, 0, 6.23792], [2116800, 6, 3, 2, 2, 5.12387], [2117682, 1, 2, 0, 6, 7.77533], [2125764, 2, 12, 0, 0, 5.10426], [2126250, 1, 5, 4, 1, 6.79965], [2143260, 2, 7, 1, 2, 6.55267], [2143750, 1, 0, 5, 3, 7.61523], [2150400, 12, 1, 2, 1, 5.40403], [2151296, 7, 0, 0, 5, 5.82262], [2160000, 7, 3, 4, 0, 4.66557], [2160900, 2, 2, 2, 4, 7.04973], [2177280, 8, 5, 1, 1, 5.82077], [2187000, 3, 7, 3, 0, 5.66237], [2187500, 2, 0, 7, 1, 6.43357], [2195200, 8, 0, 2, 3, 5.63651], [2204496, 4, 9, 0, 1, 5.56275], [2205000, 3, 2, 4, 2, 6.32813], [2211840, 14, 3, 1, 0, 4.67894], [2222640, 4, 4, 1, 3, 6.43034], [2239488, 10, 7, 0, 0, 4.78166], [2240000, 9, 0, 4, 1, 5.6096], [2250000, 4, 2, 6, 0, 6.28339], [2250423, 0, 8, 0, 3, 6.63466], [2257920, 10, 2, 1, 2, 6.27491], [2268000, 5, 4, 3, 1, 5.67382], [2268945, 0, 3, 1, 5, 8.09846], [2278125, 0, 6, 5, 0, 6.95722], [2286144, 6, 6, 0, 2, 5.64474], [2293760, 16, 0, 1, 1, 5.31997], [2296350, 1, 8, 2, 1, 6.79021], [2296875, 0, 1, 6, 2, 8.1255], [2304000, 11, 2, 3, 0, 5.59085], [2304960, 6, 1, 1, 4, 7.19046], [2315250, 1, 3, 3, 3, 8.15574], [2322432, 12, 4, 0, 1, 4.93053], [2332800, 7, 6, 2, 0, 5.1839], [2333772, 2, 5, 0, 4, 7.04992], [2343750, 1, 1, 8, 0, 8.27942], [2352000, 7, 1, 3, 2, 6.50234], [2352980, 2, 0, 1, 6, 8.24141], [2359296, 18, 2, 0, 0, 4.75053], [2361960, 3, 10, 1, 0, 6.69482], [2362500, 2, 3, 5, 1, 7.1991], [2370816, 8, 3, 0, 3, 6.15194], [2381400, 3, 5, 2, 2, 6.60586], [2400000, 8, 1, 5, 0, 6.25152], [2401000, 3, 0, 3, 4, 7.30787], [2408448, 14, 1, 0, 2, 5.66275], [2419200, 9, 3, 2, 1, 6.18883], [2420208, 4, 2, 0, 5, 7.56102], [2430000, 4, 5, 4, 0, 5.88064], [2449440, 5, 7, 1, 1, 6.53949], [2450000, 4, 0, 5, 2, 6.62784], [2457600, 15, 1, 2, 0, 5.48598], [2458624, 10, 0, 0, 4, 6.40966], [2460375, 0, 9, 3, 0, 6.92842], [2469600, 5, 2, 2, 3, 7.02608], [2470629, 0, 1, 0, 7, 9.13888], [2480058, 1, 11, 0, 1, 7.47939], [2480625, 0, 4, 4, 2, 7.15245], [2488320, 11, 5, 1, 0, 6.23414], [2500000, 5, 0, 7, 0, 6.04698], [2500470, 1, 6, 1, 3, 9.01949], [2508800, 11, 0, 2, 2, 5.79558], [2519424, 7, 9, 0, 0, 5.26093], [2520000, 6, 2, 4, 1, 6.40736], [2521050, 1, 1, 2, 5, 9.80301], [2531250, 1, 4, 6, 0, 8.20269], [2540160, 7, 4, 1, 2, 6.23674], [2551500, 2, 6, 3, 1, 7.86944], [2560000, 12, 0, 4, 0, 5.15107], [2571912, 3, 8, 0, 2, 6.52307], [2572500, 2, 1, 4, 3, 8.8105], [2580480, 13, 2, 1, 1, 6.51354], [2592000, 8, 4, 3, 0, 5.68579], [2593080, 3, 3, 1, 4, 8.37398], [2612736, 9, 6, 0, 1, 6.84278], [2621440, 19, 0, 1, 0, 5.42173], [2624400, 4, 8, 2, 0, 5.67296], [2625000, 3, 1, 6, 1, 8.68093], [2634240, 9, 1, 1, 3, 8.62333], [2646000, 4, 3, 3, 2, 7.32374], [2654208, 15, 4, 0, 0, 5.19194], [2657205, 0, 12, 1, 0, 7.18438], [2667168, 5, 5, 0, 3, 7.33779], [2679075, 0, 7, 2, 2, 7.82682], [2688000, 10, 1, 3, 1, 7.76474], [2689120, 5, 0, 1, 5, 8.44304], [2700000, 5, 3, 5, 0, 6.6888], [2701125, 0, 2, 3, 4, 9.35744], [2709504, 11, 3, 0, 2, 6.40835], [2721600, 6, 5, 2, 1, 6.68947], [2722734, 1, 4, 0, 5, 9.4664], [2733750, 1, 7, 4, 0, 7.9849], [2734375, 0, 0, 8, 1, 8.95741], [2744000, 6, 0, 3, 3, 7.48266], [2752512, 17, 1, 0, 1, 6.84179], [2755620, 2, 9, 1, 1, 8.27824], [2756250, 1, 2, 5, 2, 9.69613], [2764800, 12, 3, 2, 0, 5.71149], [2765952, 7, 2, 0, 4, 7.4551], [2778300, 2, 4, 2, 3, 8.40406], [2799360, 8, 7, 1, 0, 6.60371], [2800000, 7, 0, 5, 1, 6.98998], [2809856, 13, 0, 0, 3, 6.51395], [2812500, 2, 2, 7, 0, 8.47373], [2822400, 8, 2, 2, 2, 7.1456], [2823576, 3, 1, 0, 6, 9.80346], [2834352, 4, 11, 0, 0, 6.31606], [2835000, 3, 4, 4, 1, 7.52013], [2857680, 4, 6, 1, 2, 8.35571], [2867200, 14, 0, 2, 1, 6.06317], [2880000, 9, 2, 4, 0, 7.13373], [2881200, 4, 1, 2, 4, 8.93392], [2893401, 0, 10, 0, 2, 8.85302], [2903040, 10, 4, 1, 1, 7.44589], [2916000, 5, 6, 3, 0, 7.41462], [2917215, 0, 5, 1, 4, 9.81875], [2939328, 6, 8, 0, 1, 6.44877], [2940000, 5, 1, 4, 2, 8.28266], [2941225, 0, 0, 2, 6, 9.91958], [2949120, 16, 2, 1, 0, 6.7393], [2952450, 1, 10, 2, 0, 9.25946], [2953125, 0, 3, 6, 1, 10.2424], [2963520, 6, 3, 1, 3, 8.61766], [2976750, 1, 5, 3, 2, 10.1792], [2985984, 12, 6, 0, 0, 6.36253], [3000000, 6, 1, 6, 0, 8.3999], [3000564, 2, 7, 0, 3, 9.23418], [3001250, 1, 0, 4, 4, 10.3139], [3010560, 12, 1, 1, 2, 8.33072], [3024000, 7, 3, 3, 1, 7.66691], [3025260, 2, 2, 1, 5, 11.2563], [3037500, 2, 5, 5, 0, 8.42726], [3048192, 8, 5, 0, 2, 7.50339], [3061800, 3, 7, 2, 1, 8.2977], [3062500, 2, 0, 6, 2, 9.4288], [3072000, 13, 1, 3, 0, 7.90634], [3073280, 8, 0, 1, 4, 8.69283], [3087000, 3, 2, 3, 3, 10.1054], [3096576, 14, 3, 0, 1, 6.58787], [3110400, 9, 5, 2, 0, 7.41347], [3111696, 4, 4, 0, 4, 8.35837], [3125000, 3, 0, 8, 0, 8.78509], [3136000, 9, 0, 3, 2, 8.41571], [3145728, 20, 1, 0, 0, 6.67482], [3149280, 5, 9, 1, 0, 7.89142], [3150000, 4, 2, 5, 1, 9.17494], [3161088, 10, 2, 0, 3, 8.84458], [3175200, 5, 4, 2, 2, 7.66282], [3176523, 0, 3, 0, 6, 10.8394], [3188646, 1, 13, 0, 0, 9.12778], [3189375, 0, 6, 4, 1, 9.77613], [3200000, 10, 0, 5, 0, 7.66819], [3211264, 16, 0, 0, 2, 7.23805], [3214890, 1, 8, 1, 2, 10.4008], [3215625, 0, 1, 5, 3, 11.2719], [3225600, 11, 2, 2, 1, 8.03517], [3226944, 6, 1, 0, 5, 10.1594], [3240000, 6, 4, 4, 0, 6.84442], [3241350, 1, 3, 2, 4, 11.0223], [3265920, 7, 6, 1, 1, 8.80682], [3276800, 17, 0, 2, 0, 6.9712], [3280500, 2, 8, 3, 0, 8.67613], [3281250, 1, 1, 7, 1, 11.8061], [3292800, 7, 1, 2, 3, 9.45267], [3294172, 2, 0, 0, 7, 11.6646], [3306744, 3, 10, 0, 1, 9.42256], [3307500, 2, 3, 4, 2, 9.8847], [3317760, 13, 4, 1, 0, 7.02765], [3333960, 3, 5, 1, 3, 10.9256], [3359232, 9, 8, 0, 0, 7.20221], [3360000, 8, 1, 4, 1, 9.14906], [3361400, 3, 0, 2, 5, 10.6898], [3375000, 3, 3, 6, 0, 9.70285], [3386880, 9, 3, 1, 2, 9.61677], [3402000, 4, 5, 3, 1, 9.56717], [3429216, 5, 7, 0, 2, 8.47267], [3430000, 4, 0, 4, 3, 9.66822], [3440640, 15, 1, 1, 1, 9.26349], [3444525, 0, 9, 2, 1, 10.0415], [3456000, 10, 3, 3, 0, 8.49674], [3457440, 5, 2, 1, 4, 10.7735], [3472875, 0, 4, 3, 3, 11.6306], [3483648, 11, 5, 0, 1, 8.73779], [3499200, 6, 7, 2, 0, 7.62029], [3500000, 5, 0, 6, 1, 9.87718], [3500658, 1, 6, 0, 4, 12.0088], [3512320, 11, 0, 1, 3, 9.84621], [3515625, 0, 2, 8, 0, 11.4732], [3528000, 6, 2, 3, 2, 9.59725], [3529470, 1, 1, 1, 6, 14.2873], [3538944, 17, 3, 0, 0, 7.33242], [3542940, 2, 11, 1, 0, 10.0806], [3543750, 1, 4, 5, 1, 11.7079], [3556224, 7, 4, 0, 3, 8.76067], [3572100, 2, 6, 2, 2, 10.8874], [3584000, 12, 0, 3, 1, 9.30179], [3600000, 7, 2, 5, 0, 8.85488], [3601500, 2, 1, 3, 4, 12.7681], [3612672, 13, 2, 0, 2, 8.3703], [3628800, 8, 4, 2, 1, 8.37018], [3630312, 3, 3, 0, 5, 11.8204], [3645000, 3, 6, 4, 0, 9.79264], [3670016, 19, 0, 0, 1, 7.48768], [3674160, 4, 8, 1, 1, 9.70912], [3675000, 3, 1, 5, 2, 11.8965], [3686400, 14, 2, 2, 0, 7.74323], [3687936, 9, 1, 0, 4, 11.3761], [3704400, 4, 3, 2, 3, 10.666], [3720087, 0, 12, 0, 1, 10.1923], [3732480, 10, 6, 1, 0, 9.69795], [3750000, 4, 1, 7, 0, 10.7772], [3750705, 0, 7, 1, 3, 12.6305], [3763200, 10, 1, 2, 2, 10.4671], [3764768, 5, 0, 0, 6, 11.1028], [3779136, 6, 10, 0, 0, 8.93568], [3780000, 5, 3, 4, 1, 9.83162], [3781575, 0, 2, 2, 5, 13.5384], [3796875, 0, 5, 6, 0, 12.4566], [3810240, 6, 5, 1, 2, 10.4146], [3827250, 1, 7, 3, 1, 12.8223], [3828125, 0, 0, 7, 2, 12.1517], [3840000, 11, 1, 4, 0, 9.5017], [3841600, 6, 0, 2, 4, 10.1239], [3857868, 2, 9, 0, 2, 10.8386], [3858750, 1, 2, 4, 3, 13.8735], [3870720, 12, 3, 1, 1, 9.8944], [3888000, 7, 5, 3, 0, 9.19619], [3889620, 2, 4, 1, 4, 12.7981], [3906250, 1, 0, 9, 0, 14.0904], [3919104, 8, 7, 0, 1, 9.27645], [3920000, 7, 0, 4, 2, 9.3936], [3932160, 18, 1, 1, 0, 9.82138], [3936600, 3, 9, 2, 0, 10.0124], [3937500, 2, 2, 6, 1, 13.269], [3951360, 8, 2, 1, 3, 11.8835], [3969000, 3, 4, 3, 2, 11.1973], [3981312, 14, 5, 0, 0, 10.2103], [4000000, 8, 0, 6, 0, 10.0693], [4000752, 4, 6, 0, 3, 11.7675], [4014080, 14, 0, 1, 2, 9.31926], [4032000, 9, 2, 3, 1, 11.5656], [4033680, 4, 1, 1, 5, 14.489], [4050000, 4, 4, 5, 0, 10.0116], [4064256, 10, 4, 0, 2, 9.65315], [4082400, 5, 6, 2, 1, 10.8732], [4084101, 0, 5, 0, 5, 13.9488], [4096000, 15, 0, 3, 0, 10.1078], [4100625, 0, 8, 4, 0, 10.8649], [4116000, 5, 1, 3, 3, 13.2118], [4117715, 0, 0, 1, 7, 15.1331], [4128768, 16, 2, 0, 1, 9.54186], [4133430, 1, 10, 1, 1, 14.8727], [4134375, 0, 3, 5, 2, 13.4328], [4147200, 11, 4, 2, 0, 8.54774], [4148928, 6, 3, 0, 4, 11.1575], [4167450, 1, 5, 2, 3, 14.5723], [4194304, 22, 0, 0, 0, 8.43072], [4199040, 7, 8, 1, 0, 9.25379], [4200000, 6, 1, 5, 1, 12.2246], [4201750, 1, 0, 3, 5, 15.9984], [4214784, 12, 1, 0, 3, 11.669], [4218750, 1, 3, 7, 0, 13.5852], [4233600, 7, 3, 2, 2, 10.3137], [4235364, 2, 2, 0, 6, 15.0643], [4251528, 3, 12, 0, 0, 9.79616], [4252500, 2, 5, 4, 1, 12.3989], [4286520, 3, 7, 1, 2, 12.8274], [4287500, 2, 0, 5, 3, 13.8622], [4300800, 13, 1, 2, 1, 10.8526], [4302592, 8, 0, 0, 5, 12.0937], [4320000, 8, 3, 4, 0, 9.8057], [4321800, 3, 2, 2, 4, 13.654], [4354560, 9, 5, 1, 1, 12.5879], [4374000, 4, 7, 3, 0, 11.0382], [4375000, 3, 0, 7, 1, 12.8429], [4390400, 9, 0, 2, 3, 12.3015], [4408992, 5, 9, 0, 1, 11.1066], [4410000, 4, 2, 4, 2, 12.3468], [4423680, 15, 3, 1, 0, 9.87725], [4428675, 0, 11, 2, 0, 11.9789], [4445280, 5, 4, 1, 3, 12.868], [4465125, 0, 6, 3, 2, 14.9455], [4478976, 11, 7, 0, 0, 9.52774], [4480000, 10, 0, 4, 1, 11.1675], [4500000, 5, 2, 6, 0, 12.5529], [4500846, 1, 8, 0, 3, 14.6271], [4501875, 0, 1, 4, 4, 15.6611], [4515840, 11, 2, 1, 2, 12.5315], [4536000, 6, 4, 3, 1, 11.382], [4537890, 1, 3, 1, 5, 17.4118], [4556250, 1, 6, 5, 0, 14.8622], [4572288, 7, 6, 0, 2, 11.4498], [4587520, 17, 0, 1, 1, 11.5088], [4592700, 2, 8, 2, 1, 12.8173], [4593750, 1, 1, 6, 2, 17.5838], [4608000, 12, 2, 3, 0, 11.8153], [4609920, 7, 1, 1, 4, 14.4584], [4630500, 2, 3, 3, 3, 15.4374], [4644864, 13, 4, 0, 1, 9.92214], [4665600, 8, 6, 2, 0, 10.9424], [4667544, 3, 5, 0, 4, 14.2431], [4687500, 2, 1, 8, 0, 15.3932], [4704000, 8, 1, 3, 2, 13.6419], [4705960, 3, 0, 1, 6, 16.2928], [4718592, 19, 2, 0, 0, 9.60227], [4723920, 4, 10, 1, 0, 13.267], [4725000, 3, 3, 5, 1, 14.2549], [4741632, 9, 3, 0, 3, 13.5424], [4762800, 4, 5, 2, 2, 12.9223], [4782969, 0, 14, 0, 0, 13.614], [4800000, 9, 1, 5, 0, 13.6645], [4802000, 4, 0, 3, 4, 14.3677], [4816896, 15, 1, 0, 2, 11.8919], [4822335, 0, 9, 1, 2, 15.2343], [4838400, 10, 3, 2, 1, 12.3385], [4840416, 5, 2, 0, 5, 15.1756], [4860000, 5, 5, 4, 0, 11.7367], [4862025, 0, 4, 2, 4, 15.4091], [4898880, 6, 7, 1, 1, 13.056], [4900000, 5, 0, 5, 2, 13.2711], [4915200, 16, 1, 2, 0, 11.9193], [4917248, 11, 0, 0, 4, 12.7807], [4920750, 1, 9, 3, 0, 15.7717], [4921875, 0, 2, 7, 1, 16.5828], [4939200, 6, 2, 2, 3, 14.0008], [4941258, 1, 1, 0, 7, 20.2522], [4960116, 2, 11, 0, 1, 14.1604], [4961250, 1, 4, 4, 2, 15.75], [4976640, 12, 5, 1, 0, 13.5955], [5000000, 6, 0, 7, 0, 12.1487], [5000940, 2, 6, 1, 3, 17.564], [5017600, 12, 0, 2, 2, 11.4431], [5038848, 8, 9, 0, 0, 11.2083], [5040000, 7, 2, 4, 1, 12.9168], [5042100, 2, 1, 2, 5, 18.7992], [5062500, 2, 4, 6, 0, 14.7178], [5080320, 8, 4, 1, 2, 13.1268], [5103000, 3, 6, 3, 1, 15.6048], [5120000, 13, 0, 4, 0, 10.3779], [5143824, 4, 8, 0, 2, 12.6346], [5145000, 3, 1, 4, 3, 17.2575], [5160960, 14, 2, 1, 1, 13.1136], [5184000, 9, 4, 3, 0, 12.6236], [5186160, 4, 3, 1, 4, 16.3791], [5225472, 10, 6, 0, 1, 13.6665], [5242880, 20, 0, 1, 0, 11.2489], [5248800, 5, 8, 2, 0, 11.3941], [5250000, 4, 1, 6, 1, 17.1832], [5250987, 0, 7, 0, 4, 16.858], [5268480, 10, 1, 1, 3, 17.2651], [5292000, 5, 3, 3, 2, 14.6905], [5294205, 0, 2, 1, 6, 19.7144], [5308416, 16, 4, 0, 0, 11.9914], [5314410, 1, 12, 1, 0, 16.0386], [5315625, 0, 5, 5, 1, 17.2345], [5334336, 6, 5, 0, 3, 14.6284], [5358150, 1, 7, 2, 2, 17.2949], [5359375, 0, 0, 6, 3, 19.1641], [5376000, 11, 1, 3, 1, 15.7433], [5378240, 6, 0, 1, 5, 16.8123], [5400000, 6, 3, 5, 0, 13.3395], [5402250, 1, 2, 3, 4, 20.5593], [5419008, 12, 3, 0, 2, 12.6565], [5443200, 7, 5, 2, 1, 13.498], [5445468, 2, 4, 0, 5, 18.0796], [5467500, 2, 7, 4, 0, 15.0881], [5468750, 1, 0, 8, 1, 20.0786], [5488000, 7, 0, 3, 3, 15.234], [5505024, 18, 1, 0, 1, 13.7527], [5511240, 3, 9, 1, 1, 16.6214], [5512500, 2, 2, 5, 2, 18.287], [5529600, 13, 3, 2, 0, 11.5075], [5531904, 8, 2, 0, 4, 15.6155], [5556600, 3, 4, 2, 3, 16.4059], [5598720, 9, 7, 1, 0, 14.5964], [5600000, 8, 0, 5, 1, 14.7295], [5619712, 14, 0, 0, 3, 13.2019], [5625000, 3, 2, 7, 0, 16.5908], [5644800, 9, 2, 2, 2, 15.6638], [5647152, 4, 1, 0, 6, 19.2406], [5668704, 5, 11, 0, 0, 12.6697], [5670000, 4, 4, 4, 1, 14.6397], [5715360, 5, 6, 1, 2, 16.8212], [5734400, 15, 0, 2, 1, 12.8713], [5740875, 0, 8, 3, 1, 17.9847], [5760000, 10, 2, 4, 0, 14.2405], [5762400, 5, 1, 2, 4, 17.9624], [5764801, 0, 0, 0, 8, 21.3506], [5786802, 1, 10, 0, 2, 19.8319], [5788125, 0, 3, 4, 3, 19.2912], [5806080, 11, 4, 1, 1, 14.8176], [5832000, 6, 6, 3, 0, 14.8451], [5834430, 1, 5, 1, 4, 21.9547], [5859375, 0, 1, 9, 0, 21.1541], [5878656, 7, 8, 0, 1, 13.0769], [5880000, 6, 1, 4, 2, 16.532], [5882450, 1, 0, 2, 6, 21.7553], [5898240, 17, 2, 1, 0, 14.5382], [5904900, 2, 10, 2, 0, 16.4274], [5906250, 1, 3, 6, 1, 21.5726], [5927040, 7, 3, 1, 3, 17.5119], [5953500, 2, 5, 3, 2, 18.2114], [5971968, 13, 6, 0, 0, 12.971], [6000000, 7, 1, 6, 0, 16.8718], [6001128, 3, 7, 0, 3, 18.1043], [6002500, 2, 0, 4, 4, 19.5111], [6021120, 13, 1, 1, 2, 16.7469], [6048000, 8, 3, 3, 1, 16.1748], [6050520, 3, 2, 1, 5, 22.1156], [6075000, 3, 5, 5, 0, 17.0911], [6096384, 9, 5, 0, 2, 16.3736], [6123600, 4, 7, 2, 1, 16.1739], [6125000, 3, 0, 6, 2, 18.9867], [6144000, 14, 1, 3, 0, 17.1476], [6146560, 9, 0, 1, 4, 18.9854], [6174000, 4, 2, 3, 3, 19.79], [6193152, 15, 3, 0, 1, 14.0185], [6200145, 0, 11, 1, 1, 19.5937], [6220800, 10, 5, 2, 0, 15.1014], [6223392, 5, 4, 0, 4, 16.742], [6250000, 4, 0, 8, 0, 17.3484], [6251175, 0, 6, 2, 3, 21.0156], [6272000, 10, 0, 3, 2, 16.9272], [6291456, 21, 1, 0, 0, 15.7291], [6298560, 6, 9, 1, 0, 15.7422], [6300000, 5, 2, 5, 1, 18.3778], [6302625, 0, 1, 3, 5, 23.8994], [6322176, 11, 2, 0, 3, 17.6407], [6328125, 0, 4, 7, 0, 19.3691], [6350400, 6, 4, 2, 2, 15.2941], [6353046, 1, 3, 0, 6, 23.3314], [6377292, 2, 13, 0, 0, 16.5339], [6378750, 1, 6, 4, 1, 21.2589], [6400000, 11, 0, 5, 0, 15.5825], [6422528, 17, 0, 0, 2, 15.5618], [6429780, 2, 8, 1, 2, 19.8161], [6431250, 1, 1, 5, 3, 25.1026], [6451200, 12, 2, 2, 1, 16.0292], [6453888, 7, 1, 0, 5, 20.5149], [6480000, 7, 4, 4, 0, 13.8726], [6482700, 2, 3, 2, 4, 21.3675], [6531840, 8, 6, 1, 1, 18.4664], [6553600, 18, 0, 2, 0, 13.9588], [6561000, 3, 8, 3, 0, 16.9924], [6562500, 2, 1, 7, 1, 22.614], [6585600, 8, 1, 2, 3, 19.819], [6588344, 3, 0, 0, 7, 23.023], [6613488, 4, 10, 0, 1, 18.6663], [6615000, 3, 3, 4, 2, 19.3855], [6635520, 14, 4, 1, 0, 14.9667], [6667920, 4, 5, 1, 3, 21.5419], [6718464, 10, 8, 0, 0, 14.4053], [6720000, 9, 1, 4, 1, 19.9709], [6722800, 4, 0, 2, 5, 20.9469], [6750000, 4, 3, 6, 0, 19.1538], [6751269, 0, 9, 0, 3, 21.6657], [6773760, 10, 3, 1, 2, 19.2277], [6804000, 5, 5, 3, 1, 19.0909], [6806835, 0, 4, 1, 5, 24.6768], [6834375, 0, 7, 5, 0, 20.79], [6858432, 6, 7, 0, 2, 16.9715], [6860000, 5, 0, 4, 3, 19.3809], [6881280, 16, 1, 1, 1, 19.1423], [6889050, 1, 9, 2, 1, 22.5203], [6890625, 0, 2, 6, 2, 24.561], [6912000, 11, 3, 3, 0, 17.3241], [6914880, 6, 2, 1, 4, 21.503], [6945750, 1, 4, 3, 3, 25.0084], [6967296, 12, 5, 0, 1, 19.1726], [6998400, 7, 7, 2, 0, 15.4125], [7000000, 6, 0, 6, 1, 19.6882], [7001316, 2, 6, 0, 4, 23.3009], [7024640, 12, 0, 1, 3, 19.4782], [7031250, 1, 2, 8, 0, 25.6055], [7056000, 7, 2, 3, 2, 19.3792], [7058940, 2, 1, 1, 6, 28.1096], [7077888, 18, 3, 0, 0, 14.7314], [7085880, 3, 11, 1, 0, 19.6427], [7087500, 2, 4, 5, 1, 21.6441], [7112448, 8, 4, 0, 3, 18.5072], [7144200, 3, 6, 2, 2, 21.3672], [7168000, 13, 0, 3, 1, 18.5396], [7200000, 8, 2, 5, 0, 18.5713], [7203000, 3, 1, 3, 4, 25.421], [7225344, 14, 2, 0, 2, 16.8964], [7257600, 9, 4, 2, 1, 18.6249], [7260624, 4, 3, 0, 5, 23.0966], [7290000, 4, 6, 4, 0, 19.0828], [7340032, 20, 0, 0, 1, 15.6188], [7348320, 5, 8, 1, 1, 19.5004], [7350000, 4, 1, 5, 2, 23.3534], [7372800, 15, 2, 2, 0, 16.2988], [7375872, 10, 1, 0, 4, 22.7221], [7381125, 0, 10, 3, 0, 24.3076], [7408800, 5, 3, 2, 3, 21.4507], [7411887, 0, 2, 0, 7, 28.0701], [7440174, 1, 12, 0, 1, 22.5729], [7441875, 0, 5, 4, 2, 23.3703], [7464960, 11, 6, 1, 0, 19.3943], [7500000, 5, 1, 7, 0, 21.634], [7501410, 1, 7, 1, 3, 27.6552], [7503125, 0, 0, 5, 4, 26.0661], [7526400, 11, 1, 2, 2, 20.8854], [7529536, 6, 0, 0, 6, 22.153], [7558272, 7, 10, 0, 0, 18.0857], [7560000, 6, 3, 4, 1, 19.6511], [7563150, 1, 2, 2, 5, 29.4575], [7593750, 1, 5, 6, 0, 27.0084], [7620480, 7, 5, 1, 2, 21.0763], [7654500, 2, 7, 3, 1, 23.7918], [7656250, 1, 0, 7, 2, 27.1514], [7680000, 12, 1, 4, 0, 19.069], [7683200, 7, 0, 2, 4, 20.5499], [7715736, 3, 9, 0, 2, 21.902], [7717500, 2, 2, 4, 3, 26.6196], [7741440, 13, 3, 1, 1, 20.0735], [7776000, 8, 5, 3, 0, 19.6432], [7779240, 3, 4, 1, 4, 25.0938], [7812500, 2, 0, 9, 0, 24.5237], [7838208, 9, 7, 0, 1, 20.5854], [7840000, 8, 0, 4, 2, 19.8058], [7864320, 19, 1, 1, 0, 19.7581], [7873200, 4, 9, 2, 0, 19.583], [7875000, 3, 2, 6, 1, 26.233], [7902720, 9, 2, 1, 3, 25.8356], [7938000, 4, 4, 3, 2, 22.0025], [7962624, 15, 5, 0, 0, 21.8659], [7971615, 0, 13, 1, 0, 23.4199], [8000000, 9, 0, 6, 0, 22.0011], [8001504, 5, 6, 0, 3, 23.6534], [8028160, 15, 0, 1, 2, 19.6705], [8037225, 0, 8, 2, 2, 23.76], [8064000, 10, 2, 3, 1, 23.279], [8067360, 5, 1, 1, 5, 29.0941], [8100000, 5, 4, 5, 0, 20.0103], [8103375, 0, 3, 3, 4, 28.7766], [8128512, 11, 4, 0, 2, 19.242], [8164800, 6, 6, 2, 1, 21.6946], [8168202, 1, 5, 0, 5, 30.9186], [8192000, 16, 0, 3, 0, 23.9381], [8201250, 1, 8, 4, 0, 24.183], [8203125, 0, 1, 8, 1, 30.6303], [8232000, 6, 1, 3, 3, 26.3667], [8235430, 1, 0, 1, 7, 33.6397], [8257536, 17, 2, 0, 1, 20.4696], [8266860, 2, 10, 1, 1, 26.8346], [8268750, 1, 3, 5, 2, 29.0819], [8294400, 12, 4, 2, 0, 17.4199], [8297856, 7, 3, 0, 4, 22.61], [8334900, 2, 5, 2, 3, 27.113], [8388608, 23, 0, 0, 0, 16.8528], [8398080, 8, 8, 1, 0, 19.6904], [8400000, 7, 1, 5, 1, 24.6334], [8403500, 2, 0, 3, 5, 29.5985], [8429568, 13, 1, 0, 3, 23.5547], [8437500, 2, 3, 7, 0, 25.5434], [8467200, 8, 3, 2, 2, 21.734], [8470728, 3, 2, 0, 6, 29.4173], [8503056, 4, 12, 0, 0, 18.8457], [8505000, 3, 5, 4, 1, 25.1658], [8573040, 4, 7, 1, 2, 25.0764], [8575000, 3, 0, 5, 3, 27.7504], [8601600, 14, 1, 2, 1, 22.2381], [8605184, 9, 0, 0, 5, 26.5756], [8640000, 9, 3, 4, 0, 21.8341], [8643600, 4, 2, 2, 4, 26.7111], [8680203, 0, 11, 0, 2, 26.0915], [8709120, 10, 5, 1, 1, 25.5533], [8748000, 5, 7, 3, 0, 22.4791], [8750000, 4, 0, 7, 1, 25.2778], [8751645, 0, 6, 1, 4, 31.6318], [8780800, 10, 0, 2, 3, 24.5712], [8817984, 6, 9, 0, 1, 22.2453], [8820000, 5, 2, 4, 2, 24.7991], [8823675, 0, 1, 2, 6, 33.2565], [8847360, 16, 3, 1, 0, 20.9543], [8857350, 1, 11, 2, 0, 26.6772], [8859375, 0, 4, 6, 1, 30.5567], [8890560, 6, 4, 1, 3, 25.7703], [8930250, 1, 6, 3, 2, 31.8759], [8957952, 12, 7, 0, 0, 19.4119], [8960000, 11, 0, 4, 1, 22.307], [9000000, 6, 2, 6, 0, 25.394], [9001692, 2, 8, 0, 3, 27.9377], [9003750, 1, 1, 4, 4, 35.1365], [9031680, 12, 2, 1, 2, 24.83], [9072000, 7, 4, 3, 1, 22.9636], [9075780, 2, 3, 1, 5, 34.1216], [9112500, 2, 6, 5, 0, 28.0062], [9144576, 8, 6, 0, 2, 24.1841], [9175040, 18, 0, 1, 1, 23.2175], [9185400, 3, 8, 2, 1, 25.0048], [9187500, 2, 1, 6, 2, 32.9428], [9216000, 13, 2, 3, 0, 23.9052], [9219840, 8, 1, 1, 4, 30.2537], [9261000, 3, 3, 3, 3, 30.6697], [9289728, 14, 4, 0, 1, 21.2122], [9331200, 9, 6, 2, 0, 24.2426], [9335088, 4, 5, 0, 4, 28.0774], [9375000, 3, 1, 8, 0, 30.8311], [9408000, 9, 1, 3, 2, 29.6678], [9411920, 4, 0, 1, 6, 31.9982], [9437184, 20, 2, 0, 0, 20.1543], [9447840, 5, 10, 1, 0, 26.6009], [9450000, 4, 3, 5, 1, 27.9534], [9483264, 10, 3, 0, 3, 27.078], [9525600, 5, 5, 2, 2, 25.9155], [9529569, 0, 4, 0, 6, 33.013], [9565938, 1, 14, 0, 0, 30.8028], [9568125, 0, 7, 4, 1, 29.7648], [9600000, 10, 1, 5, 0, 27.4797], [9604000, 5, 0, 3, 4, 28.7858], [9633792, 16, 1, 0, 2, 26.3533], [9644670, 1, 9, 1, 2, 34.2707], [9646875, 0, 2, 5, 3, 35.3857], [9676800, 11, 3, 2, 1, 24.6522], [9680832, 6, 2, 0, 5, 30.3152], [9720000, 6, 5, 4, 0, 23.5056], [9724050, 1, 4, 2, 4, 33.7934], [9765625, 0, 0, 10, 0, 32.1253], [9797760, 7, 7, 1, 1, 26.3584], [9800000, 6, 0, 5, 2, 26.6116], [9830400, 17, 1, 2, 0, 25.5513], [9834496, 12, 0, 0, 4, 25.0081], [9841500, 2, 9, 3, 0, 28.4763], [9843750, 1, 2, 7, 1, 36.5723], [9878400, 7, 2, 2, 3, 28.2355], [9882516, 2, 1, 0, 7, 39.693], [9920232, 3, 11, 0, 1, 27.6579], [9922500, 2, 4, 4, 2, 29.9309], [9953280, 13, 5, 1, 0, 26.7729], [10000000, 7, 0, 7, 0, 24.5461], [10001880, 3, 6, 1, 3, 34.7747], [10035200, 13, 0, 2, 2, 23.0579], [10077696, 9, 9, 0, 0, 24.7336], [10080000, 8, 2, 4, 1, 27.303], [10084200, 3, 1, 2, 5, 36.9996], [10125000, 3, 4, 6, 0, 29.7806], [10160640, 9, 4, 1, 2, 28.9428], [10206000, 4, 6, 3, 1, 30.7749], [10240000, 14, 0, 4, 0, 21.7403], [10287648, 5, 8, 0, 2, 25.4201], [10290000, 4, 1, 4, 3, 33.8313], [10321920, 15, 2, 1, 1, 27.6406], [10333575, 0, 10, 2, 1, 33.5788], [10368000, 10, 4, 3, 0, 26.2262], [10372320, 5, 3, 1, 4, 32.9228], [10418625, 0, 5, 3, 3, 36.8096], [10450944, 11, 6, 0, 1, 27.3702], [10485760, 21, 0, 1, 0, 26.3614], [10497600, 6, 8, 2, 0, 22.714], [10500000, 5, 1, 6, 1, 34.423], [10501974, 1, 7, 0, 4, 36.9656], [10504375, 0, 0, 4, 5, 37.8089], [10536960, 11, 1, 1, 3, 34.6491], [10546875, 0, 3, 8, 0, 36.5675], [10584000, 6, 3, 3, 2, 29.3069], [10588410, 1, 2, 1, 6, 43.6987], [10616832, 17, 4, 0, 0, 26.1758], [10628820, 2, 12, 1, 0, 30.6068], [10631250, 1, 5, 5, 1, 38.4748], [10668672, 7, 5, 0, 3, 29.6803], [10716300, 2, 7, 2, 2, 32.9304], [10718750, 1, 0, 6, 3, 42.7113], [10752000, 12, 1, 3, 1, 33.0148], [10756480, 7, 0, 1, 5, 34.0952], [10800000, 7, 3, 5, 0, 27.0182], [10804500, 2, 2, 3, 4, 39.2061], [10838016, 13, 3, 0, 2, 25.6464], [10886400, 8, 5, 2, 1, 28.7726], [10890936, 3, 4, 0, 5, 35.517], [10935000, 3, 7, 4, 