content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import cv2 import numpy as np import json from PIL import Image, ImageDraw, ImageFont import math from paddle import inference def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() # params for prediction engine parser.add_argument("--use_gpu", type=str2bool, default=True) parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=500) # params for text detector parser.add_argument("--image_dir", type=str) parser.add_argument("--det_algorithm", type=str, default='DB') parser.add_argument("--det_model_dir", type=str) parser.add_argument("--det_limit_side_len", type=float, default=960) parser.add_argument("--det_limit_type", type=str, default='max') # DB parmas parser.add_argument("--det_db_thresh", type=float, default=0.3) parser.add_argument("--det_db_box_thresh", type=float, default=0.6) parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5) parser.add_argument("--max_batch_size", type=int, default=10) parser.add_argument("--use_dilation", type=bool, default=False) parser.add_argument("--det_db_score_mode", type=str, default="fast") # EAST parmas parser.add_argument("--det_east_score_thresh", type=float, default=0.8) parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) # SAST parmas parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) parser.add_argument("--det_sast_polygon", type=bool, default=False) # params for text recognizer parser.add_argument("--rec_algorithm", type=str, default='CRNN') parser.add_argument("--rec_model_dir", type=str) parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_char_type", type=str, default='ch') parser.add_argument("--rec_batch_num", type=int, default=6) parser.add_argument("--max_text_length", type=int, default=25) parser.add_argument( "--rec_char_dict_path", type=str, default="./ppocr/utils/ppocr_keys_v1.txt") parser.add_argument("--use_space_char", type=str2bool, default=True) parser.add_argument( "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf") parser.add_argument("--drop_score", type=float, default=0.5) # params for e2e parser.add_argument("--e2e_algorithm", type=str, default='PGNet') parser.add_argument("--e2e_model_dir", type=str) parser.add_argument("--e2e_limit_side_len", type=float, default=768) parser.add_argument("--e2e_limit_type", type=str, default='max') # PGNet parmas parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5) parser.add_argument( "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt") parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext') parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True) parser.add_argument("--e2e_pgnet_mode", type=str, default='fast') # params for text classifier parser.add_argument("--use_angle_cls", type=str2bool, default=False) parser.add_argument("--cls_model_dir", type=str) parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") parser.add_argument("--label_list", type=list, default=['0', '180']) parser.add_argument("--cls_batch_num", type=int, default=6) parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--enable_mkldnn", type=str2bool, default=False) parser.add_argument("--cpu_threads", type=int, default=10) parser.add_argument("--use_pdserving", type=str2bool, default=False) parser.add_argument("--use_mp", type=str2bool, default=False) parser.add_argument("--total_process_num", type=int, default=1) parser.add_argument("--process_id", type=int, default=0) return parser.parse_args() def create_predictor(args, mode, logger): if mode == "det": model_dir = args.det_model_dir elif mode == 'cls': model_dir = args.cls_model_dir elif mode == 'rec': model_dir = args.rec_model_dir else: model_dir = args.e2e_model_dir if model_dir is None: logger.info("not find {} model file path {}".format(mode, model_dir)) sys.exit(0) model_file_path = model_dir + "/inference.pdmodel" params_file_path = model_dir + "/inference.pdiparams" if not os.path.exists(model_file_path): logger.info("not find model file path {}".format(model_file_path)) sys.exit(0) if not os.path.exists(params_file_path): logger.info("not find params file path {}".format(params_file_path)) sys.exit(0) config = inference.Config(model_file_path, params_file_path) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) if args.use_tensorrt: config.enable_tensorrt_engine( precision_mode=inference.PrecisionType.Half if args.use_fp16 else inference.PrecisionType.Float32, max_batch_size=args.max_batch_size) else: config.disable_gpu() cpu_threads = args.cpu_threads if hasattr(args, "cpu_threads") else 10 config.set_cpu_math_library_num_threads(cpu_threads) if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() # enable memory optim config.enable_memory_optim() config.disable_glog_info() config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.switch_use_feed_fetch_ops(False) # create predictor predictor = inference.create_predictor(config) input_names = predictor.get_input_names() for name in input_names: input_tensor = predictor.get_input_handle(name) output_names = predictor.get_output_names() output_tensors = [] for output_name in output_names: output_tensor = predictor.get_output_handle(output_name) output_tensors.append(output_tensor) return predictor, input_tensor, output_tensors def draw_e2e_res(dt_boxes, strs, img_path): src_im = cv2.imread(img_path) for box, str in zip(dt_boxes, strs): box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) cv2.putText( src_im, str, org=(int(box[0, 0, 0]), int(box[0, 0, 1])), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.7, color=(0, 255, 0), thickness=1) return src_im def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im def resize_img(img, input_size=600): """ resize img and limit the longest side of the image to input_size """ img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img def draw_ocr(image, boxes, txts=None, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): """ Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img """ if scores is None: scores = [1] * len(boxes) box_num = len(boxes) for i in range(box_num): if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])): continue box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if txts is not None: img = np.array(resize_img(image, input_size=600)) txt_img = text_visual( txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image def draw_ocr_box_txt(image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): h, w = image.height, image.width img_left = image.copy() img_right = Image.new('RGB', (w, h), (255, 255, 255)) import random random.seed(0) draw_left = ImageDraw.Draw(img_left) draw_right = ImageDraw.Draw(img_right) for idx, (box, txt) in enumerate(zip(boxes, txts)): if scores is not None and scores[idx] < drop_score: continue color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw_left.polygon(box, fill=color) draw_right.polygon( [ box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1] ], outline=color) box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][ 1])**2) box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][ 1])**2) if box_height > 2 * box_width: font_size = max(int(box_width * 0.9), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") cur_y = box[0][1] for c in txt: char_size = font.getsize(c) draw_right.text( (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) cur_y += char_size[1] else: font_size = max(int(box_height * 0.8), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") draw_right.text( [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) img_left = Image.blend(image, img_left, 0.5) img_show = Image.new('RGB', (w * 2, h), (255, 255, 255)) img_show.paste(img_left, (0, 0, w, h)) img_show.paste(img_right, (w, 0, w * 2, h)) return np.array(img_show) def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2) def text_visual(texts, scores, img_h=400, img_w=600, threshold=0., font_path="./doc/simfang.ttf"): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1:] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[:img_w // font_size - 4] if first_line: new_txt = str(index) + ': ' + txt first_line = False else: new_txt = ' ' + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4:] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) else: new_txt = " " + txt + " " + '%.3f' % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img) def base64_to_cv2(b64str): import base64 data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def draw_boxes(image, boxes, scores=None, drop_score=0.5): if scores is None: scores = [1] * len(boxes) for (box, score) in zip(boxes, scores): if score < drop_score: continue box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) return image if __name__ == '__main__': test_img = "./doc/test_v2" predict_txt = "./doc/predict.txt" f = open(predict_txt, 'r') data = f.readlines() img_path, anno = data[0].strip().split('\t') img_name = os.path.basename(img_path) img_path = os.path.join(test_img, img_name) image = Image.open(img_path) data = json.loads(anno) boxes, txts, scores = [], [], [] for dic in data: boxes.append(dic['points']) txts.append(dic['transcription']) scores.append(round(dic['scores'], 3)) new_img = draw_ocr(image, boxes, txts, scores) cv2.imwrite(img_name, new_img)
37.004556
85
0.620499
[ "Apache-2.0" ]
OcrOrg/PaddleOCR
tools/infer/utility.py
16,245
Python
from django.db import models import string, random, datetime from profiles.models import UserProfile, Location, Surcharges, User from decimal import * from menu.models import Product, Entree, Pizza, PizzaTopping, Side from localflavor.us.models import PhoneNumberField, USStateField, USZipCodeField #modify this to check against prior conf orders. def make_conf(length=8, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for x in range(length)) class Order(models.Model): customer = models.ForeignKey(User, blank=True, null=True) created_date = models.DateTimeField(auto_now=False, auto_now_add=True) stamped = models.BooleanField(default=False) stamped_time = models.DateTimeField(auto_now=True, auto_now_add=False, blank=True, null=True) complete = models.BooleanField(default=False) delivery = models.BooleanField(default=False) delivery_available = models.BooleanField(default=False) location = models.ForeignKey(Location, blank=True, null=True) total = models.DecimalField(max_digits=20, decimal_places=2, default=0) subtotal = models.DecimalField(max_digits=20, decimal_places=2, default=0) taxes = models.DecimalField(max_digits=20, decimal_places=2, default=0) first_name = models.CharField(max_length=120, blank=True, null=True) last_name = models.CharField(max_length=120, blank=True, null=True) street_address = models.CharField(max_length=120, blank=True, null=True) city = models.CharField(max_length=120, blank=True, null=True) state = USStateField(blank=True, null=True) zipcode = USZipCodeField(blank=True, null=True) phone = PhoneNumberField(blank=True, null=True) email = models.EmailField(max_length=120, blank=True, null=True) note = models.TextField(max_length=1000,blank=True, null=True) conf_number = models.CharField(max_length=20, blank=True, null=True) #delivery charge needs to be separate from lines def get_delivery_charge(self): return Location.objects.get(id=str(self.location)).get_delivery_charge() def compute_subtotal(self): lineitems = list(OrderLineItem.objects.filter(order=self.id)) delivery_charge = Location.objects.get(id=str(self.location)).get_delivery_charge() lines = [] for lineitem in lineitems: lines.append(lineitem.line_price) if self.delivery == True: pre_sub = sum(lines) subtotal = sum(lines) + delivery_charge return subtotal else: return sum(lines) def compute_taxes(self): subtotal = self.compute_subtotal() loc = Surcharges.objects.get(location=self.location).location tax_rate = Decimal(str(loc.get_tax_rate())) return Decimal(round(subtotal * tax_rate, 2)).quantize(Decimal('.01'), rounding=ROUND_HALF_UP) def compute_total(self): return Decimal(round(self.compute_subtotal() + self.compute_taxes(), 2)).quantize(Decimal('.01'), rounding=ROUND_HALF_UP) class Meta: ordering = ['-stamped_time'] def __unicode__(self): return str(str(self.created_date) + ' ' + str(self.id)) + str(self.customer) (PIZZA, 'PIZZA'), (SIDE, 'SIDE'), (SOUP,'SOUP'), (SALAD,'SALAD'), (BREADSTICKS,'BREADSTICKS'), (PASTA,'PASTA'), (WINGS,'WINGS'), (SANDWICH,'SANDWICH'), (BEVERAGE,'BEVERAGE'), class OrderLineItem(models.Model): order = models.ForeignKey(Order) product = models.ForeignKey('menu.Product') size = models.CharField(max_length=7, blank=True, null=True) PIZZA = 'PIZZA' SIDE = 'SIDE' SOUP = 'SOUP' SALAD = 'SALAD' BREADSTICKS = 'BREADSTICKS' PASTA = 'PASTA' WINGS = 'WINGS' SANDWICH = 'SANDWICH' BEVERAGE = 'BEVERAGE' ITEM_TYPES = ( (PIZZA, 'PIZZA'), (SIDE,'SIDE'), (SOUP,'SOUP'), (SALAD,'SALAD'), (BREADSTICKS,'BREADSTICKS'), (PASTA, 'PASTA'), (WINGS, 'WINGS'), (SANDWICH,'SANDWICH'), (BEVERAGE, 'BEVERAGE'), ) product_type = models.CharField(max_length=50, choices=ITEM_TYPES, default=PIZZA) qty = models.PositiveIntegerField(default=1) line_price = models.DecimalField(max_digits=20, decimal_places=2, blank=True, null=True) toppings = models.ManyToManyField(PizzaTopping, blank=True, null=True, related_name='topping') def get_price(self): if self.product_type == 'PIZZA': pizza_price = Pizza.objects.get(product_id=self.product, size=self.size).get_price() pricing = [] pricing.append(pizza_price) for topping in self.toppings.all(): pricing.append(topping.price) return sum(pricing) elif self.product_type == 'ENTREE': return Entree.objects.get(product_id=self.product, size=self.size).get_price() elif self.product_type == 'SIDE': return Side.objects.get(product_id=self.product, size=self.size).price def __unicode__(self): return str(self.product)
38.437037
129
0.664097
[ "MIT" ]
hellojerry/pizzatime
src/orders/models.py
5,189
Python
import json import os from golem.core import utils from golem.test_runner import test_runner from golem.report.execution_report import create_execution_directory from golem.report.execution_report import create_execution_dir_single_test from golem.report import test_report from golem.report.test_report import get_test_case_data from golem.report.test_report import get_test_debug_log from golem.report.test_report import create_report_directory from golem.report.test_report import generate_report class TestGetTestCaseData: def test_get_test_case_data(self, project_class, test_utils): _, project = project_class.activate() exc = test_utils.execute_random_suite(project) test_name = exc['exec_data']['tests'][0]['name'] test_set = exc['exec_data']['tests'][0]['test_set'] test_data = get_test_case_data(project, test_name, exc['suite_name'], exc['timestamp'], test_set) assert test_data['name'] == exc['tests'][0] assert isinstance(test_data['debug_log'], list) and len(test_data['debug_log']) assert isinstance(test_data['info_log'], list) and len(test_data['info_log']) assert test_data['has_finished'] is True class TestTestReportDirectory: def test_test_report_directory(self, project_session): testdir, project = project_session.activate() suite = 'suite1' timestamp = '1.2.3.4' test = 'test1' test_set = 'test_set1' path = test_report.test_report_directory(project, suite, timestamp, test, test_set) expected = os.path.join(testdir, 'projects', project, 'reports', suite, timestamp, test, test_set) assert path == expected class TestTestReportDirectorySingleTest: def test_test_report_directory_single_test(self, project_session): testdir, project = project_session.activate() timestamp = '1.2.3.4' test = 'test1' test_set = 'test_set1' path = test_report.test_report_directory_single_test(project, test, timestamp, test_set) expected = os.path.join(testdir, 'projects', project, 'reports', 'single_tests', test, timestamp, test_set) assert path == expected class TestGetTestLog: def test_get_test_x_log(self, project_class, test_utils): _, project = project_class.activate() exc = test_utils.execute_random_suite(project) test_name = exc['exec_data']['tests'][0]['name'] test_set = exc['exec_data']['tests'][0]['test_set'] log = get_test_debug_log(project, exc['timestamp'], test_name, test_set, suite=exc['suite_name']) assert 'root DEBUG test does not have setup function' in log # inexistent test set log = get_test_debug_log(project, exc['timestamp'], test_name, 'inexistent_test_set', suite=exc['suite_name']) assert log is None # inexistent test log = get_test_debug_log(project, exc['timestamp'], 'inexistent_test_name', test_set, suite=exc['suite_name']) assert log is None class TestCreateReportDirectory: def test_create_report_directory_test(self, project_session): testdir, project = project_session.activate() timestamp = utils.get_timestamp() test_name = 'testing_report_001' exec_dir = create_execution_dir_single_test(project, test_name, timestamp) directory = create_report_directory(exec_dir, test_name, is_suite=False) assert os.path.isdir(directory) def test_create_report_directory_suite(self, project_session): testdir, project = project_session.activate() timestamp = utils.get_timestamp() suite_name = 'suite_foo_002' test_name = 'testing_report_002' exec_dir = create_execution_directory(project, suite_name, timestamp) directory = create_report_directory(exec_dir, test_name, is_suite=True) assert os.path.isdir(directory) class TestGenerateReport: def test_generate_report_with_env(self, project_session): _, project = project_session.activate() timestamp = utils.get_timestamp() test_name = 'testing_report_003' suite_name = 'suite_foo_003' exec_dir = create_execution_directory(project, suite_name, timestamp) report_dir = create_report_directory(exec_dir, test_name, is_suite=True) test_data = { 'env': { 'name': 'env01', 'url': '1.1.1.1' }, 'var2': 'value2' } test_data = test_runner.Data(test_data) result = { 'result': 'success', 'errors': [], 'description': 'description of the test', 'steps': [ {'message': 'step1', 'screenshot': None, 'error': None}, {'message': 'step2', 'screenshot': None, 'error': None} ], 'test_elapsed_time': 22.22, 'test_timestamp': '2018.02.04.02.16.42.729', 'browser': 'chrome', 'browser_full_name': '', 'set_name': 'set_001', } generate_report(report_dir, test_name, test_data, result) path = os.path.join(report_dir, 'report.json') with open(path) as report_file: actual = json.load(report_file) assert len(actual.items()) == 11 assert actual['test_case'] == test_name assert actual['result'] == 'success' assert actual['steps'][0]['message'] == 'step1' assert actual['steps'][1]['message'] == 'step2' assert actual['description'] == 'description of the test' assert actual['errors'] == [] assert actual['test_elapsed_time'] == 22.22 assert actual['test_timestamp'] == '2018.02.04.02.16.42.729' assert actual['browser'] == 'chrome' assert actual['environment'] == 'env01' assert actual['set_name'] == 'set_001' test_data_a = "{'url': '1.1.1.1', 'name': 'env01'}" test_data_b = "{'name': 'env01', 'url': '1.1.1.1'}" assert actual['test_data']['env'] in [test_data_a, test_data_b] assert actual['test_data']['var2'] == "'value2'"
41.2
96
0.628406
[ "MIT" ]
HybridAU/golem
tests/report/test_report_test.py
6,386
Python
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch class Stage5(torch.nn.Module): def __init__(self): super(Stage5, self).__init__() self.layer1 = torch.nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self._initialize_weights() def forward(self, input0): out0 = input0.clone() out1 = self.layer1(out0) return out1 def _initialize_weights(self): for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.Linear): torch.nn.init.normal_(m.weight, 0, 0.01) torch.nn.init.constant_(m.bias, 0)
34.966667
97
0.585319
[ "MIT" ]
MonicaGu/pipedream
runtime/image_classification/models/vgg16/gpus=16_straight/stage5.py
1,049
Python
import twl wolf = twl.Wolf() def split(wolf, end=7): return [wolf.len(n)() for n in range(2, end+1)] def spell(ltrs, wild=0): return split(wolf.wild(ltrs, wild), len(ltrs)+wild) def _munge(func, fix, ltrs, wild=0): return split(func(fix).wild(fix+ltrs, wild), len(fix+ltrs)+wild) def starts(fix, ltrs, wild=0): return _munge(wolf.starts, fix, ltrs, wild) def ends(fix, ltrs, wild=0): return _munge(wolf.ends, fix, ltrs, wild) def contains(fix, ltrs, wild=0): return _munge(wolf.contains, fix, ltrs, wild) if __name__ == "__main__": # print(wolf.len(2).words) # print(wolf.wild('aa')()) print(contains('a', 'ciodtji'))
19.676471
68
0.638266
[ "MIT" ]
esoterik0/scrabble-comp
use.py
669
Python
from functools import lru_cache from injector import inject from .config_parameter_base import ConfigParameterBase from ...data.repository import RepositoryProvider from ...dependency import IScoped from ...exceptions import RequiredClassException class ConfigService(IScoped): @inject def __init__(self, repository_provider: RepositoryProvider ): self.repository_provider = repository_provider config_subclasses = ConfigParameterBase.__subclasses__() if config_subclasses is None or len(config_subclasses) == 0: raise RequiredClassException(f'Requires {ConfigParameterBase.__name__} derived class') config_class = config_subclasses[0] self.config_reposiotry = repository_provider.get(config_class) @lru_cache() def get_config_by_name(self, name): parameter = self.config_reposiotry.first(Name=name) if parameter is not None: return parameter.Value else: return None
34.066667
98
0.715264
[ "MIT" ]
PythonDataIntegrator/pdip
pdip/configuration/services/config_service.py
1,022
Python
"""Notification.""" from models.metric_notification_data import MetricNotificationData class Notification: """Handle notification contents and status.""" def __init__(self, report, metrics, destination_uuid, destination): """Initialise the Notification with the required info.""" self.report_title = report["title"] self.url = report.get("url") self.metrics: list[MetricNotificationData] = metrics self.destination_uuid = destination_uuid self.destination = destination def __eq__(self, other): """Check if the notification itself is the same, regardless of its metric content.""" return ( self.report_title == other.report_title and self.destination_uuid == other.destination_uuid and self.destination == other.destination ) def merge_notification(self, new_metrics): """Merge new metrics into this notification.""" self.metrics.extend(new_metrics)
35.571429
93
0.678715
[ "Apache-2.0" ]
m-zakeri/quality-time
components/notifier/src/models/notification.py
996
Python
import os import imageio import numpy as np from PIL import Image from torch.autograd import Variable from torchvision.utils import save_image def create_gif(image_path): frames = [] gif_name = os.path.join("images", 'mnist1.gif') image_list = os.listdir(image_path) sorted(image_list) for image_name in image_list: frames.append(imageio.imread(os.path.join(image_path, image_name))) imageio.mimsave(gif_name, frames, 'GIF', duration=0.1) def resize_img(path): names = os.listdir(path) for name in names: img_path = os.path.join(path, name) img = Image.open(img_path) img = img.resize((172, 172)) img.save(img_path) def sample_image(opt, n_row, batches_done, generator, FloatTensor, LongTensor): z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim)))) labels = np.array([num for _ in range(n_row) for num in range(n_row)]) labels = Variable(LongTensor(labels)) gen_imgs = generator(z, labels) save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True) if __name__ == "__main__": image_path = "images/example1" resize_img(image_path) create_gif(image_path)
26.106383
90
0.691932
[ "Apache-2.0" ]
GodWriter/GAN-Pytorch
cgan/utils.py
1,227
Python
import RPi.GPIO as GPIO import hx711 import matplotlib.pyplot as plt # Read initial calibration and tare weight data then display the plot. def main(): GPIO.setmode(GPIO.BCM) hx = hx711.HX711(dout_pin=5, pd_sck_pin=6) zero_the_scale(hx) calibrate_scale(hx) (tare_weight, total_weight) = get_tare_and_full_weight(hx) plot_reading(hx, tare_weight, total_weight - tare_weight) # Set scale position to zero. The scale should be empty when this is run. def zero_the_scale(hx): err = hx.zero() if err: raise ValueError('Tare is unsuccessful.') zero_reading = hx.get_raw_data_mean() if zero_reading: print('Data subtracted by offset: ', zero_reading) else: raise ValueError('Invalide zero reading') # Calibrate the scale with prompts to the user. def calibrate_scale (hx): input('Put known weight on the scale and then press Enter') reading = hx.get_data_mean() if reading: print('Mean value from HX711 subtracted by offset:', reading) user_input = input('Write how many grams it was and press Enter: ') try: weight = float(user_input) print(weight, 'grams') except ValueError: print('Expected integer or float and I have got:', user_input) ratio = reading / weight hx.set_scale_ratio(ratio) print('Ratio is set.') else: raise ValueError('Cannot calculate mean value.') # Prompt user and get readings for the tare weight and full pie. def get_tare_and_full_weight (hx): input('Put the pie tin on the scale for tare weight and press enter.') tare_weight = hx.get_weight_mean(20) print ("Tare weight is ", tare_weight, "g") input('Put the pie on the scale for a full weight and press enter.') total_weight = hx.get_weight_mean(20) print ("Full weight is ", total_weight, "g") return (tare_weight, total_weight) # Continually read data from the sensor, update the pie chart, and display. def plot_reading (hx, tare_weight, full_weight): while True: current_weight = hx.get_weight_mean(20) remaining_weight = max(0,current_weight - tare_weight) #print ("Current weight is ", current_weight, "g") labels = ['Remaining', 'Eaten'] sizes = [remaining_weight, max(0,full_weight - remaining_weight)] colors = ['sandybrown', 'lightgrey'] explode = (0, 0.1) title_font = { 'color': 'blue', 'weight': 'bold', 'size': 30 } label_font = { 'color': 'black', 'weight': 'normal', 'size': 20 } h = plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=180, textprops=label_font) plt.title("Pi Day Pie Pie Chart", title_font) plt.plot() plt.draw() plt.pause(1) plt.clf() if __name__ == "__main__": try: main() except (KeyboardInterrupt, SystemExit): print('Happy Pi Day!') finally: GPIO.cleanup()
33.108696
75
0.645765
[ "MIT" ]
mmachenry/pie-pie-chart
pie_pie_chart.py
3,046
Python
import math from enforce_typing import enforce_types from engine import SimStrategyBase from util.constants import S_PER_HOUR @enforce_types class SimStrategy(SimStrategyBase.SimStrategyBase): def __init__(self, no_researchers=2): #===initialize self.time_step, max_ticks==== super().__init__() #===set base-class values we want for this netlist==== self.setTimeStep(S_PER_HOUR) self.setMaxTime(30, 'years') #typical runs: 10 years, 20 years, 150 years #===new attributes specific to this netlist=== self.TICKS_BETWEEN_PROPOSALS = 6480 self.PRICE_OF_ASSETS = 1000 # OCEAN self.RATIO_FUNDS_TO_PUBLISH = 0.4 # 40% of grant funding will go towards "doing work" & publishing self.TRANSACTION_FEES = 0.1 self.FEES_TO_STAKERS = 0.2 self.NUMBER_OF_RESEARCHERS = no_researchers self.FUNDING_BOUNDARY = 10000 ''' Some additional parameters that will enable more experimentation (not currently in use) ''' self.FUNDING_TIME_DEPENDENCE = True # meaning that TICKS_BETWEEN_PROPOSALS should be used self.PROPOSALS_FUNDED_AT_A_TIME = 1 # this would be used if FUNDING_TIME_DEPENDENCE = False, <=> funding as projects finish self.PROPOSAL_SETUP = {'grant_requested': 1000, # can be used as a parameter in ResearcherAgent in SimState 'assets_generated': 1, 'no_researchers': 10} self.TREASURY = 'dao_treasury' # DT parameters self.DT_init = 100.0 # DATA TOKEN COMPATIBILITY WIP # # pool # self.DT_stake = 20.0 # self.pool_weight_DT = 3.0 # self.pool_weight_OCEAN = 7.0 # assert (self.pool_weight_DT + self.pool_weight_OCEAN) == 10.0
42.209302
131
0.656749
[ "Apache-2.0" ]
opscientia/darcspice
assets/netlists/opsci_profit_sharing/SimStrategy.py
1,815
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs __all__ = [ 'GetExpressRouteGatewayResult', 'AwaitableGetExpressRouteGatewayResult', 'get_express_route_gateway', ] @pulumi.output_type class GetExpressRouteGatewayResult: """ ExpressRoute gateway resource. """ def __init__(__self__, auto_scale_configuration=None, etag=None, express_route_connections=None, id=None, location=None, name=None, provisioning_state=None, tags=None, type=None, virtual_hub=None): if auto_scale_configuration and not isinstance(auto_scale_configuration, dict): raise TypeError("Expected argument 'auto_scale_configuration' to be a dict") pulumi.set(__self__, "auto_scale_configuration", auto_scale_configuration) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if express_route_connections and not isinstance(express_route_connections, list): raise TypeError("Expected argument 'express_route_connections' to be a list") pulumi.set(__self__, "express_route_connections", express_route_connections) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if virtual_hub and not isinstance(virtual_hub, dict): raise TypeError("Expected argument 'virtual_hub' to be a dict") pulumi.set(__self__, "virtual_hub", virtual_hub) @property @pulumi.getter(name="autoScaleConfiguration") def auto_scale_configuration(self) -> Optional['outputs.ExpressRouteGatewayPropertiesResponseAutoScaleConfiguration']: """ Configuration for auto scaling. """ return pulumi.get(self, "auto_scale_configuration") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="expressRouteConnections") def express_route_connections(self) -> Sequence['outputs.ExpressRouteConnectionResponse']: """ List of ExpressRoute connections to the ExpressRoute gateway. """ return pulumi.get(self, "express_route_connections") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the express route gateway resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualHub") def virtual_hub(self) -> 'outputs.VirtualHubIdResponse': """ The Virtual Hub where the ExpressRoute gateway is or will be deployed. """ return pulumi.get(self, "virtual_hub") class AwaitableGetExpressRouteGatewayResult(GetExpressRouteGatewayResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetExpressRouteGatewayResult( auto_scale_configuration=self.auto_scale_configuration, etag=self.etag, express_route_connections=self.express_route_connections, id=self.id, location=self.location, name=self.name, provisioning_state=self.provisioning_state, tags=self.tags, type=self.type, virtual_hub=self.virtual_hub) def get_express_route_gateway(express_route_gateway_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetExpressRouteGatewayResult: """ ExpressRoute gateway resource. API Version: 2020-08-01. :param str express_route_gateway_name: The name of the ExpressRoute gateway. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['expressRouteGatewayName'] = express_route_gateway_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network:getExpressRouteGateway', __args__, opts=opts, typ=GetExpressRouteGatewayResult).value return AwaitableGetExpressRouteGatewayResult( auto_scale_configuration=__ret__.auto_scale_configuration, etag=__ret__.etag, express_route_connections=__ret__.express_route_connections, id=__ret__.id, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, tags=__ret__.tags, type=__ret__.type, virtual_hub=__ret__.virtual_hub)
36.967568
201
0.663109
[ "Apache-2.0" ]
pulumi/pulumi-azure-nextgen
sdk/python/pulumi_azure_nextgen/network/get_express_route_gateway.py
6,839
Python
""" Support for Xiaomi Gateways. For more details about this component, please refer to the documentation at https://home-assistant.io/components/xiaomi_aqara/ """ import logging from datetime import timedelta import voluptuous as vol from homeassistant.components.discovery import SERVICE_XIAOMI_GW from homeassistant.const import ( ATTR_BATTERY_LEVEL, CONF_HOST, CONF_MAC, CONF_PORT, EVENT_HOMEASSISTANT_STOP) from homeassistant.core import callback from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import async_track_point_in_utc_time from homeassistant.util.dt import utcnow from homeassistant.util import slugify REQUIREMENTS = ['PyXiaomiGateway==0.10.0'] _LOGGER = logging.getLogger(__name__) ATTR_GW_MAC = 'gw_mac' ATTR_RINGTONE_ID = 'ringtone_id' ATTR_RINGTONE_VOL = 'ringtone_vol' ATTR_DEVICE_ID = 'device_id' CONF_DISCOVERY_RETRY = 'discovery_retry' CONF_GATEWAYS = 'gateways' CONF_INTERFACE = 'interface' CONF_KEY = 'key' CONF_DISABLE = 'disable' DOMAIN = 'xiaomi_aqara' PY_XIAOMI_GATEWAY = "xiaomi_gw" TIME_TILL_UNAVAILABLE = timedelta(minutes=150) SERVICE_PLAY_RINGTONE = 'play_ringtone' SERVICE_STOP_RINGTONE = 'stop_ringtone' SERVICE_ADD_DEVICE = 'add_device' SERVICE_REMOVE_DEVICE = 'remove_device' GW_MAC = vol.All( cv.string, lambda value: value.replace(':', '').lower(), vol.Length(min=12, max=12) ) SERVICE_SCHEMA_PLAY_RINGTONE = vol.Schema({ vol.Required(ATTR_RINGTONE_ID): vol.All(vol.Coerce(int), vol.NotIn([9, 14, 15, 16, 17, 18, 19])), vol.Optional(ATTR_RINGTONE_VOL): vol.All(vol.Coerce(int), vol.Clamp(min=0, max=100)) }) SERVICE_SCHEMA_REMOVE_DEVICE = vol.Schema({ vol.Required(ATTR_DEVICE_ID): vol.All(cv.string, vol.Length(min=14, max=14)) }) GATEWAY_CONFIG = vol.Schema({ vol.Optional(CONF_MAC, default=None): vol.Any(GW_MAC, None), vol.Optional(CONF_KEY): vol.All(cv.string, vol.Length(min=16, max=16)), vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=9898): cv.port, vol.Optional(CONF_DISABLE, default=False): cv.boolean, }) def _fix_conf_defaults(config): """Update some configuration defaults.""" config['sid'] = config.pop(CONF_MAC, None) if config.get(CONF_KEY) is None: _LOGGER.warning( 'Key is not provided for gateway %s. Controlling the gateway ' 'will not be possible', config['sid']) if config.get(CONF_HOST) is None: config.pop(CONF_PORT) return config CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_GATEWAYS, default={}): vol.All(cv.ensure_list, [GATEWAY_CONFIG], [_fix_conf_defaults]), vol.Optional(CONF_INTERFACE, default='any'): cv.string, vol.Optional(CONF_DISCOVERY_RETRY, default=3): cv.positive_int }) }, extra=vol.ALLOW_EXTRA) def setup(hass, config): """Set up the Xiaomi component.""" gateways = [] interface = 'any' discovery_retry = 3 if DOMAIN in config: gateways = config[DOMAIN][CONF_GATEWAYS] interface = config[DOMAIN][CONF_INTERFACE] discovery_retry = config[DOMAIN][CONF_DISCOVERY_RETRY] async def xiaomi_gw_discovered(service, discovery_info): """Perform action when Xiaomi Gateway device(s) has been found.""" # We don't need to do anything here, the purpose of Home Assistant's # discovery service is to just trigger loading of this # component, and then its own discovery process kicks in. discovery.listen(hass, SERVICE_XIAOMI_GW, xiaomi_gw_discovered) from xiaomi_gateway import XiaomiGatewayDiscovery xiaomi = hass.data[PY_XIAOMI_GATEWAY] = XiaomiGatewayDiscovery( hass.add_job, gateways, interface) _LOGGER.debug("Expecting %s gateways", len(gateways)) for k in range(discovery_retry): _LOGGER.info("Discovering Xiaomi Gateways (Try %s)", k + 1) xiaomi.discover_gateways() if len(xiaomi.gateways) >= len(gateways): break if not xiaomi.gateways: _LOGGER.error("No gateway discovered") return False xiaomi.listen() _LOGGER.debug("Gateways discovered. Listening for broadcasts") for component in ['binary_sensor', 'sensor', 'switch', 'light', 'cover', 'lock']: discovery.load_platform(hass, component, DOMAIN, {}, config) def stop_xiaomi(event): """Stop Xiaomi Socket.""" _LOGGER.info("Shutting down Xiaomi Hub") xiaomi.stop_listen() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_xiaomi) def play_ringtone_service(call): """Service to play ringtone through Gateway.""" ring_id = call.data.get(ATTR_RINGTONE_ID) gateway = call.data.get(ATTR_GW_MAC) kwargs = {'mid': ring_id} ring_vol = call.data.get(ATTR_RINGTONE_VOL) if ring_vol is not None: kwargs['vol'] = ring_vol gateway.write_to_hub(gateway.sid, **kwargs) def stop_ringtone_service(call): """Service to stop playing ringtone on Gateway.""" gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, mid=10000) def add_device_service(call): """Service to add a new sub-device within the next 30 seconds.""" gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, join_permission='yes') hass.components.persistent_notification.async_create( 'Join permission enabled for 30 seconds! ' 'Please press the pairing button of the new device once.', title='Xiaomi Aqara Gateway') def remove_device_service(call): """Service to remove a sub-device from the gateway.""" device_id = call.data.get(ATTR_DEVICE_ID) gateway = call.data.get(ATTR_GW_MAC) gateway.write_to_hub(gateway.sid, remove_device=device_id) gateway_only_schema = _add_gateway_to_schema(xiaomi, vol.Schema({})) hass.services.register( DOMAIN, SERVICE_PLAY_RINGTONE, play_ringtone_service, schema=_add_gateway_to_schema(xiaomi, SERVICE_SCHEMA_PLAY_RINGTONE)) hass.services.register( DOMAIN, SERVICE_STOP_RINGTONE, stop_ringtone_service, schema=gateway_only_schema) hass.services.register( DOMAIN, SERVICE_ADD_DEVICE, add_device_service, schema=gateway_only_schema) hass.services.register( DOMAIN, SERVICE_REMOVE_DEVICE, remove_device_service, schema=_add_gateway_to_schema(xiaomi, SERVICE_SCHEMA_REMOVE_DEVICE)) return True class XiaomiDevice(Entity): """Representation a base Xiaomi device.""" def __init__(self, device, device_type, xiaomi_hub): """Initialize the Xiaomi device.""" self._state = None self._is_available = True self._sid = device['sid'] self._name = '{}_{}'.format(device_type, self._sid) self._type = device_type self._write_to_hub = xiaomi_hub.write_to_hub self._get_from_hub = xiaomi_hub.get_from_hub self._device_state_attributes = {} self._remove_unavailability_tracker = None self._xiaomi_hub = xiaomi_hub self.parse_data(device['data'], device['raw_data']) self.parse_voltage(device['data']) if hasattr(self, '_data_key') \ and self._data_key: # pylint: disable=no-member self._unique_id = slugify("{}-{}".format( self._data_key, # pylint: disable=no-member self._sid)) else: self._unique_id = slugify("{}-{}".format(self._type, self._sid)) def _add_push_data_job(self, *args): self.hass.add_job(self.push_data, *args) async def async_added_to_hass(self): """Start unavailability tracking.""" self._xiaomi_hub.callbacks[self._sid].append(self._add_push_data_job) self._async_track_unavailable() @property def name(self): """Return the name of the device.""" return self._name @property def unique_id(self) -> str: """Return a unique ID.""" return self._unique_id @property def available(self): """Return True if entity is available.""" return self._is_available @property def should_poll(self): """Return the polling state. No polling needed.""" return False @property def device_state_attributes(self): """Return the state attributes.""" return self._device_state_attributes @callback def _async_set_unavailable(self, now): """Set state to UNAVAILABLE.""" self._remove_unavailability_tracker = None self._is_available = False self.async_schedule_update_ha_state() @callback def _async_track_unavailable(self): if self._remove_unavailability_tracker: self._remove_unavailability_tracker() self._remove_unavailability_tracker = async_track_point_in_utc_time( self.hass, self._async_set_unavailable, utcnow() + TIME_TILL_UNAVAILABLE) if not self._is_available: self._is_available = True return True return False @callback def push_data(self, data, raw_data): """Push from Hub.""" _LOGGER.debug("PUSH >> %s: %s", self, data) was_unavailable = self._async_track_unavailable() is_data = self.parse_data(data, raw_data) is_voltage = self.parse_voltage(data) if is_data or is_voltage or was_unavailable: self.async_schedule_update_ha_state() def parse_voltage(self, data): """Parse battery level data sent by gateway.""" if 'voltage' not in data: return False max_volt = 3300 min_volt = 2800 voltage = data['voltage'] voltage = min(voltage, max_volt) voltage = max(voltage, min_volt) percent = ((voltage - min_volt) / (max_volt - min_volt)) * 100 self._device_state_attributes[ATTR_BATTERY_LEVEL] = round(percent, 1) return True def parse_data(self, data, raw_data): """Parse data sent by gateway.""" raise NotImplementedError() def _add_gateway_to_schema(xiaomi, schema): """Extend a voluptuous schema with a gateway validator.""" def gateway(sid): """Convert sid to a gateway.""" sid = str(sid).replace(':', '').lower() for gateway in xiaomi.gateways.values(): if gateway.sid == sid: return gateway raise vol.Invalid('Unknown gateway sid {}'.format(sid)) gateways = list(xiaomi.gateways.values()) kwargs = {} # If the user has only 1 gateway, make it the default for services. if len(gateways) == 1: kwargs['default'] = gateways[0] return schema.extend({ vol.Required(ATTR_GW_MAC, **kwargs): gateway })
33.006006
77
0.672186
[ "Apache-2.0" ]
phispi/home-assistant
homeassistant/components/xiaomi_aqara.py
10,991
Python
from abc import ABC, abstractmethod import numpy as np from .constants import EPSILON import torch class Loss(ABC): def __init__(self, expected_output, predict_output): self._expected_output = expected_output self._predict_output = predict_output @abstractmethod def get_loss(self): pass def crossEntropy(expected_output, predict_output): return -(expected_output * torch.log(predict_output) + (1-expected_output) * torch.log(1-predict_output+EPSILON)).mean() def l2(expected_output, predict_output): return ((predict_output - expected_output) ** 2).mean()
25.875
78
0.724638
[ "MIT" ]
exitudio/neural-network-pytorch
exit/losses.py
621
Python
# coding: utf-8 # # Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python file with invalid syntax, used by scripts/linters/ python_linter_test.py. This file doesnot import from __future__. """ class FakeClass: """This is a fake docstring for valid syntax purposes.""" def __init__(self, fake_arg): self.fake_arg = fake_arg def fake_method(self, name): """This doesn't do anything. Args: name: str. Means nothing. Yields: tuple(str, str). The argument passed in but twice in a tuple. """ yield (name, name)
30.421053
74
0.693772
[ "Apache-2.0" ]
Aarjav-Jain/oppia
scripts/linters/test_files/invalid_python_three.py
1,156
Python