0, 29.529], [10937500, 2, 0, 8, 1, 35.832], [10976000, 8, 0, 3, 3, 32.125], [11010048, 19, 1, 0, 1, 27.7882], [11022480, 4, 9, 1, 1, 32.7676], [11025000, 3, 2, 5, 2, 35.9125], [11059200, 14, 3, 2, 0, 23.7142], [11063808, 9, 2, 0, 4, 34.1226], [11113200, 4, 4, 2, 3, 32.0187], [11160261, 0, 13, 0, 1, 33.6227], [11197440, 10, 7, 1, 0, 29.2316], [11200000, 9, 0, 5, 1, 32.1101], [11239424, 15, 0, 0, 3, 27.7552], [11250000, 4, 2, 7, 0, 32.4472], [11252115, 0, 8, 1, 3, 38.5751], [11289600, 10, 2, 2, 2, 31.3556], [11294304, 5, 1, 0, 6, 38.7265], [11337408, 6, 11, 0, 0, 25.4379], [11340000, 5, 4, 4, 1, 29.4072], [11344725, 0, 3, 2, 5, 41.2055], [11390625, 0, 6, 6, 0, 39.994], [11430720, 6, 6, 1, 2, 33.6996], [11468800, 16, 0, 2, 1, 27.945], [11481750, 1, 8, 3, 1, 38.8558], [11484375, 0, 1, 7, 2, 40.4568], [11520000, 11, 2, 4, 0, 28.4212], [11524800, 6, 1, 2, 4, 35.9288], [11529602, 1, 0, 0, 8, 45.7928], [11573604, 2, 10, 0, 2, 35.6782], [11576250, 1, 3, 4, 3, 41.5794], [11612160, 12, 4, 1, 1, 30.0748], [11664000, 7, 6, 3, 0, 31.2275], [11668860, 2, 5, 1, 4, 40.7852], [11718750, 1, 1, 9, 0, 47.4092], [11757312, 8, 8, 0, 1, 27.8622], [11760000, 7, 1, 4, 2, 33.4364], [11764900, 2, 0, 2, 6, 41.988], [11796480, 18, 2, 1, 0, 29.3189], [11809800, 3, 10, 2, 0, 33.3884], [11812500, 2, 3, 6, 1, 40.0374], [11854080, 8, 3, 1, 3, 36.4377], [11907000, 3, 5, 3, 2, 37.1471], [11943936, 14, 6, 0, 0, 26.1235], [12000000, 8, 1, 6, 0, 37.3515], [12002256, 4, 7, 0, 3, 35.2991], [12005000, 3, 0, 4, 4, 37.987], [12042240, 14, 1, 1, 2, 33.9196], [12096000, 9, 3, 3, 1, 35.3401], [12101040, 4, 2, 1, 5, 43.5083], [12150000, 4, 5, 5, 0, 33.8386], [12192768, 10, 5, 0, 2, 33.3677], [12247200, 5, 7, 2, 1, 32.5341], [12250000, 4, 0, 6, 2, 37.6786], [12252303, 0, 6, 0, 5, 44.7461], [12288000, 15, 1, 3, 0, 36.669], [12293120, 10, 0, 1, 4, 38.0195], [12301875, 0, 9, 4, 0, 35.9696], [12348000, 5, 2, 3, 3, 39.6043], [12353145, 0, 1, 1, 7, 50.8982], [12386304, 16, 3, 0, 1, 29.6818], [12400290, 1, 11, 1, 1, 43.2799], [12403125, 0, 4, 5, 2, 41.7068], [12441600, 11, 5, 2, 0, 30.9736], [12446784, 6, 4, 0, 4, 33.4346], [12500000, 5, 0, 8, 0, 35.0207], [12502350, 1, 6, 2, 3, 45.4234], [12544000, 11, 0, 3, 2, 34.3673], [12582912, 22, 1, 0, 0, 31.4955], [12597120, 7, 9, 1, 0, 31.9349], [12600000, 6, 2, 5, 1, 36.7906], [12605250, 1, 1, 3, 5, 52.6532], [12644352, 12, 2, 0, 3, 34.9828], [12656250, 1, 4, 7, 0, 41.8454], [12700800, 7, 4, 2, 2, 30.929], [12706092, 2, 3, 0, 6, 45.6148], [12754584, 3, 13, 0, 0, 33.2774], [12757500, 2, 6, 4, 1, 41.1994], [12800000, 12, 0, 5, 0, 33.1204], [12845056, 18, 0, 0, 2, 31.1639], [12859560, 3, 8, 1, 2, 38.802], [12862500, 2, 1, 5, 3, 48.2636], [12902400, 13, 2, 2, 1, 32.5118], [12907776, 8, 1, 0, 5, 42.5046], [12960000, 8, 4, 4, 0, 29.5243], [12965400, 3, 3, 2, 4, 41.8672], [13063680, 9, 6, 1, 1, 40.387], [13107200, 19, 0, 2, 0, 28.1598], [13122000, 4, 8, 3, 0, 35.9404], [13125000, 3, 1, 7, 1, 45.006], [13171200, 9, 1, 2, 3, 43.1652], [13176688, 4, 0, 0, 7, 45.0879], [13226976, 5, 10, 0, 1, 37.4985], [13230000, 4, 3, 4, 2, 37.8501], [13271040, 15, 4, 1, 0, 31.8918], [13286025, 0, 12, 2, 0, 36.5085], [13335840, 5, 5, 1, 3, 43.3129], [13395375, 0, 7, 3, 2, 44.8695], [13436928, 11, 8, 0, 0, 28.6302], [13440000, 10, 1, 4, 1, 39.9452], [13445600, 5, 0, 2, 5, 42.1771], [13500000, 5, 3, 6, 0, 41.2349], [13502538, 1, 9, 0, 3, 48.24], [13505625, 0, 2, 4, 4, 48.5494], [13547520, 11, 3, 1, 2, 38.5567], [13608000, 6, 5, 3, 1, 38.4649], [13613670, 1, 4, 1, 5, 53.7857], [13668750, 1, 7, 5, 0, 45.8089], [13671875, 0, 0, 9, 1, 52.3273], [13716864, 7, 7, 0, 2, 34.3601], [13720000, 6, 0, 4, 3, 38.837], [13762560, 17, 1, 1, 1, 41.1668], [13778100, 2, 9, 2, 1, 41.3417], [13781250, 1, 2, 6, 2, 54.387], [13824000, 12, 3, 3, 0, 38.0841], [13829760, 7, 2, 1, 4, 43.4268], [13891500, 2, 4, 3, 3, 46.6643], [13934592, 13, 5, 0, 1, 37.8399], [13996800, 8, 7, 2, 0, 32.8037], [14000000, 7, 0, 6, 1, 39.8076], [14002632, 3, 6, 0, 4, 46.1146], [14049280, 13, 0, 1, 3, 39.4512], [14062500, 2, 2, 8, 0, 47.4005], [14112000, 8, 2, 3, 2, 40.6818], [14117880, 3, 1, 1, 6, 55.7327], [14155776, 19, 3, 0, 0, 29.8104], [14171760, 4, 11, 1, 0, 38.2717], [14175000, 3, 4, 5, 1, 42.7769], [14224896, 9, 4, 0, 3, 40.865], [14288400, 4, 6, 2, 2, 41.8106], [14336000, 14, 0, 3, 1, 40.0674], [14348907, 0, 15, 0, 0, 47.4364], [14400000, 9, 2, 5, 0, 41.0235], [14406000, 4, 1, 3, 4, 50.0652], [14450688, 15, 2, 0, 2, 35.814], [14467005, 0, 10, 1, 2, 51.881], [14515200, 10, 4, 2, 1, 37.1627], [14521248, 5, 3, 0, 5, 46.3896], [14580000, 5, 6, 4, 0, 38.4502], [14586075, 0, 5, 2, 4, 50.2062], [14680064, 21, 0, 0, 1, 36.9548], [14696640, 6, 8, 1, 1, 39.1838], [14700000, 5, 1, 5, 2, 46.9222], [14706125, 0, 0, 3, 6, 55.2063], [14745600, 16, 2, 2, 0, 35.8823], [14751744, 11, 1, 0, 4, 45.415], [14762250, 1, 10, 3, 0, 56.9116], [14765625, 0, 3, 7, 1, 50.9762], [14817600, 6, 3, 2, 3, 42.8541], [14823774, 1, 2, 0, 7, 61.7128], [14880348, 2, 12, 0, 1, 42.9241], [14883750, 1, 5, 4, 2, 52.046], [14929920, 12, 6, 1, 0, 38.8437], [15000000, 6, 1, 7, 0, 43.3151], [15002820, 2, 7, 1, 3, 53.3598], [15006250, 1, 0, 5, 4, 57.8303], [15052800, 12, 1, 2, 2, 41.6566], [15059072, 7, 0, 0, 6, 44.6117], [15116544, 8, 10, 0, 0, 40.283], [15120000, 7, 3, 4, 1, 39.672], [15126300, 2, 2, 2, 5, 56.9337], [15187500, 2, 5, 6, 0, 52.1969], [15240960, 8, 5, 1, 2, 44.5694], [15309000, 3, 7, 3, 1, 47.2527], [15312500, 2, 0, 7, 2, 49.6102], [15360000, 13, 1, 4, 0, 38.4902], [15366400, 8, 0, 2, 4, 43.4233], [15431472, 4, 9, 0, 2, 43.0862], [15435000, 3, 2, 4, 3, 52.0223], [15482880, 14, 3, 1, 1, 40.4335], [15552000, 9, 5, 3, 0, 48.4129], [15558480, 4, 4, 1, 4, 49.192], [15625000, 3, 0, 9, 0, 55.1807], [15676416, 10, 7, 0, 1, 41.1844], [15680000, 9, 0, 4, 2, 43.5841], [15728640, 20, 1, 1, 0, 41.122], [15746400, 5, 9, 2, 0, 39.2364], [15750000, 4, 2, 6, 1, 51.9864], [15752961, 0, 8, 0, 4, 51.3956], [15805440, 10, 2, 1, 3, 51.7659], [15876000, 5, 4, 3, 2, 44.0922], [15882615, 0, 3, 1, 6, 61.435], [15925248, 16, 5, 0, 0, 53.8472], [15943230, 1, 13, 1, 0, 53.3767], [15946875, 0, 6, 5, 1, 56.5961], [16000000, 10, 0, 6, 0, 50.7255], [16003008, 6, 6, 0, 3, 47.3242], [16056320, 16, 0, 1, 2, 43.7539], [16074450, 1, 8, 2, 2, 52.4642], [16078125, 0, 1, 6, 3, 64.9358], [16128000, 11, 2, 3, 1, 47.392], [16134720, 6, 1, 1, 5, 58.3303], [16200000, 6, 4, 5, 0, 40.3433], [16206750, 1, 3, 3, 4, 62.1358], [16257024, 12, 4, 0, 2, 38.8061], [16329600, 7, 6, 2, 1, 43.8952], [16336404, 2, 5, 0, 5, 57.53], [16384000, 17, 0, 3, 0, 51.8662], [16402500, 2, 8, 4, 0, 45.9319], [16406250, 1, 1, 8, 1, 66.1195], [16464000, 7, 1, 3, 3, 53.3594], [16470860, 2, 0, 1, 7, 66.0801], [16515072, 18, 2, 0, 1, 41.2908], [16533720, 3, 10, 1, 1, 54.8488], [16537500, 2, 3, 5, 2, 55.4022], [16588800, 13, 4, 2, 0, 35.2243], [16595712, 8, 3, 0, 4, 47.6506], [16669800, 3, 5, 2, 3, 55.0397],
""" This module is intended to allow deploying of arbitrary Azure Resource Manager (ARM) templates and describe the provided DC/OS cluster. For more information on how to configure and interpret these templates, see: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates """ import contextlib import copy import logging import re import requests import retrying from azure.common.credentials import ServicePrincipalCredentials from azure.common.exceptions import CloudError from azure.mgmt.network import NetworkManagementClient from azure.mgmt.resource.resources.v2016_02_01 import ResourceManagementClient from azure.mgmt.resource.resources.v2016_02_01.models import (DeploymentMode, DeploymentProperties, ResourceGroup) from azure.monitor import MonitorClient from ...dcos_launch.util import DeploymentError from ...dcos_test_utils.helpers import Host log = logging.getLogger(__name__) # This interface is designed to only use a single deployment. # Being as the azure interface is based around resource groups, deriving # deployment name from group names makes it easier to attach to creating deploys DEPLOYMENT_NAME = '{}-Deployment' def validate_hostname_prefix(prefix): """Hostname prefixes in azure templates are used to link a variety of resources Not all of these resources will have their constraints checked at when ARM valiation occurs. This check in particular was aggravating as no docs surfaced this issue, so logs needed to be scanned just to discover this error """ assert re.match('^[a-z][a-z0-9-]{1,61}[a-z0-9]$', prefix), 'Invalid DNS prefix: {}'.format(prefix) def check_json_object(obj): """ Simple check to fill in the map for automatic parameter casting JSON objects must be represented as dict at this level """ assert isinstance(obj, dict), 'Invalid JSON object: {}'.format(obj) return obj def check_array(arr): """ Simple check to fill in the map for automatic parameter casting JSON arrays must be represented as lists at this level """ assert isinstance(arr, list), 'Invalid array: {}'.format(arr) return arr def nic_to_host(nic, public_ip=None): assert len(nic.ip_configurations) == 1 ip_config = nic.ip_configurations[0] if ip_config.public_ip_address is None and public_ip is None: return Host(ip_config.private_ip_address, None) if public_ip is None: return Host(ip_config.private_ip_address, ip_config.public_ip_address.ip_address) return Host(ip_config.private_ip_address, public_ip) class AzureWrapper: def __init__(self, location: str, subscription_id: str, client_id: str, client_secret: str, tenant_id: str): self.credentials = ServicePrincipalCredentials( client_id=client_id, secret=client_secret, tenant=tenant_id) self.rmc = ResourceManagementClient(self.credentials, subscription_id) self.nmc = NetworkManagementClient(self.credentials, subscription_id) self.mc = MonitorClient(self.credentials, subscription_id) # location is included to keep a similar model as dcos_launch.platforms.aws.BotoWrapper self.location = location def deploy_template_to_new_resource_group( self, template_url, group_name, parameters, tags=None, template=None): if tags is None: tags = dict() log.info('Checking deployment parameters vs template before starting...') deployment_properties = self.create_deployment_properties( template_url, parameters, template=template) deployment_name = DEPLOYMENT_NAME.format(group_name) # Resource group must be created before validation can occur if self.rmc.resource_groups.check_existence(group_name): raise Exception("Group name already exists / taken: {}".format(group_name)) log.info('Starting resource group_creation') def get_all_details(error): formatted_message = '{}: {}\n\n'.format(error.code, error.message) if error.details is None: return formatted_message for d in error.details: formatted_message += get_all_details(d) return formatted_message with contextlib.ExitStack() as stack: self.rmc.resource_groups.create_or_update( group_name, ResourceGroup(location=self.location, tags=tags)) # Ensure the resource group will be deleted if the following steps fail stack.callback(self.rmc.resource_groups.delete, group_name) log.info('Resource group created: {}'.format(group_name)) log.info('Checking with Azure to validate template deployment') result = self.rmc.deployments.validate( group_name, deployment_name, properties=deployment_properties) if result.error: raise Exception("Template verification failed!\n{}".format(get_all_details(result.error))) log.info('Template successfully validated') log.info('Starting template deployment') self.rmc.deployments.create_or_update( group_name, deployment_name, deployment_properties, raw=True) stack.pop_all() log.info('Successfully started template deployment') def create_deployment_properties(self, template_url, parameters, template: dict=None): """ Pulls the targeted template, checks parameter specs and casts user provided parameters to the appropriate type. Assertion is raised if there are unused parameters or invalid casting """ user_parameters = copy.deepcopy(parameters) type_cast_map = { 'string': str, 'securestring': str, 'int': int, 'bool': bool, 'object': check_json_object, 'secureObject': check_json_object, 'array': check_array} log.debug('Pulling Azure template for parameter validation...') if template is None: r = requests.get(template_url) r.raise_for_status() template = r.json() if 'parameters' not in template: assert user_parameters is None, 'This template does not support parameters, ' \ 'yet parameters were supplied: {}'.format(user_parameters) log.debug('Constructing DeploymentProperties from user parameters: {}'.format(parameters)) template_parameters = {} for k, v in template['parameters'].items(): if k in user_parameters: # All templates parameters are required to have a type field. # Azure requires that parameters be provided as {key: {'value': value}}. template_parameters[k] = { 'value': type_cast_map[v['type']](user_parameters.pop(k))} log.debug('Final template parameters: {}'.format(template_parameters)) if len(user_parameters) > 0: raise Exception('Unrecognized template parameters were supplied: {}'.format(user_parameters)) return DeploymentProperties( template=template, mode=DeploymentMode.incremental, parameters=template_parameters) class DcosAzureResourceGroup: """ An abstraction for cleanly handling the life cycle of a DC/OS template deployment. Operations include: create, wait, describe host IPs, and delete """ def __init__(self, group_name, azure_wrapper): self.group_name = group_name self.azure_wrapper = azure_wrapper @classmethod def deploy_acs_template( cls, azure_wrapper: AzureWrapper, template_url: str, group_name: str, public_key, master_prefix, agent_prefix, admin_name, oauth_enabled, vm_size, agent_count, name_suffix, vm_diagnostics_enabled): """ Creates a new resource group and deploys a ACS DC/OS template to it using a subset of parameters for a simple deployment. To see a full listing of parameters, including description and formatting, go to: gen/azure/templates/acs.json in this repository. Args: azure_wrapper: see above template_url: Azure-accessible location for the desired ACS template group_name: name used for the new resource group that will be created for this template deployment Args that wrap template parameters: public_key -> sshRSAPublicKey master_prefix -> masterEndpointDNSNamePrefix agent_prefix -> agentEndpointDNSNamePrefix admin_name -> linuxAdminUsername vm_size -> agentVMSize agent_count -> agentCount name_suffix -> nameSuffix oauth_enabled -> oauthEnabled vm_diagnostics_enabled -> enableVMDiagnostics """ assert master_prefix != agent_prefix, 'Master and agents must have unique prefixs' validate_hostname_prefix(master_prefix) validate_hostname_prefix(agent_prefix) parameters = { 'sshRSAPublicKey': public_key, 'masterEndpointDNSNamePrefix': master_prefix, 'agentEndpointDNSNamePrefix': agent_prefix, 'linuxAdminUsername': admin_name, 'agentVMSize': vm_size, 'agentCount': agent_count, 'nameSuffix': name_suffix, 'oauthEnabled': oauth_enabled, 'enableVMDiagnostics': vm_diagnostics_enabled} azure_wrapper.deploy_template_to_new_resource_group(template_url, group_name, parameters) return cls(group_name, azure_wrapper) def get_deployment_state(self): return self.azure_wrapper.rmc.deployments.get( self.group_name, DEPLOYMENT_NAME.format(self.group_name)).properties.provisioning_state def wait_for_deployment(self, timeout=60 * 60): """ Azure will not register a template instantly after deployment, so CloudError must be expected as retried. Once the ops are retrieved, this loops through all operations in the group's only deployment if any operations are still in progress, then this function will sleep once all operations are complete, if there any failures, those will be printed to the log stream """ log.info('Waiting for deployment to finish') def azure_failure_report(): deploy_ops = self.azure_wrapper.rmc.deployment_operations.list( self.group_name, DEPLOYMENT_NAME.format(self.group_name)) failures = [(op.properties.status_code, op.properties.status_message) for op in deploy_ops if op.properties.provisioning_state == 'Failed'] for failure in failures: log.error('Deployment operation failed! {}: {}'.format(*failure)) @retrying.retry( wait_fixed=60 * 1000, stop_max_delay=timeout * 1000, retry_on_result=lambda res: res is False, retry_on_exception=lambda ex: isinstance(ex, CloudError)) def check_deployment_operations(): deploy_state = self.get_deployment_state() if deploy_state == 'Succeeded': return True elif deploy_state == 'Failed': log.info('Deployment failed. Checking deployment operations.') azure_failure_report() raise DeploymentError('Azure Deployment Failed!') else: log.info('Waiting for deployment. Current state: {}. It should either be Succeeded/Failed.'.format( deploy_state)) return False try: check_deployment_operations() except retrying.RetryError: log.info('Deployment failed. Checking deployment operations.') azure_failure_report() raise DeploymentError("Azure Deployment Failed!") def list_resources(self, filter_string): yield from self.azure_wrapper.rmc.resource_groups.list_resources( self.group_name, filter=(filter_string)) def get_scale_set_nics(self, name_substring=None): for resource in self.list_resources("resourceType eq 'Microsoft.Compute/virtualMachineScaleSets'"): if name_substring and name_substring not in resource.name: continue yield from self.azure_wrapper.nmc.network_interfaces.list_virtual_machine_scale_set_network_interfaces( self.group_name, resource.name) def get_public_ip_address(self, name_substring=None): for resource in self.list_resources("resourceType eq 'Microsoft.Network/publicIPAddresses'"): if name_substring and name_substring not in resource.name: continue return self.azure_wrapper.nmc.public_ip_addresses.get(self.group_name, resource.name) @property def public_agent_lb_fqdn(self): return self.get_public_ip_address('agent-ip').dns_settings.fqdn @property def public_master_lb_fqdn(self): return self.get_public_ip_address('master-ip').dns_settings.fqdn @property def master_nics(self): """ The only instances of networkInterface Resources are for masters """ for resource in self.list_resources("resourceType eq 'Microsoft.Network/networkInterfaces'"): assert 'master' in resource.name, 'Expected to only find master NICs, not: {}'.format(resource.name) yield self.azure_wrapper.nmc.network_interfaces.get(self.group_name, resource.name) def get_master_ips(self): """ Traffic from abroad is routed to a master wth the public master loadbalancer FQDN and the VM index plus 2200 (so the first master will be at 2200) """ public_lb_ip = self.public_master_lb_fqdn return [Host(nic_to_host(nic).private_ip, '{}:{}'.format(public_lb_ip, 2200 + int(nic.name[-1]))) for nic in self.master_nics] def get_private_agent_ips(self): return [nic_to_host(nic) for nic in self.get_scale_set_nics('private')] def get_public_agent_ips(self): """ public traffic is routed to public agents via a specific load balancer """ public_lb_ip = self.public_agent_lb_fqdn return [Host(nic_to_host(nic).private_ip, public_lb_ip) for nic in self.get_scale_set_nics('public')] def update_tags(self, new_tags: dict): rg = self.azure_wrapper.rmc.resource_groups.get(self.group_name) if rg.tags is None: rg.tags = dict() rg.tags.update(new_tags) self.azure_wrapper.rmc.resource_groups.patch(rg.name, { 'tags': rg.tags, 'location': rg.location}, raw=True) def delete(self): log.info('Triggering delete') self.azure_wrapper.rmc.resource_groups.delete(self.group_name, raw=True) def __enter__(self): return self def __exit__(self, exc_type, exc, exc_tb): self.delete() class HybridDcosAzureResourceGroup(DcosAzureResourceGroup): @property def master_nics(self): master_nics = [] for resource in self.list_resources("resourceType eq 'Microsoft.Network/networkInterfaces'"): if 'master' in resource.name: master_nics.append(resource.name) assert len(master_nics) > 0, 'Cannot find any master NICs into resource group {}'.format(self.group_name) for name in master_nics: yield self.azure_wrapper.nmc.network_interfaces.get(self.group_name, name) def get_master_ips(self): public_lb_ip = self.public_master_lb_fqdn return [nic_to_host(nic, public_lb_ip) for nic in self.master_nics] def get_linux_private_agent_ips(self): return [nic_to_host(nic) for nic in self.get_scale_set_nics('linpri')] def get_linux_public_agent_ips(self): return [nic_to_host(nic, self.linux_public_agent_lb_fqdn) for nic in self.get_scale_set_nics('linpub')] def get_windows_public_agent_ips(self): # this VMSS name is derived from this being the 0-th element in the VMSS list return [nic_to_host(nic, self.windows_public_agent_lb_fqdn) for nic in self.get_scale_set_nics('900-vmss')] def get_windows_private_agent_ips(self): # this VMSS name is derived from this being the 1-th element in the VMSS list return [nic_to_host(nic) for nic in self.get_scale_set_nics('901-vmss')] @property def linux_public_agent_lb_fqdn(self): return self.get_public_ip_address('agent-ip-linpub').dns_settings.fqdn @property def windows_public_agent_lb_fqdn(self): return self.get_public_ip_address('agent-ip-wpub').dns_settings.fqdn
import logging import requests from ...models import Configuration # pylint: disable=too-few-public-methods class PushNotificationSender: logger = logging.getLogger(__name__) fcm_url = "https://fcm.googleapis.com/fcm/send" """ Sends push notifications via FCM legacy http api. Returns boolean indicating success or failure """ # pylint: disable=too-many-arguments def send(self, region_slug, channel, title, message, lan_code): fcm_auth_config_key = "fcm_auth_key" auth_key = Configuration.objects.filter(key=fcm_auth_config_key) if auth_key.exists(): self.logger.info("Got fcm_auth_key from database") else: self.logger.info( "Could not get %s from configuration database.", fcm_auth_config_key ) return False payload = { "to": f"/topics/{region_slug}-{lan_code}-{channel}", "notification": {"title": title, "body": message}, "data": {"lanCode": lan_code, "city": region_slug}, } headers = {"Authorization": f"key={auth_key.first().value}"} res = requests.post(self.fcm_url, json=payload, headers=headers) if res.status_code == 200: self.logger.info("Message sent, id: %s", res.json()["message_id"]) return True self.logger.info( "Received invalid response from FCM for push notification: %s, response body: %s", res.status_code, res.text, ) return False
# Copyright (c) 2011, Found IT A/S and Piped Project Contributors. # See LICENSE for details. import socket import mock from twisted.trial import unittest from twisted.internet import defer, reactor from twisted.application import service from twisted.python import reflect, log from twisted.spread import pb, flavors from twisted.cred import credentials, error from piped import processing, dependencies, util, exceptions from piped.providers import spread_provider, pipeline_provider class FakeProcessor(object): def __init__(self): self.batons = defer.DeferredQueue() self.i = 0 def __call__(self, baton): self.batons.put(baton) self.i += 1 return [self.i] class PBTestBase(unittest.TestCase): timeout = 2 def setUp(self): self.runtime_environment = processing.RuntimeEnvironment() self.application = self.runtime_environment.application = service.MultiService() def replace_twisted_log_err(self, err=lambda failure=None: None): original = log.err log.err = err def restore(): log.err = original self.addCleanup(restore) def get_free_port(self): sock = socket.socket() sock.bind(('', 0)) free_port = sock.getsockname()[1] sock.close() return free_port def create_pb_server(self, **kwargs): self.port = self.get_free_port() listen = 'tcp:%i:interface=localhost'%self.port kwargs['listen'] = listen kwargs.setdefault('processor', 'pipeline.test_pipeline') kwargs.setdefault('wait_for_processor', False) self.server = spread_provider.PipedPBService(**kwargs) self.server.setServiceParent(self.application) self.server.configure(self.runtime_environment) class PBServerTest(PBTestBase): def setUp(self): super(PBServerTest, self).setUp() self.processor = FakeProcessor() self.processor_dependency = dependencies.InstanceDependency(self.processor) self.processor_dependency.is_ready = True # replace twisted.python.log.err in these tests since pb uses log.err to # print failure messages on the server side if the exception does not subclass # pb.Error. self.replace_twisted_log_err() self.runtime_environment.configure() @defer.inlineCallbacks def test_simple_server(self): self.create_pb_server() self.application.startService() self.addCleanup(self.application.stopService) self.server.processor_dependency = self.processor_dependency # connect to the server client = pb.PBClientFactory() reactor.connectTCP('localhost', self.port, client) root = yield client.getRootObject() self.addCleanup(root.broker.transport.loseConnection) # call a remote function adding = root.callRemote('add', 42, b=93) # assert that the baton is on the expected form baton = yield self.processor.batons.get() self.assertEquals(baton['message'], 'add') self.assertEquals(baton['args'], (42,)) self.assertEquals(baton['kwargs'], dict(b=93)) # callback the deferred in the baton baton['deferred'].callback(42+93) # the above callbacking should result in the client getting its response result = yield adding self.assertEquals(result, 42+93) @defer.inlineCallbacks def test_waiting_for(self): processor_dependency = dependencies.ResourceDependency(provider='pipeline.any') self.create_pb_server() self.application.startService() self.addCleanup(self.application.stopService) self.server.processor_dependency = processor_dependency # connect to the server client = pb.PBClientFactory() reactor.connectTCP('localhost', self.port, client) root = yield client.getRootObject() self.addCleanup(root.broker.transport.loseConnection) # call a remote function without waiting for the processor: try: yield root.callRemote('add', 42, b=93) except spread_provider.RemoteError as e: self.assertEquals(e.remoteType, reflect.fullyQualifiedName(exceptions.UnprovidedResourceError)) else: self.fail('UnprovidedResourceError not raised.') # call a method when waiting for the processor self.server.wait_for_processor = True adding = root.callRemote('add', 42, b=93) processor_dependency.on_resource_ready(self.processor) processor_dependency.fire_on_ready() baton = yield self.processor.batons.get() # the call must be completed before we complete the test: baton['deferred'].callback(42+93) yield adding @defer.inlineCallbacks def test_default_callbacks(self): self.create_pb_server() self.application.startService() self.addCleanup(self.application.stopService) self.server.processor_dependency = self.processor_dependency # connect to the server client = pb.PBClientFactory() reactor.connectTCP('localhost', self.port, client) root = yield client.getRootObject() self.addCleanup(root.broker.transport.loseConnection) # call a remote function adding = root.callRemote('add', 42, b=93) # assert that the baton is on the expected form baton = yield self.processor.batons.get() self.assertEquals(baton['message'], 'add') self.assertEquals(baton['args'], (42,)) self.assertEquals(baton['kwargs'], dict(b=93)) # remove our reference to the baton del baton # since the server no longer has any reference to the deferred, it will be garbage # collected and the client should receive an exception: try: yield adding except spread_provider.RemoteError as e: self.assertEquals(e.remoteType, reflect.fullyQualifiedName(exceptions.MissingCallback)) else: self.fail('MissingCallback not raised.') # set a default callback and call a remote function self.server.default_callback = 'a default callback' adding = root.callRemote('add', 42, b=93) # we avoid keeping a reference to this baton in order to trigger the default yield self.processor.batons.get() # wait for the result to come in, which should be our default callback result = yield adding self.assertEquals(result, self.server.default_callback) @defer.inlineCallbacks def test_default_callbacks_after_failure(self): self.create_pb_server() self.application.startService() self.addCleanup(self.application.stopService) self.server.processor_dependency = self.processor_dependency # connect to the server client = pb.PBClientFactory() reactor.connectTCP('localhost', self.port, client) root = yield client.getRootObject() self.addCleanup(root.broker.transport.loseConnection) # call a remote function adding = root.callRemote('add', 42, b=93) # we raise an exception and collect it in a failure because it causes # f_locals to be reachable # make sure the baton is reachable from the failure frames: baton = yield self.processor.batons.get() try: raise Exception() except Exception as e: from twisted.python import failure f = failure.Failure() # remove our reference to the baton and failure del baton del f # since we're in an inlineCallbacks, update our locals so the above del statements can take effect # this is explained in more detail in PipedPBService.handle_baton locals() # since the server no longer has any reference to the deferred, it will be garbage # collected and the client should receive an exception: try: yield adding except spread_provider.RemoteError as e: self.assertEquals(e.remoteType, reflect.fullyQualifiedName(exceptions.MissingCallback)) else: self.fail('MissingCallback not raised.') @defer.inlineCallbacks def test_require_login(self): self.runtime_environment.configure() self.create_pb_server(checker=dict( name = 'twisted.cred.checkers.InMemoryUsernamePasswordDatabaseDontUse', arguments = dict(test_username='test_password') )) self.application.startService() self.addCleanup(self.application.stopService) self.server.processor_dependency = self.processor_dependency # connect to the server client = pb.PBClientFactory() reactor.connectTCP('localhost', self.port, client) root = yield client.getRootObject() self.addCleanup(root.broker.transport.loseConnection) # calling a remote function should result in no such method being found: try: yield root.callRemote('add', 42, b=93) except spread_provider.RemoteError as e: self.assertEquals(e.remoteType, reflect.fullyQualifiedName(flavors.NoSuchMethod)) else: self.fail('NoSuchMethod not raised.') # attempt to login with different bad credentials bad_credentials = list() bad_credentials.append(credentials.UsernamePassword('wrong', 'wrong')) bad_credentials.append(credentials.UsernamePassword('test_username', 'wrong')) bad_credentials.append(credentials.UsernamePassword('wrong', 'test_password')) for bad_credential in bad_credentials: try: yield client.login(bad_credential) except spread_provider.RemoteError as e: self.assertEquals(e.remoteType, reflect.fullyQualifiedName(error.UnauthorizedLogin)) else: self.fail('NoSuchMethod not raised.') perspective = yield client.login(credentials.UsernamePassword('test_username', 'test_password')) adding = perspective.callRemote('add', 42, b=93) # assert that the baton is on the expected form baton = yield self.processor.batons.get() self.assertEquals(baton['message'], 'add') self.assertEquals(baton['args'], (42,)) self.assertEquals(baton['kwargs'], dict(b=93)) # callback the deferred in the baton baton['deferred'].callback(42+93) # the above callbacking should result in the client getting its response result = yield adding self.assertEquals(result, 42+93) class PBClientTest(PBTestBase): timeout = 2 @defer.inlineCallbacks def test_reconnecting(self): self.runtime_environment.configure() cm = self.runtime_environment.configuration_manager dm = self.runtime_environment.dependency_manager self.create_pb_server() cm.set('pb.clients.test_client.endpoint', 'tcp:host=localhost:port=%i'%self.port) cm.set('pipelines.test_pipeline', [{'eval-lambda': {'lambda': 'baton: baton["deferred"].callback("foo")'}}]) pp = pipeline_provider.PipelineProvider() pp.configure(self.runtime_environment) self.application.startService() self.addCleanup(self.application.stopService) client_provider = spread_provider.PBClientProvider() client_provider.configure(self.runtime_environment) client_factory_dependency = dm.add_dependency(self, dict(provider='pb.client.test_client')) client_root_dependency = dm.add_dependency(self, dict(provider='pb.client.test_client.root_object')) dm.resolve_initial_states() factory = yield client_factory_dependency.wait_for_resource() self.assertIsInstance(factory, spread_provider.PipedPBClientFactory) # we set the max_delay in order to make the unit test run quicker factory.max_delay = 0 root = yield client_root_dependency.wait_for_resource() self.assertIsInstance(root, pb.RemoteReference) yield self.server.stopService() # trying to use the root object now should result in an exception try: yield root.callRemote('omg') except pb.PBConnectionLost as e: pass else: self.fail('pb.PBConnectionLost was not raised.') # the disconnect event will propagate in _this_ reactor iteration, so wait one yield util.wait(0) # both dependencies should now be unavailable self.assertFalse(client_factory_dependency.is_ready) self.assertFalse(client_root_dependency.is_ready) # start the server again yield self.server.startService() # wait for the dependencies to become available again new_factory = yield client_factory_dependency.wait_for_resource() new_root = yield client_root_dependency.wait_for_resource() # the same factory object should be used self.assertEquals(new_factory, factory) # but the root objects differ self.assertNotEquals(new_root, root) result = yield new_root.callRemote('anything') self.assertEquals(result, 'foo') @defer.inlineCallbacks def test_valid_login(self): self.runtime_environment.configure() cm = self.runtime_environment.configuration_manager dm = self.runtime_environment.dependency_manager self.create_pb_server(checker=dict( name = 'twisted.cred.checkers.InMemoryUsernamePasswordDatabaseDontUse', arguments = dict(test_username='test_password') )) cm.set('pb.clients.test_client', dict( endpoint = 'tcp:host=localhost:port=%i'%self.port, username = 'test_username', password = 'test_password' )) cm.set('pipelines.test_pipeline', [{'eval-lambda': {'lambda': 'baton: baton["deferred"].callback("logged in as %s"%baton["avatar_id"])'}}]) pp = pipeline_provider.PipelineProvider() pp.configure(self.runtime_environment) self.application.startService() self.addCleanup(self.application.stopService) client_provider = spread_provider.PBClientProvider() client_provider.configure(self.runtime_environment) client_root_dependency = dm.add_dependency(self, dict(provider='pb.client.test_client.root_object')) dm.resolve_initial_states() root = yield client_root_dependency.wait_for_resource() result = yield root.callRemote('any') self.assertEquals(result, 'logged in as test_username') @defer.inlineCallbacks def test_invalid_login(self): self.runtime_environment.configure() cm = self.runtime_environment.configuration_manager dm = self.runtime_environment.dependency_manager self.create_pb_server(checker=dict( name = 'twisted.cred.checkers.InMemoryUsernamePasswordDatabaseDontUse', arguments = dict(test_username='test_password') )) cm.set('pb.clients.test_wrong_password_client', dict( endpoint = 'tcp:host=localhost:port=%i'%self.port, username = 'test_username', password = 'wrong_password' )) cm.set('pipelines.test_pipeline', ['passthrough']) pp = pipeline_provider.PipelineProvider() pp.configure(self.runtime_environment) self.application.startService() self.addCleanup(self.application.stopService) client_provider = spread_provider.PBClientProvider() client_provider.configure(self.runtime_environment) self.replace_twisted_log_err() with mock.patch.object(spread_provider, 'logger') as mocked_logger: client_wrong_password_factory_dependency = dm.add_dependency(self, dict(provider='pb.client.test_wrong_password_client')) dm.resolve_initial_states() # trying to log in with an unauthorized login should result in an "unauthorized login" wrong_pw_factory = yield client_wrong_password_factory_dependency.wait_for_resource() (args, kwargs) = yield wrong_pw_factory.on_failed_getting_root_object.wait_until_fired() reason = args[0] self.assertEquals(reason.type, 'twisted.cred.error.UnauthorizedLogin') yield util.wait(0) # wait a reactor iteration so the event finishes processing @defer.inlineCallbacks def test_manual_login(self): self.runtime_environment.configure() cm = self.runtime_environment.configuration_manager dm = self.runtime_environment.dependency_manager self.create_pb_server(checker=dict( name = 'twisted.cred.checkers.InMemoryUsernamePasswordDatabaseDontUse', arguments = dict(test_username='test_password') )) cm.set('pb.clients.test_no_login', dict( endpoint = 'tcp:host=localhost:port=%i'%self.port, )) cm.set('pipelines.test_pipeline', [{'eval-lambda': {'lambda': 'baton: baton["deferred"].callback("logged in as %s"%baton["avatar_id"])'}}]) pp = pipeline_provider.PipelineProvider() pp.configure(self.runtime_environment) self.application.startService() self.addCleanup(self.application.stopService) client_provider = spread_provider.PBClientProvider() client_provider.configure(self.runtime_environment) client_no_login_root_dependency = dm.add_dependency(self, dict(provider='pb.client.test_no_login.root_object')) dm.resolve_initial_states() # if the client does not login, it will get a RemoteReference to a PortalWrapper # which can be used to perform the login "manually" no_login_root = yield client_no_login_root_dependency.wait_for_resource() challenge, challenger = yield no_login_root.callRemote('login', 'test_username') perspective = yield challenger.callRemote('respond', pb.respond(challenge, 'test_password'), mind=None) result = yield perspective.callRemote('any') self.assertEquals(result, 'logged in as test_username') class PBServerProviderTest(unittest.TestCase): def setUp(self): self.runtime_environment = processing.RuntimeEnvironment() self.application = self.runtime_environment.application = service.MultiService() self.runtime_environment.configure() def test_server_is_provided(self): cm = self.runtime_environment.configuration_manager cm.set('pb.servers.test_server', dict( processor = 'pipeline.test_pipeline', listen = 'tcp:0' )) provider = spread_provider.PBServerProvider() provider.configure(self.runtime_environment) dep = dependencies.ResourceDependency(provider='pb.server.test_server') provider.add_consumer(dep) server = dep.get_resource() # the server instance should depend on the processor resource self.assertEquals(server.processor_dependency.provider, 'pipeline.test_pipeline')
import logging import os from distutils.util import strtobool from typing import Any, Callable, MutableMapping, Optional from aiohttp.web import Application, run_app, static from aiohttp_jinja2 import setup as setup_aiohttp_jinja2 from aioredis import create_redis_pool from jinja2 import FileSystemLoader from .cache import MemoryCache, RedisCache from .fetcher import try_fetcher from .fetcher.danbooru import fetch_danbooru_post from .fetcher.http import fetch_http from .fetcher.pixiv import fetch_pixiv_url from .web import routes async def setup_aioredis(redis_url: str, app: Application) -> None: redis = await create_redis_pool(redis_url) app['redis'] = redis app['cache'] = RedisCache(redis) async def teardown_aioredis(app: Application) -> None: redis = app['redis'] redis.close() await redis.wait_closed() del app['cache'] del app['redis'] def maybe_set( settings: MutableMapping[str, Any], name: str, envvar: str, coercer: Optional[Callable[[str], Any]] = None, default: Any = None, ) -> None: if envvar in os.environ: value = os.environ[envvar] if coercer is not None: value = coercer(value) settings.setdefault(name, value) elif default is not None: settings.setdefault(name, default) def main(debug: bool = True) -> None: if debug: logging.basicConfig(level=logging.DEBUG) app = Application() setup_aiohttp_jinja2( app, loader=FileSystemLoader(os.path.dirname(__file__)), ) maybe_set(app, 'debug', 'DEBUG', strtobool, debug) maybe_set(app, 'redis_url', 'REDIS_URL', default='') maybe_set(app, 'port', 'PORT', int, 8080) maybe_set(app, 'danbooru_api_key', 'DANBOORU_API_KEY', default='') maybe_set(app, 'danbooru_username', 'DANBOORU_USERNAME', default='') static_path = os.path.join(os.path.dirname(__file__), 'static') app.router.add_routes(routes) app.add_routes([static('/static', static_path)]) redis_url = app['redis_url'] port = int(os.environ.get('PORT', '8080')) if redis_url: app.on_startup.append(lambda app: setup_aioredis(redis_url, app)) app.on_cleanup.append(teardown_aioredis) else: app['cache'] = MemoryCache() app['fetcher'] = try_fetcher([ fetch_danbooru_post( api_key=app['danbooru_api_key'], username=app['danbooru_username'], ), fetch_pixiv_url, fetch_http, ]) run_app(app, port=port)