import numpy as np import matplotlib.pyplot as plt import scipy.interpolate as ip from scipy.ndimage import gaussian_filter1d from utils.helpers import find_index, peakdet, replace_nan from params import fall_params def calc_fall_flush_timings_durations(flow_matrix, summer_timings): max_zero_allowed_per_year = fall_params['max_zero_allowed_per_year'] max_nan_allowed_per_year = fall_params['max_nan_allowed_per_year'] min_flow_rate = fall_params['min_flow_rate'] sigma = fall_params['sigma'] # Smaller filter to find fall flush peak wet_sigma = fall_params['wet_sigma'] # Larger filter to find wet season peak peak_sensitivity = fall_params['peak_sensitivity'] # smaller is more peak max_flush_duration = fall_params['max_flush_duration'] # Maximum duration from start to end, for fall flush peak wet_threshold_perc = fall_params['wet_threshold_perc'] # Return to wet season flow must be certain percentage of that year's max flow flush_threshold_perc = fall_params['flush_threshold_perc'] # Size of flush peak, from rising limb to top of peak, has great enough change min_flush_threshold = fall_params['min_flush_threshold'] date_cutoff = fall_params['date_cutoff'] # Latest accepted date for fall flush, in Julian Date counting from Oct 1st = 0. (i.e. Dec 15th = 75) start_dates = [] wet_dates = [] durations = [] mags = [] for column_number, column_flow in enumerate(flow_matrix[0]): start_dates.append(None) wet_dates.append(None) durations.append(None) mags.append(None) """Check to see if water year has more than allowed nan or zeros""" if np.isnan(flow_matrix[:, column_number]).sum() > max_nan_allowed_per_year or np.count_nonzero(flow_matrix[:, column_number]==0) > max_zero_allowed_per_year or max(flow_matrix[:, column_number]) < min_flow_rate: continue; """Get flow data""" flow_data = flow_matrix[:, column_number] x_axis = list(range(len(flow_data))) """Interpolate between None values""" flow_data = replace_nan(flow_data) """Return to Wet Season""" wet_filter_data = gaussian_filter1d(flow_data, wet_sigma) return_date = return_to_wet_date(wet_filter_data, wet_threshold_perc) wet_dates[-1] = return_date + 10 """Filter noise data with small sigma to find fall flush hump""" filter_data = gaussian_filter1d(flow_data, sigma) """Fit spline""" x_axis = list(range(len(filter_data))) spl = ip.UnivariateSpline(x_axis, filter_data, k=3, s=3) """Find the peaks and valleys of the filtered data""" mean_flow = np.nanmean(filter_data) maxarray, minarray = peakdet(spl(x_axis), mean_flow * peak_sensitivity) """Find max and min of filtered flow data""" max_flow = max(filter_data[20:]) max_flow_index = find_index(filter_data[20:], max_flow) + 20 min_flow = min(wet_filter_data[:max_flow_index]) """If could not find any max and find""" if not list(maxarray) or not list(minarray) or minarray[0][0] > max_flow_index: continue; """Get flow magnitude threshold from previous summer's baseflow""" baseflows = [] if column_number == 0: wet_date = wet_dates[0] baseflow = list(flow_matrix[:wet_date, column_number]) bs_mean = np.mean(baseflow) bs_med = np.nanpercentile(baseflow, 50) else: summer_date = summer_timings[column_number -1] if wet_dates[column_number] > 20: wet_date = wet_dates[column_number] - 20 baseflow = list(flow_matrix[summer_date:,column_number -1]) + list(flow_matrix[:wet_date, column_number]) bs_mean = np.mean(baseflow) bs_med = np.nanpercentile(baseflow, 50) """Get fall flush peak""" counter = 0 half_duration = int(max_flush_duration/2) # Only test duration for first half of fall flush peak if bs_med > 25: min_flush_magnitude = bs_med * 1.5 # if median baseflow is large (>25), magnitude threshold is 50% above median baseflow of previous summer else: min_flush_magnitude = bs_med * 2 # otherwise magnitude threshold is 100% above median baseflow of previous summer if min_flush_magnitude < min_flush_threshold: min_flush_magnitude = min_flush_threshold for flow_index in maxarray: if counter == 0: if flow_index[0] < half_duration and flow_index[0] != 0 and flow_index[1] > wet_filter_data[int(flow_index[0])] and flow_index[1] > min_flush_magnitude: """if index found is before the half duration allowed""" start_dates[-1]=int(flow_index[0]) mags[-1]=flow_index[1] break elif bool((flow_index[1] - spl(maxarray[counter][0] - half_duration)) / flow_index[1] > flush_threshold_perc or minarray[counter][0] - maxarray[counter][0] < half_duration) and flow_index[1] > wet_filter_data[int(flow_index[0])] and flow_index[1] > min_flush_magnitude: """If peak and valley is separted by half duration, or half duration to the left is less than 30% of its value""" start_dates[-1]=int(flow_index[0]) mags[-1]=flow_index[1] break elif counter == len(minarray): start_dates[-1]=None mags[-1]=None break; elif bool(minarray[counter][0] - maxarray[counter][0] < half_duration or maxarray[counter][0] - minarray[counter-1][0] < half_duration) and bool(flow_index[1] > wet_filter_data[int(flow_index[0])] and flow_index[1] > min_flush_magnitude and flow_index[0] <= date_cutoff): """valley and peak are distanced by less than half dur from either side""" start_dates[-1]=int(flow_index[0]) mags[-1]=flow_index[1] break elif (spl(flow_index[0] - half_duration) - min_flow) / (flow_index[1] - min_flow) < flush_threshold_perc and (spl(flow_index[0] + half_duration) - min_flow) / (flow_index[1] - min_flow) < flush_threshold_perc and flow_index[1] > wet_filter_data[int(flow_index[0])] and flow_index[1] > min_flush_magnitude and flow_index[0] <= date_cutoff: """both side of flow value at the peak + half duration index fall below flush_threshold_perc""" start_dates[-1]=int(flow_index[0]) mags[-1]=flow_index[1] break counter = counter + 1 """Check to see if last start_date falls behind the max_allowed_date""" if bool(start_dates[-1] is None or start_dates[-1] > wet_dates[-1]) and wet_dates[-1]: start_dates[-1] = None mags[-1] = None """Get duration of each fall flush""" current_duration, left, right = calc_fall_flush_durations_2(filter_data, start_dates[-1]) durations[-1] = current_duration _plotter(x_axis, flow_data, filter_data, wet_filter_data, start_dates, wet_dates, column_number, left, right, maxarray, minarray, min_flush_magnitude) return start_dates, mags, wet_dates, durations def calc_fall_flush_durations(flow_data, wet_filter_data, date): duration_left = None duration_right = None duration = None if date: date = int(date) for index_left, flow_left in enumerate(reversed(flow_data[:date])): if flow_left < wet_filter_data[date - index_left]: duration_left = index_left break for index_right, flow_right in enumerate(flow_data[date:]): if flow_right < wet_filter_data[date + index_right]: duration_right = index_right break if duration_left and duration_right: duration = duration_left + duration_right else: duration = None return duration def calc_fall_flush_durations_2(filter_data, date): """Left side sharp""" der_percent_threshold_left = 50 # Slope of rising limb (i.e. derivative) must be "sharp" flow_percent_threshold_left = 80 """Right side mellow""" der_percent_threshold_right = 30 # Slope of falling limb (i.e. derivative) has lower requirement to be part of flush duration flow_percent_threshold_right = 80 duration = None left = 0 right = 0 if date or date == 0: date = int(date) left_maxarray, left_minarray = peakdet(filter_data[:date], 0.01) right_maxarray, right_minarray = peakdet(filter_data[date:], 0.01) if not list(left_minarray): left = 0 else: left = int(left_minarray[-1][0]) if not list(right_minarray): right = 0 else: right = int(date - 2 + right_minarray[0][0]) if date - left > 10: """create spline, and find derivative""" x_axis_left = list(range(len(filter_data[left:date]))) spl_left = ip.UnivariateSpline(x_axis_left, filter_data[left:date], k=3, s=3) spl_first_left = spl_left.derivative(1) """check if derivative value falls below certain threshold""" spl_first_left_median = np.nanpercentile(spl_first_left(x_axis_left), der_percent_threshold_left) """check if actual value falls below threshold, avoiding the rounded peak""" median_left = np.nanpercentile(list(set(filter_data[left:date])), flow_percent_threshold_left) for index_left, der in enumerate(reversed(spl_first_left(x_axis_left))): # print(der < spl_first_left_median, filter_data[date - index_left] < median_left) if der < spl_first_left_median and filter_data[date - index_left] < median_left: left = date - index_left break if right - date > 10: x_axis_right = list(range(len(filter_data[date:right]))) spl_right = ip.UnivariateSpline(x_axis_right, filter_data[date:right], k=3, s=3) spl_first_right = spl_right.derivative(1) spl_first_right_median = abs(np.nanpercentile(spl_first_right(x_axis_right), der_percent_threshold_right)) median_right = np.nanpercentile(list(set(filter_data[date:right])), flow_percent_threshold_right) for index_right, der in enumerate(spl_first_right(x_axis_right)): # print(date+index_right, der < spl_first_right_median, filter_data[date + index_right] < median_right) if abs(der) < spl_first_right_median and filter_data[date + index_right] < median_right: right = date + index_right break if left: duration = int(date - left) elif not left and right: duration = int(right - date) else: duration = 0 return duration, left, right def return_to_wet_date(wet_filter_data, wet_threshold_perc): max_wet_peak_mag = max(wet_filter_data[20:]) max_wet_peak_index = find_index(wet_filter_data, max_wet_peak_mag) min_wet_peak_mag = min(wet_filter_data[:max_wet_peak_index]) """Loop backwards from max flow index to beginning, to search for wet season""" for index, value in enumerate(reversed(wet_filter_data[:max_wet_peak_index])): if index == len(wet_filter_data[:max_wet_peak_index] - 1): return None elif (value - min_wet_peak_mag) / (max_wet_peak_mag - min_wet_peak_mag) < wet_threshold_perc: """If value percentage falls below wet_threshold_perc""" return_date = max_wet_peak_index - index return return_date def _plotter(x_axis, flow_data, filter_data, wet_filter_data, start_dates, wet_dates, column_number, left, right, maxarray, minarray, min_flush_magnitude): plt.figure() #plt.plot(x_axis, flow_data, '-') plt.plot(x_axis, filter_data, '-', color='#5993E5') #greyish blue #plt.plot(x_axis, wet_filter_data) # for data in maxarray: # plt.plot(data[0], data[1], '^') # for data in minarray: # plt.plot(data[0], data[1], 'v') if start_dates[-1] is not None: plt.axvline(start_dates[-1], color='blue', ls=':') plt.axvline(wet_dates[-1], color="green", ls=':') #plt.axvline(left, ls=":") #plt.axvline(right, ls=":") if min_flush_magnitude is not None: plt.axhline(min_flush_magnitude, ls=':', color = 'red') #plt.yscale('log') plt.savefig('post_processedFiles/Boxplots/{}.png'.format(column_number))
48.59387
350
0.653552
[ "MIT" ]
NoellePatterson/func-flow-plot
utils/calc_fall_flush.py
12,683
Python
from prometheus_client import start_http_server, Gauge, Counter all_users = Gauge('users_in_all_guilds', 'All users the bot is able to see.') all_guilds = Gauge('guilds_bot_is_in', 'The amount of guilds the bot is in.') ready_events = Counter('ready_events', 'Amount of READY events recieved during uptime.') message_events = Counter('message_events', 'Amount of messages sent during uptime.') reconnects = Counter('reconnects', 'Amount of reconnects the bot has done to Discords API.') def startup_prometheus(): start_http_server(9091)
45.333333
92
0.775735
[ "MIT" ]
trilleplay/kanelbulle
bot/utils/prometheus_tools.py
544
Python
"""projeto URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from blog import views "Nome do App blog + views" urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$', views.index), ]
33.72
79
0.698695
[ "MIT" ]
godah/s2b-python
projeto/urls.py
843
Python
# -*- coding: utf-8 -*- import logging from ocp_resources.constants import PROTOCOL_ERROR_EXCEPTION_DICT from ocp_resources.resource import TIMEOUT, Resource from ocp_resources.utils import TimeoutSampler LOGGER = logging.getLogger(__name__) class CDIConfig(Resource): """ CDIConfig object. """ api_group = Resource.ApiGroup.CDI_KUBEVIRT_IO @property def scratch_space_storage_class_from_spec(self): return self.instance.spec.scratchSpaceStorageClass @property def scratch_space_storage_class_from_status(self): return self.instance.status.scratchSpaceStorageClass @property def upload_proxy_url(self): return self.instance.status.uploadProxyURL def wait_until_upload_url_changed(self, uploadproxy_url, timeout=TIMEOUT): """ Wait until upload proxy url is changed Args: timeout (int): Time to wait for CDI Config. Returns: bool: True if url is equal to uploadProxyURL. """ LOGGER.info( f"Wait for {self.kind} {self.name} to ensure current URL == uploadProxyURL" ) samples = TimeoutSampler( wait_timeout=timeout, sleep=1, exceptions_dict=PROTOCOL_ERROR_EXCEPTION_DICT, func=self.api.get, field_selector=f"metadata.name=={self.name}", ) for sample in samples: if sample.items: status = sample.items[0].status current_url = status.uploadProxyURL if current_url == uploadproxy_url: return
27.965517
87
0.646732
[ "Apache-2.0" ]
amastbau/openshift-python-wrapper
ocp_resources/cdi_config.py
1,622
Python
"""Database schemas, examples, and tools""" import copy from warnings import warn from cerberus import Validator from .sorters import POSITION_LEVELS SORTED_POSITION = sorted(POSITION_LEVELS.keys(), key=POSITION_LEVELS.get) ACTIVITIES_TYPE = ["teaching", "research"] AGENCIES = ["nsf", "doe"] APPOINTMENTS_TYPE = ["gra", "ss", "pd", "ug"] COMMITTEES_TYPE = ["phdoral", "phddefense", "phdproposal", "promotion"] COMMITTEES_LEVEL = ["department", "school", "university", "external"] EXPENSES_TYPE = ["unsubmitted", "submitted", "reimbursed"] FACILITIES_TYPE = ["teaching", "research", "shared", "other", "teaching_wish", "research_wish"] POSITION_STATUS = ["pi", "adjunct", "high-school", "undergrad","ms", "phd", "postdoc","visitor-supported","visitor-unsupported"] PRESENTATION_TYPE = ["award", "colloquium", "contributed_oral", "invited", "keynote", "plenary", "poster", "seminar", "tutorial"] PRESENTATION_STATUS = ["in-prep", "submitted", "accepted", "declined", "cancelled", "postponed"] PROJECT_TYPE = ["ossoftware", "funded"] PROPOSAL_STATI = ["pending", "declined", "accepted", "inprep", "submitted"] PUBLICITY_TYPE = ["online", "article"] REVIEW_STATI = ["invited", "accepted", "declined", "downloaded", "inprogress", "submitted", "cancelled"] REVIEW_RECOMMENDATION = ["reject", "asis", "smalledits", "diffjournal", "majoredits"] SERVICE_TYPE = ["profession", "university", "school", "department"] EXEMPLARS = { "abstracts": { "_id": "Mouginot.Model", "coauthors": "P.P.H. Wilson", "email": "[email protected]", "firstname": "Baptiste", "institution": "University of Wisconsin-Madison", "lastname": "Mouginot", "references": "[1] B. MOUGINOT, “cyCLASS: CLASS " "models for Cyclus,”, Figshare, " "https://dx.doi.org/10.6084/" "m9.figshare.3468671.v2 (2016).", "text": "The CLASS team has developed high " "quality predictors based on pre-trained " "neural network...", "timestamp": "5/5/2017 13:15:59", "title": "Model Performance Analysis", }, "assignments": { "_id": "hw01-rx-power", "category": "homework", "courses": ["EMCH-558-2016-S", "EMCH-758-2016-S"], "points": [1, 2, 3], "questions": ["1-9", "1-10", "1-12"], }, "beamplan": { '_id': "test", 'beamtime': '2020-1-XPD', 'begin_date': '2020-01-01', 'end_date': '2020-01-02', 'devices': ['cryostream'], 'exp_plan': ['load samples on the holder', 'scan the holder to locate the samples', 'take room temperature measurement of sample and the subtrate', 'ramp down temperature to 100K', 'ramp up, measure PDF at temperature 100K ~ 300K, 10K stepsize, 1 min exposure'], 'holder': 'film holder (1 cm * 1 cm * 1 mm)', 'measurement': 'Tramp', 'objective': 'temperature ramping PDF of one WO3 film (100, 300K, 10K)', 'pipeline': 'usual', 'prep_plan': ['films will be made by kriti'], 'project': '20ks_wo3', 'project_lead': 'kseth', 'samples': ['WO3 film', 'glass subtrate'], 'scanplan': ['Scanplan(bt, Tramp, 30, 80, 500, 10)'], 'ship_plan': ['seal and ship to CU', 'carry to the beamline'], 'time': 190, 'todo': ["todo something"]}, "beamtime": { "_id": "2020-1-XPD", "begin_date": "2020-02-14", "begin_time": "8:00 am", "end_date": "2020-02-17", "end_time": "8:00 am" }, "blog": { "_id": "my-vision", "author": "Anthony Scopatz", "day": 18, "month": "September", "original": "https://scopatz.com/my-vision/", "post": "I would like see things move forward. Deep, I know!", "title": "My Vision", "year": 2015, }, "citations": { "_id": "meurer2016sympy", "author": [ "Meurer, Aaron", "Smith, Christopher P", "Paprocki, Mateusz", "{\\v{C}}ert{\\'\\i}k, Ond{\\v{r}}ej", "Rocklin, Matthew", "Kumar, AMiT", "Ivanov, Sergiu", "Moore, Jason K", "Singh, Sartaj", "Rathnayake, Thilina", "Sean Vig", "Brian E Granger", "Richard P Muller", "Francesco Bonazzi", "Harsh Gupta", "Shivam Vats", "Fredrik Johansson", "Fabian Pedregosa", "Matthew J Curry", "Ashutosh Saboo", "Isuru Fernando", "Sumith Kulal", "Robert Cimrman", "Anthony Scopatz", ], "doi": "10.1021/nn501591g", "entrytype": "article", "journal": "PeerJ Computer Science", "month": "Jan", "pages": "e103", "publisher": "PeerJ Inc. San Francisco, USA", "synopsis": "The description of symbolic computing in Python", "tags": "pdf", "title": "SymPy: Symbolic computing in Python", "volume": "4", "year": "2017", }, "contacts": { "_id": "afriend", "aka": [ "A. B. Friend", "AB Friend", "Tony Friend" ], "department": "physics", "email": "[email protected]", "institution": "columbiau", "name": "Anthony B Friend", "notes": ["The guy I meet for coffee sometimes"], "title": "Mr.", "month": "January", "year": 2020, "day": 15, "uuid": "76f2a4c7-aa63-4fa3-88b5-396b0c15d368", }, "courses": { "_id": "EMCH-552-2016-F", "active": False, "department": "EMCH", "number": 552, "scale": [ [0.875, "A"], [0.8125, "B+"], [0.75, "B"], [0.6875, "C+"], [0.625, "C"], [0.5625, "D+"], [0.5, "D"], [-1.0, "F"], ], "season": "F", "students": ["Human A. Person", "Human B. Person"], "syllabus": "emch552-2016-f-syllabus.pdf", "weights": { "class-notes": 0.15, "final": 0.3, "homework": 0.35, "midterm": 0.2, }, "year": 2016, }, "expenses": { "_id": "test", "expense_type": "business", "grant_percentages": ["50", "50"], "grants": ["dmref15", "SymPy-1.1"], "itemized_expenses": [ { "day": i, "month": "Jan", "year": 2018, "purpose": "test", "unsegregated_expense": 10 * i, "segregated_expense": 0, } for i in range(1, 11) ], "payee": "scopatz", "project": "Cyclus", "overall_purpose": "testing the databallectionsse", }, "grades": { "_id": "Human A. Person-rx-power-hw02-EMCH-758-2017-S", "student": "hap", "assignment": "2017-rx-power-hw02", "course": "EMCH-758-2017-S", "scores": [1, 1.6, 3], }, "grants": [ { "_id": "SymPy-1.1", "amount": 3000.0, "alias": "sym", "begin_day": 1, "begin_month": "May", "begin_year": 2030, "call_for_proposals": "https://groups.google.com/d/msg" "/numfocus/wPjhdm8NJiA/S8JL1_NZDQAJ", "end_day": 31, "end_month": "December", "end_year": 2030, "funder": "NumFOCUS", "narrative": "https://docs.google.com/document/d/1nZxqoL" "-Ucni_aXLWmXtRDd3IWqW0mZBO65CEvDrsXZM/edit?usp" "=sharing", "program": "Small Development Grants", "team": [ { "institution": "University of South Carolina", "name": "Anthony Scopatz", "position": "pi", }, { "institution": "University of South Carolina", "name": "Aaron Meurer", "position": "researcher", }, ], "status": "pending", "title": "SymPy 1.1 Release Support", "budget": [ {"begin_date": "2030-05-01", "end_date": "2030-06-30", "student_months": 0.5, "postdoc_months": 0.0, "ss_months": 1.0, "amount": 1000.0, }, {"begin_date": "2030-07-01", "end_date": "2030-09-30", "student_months": 1.5, "postdoc_months": 0.0, "ss_months": 2.0, "amount": 1000.0, }, {"begin_date": "2030-10-01", "end_date": "2030-12-31", "student_months": 3.0, "postdoc_months": 0.0, "ss_months": 0.0, "amount": 1000.0, }, ], "proposal_id": "SymPy-1.1" }, { "_id": "SymPy-2.0", "amount": 3000.0, "alias": "sym2.0", "begin_day": 1, "begin_month": 6, "begin_year": 2019, "call_for_proposals": "https://groups.google.com/d/msg" "/numfocus/wPjhdm8NJiA/S8JL1_NZDQAJ", "end_day": 31, "end_month": "December", "end_year": 2030, "funder": "NumFOCUS", "narrative": "https://docs.google.com/document/d/1nZxqoL" "-Ucni_aXLWmXtRDd3IWqW0mZBO65CEvDrsXZM/edit?usp" "=sharing", "program": "Small Development Grants", "team": [ { "institution": "University of South Carolina", "name": "Anthony Scopatz", "position": "pi", }, { "institution": "University of South Carolina", "name": "Aaron Meurer", "position": "researcher", }, ], "status": "pending", "title": "SymPy 1.1 Release Support", "budget": [ {"begin_date": "2019-06-01", "end_date": "2024-12-31", "student_months": 12.0, "postdoc_months": 24.0, "ss_months": 14.0, "amount": 1500.0, }, {"begin_date": "2025-01-01", "end_date": "2030-12-31", "student_months": 12.0, "postdoc_months": 24.0, "ss_months": 0.0, "amount": 1500.0, }, ], "proposal_id": "SymPy-2.0", }, { "_id": "dmref15", "alias": "dmref15", "account": "GG012345", "amount": 982785.0, "funder": "NSF", "grant_id": "DMREF-1534910", "institution": "Columbia University", "notes": "Designing Materials to Revolutionize and Engineer our " "Future (DMREF)", "person_months_academic": 0.0, "person_months_summer": 0.25, "program": "DMREF", "scope": "This grant is to develop complex modeling methods for regularizing " "ill-posed nanostructure inverse problems using data analytic and " "machine learning based approaches. This does not overlap with any " "other grant.", "team": [ { "institution": "Columbia University", "name": "qdu", "position": "co-pi", }, { "institution": "Columbia University", "name": "dhsu", "position": "co-pi", }, { "institution": "Columbia University", "name": "Anthony Scopatz", "position": "pi", "subaward_amount": 330000.0, }, ], "title": "DMREF: Novel, data validated, nanostructure determination " "methods for accelerating materials discovery", "budget": [ {"begin_date": "2018-05-01", "end_date": "2018-09-30", "student_months": 12.0, "postdoc_months": 0.0, "ss_months": 6.0, "amount": 327595.0, }, {"begin_date": "2018-10-01", "end_date": "2019-01-30", "student_months": 8.0, "postdoc_months": 0.0, "ss_months": 12.0, "amount": 327595.0, }, {"begin_date": "2019-02-01", "end_date": "2019-05-01", "student_months": 12.0, "postdoc_months": 0.0, "ss_months": 6.0, "amount": 327595.0, }, ], "proposal_id": "dmref15" }, {"_id": "abc42", "alias": "abc42", "amount": 42000.0, "begin_date": "2020-06-01", "end_date": "2020-12-31", "funder": "Life", "program": "Metaphysical Grants", "team": [ {"institution": "University of Pedagogy", "name": "Chief Pedagogue", "position": "pi" }, {"institution": "University of Pedagogy", "name": "Pedagogue Jr.", "position": "co-pi" }, ], "title": "The answer to life, the universe, and everything", "budget": [ {"begin_date": "2020-06-01", "end_date": "2020-12-31", "student_months": 0.0, "postdoc_months": 0.0, "ss_months": 1.0, "amount": 42000.0, } ], "proposal_id": "abc42", }, {"_id": "ta", "amount": 0.0, "begin_date": "2020-06-01", "end_date": "2020-12-31", "funder": "Life", "program": "Underground Grants", "team": [ {"institution": "Ministry of Magic", "name": "Chief Witch", "position": "pi" }, {"institution": "Ministry of Magic", "name": "Chief Wizard", "position": "co-pi" }, ], "title": "Support for teaching assistants", "budget": [ {"begin_date": "2020-06-01", "end_date": "2020-08-30", "student_months": 0.0, "postdoc_months": 0.0, "ss_months": 0.0, "amount": 0.0, } ] }, ], "groups": { "_id": "ergs", "pi_name": "Anthony Scopatz", "department": "Mechanical Engineering", "institution": "University of South Carolina", "name": "ERGS", "aka": ["Energy Research Group Something", "Scopatz Group"], "website": "www.ergs.sc.edu", "mission_statement": """<b>ERGS</b>, or <i>Energy Research Group: Scopatz</i>, is the Computational <a href="http://www.me.sc.edu/nuclear/">Nuclear Engineering</a> research group at the <a href="http://sc.edu/">University of South Carolina</a>. Our focus is on uncertainty quantification & predictive modeling, nuclear fuel cycle simulation, and improving nuclear engineering techniques through automation. We are committed to open & accessible research tools and methods.""", "projects": """ERGS is involved in a large number of computational projects. Please visit the <a href="projects.html">projects page</a> for more information! """, "email": "<b>scopatz</b> <i>(AT)</i> <b>cec.sc.edu</b>", }, "institutions": [{ "_id": "columbiau", "aka": ["Columbia University", "Columbia"], "city": "New York", "country": "USA", "day": 30, "departments": { "physics": { "name": "Department of Physics", "aka": ["Dept. of Physics", "Physics"], }, "chemistry": { "name": "Department of Chemistry", "aka": ["Chemistry", "Dept. of Chemistry"], }, "apam": { "name": "Department of Applied Physics " "and Applied Mathematics", "aka": ["APAM"], }, }, "month": "May", "name": "Columbia University", "schools": { "seas": { "name": "School of Engineering and " "Applied Science", "aka": [ "SEAS", "Columbia Engineering", "Fu Foundation School of Engineering " "and Applied Science", ], } }, "state": "NY", "street": "500 W 120th St", "updated": "2020-05-30", "uuid": "avacazdraca345rfsvwre", "year": 2020, "zip": "10027", }, { "_id": "usouthcarolina", "aka": ["The University of South Carolina"], "city": "Columbia", "country": "USA", "day": 30, "departments": { "physics": { "name": "Department of Physics", "aka": ["Dept. of