#!/usr/bin/env python3 import configparser import requests import argparse import json import re import yaml import os import subprocess import shutil from glob import glob # Get config from user dir config_file = os.path.expanduser("~/.puzzlecad") config = configparser.ConfigParser() config.read(config_file) client_id = config['puzzlecad']['ClientId'] client_secret = config['puzzlecad']['ClientSecret'] openscad_bin = config['puzzlecad']['OpenscadBin'] access_token = config['puzzlecad']['AccessToken'] thingiverse_timeout = 60 libs_dir = '../src/main/scad' output_dir = '../out' os.environ['OPENSCADPATH'] = libs_dir parser = argparse.ArgumentParser() parser.add_argument('command') parser.add_argument('cmdargs', nargs='*') args = parser.parse_args() def process_command(args): if args.command == 'get-token': get_access_token() elif args.command == 'build': build_stls(args.cmdargs[0]) elif args.command == "bundle-puzzlecad": bundle_puzzlecad(args.cmdargs[0]) elif args.command == 'print-thing-description': print_thing_description(args.cmdargs[0]) elif args.command == 'update-thing': if access_token == '': raise Exception("You must specify an access token. Use the get-token command to obtain one.") update_thing(access_token, args.cmdargs[0], '' if (len(args.cmdargs) < 2) else args.cmdargs[1]) elif args.command == 'delete-thing': if access_token == '': raise Exception("You must specify an access token. Use the get-token command to obtain one.") delete_thing(access_token, args.cmdargs[0]) elif args.command == 'test': run_test(access_token) else: raise Exception(f'Unknown command: {args.command}') def get_access_token(): print('Go to this URL and get an auth code:') print(f'https://www.thingiverse.com/login/oauth/authorize?client_id={client_id}') code = input('Enter auth code: ') token_response = requests.post( 'https://www.thingiverse.com/login/oauth/access_token', data = {'client_id': client_id, 'client_secret': client_secret, 'code': code}, timeout = thingiverse_timeout ) params = dict(x.split('=') for x in token_response.text.split('&')) access_token = params['access_token'] print('Put this line in ~/.puzzlecad:') print(f'AccessToken = {access_token}') def print_thing_description(thing_name): yaml_path = resolve_thing(thing_name) contents = load_yaml_file(yaml_path) description = substitute_globals(contents['description'], thing_name) print(description) def delete_thing(access_token, thing_id): thingiverse_delete(f'things/{thing_id}', access_token) def update_thing(access_token, thing_name, targets_str): targets = targets_str.split(',') yaml_path = resolve_thing(thing_name) contents = load_yaml_file(yaml_path) name = contents['name'] thing_id = contents['thing-id'] description = substitute_globals(contents['description'], thing_name) print(f'Updating thing "{name}" from file {yaml_path} ...') if 'files' in targets: # Build the STLs first before uploading anything build_stls(thing_name) split_name = name.split(" - ") description_title = f'## {name}' if len(split_name) <= 1 else f'## {split_name[0]}\n\n### {split_name[1]}' print(f'Updating thing attributes ...') attributes = { 'name': name, 'license': 'cc-nc-nd', 'category': 'Puzzles', 'description': f"## {description_title}\n\n{description}", 'tags': contents['tags'] } thingiverse_patch(f'things/{thing_id}', access_token, attributes) dir = os.path.dirname(yaml_path) if 'images' in targets: # thingiverse_clean(thing_id, 'images') for image_file in contents['images']: thingiverse_post_file(thing_id, os.path.join(dir, image_file)) if 'files' in targets: thingiverse_clean(thing_id, 'files') root = os.path.splitext(yaml_path)[0] scad_path = root + ".scad" abs_scad_path = os.path.abspath(scad_path) scad_file = os.path.basename(scad_path) scad_root = os.path.splitext(scad_file)[0] thingiverse_post_file(thing_id, scad_path) configurations = contents['configurations'] if 'configurations' in contents else [{'name': '', 'code': '', 'targets': ''}] for configuration in configurations: configuration_targets = contents['targets'] if configuration['targets'] == '' else configuration['targets'] for stl_target in configuration_targets: stl_target_dashes = stl_target.replace("_", "-") configuration_name = '' if configuration['name'] == '' else '-' + configuration['name'] modularized_name = f'{scad_root}{configuration_name}' if stl_target == "--" else f'{scad_root}.{stl_target_dashes}{configuration_name}' stl_target_path = f'{output_dir}/{modularized_name}.stl' thingiverse_post_file(thing_id, stl_target_path) def resolve_thing(thing_name): print(f'../src/main/scad/**/{thing_name}.yaml') yaml_path = glob(f'../src/main/scad/**/{thing_name}.yaml', recursive = True) if len(yaml_path) == 0: raise Exception(f'Thing not found: {thing_name}') return yaml_path[0]; def load_yaml_file(yaml_file): file = open(yaml_file, mode = 'r') contents = file.read() file.close() return yaml.load(contents, Loader = yaml.FullLoader) def build_stls(thing_name): yaml_path = resolve_thing(thing_name) contents = load_yaml_file(yaml_path) root = os.path.splitext(yaml_path)[0] scad_path = root + ".scad" print(f'Building STLs from source {scad_path} ...') configurations = contents['configurations'] if 'configurations' in contents else [{'name': '', 'code': '', 'targets': ''}] for configuration in configurations: configuration_targets = contents['targets'] if configuration['targets'] == '' else configuration['targets'] for stl_target in configuration_targets: build_stl(scad_path, stl_target, configuration) def build_stl(scad_path, stl_target, configuration): os.makedirs(output_dir, exist_ok = True) abs_scad_path = os.path.abspath(scad_path) scad_file = os.path.basename(scad_path) scad_root = os.path.splitext(scad_file)[0] stl_target_dashes = stl_target.replace("_", "-") configuration_name = '' if configuration['name'] == '' else '-' + configuration['name'] configuration_code = configuration['code'] modularized_name = f'{scad_root}{configuration_name}' if stl_target == "--" else f'{scad_root}.{stl_target_dashes}{configuration_name}' stl_target_path = f'{output_dir}/{modularized_name}.stl' temp_scad_path = f'{output_dir}/{modularized_name}.scad' if os.path.exists(stl_target_path) and os.path.getmtime(stl_target_path) >= os.path.getmtime(abs_scad_path): print(f' Target {modularized_name} is up to date.') else: print(f' Building target {modularized_name} ...') target_func = "" if stl_target == "--" else f'{stl_target}();'; script = f'include <{abs_scad_path}>\n\n{configuration_code}\n{target_func}\n' with open(temp_scad_path, 'w') as file: file.write(script) exit_status = os.system(f'{openscad_bin} -o {stl_target_path} {temp_scad_path}') if exit_status != 0: raise Exception(f'Failed on target {modularized_name}.') def substitute_globals(description, thing_name): # This is somewhat inefficient but should be fine at small scale. mentioned_globals = re.findall('\$\{(.*?)\}', description) for key in mentioned_globals: if key == 'name': replacement = thing_name elif key.startswith('link:'): link_name = key[5:] link_yaml_path = resolve_thing(link_name) link_contents = load_yaml_file(link_yaml_path) link_thing_id = link_contents['thing-id'] link_title = link_contents['name'] link_split_title = link_title.split(" - ") replacement = f'[{link_split_title[0]}](https://www.thingiverse.com/thing:{link_thing_id})' elif key in globals: replacement = globals[key] else: raise Exception('Unknown global: ${' + key + '}') description = description.replace('${' + key + '}', replacement) return description def bundle_puzzlecad(version): # Rudimentary poor-excuse-for-a-build-script, # but I'm trying to keep things super simple right now exit_status = run_puzzlecad_tests() if (exit_status != 0): return print(f'Bundling puzzlecad version {version} ...') os.makedirs('../out/dist', exist_ok = True) print('Building java components ...') os.makedirs('../out/java', exist_ok = True) result = subprocess.run( ['javac', 'org/puzzlecad/XmpuzzleToScad.java', '-d', '../../../out/java', '-source', '1.6', '-target', '1.6'], cwd = '../src/main/java' ) if result.returncode != 0: print('Failed!') return print('Building jar ...') result = subprocess.run( ['jar', 'cfm', '../dist/bt2scad.jar', '../../src/main/java/manifest', '.'], cwd = '../out/java' ) if result.returncode != 0: print('Failed!') return print('Copying to distribution dir ...') shutil.copy('../src/main/scad/puzzlecad.scad', '../out/dist') shutil.copy('../src/main/scad/puzzlecad-examples.scad', '../out/dist') shutil.copy('../src/main/scad/dist/half-hour-example.scad', '../out/dist') print('Creating archive ...') dist_files = [ os.path.relpath(file, '../out/dist') for file in glob('../out/dist/*') ] subprocess.run( ['zip', f'../puzzlecad-{version}.zip'] + dist_files, cwd = '../out/dist' ) if result.returncode != 0: print('Failed!') return print('Done!') def run_puzzlecad_tests(): print('Running puzzlecad tests ...') exit_status = os.system(f'{openscad_bin} -o ../out/puzzlecad-tests.stl ../src/main/scad/puzzlecad-tests.scad') if exit_status == 0: print('Tests succeeded.') else: print('Tests failed!') return exit_status def thingiverse_get(endpoint, access_token): url = f'https://api.thingiverse.com/{endpoint}' response = requests.get( url, params = { 'access_token': access_token }, timeout = thingiverse_timeout ) if response.status_code != 200: raise Exception(f"Call to {url} returned {response.status_code}: {response.text}") return response.json() def thingiverse_post(endpoint, access_token, data): url = f'https://api.thingiverse.com/{endpoint}' response = requests.post( url, params = { 'access_token': access_token }, json = data, timeout = thingiverse_timeout ) if response.status_code != 200: raise Exception(f"Call to {url} returned {response.status_code}: {response.text}") return response.json() def thingiverse_patch(endpoint, access_token, data): url = f'https://api.thingiverse.com/{endpoint}' response = requests.patch( url, params = { 'access_token': access_token }, json = data, timeout = thingiverse_timeout ) if response.status_code != 200: raise Exception(f"Call to {url} returned {response.status_code}: {response.text}") return response.json() def thingiverse_delete(endpoint, access_token): url = f'https://api.thingiverse.com/{endpoint}' response = requests.delete( url, params = { 'access_token': access_token }, timeout = thingiverse_timeout ) if response.status_code != 200: raise Exception(f"Call to {url} returned {response.status_code}: {response.text}") return response.json() def thingiverse_get_image_ids(thing_id): json_images = thingiverse_get(f'things/{thing_id}/images', access_token) return [json_image['id'] for json_image in json_images] def thingiverse_post_file(thing_id, file_path): dir = os.path.dirname(file_path) file_name = os.path.basename(file_path) print(f'Uploading {file_name} ...') response = thingiverse_post( f'things/{thing_id}/files', access_token, { 'filename': file_name } ) with open(file_path, 'rb') as obj: files = { 'file': (file_path, obj) } s3_response = requests.post( response['action'], data = response['fields'], files = files, allow_redirects = False, timeout = thingiverse_timeout ) finalize_response = requests.post( response['fields']['success_action_redirect'], params = { 'access_token': access_token }, timeout = thingiverse_timeout ) print(finalize_response.text) def thingiverse_clean(thing_id, artifact_type): for artifact in thingiverse_get(f'things/{thing_id}/{artifact_type}', access_token): artifact_id = artifact['id'] artifact_name = artifact['name'] print(f'Deleting {artifact_name} ...') thingiverse_delete(f'things/{thing_id}/{artifact_type}/{artifact_id}', access_token) def run_test(access_token): thingiverse_delete(f'things/3198014/files/7668891', access_token) globals = load_yaml_file('../src/main/scad/globals.yaml') process_command(args)
import pytest import dataset import pymemdb @pytest.fixture(scope="function") def simple_dataset_db(): db = dataset.connect("sqlite:///:memory:", row_type=dict) simple_table = db.create_table("my_table") simple_table.insert_many([dict(a=i, b=1) for i in range(10)]) return db def test_simple_table(simple_dataset_db): simple_table = simple_dataset_db["my_table"] pytable = pymemdb.Table.from_dataset(simple_table) assert pytable.name == "my_table" assert list(pytable.all()) == list(simple_table.all()) def test_simple_table_non_default_pk(): # simple_table = simple_dataset_db["my_table"] db = dataset.connect("sqlite:///:memory:", row_type=dict) simple_table = db.create_table("my_table", primary_id="a") simple_table.insert_many([dict(a=i, b=1) for i in range(10)]) pytable = pymemdb.Table.from_dataset(simple_table) testrow = dict(a=21, b=2) simple_table.insert(testrow) pytable.insert(testrow) assert list(pytable.all()) == list(simple_table.all()) def test_to_dataset_with_drop(simple_dataset_db): rows = [{"b": i, "c": 3} for i in range(1, 6)] t = pymemdb.Table("my_table", primary_id="id") for r in rows: t.insert(r) t.to_dataset(simple_dataset_db, drop=True) assert list(simple_dataset_db["my_table"].all()) == list(t.all()) @pytest.mark.xfail def test_to_dataset_with_drop_change_pk(simple_dataset_db): """known strange behavior addressd in https://github.com/pudo/dataset/issues/329 """ rows = [{"b": i, "c": 3} for i in range(1, 6)] t = pymemdb.Table("my_table", primary_id="b") for r in rows: t.insert(r) t.to_dataset(simple_dataset_db, drop=True) assert list(simple_dataset_db["my_table"].all()) == list(t.all()) def test_to_dataset_no_drop(simple_dataset_db): rows = [{"b": i, "c": 3} for i in range(1, 6)] t = pymemdb.Table("my_table2", primary_id="b") for r in rows: t.insert(r) t.to_dataset(simple_dataset_db, drop=False) assert list(simple_dataset_db["my_table2"].all()) == list(t.all())
"""Tools for defining and modeling problem geometry This module implements several kinds of collision detection, as well as tools for converting between different representations of problem geometry. The supported geometry types are referred to as :math:`\\mathbf{R}^2` (where the robot is a point navigating in a polygonal world), :math:`\\text{SE}(2)` (where the robot is a polygon navigating in a polygonal world), and many shape (where the robot is a polygon and the world contains other dynamic polygonal objects, which can be pushed or pulled). In addition to standard tools like ``numpy``, it relies on three libraries: - shapely_: a (mostly) pure python library for constructive and set-theoretic geometry. It lets you define objects *constructively*:: walls = shapely.geometry.box(0, 0, 2, 2).difference( shapely.geometry.box(.1, .1, 1.9, 1.9)) which defines a rectangular room by subtracting a square with side length 1.8 from a square of side length 2. It also lets you reason about things like boundaries and intersections of regions, and then recover the edges, vertices, etc of the shapes you create. Compared to Box2D it is slow, easy to use, and reliable. - Box2D_: a ``python`` wrapper based on ``SWIG`` around a ``c++`` library for 2D physics simulation. It is extremely fast compared to shapely, but also buggy, hard to use, and not overly feature-rich. As soon as it's feasible I will remove Box2D from this package, but irritating as it is, it gets the job done. Many of the functions in this module are for translating Box2D objects to shapely geometry and vice versa. - triangle_: a ``cython`` wrapper around a very fast, very stable ``c`` library for triangulation. I use it for breaking non-convex shapes into convex pieces, since Box2D can only handle convex geometry. It is used exclusively in the ``triangulate`` method. To make it easier to tell which objects are shapely objects and which are Box2D objects, I try to follow a consistent naming convention: - ``point`` is always a tuple or tuple-like containing coordinates (x, y) on the 2D plane - ``pose`` is always a tuple or tuple-like containing a pose in SE(2), represented as (x, y, theta), with (x, y) a position in meters and theta an angle in radians - ``world`` is always a Box2D world, which contains a collection of ``bodies`` defining the objects (both static and dynamic) in the world - ``body`` is always a Box2D body, which models an object and contains both a pose (a position and orientation) as well as collection of fixtures which define the geometry of the object. - ``fixture`` is always a Box2D fixture, which contains a convex polygon and is a component of the geometry of a ``body`` - ``geometry`` is a shapely geometry object; this may be a point, line, polygon, or collection of polygons, but will always define a region of the 2D plane. .. _shapely: http://toblerity.org/shapely/manual.html .. _Box2D: https://github.com/pybox2d/pybox2d/wiki/manual .. _triangle: http://dzhelil.info/triangle/ """ import math import numpy import scipy.spatial import triangle import Box2D.b2 as b2 import shapely.geometry import shapely.ops # pylint: disable=no-member from metis.iterators import circular_pairs def sparsify_point_set(points, count): """Downsample a list of points Reduce a list of points to length count, attempting to minimize the maximum distance from a point in the original set to a point in the new set. This is done using an O(M^2 N) algorithm, where M=count and N=len(points); this could be easily improved to O(M (log M + log N) + N log N) using a more complex algorithm. Args: points (numpy.ndarray): array of points. Each row of the array is treated as a point, so the width of the array is the dimensionality of the sample space. count (int): number of points to keep Returns: numpy.ndarray: downsampled array of points Examples: >>> sparsify_point_set([(0, 0), (1, 1), (2, 2)], 2) array([[0, 0], [2, 2]]) """ points = numpy.array(points) if points.shape[0] < count: return points else: mask = [0] while len(mask) < count: dist = scipy.spatial.distance.cdist(points, points[mask, ...]) mask.append(numpy.argmax(numpy.amin(dist, 1))) return points[mask, ...] def triangulate(geometry, max_area=None): """Use the triangle library to triangulate a polygon Args: polygon (shapely.*): shapely geometry representing the area to triangulate max_area (float): If provided, the triangulation will be refined until all triangles have area less than this maximum. Returns: list: list of triangular polygons """ if not geometry.is_valid: raise ValueError("Tried to triangulate invalid geometry", geometry) if hasattr(geometry, "geoms"): # polygon is a MultiPolygon polygons = list(geometry.geoms) else: polygons = [geometry] vertices = [] segments = [] for polygon in polygons: offset = len(vertices) vertices.extend(polygon.exterior.coords[0:-1]) segments.extend(circular_pairs( range(offset, offset+len(polygon.exterior.coords)-1))) for ring in polygon.interiors: offset = len(vertices) vertices.extend(ring.coords[0:-1]) segments.extend(circular_pairs( range(offset, offset+len(ring.coords)-1))) shape = {'vertices': numpy.array(vertices), 'segments': numpy.array(segments, dtype=numpy.int32)} # Find the holes in the geometry buffer_by = numpy.sqrt(geometry.envelope.area) complement = geometry.envelope.buffer( buffer_by, cap_style=2, join_style=2).difference(geometry) if complement.geom_type == "MultiPolygon": shape['holes'] = numpy.array([interior.representative_point().coords[0] for interior in complement.geoms]) elif complement.geom_type == "Polygon": shape['holes'] = numpy.array(complement.representative_point().coords[0]) if max_area is None: opts = "p" else: opts = "pa{}".format(max_area) triangulation = triangle.triangulate(shape, opts) return [shapely.geometry.Polygon([triangulation['vertices'][i] for i in triplet]) for triplet in triangulation['triangles']] def box2d_shapes_from_shapely(geometry): """Create Box2D shapes from shapely geometry""" return [b2.polygonShape(vertices=list(poly.exterior.coords)) for poly in getattr(geometry, "geoms", [geometry])] def convex_box2d_shape_from_shapely(geometry): """Create a Box2D shape from the convex hull of shapely geometry""" return b2.polygonShape( vertices=list(geometry.convex_hull.exterior.coords)) def box2d_triangles_from_shapely(geometry): """Create Box2D shapes by triangulating shapely geometry""" for face in triangulate(geometry): yield b2.polygonShape(vertices=list(face.exterior.coords)) def shapely_from_box2d_shape(shape): """Create shapely geometry from a Box2D shape""" return shapely.geometry.polygon.orient(shapely.geometry.Polygon( shape.vertices)) def shapely_from_box2d_fixtures(fixtures, pose=None): """Create shapely geometry from a list of Box2D fixtures""" transform = b2.transform() transform.position = pose[0:2] if pose is not None else (0, 0) transform.angle = pose[2] if pose is not None else 0 # TODO: ensure polys are oriented return shapely.ops.cascaded_union([ shapely.geometry.Polygon([ transform * p for p in fixture.shape.vertices]) for fixture in fixtures]) def shapely_from_box2d_body(body, pose=None): """Create shapely geometry from a Box2D body""" if pose is None: return shapely.geometry.polygon.orient(shapely.ops.cascaded_union([ shapely.geometry.Polygon([ body.GetWorldPoint(p) for p in fixture.shape.vertices]) for fixture in body.fixtures])) else: transform = b2.transform() transform.position = pose[0:2] transform.angle = pose[2] return shapely.geometry.polygon.orient(shapely.ops.cascaded_union([ shapely.geometry.Polygon([ transform * p for p in fixture.shape.vertices]) for fixture in body.fixtures])) def shapely_from_box2d_world(world): """Create shapely geometry from a Box2D shape""" return shapely.geometry.polygon.orient(shapely.ops.cascaded_union([ shapely.geometry.Polygon([ body.GetWorldPoint(p) for p in fixture.shape.vertices]) for body in world.bodies for fixture in body.fixtures])) def bounding_box(fixtures, pose): """Get the axis aligned bounding box of the fixtures Args: fixtures (iterable): an iterable containing the fixtures to bound pose (tuple): an (x, y, theta) tuple. All fixtures will be transformed by this pose before the bounding box is computed. Returns: b2.aabb: the smallest axis-aligned bounding box which completely encloses all fixtures after being transformed by pose. If no fixtures are supplied, the value None (rather than an empty bounding box) is returned. """ transform = b2.transform() transform.position = pose[0:2] transform.angle = pose[2] aabb = None for fixture in fixtures: # 0 is the 'child index', which is not described in the pybox2d # documentation so I'm not really sure what it is. if aabb is None: aabb = fixture.shape.getAABB(transform, 0) else: aabb.Combine(fixture.shape.getAABB(transform, 0)) return aabb def world_bounding_box(world, ignore_fixtures=None): """Get the smallest bounds tuple which encloses all fixtures Args: world (b2.world): box2d geometry to query ignore_fixtures (iterable): if provided, the fixtures to ignore when computing the bounding box Returns: tuple: the smallest (xmin, xmax, ymin, ymax) which completely encloses all fixtures except those in ignore_fixtures. If there are no fixtures in the world, raise an error """ aabb = shapely.geometry.Point() for body in world.bodies: for fixture in body.fixtures: if ignore_fixtures is not None and fixture in ignore_fixtures: continue else: shape = shapely.geometry.Polygon( [body.GetWorldPoint(p) for p in fixture.shape.vertices]) aabb = aabb.union(shape).envelope return None if aabb.is_empty else aabb.bounds class PointFreeCallback(b2.queryCallback): """Callback class for Box2D shape collision detection Used to determine if a point is in free space. The existence of this class is an artifact of pybox2d's poor design; it uses callback classes rather than callbacks, which make sense in ``c++`` but are silly in python. Attributes: collision_free (bool): the return value of the callback. After being queried, this will be True if the path is collision free. point (tuple): point to test """ # pylint: disable=too-few-public-methods def __init__(self, point): b2.queryCallback.__init__(self) self.collision_free = True self.point = point def ReportFixture(self, fixture): """Check if the query point is inside this fixture""" # pylint: disable=invalid-name if fixture.TestPoint(self.point): self.collision_free = False return self.collision_free class RayCastCallback(b2.rayCastCallback): """Callback class for Box2D point collision detection Used to determine if the straight-line path between two points is collision free in a Box2D world. The existence of this class is an artifact of pybox2d's poor design; it uses callback classes rather than callbacks, which make sense in ``c++`` but are silly in python. Attributes: collision_free (bool): the return value of the callback. After being queried, this will be True if the path is collision free. """ # pylint: disable=too-few-public-methods def __init__(self): b2.rayCastCallback.