Physics", "Physics"], }, "chemistry": { "name": "Department of Chemistry", "aka": ["Chemistry", "Dept. of Chemistry"], }, "apam": { "name": "Department of Applied Physics" "and Applied Mathematics", "aka": ["APAM"], }, "mechanical engineering": { "name": "Department of Mechanical Engineering", "aka": ["Mechanical", "Dept. of Mechanical"], } }, "month": "May", "name": "The University of South Carolina", "schools": { "cec": { "name": "College of Engineering and" "Computing", "aka": [ "CEC", "College of Engineering and Computing", ], } }, "state": "SC", "street": "1716 College Street", "updated": "2020-06-30", "uuid": "4E89A0DD-19AE-45CC-BCB4-83A2D84545E3", "year": 2020, "zip": "29208", }, ], "jobs": { "_id": "0004", "background_fields": [ "Data Science", "Data Engineering", "Computer Engineering", "Computer Science", "Applied Mathematics", "Physics", "Nuclear Engineering", "Mechanical Engineering", "Or similar", ], "compensation": [ "Salary and compensation will be based on prior work " "experience." ], "contact": "Please send CV or resume to Prof. Scopatz at " "scopatzATcec.sc.edu.", "day": 1, "description": "<p>We are seeking a dedicated individual to " "help to aid in ...", "month": "July", "open": False, "positions": ["Scientific Software Developer", "Programmer"], "start_date": "ASAP", "title": "Open Source Scientific Software Maintainer", "year": 2015, }, "meetings": [{ "_id": "grp1000-01-01", "actions": [ "(Everyone) Update overdue milestones", "(Professor Billinge) Explore, and plan a machine learning project for DSI" "(Professor Billinge, Emil, Yevgeny, Songsheng) Come up with a Kaggle competition for this DSI project" "(Emil) Set up the slack channel for the DSI project" ], "agenda": ["Review actions", "Fargo is not free on any streaming platforms", "Review Airtable for deliverables and celebrate", "Mention diversity action initiative", "Songsheng's journal club presentation", "(Vivian and Zicheng) Finish rest of crystallography presentation next week", "Emil's 7th inning Yoga Stretch", "Crystallography talk", "Presentation"], "buddies": [ " Jaylyn C. Umana, " " Simon J. L. Billinge", " Long Yang, " " Emil Kjaer", " Sani Harouna-Mayer," " Akshay Choudhry", " Vivian Lin, " " Songsheng Tao", " Ran Gu, " " Adiba Ejaz", " Zach Thatcher, " " Yevgeny Rakita", " Zicheng 'Taylor' Liu, " " Eric Shen ", " Hung Vuong, " " Daniela Hikari Yano", " Ahmed Shaaban, " " Jiawei Zang", " Berrak Ozer, " " Michael Winitch", " Shomik Ghose", ], "day": 1, "journal_club": { "doi": "10.1107/S2053273319005606", "presenter": "sbillinge", }, "lead": "sbillinge", "minutes": [ "Talked about eyesight and prescription lenses", "Professor Billinge tells everyone a Logician/Mathematician joke", "Mentioned pyjokes, a package in Python that lists bad jokes", "Jaylyn greets everyone", "Reviewed action items from last time", "Talked about fargo, and the merits (or lack thereof) of the Dakotas", "Celebrated finished prums", "Songhsheng holds journal club presentation on Machine Learning techniques", "Discussed Linear Classification, Gradient Descent, Perceptrons, Convolution and other ML topics", "Discussed how we can derive scientific meaning from ML algorithms", "Discussed real space versus reciprocal space", "Finished journal club, had to postpone Akshay's presentation, and the Yoga session to next week", ], "month": 1, "place": "Mudd 1106", "presentation": { "title": "PDF Distance Extraction", "link": "2007ac_grpmtg", "presenter": "sbillinge", }, "scribe": "sbillinge", "time": '0', "updated": "2020-07-31 23:27:50.764475", "uuid": "3fbee8d9-e283-48e7-948f-eecfc2a123b7", "year": 1000 }, { "_id": "grp2020-07-31", "actions": [ "(Everyone) Update overdue milestones", "(Professor Billinge) Explore, and plan a machine learning project for DSI" "(Professor Billinge, Emil, Yevgeny, Songsheng) Come up with a Kaggle competition for this DSI project" "(Emil) Set up the slack channel for the DSI project" ], "agenda": ["Review actions", "Fargo is not free on any streaming platforms", "Review Airtable for deliverables and celebrate", "Mention diversity action initiative", "Songsheng's journal club presentation", "(Vivian and Zicheng) Finish rest of crystallography presentation next week", "Emil's 7th inning Yoga Stretch", "Crystallography talk", "Presentation"], "buddies": [ " Jaylyn C. Umana, " " Simon J. L. Billinge", " Long Yang, " " Emil Kjaer", " Sani Harouna-Mayer," " Akshay Choudhry", " Vivian Lin, " " Songsheng Tao", " Ran Gu, " " Adiba Ejaz", " Zach Thatcher, " " Yevgeny Rakita", " Zicheng 'Taylor' Liu, " " Eric Shen ", " Hung Vuong, " " Daniela Hikari Yano", " Ahmed Shaaban, " " Jiawei Zang", " Berrak Ozer, " " Michael Winitch", " Shomik Ghose", ], "day": 1, "journal_club": { "doi": "10.1107/S2053273319005606", "presenter": "sbillinge", }, "lead": "sbillinge", "minutes": [ "Talked about eyesight and prescription lenses", "Professor Billinge tells everyone a Logician/Mathematician joke", "Mentioned pyjokes, a package in Python that lists bad jokes", "Jaylyn greets everyone", "Reviewed action items from last time", "Talked about fargo, and the merits (or lack thereof) of the Dakotas", "Celebrated finished prums", "Songhsheng holds journal club presentation on Machine Learning techniques", "Discussed Linear Classification, Gradient Descent, Perceptrons, Convolution and other ML topics", "Discussed how we can derive scientific meaning from ML algorithms", "Discussed real space versus reciprocal space", "Finished journal club, had to postpone Akshay's presentation, and the Yoga session to next week", ], "month": 1, "place": "Mudd 1106", "presentation": { "title": "PDF Distance Extraction", "link": "2007ac_grpmtg", "presenter": "sbillinge", }, "scribe": "sbillinge", "time": '0', "updated": "2020-07-31 23:27:50.764475", "uuid": "3fbee8d9-e283-48e7-948f-eecfc2a123b7", "year": 7000 } ], "news": { "_id": "56b4eb6d421aa921504ef2a9", "author": "Anthony Scopatz", "body": "Dr. Robert Flanagan joined ERGS as a post-doctoral " "scholar.", "day": 1, "month": "February", "year": 2016, }, "people": [{ "_id": "scopatz", "aka": [ "Scopatz", "Scopatz, A", "Scopatz, A.", "Scopatz, A M", "Anthony Michael Scopatz", ], "avatar": "https://avatars1.githubusercontent.com/u/320553?v" "=3&s=200", "appointments": { "f19": { "begin_year": 2019, "begin_month": 9, "begin_day": 1, "end_year": 2019, "end_month": 10, "end_day": 31, "grant": "dmref15", "type": "pd", "loading": 0.75, "status": "finalized", "notes": ["forgetmenot"] }, "s20": { "begin_date": "2020-01-01", "end_date": "2020-05-15", "grant": "sym", "type": "pd", "loading": 1.0, "status": "finalized", "notes": ["fully appointed", "outdated grant"] }, "ss20": { "begin_date": "2020-06-01", "end_date": "2020-08-31", "grant": "abc42", "type": "ss", "loading": 0.8, "status": "proposed", "notes": [] } }, "bio": "Anthony Scopatz is currently an Assistant Professor", "bios": ["Anthony Scopatz is currently an Assistant Professor but will go on to do great things"], "committees": [{ "name": "Heather Stanford", "type": "phdoral", "year": 2020, "month": 3, "day": 1, "level": "department", "unit": "apam" }, {"name": "Heather Stanford", "type": "promotion", "year": 2020, "month": 3, "day": 1, "level": "school", "unit": "seas" }, {"name": "Heather Stanford", "type": "phddefense", "year": 2020, "month": 3, "day": 1, "notes": "something else to remember about it, not published", "level": "external", "unit": "U Denmark" }, {"name": "Heather Stanford", "type": "promotion", "year": 2020, "month": 3, "day": 1, "unit": "columbiau", "level": "university", }], "education": [ { "advisor": "ascopatz", "begin_year": 2008, "degree": "Ph.D. Mechanical Engineering, " "Nuclear and Radiation Engineering " "Program", "end_year": 2011, "group": "ergs", "institution": "The University of Texas at Austin", "department": "apam", "location": "Austin, TX", "other": [ "Adviser: Erich A. Schneider", "Dissertation: Essential Physics for Fuel Cycle " "Modeling & Analysis", ], }, { "begin_year": 2006, "degree": "M.S.E. Mechanical Engineering, Nuclear and " "Radiation Engineering Program", "end_year": 2007, "institution": "The University of Texas at Austin", "location": "Austin, TX", "other": [ "Adviser: Erich A. Schneider", "Thesis: Recyclable Uranium Options under the Global " "Nuclear Energy Partnership", ], }, { "begin_year": 2002, "begin_month": "Sep", "begin_day": 1, "degree": "B.S. Physics", "end_year": 2006, "end_month": 5, "end_day": 20, "institution": "University of California, Santa Barbara", "location": "Santa Barbara, CA", "other": [ "Graduated with a Major in Physics and a Minor in " "Mathematics" ], }, { "begin_year": 2008, "degree": "ongoing", "group": "life", "institution": "solar system", "department": "earth", "location": "land, mostly", }, ], "email": "[email protected]", "employment": [ { "advisor": "ascopatz", "begin_year": 2015, "coworkers": ["afriend"], "group": "ergs", "location": "Columbia, SC", "organization": "The University of South Carolina", "other": [ "Cyclus: An agent-based, discrete time nuclear fuel " "cycle simulator.", "PyNE: The Nuclear Engineering Toolkit.", "Website: http://www.ergs.sc.edu/", ], "permanent": True, "position": "assistant professor", "position_full": "Assistant Professor, Mechanical Engineering " "Department", }, { "begin_year": 2013, "begin_month": "Jun", "begin_day": 1, "end_year": 2015, "end_month": 3, "end_day": 15, "location": "Madison, WI", "organization": "CNERG, The University of " "Wisconsin-Madison", "department": "Physics", "other": [ "Cyclus: An agent-based, discrete time nuclear fuel " "cycle simulator.", "PyNE: The Nuclear Engineering Toolkit.", "Website: https://cnerg.github.io/", ], "position": "associate scientist", "position_full": "Associate Scientist, Engineering Physics " "Department", }, { "begin_day": 1, "begin_month": "Nov", "begin_year": 2011, "end_month": "May", "end_year": 2013, "location": "Chicago, IL", "organization": "The FLASH Center, The University of " "Chicago", "other": [ "NIF: Simulation of magnetic field generation from " "neutral plasmas using FLASH.", "CosmoB: Simulation of magnetic field generation " "from neutral plasmas using FLASH.", "FLASH4: High-energy density physics capabilities " "and utilities.", "Simulated Diagnostics: Schlieren, shadowgraphy, " "Langmuir probes, etc. from FLASH.", "OpacPlot: HDF5-based equation of state and opacity " "file format.", "Website: http://flash.uchicago.edu/site/", ], "position": "post-doctoral scholar", "position_full": "Research Scientist, Postdoctoral Scholar", "status": "pi" }, ], "funding": [ { "name": "Omega Laser User's Group Travel Award", "value": 1100, "year": 2013, }, {"name": "NIF User's Group Travel Award", "value": 1150, "year": 2013}, ], "google_scholar_url": "https://scholar.google.com/citations?user=dRm8f", "github_id": "ascopatz", "hindex": [{ "h": 25, "h_last_five": 46, "citations": 19837, "citations_last_five": 9419, "origin": "Google Scholar", "since": 1991, "year": 2020, "month": 2, "day": 19 }], "home_address": { "street": "123 Wallabe Ln", "city": "The big apple", "state": "plasma", "zip": "007", }, "initials": "AMS", "membership": [ { "begin_year": 2006, "organization": "American Nuclear Society", "position": "Member", }, { "begin_year": 2013, "organization": "Python Software Foundation", "position": "Fellow", }, ], "name": "Anthony Scopatz", "orcid_id": "0000-0002-9432-4248", "position": "professor", "research_focus_areas": [ {"begin_year": 2010, "description": "software applied to nuclear " "engineering and life"} ], "service": [{ "name": "International Steering Committee", "role": "chair", "type": "profession", "year": 2020, "month": 3, "notes": ["something"], }, { "name": "National Steering Committee", "type": "profession", "begin_year": 2018, "end_year": 2021, "notes": "something", }, ], "skills": [ {"category": "Programming Languages", "level": "expert", "name": "Python"}, {"category": "Programming Languages", "level": "expert", "name": "Cython"}, ], "teaching": [ { "course": "EMCH 552: Intro to Nuclear Engineering", "courseid": "EMCH 552", "description": "This course is an introduction to nuclear " "physics.", "enrollment": "tbd", "month": "August", "organization": "University of South Carolina", "position": "professor", "semester": "Spring", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2017, }, { "course": "EMCH 558/758: Reactor Power Systems", "courseid": "EMCH 558", "description": "This course covers conventional " "reactors.", "enrollment": 28, "evaluation": { "response_rate": 66.76, "amount_learned": 3.5, "appropriateness_workload": 3.15, "course_overall": 3.67, "fairness_grading": 3.54, "organization": 3.25, "classroom_delivery": 4, "approachability": 4.3, "instructor_overall": 3.5, "comments": ["super duper", "dandy"] }, "month": "January", "organization": "University of South Carolina", "position": "professor", "syllabus": "https://docs.google.com/document/d" "/1uMAx_KFZK9ugYyF6wWtLLWgITVhaTBkAf8" "-PxiboYdM/edit?usp=sharing", "year": 2017, }, ], "title": "Dr.", }, { "_id": "sbillinge", "active": True, "activities": [{ "type": "teaching", "name": "course development", "year": 2018, "other": "Developed a new course for Materials Science" }], "aka": [ "Billinge", ], "avatar": "https://avatars1.githubusercontent.com/u/320553?v" "=3&s=200", "bio": "Simon teaches and does research", "committees": [{ "name": "Same Old", "type": "phddefense", "year": 2018, "unit": "Materials Science", "level": "department", "notes": "something" }], "education": [ { "begin_year": 2008, "degree": "Ph.D. Mechanical Engineering, " "Nuclear and Radiation Engineering " "Program", "end_year": 2011, "group": "ergs", "institution": "The University of Texas at Austin", "department": "apam", "location": "Austin, TX", "other": [ "Adviser: Erich A. Schneider", "Dissertation: Essential Physics for Fuel Cycle " "Modeling & Analysis", ], }, ], "email": "[email protected]", "employment": [ { "begin_year": 2015, "group": "ergs", "location": "Columbia, SC", "organization": "The University of South Carolina", "other": [ "Cyclus: An agent-based, discrete time nuclear fuel " "cycle simulator.", "PyNE: The Nuclear Engineering Toolkit.", "Website: http://www.ergs.sc.edu/", ], "position": "assistant professor", }, ], "facilities": [{ "type": "other", "name": "Shared {Habanero} compute cluster", "begin_year": 2015 }, { "type": "research_wish", "name": "Shared access to wet lab", "begin_year": 2015 }, { "type": "teaching", "name": "Courseworks2", "begin_year": 2017 }, { "type": "teaching_wish", "name": "nothing right now", "begin_year": 2019 }, { "type": "research", "name": "I don't have one", "begin_year": 2008 }, ], "funding": [ { "name": "Omega Laser User's Group Travel Award", "value": 1100, "year": 2013, }, {"name": "NIF User's Group Travel Award", "value": 1150, "year": 2013}, ], "google_scholar_url": "https://scholar.google.com/citations?user=dRm8f", "grp_mtg_active": True, "hindex": [{ "h": 65, "h_last_five": 43, "citations": 17890, "citations_last_five": 8817, "origin": "Google Scholar", "since": 1991, "year": 2019, "month": "May", "day": 12, }], "office": "1105 Seely W. Mudd Building (inner office)", "home_address": { "street": "123 Wallabe Ln", "city": "The big apple", "state": "plasma", "zip": "007", }, "initials": "SJLB", "membership": [ { "begin_year": 2006, "organization": "American Nuclear Society", "position": "Member", }, ], "miscellaneous": { "metrics_for_success": [ "publications(quality, quantity)", "invite talks", "funding", "citations", ], }, "name": "Simon J. L. Billinge", "orcid_id": "0000-0002-9432-4248", "position": "professor", "publicity": [{ "type": "online", "publication": "Brookhaven National Laboratory Web Story", "topic": "LDRD Provenance project", "title": "An awesome project and well worth the money", "day": 24, "month": "Jul", "year": 2019, "grant": "bnlldrd18", "url": "http://www.google.com" }, ], "research_focus_areas": [ {"begin_year": 2010, "description": "software applied to materials " "engineering and life"} ], "service": [ { "type": "profession", "name": "Master of Ceremonies and Organizer Brown University " '"Chemistry: Believe it or Not" public chemistry ' "demonstration", "year": 2017, "month": "August" }, { "type": "department", "name": "Applied Physics program committee", "year": 2018, "month": 1 }, { "type": "school", "name": "Ad hoc tenure committee", "year": 2017, "month": 6, "notes": "Albert Einstein" }, { "type": "profession", "name": "Co-organizer JUAMI", "year": 2017, "month": 12, "role": "co-organizer", "other": "great way to meet people", }, ], "skills": [ {"category": "Programming Languages", "level": "expert", "name": "Python"}, ], "teaching": [ { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "f17-3010", "description": "This course is an introduction to nuclear " "physics.", "enrollment": 18, "evaluation": { "response_rate": 58.33, "amount_learned": 4.57, "appropriateness_workload": 4.29, "fairness_grading": 4.57, "course_overall": 4.43, "organization": 4.0, "classroom_delivery": 4.29, "approachability": 4.86, "instructor_overall": 4.43, "comments": [ "Great teacher but disorganized", "Wears pink pants. Why?", ]}, "month": "August", "organization": "Columbia University", "position": "professor", "semester": "Fall", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2016, }, { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "f17-3010", "description": "This course is an introduction to nuclear " "physics.", "enrollment": 18, "evaluation": { "response_rate": 58.33, "amount_learned": 4.57, "appropriateness_workload": 4.29, "fairness_grading": 4.57, "course_overall": 4.43, "organization": 4.0, "classroom_delivery": 4.29, "approachability": 4.86, "instructor_overall": 4.43, "comments": [ "Great teacher but disorganized", "Wears pink pants. Why?", ]}, "month": "August", "organization": "Columbia University", "position": "professor", "semester": "Fall", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2017, }, { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "s17-3010", "description": "This course is an introduction to nuclear " "physics.", "enrollment": 18, "evaluation": { "response_rate": 58.33, "amount_learned": 4.57, "appropriateness_workload": 4.29, "fairness_grading": 4.57, "course_overall": 4.43, "organization": 4.0, "classroom_delivery": 4.29, "approachability": 4.86, "instructor_overall": 4.43, "comments": [ "Great teacher but disorganized", "Wears pink pants. Why?", ]}, "month": "Jan", "organization": "Columbia University", "position": "professor", "semester": "Spring", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2018, }, { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "s17-3010", "description": "This course is an introduction to nuclear " "physics.", "enrollment": 18, "evaluation": { "response_rate": 58.33, "amount_learned": 4.57, "appropriateness_workload": 4.29, "fairness_grading": 4.57, "course_overall": 4.43, "organization": 4.0, "classroom_delivery": 4.29, "approachability": 4.86, "instructor_overall": 4.43, "comments": [ "Great teacher but disorganized", "Wears pink pants. Why?", ]}, "month": "Jan", "organization": "Columbia University", "position": "professor", "semester": "Spring", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2017, }, { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "s17-3010", "description": "This course is an introduction to nuclear " "physics.", "enrollment": 18, "month": "Jan", "organization": "Columbia University", "position": "professor", "semester": "Spring", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2019, }, { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "f18-3010", "description": "This course is an introduction to nuclear " "physics.", "enrollment": 18, "evaluation": { "response_rate": 58.33, "amount_learned": 4.57, "appropriateness_workload": 4.29, "fairness_grading": 4.57, "course_overall": 4.43, "organization": 4.0, "classroom_delivery": 4.29, "approachability": 4.86, "instructor_overall": 4.43, "comments": [ "Great teacher but disorganized", "Wears pink pants. Why?", ]}, "month": "August", "organization": "Columbia University", "position": "professor", "semester": "Fall", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2018, }, { "course": 'MSAE-3010: Introduction to Materials Science', "courseid": "f19-3010", "description": "This course is an introduction to nuclear " "physics.", "month": "August", "organization": "Columbia University", "position": "professor", "semester": "Fall", "syllabus": "https://drive.google.com/open?id" "=0BxUpd34yizZreDBCMEJNY2FUbnc", "year": 2019, }, ], "title": "Dr.", "todos": [ {"description": "read paper", "due_date": "2020-07-19", "begin_date": "2020-06-15", "duration": 60.0, "importance": 2, "status": "started", "assigned_by": "scopatz", "running_index": 1 }, {"description": "prepare the presentation", "due_date": "2020-07-29", "begin_date": "2020-06-22", "duration": 30.0, "importance": 0, "status": "started", "notes": ["about 10 minutes", "don't forget to upload to the website"], "assigned_by": "sbillinge", "running_index": 2 } ], }, {"_id": "abeing", "active": False, "aka": ["being", "human", "person"], "avatar": "https://xkcd.com/1221/", "bio": "Abstract Being is an exemplar human existence", "education": [ {"degree": "bachelors", "institution": "University of Laughs", "begin_year": 2010}, ], "employment": [ {"group": "bg", "begin_date": "2015-06-01", "end_date": "2015-08-31", "organization": "columbiau", "position": "intern"}, {"group": "agroup", "begin_date": "2020-01-01", "end_date": "2030-12-31", "organization": "usouthcarolina", "position": "intern"}, {"group": "bg", "begin_date": "2010-06-01", "end_date": "2012-08-31", "organization": "columbiau", "position": "intern"}, {"group": "bg", "begin_date": "2017-06-01", "end_date": "2019-08-31", "organization": "columbiau", "position": "intern"}, ], "position": "intern", "name": "Abstract Being", } ], "presentations": [ { "_id": "18sb_this_and_that", "abstract": "We pulled apart graphite with tape", "authors": ["scopatz", "afriend"], "begin_year": 2018, "begin_month": 5, "begin_day": 22, "department": "apam", "institution": "columbiau", "location": "Upton NY", "meeting_name": "Meeting to check flexibility on dates", "notes": [ "We hope the weather will be sunny", "if the weather is nice we will go to the " "beach", ], "project": "18sob_clustermining", "status": "accepted", "title": "Graphitic Dephenestration", "type": "award", "webinar": False, }, { "_id": "18sb_nslsii", "abstract": "We pulled apart graphite with tape", "authors": ["scopatz"], "begin_year": 2018, "begin_month": 5, "begin_day": 22, "department": "apam", "end_year": 2018, "end_month": 5, "end_day": 22, "institution": "columbiau", "location": "Upton NY", "meeting_name": "2018 NSLS-II and CFN Users Meeting", "notes": [ "We hope the weather will be sunny", "if the weather is nice we will go to the " "beach", ], "project": "18sob_clustermining", "status": "accepted", "title": "ClusterMining: extracting core structures of " "metallic nanoparticles from the atomic pair " "distribution function", "type": "poster", }, { "_id": "18sb04_kentstate", "abstract": "We made the case for local structure", "authors": ["scopatz"], "begin_year": 2018, "begin_month": "May", "begin_day": 22, "department": "physics", "end_year": 2018, "end_month": 5, "end_day": 22, "institution": "columbiau", "notes": ["what a week!"], "project": "18kj_conservation", "status": "accepted", "title": "Nanostructure challenges and successes from " "16th Century warships to 21st Century energy", "type": "colloquium", "webinar": True, }, ], "projecta": { "_id": "sb_firstprojectum", "begin_date": "2020-04-28", "collaborators": ["aeinstein", "pdirac"], "deliverable": { "audience": ["beginning grad in chemistry"], "due_date": "2021-05-05", "success_def": "audience is happy", "scope": ["UCs that are supported or some other scope description " "if it is software", "sketch of science story if it is paper" ], "platform": "description of how and where the audience will access " "the deliverable. Journal if it is a paper", "roll_out": [ "steps that the audience will take to access and interact with " "the deliverable", "not needed for paper submissions"], "notes": ["deliverable note"], "status": "proposed" }, "description": "My first projectum", "end_date": "2020-06-05", "grants": "SymPy-1.1", "group_members": ["ascopatz"], "kickoff": { "date": "2020-05-05", "due_date": "2020-05-06", "name": "Kick off meeting", "objective": "introduce project to the lead", "audience": ["lead", "pi", "group_members"], "notes": ["kickoff note"], "status": "finished" }, "lead": "ascopatz", "log_url": "https://docs.google.com/document/d/1YC_wtW5Q", "milestones": [{ 'due_date': '2020-05-20', 'name': 'Project lead presentation', 'notes': ["do background reading", "understand math"], 'objective': 'lead presents background reading and ' 'initial project plan', 'audience': ['lead', 'pi', 'group_members'], 'status': 'proposed', 'type': 'meeting' }, {'due_date': '2020-05-27', 'name': 'planning meeting', 'objective': 'develop a detailed plan with dates', 'audience': ['lead', 'pi', 'group_members'], 'status': 'proposed', 'type': 'pr', }], "name": "First Projectum", "pi_id": "scopatz", "status": "started" }, "projects": { "_id": "Cyclus", "name": "Cyclus", "description": "Agent-Based Nuclear Fuel Cycle Simulator", "group": "ergs", "highlights": [ {"year": 2020, "month": 5, "description": "high profile pub in Nature"} ], "logo": "http://fuelcycle.org/_static/big_c.png", "other": [ "Discrete facilities with discrete material transactions", "Low barrier to entry, rapid payback to adoption", ], "repo": "https://github.com/cyclus/cyclus/", "team": [ { "begin_month": "June", "begin_year": 2013, "end_month": "July", "end_year": 2015, "name": "Anthony Scopatz", "position": "Project Lead", } ], "type": "funded", "website": "http://fuelcycle.org/", "grant": "dmref15", }, "proposalReviews": [ { "_id": "1906doeExample", "adequacy_of_resources": [ "The resources available to the PI seem adequate" ], "agency": "doe", "competency_of_team": ["super competent!"], "doe_appropriateness_of_approach": [ "The proposed approach is highly innovative" ], "doe_reasonableness_of_budget": [ "They could do it with half the money"], "doe_relevance_to_program_mission": ["super relevant"], "does_how": [ "they will find the cause of Malaria", "when they find it they will determine a cure", ], "due_date": "2020-04-10", "does_what": "Find a cure for Malaria", "freewrite": [ "I can put extra things here, such as special instructions from the", "program officer", ], "goals": [ "The goals of the proposal are to put together a team to find a cure" "for Malaria, and then to find it" ], "importance": ["save lives", "lift people from poverty"], "institutions": "columbiau", "month": "May", "names": ["B. Cause", "A.N. Effect"], "nsf_broader_impacts": [], "nsf_create_original_transformative": [], "nsf_plan_good": [], "nsf_pot_to_advance_knowledge": [], "nsf_pot_to_benefit_society": [], "requester": "Lane Wilson", "reviewer": "sbillinge", "status": "submitted", "summary": "dynamite proposal", "title": "A stunning new way to cure Malaria", "year": 2019, }, { "_id": "1906nsfExample", "adequacy_of_resources": [ "The resources available to the PI seem adequate" ], "agency": "nsf", "competency_of_team": ["super competent!"], "doe_appropriateness_of_approach": [], "doe_reasonableness_of_budget": [], "doe_relevance_to_program_mission": [], "does_how": [ "they will find the cause of Poverty", "when they find it they will determine a cure", ], "does_what": "Find a cure for Poverty", "due_date": "2020-04-10", "freewrite": [ "I can put extra things here, such as special instructions from the", "program officer", ], "goals": [ "The goals of the proposal are to put together a team to find a cure" "for Poverty, and then to find it" ], "importance": ["save lives", "lift people from poverty"], "institutions": "upenn", "month": "May", "names": ["A Genius"], "nsf_broader_impacts": ["Poor people will be made unpoor"], "nsf_create_original_transformative": [ "transformative because lives will be transformed" ], "nsf_plan_good": [ "I don't see any issues with the plan", "it should be very straightforward", ], "nsf_pot_to_advance_knowledge": [ "This won't advance knowledge at all"], "nsf_pot_to_benefit_society": [ "Society will benefit by poor people being made unpoor if they want " "to be" ], "requester": "Tessemer Guebre", "reviewer": "sbillinge", "status": "submitted", "summary": "dynamite proposal", "title": "A stunning new way to cure Poverty", "year": 2019, }, ], "proposals": [ { "_id": "mypropsal", "amount": 1000000.0, "authors": ["Anthony Scopatz", "Robert Flanagan"], "begin_day": 1, "begin_month": "May", "begin_year": 2030, "currency": "USD", "submitted_day": 18, "duration": 3, "end_day": 31, "end_month": "December", "end_year": 2030, "full": { "benefit_of_collaboration": "http://pdf.com" "/benefit_of_collaboration", "cv": ["http://pdf.com/scopatz-cv", "http://pdf.com/flanagan-cv"], "narrative": "http://some.com/pdf", }, "submitted_month": "Aug", "notes": "Quite an idea", "pi": "Anthony Scopatz", "pre": { "benefit_of_collaboration": "http://pdf.com" "/benefit_of_collaboration", "cv": ["http://pdf.com/scopatz-cv", "http://pdf.com/flanagan-cv"], "day": 2, "month": "Aug", "narrative": "http://some.com/pdf", "year": 1998, }, "status": "submitted", "title": "A very fine proposal indeed", "submitted_year": 1999, }, { "_id": "dmref15", "amount": 982785.0, "authors": ["qdu", "dhsu", "sbillinge"], "call_for_proposals": "http://www.nsf.gov/pubs/2014/nsf14591/" "nsf14591.htm", "begin_day": 1, "begin_month": "May", "begin_year": 2018, "cpp_info": { "cppflag": True, "other_agencies_submitted": "None", "institution": "Columbia University", "person_months_academic": 0, "person_months_summer": 1, "project_scope": "lots to do but it doesn't overlap with any " "other of my grants", "single_pi": True }, "currency": "USD", "submitted_date": "2015-02-02", "duration": 3, "end_day": 1, "end_month": "May", "end_year": 2019, "funder": "NSF", "notes": "Quite an idea", "pi": "Simon Billinge", "status": "accepted", "team": [ { "institution": "Columbia University", "name": "qdu", "position": "co-pi", }, { "institution": "Columbia University", "name": "dhsu", "position": "co-pi", }, { "institution": "Columbia University", "name": "sbillinge", "position": "pi", "subaward_amount": 330000.0, }, ], "title": "DMREF: Novel, data validated, nanostructure determination " "methods for accelerating materials discovery", "title_short": "DMREF nanostructure", }, { "_id": "SymPy-1.1", "amount": 3000.0, "begin_date": "2030-05-01", "end_date": "2030-12-31", "cpp_info": { "cppflag": True, "other_agencies_submitted": "None", "institution": "Columbia University", "person_months_academic": 0, "person_months_summer": 1, "project_scope": "" }, "currency": "USD", "pi": "sbillinge", "status": "submitted", "title": "SymPy 1.1 Release Support", }, { "_id": "SymPy-2.0", "amount": 3000.0, "begin_date": "2019-06-01", "end_date": "2030-12-31", "cpp_info": { "cppflag": True, "other_agencies_submitted": "None", "institution": "Columbia University", "person_months_academic": 0, "person_months_summer": 1, "project_scope": "" }, "currency": "USD", "pi": "sbillinge", "status": "submitted", "title": "SymPy 1.1 Release Support", }, { "_id": "abc42", "amount": 42000.0, "begin_date": "2020-06-01", "end_date": "2020-12-31", "cpp_info": { "cppflag": True, "other_agencies_submitted": "None", "institution": "Columbia University", "person_months_academic": 0, "person_months_summer": 1, "project_scope": "" }, "currency": "USD", "pi": "sbillinge", "status": "submitted", "title": "The answer to life, the universe, and everything", } ], "reading_lists": { "_id": "getting_started_with_pdf", "day": "15", "month": "12", "papers": [{"doi": "10.1107/97809553602060000935", "text": "Very basic, but brief, intro to powder diffraction in general"}, {"doi": "10.1039/9781847558237-00464", "text": "Lightest weight overview of PDF analysis around. Good starting point" }, {"url": "http://www.diffpy.org", "text": "Download and install PDFgui software and run through the step by step tutorial under the help tab"} ], "purpose": "Beginning reading about PDF", "title": "A step-by-step pathway towards PDF understanding. It is recommended to read the papers in the order they are listed here.", "year": 2019, }, "refereeReports": { "_id": "1902nature", "claimed_found_what": ["gravity waves"], "claimed_why_important": ["more money for ice cream"], "did_how": ["measured with a ruler"], "did_what": ["found a much cheaper way to measure gravity waves"], "due_date": '2020-04-11', "editor_eyes_only": "to be honest, I don't believe a word of it", "final_assessment": ["The authors should really start over"], "first_author_last_name": "Wingit", "freewrite": "this comment didn't fit anywhere above", "journal": "Nature", "recommendation": "reject", "requester": "Max Planck", "reviewer": "sbillinge", "status": "submitted", "submitted_date": "2019-01-01", "title": "a ruler approach to measuring gravity waves", "validity_assessment": ["complete rubbish"], "year": 2019, }, "students": { "_id": "Human A. Person", "aka": ["H. A. Person"], "email": "[email protected]", "university_id": "HAP42", }, } SCHEMAS = { "abstracts": { "_description": { "description": "Abstracts for a conference or workshop. This is " "generally public information" }, "_id": { "description": "Unique identifier for submission. This generally " "includes the author name and part of the title.", "required": True, "type": "string", }, "coauthors": { "description": "names of coauthors", "required": False, "type": "string", }, "email": { "description": "contact email for the author.", "required": True, "type": "string", }, "firstname": { "description": "first name of the author.", "required": True, "type": "string", }, "institution": { "description": "name of the institution", "required": True, "type": "string", }, "lastname": { "description": "last name of the author.", "required": True, "type": "string", }, "references": { "description": "HTML string of reference for the abstract itself", "required": False, "type": "string", }, "text": { "description": "HTML string of the abstract.", "required": True, "type": "string", }, "timestamp": { "description": "The time when the abstract was submitted.", "required": True, "type": "string", }, "title": { "description": "title of the presentation/paper.", "required": True, "type": "string", }, }, "assignments": { "_description": { "description": "Information about assignments for classes."}, "_id": { "description": "A unique id for the assignment, such as " "HW01-EMCH-558-2016-S", "required": True, "type": "string", }, "category": { "description": "such as 'homework' or 'final'", "required": True, "type": "string", }, "courses": { "description": "ids of the courses that have this assignment", "required": True, "anyof_type": ["string", "list"], }, "file": { "description": "path to assignment file in store", "required": False, "type": "string", }, "points": { "description": "list of number of points possible for each " "question. Length is the number of questions", "required": True, "type": "list", "schema": {"anyof_type": ["integer", "float"]}, }, "questions": { "description": "titles for the questions on this assignment", "required": False, "type": "list", }, "solution": { "description": "path to solution file in store", "required": False, "type": "string", }, }, "beamplan": { "_id": { "description": "Unique identifier for the experiment plan. It should have a format '{year:2d}{month:2d}{people_id:s}_{plan_name:s}'", "required": True, "type": "string" }, "_description": { "description": "Information about the experiment plan for the beamtime."}, "project_lead": { "description": "The id for person who put out this plan. It should be inside the people.yml.", "required": True, "type": "string" }, "project": { "description": "The id for the project which the plan belongs to. It should be on airtable.", "required": True, "type": "string" }, "begin_date": { "description": "The begin date of the beam time.", "required": True, "anyof_type": ["string", "datetime", "date"] }, "end_date": { "description": "The end date of the beam time.", "required": True, "anyof_type": ["string", "datetime", "date"] }, "beamtime": { "description": "The id for the beamtime. Check the Airtable.", "required": True, "type": "string" }, "holder": { "description": "Sample holder used during the measurement, e. g. 3 mm OD tubes holder.", "required": True, "type": "string" }, "devices": { "description": "The dictionary of devices used in the measurement e. g. ", "required": True, "type": "list", "schema": { "type": "string" } }, "measurement": { "description": "What data to be measured, e. g. PDF, XRD, SAXS. This will determine the setup.", "required": True, "type": "string" }, "samples": { "description": "The list of samples to be measured.", "required": True, "type": "list", "schema": { "type": "string" } }, "time": { "description": "The total time of executing the exp_plan. Unit: min.", "required": True, "type": "integer" }, "objective": { "description": "What to study in the experiments. What goal to achieve.", "required": True, "type": "string" }, "prep_plan": { "description": "Steps to prepare the samples. Do NOT need details.", "required": True, "type": "list", "schema": { "type": "string" } }, "ship_plan": { "description": "Steps to carry the samples from the producer to the BNL. Do NOT need details.", "required": True, "type": "list", "schema": { "type": "string" } }, "exp_plan": { "description": "Steps to carry out the experiments at BNL. Need details", "required": True, "type": "list", "schema": { "type": "string" } }, "scanplan": { "description": "The scanplan for the experiment, e. g. tseries, Tramp, ct.", "required": True, "type": "list", "schema": { "type": "string" } }, "pipeline": { "description": "The analysis pipeline for the experiment. If no new pipeline is needed, use 'usual'.", "required": True, "type": "string", "default": "usual" }, "todo": { "description": "The TODO list before the beamtime.", "required": True, "type": "list", "schema": { "type": "string" } }, "notes": { "description": "Notes of the plan, e. g. the preferred time.", "required": False, "anyof_type": [ "list", "string" ], "schema": { "type": "string" } } }, "blog": { "_description": { "description": "This collection represents blog posts written by " "the members of the research group." }, "_id": { "description": "short representation, such as this-is-my-title", "required": True, "type": "string", }, "author": { "description": "name or AKA of author", "required": True, "type": "string", }, "day": {"description": "Publication day", "required": True, "type": "integer"}, "month": { "description": "Publication month", "required": True, "anyof_type": ["string", "integer"], }, "original": { "description": "URL of original post, if this is a repost", "required": False, "type": "string", }, "post": { "description": "actual contents of the post", "required": True, "type": "string", }, "title": { "description": "full human readable title", "required": True, "type": "string", }, "year": { "description": "Publication year", "required": True, "type": "integer", }, }, "contacts": { "_description": {"description": "a lighter version of people. Fewer required fields" "for capturing people who are less tightly coupled" }, "_id": { "description": "id of the person, e.g., first letter first name " "plus last name, but unique", "required": True, }, "aka": { "required": False, "type": "list", "description": "other names for the person", }, "date": { "description": "date when the entry was created in ISO format", "required": False, "anyof_type": ["string", "date"], }, 'day': { "description": "day when the entry was created", "required": False, "type": "integer", }, "department": { "description": "Department at the institution", "type": "string", "required": False, }, "email": { "description": "Contact email for the contact", "type": "string", "required": False, }, "institution": { "description": "the institution where they are located. This is" "required for building a COI list of coauthors, but" "not in general. It can be institute id or anything" "in the aka or name", "required": False, "type": "string" }, 'month': { "description": "month when the entry was created", "required": False, "anyof_type": ["string", "integer"], }, "name": { "description": "the person's canonical name", "required": True, "type": "string", }, "notes": { "description": "notes about the person", "required": False, "anyof_type": ["list", "string"] }, "title": { "description": "how the person is addressed", "required": False, "type": "string", }, 'updated': { "description": "most recently updated", "required": False, "anyof_type": ["string", "datetime", "date"], }, 'year': { "description": "year when the entry was created", "required": False, "type": "integer", }, 'uuid': { "description": "universally unique identifier", "required": False, "type": "string", }, }, "expenses": { "_description": { "description": "This collection records expenses for the " "group. It should most likely be private" }, "_id": { "description": "short representation, such as this-is-my-name", "required": True, "type": "string", }, "begin_date": { "description": "begin date in YYYY-MM-DD", "anyof_type": ["string", "date"], }, "end_date": { "description": "end date in YYYY-MM-DD", "anyof_type": ["string", "date"], }, "grant_percentages": { "description": "the percentage of the reimbursement amount to put " "on each grant. This list must be the same length as" "the grants list and the percentages placed in the " "order that the grants appear in that list", "required": False, "type": "list", }, "grants": { "description": "the grants in a list, or a string if only one grant", "required": True, "anyof_type": ["string", "list"], }, "project": { "description": "project or list of projects that this " "presentation is associated with. Should " "be discoverable in projects collection", "anyof_type": ["string", "list"], }, "payee": { "description": "The name or id of the payee filing the expense", "required": True, "type": "string", }, "itemized_expenses": { "type": "list", "schema": { "type": "dict", "schema": { "day": { "description": "Expense day", "required": False, "type": "integer", }, "date": { "description": "Expense date", "required": False, "anyof_type": ["string", "date"], }, "month": { "description": "Expense month", "required": False, "anyof_type": ["string", "integer"], }, "year": { "description": "Expense year", "required": False, "type": "integer", }, "purpose": { "description": "reason for expense", "type": "string", "required": True, }, "unsegregated_expense": { "description": "The allowed expenses", "type": "float", }, "segregated_expense": { "description": "The unallowed expenses", "type": "float", }, "original_currency": { "description": "The currency the payment was made in", "type": "float", }, }, }, }, "overall_purpose": { "description": "The reason for the expenses", "type": "string", "required": True, }, "notes": { "description": "Notes about the expense", "type": "list", }, "status": { "description": "The status of the expense", "eallowed": EXPENSES_TYPE, "type": "string" }, "reimbursements": { "description": "Reimbursements for the expense", "schema": { "schema": { 'amount': {"description": 'amount for reimbursements', "type": "float", }, 'date': {"description": "date of reimbursement", "anyof_type": ["string", "date"], }, 'submission_date': {"description": "date of submission", "anyof_type": ["string", "date"], }, 'submission_day': {"description": "day of submission. deprecated but here for " "backwards compatibility", "type": "integer", }, 'submission_month': {"description": "month of submission. deprecated but here for " "backwards compatibility", "anyof_type": ["integer", "string"], }, 'submission_year': {"description": "year of submission. deprecated but here for " "backwards compatibility", "type": "integer", }, 'day': {"description": "day of reimbursement. deprecated but here for " "backwards compatibility", "type": "integer", }, 'month': {"description": "month of reimbursement. deprecated but here for " "backwards compatibility", "anyof_type": ["string", "integer"], }, 'year': {"description": "year of reimbursement. deprecated but here for " "backwards compatibility", "type": "integer", }, 'where': {"description": 'where the reimbursement has been sent', "type": 'string', }, }, "type": "dict" }, "type": "list" }, "expense_type": { "description": "The type of expense", "allowed": ["travel", "business"], "required": True, }, }, "grades": { "_description": { "description": "The grade for a student on