__init__(self) self.collision_free = True def ReportFixture(self, fixture, point, normal, fraction): """If the function is called, there is at least one collision""" # pylint: disable=invalid-name,unused-argument self.collision_free = False return 0 class ShapeFreeCallback(b2.queryCallback): """Callback class for Box2D shape collision detection Used to determine if the straight-line path between two poses of a shape is collision free in a Box2D world. Angles are interpolated linearly, so for large rotations this will be inaccurate. The test is done by casting each of the test_fixtures (one at at time) at each fixture in the queried AABB that is not in the whitelist. The existence of this class is an artifact of pybox2d's poor design; it uses callback classes rather than callbacks, which make sense in ``c++`` but are silly in python. Attributes: test_fixtures (list): list of fixtures to check for collision whitelist (list): list of fixtures to skip in collision detection pose_a (tuple): start pose of the path as an (x, y, theta) tuple pose_b (tuple): end pose of the path as an (x, y, theta) tuple collision_free (bool): the return value of the callback. After being queried, this will be True if the path is collision free. """ # pylint: disable=too-few-public-methods def __init__(self, test_fixtures, pose_a, pose_b=None, whitelist=None): b2.queryCallback.__init__(self) self.test_fixtures = test_fixtures self.whitelist = whitelist if whitelist is not None else [] self.pose_a = pose_a self.pose_b = pose_b if pose_b is not None else pose_a self.collision_free = True def ReportFixture(self, other_fixture): """Check for collisions This function is called by Box2D during an AABB query for each fixture in the AABB. """ # pylint: disable=invalid-name if other_fixture in self.whitelist: return True if other_fixture in self.test_fixtures: # This ignores self-collisions (which seems a silly thing to # have to check for...) # TODO: there should be a way to avoid this check return True sweep = b2.sweep(a0=self.pose_a[2], a=self.pose_b[2], c0=self.pose_a[0:2], c=self.pose_b[0:2]) still = b2.sweep(a=other_fixture.body.angle, a0=other_fixture.body.angle, c=other_fixture.body.position, c0=other_fixture.body.position) for test_fixture in self.test_fixtures: (collision, impact_time) = b2.timeOfImpact( shapeA=test_fixture.shape, shapeB=other_fixture.shape, sweepA=sweep, sweepB=still, tMax=1.) self.collision_free &= ( (impact_time == 1.) and (collision == b2.TOIOutput.e_separated or collision == b2.TOIOutput.e_touching)) if not self.collision_free: break return self.collision_free def point_free(world, point): """Check if a point intersects any object in a Box2D world Args: world (b2.world): a Box2D world containing the geometry to query. point (tuple): an (x, y) tuple defining the query point. Returns: bool: True if there are no objects in world within .1mm of point; False otherwise. """ query = PointFreeCallback(point) aabb = b2.AABB() aabb.lowerBound = (point[0]-1e-4, point[1]-1e-4) aabb.upperBound = (point[0]+1e-4, point[1]+1e-4) world.QueryAABB(query, aabb) return query.collision_free def segment_free(world, point_a, point_b): """Check if a line segment intersects any object in a Box2D world Args: world (b2.world): a Box2D world containing the geometry to query. point_a (tuple): an (x, y) tuple defining the start of the segment point_b (tuple): an (x, y) tuple defining the end of the segment Returns: bool: True if the line segment does not intersect any object in the world """ if not point_free(world, point_a): return False else: callback = RayCastCallback() world.RayCast(callback, point_a, point_b) return callback.collision_free def pose_free(world, fixtures, pose_a, pose_b=None, whitelist=None): """Deterimine if a Box2D world is collision free Used to determine if the straight-line path between two poses of a shape is collision free in a Box2D world. Angles are interpolated linearly, so for large rotations this will be inaccurate. Attributes: world (b2.world): Box2D object describing world geometry fixtures (sequence): an iterable sequence of Box2D fixtures to ignore in collision detection. Typically this is a triangulation of the moveable object being queried. pose_a (tuple): an (x, y, theta) tuple defining the pose for which to perform collision detection pose_b (tuple): if provided, check for collision along a linear sweep from pose_a to pose_b, much like segment_free. whitelist (sequence): an iterable sequence of Box2D fixtures to *ignore* when performing collision detection. Useful for preventing Box2D from reporting a collision between objects in contact (say, if the robot is grasping an object) Returns: bool: True if the fixtures are not in collision when transformed by pose_a, or never in collision during a linear sweep from pose_a to pose_b """ # assert fixtures is not None and pose_a is not None aabb = bounding_box(fixtures, pose_a) if pose_b is not None: aabb.Combine(bounding_box(fixtures, pose_b)) query = ShapeFreeCallback(fixtures, pose_a, pose_b, whitelist=whitelist) world.QueryAABB(query, aabb) return query.collision_free class Geometry(object): """Encapsulates collision detection This is a base class or prototype for concrete instantiations of geometry objects. There are three key things such objects should be capable of doing: - check whether configurations are collision free - check whether there exists a simple collision-free path between configurations - provide sufficient information to sample random configurations Strictly speaking, a base class like this is unnecessary in ``python``, but I think it's helpful for readability to lay out the interface in one place. """ def __init__(self, seed=0): super(Geometry, self).__init__() self.random = numpy.random.RandomState(seed) def configuration_is_free(self, configuration): """Check if the supplied configuration is free""" pass def path_is_free(self, parent, child): """Check if there is a trivial path between configurations""" pass def sample_configuration(self): """Sample a configuration uniformly from the space""" pass class R2Geometry(Geometry): """Two dimensional point geometry The configuration space is a subset of the 2D Cartesian plane in a world that may contain obstacles. Attributes: world (Box2D.b2world): Underlying Box2D world object bounds (tuple): a tuple (xmin, ymin, xmax, ymax) defining the bounds of the problem geometry. Used primarily for sampling. sample_count (int): number of samples generated so far. Used to compute the measure of the set of free configurations rejection_count (int): number of samples rejected so far. Used to compute the measure of the set of free configurations. """ def __init__(self, world, bounds=None, **kwargs): super(R2Geometry, self).__init__(**kwargs) self.world = world if bounds is None: self.bounds = world_bounding_box(world) else: self.bounds = bounds self.sample_count = 0 self.rejection_count = 0 self.scale = numpy.array([1, 1]) @property def mu_free(self): """The Lebesgue measure of the space of free poses""" xmin, ymin, xmax, ymax = self.bounds total_area = (xmax - xmin) * (ymax - ymin) assert self.rejection_count <= self.sample_count if self.sample_count > 0: free_count = self.sample_count - self.rejection_count fraction_free = float(free_count) / float(self.sample_count) return total_area * fraction_free else: return total_area def configuration_is_free(self, point): """Check if a point is in the space of free configurations Args: point (tuple): a point in R2 represented as a tuple (x, y) Returns: bool: True if ``point`` lies in the free space """ return point_free(self.world, point) def path_is_free(self, parent, child): """Check if the line segment between two points is in free space Args: parent (tuple): a point in R2, represented as a tuple child (tuple): a point in R2, represented as a tuple Returns: bool: True if the line segment connecting parent and child is in free space """ return segment_free(self.world, parent, child) def sample_configuration(self): """Sample a configuration uniformly from the free space""" xmin, ymin, xmax, ymax = self.bounds iteration = 0 max_iterations = 100 while iteration < max_iterations: point = self.random.uniform(0, 1, size=2) point[0] *= xmax - xmin point[0] += xmin point[1] *= ymax - ymin point[1] += ymin self.sample_count += 1 if self.configuration_is_free(point): return point else: self.rejection_count += 1 iteration += 1 raise RuntimeError( "Failed to return a sample after {} iterations." "Problem might be infeasible.".format(iteration)) class SE2Geometry(Geometry): """Two dimensional shape geometry The configuration space is the space of poses of a 2D shape in a world that may contain obstacles. Attributes: world (Box2D.b2world): Underlying c world object fixtures (list): List of fixture objects constituting the moving object. A fixture is a shape defined relative to the moving object origin. bounds (tuple): a tuple (xmin, ymin, xmax, ymax) defining the bounds of the problem geometry. Used primarily for sampling. sample_count (int): number of samples generated. Used to compute the measure of the set of free configurations rejection_count (int): number of samples rejected. Used to compute the measure of the set of free configurations. scale (numpy.array): vector used to scale configurations for distance computations. In SE(2), the relative scale of the position and rotation components is arbitrary; changing units of distance from meters to kilometers, or of rotation from radians to degrees, would cause large differences in a nearest-neighbors search. The scale property provides a suggestion for how to scale the distances between configurations, which can be used in random graph construction. """ def __init__(self, world, fixtures, bounds=None, **kwargs): super(SE2Geometry, self).__init__(**kwargs) self.world = world self.fixtures = fixtures if bounds is None: self.bounds = world_bounding_box(world) else: self.bounds = bounds self.sample_count = 0 self.rejection_count = 0 # Angle differences will be scaled by this in computing the # distance between points in SE(2) rotation_scale = 1 self.scale = numpy.array([1, 1, rotation_scale]) @property def mu_free(self): """The Lebesgue measure of the space of free poses""" xmin, ymin, xmax, ymax = self.bounds total_area = (xmax - xmin) * (ymax - ymin) mu_sample = total_area * 2 * math.pi * numpy.prod(self.scale) assert self.rejection_count <= self.sample_count if self.sample_count > 0: free_count = self.sample_count - self.rejection_count fraction_free = float(free_count) / float(self.sample_count) return mu_sample * fraction_free else: return mu_sample def configuration_is_free(self, pose): """Check if a pose is in collision Args: pose (tuple): a pose in SE(2), represented as a tuple (x, y, theta), with theta in radians Returns: bool: True if ``shape`` would lie entirely in free space if transformed by ``pose``. """ return pose_free(self.world, self.fixtures, pose) def path_is_free(self, parent, child): """Check if the path between configurations is collision-free Args: parent (tuple): a pose in SE(2), represented as a tuple (x, y, theta), with theta in radians child (tuple): a pose in SE(2), represented as a tuple (x, y, theta), with theta in radians Returns: bool: True if ``shape`` would lie entirely in free space if swept along the linear path from an initial transform ``parent`` to a final transform ``child`` """ return pose_free(self.world, self.fixtures, parent, child) def sample_configuration(self): """Sample a configuration uniformly from the free space Sampling is done (as per usual) using rejection sampling. Returns: tuple: a collision-free pose (x, y, theta) Raises: RuntimeError if rejection sampling fails to find a collision-free sample within a fixed number of iterations. Typically this indicates that the Lebesgue measure of free space is zero or nearly zero, and thus that the problem is infeasible """ xmin, ymin, xmax, ymax = self.bounds iteration = 0 max_iterations = 100 while iteration < max_iterations: pose = self.random.uniform(0, 1, size=3) pose[0] *= xmax - xmin pose[0] += xmin pose[1] *= ymax - ymin pose[1] += ymin pose[2] *= 2 * math.pi pose[2] -= math.pi self.sample_count += 1 if self.configuration_is_free(pose): return pose else: self.rejection_count += 1 iteration += 1 raise RuntimeError( "Failed to return a sample after {} iterations." "Problem might be infeasible.".format(iteration)) def fixtures_in_region(self, transform, region): """Check if the fixtures lie within the given region""" return region.contains( shapely_from_box2d_fixtures(self.fixtures, transform)) class ManyShapeGeometry(Geometry): """Use Box2D to model 2D geometry The configuration space is the space of poses of several 2D shape in a world that may contain obstacles; it is represented internally as a dictionary mapping object names to object poses. Attributes: world (Box2D.b2world): Underlying Box2D world object empty_world (Box2D.b2world): A copy of the underlying world object with all dynamic objects removed. bodies (dict): a map from object names to Box2D bodies describing object geometry bounds (tuple): a tuple (xmin, ymin, xmax, ymax) defining the bounds of the problem geometry. Used primarily for sampling. sample_count (int): number of samples generated. Used to compute the measure of the set of free configurations rejection_count (int): number of samples rejected. Used to compute the measure of the set of free configurations. scale (numpy.array): vector used to scale configurations for distance computations. In SE(2), the relative scale of the position and rotation components is arbitrary; changing units of distance from meters to kilometers, or of rotation from radians to degrees, would cause large differences in a nearest-neighbors search. The scale property provides a suggestion for how to scale the distances between configurations, which can be used in random graph construction. """ def __init__(self, world, bodies, bounds=None, **kwargs): super(ManyShapeGeometry, self).__init__(**kwargs) self.world = world self.empty_world = b2.world() self.bodies = bodies obstacles = self.empty_world.CreateStaticBody() moveable_fixtures = {fixture for body in bodies.itervalues() for fixture in body.fixtures} for body in world.bodies: for fixture in body.fixtures: if fixture not in moveable_fixtures: obstacles.CreateFixture(shape=fixture.shape) if bounds is None: self.bounds = world_bounding_box(world) else: self.bounds = bounds self.sample_count = 0 self.rejection_count = 0 # Angle differences will be scaled by this in computing the # distance between points in SE(2) rotation_scale = 1 self.scale = numpy.array([1, 1, rotation_scale]) @property def mu_free(self): """The Lebesgue measure of the space of free poses Note: this is not the theoretically correct mu_free, because it would be insane to sample in the full high-dimensional space. Instead this is the average free space across all objects. I don't yet have any rigorous theory for what mu_free should be for factored graphs, but this is a reasonable guess. """ xmin, ymin, xmax, ymax = self.bounds total_area = (xmax - xmin) * (ymax - ymin) mu_sample = total_area * 2 * math.pi * numpy.prod(self.scale) assert self.rejection_count <= self.sample_count if self.sample_count > 0: free_count = self.sample_count - self.rejection_count fraction_free = float(free_count) / float(self.sample_count) return mu_sample * fraction_free else: return mu_sample def configuration_is_free(self, configuration, skip_static=False): """Check if a configuration is collision-free Performs collision-checking both against the static geometry and against the other movable objects in a reasonably efficient way. Args: configuration (dict): configuration of the objects, represented as a map from the name of each object to its pose represented as an (x, y, theta) tuple. It is an error if the pose of any object is not specified. skip_static (bool): if True, skip checking if the configuration is in collision with static geometry and only check dynamic geometry. Useful to speed things up during planning. Returns: bool: True if no two objects overlap Raises: ValueError if configuration does not specify the pose of one of the objects """ # First check for collisions between each object and the static # world geometry for (name, body) in self.bodies.iteritems(): pose = configuration[name] if not (skip_static or pose_free(self.empty_world, body.fixtures, pose)): return False body.position = pose[0:2] body.angle = pose[2] # Next, force collision detection between dynamic bodies self.world.Step(0, 0, 0) for contact in self.world.contacts: _, _, distance, _ = b2.distance( shapeA=contact.fixtureA.shape, shapeB=contact.fixtureB.shape, transformA=contact.fixtureA.body.transform, transformB=contact.fixtureB.body.transform, useRadii=False) if distance <= 1e-4: return False return True def path_is_free(self, parent, child, skip_configuration=False): """Check if the path between configurations is free The path between configurations is assumed to be a linear sweep. This class does not do any detection of dynamic constraints; multiple object are free to move at once. This is to maintain separation of concerns; the problem of determining if there is an action which would lead to the configuration change is beyond the scope of geometry. Because the usual use-case is after dynamics and collisions between moving objects have already been considered, this method does *not* consider the possibility of collisions between objects whose pose changes between parent and child. That check can be performed using the objects_collide method. Args: parent (dict): initial configuration of the objects, represented as a map from the name of each object to its pose represented as an (x, y, theta) tuple. It is an error if any object's pose is not specified. child (dict): final configuration of the objects, represented as a map from the name of each object to its pose represented as an (x, y, theta) tuple. If an object is missing from the dict, its pose is assumed to be the same as in the parent configuration. skip_configuration (bool): if True, assume the parent configuration is collision free without checking. Note oddities in Box2D can make this miss collisions if the parent configuration *is* in collision. Returns: bool: True if the trivial path (a linear sweep) between poses is collision-free """ if not (skip_configuration or self.configuration_is_free(parent)): return False else: dynamic_fixtures = sum( (self.bodies[name].fixtures for name in child), []) for name in child: if not pose_free(self.world, self.bodies[name].fixtures, parent[name], child[name], whitelist=dynamic_fixtures): return False return True def objects_collide(self, parent, child): """Check if objects will collide with each other Unlike path_is_free, this method does *not* require a pose for all objects, and does *not* consider collisions with objects not mentioned in the partial configuration or with static obstacles. Instead, it checks if any object in the partial configuration collides with any other object as it moves along a linear sweep from its initial pose to its final pose. Collision checking against specific static objects can be coerced by including their pose in ``parent``; if an object does not appear in ``child``, its pose is assumed to be the same as in ``parent``. Args: parent (dict): initial configuration of the objects, represented as a map from the name of each object to its pose represented as an (x, y, theta) tuple. Any object not included in the map is ignored, including static obstacles. child (dict): final configuration of the objects, represented as a map from the name of each object to its pose represented as an (x, y, theta) tuple. If an object is missing from ``child`` but is included in ``parent``, its pose is assumed to be the same as in ``parent`` Returns: bool: True if the trivial path (a linear sweep) between poses is collision-free """ # I don't need this yet so I won't bother implementing it, but # the plan is to create an AABB for each sweep, compare AABBs # pairwise (which is quadratic complexity but fast, probably # faster than using any n log n structure), then do ToI # detection for any pair of objects whose AABBs collide. raise NotImplementedError def sample_configuration(self): """Sample a random configuration for all objects Returns: dict: a collision-free configuration of all objects, represented a as a map from object names to poses, themselves represented as (x, y, theta) tuples Raises: RuntimeError if rejection sampling fails to return a sample """ iteration = 0 max_iterations = 100 while iteration < max_iterations: configuration = {name: self.sample_object_configuration(name) for name in self.bodies} if self.configuration_is_free(configuration): return configuration else: iteration += 1 raise RuntimeError( "Failed to return a sample after {} iterations." "Problem might be infeasible.".format(iteration)) def sample_object_configuration(self, name): """Sample a random pose for one object Args: name (str): the name of the object to sample Returns: tuple: a collision-free pose of the specified object, represented as an (x, y, theta) tuple Raises: KeyError if name is not the identifier of a body RuntimeError if rejection sampling fails to return a sample """ xmin, ymin, xmax, ymax = self.bounds iteration = 0 max_iterations = 100 while iteration < max_iterations: pose = self.random.uniform(0, 1, size=3) pose[0] *= xmax - xmin pose[0] += xmin pose[1] *= ymax - ymin pose[1] += ymin pose[2] *= 2 * math.pi pose[2] -= math.pi self.sample_count += 1 if pose_free(self.empty_world, self.bodies[name].fixtures, pose): return pose else: self.rejection_count += 1 iteration += 1 raise RuntimeError( "Failed to return a sample after {} iterations." "Problem might be infeasible.".format(iteration))
# Copyright 2021 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Install and check status of CRLSet and download chromium CRLSet.""" import os import pathlib import subprocess from typing import Sequence import pw_package.git_repo import pw_package.package_manager def crlset_tools_repo_path(path: pathlib.Path) -> pathlib.Path: return path / 'crlset-tools' def crlset_exec_path(path: pathlib.Path) -> pathlib.Path: return path / 'crlset_exec' def crlset_file_path(path: pathlib.Path) -> pathlib.Path: return path / 'crlset' class CRLSet(pw_package.package_manager.Package): """Install and check status of CRLSet and downloaded CLRSet file.""" def __init__(self, *args, **kwargs): super().__init__(*args, name='crlset', **kwargs) self._crlset_tools = pw_package.git_repo.GitRepo( name='crlset-tools', url='https://github.com/agl/crlset-tools.git', commit='1a1019bb500f93bc2b847a57cdbaede847649b99', ) def status(self, path: pathlib.Path) -> bool: if not self._crlset_tools.status(crlset_tools_repo_path(path)): return False # The executable should have been built and exist. if not os.path.exists(crlset_exec_path(path)): return False # A crlset has been downloaded if not os.path.exists(crlset_file_path(path)): return False return True def install(self, path: pathlib.Path) -> None: self._crlset_tools.install(crlset_tools_repo_path(path)) # Build the go tool subprocess.run( ['go', 'build', '-o', crlset_exec_path(path), 'crlset.go'], check=True, cwd=crlset_tools_repo_path(path)) crlset_tools_exec = crlset_exec_path(path) if not os.path.exists(crlset_tools_exec): raise FileNotFoundError('Fail to find crlset executable') # Download the latest CRLSet with the go tool with open(crlset_file_path(path), 'wb') as crlset_file: fetched = subprocess.run([crlset_exec_path(path), 'fetch'], capture_output=True, check=True).stdout crlset_file.write(fetched) def info(self, path: pathlib.Path) -> Sequence[str]: return ( f'{self.name} installed in: {path}', "Enable by running 'gn args out' and adding this line:", f' pw_tls_client_CRLSET_PATH = "{crlset_file_path(path)}"', ) pw_package.package_manager.register(CRLSet)
from event_testing.resolver import DoubleSimResolver from event_testing.results import TestResult from event_testing.test_events import cached_test from interactions import ParticipantTypeSingle from interactions.constraint_variants import TunableGeometricConstraintVariant from interactions.constraints import Anywhere from sims4.tuning.tunable import HasTunableSingletonFactory, AutoFactoryInit, TunableList, TunableEnumEntry, Tunable import assertions import event_testing.test_base import interactions.constraints import services import sims4.log import sims4.tuning logger = sims4.log.Logger('ConstraintTests', default_owner='rmccord') class SimsInConstraintTests(HasTunableSingletonFactory, AutoFactoryInit, event_testing.test_base.BaseTest): test_events = () @staticmethod def _verify_tunable_callback(instance_class, tunable_name, source, value): value._validate_recursion(value.test_set, source, tunable_name) FACTORY_TUNABLES = {'verify_tunable_callback': _verify_tunable_callback, 'constraints': TunableList(description='\n A list of constraints that, when intersected, will be used to find\n all Sims we care about.\n ', tunable=TunableGeometricConstraintVariant(description='\n A constraint that will determine what Sims to test.\n '), minlength=1), 'must_be_line_of_sight': Tunable(description="\n If enabled, sims that succeed in the LOS test won't fail other tests when determining\n the test results.\n ", tunable_type=bool, default=False), 'constraints_target': TunableEnumEntry(description='\n The target used to generate constraints relative to.\n ', tunable_type=ParticipantTypeSingle, default=ParticipantTypeSingle.Object), 'test_actor': TunableEnumEntry(description='\n The actor used to test Sims in the constraint relative to.\n ', tunable_type=ParticipantTypeSingle, default=ParticipantTypeSingle.Object), 'test_set': sims4.tuning.tunable.TunableReference(description='\n A test set instance that will be run on all Sims in the tuned\n constraint. If any Sims fail the test set instance, this test will\n fail.\n \n Note: A DoubleSimResolver will be used to run these tests. So the\n Test Actor will be the Actor participant, and Target will be a Sim\n in the constraint.\n ', manager=services.get_instance_manager(sims4.resources.Types.SNIPPET), class_restrictions=('TestSetInstance',))} @classmethod @assertions.not_recursive def _validate_recursion(cls, test_set_instance, source, tunable_name): for test_group in test_set_instance.test: for test in test_group: if isinstance(test, cls): try: cls._validate_recursion(test.test_set, source, tunable_name) except AssertionError: logger.error('{} is a test set instance in {}: {} but that creates a circular dependency', test.test_set, source, tunable_name, owner='rmccord') def get_expected_args(self): return {'constraint_targets': self.constraints_target, 'test_actors': self.test_actor} @cached_test def __call__(self, constraint_targets=(), test_actors=()): test_actor = test_actors[0] if test_actors else None sim_info_manager = services.sim_info_manager() instanced_sims = list(sim_info_manager.instanced_sims_gen()) for target in constraint_targets: if target.is_sim: target = target.get_sim_instance() if target is None: continue else: total_constraint = Anywhere() for tuned_constraint in self.constraints: total_constraint = total_constraint.intersect(tuned_constraint.create_constraint(None, target)) if not total_constraint.valid: return TestResult(False, 'Constraint {} relative to {} is invalid.', tuned_constraint, target, tooltip=self.tooltip) object_constraint = interactions.constraints.Position(target._get_locations_for_posture_internal_forward_wall_padding(), routing_surface=target.routing_surface) for sim in instanced_sims: if not (total_constraint.geometry.test_transform(sim.transform) and (total_constraint.is_routing_surface_valid(sim.routing_surface) and (total_constraint.is_location_water_depth_valid(sim.location) and (total_constraint.is_location_terrain_tags_valid(sim.location) and not self.test_set(DoubleSimResolver(test_actor, sim.sim_info))))) and not (self.must_be_line_of_sight and sim.sim_info is test_actor)): if not object_constraint.intersect(sim.lineofsight_component.constraint).valid: continue return TestResult(False, 'Sims In Constraint Test Failed.', tooltip=self.tooltip) return TestResult.TRUE
from dataclasses import dataclass from records import RecordBase from tests.benchmarking.util import Benchmark bm = Benchmark('construction') class REC_Point(RecordBase): x: float y: float z: int = 0 w: str = "" @bm.measure(source=(REC_Point, ...), highlight=True) def new_record(): REC_Point(x=12, y=3, w="hi") @dataclass class PYD_Point: x: float y: float z: int = 0 w: str = "" @bm.measure(source=(PYD_Point, ...)) def new_dataclass(): PYD_Point(x=12, y=3, w="hi") if __name__ == '__main__': print(bm.summary())
from website.addons.dropbox import model, routes, views MODELS = [model.DropboxUserSettings, model.DropboxNodeSettings, model.DropboxFile] USER_SETTINGS_MODEL = model.DropboxUserSettings NODE_SETTINGS_MODEL = model.DropboxNodeSettings ROUTES = [routes.auth_routes, routes.api_routes] SHORT_NAME = 'dropbox' FULL_NAME = 'Dropbox' OWNERS = ['user', 'node'] ADDED_DEFAULT = [] ADDED_MANDATORY = [] VIEWS = [] CONFIGS = ['user', 'node'] CATEGORIES = ['storage'] # TODO: Deprecate in favor of webpack/CommonJS bundles INCLUDE_JS = { 'widget': [], 'page': [], 'files': [] } INCLUDE_CSS = { 'widget': [], 'page': [], } HAS_HGRID_FILES = True GET_HGRID_DATA = views.hgrid.dropbox_addon_folder # MAX_FILE_SIZE = 5 # MB
print ("hello world") print ("123") x =12 print (x)
#!/usr/bin/env python """Wrapper around curl to add HMAC signatures.""" import os import subprocess import sys from lcp_mac import generate_authorization_header_value def get_http_method(argv): if '-X' not in argv: return 'GET' i = argv.index('-X') return argv[i+1] def get_url(argv): for arg in argv: if arg.startswith('http'): return arg def get_body(argv): if '-d' not in argv: return None i = argv.index('-d') return argv[i+1] def get_creds(argv): i = argv.index('-u') return argv[i+1].split(':') if __name__ == '__main__': if '-u' not in sys.argv: exit("Usage: %s -u <macKeyIdentifier>:<macKey> [curl options...] <url>" % os.path.basename(__file__)) method = get_http_method(sys.argv) if method in ['POST', 'PUT', 'PATCH']: content_type = "application/json" else: content_type = '' key_id, shared_secret = get_creds(sys.argv) url = get_url(sys.argv) auth_hdr_value = generate_authorization_header_value( method, url, key_id, shared_secret, content_type, get_body(sys.argv)) cmdline = ["curl"] cmdline += ["-H", "Authorization: %s" % auth_hdr_value] if content_type: cmdline += ["-H", "Content-Type: %s" % content_type] cmdline += sys.argv[1:] print "Executing: ", ' '.join(cmdline) subprocess.call(cmdline)
# TimeConver.pt # Using the Python language, have the function TimeConvert(num) take the num parameter being passed and return the number of hours and minutes the parameter converts to (ie. if num = 63 then the output should be 1:3). Separate the number of hours and minutes with a colon. def TimeConvert(num): int_num = int(num) hour = int_num / 60 minuts = int_num % 60 # code goes here return str(hour) + ":" + str(minuts) # keep this function call here print TimeConvert(raw_input())
import matplotlib.pyplot as plt import numpy as np def kernel(x, t): return np.exp(-x**2/(4*t)) xx = np.linspace(0, 2, 100) t = 0.5 plt.plot(xx, kernel(xx, t)) for x in np.linspace(0, 2, 11): if x: """if x<0.3: plt.plot([x, x], [0, kernel(x, t)], 'r--')""" plt.plot([x, x], [0, kernel(x, t)], 'b--') plt.show()
""" Funções - def em Python (Parte 2) """ def divisao(n1, n2): if n2 > 0: resultado = n1 / n2 return resultado divide = divisao(8, 1) if divide: print(divide) else: print('Conta não válida') def funcao(var): print(var) variavel = funcao variavel('Teste')
JSON_API_HEADERS = { 'Content-Type': 'application/vnd.api+json', 'Accept': 'application/vnd.api+json' }
# Copyright 2017 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit tests for Windows Hyper-V QoS Driver. """ import mock from neutron.services.qos import qos_consts from networking_hyperv.neutron.qos import qos_driver from networking_hyperv.tests import base class TestQosHyperVAgentDriver(base.BaseTestCase): @mock.patch.object(qos_driver.QosHyperVAgentDriver, '__init__', lambda *args, **kwargs: None) def setUp(self): super(TestQosHyperVAgentDriver, self).setUp() self.driver = qos_driver.QosHyperVAgentDriver() self.driver._utils = mock.Mock() @mock.patch.object(qos_driver, 'networkutils') def test_initialize(self, mock_networkutils): self.driver.initialize() mock_networkutils.NetworkUtils.assert_called_once_with() @mock.patch.object(qos_driver.QosHyperVAgentDriver, '_get_policy_values') def test_create(self, mock_get_policy_values): self.driver.create({'port_id': mock.sentinel.port_id}, mock.sentinel.qos_policy) mock_get_policy_values.assert_called_once_with( mock.sentinel.qos_policy) self.driver._utils.set_port_qos_rule.assert_called_once_with( mock.sentinel.port_id, mock_get_policy_values.return_value) @mock.patch.object(qos_driver.QosHyperVAgentDriver, '_get_policy_values') def test_update(self, mock_get_policy_values): self.driver.update({'port_id': mock.sentinel.port_id}, mock.sentinel.qos_policy) mock_get_policy_values.assert_called_once_with( mock.sentinel.qos_policy) self.driver._utils.set_port_qos_rule.assert_called_once_with( mock.sentinel.port_id, mock_get_policy_values.return_value) def test_delete(self): self.driver.delete({'port_id': mock.sentinel.port_id}) self.driver._utils.remove_port_qos_rule.assert_called_once_with( mock.sentinel.port_id) def test_get_policy_values(self): qos_rule_0 = mock.Mock(spec=['min_kbps', 'rule_type']) qos_rule_0.rule_type = qos_consts.RULE_TYPE_MINIMUM_BANDWIDTH qos_rule_1 = mock.Mock(spec=['max_kbps', 'max_burst_kbps', 'rule_type']) qos_rule_1.rule_type = qos_consts.RULE_TYPE_BANDWIDTH_LIMIT qos_policy = mock.Mock(rules=[qos_rule_0, qos_rule_1]) expected_val = dict(min_kbps=qos_rule_0.min_kbps, max_kbps=qos_rule_1.max_kbps, max_burst_kbps=qos_rule_1.max_burst_kbps) policy_val = self.driver._get_policy_values(qos_policy) self.assertEqual(expected_val, policy_val)
"""General utilities""" import json import datetime import os import re import sys from .exceptions import CloudPassageValidation from .exceptions import CloudPassageAuthentication from .exceptions import CloudPassageAuthorization from .exceptions import CloudPassageResourceExistence from .exceptions import CloudPassageGeneral from .exceptions import CloudPassageRateLimit from distutils.version import LooseVersion from .sanity import is_it_a_string class Utility(object): @classmethod def determine_policy_metadata(cls, policy): """Return dict of policy type, name, and target platform. If string, attempts to convert to dict to parse. Possible return values for policy_type: CSM -- Configuration Security Monitoring FIM -- File Integrity Monitoring LIDS -- Log Intrusion Detection System Firewall -- Firewall Policy None -- Unable to determine poolicy type Possible return values for target_platform: Windows Linux None Example: determine_policy_type(string_from_file) {"policy_type": "CSM", "policy_name": "Test policy", "target_platform": "Windows"} Args: policy (str or dict): Policy in string or dict form. Returns: dict """ working_pol = None return_body = {"policy_type": None, "policy_name": None, "target_platform": None} if is_it_a_string(policy): working_pol = json.loads(policy) elif isinstance(policy, dict): working_pol = policy.copy() else: print("Policy type must be str or dict, not %s!" % type(policy)) try: derived_type = list(working_pol.items())[0][0] if derived_type == "fim_policy": return_body["policy_type"] = "FIM" if derived_type == "policy": return_body["policy_type"] = "CSM" if derived_type == "lids_policy": return_body["policy_type"] = "LIDS" if derived_type == "firewall_policy": return_body["policy_type"] = "Firewall" except AttributeError: pass try: return_body["policy_name"] = list(working_pol.items())[0][1]["name"] # NOQA except AttributeError: pass try: derived_platform = list(working_pol.items())[0][1]["platform"] if derived_platform == 'linux': return_body["target_platform"] = 'Linux' elif derived_platform == 'windows': return_body["target_platform"] = 'Windows' except AttributeError: pass return return_body @classmethod def assemble_search_criteria(cls, supported_search_fields, arguments): """Verifies request params and returns a dict of validated arguments""" request_params_raw = {} for param in supported_search_fields: if param in arguments: request_params_raw[param] = arguments[param] request_params = cls.sanitize_url_params(request_params_raw) return request_params @classmethod def sanitize_url_params(cls, params): """Sanitize URL arguments for the Halo API In most cases, the Halo API will only honor the last value in URL arguments when multiple arguments have the same key. For instance: Requests builds URL arguments from a list a little strangely: {key:[val1, val2]} becomes key=val1&key=val2 and not key=val1,val2. If we let a list type object slide through, only val2 will be evaluated, and val1 is ignored by the Halo API. Args: params (dict): Parameters to be sanitized. Returns: dict """ params_working = params.copy() for key, value in params_working.items(): if isinstance(value, list): value_corrected = ",".join(value) params[key] = value_corrected elif isinstance(value, datetime.datetime): value_corrected = cls.datetime_to_8601(value) params[key] = value_corrected elif value is True: params[key] = "true" elif value is False: params[key] = "false" return params @classmethod def policy_to_dict(cls, policy): """Ensure that policy is a dictionary object""" if isinstance(policy, dict): return policy else: return json.loads(policy) @classmethod def merge_dicts(cls, first, second): """Merges dictionaries""" final = first.copy() final.update(second) return final @classmethod def verify_pages(cls, max_pages): """Verify the user isn't trying to pull too many pages in one query""" valid = True fail_msg = None if not isinstance(max_pages, int): fail_msg = "Type wrong for max_pages. Should be int." return(False, fail_msg) if max_pages > 300: fail_msg = "You're asking for too many pages. 300 max." return(False, fail_msg) return(valid, fail_msg) @classmethod def parse_status(cls, url, resp_code, resp_text): """Parse status from HTTP response""" success = True exc = None if resp_code not in [200, 201, 202, 204]: success = False bad_statuses = {400: CloudPassageValidation(resp_text, code=400), 401: CloudPassageAuthentication(resp_text, code=401), 404: CloudPassageResourceExistence(resp_text, code=404, url=url), 403: CloudPassageAuthorization(resp_text, code=403), 422: CloudPassageValidation(resp_text, code=422), 429: CloudPassageRateLimit(resp_text, code=429)} if resp_code in bad_statuses: return(success, bad_statuses[resp_code]) else: return(success, CloudPassageGeneral(resp_text, code=resp_code)) return success, exc @classmethod def time_string_now(cls): """Returns an ISO 8601 formatted string for now, in UTC Returns: str: ISO 8601 formatted string """ now = datetime.datetime.utcnow() return cls.datetime_to_8601(now) @classmethod def datetime_to_8601(cls, original_time): """Converts a datetime object to ISO 8601 formatted string. Args: dt (datetime.datetime): Datetime-type object Returns: str: ISO 8601 formatted string """ time_split = (original_time.year, original_time.month, original_time.day, original_time.hour, original_time.minute, original_time.second, original_time.microsecond) return "%04d-%02d-%02dT%02d:%02d:%02d.%06dZ" % time_split @classmethod def verify_python_version(cls, act_version, target_version): """Verifies that the installed version of Python meets requirements Args: str: Actual version, represented as a dotted string "2.4.9" dict: Target minimum versions, Keys are major versions. Values are represented as a dotted string "2.7.10" Returns: bool: True if it meets or exceeds the target minimum version. """ maj_ver = act_version[0] try: if (LooseVersion(act_version) < LooseVersion(target_version[maj_ver])): return False else: return True except KeyError: return False @classmethod def get_installed_python_version(cls): """Returns the current version of Python as a dotted string""" major, minor, micro = (sys.version_info.major, sys.version_info.minor, sys.version_info.micro) installed_python_version = "{maj}.{min}.{mic}".format(maj=major, min=minor, mic=micro) return installed_python_version @classmethod def get_sdk_version(cls): """ Gets the version of the SDK """ thisdir = os.path.dirname(__file__) initfile = os.path.join(thisdir, "__init__.py") with open(initfile, 'r') as i_file: raw_init_file = i_file.read() rx_compiled = re.compile(r"\s*__version__\s*=\s*\"(\S+)\"") ver = rx_compiled.search(raw_init_file).group(1) return ver
import tensorflow as tf import numpy as np from PIL import Image from tensorflow.keras import layers import os import matplotlib.pyplot as plt from tensorflow.keras.applications import VGG16,MobileNet from tensorflow.keras.applications import imagenet_utils from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array inputShape=(224,224) preprocess=imagenet_utils.preprocess_input model=VGG16(weights="imagenet") model.summary()
import functools from app.master.cluster_master import ClusterMaster from app.subcommands.service_subcommand import ServiceSubcommand from app.util import analytics, log from app.util.conf.configuration import Configuration from app.web_framework.cluster_master_application import ClusterMasterApplication class MasterSubcommand(ServiceSubcommand): _THREAD_NAME = 'MasterTornadoThread' def async_run(self, port, log_level, eventlog_file): """ Run a ClusterRunner master service. :param port: the port on which to run the slave service :type port: int | None :param log_level: the log level at which to do application logging (or None for default log level) :type log_level: str | None :param eventlog_file: an optional alternate file in which to write event logs :type eventlog_file: str | None """ port = port or Configuration['port'] log_level = log_level or Configuration['log_level'] eventlog_file = eventlog_file or Configuration['eventlog_file'] log.configure_logging(log_level=log_level, log_file=Configuration['log_file']) analytics.initialize(eventlog_file) analytics.record_event(analytics.SERVICE_STARTED, service='master') cluster_master = ClusterMaster() application = ClusterMasterApplication(cluster_master) ioloop = self._start_application(application, port) self._write_pid_file(Configuration['master_pid_file']) # log startup message once ioloop is running hostname = Configuration['hostname'] log_startup = functools.partial(self._logger.info, 'Master service is running on {}:{}.'.format(hostname, port)) ioloop.add_callback(log_startup) # start heartbeat tracker once ioloop starts start_master_heartbeat_tracker = functools.partial(cluster_master.start_heartbeat_tracker_thread) ioloop.add_callback(start_master_heartbeat_tracker) ioloop.start() # this call blocks until the server is stopped ioloop.close(all_fds=True) # all_fds=True is necessary here to make sure connections don't hang self._logger.notice('Master server was stopped.')