an assignment. This " "information should be private." }, "_id": { "description": "unique id, typically the " "student-assignment-course", "required": True, "type": "string", }, "assignment": { "description": "assignment id", "required": True, "type": "string", }, "course": {"description": "course id", "required": True, "type": "string"}, "filename": { "description": "path to file in store", "required": False, "type": "string", }, "scores": { "description": "the number of points earned on each question", "required": True, "type": "list", "schema": {"anyof_type": ["integer", "float"]}, }, "student": {"description": "student id", "required": True, "type": "string"}, }, "grants": { "_description": { "description": "This collection represents grants that have been " "awarded to the group." }, "_id": { "description": "short representation, such as this-is-my-name", "required": True, "type": ("string", "integer", "float"), }, "account": { "description": "the account number which holds the funds", "required": False, "type": "string", }, "admin": { "description": "the group administering the grant", "type": "string", "required": False, }, "alias": { "description": "the alias of the grant", "type": "string", "required": False, }, "amount": { "description": "value of award", "required": True, "type": ("integer", "float"), }, "begin_date": { "description": "start date of the grant (if string, in format YYYY-MM-DD)", "required": False, "anyof_type": ["string", "date"] }, "begin_day": { "description": "start day of the grant", "required": False, "type": "integer", }, "begin_month": { "description": "start month of the grant", "required": False, "anyof_type": ["string", "integer"], }, "begin_year": { "description": "start year of the grant", "required": False, "type": "integer", }, "benefit_of_collaboration": { "description": "", "required": False, "type": "string", }, # TODO: maybe this should move to proposals? "call_for_proposals": {"description": "", "required": False, "type": "string"}, "currency": { "description": "typically '$' or 'USD'", "required": False, "type": "string", }, "end_date": { "description": "start date of the grant (if string, in format YYYY-MM-DD)", "required": False, "anyof_type": ["string", "date"] }, "end_day": { "description": "end day of the grant", "required": False, "type": ("string", "integer"), }, "end_month": { "description": "end month of the grant", "required": False, "anyof_type": ["string", "integer"], }, "end_year": { "description": "end year of the grant", "required": False, "type": "integer", }, "funder": { "description": "the agency funding the work", "required": True, "type": "string", }, "grant_id": { "description": "the identifier for this work", "required": False, "type": "string", }, "institution": { "description": "the host institution for the grant", "type": "string", "required": False, }, "narrative": {"description": "", "required": False, "type": "string"}, "notes": { "description": "notes about the grant", "required": False, "type": "string", }, "person_months_academic": { "description": "Number of months of funding during the academic" "year", "required": False, "anyof_type": ["integer", "float"], }, "person_months_summer": { "description": "Number of months of funding during the summer", "required": False, "anyof_type": ["integer", "float"], }, "program": { "description": "the program the work was funded under", "required": True, "type": "string", }, # TODO: maybe this should be moved to proposals? "status": { "allowed": ["pending", "declined", "accepted", "in-prep"], "description": "status of the grant", "required": False, "type": "string", }, "scope": { "description": "The scope of the grant, answers the prompt: " '"Describe Research Including Synergies and ' 'Delineation with Respect to this Proposal/Award:"', "required": False, "type": "string", }, # TODO: maybe this should be duplicated in proposals? "team": { "description": "information about the team members participating " "in the grant.", "required": True, "schema": { "schema": { "cv": {"required": False, "type": "string"}, "institution": {"required": True, "type": "string"}, "name": {"required": True, "type": "string"}, "position": {"required": True, "type": "string"}, "subaward_amount": { "required": False, "type": ("integer", "float"), }, }, "type": "dict", }, "type": "list", }, "title": { "description": "actual title of proposal / grant", "required": True, "type": "string", }, "budget": { "description": "budget periods of grant", "required": False, "schema": { "schema": { "begin_date": { "description": "start date of the budget period in format YYYY-MM-DD", "required": False, "anyof_type": ["string", "date"], }, "end_date": { "description": "end date of the budget period in format YYYY-MM-DD", "required": False, "anyof_type": ["string", "date"], }, "student_months": { "description": "number of months of funding for student members during the academic year", "required": False, "anyof_type": ["float", "integer"] }, "postdoc_months": { "description": "number of months of funding for postdoc members during the academic year", "required": False, "anyof_type": ["float", "integer"] }, "ss_months": { "description": "number of months of funding for the summer", "required": False, "anyof_type": ["float", "integer"] }, "amount": { "description": "subaward for this budget period", "required": False, "anyof_type": ["float", "integer"] } }, "type": "dict", }, "type": "list", }, "proposal_id": { "description": "initial proposal made for grant", "required": False, "type": "string", } }, "groups": { "_description": { "description": "Information about the research group" "this is generally public information" }, "_id": { "description": "Unique identifier for submission. This generally " "includes the author name and part of the title.", "required": True, "type": "string", }, "aka": { "required": True, "type": "list", "description": "other names for the group", }, "banner": { "required": False, "type": "string", "description": "name of image file with the group banner", }, "pi_name": { "description": "The name of the Principle Investigator", "required": True, "type": "string", }, "department": { "description": "Name of host department", "required": True, "type": "string", }, "institution": { "description": "Name of the host institution", "required": True, "type": "string", }, "name": { "description": "Name of the group", "required": True, "type": "string", }, "website": {"description": "URL to group webpage", "type": "string"}, "mission_statement": { "description": "Mission statement of the group", "type": "string", }, "projects": { "description": "About line for projects", "type": "string", "required": True, }, "email": { "description": "Contact email for the group", "type": "string", "required": True, }, }, "institutions": { "_description": { "description": "This collection will contain all the institutions" "in the world and their departments and addresses" }, "_id": { "description": "unique identifier for the institution.", "required": True, "type": "string", }, "aka": { "description": "list of all the different names this " "the institution is known by", "required": False, "type": "list", }, "city": { "description": "the city where the institution is", "required": True, "type": "string", }, "country": { "description": "The country where the institution is", "required": True, "type": "string", }, "date": { "description": "Expense date", "required": False, "anyof_type": ["string", "date"], }, "day": { "description": "the day the entry was created", "required": False, "type": "integer", }, "departments": { "description": "all the departments and centers and" "various units in the institution", "required": False, "type": "dict", # Allow unkown department names, but check their content "valuesrules": { "type": "dict", "schema": { "name": { "description": "The canonical name", "required": True, "type": "string", }, "aka": {"required": False, "type": "list"}, }, }, }, "month": { "description": "the month the entry was created", "required": False, "anyof_type": ["string", "integer"] }, "name": { "description": "the canonical name of the institutions", "required": True, "type": "string", }, "schools": { "description": "this is more for universities, but it " "be used for larger divisions in big " "organizations", "required": False, "type": "dict", "valuesrules": { "type": "dict", "schema": { "name": { "description": "The canonical name", "required": True, "type": "string", }, "aka": {"required": False, "type": "list"}, }, }, }, "state": { "description": "the state where the institution is", "required": False, "type": "string", }, "street": { "description": "the street where the institution is", "required": False, "type": "string", }, "updated": { "description": "a datetime when the entry was updated", "required": False, "anyof_type": ["string", "datetime", "date"] }, "uuid": { "description": "a uuid for the entry", "required": False, "type": "string", }, "year": { "description": "the year the entry was created", "required": False, "type": "integer", }, "zip": { "description": "the zip or postal code of the institution", "required": False, "anyof_type": ["integer", "string"], }, }, "meetings": { "_id": { "description": "unique identifier for the date of the group meeting", "required": True, "type": "string", }, "_description": { "description": "the group meeting." }, "actions": { "description": "action items expected from the group members for that particular meeting week", "required": False, "type": "list", }, "agenda": { "description": "schedule of the current meeting", "required": False, "type": "list", }, "buddies": { "description": "list of pairs of group members that are selected for the buddy round robin", "required": False, "type": "list", }, "day": { "description": "day of the group meeting", "required": False, "type": "integer", }, "journal_club": { "description": "indicating the doi of the journal and the presenting group member as the presenter", "required": False, "type": "dict", }, "lead": { "description": "person who will be leading the meeting of the current week", "required": False, "type": "string", }, "minutes": { "description": "meeting notes in a chronological order according to comments made by the group members", "required": False, "type": "list", }, "month": { "description": "month in which the meeting is taking place", "required": False, "anyof_type": ["string", "integer"] }, "place": { "description": "location where the meeting is taking place on campus", "required": False, "type": "string", }, "presentation": { "description": "indicating the title of the presentation along with the link and the presenter ", "required": False, "type": "dict", }, "scribe": { "description": "person who will be taking notes and updating minutes accordingly", "required": False, "type": "string", }, "time": { "description": "person who will be taking notes and updating minutes accordingly" "If an integer is minutes past midnight, so 13:30 is 810 for" "example.", "required": False, "anyof_type": ["string", "integer"] }, "updated": { "description": "person who will be taking notes and updating minutes accordingly", "required": False, "anyof_type": ["string", "datetime", "date"], }, "uuid": { "description": "person who will be taking notes and updating minutes accordingly", "required": False, "type": "string", }, "year": { "description": "person who will be taking notes and updating minutes accordingly", "required": False, "type": "integer", }, }, "people": { "_description": { "description": "This collection describes the members of the " "research group. This is normally public data." }, "_id": { "description": "unique identifier for the group member", "required": True, "type": "string", }, "active": { "description": "If the person is an active member, default True.", "required": False, "type": "boolean", }, "aka": { "description": "list of aliases (also-known-as), useful for " "identifying the group member in citations or " "elsewhere.", "required": True, "type": ["string", "list"], }, "appointments": { "type": "dict", "required": False, "description": "begin and end date, grant loading status and notes about appointments" }, "activities": { "type": "list", "required": False, "description": "activities may be teaching or research things", "schema": { "type": "dict", "schema": { "day": { "required": False, "description": "the day the activity took place", "type": "integer", }, "type": { "required": True, "description": "the type of the acitivity", "type": "string", "eallowed": ACTIVITIES_TYPE }, "month": { "required": False, "description": "the month the activity took place", "anyof_type": ["integer", "string"], }, "name": { "required": True, "description": "brief statement of the activity", "type": "string", }, "other": { "required": False, "description": "longer statement of the activity", "type": "string", }, "year": { "required": True, "description": "the year the activity took place", "type": "integer", }, } } }, "avatar": {"description": "URL to avatar", "required": True, "type": "string"}, "bio": { "description": "short biographical text", "required": True, "type": "string", }, "bios": { "description": "longer biographical text if needed", "required": False, "anyof_type": ["string", "list"] }, "collab": { "description": "If the person is a collaborator, default False.", "required": False, "type": "boolean", }, "committees": { "description": "Committees that are served on", "required": False, "schema": { "type": "dict", "schema": { "name": {"required": True, "type": "string", "description": "name of committee, or person if it " "is a phd committee"}, "day": {"required": False, "type": "integer"}, "month": {"required": False, "anyof_type": ["string", "integer"], }, "notes": {"required": False, "description": "extra things you want to record about the thing", "anyof_type": ["string", "list"], }, "year": {"required": True, "type": "integer"}, "unit": {"required": False, "type": "string", "description": "name of department or school etc."}, "type": {"required": False, "type": "string", "description": "type of committee, department, school, university, external", "eallowed": COMMITTEES_TYPE}, "level": { "required": True, "type": "string", "description": "department or school or university, or external", "eallowed": COMMITTEES_LEVEL }, "group": { "required": False, "type": "string", "description": "this employment is/was in" "a group in groups coll", }, }, }, "type": "list", }, "education": { "description": "This contains the educational information for " "the group member.", "required": True, "schema": { "type": "dict", "schema": { "advisor": {"required": False, "type": "string", "description": "name or id of advisor for this degree"}, "begin_day": {"required": False, "type": "integer"}, "begin_month": {"required": False, "anyof_type": ["string", "integer"], }, "begin_year": {"required": True, "type": "integer"}, "degree": {"required": True, "type": "string"}, "department": { "required": False, "type": "string", "description": "department within" "the institution", }, "group": { "required": False, "type": "string", "description": "this employment is/was in" "a group in groups coll", }, "end_day": {"required": False, "type": "integer"}, "end_month": {"required": False, "anyof_type": ["string", "integer"], }, # Could be ongoing with undefined end "end_year": {"required": False, "type": "integer"}, "gpa": {"required": False, "type": ("float", "string")}, "institution": {"required": True, "type": "string"}, "location": {"required": False, "type": "string"}, "other": {"required": False, "type": "list"}, }, }, "type": "list", }, "email": { "description": "email address of the group member", "required": False, "type": "string", }, "employment": { "description": "Employment information, similar to educational " "information.", "required": False, "type": "list", "schema": { "type": "dict", "schema": { "advisor": {"required": False, "type": "string", "description": "name or id of " "advisor/mentor/manager"}, "begin_day": {"required": False, "type": "integer"}, "begin_month": {"required": False, "anyof_type": ["string", "integer"], }, "begin_year": {"required": False, "type": "integer"}, "begin_date": {"required": False, "anyof_type": ["string", "date", "datetime"], "description": "begin date of employment in format YYYY-MM-DD"}, "coworkers": {"required": False, "type": "list", "description": "list of coworkers. If" "position is editor, these are " "assumed to be coeditors in" "conflict of interest builder"}, "department": {"required": False, "type": "string"}, "end_day": {"required": False, "type": "integer"}, "end_month": {"required": False, }, "end_year": {"required": False, "type": "integer"}, "end_date": {"required": False, "anyof_type": ["string", "date", "datetime"], "description": "end date of employment in format YYYY-MM-DD"}, "group": { "required": False, "type": "string", "description": "this employment is/was in" "a group in groups coll", }, "location": {"required": False, "type": "string"}, "organization": {"required": True, "type": "string"}, "other": {"required": False, "type": "list"}, "permanent": {"required": False, "type": "boolean", "description": "true if the position is open " \ "ended and has no fixed end-date"}, "position": {"required": True, "type": "string", "eallowed": list(SORTED_POSITION)}, "position_full": { "description": "The full on title of the position. This will be " "typeset if it is here, or if not Position will be " "used. Position will be used for sorting and must " "come from a fixed list of positions", "required": False, "type": "string", }, "status": {"required": False, "type": "string", "eallowed": POSITION_STATUS, }, }, }, }, "facilities": { "type": "list", "required": False, "description": "facilities may be teaching or research things", "schema": { "type": "dict", "schema": { "begin_day": { "required": False, "description": "the day facility, or the wish for the " "facility, started", "type": "integer", }, "end_day": { "required": False, "description": "the day facility started", "type": "integer", }, "type": { "required": True, "description": "the type of the facility. Columbia asks" "for wished-for facilities, so there are " "teaching-wish and research-wish fields.", "type": "string", "eallowed": FACILITIES_TYPE }, "begin_month": { "required": False, "description": "the month the facility (or wish) started", "anyof_type": ["integer", "string"], }, "end_month": { "required": False, "description": "the month the faclity went away", "anyof_type": ["integer", "string"], }, "name": { "required": True, "description": "description of the facility", "type": "string", }, "notes": { "required": False, "description": "anything else you want to jot down", "anyof_type": ["string", "list"] }, "begin_year": { "required": True, "description": "the year the facility (or wish) started", "type": "integer", }, "end_year": { "required": False, "description": "the year the facility (or wish) went away", "type": "integer", }, } } }, "funding": { "description": "Funding and scholarship that the group member " "has individually obtained in the past. " "**WARNING:** this is not to be confused with the " "**grants** collection", "required": False, "schema": { "type": "dict", "schema": { "currency": {"required": False, "type": "string"}, "duration": {"required": False, "type": "string"}, "month": {"required": False, "anyof_type": ["string", "integer"], }, "name": {"required": True, "type": "string"}, "value": {"required": True, "type": ("float", "integer")}, "year": {"required": True, "type": "integer"}, }, }, "type": "list", }, "github_id": {"required": False, "type": "string", "description": "Your GitHub ID"}, "google_scholar_url": {"required": False, "type": "string", "description": "URL of your Google Scholar " "rofile"}, "grp_mtg_active": {"required": False, "type": "boolean", "description": "Whether to schedule tasks at group meeting " "or not"}, "hindex": { "description": "details of hindex pulled on a certain date", "required": False, "schema": { "type": "dict", "schema": { "h": {"description": "the value of the h index", "required": True, "type": "integer"}, "h_last_five": {"description": "h index over past 5 years", "required": False, "type": "integer"}, "citations": {"description": "total number of citations", "required": False, "type": "integer"}, "citations_last_five": {"description": "number of citations" "in the past 5 years", "required": False, "type": "integer"}, "origin": {"description": "where the numbers came from", "required": False, "type": "string"}, "since": {"description": "year of first citation", "required": False, "type": "integer"}, "year": {"description": "year when the data were pulled", "required": False, "type": "integer"}, "month": {"description": "month when the data were pulled", "required": False, "anyof_type": ["string", "integer"]}, "day": {"description": "day when the data were pulled", "required": False, "type": "integer"}, } }, "type": "list", }, "home_address": { "description": "The person's home address", "type": "dict", "schema": { "street": {"type": "string", "description": "street address"}, "city": {"type": "string", "description": "name of home city"}, "state": {"type": "string", "description": "name o home state"}, "zip": {"type": "string", "description": "zip code"}, }, }, "honors": { "description": "Honors that have been awarded to this " "group member", "required": False, "schema": { "type": "dict", "schema": { "description": {"required": False, "type": "string"}, "month": {"required": False, "anyof_type": ["string", "integer"], }, "name": {"required": True, "type": "string"}, "year": {"required": True, "type": "integer"}, }, }, "type": "list", }, "initials": { "description": "The canonical initials for this group member", "required": False, "type": "string", }, # TODO: include `link` "membership": { "description": "Professional organizations this member is " "a part of", "required": False, "schema": { "type": "dict", "schema": { "begin_month": {"required": False, "anyof_type": ["string", "integer"], }, "begin_year": {"required": True, "type": "integer"}, "description": {"required": False, "type": "string"}, "end_month": {"required": False, "anyof_type": ["string", "integer"], }, "end_year": {"required": False, "type": "integer"}, "organization": {"required": True, "type": "string"}, "position": {"required": True, "type": "string"}, "website": {"required": False, "type": "string"}, }, }, "type": "list", }, "miscellaneous": { "description": "Place