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_serialization import jsonutils from cinder.tests.functional.api_sample_tests import test_volumes class VolumeTransferSampleJsonTest(test_volumes.VolumesSampleBase): sample_dir = "volume_transfer" def setUp(self): super(VolumeTransferSampleJsonTest, self).setUp() res = self._create_volume() res = jsonutils.loads(res.content)['volume'] self._poll_volume_while(res['id'], ['creating']) self.subs = { "volume_id": res['id'] } self.response = self._create_transfer(self.subs) def _create_transfer(self, subs=None): response = self._do_post('os-volume-transfer', 'volume-transfer-create-request', subs) return response def test_transfer_create(self): self._verify_response('volume-transfer-create-response', {}, self.response, 202) def test_transfer_accept(self): res = jsonutils.loads(self.response.content)['transfer'] subs = { "auth_key": res['auth_key'] } response = self._do_post( 'os-volume-transfer/%s/accept' % res['id'], 'volume-transfer-accept-request', subs) self._verify_response('volume-transfer-accept-response', {}, response, 202) def test_transfers_list(self): response = self._do_get('os-volume-transfer') self._verify_response('volume-transfers-list-response', {}, response, 200) def test_transfer_list_detail(self): res = jsonutils.loads(self.response.content)['transfer'] response = self._do_get('os-volume-transfer/%s' % res['id']) self._verify_response('volume-transfer-show-response', {}, response, 200) def test_transfers_list_detail(self): response = self._do_get('os-volume-transfer/detail') self._verify_response('volume-transfers-list-detailed-response', {}, response, 200)
""" 2021/02/20 writen by Runze Dong Multiple Eavesdroppers Scenario """ from fun_multiEve import * from tensorflow.python.keras.layers import * # import os # os.environ['CUDA_VISIBLE_DEVICES'] = '2,3' P_a = np.expand_dims(10**(np.linspace(-10, 10, 11)/10)/(beta_0*d_b**(-1*eta_b))*delta_[1, :], 0) R_s1 = np.zeros([1, P_a.shape[1]]) path = './data/1/' H_bta, H_eta, H_bka, H_eka = load_mat(path) H_eta2 = io.loadmat('./data/multiEve/H_et2.mat')['H_et'] H_eka2 = io.loadmat('./data/multiEve/H_ek2.mat')['H_ek'] H_eta3 = io.loadmat('./data/multiEve/H_et3.mat')['H_et'] H_eka3 = io.loadmat('./data/multiEve/H_ek3.mat')['H_ek'] for i in range(0, P_a.shape[1]): # for i in range(0, 1): P_a0 = P_a[0, i] H_bt, H_et, H_bk, H_ek = H_bta[0:N, :, :], H_eta[0:N, :, :], H_bka[0:N, :, :], H_eka[0:N, :, :] H_et2, H_ek2, H_et3, H_ek3 = H_eta2[0:N, :, :], H_eka2[0:N, :, :], H_eta3[0:N, :, :], H_eka3[0:N, :, :] H_b = np.concatenate([np.real(H_bk), np.imag(H_bk)], 1) H_e = np.concatenate([np.real(H_ek), np.imag(H_ek)], 1) H_e2 = np.concatenate([np.real(H_ek2), np.imag(H_ek2)], 1) H_e3 = np.concatenate([np.real(H_ek3), np.imag(H_ek3)], 1) H_input = np.concatenate([H_b, H_e, H_e2, H_e3], 1) # for input to the network # define the input shape of the network H_e_input = Input(name='H_e_input', shape=H_input.shape[1:3], dtype=tf.float32) # shape without batch_size H_bt_input = Input(name='H_bt_input', shape=H_bt.shape[1:3], dtype=tf.complex64) H_et_input = Input(name='H_et_input', shape=H_et.shape[1:3], dtype=tf.complex64) H_et_input2 = Input(name='H_et2_input', shape=H_et.shape[1:3], dtype=tf.complex64) H_et_input3 = Input(name='H_et3_input', shape=H_et.shape[1:3], dtype=tf.complex64) snrb = Input(name='snr1', shape=(1,), dtype=tf.complex64) snre = Input(name='snr2', shape=(1,), dtype=tf.complex64) snre2 = Input(name='snr3', shape=(1,), dtype=tf.complex64) snre3 = Input(name='snr4', shape=(1,), dtype=tf.complex64) P_a1 = Input(name='P_a1', shape=(1,), dtype=tf.float32) # t0 = Input(name='t0', shape=(1,), dtype=tf.complex64) delta = Input(name='delta', shape=(1,), dtype=tf.complex64) # define the network by functional model x = BatchNormalization()(H_e_input) x = Flatten()(x) x = Dense(512, activation='sigmoid')(x) x = Dense(256, activation='relu')(x) f_G = Dense(2*N_x*N_y*(t+1))(x) # the front 2*N_x*N_y is for f # f, G = Lambda(f_G_and_power)([f_G, P_a1]) f, G = Lambda(f_G_and_power)([f_G, P_a1]) Loss = Lambda(Loss_calculating)([f, G, H_bt_input, H_et_input, H_et_input2, H_et_input3, snrb, snre, snre2, snre3, delta]) model = Model(inputs=[H_e_input, H_bt_input, H_et_input, H_et_input2, H_et_input3, snrb, snre, snre2, snre3, delta, P_a1], outputs=Loss) model.compile(optimizer='adam', loss=self_defined_mean) # model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') model.summary() y_train = np.zeros([N, 1]) P_a_input = np.expand_dims(np.repeat(P_a0, N), -1) reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=0.00005) ii = str(i+1) print(ii) checkpoint = callbacks.ModelCheckpoint('./output/multiEve/'+ii+'_trained.h5', monitor='val_loss', verbose=1, save_best_only=True, mode='min') model.fit(x=[H_input, H_bt, H_et, H_et2, H_et3, snr_b, snr_e, snr_e2, snr_e3, delta_, P_a_input], y=y_train, batch_size=8192, epochs=100, verbose=1, validation_split=0.1, callbacks=[reduce_lr, checkpoint]) model.load_weights('./output/multiEve/'+ii+'_trained.h5') model.summary() H_bt1, H_et1, H_bk1, H_ek1 = H_bta[N:2*N, :, :], H_eta[N:2*N, :, :], H_bka[N:2*N, :, :], H_eka[N:2*N, :, :] H_et2, H_ek2, H_et3, H_ek3 = H_eta2[N:2*N, :, :], H_eka2[N:2*N, :, :], H_eta3[N:2*N, :, :], H_eka3[N:2*N, :, :] H_b = np.concatenate([np.real(H_bk1), np.imag(H_bk1)], 1) H_e = np.concatenate([np.real(H_ek1), np.imag(H_ek1)], 1) H_e2 = np.concatenate([np.real(H_ek2), np.imag(H_ek2)], 1) H_e3 = np.concatenate([np.real(H_ek3), np.imag(H_ek3)], 1) H_input = np.concatenate([H_b, H_e, H_e2, H_e3], 1) # for input to the network # R_s = -model.predict([H_input, tf.cast(H_bt1, tf.complex64), tf.cast(H_et1, tf.complex64), # tf. cast(snr_b, tf.complex64), tf.cast(snr_e, tf.complex64), tf.cast(delta_, tf.complex64)]) R_s = -model.predict([H_input, H_bt1, H_et1, H_et2, H_et3, snr_b, snr_e, snr_e2, snr_e3, delta_, P_a_input]) R_s1[0, i] = np.mean(R_s) io.savemat('./output/multiEve/R_s_py1.mat', {'R_s_py': R_s1}) print(R_s1)
from __future__ import absolute_import, division, print_function import os, sys import numbers import random import numpy as np import copy from PIL import Image import PIL.Image as pil import fire from collections import defaultdict import torch import torch.nn.functional as F from torch.utils.data import Dataset from torchvision import transforms import nearest_neighbors.lib.python.nearest_neighbors as nearest_neighbors def gen_affinity(depth, mask, knn=9, r=2): n, c, h, w = depth.shape locs = [] nnidxs = [] for i in range(n): # (M,2) -> (1,M,2) loc = torch.nonzero(mask[i, 0]>0) coords = loc.float() M = coords.size(0) dev = coords.device coords = coords.unsqueeze(0).detach().cpu().numpy() # (M,1), (M, r*knn) depths = depth[i, 0, loc[:,0], loc[:,1]].unsqueeze(1) nnidx = nearest_neighbors.knn_batch(coords, coords, knn*r, omp=True)[0] # distance (M, r*knn) nnidx = torch.from_numpy(nnidx).to(dev) nnidx_flat = nnidx.flatten().long() sel_depths = depths[nnidx_flat,0].reshape(M, r*knn) sel_depths_dist = torch.abs(depths - sel_depths) # (M, r*knn) -> (M, knn) sel_idx = torch.argsort(sel_depths_dist, dim=1, descending=False) sel_idx = sel_idx[:,:knn] nnidx_new = torch.gather(nnidx, 1, sel_idx) locs.append(loc) nnidxs.append(nnidx_new.long()) return locs, nnidxs def depth_down(input_d, mask, k): return F.avg_pool2d(input_d, k, k) / (F.avg_pool2d(mask, k, k) + 0.0001) def pil_loader(path): # open path as file to avoid ResourceWarning # (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: with Image.open(f) as img: return img.convert('RGB') def norm_depth(depth, min_depth, max_depth): norm_depth = np.clip(depth, min_depth, max_depth) return norm_depth class BottomCrop(object): """Crops the given ``numpy.ndarray`` at the bottom. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. """ def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size @staticmethod def get_params(img, output_size): """Get parameters for ``crop`` for bottom crop. Args: img (numpy.ndarray (C x H x W)): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for bottom crop. """ h = img.shape[1] w = img.shape[2] th, tw = output_size i = h - th j = int(round((w - tw) / 2.)) return i, j, th, tw def __call__(self, img): """ Args: img (C x H x W): Image to be cropped Returns: img (C x H x W): Cropped image. """ i, j, h, w = self.get_params(img, self.size) """ i: Upper pixel coordinate. j: Left pixel coordinate. h: Height of the cropped image. w: Width of the cropped image. """ def _is_tensor_image(img): return torch.is_tensor(img) and img.ndimension() == 3 if not _is_tensor_image(img): raise TypeError('img should be ndarray. Got {}'.format(type(img))) return img[:, i:i + h, j:j + w] def aug_pil_img(im): choice = np.random.randint(0, 4) if choice == 0: new_im = transforms.ColorJitter(brightness=0.5)(im) elif choice == 1: new_im = transforms.ColorJitter(contrast=0.5)(im) elif choice == 2: new_im = transforms.ColorJitter(saturation=0.5)(im) elif choice == 3: new_im = transforms.ColorJitter(hue=0.3)(im) return new_im def generate_xyzm_map(mask, xyz_map): mask = np.expand_dims(mask, 0) xyz_map = np.transpose(xyz_map, [2, 0, 1]) xyzm_map = np.concatenate([xyz_map, mask], 0) return xyzm_map class MonoDataset(Dataset): def __init__(self, data_path, filenames, crop_h, crop_w, min_depth=0.1, max_depth=100, img_ext='.jpg'): super(MonoDataset, self).__init__() self.data_path = data_path self.filenames = filenames self.crop_h = crop_h self.crop_w = crop_w self.interp = Image.ANTIALIAS self.min_depth = min_depth self.max_depth = max_depth self.img_ext = img_ext self.loader = pil_loader self.to_tensor = transforms.ToTensor() # (H x W x C) [0, 255] -> (C x H x W) [0.0, 1.0] self.load_depth = self.check_depth() self.load_depth_sd = self.check_depth_sd() def crop_img(self, img): assert img.size(1) >= self.crop_h, "[{}<{}]".format(img.size(1), self.crop_h) assert img.size(2) >= self.crop_w, "[{}<{}]".format(img.size(2), self.crop_w) transform = transforms.Compose([ BottomCrop((self.crop_h, self.crop_w)), ]) return transform(img) def __len__(self): # left and right return len(self.filenames) * 2 def __getitem__(self, _index): """Returns a single training item from the dataset as a dictionary. """ inputs = {} do_color_aug = random.random() > 0.5 do_flip = random.random() > 0.5 do_disp_aug = random.random() > 0.5 index, side = (_index,"l") if _index < len(self.filenames) else (_index-len(self.filenames),"r") line = self.filenames[index].split() folder = line[0] frame_index = int(line[1]) inputs['folder'] = folder inputs['frame_index'] = frame_index inputs['side'] = side inputs["color"] = self.get_color(folder, frame_index, side, do_flip) if do_color_aug: color_aug = aug_pil_img else: color_aug = (lambda x: x) f = inputs["color"] inputs["color"] = self.crop_img(self.to_tensor(f)) inputs["color_aug"] = self.crop_img(self.to_tensor(color_aug(f))) if self.load_depth: depth_gt = self.get_depth(folder, frame_index, side, do_flip) depth_gt = np.expand_dims(depth_gt, 0) depth_gt_norm = norm_depth(depth_gt, self.min_depth, self.max_depth) inputs["depth_gt"] = torch.from_numpy(depth_gt_norm.astype(np.float32)) inputs["depth_gt"] = self.crop_img(inputs["depth_gt"]) if do_disp_aug: depth_aug = np.random.normal(0, 0.01, depth_gt.shape) * (depth_gt > 0.1) + depth_gt else: depth_aug = depth_gt depth_aug_norm = norm_depth(depth_aug, self.min_depth, self.max_depth) inputs["depth_aug"] = torch.from_numpy(depth_aug_norm.astype(np.float32)) inputs["depth_aug"] = self.crop_img(inputs["depth_aug"]) inputs['mask'] = (inputs["depth_aug"] > 0.1).float() if self.load_depth_sd: depth_gt_sd = self.get_depth_sd(folder, frame_index, side, do_flip) depth_sd_gt = np.expand_dims(depth_gt_sd, 0) depth_sd_gt_norm = norm_depth(depth_sd_gt, self.min_depth, self.max_depth) inputs["depth_sd_gt"] = torch.from_numpy(depth_sd_gt_norm.astype(np.float32)) inputs["depth_sd_gt"] = self.crop_img(inputs["depth_sd_gt"]) sdepth = inputs['depth_gt'].unsqueeze(0) # (1, 1, H, W) mask = inputs['mask'].unsqueeze(0) sdepthx2, maskx2 = depth_down(sdepth, mask, 2), F.max_pool2d(mask, 2, 2) sdepthx4, maskx4 = depth_down(sdepth, mask, 4), F.max_pool2d(maskx2, 2, 2) sdepthx8, maskx8 = depth_down(sdepth, mask, 8), F.max_pool2d(maskx4, 2, 2) # aff_locsx1, aff_nnidxsx1 = gen_affinity(sdepth, mask) inputs['aff_locsx1'], inputs['aff_nnidxsx1'] = aff_locsx1[0], aff_nnidxsx1[0] aff_locsx2, aff_nnidxsx2 = gen_affinity(sdepthx2, maskx2) inputs['aff_locsx2'], inputs['aff_nnidxsx2'] = aff_locsx2[0], aff_nnidxsx2[0] aff_locsx4, aff_nnidxsx4 = gen_affinity(sdepthx4, maskx4) inputs['aff_locsx4'], inputs['aff_nnidxsx4'] = aff_locsx4[0], aff_nnidxsx4[0] aff_locsx8, aff_nnidxsx8 = gen_affinity(sdepthx8, maskx8) inputs['aff_locsx8'], inputs['aff_nnidxsx8'] = aff_locsx8[0], aff_nnidxsx8[0] inputs['maskx2'] = maskx2[0] inputs['maskx4'] = maskx4[0] inputs['maskx8'] = maskx8[0] return inputs def get_color(self, folder, frame_index, side, do_flip): raise NotImplementedError def check_depth(self): raise NotImplementedError def check_depth_sd(self): raise NotImplementedError def get_depth(self, folder, frame_index, side, do_flip): raise NotImplementedError def get_depth_sd(self, folder, frame_index, side, do_flip): raise NotImplementedError class KITTIDataset(MonoDataset): """Superclass for different types of KITTI dataset loaders """ def __init__(self, *args, **kwargs): super(KITTIDataset, self).__init__(*args, **kwargs) self.full_res_shape = (1242, 375) self.side_map = {"2": 2, "3": 3, "l": 2, "r": 3} def check_depth(self): line = self.filenames[0].split() scene_name = line[0].split("/")[1] frame_index = int(line[1]) velo_filename = os.path.join( self.data_path, "data_depth_annotated/", scene_name, "proj_depth/velodyne_raw/image_0{}/{:010d}.png". format("2", int(frame_index))) return os.path.isfile(velo_filename) def check_depth_sd(self): line = self.filenames[0].split() scene_name = line[0].split("/")[1] frame_index = int(line[1]) velo_filename = os.path.join( self.data_path, "data_depth_annotated/", scene_name, "proj_depth/groundtruth/image_0{}/{:010d}.png". format("2", int(frame_index))) return os.path.isfile(velo_filename) def get_color(self, folder, frame_index, side, do_flip): color = self.loader(self.get_image_path(folder, frame_index, side)) if do_flip: color = color.transpose(pil.FLIP_LEFT_RIGHT) return color class KITTIRAWDataset(KITTIDataset): """KITTI dataset which loads the original velodyne depth maps for ground truth """ def __init__(self, *args, **kwargs): super(KITTIRAWDataset, self).__init__(*args, **kwargs) def get_image_path(self, folder, frame_index, side): f_str = "{:010d}{}".format(frame_index, self.img_ext) image_path = os.path.join( self.data_path, "raw", folder, "image_0{}/data".format(self.side_map[side]), f_str) return image_path def get_depth(self, folder, frame_index, side, do_flip): scene_name = folder.split("/")[1] velo_filename = os.path.join( self.data_path, "data_depth_annotated/", scene_name, "proj_depth/velodyne_raw/image_0{}/{:010d}.png". format(self.side_map[side], int(frame_index))) depth_gt = self.depth_png_read(velo_filename) if do_flip: depth_gt = np.fliplr(depth_gt) return depth_gt def get_depth_sd(self, folder, frame_index, side, do_flip): scene_name = folder.split("/")[1] velo_filename = os.path.join( self.data_path, "data_depth_annotated/", scene_name, "proj_depth/groundtruth/image_0{}/{:010d}.png". format(self.side_map[side], int(frame_index))) depth_gt = self.depth_png_read(velo_filename) if do_flip: depth_gt = np.fliplr(depth_gt) return depth_gt def depth_png_read(self, filename): # loads depth map D from png file # and returns it as a numpy array, depth_png = np.array(Image.open(filename), dtype=int) # make sure we have a proper 16bit depth map here.. not 8bit! assert(np.max(depth_png) > 255) depth = depth_png.astype(np.float) / 256. return depth class DAT_VAL_TEST(Dataset): def __init__(self, data_path, is_test=False, min_depth=0.0, max_depth=85, crop_h=350, crop_w=1200): super(DAT_VAL_TEST, self).__init__() self.data_path = data_path self.min_depth = min_depth self.max_depth = max_depth self.crop_h = crop_h self.crop_w = crop_w self.to_tensor = transforms.ToTensor() # (H x W x C) [0, 255] -> (C x H x W) [0.0, 1.0] self.loader = pil_loader self.has_gt = not is_test if is_test: self.dir = 'test_depth_completion_anonymous' self.filenames = ['{:010d}'.format(i) for i in range(1000)] else: self.dir = 'val_selection_cropped' self.filenames = readlines('splits/val.txt') def bottom_crop_input_data(self, inputs: dict, crop_h, crop_w): keys = ['color', 'depth_gt', 'depth_sd_gt', 'depth_color', 'mask'] for k,v in inputs.items(): # v in format [C,H,W] if k in keys: h = v.shape[1] w = v.shape[2] i = h - crop_h j = int(round((w - crop_w) / 2.)) inputs[k] = v[:, i:i + crop_h, j:j + crop_w] def __getitem__(self, index): inputs = {} filename = self.filenames[index] color = self.get_image(filename) inputs['color'] = self.to_tensor(color) f_str = "{}.png".format(filename) if self.has_gt: fname = f_str.replace("XXX", "velodyne_raw") else: fname = f_str velo_path = os.path.join( self.data_path, self.dir, "velodyne_raw", fname) depth = self.get_depth(velo_path) depth = depth.astype(np.float32) inputs['depth_gt'] = torch.from_numpy(depth).unsqueeze(0) inputs['mask'] = (inputs["depth_gt"] > 0).float() if self.has_gt: fname = f_str.replace("XXX", "groundtruth_depth") gt_path = os.path.join( self.data_path, self.dir, "groundtruth_depth", fname) gtdepth = self.get_depth(gt_path) gtdepth = gtdepth.astype(np.float32) inputs['depth_sd_gt'] = torch.from_numpy(gtdepth).unsqueeze(0) inputs['frame_index'] = filename self.bottom_crop_input_data(inputs, self.crop_h, self.crop_w) sdepth = inputs['depth_gt'].unsqueeze(0) # (1, 1, H, W) mask = inputs['mask'].unsqueeze(0) sdepthx2, maskx2 = depth_down(sdepth, mask, 2), F.max_pool2d(mask, 2, 2) sdepthx4, maskx4 = depth_down(sdepth, mask, 4), F.max_pool2d(maskx2, 2, 2) sdepthx8, maskx8 = depth_down(sdepth, mask, 8), F.max_pool2d(maskx4, 2, 2) # aff_locsx1, aff_nnidxsx1 = gen_affinity(sdepth, mask) inputs['aff_locsx1'], inputs['aff_nnidxsx1'] = aff_locsx1[0], aff_nnidxsx1[0] aff_locsx2, aff_nnidxsx2 = gen_affinity(sdepthx2, maskx2) inputs['aff_locsx2'], inputs['aff_nnidxsx2'] = aff_locsx2[0], aff_nnidxsx2[0] aff_locsx4, aff_nnidxsx4 = gen_affinity(sdepthx4, maskx4) inputs['aff_locsx4'], inputs['aff_nnidxsx4'] = aff_locsx4[0], aff_nnidxsx4[0] aff_locsx8, aff_nnidxsx8 = gen_affinity(sdepthx8, maskx8) inputs['aff_locsx8'], inputs['aff_nnidxsx8'] = aff_locsx8[0], aff_nnidxsx8[0] inputs['maskx2'] = maskx2[0] inputs['maskx4'] = maskx4[0] inputs['maskx8'] = maskx8[0] return inputs def __len__(self): return len(self.filenames) def get_image(self, filename): f_str = "{}.png".format(filename) if self.has_gt: fname = f_str.replace("XXX", "image") else: fname = f_str image_path = os.path.join( self.data_path, self.dir, "image", fname) color = self.loader(image_path) return color def get_depth(self, path): depth_gt = self.depth_read(path) depth_gt = norm_depth(depth_gt, self.min_depth, self.max_depth) return depth_gt def depth_read(self, filename): # loads depth map D from png file # and returns it as a numpy array, depth_png = np.array(Image.open(filename), dtype=int) # make sure we have a proper 16bit depth map here.. not 8bit! assert(np.max(depth_png) > 255) depth = depth_png.astype(np.float) / 256. return depth from torch.utils.data import DataLoader from options import CompletionOptions import matplotlib.pyplot as plt def readlines(filename): """Read all the lines in a text file and return as a list """ with open(filename, 'r') as f: lines = f.read().splitlines() return lines def plt_img(fig, h, w, i, p, img, itype='color'): # itype: color, gray, depth fig.add_subplot(h, w, i) timg = img.numpy() timg = timg.transpose([1,2,0]) if itype == 'color': cmap = None elif itype == 'gray': timg = timg.squeeze(2) cmap = plt.get_cmap('gray') elif itype == 'depth': timg = timg.squeeze(2) timg = (timg - np.min(timg)) / (np.max(timg) - np.min(timg)) mask = timg > 0 mask = np.expand_dims(mask, -1).astype(np.float32) timg = 255 * plt.cm.jet(timg)[:, :, :3] # H, W, C timg = timg * mask + (1-mask) * 255 timg = timg.astype('uint8') cmap = None elif itype == 'binary': timg = timg.squeeze(2) cmap = plt.get_cmap('binary') p.imshow(timg, cmap=cmap) p.xticks([0, timg.shape[1]]) p.yticks([0, timg.shape[0]]) def _merge_batch(batch_list, _unused=False): example_merged = defaultdict(list) for example in batch_list: for k, v in example.items(): example_merged[k].append(v) ret = {} e_keys = ['folder', 'frame_index', 'side'] for key, elems in example_merged.items(): if key in e_keys or 'aff_' in key: ret[key] = elems else: # [A,B] + [A,B] -> [2,A,B] ret[key] = torch.stack(elems, dim=0) return ret class TestR: def __init__(self): super(TestR, self).__init__() options = CompletionOptions() print(sys.argv) print(sys.argv[2:]) self.opt = options.parse(sys.argv[2:-1]) self.dataset = KITTIRAWDataset fpath = os.path.join(os.path.dirname(__file__), "splits", self.opt.split, "{}_files.txt") train_filenames = readlines(fpath.format("train")) val_filenames = readlines(fpath.format("val")) img_ext = '.png' if self.opt.png else '.jpg' self.opt.batch_size = 2 self.opt.num_workers = 1 self.opt.crop_h = 256 self.opt.crop_w = 1216 train_dataset = self.dataset( self.opt.data_path, train_filenames, self.opt.crop_h, self.opt.crop_w, img_ext=img_ext, min_depth=self.opt.min_depth, max_depth=self.opt.max_depth) self.train_loader = DataLoader( train_dataset, self.opt.batch_size, True, collate_fn=_merge_batch, num_workers=self.opt.num_workers, pin_memory=True, drop_last=True) val_dataset = self.dataset( self.opt.data_path, val_filenames, self.opt.crop_h, self.opt.crop_w, img_ext=img_ext, min_depth=self.opt.min_depth, max_depth=self.opt.max_depth) self.val_loader = DataLoader( val_dataset, self.opt.batch_size, False, collate_fn=_merge_batch, num_workers=self.opt.num_workers, pin_memory=True, drop_last=True) print("Using split:\n ", self.opt.split) print("There are {:d} training items and {:d} validation items\n".format( len(train_dataset), len(val_dataset))) def run(self): for loader in [self.train_loader, self.val_loader]: for batch_idx, inputs in enumerate(loader): print(batch_idx, inputs.keys()) fig = plt.figure(num=batch_idx, figsize=(12, 4)) plt_img(fig, 3, 2, 1, plt, inputs['mask'][0], itype='binary') plt_img(fig, 3, 2, 2, plt, inputs['color_aug'][0]) plt_img(fig, 3, 2, 3, plt, inputs['depth_aug'][0], itype='depth') plt_img(fig, 3, 2, 4, plt, inputs['depth_sd_gt'][0], itype='depth') plt_img(fig, 3, 2, 5, plt, inputs['color'][0]) print(inputs['folder'][0], inputs['frame_index'][0], inputs['side'][0]) print(inputs['folder'][1], inputs['frame_index'][1], inputs['side'][1]) print('aff_locsx2', inputs['aff_locsx2'][0].shape) print('aff_nnidxsx8', inputs['aff_nnidxsx8'][1].shape) plt.tight_layout() plt.show() class TestC: def __init__(self): super(TestC, self).__init__() options = CompletionOptions() print(sys.argv) print(sys.argv[2:]) self.opt = options.parse(sys.argv[2:-1]) self.dataset = DAT_VAL_TEST self.opt.data_path = '/data/KITTI_DAT' self.opt.batch_size = 2 self.opt.num_workers = 1 self.test_dataset = self.dataset( self.opt.data_path, is_test=True, min_depth=self.opt.min_depth, max_depth=self.opt.max_depth) self.test_loader = DataLoader( self.test_dataset, self.opt.batch_size, False, collate_fn=_merge_batch, num_workers=self.opt.num_workers, pin_memory=True, drop_last=True) print("There are {:d} items\n".format(len(self.test_dataset))) def run(self): for loader in [self.test_loader]: for batch_idx, inputs in enumerate(loader): print(batch_idx, inputs.keys()) fig = plt.figure(num=batch_idx) plt_img(fig, 2, 2, 1, plt, inputs['color'][0]) plt_img(fig, 2, 2, 2, plt, inputs['depth_gt'][0], itype='depth') plt_img(fig, 2, 2, 3, plt, inputs['mask'][0], itype='binary') if self.test_dataset.has_gt: plt_img(fig, 2, 2, 4, plt, inputs['depth_sd_gt'][0], itype='depth') print('aff_locsx4', inputs['aff_locsx4'][0].shape) print('aff_nnidxsx2', inputs['aff_nnidxsx2'][1].shape) plt.tight_layout() plt.show() def testr(): test = TestR() test.run() def testc(): test = TestC() test.run() if __name__ == "__main__": fire.Fire()
#Retrieving coin information from coingecko, creating a coin_names ls # See https://www.coingecko.com/en/api from pycoingecko import CoinGeckoAPI cg = CoinGeckoAPI() coin_list = cg.get_coins_list() coin_names = {} for coin in coin_list: name = coin['name'] coin_id = coin['id'] coin_names[name] = coin_id #Retrieve the names of the pdfs we farmed using pydrive. Note you need a client secret key for this. # See https://pythonhosted.org/PyDrive/quickstart.html from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive gauth = GoogleAuth() gauth.LocalWebserverAuth() drive = GoogleDrive(gauth) #Find drive name drive_id = '1D7lco7MJxvesBEqxc5-qAn_KF7FKUeDV' #id for our shared drive file_list = drive.ListFile({'q': "'1D7lco7MJxvesBEqxc5-qAn_KF7FKUeDV' in parents and trashed=false"}).GetList() for file1 in file_list: print('title: %s, id: %s' % (file1['title'], file1['id'])) # title: whitepaper_pdf4, id: 1XxUoFz1-xfJC5r6O66VLhF3liTCRpjH_ # title: whitepaper_pdf3, id: 1qpyDrXbjCnnPSkSEWAfVPdDy3Lk0AX94 # title: whitepaper_pdfs2, id: 1gBcBJk_IeO2KMmqSvuQ8uxyTCXt-IJKh # title: Whitepaper_pdfs, id: 19NQzctQhRIhuvBkieY3NFvpnckLwOVpT #Creating a list of coin names from our pdfs called pdf_ls pdf_ls = [] id4 = "'1XxUoFz1-xfJC5r6O66VLhF3liTCRpjH_'" id3 = "'1qpyDrXbjCnnPSkSEWAfVPdDy3Lk0AX94'" id2 = "'1gBcBJk_IeO2KMmqSvuQ8uxyTCXt-IJKh'" id1 = "'19NQzctQhRIhuvBkieY3NFvpnckLwOVpT'" id_ls = [id1, id2, id3] def append_id(id, ls): file_list = drive.ListFile({'q': f'{id} in parents and trashed=false'}).GetList() for file1 in file_list: ls.append(file1['title']) for id in id_ls: append_id(id, pdf_ls) #Handling carol's folder import re pdf4_ls = [] append_id(id4, pdf4_ls) def retrieve_name(text): pattern = re.compile(r'(?<=\\)(.*?)(?=_)') m = re.search(pattern, text) name = m.group(0).split('\\')[-1] return name pdf4_ls_edit = [retrieve_name(title) for title in pdf4_ls] for name in pdf4_ls_edit: pdf_ls.append(name) #ALternative method # Fresh download of carol's assigned pdfs, manual download the remaining pdfs from our gdrive and combine them into a folder called 'combined' import os pdf_ls = os.listdir('combined') #Matching our pdf_ls with the coin_names from coin gecko def standardise(name): """ This function takes in a name tries to standardise the names as much as possible by removing spaces, werid characters to ensure proper matching. """ if '(' in name: name = name.split('(')[0] if '[' in name: name = name.split('[')[0] name = name.replace('#', '') name = name.replace('-', '') name = name.replace('?', '-') name = name.replace('/', '-') name = name.replace(' ', '') name = name.replace(' ', '') name = name.lower() return name #Create a standardised version of both list pdf_ls_standardised = [standardise(x) for x in pdf_ls] coin_names_standardised = [standardise(x) for x in coin_names.keys()] #These dics helps us retrieve back the unstandardized version later pdf_dic = dict(zip(pdf_ls_standardised, pdf_ls)) coin_dic = dict(zip(coin_names_standardised, coin_names)) #checking how many match between the two lists using sets in python match_set = set(pdf_ls_standardised).intersection(set(coin_names_standardised)) print(len(match_set)) #889 matched matchless_set = set(pdf_ls_standardised) - set(coin_names_standardised) print(matchless_set) #create a dataframe which contains coin_name and coin_id import pandas as pd pdf_final = [] coin_final = [] match_ls = sorted(list(match_set)) for name in match_ls: pdf_final.append(pdf_dic[name]) coin_final.append(coin_dic[name]) len(pdf_final) == len(coin_final) coin_id_ls = [coin_names[name] for name in coin_final] data = pd.DataFrame() data['pdf_name'] = pdf_final data['coin_id'] = coin_id_ls print(data) #Use coin_gecko api to retrieve inital price and current price! coin_prices_dic = {} error = [] for name in coin_id_ls: try: price_dic = cg.get_coin_market_chart_by_id(name, vs_currency = 'usd', days = 'max') price_list = price_dic['prices'] first_date = price_list[0][0] first_price = price_list[0][1] latest_date = price_list[-1][0] latest_price = price_list[-1][1] coin_prices_dic[name] = [first_date, first_price, latest_date, latest_price] print(name, 'successful retrieval') except Exception as e: print(name, e) error.append(name) print(len(coin_prices_dic)) #combine coin prices with corresponding with our data frame prices_df = pd.DataFrame.from_dict(coin_prices_dic, orient = 'index', columns = ['first_date', 'first_price', 'latest_date [9/9/19]', 'latest_price']) data.set_index('coin_id', inplace = True) df = data.join(prices_df) df = df.reset_index() #Create some new variables df['price_change'] = df['latest_price'] - df['first_price'] df['price_drop_true'] = df['price_change'].apply(lambda x: 1 if x < 0 else 0) #sort out timestamp to a datetime object df['first_date'] = df['first_date'].apply(lambda x: pd.Timestamp.fromtimestamp(x/1000)) df['latest_date [9/9/19]'] = df['latest_date [9/9/19]'].apply(lambda x: pd.Timestamp.fromtimestamp(x/1000)) #filter out only pdfs with prices to a new folder called final_pdfs import glob import shutil pdf_names = df['pdf_name'].tolist() for name in pdf_names: src = "C:/Users/Andy/OneDrive/UpLevel/combined/" + name dest = "C:/Users/Andy/OneDrive/UpLevel/match/" + name shutil.move(src, dest) pdf_list = glob.glob(r"C:/Users/Andy/OneDrive/UpLevel/match/*/*.pdf") len(pdf_list) #It's 886 instead of 889 (3 papers did not have .pdfs!) set(pdf_names) - set([name.split('\\')[-2] for name in pdf_list]) #'MASTERNET', 'Obsidian', 'TeslaCoin' Remove these three from the dataframe! for pdf in pdf_list: name = pdf.split('\\')[-2] src = pdf dest = "C:/Users/Andy/OneDrive/UpLevel/pdfs_final/" + name + '.pdf' shutil.copy(src, dest) #edit df_final and output as df_final df.set_index('pdf_name', inplace = True) for name in ['MASTERNET', 'Obsidian', 'TeslaCoin' ]: df.drop(name, inplace = True) df.to_csv('df_final.csv', index = False, date_format = r'%d/%m/%Y') #double check if the pdf files in our folder correspond to the coins in the dataframe folder_ls = [x.replace('.pdf', '') for x in os.listdir('pdfs_final')] pdf_names = df['pdf_name'].tolist() set(folder_ls) - set(pdf_names) == set()
from collections import deque class Agent(object): def __init__(self, plan=[], current_travel_time=0, time_to_pass_link=0, identifier="unset"): self.__setstate__({ "plan": deque(plan), "current_travel_time": current_travel_time, "time_to_pass_link": time_to_pass_link, "id": str(identifier) }) def __repr__(self): return "%s(%r, %i, %i, '%s')" %( self.__class__.__name__, self.plan, self.current_travel_time, self.time_to_pass_link, self.id ) def __getstate__(self): return { "plan": self.plan, "current_travel_time": self.current_travel_time, "time_to_pass_link": self.time_to_pass_link, "id": self.id } def __setstate__(self, state): self.__dict__.update(state) self.plan_copy = list(self.plan) def __str__(self): return "ag_%s{o:%r; c:%s; t:%i}" %(self.id, self.plan_copy, self.plan, self.current_travel_time) def tick(self, delta_t): self.current_travel_time += delta_t
welcome = input("Welcome to Prince's Basic calculator of Addition, Please Click Enter to continue !") print(welcome) num_1 = float(input("Enter Your First Number : ")) num_2 = float(input("Enter yoir Second Number : ")) result = round(num_1 + num_2, 2) print(f"Your result is : {num_1+num_2}") thank = input("Thank you for Using Prince's Basic Calculator.") print(thank)
import os import re import csv import sys import json import time import errno import random import urllib import logging import datetime import requests from bs4 import BeautifulSoup from selenium import webdriver #driver = webdriver.Chrome('./cdriver/chromedriver.exe') # #driver.get("https://www.wg-gesucht.de/en/") # # # #print(driver.title) session = requests.Session() payload = { "login_email_username": "[email protected]", "login_password": "wggesucht@neil94", "login_form_auto_login": "1", "display_language": "de" } headers = { 'Accept': 'application/json', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.9,de;q=0.8', 'Connection': 'keep-alive', 'Content-Length': '140', 'Content-Type': 'application/json', 'Host': 'www.wg-gesucht.de', 'Origin': 'https://www.wg-gesucht.de', 'Referer': 'https://www.wg-gesucht.de/en/logout.html', 'sec-ch-ua': '"Google Chrome";v="95", "Chromium";v="95", ";Not A Brand";v="99"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-origin', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36', 'X-Authorization': 'Bearer', 'X-Client-Id': 'wg_desktop_website', 'X-Dev-Ref-No': '', 'X-Requested-With': 'XMLHttpRequest', 'X-User-Id':'' } response = session.post( "https://www.wg-gesucht.de/ajax/sessions.php?action=login", data=json.dumps(payload), headers=headers ) print("login status",response.json) response=session.get("https://www.wg-gesucht.de/en/my-profile.html") with open('index.html','w') as f: f.write(response.text)
from __future__ import absolute_import import logging import six import threading from collections import defaultdict from sentry.debug.utils.patch_context import PatchContext DEFAULT_MAX_QUERIES = 25 DEFAULT_MAX_DUPES = 3 class State(threading.local): def __init__(self): self.count = 0 self.query_hashes = defaultdict(int) def record_query(self, sql): self.count += 1 self.query_hashes[hash(sql)] += 1 def count_dupes(self): return sum(1 for n in six.itervalues(self.query_hashes) if n > 1) class CursorWrapper(object): def __init__(self, cursor, connection, state): self.cursor = cursor self.connection = connection self._state = state def execute(self, sql, params=()): try: return self.cursor.execute(sql, params) finally: self._state.record_query(sql) def executemany(self, sql, paramlist): try: return self.cursor.executemany(sql, paramlist) finally: self._state.record_query(sql) def __getattr__(self, attr): if attr in self.__dict__: return self.__dict__[attr] else: return getattr(self.cursor, attr) def __iter__(self): return iter(self.cursor) def get_cursor_wrapper(state): def cursor(func, self, *args, **kwargs): result = func(self, *args, **kwargs) return CursorWrapper(result, self, state) return cursor class SqlQueryCountMonitor(object): def __init__( self, context, max_queries=DEFAULT_MAX_QUERIES, max_dupes=DEFAULT_MAX_DUPES, logger=None, **kwargs ): self.context = context self.max_queries = max_queries self.max_dupes = max_dupes self.logger = logger or logging.getLogger(__name__) self.state = State() self._cursor = get_cursor_wrapper(self.state) self._patcher = PatchContext("django.db.backends.BaseDatabaseWrapper.cursor", self._cursor) def __enter__(self): self.start() return self def __exit__(self, *args, **kwargs): self.stop() def start(self): self._patcher.patch() def stop(self): self._patcher.unpatch() num_dupes = self.state.count_dupes() if self.state.count > self.max_queries: self.log_max_queries(num_dupes) if num_dupes > self.max_dupes: self.log_max_dupes(num_dupes) def log_max_dupes(self, num_dupes): state = self.state context = {"stack": True, "data": {"query_count": state.count, "num_dupes": num_dupes}} self.logger.warning( "%d duplicate queries executed in %s", num_dupes, self.context, extra=context ) def log_max_queries(self, num_dupes): state = self.state context = {"stack": True, "data": {"query_count": state.count, "num_dupes": num_dupes}} self.logger.warning("%d queries executed in %s", state.count, self.context, extra=context)
import magma as m from mantle.xilinx.spartan6.SRL import SRL16 from loam.boards.papiliopro import PapilioPro from loam.shields.megawing import MegaWing megawing = MegaWing(PapilioPro) megawing.Clock.on() megawing.Switch.on(5) megawing.LED.on(1) main = megawing.main() A = main.SWITCH[0:4] I = main.SWITCH[4] O = main.LED srl16= SRL16(init=1) m.wire( srl16(A,I), O )
def insertionSort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and key < arr[j] : arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key lst = [1, 2, 3, 5, 4] insertionSort(lst) # since lists are mutable # the main list itself changes print(lst)
from django import forms from .models import Customer class CustomerForm(forms.ModelForm): """ Форма покупателя для интерфейса кладовщика. """ class Meta: model = Customer fields = '__all__' widgets = {'contact_info': forms.Textarea(attrs={'rows': '2', 'cols': '34'}), 'full_name': forms.TextInput(attrs={'size': '35'}), 'phone_number': forms.TextInput(attrs={'size': '35'}), 'email': forms.TextInput(attrs={'size': '35'}), }
""" A module simulating a device using multiple threads to collect and parse data imitating a crowdsense environment. """ from threading import Thread import constants from synchronize import Synchronize from task import Task from thread_pool import ThreadPool class Device(object): """ Class that represents a device. """ def __init__(self, device_id, sensor_data, supervisor): """ Constructor. @type device_id: Integer @param device_id: the unique id of this node; between 0 and N-1 @type sensor_data: List of (Integer, Float) @param sensor_data: a list containing (location, data) as measured by this device @type supervisor: Supervisor @param supervisor: the testing infrastructure's control and validation component """ self.device_id = device_id self.sensor_data = sensor_data self.supervisor = supervisor self.scripts = [] self.sync = Synchronize() self.thread_pool = ThreadPool(constants.NUMBER_OF_THREADS, self) self.thread = DeviceThread(self) self.thread.start() def __str__(self): """ Pretty prints this device. @rtype: String @return: a string containing the id of this device """ return "Device %d" % self.device_id def setup_devices(self, devices): """ Setup the devices before simulation begins. @type devices: List of Device @param devices: list containing all devices """ if self.device_id == 0: self.sync.initialize_location_semaphores() self.sync.initialize_barrier(len(devices)) for device in devices: device.sync.barrier = self.sync.barrier device.set_location_semaphores(self.sync.location_semaphores) def add_task(self, task): """ Add a task in the worker pool """ self.thread_pool.add_task(task) def assign_script(self, script, location): """ Provide a script for the device to execute. @type script: Script @param script: the script to execute from now on at each timepoint; None if the current timepoint has ended @type location: Integer @param location: the location for which the script is interested in """ if script: self.scripts.append((script, location)) def get_data(self, location): """ Returns the pollution value this device has for the given location. @type location: Integer @param location: a location for which obtain the data @rtype: Float @return: the pollution value """ if location in self.sensor_data: return self.sensor_data[location] return None def set_data(self, location, data): """ Sets the pollution value stored by this device for the given location. @type location: Integer @param location: a location for which to set the data @type data: Float @param data: the pollution value """ if location in self.sensor_data: self.sensor_data[location] = data def shutdown(self): """ Instructs the device to shutdown (terminate all threads). This method is invoked by the tester. This method must block until all the threads started by this device terminate. """ self.thread.join() def set_location_semaphores(self, location_semaphores): """ A wrapper function for setting the list of location semaphores since setting it as we usually do took more than 79 chars per line. :( @type location_semaphores: List of Semaphore objects @param location_semaphores: A list of Semaphore objects we use to make sure multiple devices are not accessing the same data concurrently. """ self.sync.location_semaphores = location_semaphores class DeviceThread(Thread): """ Class that implements the device's worker thread. """ def __init__(self, device): """ Constructor. @type device: Device @param device: the device which owns this thread """ Thread.__init__(self, name="Device Thread %d" % device.device_id) self.device = device def run(self): while True: neighbours = self.device.supervisor.get_neighbours() if neighbours is None: self.device.thread_pool.join_threads() break self.device.sync.barrier.wait() for (script, location) in self.device.scripts: self.device.add_task(Task(neighbours, script, location)) self.device.sync.barrier.wait()
import os import shutil import time from typing import Iterator import pytest from py._path.local import LocalPath @pytest.fixture def here() -> str: """Returns the absoluate path of the project root Returns: str: path """ return os.path.abspath(os.path.dirname(__file__)) @pytest.fixture def create_file(tmpdir: LocalPath) -> Iterator[str]: """Creates a random file for testing in the tmpdir fixture Yields: Iterator[TextIOWrapper]: file instance """ folder: LocalPath = tmpdir.mkdir(random_name()) file: str = folder.join(random_name()) with open(file, "w") as _file: yield _file.name shutil.rmtree(folder) @pytest.fixture def create_folder(tmpdir: LocalPath) -> Iterator[LocalPath]: """Creates a random folder in temp for testing in the tmpdir fixture Yields: Iterator[LocalPath]: folder instance """ folder: LocalPath = tmpdir.mkdir(random_name()) yield folder shutil.rmtree(folder) def random_name() -> str: """Returns a random string of ints based on the current time Returns: str: random string """ return str(int(time.time())) def get_abs_path(relative_path: str) -> str: """Attempts to return the absolute path of a relative path by joining the relative path with the project root Args: relative_path (str): the relative path Returns: str: the absolute path """ project_root = os.path.dirname(os.path.abspath(__file__)) return os.path.join(project_root, relative_path)
import pygame from agent import Agent class MyAgent(Agent): def get_action(self, state, last_action, time_left): played = False action = None while not played: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONUP: pos = pygame.mouse.get_pos() valid_clic = False if state.get_cur_player() == 0: pawn = int(pos[0] / 100) - 1 if 0 <= pawn <= 4 and state.get_pawn_position(0, pawn)[1] <= pos[1] <= state.get_pawn_position(0, pawn)[1] + 100: valid_clic = True else: pawn = int(pos[1] / 100) - 1 if 0 <= pawn <= 4 and state.get_pawn_position(1, pawn)[0] <= pos[0] <= state.get_pawn_position(1, pawn)[0] + 100: valid_clic = True if valid_clic and state.is_action_valid(pawn): played = True action = pawn if event.type == pygame.QUIT: pygame.quit() exit(0) return action def get_name(self): return "human_agent"
from eliot import log_call from .extract_user_from_req import extract_user_from_req @log_call def extract_uid_from_req(req, hdr_name, claim_field): return extract_user_from_req(req, hdr_name, claim_field)["uid"]
""" @file qliblabels.py @author xy @since 2014-08-09 @brief qLib, node tagging/labeling functions (semantics). """ import hou import re import traceback import datetime import sys labels = { # a completed partial-result 'waypoint': { 'cats': ('sop', 'dop', ), 'color': (1.0, 0.6, 0.6), 'prefix': 'WP_', 'prefix.sop': 'GEO_', 'prefix.dop': 'DOP_', }, # fetch-like op (ObjectMerge, etc.) 'fetch': { 'cats': ('sop', ), 'color': (0.8, 1.0, 0.8), 'prefix': 'IN_', }, # export-like op (an output point for another fetch) 'export': { 'cats': ('sop', ), 'color': (0.0, 0.3, 0.0), 'prefix': 'OUT_', }, # RENDER op 'render': { 'cats': ('sop', ), 'color': (0.4, 0.2, 0.6), 'name': 'RENDER', }, # DISPLAY op 'display': { 'cats': ('sop', ), 'color': (0.0, 0.4, 1.0), 'name': 'DISPLAY', }, 'out': { 'cats': ('sop', ), 'color': (0.9, 0.9, 0.9), 'name': 'OUT', }, # ---- # default op settings (do not delete this) 'default': { 'color': (0.8, 0.8, 0.8), }, } def msg(m): msg = "[%s qliblabels.py] %s" % ( datetime.datetime.now().strftime("%y%m%d %H:%M.%S"), str(m), ) sys.stderr.write(msg+"\n") #print msg def warn(m): msg('WARNING: %s' % m) def err(m): msg('ERROR: %s' % m) def dbg(m): msg('[debug] %s' % m) dbg('LOADED') # module-wide constants # # name/label for tags parameter n_tags = '__tags' l_tags = 'tags (semantics)' # tag list separator tags_s = ' ' def has_tags_parm(node): '''.''' #assert type(node) is hou.Node r = node.parm(n_tags) is not None return r def add_tags_parm(node): '''.''' #assert type(node) is hou.Node if not has_tags_parm(node): pass # add tags parm #hou_parm_template_group = hou.ParmTemplateGroup() hou_parm_template_group = node.parmTemplateGroup() # Code for parameter template hou_parm_template = hou.StringParmTemplate(n_tags, l_tags, 1, default_value=([""]), naming_scheme=hou.parmNamingScheme.Base1, string_type=hou.stringParmType.Regular, menu_items=([]), menu_labels=([]), icon_names=([]), item_generator_script="", item_generator_script_language=hou.scriptLanguage.Python, menu_type=hou.menuType.Normal) hou_parm_template_group.append(hou_parm_template) node.setParmTemplateGroup(hou_parm_template_group) else: dbg('%s already has tags parm' % node.path()) return node.parm(n_tags) def rem_tags_parm(node): '''.''' # assert if has_tags_parm(node): g = node.parmTemplateGroup() t = g.find(n_tags) if t: g.remove(t) node.setParmTemplateGroup(g) else: dbg('%s -- no tags parm found' % node.path()) else: dbg('%s has no tags parm' % node.path()) def tags_parm(node): '''.''' return add_tags_parm(node) def get_tag_list(node): '''.''' r = [] if has_tags_parm(node): p = tags_parm(node) r = p.evalAsString().lower() # strip of spaces (in case separator is not a space) r = [n.strip() for n in r.split(tags_s)] return r def set_tag_list(node, taglist): '''.''' assert type(taglist) is list, 'expecting a list of strings' l = [n.strip() for n in taglist if n.strip() != ''] dbg(' -- tags: %s' % str(l)) l = tags_s.join(l) dbg(' -- writing tags: "%s"' % l) if len(l) > 0: p = tags_parm(node) p.set(l) else: dbg('(removing parm)') rem_tags_parm(node) def get_label_table(): '''.''' return labels def find_all_prefixes(labels): '''.''' r = set() for L in labels: E = labels[L] cats = E['cats'] if 'cats' in E else [] if 'prefix' in E: r.add(E['prefix']) for c in cats: p = 'prefix.%s' % c if p in E: r.add(E[p]) r = list(r) return r def get_label_data(label): L = get_label_table() r = L[label] if label in L else {} return r def apply_color(node): '''.''' pass # TODO: finish this def apply_naming(node): '''.''' """ TODO: make sure to - remove _all_ known prefixes as well, when necessary - rename to a default name if previous tagging had an explicit naming scheme """ pass c = node.type().category().name().lower() # 'sop', etc. def process_op(node, tags, tags_prev=[]): '''.''' # TODO: set color, prefix/name, etc. had_prev_tags = len(tags_prev) > 0 if len(tags): pass # TODO: apply new color, replace prefix, etc. else: pass # TODO: reset op to its defaults def uimsg(msg, sev=hou.severityType.Message): '''.''' hou.ui.setStatusMessage('[qLib | semantics] %s' % str(msg), severity=sev) def uiwarn(msg): uimsg(msg, sev=hou.severityType.Warning) def shelfToolClicked(kwargs): '''.''' dbg('shelfToolClicked(): %s' % str(kwargs)) assert type(kwargs) is dict, 'expecting a dict for kwargs' try: label = kwargs['toolname'].lower() label = re.search('[a-z]*$', label).group(0) nodes = hou.selectedNodes() add_mode = kwargs['shiftclick'] is True clear_mode = kwargs['altclick'] is True if label: uimsg("%s node(s) to '%s'" % ('added label to' if add_mode else 'labeled', label, )) for n in nodes: dbg(" -- %s" % n.path()) tags_prev = get_tag_list(n) tags = tags_prev if add_mode else [] if label not in tags: tags.append(label) if clear_mode: tags = [] set_tag_list(n, tags) process_op(n, tags, tags_prev) else: uiwarn("couldn't determine label from shelf tool '%s'" % kwargs['toolname']) except: err('shelfToolClicked() failed') traceback.print_exc() #dbg('%s' % str( traceback.format_exc() ) ) pass
""" Synchronize Azure network security rules """ from common.methods import set_progress from azure.common.credentials import ServicePrincipalCredentials from resourcehandlers.azure_arm.models import AzureARMHandler from azure.mgmt.network import NetworkManagementClient from msrestazure.azure_exceptions import CloudError import azure.mgmt.resource.resources as resources RESOURCE_IDENTIFIER = 'azure_network_security_group_name' def discover_resources(**kwargs): discovered_virtual_nets = [] for handler in AzureARMHandler.objects.all(): set_progress('Connecting to Azure networks \ for handler: {}'.format(handler)) credentials = ServicePrincipalCredentials( client_id=handler.client_id, secret=handler.secret, tenant=handler.tenant_id ) network_client = NetworkManagementClient(credentials, handler.serviceaccount) azure_resources_client = resources.ResourceManagementClient(credentials, handler.serviceaccount) for resource_group in azure_resources_client.resource_groups.list(): try: for security_group in network_client.network_security_groups.list(resource_group_name=resource_group.name): for security_rule in network_client.security_rules.list(resource_group_name=resource_group.name, network_security_group_name=security_group.as_dict()['name']): discovered_virtual_nets.append( { 'name': 'Azure Security rule - ' + security_group.as_dict()['name'] + " " + security_rule.as_dict()['direction'], 'azure_network_security_group_name': security_group.as_dict()['name'], 'azure_location': security_group.as_dict()['location'], 'azure_rh_id': handler.id, 'resource_group_name': resource_group.name, 'azure_security_rule_protocol': security_rule.as_dict()['protocol'], 'azure_security_rule_access': security_rule.as_dict()['access'], 'azure_security_rule_direction': security_rule.as_dict()['direction'], 'azure_security_rule_name': security_rule.as_dict()['name'], } ) except CloudError as e: set_progress('Azure Clouderror: {}'.format(e)) continue return discovered_virtual_nets
import argparse import json import requests import properties def retrieve_data(pubmedIds): base_url = properties.base_url efoTraits = properties.efoTraits search = properties.uriSearch # Header print("EFO trait, URI") print(" Author, publication date, title, journal, pubmed Id, accession Id, initial sample size, replication sample size") for id in pubmedIds: url = base_url+efoTraits+search+id # It is a good practice not to hardcode the credentials. So ask the user to enter credentials at runtime traitResponse = requests.get(url) # For successful API call, response code will be 200 (OK) if(traitResponse.ok): # Loading the response data into a dict variable # json.loads takes in only binary or string variables so using content to fetch binary content # Loads (Load String) takes a Json file and converts into python data structure (dict or list, depending on JSON) data = (json.loads(traitResponse.content))["_embedded"]["efoTraits"] for x in range(len(data)): e = data[x] print(e["trait"] + " " + e["uri"]) studiesURL = e["_links"]["studies"]["href"] studyResponse = requests.get(studiesURL) if(studyResponse.ok): studyData = json.loads(studyResponse.content)["_embedded"]["studies"] for x in range(len(studyData)): s = studyData[x] # Print study data summary print(" " + s["author"] + "; "+ s["publicationDate"] + "; "+ s["title"] + "; "+ s["publication"] + "; "+ s["pubmedId"] + "; "+ s["accessionId"] + "; "+ str(s["initialSampleSize"])+ "; "+ str(s["replicateSampleSize"])) print("") print("") else: # If response code is not ok (200), print the resulting http error code with description traitResponse.raise_for_status() if __name__ == "__main__": # Parse the pubmed ID inputs parser = argparse.ArgumentParser() parser.add_argument('uris', nargs='+') args = parser.parse_args() retrieve_data(args.uris)
""" Goal: compute the shortest path given source node s and target node t. Preprocessing phase: Query Phase: Similar to dijkstra, but we only follow edges going to nodes with a higher contraction order than the current node """ class ContractionHierarchy(object): def __init__(self): pass def preprocessing(self): pass def query(self): pass