to put weird things needed for special reporta", "required": False, "type": "dict", "schema": { "metrics_for_success": { "description": "How do I want to be judged", "required": False, "type": "list", }, }, }, "name": { "description": "Full, canonical name for the person", "required": True, "type": "string", }, "office": { "description": "The person's office", "type": "string", "required": False }, "orcid_id": { "description": "The ORCID ID of the person", "required": False, "type": "string", }, "position": { "description": "such as professor, graduate student, or scientist", "required": False, "type": "string", "eallowed": list(SORTED_POSITION), }, "position_full": { "description": "The full on title of the position. This will be " "typeset if it is here, or if not Position will be " "used. Position will be used for sorting and must " "come from a fixed list of positions", "required": False, "type": "string", }, "publicity": { "description": "summary of publicity that person has received", "required": False, "schema": { "type": "dict", "schema": { "type": {"required": True, "type": "string", "eallowed": PUBLICITY_TYPE}, "topic": {"required": False, "type": "string", "description": "The short sentence of what the " "publicity was about", }, "title": {"required": True, "type": "string", "description": "The title of the piece", }, "day": {"required": False, "type": "integer", "description": "The day the piece appeared" }, "month": {"required": False, "anyof_type": ["string", "integer"], "description": "The month the piece appeared" }, "publication": {"required": False, "type": "string", "description": "The place where the " "publicity was placed" }, "text": {"required": False, "type": "string", "description": "The text of the publicity", }, "url": {"required": False, "type": "string", "description": "The URL where the piece may be found" }, "year": {"required": True, "type": "integer", "description": "The year the piece appeared" }, "grant": {"required": True, "type": "string", "description": "The identifier of the grant " "associated with the piece" }, }, }, "type": "list" }, "research_focus_areas": { "description": "summary of research projects that are ongoing. Used" "in Annual appraisal for example", "required": False, "schema": { "type": "dict", "schema": { "begin_year": {"required": False, "type": "integer"}, "end_year": {"required": False, "type": "integer"}, "description": {"required": False, "type": "string"} }, }, "type": "list" }, "research_summary": { "description": "Brief summary of overarching research goals", "required": False, "type": "string", }, "service": { "description": "Service that this group member has provided", "required": False, "schema": { "type": "dict", "schema": { "description": {"required": False, "type": "string"}, "duration": {"required": False, "type": "string"}, "month": {"description": "Use month and year if the service" "doesn't extend more than one year." "Otherwise use begin_year and end_year", "required": False, "anyof_type": ["string", "integer"] }, "name": {"required": True, "type": "string"}, "role": {"required": False, "type": "string", "description": "the role played in the activity, e.g., co-chair"}, "notes": {"required": False, "anyof_type": ["string", "list"]}, "year": {"required": False, "type": "integer"}, "begin_year": {"required": False, "type": "integer"}, "begin_day": {"required": False, "type": "integer"}, "begin_month": {"description": "Use month and year if the service" "doesn't extend more than one year." "Otherwise use begin_year/month and end_year/month", "required": False, "anyof_type": ["string", "integer"] }, "end_year": {"required": False, "type": "integer"}, "end_month": {"description": "Use month and year if the service" "doesn't extend more than one year." "Otherwise use begin_year and end_year", "required": False, "anyof_type": ["string", "integer"] }, "end_day": {"required": False, "type": "integer"}, "other": {"required": False, "anyof_type": ["string", "list"]}, "type": {"required": True, "type": "string", "description": "profession, department, school, university", "eallowed": SERVICE_TYPE}, }, }, "type": "list", }, "skills": { "description": "Skill the group member has", "required": False, "schema": { "type": "dict", "schema": { "category": {"required": True, "type": "string"}, "level": {"required": True, "type": "string"}, "name": {"required": True, "type": "string"}, }, }, "type": "list", }, "teaching": { "description": "Courses that this group member has taught, if any", "required": False, "type": "list", "schema": { "type": "dict", "schema": { "course": {"required": True, "type": "string"}, "courseid": {"required": True, "type": "string"}, "description": {"required": False, "type": "string"}, "end_month": {"required": False, "anyof_type": ["string", "integer"]}, "end_year": {"required": False, "type": "integer"}, "enrollment": {"required": False, "anyof_type": ["integer", "string"]}, "evaluation": { "type": "dict", "required": False, "schema": { "response_rate": {"type": "number", "required": True}, "amount_learned": {"type": "number", "required": True}, "appropriateness_workload": {"type": "number", "required": True}, "course_overall": {"type": "number", "required": True}, "fairness_grading": {"type": "number", "required": True}, "organization": {"type": "number", "required": True}, "classroom_delivery": {"type": "number", "required": True}, "approachability": {"type": "number", "required": True}, "instructor_overall": {"type": "number", "required": True}, "comments": {"type": "list", "required": False, "description": "student comments"}, }, }, "materials": {"required": False, "type": "string"}, "month": {"required": False, "anyof_type": ["string", "integer"], }, "organization": {"required": True, "type": "string"}, "position": {"required": True, "type": "string"}, "semester": {"required": False, "type": "string"}, "syllabus": {"required": False, "type": "string"}, "video": {"required": False, "type": "string"}, "website": {"required": False, "type": "string"}, "year": {"required": True, "type": "integer"}, }, }, }, "title": { "description": "for example, Dr., etc.", "required": False, "type": "string", }, "todos": { "description": "a list of the todo tasks", "required": False, "type": "list", "schema": { "type": "dict", "schema": { "description": {"description": "the description of the to-do task", "required": True, "type": "string"}, "due_date": {"description": "the due date", "required": False, "anyof_type": ["string", "date"]}, "begin_date": {"description": "the begin date", "required": False, "anyof_type": ["string", "date"]}, "end_date": {"description": "the end date", "required": False, "anyof_type": ["string", "date"]}, "duration": { "description": "the size of the task/ the estimated duration it will take to finish the task. Unit: miniutes.", "required": False, "type": "float"}, "importance": { "description": "the importance, from 0 to 2", "required": False, "type": "integer"}, "status": {"description": "the status: started/finished/cancelled", "required": True, "type": "string"}, "notes": {"description": "additional notes for this task", "required": False, "type": "list", "schema": {"type": "string"} }, "running_index": { "description": "Index of a certain task used to update that task in the enumerated todo list.", "required": False, "type": "integer"}, "assigned_by": { "description": "ID of the member that assigns the task", "required": False, "type": "string"}, } } }, }, "presentations": { "_description": { "description": "This collection describes presentations that group" "members make at conferences, symposia, seminars and" "so on." }, "_id": { "description": "unique id for the presentation", "required": True, "type": "string", }, "abstract": { "description": "abstract of the presentation", "required": False, "type": "string", }, "authors": { "description": "Author list.", "required": True, "anyof_type": ["string", "list"], }, "begin_date": { "description": "begin date in YYYY-MM-DD", "anyof_type": ["date", "string"], }, "end_date": { "description": "end_date in YYYY-MM-DD", "anyof_type": ["date", "string"], }, "begin_year": { "description": "year the conference or trip begins.", "required": False, "type": "integer", }, "begin_month": {"required": False, "anyof_type": ["string", "integer"], }, "begin_day": {"required": False, "type": "integer"}, "department": { "description": "department of the institution where the" "presentation will be made, if " "applicable. should be discoverable in " "institutions.", "required": False, "type": "string", }, "end_year": { "description": "year the conference or trip ends", "required": False, "type": "integer", }, "end_month": {"required": False, "anyof_type": ["string", "integer"], }, "end_day": {"required": False, "type": "integer"}, "institution": { "description": "institution where the" "presentation will be made, if " "applicable.", "required": False, "type": "string", }, "meeting_name": { "description": "full name of the conference or " "meeting. If it is a departmental " "seminar or colloquium, write Seminar" "or Colloquium and fill in department " "and institution fields", "required": False, "type": "string", }, # TODO: conditional validation. If type=colloq or seminar, required is # institution and department, otherwise location "location": { "description": "city and {state or country} of meeting", "required": False, "type": "string", }, "notes": { "description": "any reminder or memory aid about anything", "required": False, "anyof_type": ["list", "string"], }, "project": { "description": "project or list of projects that this " "presentation is associated with. Should " "be discoverable in projects collection", "required": False, "anyof_type": ["string", "list"], }, "status": { "description": "Is the application in prep or submitted, " "was the invitation accepted or declined, was " "the trip cancelled?", "required": True, "type": "string", "eallowed": PRESENTATION_STATUS, }, "title": { "description": "title of the presentation", "required": True, "type": "string", }, "type": { "description": "type of presentation", "eallowed": PRESENTATION_TYPE, "required": True, "type": "string", }, "webinar": { "description": "true if a webinar. Default to False", "required": False, "type": "boolean", }, }, "projects": { "_description": { "description": "This collection describes the research group " "projects. This is normally public data." }, "_id": { "description": "Unique project identifier.", "required": True, "type": "string", }, "active": { "description": "true if the project is active", "required": False, "anyof_type": ["string", "boolean"], }, "description": { "description": "brief project description.", "required": True, "type": "string", }, "grant": { "description": "Grant id if there is a grant supporting this " "project", "required": False, "type": "string", }, "group": { "description": "id for the group in the groups collection whose project this is", "required": False, "type": "string", }, "highlights": { "description": "list of things to highlight in a report or website, such as releases for for software or high profile publications", "required": False, "type": "list", "schema": { "type": "dict", "schema": { "year": {"description": "the year of the highlight", "required": True, "type": "integer"}, "month": {"description": "the month of the highlight", "required": True, "anyof_type": ["string", "integer"]}, "description": {"description": "the highlight", "required": True, "type": "string"}, } } }, "logo": { "description": "URL to the project logo", "required": False, "type": "string", }, "name": { "description": "name of the project.", "required": True, "type": "string", }, "other": { "description": "other information about the project", "required": False, "type": ["list", "string"], }, "repo": { "description": "URL of the source code repo, if available", "required": False, "type": "string", }, "team": { "description": "People who are/have been working on this project.", "required": True, "schema": { "type": "dict", "schema": { "begin_month": {"required": False, "anyof_type": ["string", "integer"], }, "begin_year": {"required": True, "type": "integer"}, "end_month": {"required": False, "anyof_type": ["string", "integer"], }, "end_year": {"required": False, "type": "integer"}, "name": {"required": True, "type": "string"}, "position": {"required": True, "type": "string"}, }, }, "type": "list", }, "type": { "description": "The type of project", "required": False, "anyof_type": ["string"], "eallowed": PROJECT_TYPE }, "website": { "description": "URL of the website.", "required": False, "type": "string", }, }, "proposalReviews": { "_description": { "description": "This collection contains reviews of funding proposals" }, "_id": { "description": "ID, e.g. 1906_doe_example", "required": True, "type": ("string", "integer", "float"), }, "adequacy_of_resources": { "description": "Are the resources of the PI adequate", "required": True, "type": "list", }, "agency": { "description": "currently nsf or doe", "type": "string", "eallowed": AGENCIES, }, "competency_of_team": { "description": "Is the team competent", "required": True, "type": "list", }, "doe_appropriateness_of_approach": { "description": "Appropriateness of Research. only used if agency is doe.", "required": False, "type": "list", }, "doe_reasonableness_of_budget": { "description": "Reasonableness of budget. only used if agency is doe.", "required": False, "type": "list", }, "doe_relevance_to_program_mission": { "description": "Relevance to program mission. only used if agency is doe.", "required": False, "type": "list", }, "does_how": { "description": "How will the research be done", "required": True, "type": "list", }, "does_what": { "description": "What will the team do", "required": True, "type": "string", }, "due_date": { "description": "date the review is due in ISO format", "required": True, "anyof_type": ["string", "date"], }, "freewrite": { "description": "Anything and this will appear in the built document" "right before the summary. This section often used " "for extra review criteria for the particular proposal", "required": False, "type": "list", }, "goals": { "description": "What are the main goals of the proposed research", "required": True, "type": "list", }, "importance": { "description": "The importance of the Research", "required": True, "type": "list", }, "institutions": { "description": "The institutions of the authors in the same order", "required": True, "anyof_type": ["string", "list"] }, "month": { "description": "The month the review was submitted", "required": True, "anyof_type": ["string", "integer"], }, "names": { "description": "The names of the PIs", "required": True, "anyof_type": ["list", "string"], }, "nsf_broader_impacts": { "description": "The broader impacts of the research. Only used if " "agency is nsf", "required": False, "type": "list", }, "nsf_create_original_transformative": { "description": "Answer to the question how the work is creative, " "original or transformative. Only used if agency is " "nsf", "required": False, "type": "list", }, "nsf_plan_good": { "description": "Is the plan good? Only used if agency is nsf", "required": False, "type": "list", }, "nsf_pot_to_advance_knowledge": { "description": "Answer to the question how the work will advance" "knowledge. Only used if agency is nsf", "required": False, "type": "list", }, "nsf_pot_to_benefit_society": { "description": "Answer to the question how the work has the potential" "to benefit society. Only used if agency is nsf", "required": False, "type": "list", }, "requester": { "description": "Name of the program officer who requested the review", "required": True, "type": "string", }, "reviewer": { "description": "short name of the reviewer. Will be used in the " "filename of the resulting text file", "required": True, "type": "string", }, "status": { "description": "the status of the review", "type": "string", "eallowed": REVIEW_STATI, }, "summary": { "description": "Summary statement", "required": True, "type": "string", }, "title": { "description": "The title of the proposal", "required": True, "type": "string", }, "year": { "description": "The year the review was submitted", "required": True, "type": "integer", }, }, "proposals": { "_description": { "description": "This collection represents proposals that have " "been submitted by the group." }, "_id": { "description": "short representation, such as this-is-my-name", "required": True, "type": ("string", "integer", "float"), }, "amount": { "description": "value of award", "required": True, "type": ("integer", "float"), }, "authors": { "description": "other investigator names", "required": False, "anyof_type": ["list", "string"], }, "begin_date": { "description": "start date of the proposed grant in format YYYY-MM-DD", "required": False, "anyof_type": ["string", "date"] }, "begin_day": { "description": "start day of the proposed grant", "required": False, "type": "integer", }, "begin_month": { "description": "start month of the proposed grant", "required": False, "anyof_type": ["string", "integer"] }, "begin_year": { "description": "start year of the proposed grant", "required": False, "type": "integer", }, "call_for_proposals": { "description": "", "required": False, "type": "string", }, "cpp_info": { "description": "extra information needed for building current and " "pending form ", "required": False, "schema": { "cppflag": {"required": False, "type": "boolean"}, "other_agencies_submitted": {"required": False, "anyof_type": ["string", "boolean"]}, "institution": {"required": False, "type": "string", "description": "place where the proposed grant will be located"}, "person_months_academic": {"required": False, "anyof_type": ["float", "integer"]}, "person_months_summer": {"required": False, "anyof_type": ["float", "integer"]}, "project_scope": {"required": False, "type": "string"}, "single_pi": {"required": False, "type": "boolean", "description": "set to true if there are no co-pi's"}, }, "type": "dict", }, "currency": { "description": "typically '$' or 'USD'", "required": True, "type": "string", }, "due_date": { "description": "day that the proposal is due", "required": False, "anyof_type": ["string", "date"], }, "duration": { "description": "number of years", "required": False, "type": ("integer", "float"), }, "end_date": { "description": "end date of the proposed grant in format YYYY-MM-DD", "required": False, "anyof_type": ["string", "date"] }, "end_day": { "description": "end day of the proposed grant", "required": False, "type": ("string", "integer"), }, "end_month": { "description": "end month of the proposed grant", "required": False, "anyof_type": ["string", "integer"] }, "end_year": { "description": "end year of the proposed grant", "required": False, "type": "integer", }, "funder": { "description": "who will fund the proposal" "as funder in grants", "required": False, "type": "string", }, "full": { "description": "full body of the proposal", "required": False, "type": "dict", }, "notes": { "description": "anything you want to note", "required": False, "anyof_type": ["string", "list"], }, "pi": { "description": "principal investigator name", "required": True, "type": "string", }, "pre": { "description": "Information about the pre-proposal", "required": False, "type": "dict", }, "status": { "description": "e.g. 'pending', 'accepted', 'declined'", "required": True, "type": "string", "eallowed": PROPOSAL_STATI, }, "submitted_date": { "description": "date that the proposal was submitted", "required": False, "anyof_type": ["string", "date"], }, "submitted_day": { "description": "day that the proposal was submitted", "required": False, "type": "integer", }, "submitted_month": { "description": "month that the proposal was submitted", "required": False, "anyof_type": ["string", "integer"] }, "submitted_year": { "description": "Year that the proposal was submitted", "required": False, "type": "integer", }, "team": { "description": "information about the team members participating " "in the grant.", "required": False, "schema": { "schema": { "cv": {"required": False, "type": "string"}, "email": {"required": False, "type": "string"}, "institution": {"required": False, "type": "string"}, "name": {"required": False, "type": "string"}, "position": {"required": False, "type": "string"}, "subaward_amount": { "required": False, "type": ("integer", "float"), }, }, "type": "dict", }, "type": "list", }, "title": { "description": "actual title of proposal", "required": True, "type": "string", }, "title_short": { "description": "short title of proposal", "required": False, "type": "string", }, }, "refereeReports": { "_description": { "description": "This is a collection of information that will be " "be used to build a referee report. This should probably be private." }, "_id": {"description": "the ID", "required": True, "type": "string"}, "claimed_found_what": { "description": "What the authors claim to have found", "required": True, "schema": {"type": "string", "required": True}, "type": "list", }, "claimed_why_important": { "description": "What importance the authors claim", "required": True, "schema": {"type": "string", "required": True}, "type": "list", }, "did_how": { "description": "How the study was done", "required": True, "schema": {"type": "string", "required": True}, "type": "list", }, "did_what": { "description": "What the study was", "required": True, "schema": {"type": "string", "required": True}, "type": "list", }, "due_date": { "description": "date the review is due in ISO format", "required": True, "anyof_type": ["string", "date"], }, "editor_eyes_only": { "description": "Comments you don't want passed to the author", "required": False, "type": "string", }, "final_assessment": { "description": "Summary of impressions of the study", "required": True, "schema": {"type": "string", "required": True}, "type": "list", }, "first_author_last_name": { "description": "Last name of first author will be referred to " "with et al.", "required": True, "type": "string", }, "freewrite": { "description": "Things that you want to add that don't fit into " "any category above", "required": False, "type": "string", }, "journal": { "description": "name of the journal", "required": True, "type": "string", }, "month": { "description": "the month the entry was created", "required": False, "anyof_type": ["string", "integer"] }, "recommendation": { "description": "Your publication recommendation", "required": True, "type": "string", "eallowed": REVIEW_RECOMMENDATION, }, "requester": { "description": "Name of the program officer who requested the review", "required": True, "type": "string", }, "reviewer": { "description": "name of person reviewing the paper", "required": True, "type": "string", }, "status": { "description": "Where you are with the review", "required": True, "type": "string", "eallowed": REVIEW_STATI, }, "submitted_date": { "description": "submitted date in ISO YYYY-MM-DD format", "required": True, "anyof_type": ["string", "date"], }, "title": { "description": "title of the paper under review", "required": True, "type": "string", }, "validity_assessment": { "description": "List of impressions of the validity of the claims", "required": True, "schema": {"type": "string", "required": True}, "type": "list", }, "year": { "description": "year when the review is being done", "required": True, "anyof_type": ["string", "integer"], }, }, "students": { "_description": { "description": "This is a collection of student names and " "metadata. This should probably be private." }, "_id": { "description": "short representation, such as this-is-my-name", "required": True, "type": "string", }, "aka": { "description": "list of aliases", "required": False, "schema": {"type": "string"}, "type": ("list", "string"), }, "email": {"description": "email address", "required": False, "type": "string"}, "university_id": { "description": "The university identifier for the student", "required": False, "type": "string", }, }, } for s in SCHEMAS: SCHEMAS[s]["files"] = { "description": "Files associated with the document", # TODO: fix this since this is currently comming out a CommentedMap # "type": "list", # "schema": {"type": "string"}, "required": False, } class NoDescriptionValidator(Validator): def _validate_description(self, description, field, value): """Don't validate descriptions The rule's arguments are validated against this schema: {'type': 'string'}""" if False: pass def _validate_eallowed(self, eallowed, field, value): """Test if value is in list The rule's arguments are validated against this schema: {'type': 'list'} """ if value not in eallowed: warn( '"{}" is not in the preferred entries for "{}", please ' "consider changing this entry to conform or add this to the " "``eallowed`` field in the schema.".format(value, field) ) def validate(coll, record, schemas): """Validate a record for a given db Parameters ---------- coll : str The name of the db in question record : dict The record to be validated schemas : dict The schema to validate against Returns ------- rtn : bool True is valid errors: dict The errors encountered (if any) """ if coll in schemas: schema = copy.deepcopy(schemas[coll]) v = NoDescriptionValidator(schema) return v.validate(record), v.errors else: return True, ()
39.058422
145
0.424287
[ "CC0-1.0" ]
priyankaanehra/regolith
regolith/schemas.py
165,807
Python
from .services import * # noqa
16
31
0.6875
[ "BSD-3-Clause" ]
sot/mica
mica/archive/cda/__init__.py
32
Python
import pysftp import os.path def upload_sprog_to_namecheap(tmpdir, passwords): with pysftp.Connection(passwords["NAMECHEAP_SERVER"], username=passwords["NAMECHEAP_USERNAME"], password=passwords["NAMECHEAP_PASSWORD"], port=passwords["NAMECHEAP_PORT"]) as sftp: with sftp.cd('public_html'): print("uploading sprog.pdf") sftp.put("sprog.pdf") print("uploading sprog_small.pdf") sftp.put("small_sprog.pdf", "sprog_small.pdf") print("uploading sprog.html") sftp.put(os.path.join(tmpdir, "sprog.html"), "sprog.html") print("uploading sprog.json") sftp.put("poems.json", "poems.json") print("uploading sprog.json.gz") sftp.put("poems.json.gz", "poems.json.gz") print("uploading sprog_60days.json.gz") sftp.put("poems_60days.json.gz", "poems_60days.json.gz") print("uploading sprog.rss") sftp.put("sprog.rss", "sprog.rss") print("uploading sprog_no_context.rss") sftp.put("sprog_no_context.rss", "sprog_no_context.rss")
45.8
111
0.611354
[ "MIT", "BSD-3-Clause" ]
PaulKlinger/Sprog-Backend
sprog/namecheap_ftp_upload.py
1,145
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- from handlers.Home_Core import Home_Core class ITM_Core(Home_Core): def __init__(self, request, response, itm_db): super(ITM_Core, self).__init__(request, response) self.itmDB = itm_db self.db = itm_db.db
23.636364
51
0.723077
[ "BSD-3-Clause" ]
Jai-Chaudhary/termite-data-server
server_src/modules/handlers/ITM_Core.py
260
Python
from typing import Dict, List, TypeVar, Generic import warnings import torch import numpy from allennlp.common import Registrable from allennlp.data.tokenizers.token import Token from allennlp.data.vocabulary import Vocabulary TokenType = TypeVar("TokenType", int, List[int], numpy.ndarray) class TokenIndexer(Generic[TokenType], Registrable): """ A ``TokenIndexer`` determines how string tokens get represented as arrays of indices in a model. This class both converts strings into numerical values, with the help of a :class:`~allennlp.data.vocabulary.Vocabulary`, and it produces actual arrays. Tokens can be represented as single IDs (e.g., the word "cat" gets represented by the number 34), or as lists of character IDs (e.g., "cat" gets represented by the numbers [23, 10, 18]), or in some other way that you can come up with (e.g., if you have some structured input you want to represent in a special way in your data arrays, you can do that here). # Parameters token_min_padding_length : ``int``, optional (default=``0``) The minimum padding length required for the :class:`TokenIndexer`. For example, the minimum padding length of :class:`SingleIdTokenIndexer` is the largest size of filter when using :class:`CnnEncoder`. Note that if you set this for one TokenIndexer, you likely have to set it for all :class:`TokenIndexer` for the same field, otherwise you'll get mismatched tensor sizes. """ default_implementation = "single_id" has_warned_for_as_padded_tensor = False def __init__(self, token_min_padding_length: int = 0) -> None: self._token_min_padding_length: int = token_min_padding_length def count_vocab_items(self, token: Token, counter: Dict[str, Dict[str, int]]): """ The :class:`Vocabulary` needs to assign indices to whatever strings we see in the training data (possibly doing some frequency filtering and using an OOV, or out of vocabulary, token). This method takes a token and a dictionary of counts and increments counts for whatever vocabulary items are present in the token. If this is a single token ID representation, the vocabulary item is likely the token itself. If this is a token characters representation, the vocabulary items are all of the characters in the token. """ raise NotImplementedError def tokens_to_indices( self, tokens: List[Token], vocabulary: Vocabulary, index_name: str ) -> Dict[str, List[TokenType]]: """ Takes a list of tokens and converts them to one or more sets of indices. This could be just an ID for each token from the vocabulary. Or it could split each token into characters and return one ID per character. Or (for instance, in the case of byte-pair encoding) there might not be a clean mapping from individual tokens to indices. """ raise NotImplementedError def get_padding_token(self) -> TokenType: """ Deprecated. Please just implement the padding token in `as_padded_tensor` instead. TODO(Mark): remove in 1.0 release. This is only a concrete implementation to preserve backward compatability, otherwise it would be abstract. When we need to add padding tokens, what should they look like? This method returns a "blank" token of whatever type is returned by :func:`tokens_to_indices`. """ warnings.warn( "Using a Field with get_padding_token as an inherited method," " which will be depreciated in 1.0.0." "Please implement as_padded_tensor instead.", FutureWarning, ) return 0 # type: ignore def get_padding_lengths(self, token: TokenType) -> Dict[str, int]: """ This method returns a padding dictionary for the given token that specifies lengths for all arrays that need padding. For example, for single ID tokens the returned dictionary will be empty, but for a token characters representation, this will return the number of characters in the token. """ raise NotImplementedError def get_token_min_padding_length(self) -> int: """ This method returns the minimum padding length required for this TokenIndexer. For example, the minimum padding length of `SingleIdTokenIndexer` is the largest size of filter when using `CnnEncoder`. """ return self._token_min_padding_length def as_padded_tensor( self, tokens: Dict[str, List[TokenType]], desired_num_tokens: Dict[str, int], padding_lengths: Dict[str, int], ) -> Dict[str, torch.Tensor]: """ This method pads a list of tokens to ``desired_num_tokens`` and returns that padded list of input tokens as a torch Tensor. If the input token list is longer than ``desired_num_tokens`` then it will be truncated. ``padding_lengths`` is used to provide supplemental padding parameters which are needed in some cases. For example, it contains the widths to pad characters to when doing character-level padding. Note that this method should be abstract, but it is implemented to allow backward compatability. """ if not self.has_warned_for_as_padded_tensor: warnings.warn( "Using a Field with pad_token_sequence, which will be depreciated in 1.0.0." "Please implement as_padded_tensor instead.", FutureWarning, ) self.has_warned_for_as_padded_tensor = True padded = self.pad_token_sequence(tokens, desired_num_tokens, padding_lengths) return {key: torch.LongTensor(array) for key, array in padded.items()} def pad_token_sequence( self, tokens: Dict[str, List[TokenType]], desired_num_tokens: Dict[str, int], padding_lengths: Dict[str, int], ) -> Dict[str, TokenType]: """ Deprecated. Please use `as_padded_tensor` instead. TODO(Mark): remove in 1.0 release. """ raise NotImplementedError def get_keys(self, index_name: str) -> List[str]: """ Return a list of the keys this indexer return from ``tokens_to_indices``. """ return [index_name] def __eq__(self, other) -> bool: if isinstance(self, other.__class__): return self.__dict__ == other.__dict__ return NotImplemented
44.234899
104
0.678046
[ "Apache-2.0" ]
loopylangur/allennlp
allennlp/data/token_indexers/token_indexer.py
6,591
Python
from pyowm import OWM owm = OWM('21ff51d901692fd3e2f5ecc04d3617f1') place = input('Input Place: ') mgr = owm.weather_manager() observation = mgr.weather_at_place(place) w = observation.weather wind = w.detailed_status t = w.temperature('celsius') print(wind) print(t) exit_ = input('')
24.75
46
0.727273
[ "MIT" ]
Geimers228/PyDev
weather.py
297
Python
from __future__ import print_function import os import datetime import sqlalchemy as sa from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.hybrid import hybrid_method from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import Query, scoped_session, sessionmaker from sqlalchemy_mixins import SmartQueryMixin, ReprMixin, JOINED, smart_query def log(msg): print('\n{}\n'.format(msg)) #################### setup ###################### Base = declarative_base() # we also use ReprMixin which is optional class BaseModel(Base, SmartQueryMixin, ReprMixin): __abstract__ = True __repr__ = ReprMixin.__repr__ pass class User(BaseModel): __tablename__ = 'user' __repr_attrs__ = ['name'] id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) # to smart query relationship, it should be explicitly set, # not to be a backref posts = sa.orm.relationship('Post') comments = sa.orm.relationship('Comment') # below relationship will just return query (without executing) # this query can be customized # see http://docs.sqlalchemy.org/en/latest/orm/collections.html#dynamic-relationship # # we will use this relationship for demonstrating real-life example # of how smart_query() function works (see 3.2.2) comments_ = sa.orm.relationship('Comment', lazy="dynamic") # this will return query class Post(BaseModel): __tablename__ = 'post' id = sa.Column(sa.Integer, primary_key=True) body = sa.Column(sa.String) user_id = sa.Column(sa.Integer, sa.ForeignKey('user.id')) archived = sa.Column(sa.Boolean, default=False) # to smart query relationship, it should be explicitly set, # not to be a backref user = sa.orm.relationship('User') comments = sa.orm.relationship('Comment') @hybrid_property def public(self): return not self.archived @public.expression def public(cls): return ~cls.archived @hybrid_method def is_commented_by_user(cls, user, mapper=None): # in real apps, Comment class can be obtained from relation # to avoid cyclic imports like so: # Comment = cls.comments.property.argument() mapper = mapper or cls # from sqlalchemy import exists # return exists().where((Comment.post_id == mapper.id) & \ # (Comment.user_id == user.id)) return mapper.comments.any(Comment.user_id == user.id) @hybrid_method def is_public(cls, value, mapper=None): # in real apps, Comment class can be obtained from relation # to avoid cyclic imports like so: # Comment = cls.comments.property.argument() mapper = mapper or cls return mapper.public == value class Comment(BaseModel): __tablename__ = 'comment' __repr_attrs__ = ['body'] id = sa.Column(sa.Integer, primary_key=True) body = sa.Column(sa.String) user_id = sa.Column(sa.Integer, sa.ForeignKey('user.id')) post_id = sa.Column(sa.Integer, sa.ForeignKey('post.id')) rating = sa.Column(sa.Integer) created_at = sa.Column(sa.DateTime) # to smart query relationship, it should be explicitly set, # not to be a backref user = sa.orm.relationship('User') post = sa.orm.relationship('Post') #################### setup ORM ###################### db_file = os.path.join(os.path.dirname(__file__), 'test.sqlite') engine = create_engine('sqlite:///{}'.format(db_file), echo=True) Base.metadata.drop_all(engine) Base.metadata.create_all(engine) session = scoped_session(sessionmaker(bind=engine)) BaseModel.set_session(session) #################### setup some data ###################### u1 = User(name='Bill u1') session.add(u1) session.commit() u2 = User(name='Alex u2') session.add(u2) session.commit() u3 = User(name='Bishop u3') session.add(u3) session.commit() session.commit() p11 = Post( id=11, body='1234567890123', archived=True, user=u1 ) session.add(p11) session.commit() p12 = Post( id=12, body='1234567890', user=u1 ) session.add(p12) session.commit() p21 = Post( id=21, body='p21', user=u2 ) session.add(p21) session.commit() p22 = Post( id=22, body='p22', user=u2 ) session.add(p22) session.commit() cm11 = Comment( id=11, body='cm11', user=u1, post=p11, rating=1, created_at=datetime.datetime(2014, 1, 1) ) session.add(cm11) session.commit() cm12 = Comment( id=12, body='cm12', user=u2, post=p12, rating=2, created_at=datetime.datetime(2015, 10, 20) ) session.add(cm12) session.commit() cm21 = Comment( id=21, body='cm21', user=u1, post=p21, rating=1, created_at=datetime.datetime(2015, 11, 21) ) session.add(cm21) session.commit() cm22 = Comment( id=22, body='cm22', user=u3, post=p22, rating=3, created_at=datetime.datetime(2016, 11, 20) ) session.add(cm22) session.commit() cm_empty = Comment( id=29, # no body # no user # no post # no rating ) session.add(cm_empty) session.commit() #################### Demo ###################### # ['id', 'body', 'user_id', 'archived', # normal columns # 'user', 'comments', # relations # 'public', # hybrid attributes # 'is_public', 'is_commented_by_user' # hybrid methods # ] log(Post.filterable_attributes) #### 1. Filters #### ##### 1.1 filter by hybrid_property 'public' ##### # low-level filter_expr() log(session.query(Post).filter(*Post.filter_expr(user=u1, public=True)).all()) # high-level SmartQueryMixin.where() method log(Post.where(user=u1, public=True).all()) # you can unpack dict (in real world app you will do this) filters = {'user': u1, 'public': True} log(Post.where(**filters).all()) ##### 1.2 filter by hybrid_method 'is_commented_by_user' ##### # low-level filter_expr() log(session.query(Post).filter( *Post.filter_expr(is_commented_by_user=u1)).all()) # high-level SmartQueryMixin.where() method log(Post.where(is_commented_by_user=u1).all()) ##### 1.3 operators ##### # rating == None log(Comment.where(rating=None).all()) # cm_empty log(Comment.where(rating__isnull=2).all()) # cm_empty # rating == 2 # when no operator, 'exact' operator is assumed log(Comment.where(rating=2).all()) # cm12 # assumed log(Comment.where(rating__exact=2).all()) # cm12 # rating > 2 log(Comment.where(rating__gt=2).all()) # cm22 # rating >= 2 log(Comment.where(rating__ge=2).all()) # cm12, cm22 # rating < 2 log(Comment.where(rating__lt=2).all()) # cm11, cm21 # rating <= 2 log(Comment.where(rating__le=2).all()) # cm11, cm12, cm21 # rating in [1,3] log(Comment.where(rating__in=[1, 3]).all()) # cm11, cm21, cm22 log(Comment.where(rating__in=(1, 3)).all()) # cm11, cm21, cm22 log(Comment.where(rating__in={1, 3}).all()) # cm11, cm21, cm22 # rating between 2 and 3 log(Comment.where(rating__between=[2, 3]).all()) # cm12, cm22 log(Comment.where(rating__between=(2, 3)).all()) # cm12, cm22 # likes log(Comment.where(body__like=u'cm12 to p12').all()) # cm12 log(Comment.where(body__like='%cm12%').all()) # cm12 log(Comment.where(body__ilike='%CM12%').all()) # cm12 log(Comment.where(body__startswith='cm1').all()) # cm11, cm12 log(Comment.where(body__istartswith='CM1').all()) # cm11, cm12 log(Comment.where(body__endswith='to p12').all()) # cm12 log(Comment.where(body__iendswith='TO P12').all()) # cm12 # dates # year log(Comment.where(created_at__year=2014).all()) # cm11 log(Comment.where(created_at__year=2015).all()) # cm12, cm21 # month log(Comment.where(created_at__month=1).all()) # cm11 log(Comment.where(created_at__month=11).all()) # cm21, cm22 # day log(Comment.where(created_at__day=1).all()) # cm11 log(Comment.where(created_at__day=20).all()) # cm12, cm22 # whole date log(Comment.where(created_at__year=2014, created_at__month=1, created_at__day=1).all()) # cm11 ##### 1.4 where() with auto-joined relations ##### # when have no joins, where() is a shortcut for filter_expr log(session.query(Comment).filter( *Comment.filter_expr(rating__gt=2, body__startswith='cm1')).all()) log(Comment.where(rating__gt=2, body__startswith='cm1').all()) # but where() can automatically join relations # users having posts which are commented by user 2 log(User.where(posts___comments___user_id=u2.id).all()) # comments where user name starts with 'Bi' # !! ATTENTION !! # about Comment.post: # although we have Post.comments relationship, # it's important to **add relationship Comment.post** too, # not just use backref !!! log(Comment.where(user___name__startswith='Bi').all()) # non-public posts commented by user 1 log(Post.where(public=False, is_commented_by_user=u1).all()) #### 2. sort #### #### 2.1 simple demo #### ##### 2.1.1 low-level order_expr() # '-rating', 'created_at' means 'ORDER BY rating DESC, created_at ASC' log(session.query(Comment).order_by( *Comment.order_expr('-rating', 'created_at')).all()) ##### 2.1.2 high-level sort() log(Comment.sort('-rating', 'created_at')) # in real world apps, you will keep attrs in list sort_attrs = ['-rating', 'created_at'] log(Comment.sort(*sort_attrs)) ##### 2.1.3 hybrid properties log(session.query(Post).order_by(*Post.order_expr('-public')).all()) log(Post.sort('-public').all()) #### 2.2 sort() with auto-joined relations #### # sort by name of user ASC (user relation will be auto-joined), then by # created_at DESC log(Comment.sort('user___name', '-created_at').all()) # get comments on public posts first, then order by post user name # Post and User tables will be auto-joined log(Comment.sort('-post___public', 'post___user___name').all()) #### 3. smart_query() : combination of where(), sort() and eager load #### schema = { 'post': { 'user': JOINED } } # schema can use class properties too (see EagerLoadMixin): # schema = { # Comment.post: { # Post.user: JOINED # } # } ##### 3.1 high-level smart_query() class method ##### res = Comment.smart_query( filters={ 'post___public': True, 'user__isnull': False }, sort_attrs=['user___name', '-created_at'], schema=schema).all() log(res) # cm12, cm21, cm22 ##### 3.2 more flexible smart_query() function ##### ##### 3.2.1. The same as 3.1 query = Comment.query # could be any query you want res = smart_query(query, filters={ 'post___public': True, 'user__isnull': False }, sort_attrs=['user___name', '-created_at'], schema=schema).all() log(res) # cm12, cm21, cm22 ##### 3.2.2. Real-life example with lazy='dynamic' relationship # let's imagine we want to display some user relations # and flexibly filter, sort and eagerload them # like this http://www.qopy.me/LwfSCu_ETM6At6el8wlbYA # (no sort on screenshot, but you've git the idea) # so we have a user user = session.query(User).first() # and we have initial query for his/her comments # (see User.comments_ relationship) query = user.comments_ # now we just smartly apply all filters, sorts and eagerload. Perfect! res = smart_query(query, filters={ 'post___public': True, 'user__isnull': False }, sort_attrs=['user___name', '-created_at'], schema=schema).all() log(res) # cm21 ##### 3.3 auto eager load in where() and sort() with auto-joined relations #### """ Smart_query does auto-joins for filtering/sorting, so there's a sense to tell sqlalchemy that we alreeady joined that relation So we test that relations are set to be joinedload if they were used in smart_query() """ ##### 3.3.1 where() # comments on public posts where posted user name like ... res = Comment.where(post___public=True, post___user___name__like='Bi%').all() log(res) # no additional query needed: we used 'post' and 'post__user' # relations in smart_query() log(res[0].post) log(res[0].post.user) # we didn't use post___comments in filters, so additional query is needed log(res[0].post.comments) ##### 3.3.2 sort() res = Comment.sort('-post___public', 'post___user___name').all() log(res) # no additional query needed: we used 'post' and 'post__user' # relations in smart_query() log(res[0].post) log(res[0].post.user) # we didn't use post___comments in filters, so additional query is needed log(res[0].post.comments)
28.272311
88
0.671712
[ "MIT" ]
AdamGold/sqlalchemy-mixins
examples/smartquery.py
12,355
Python
#! /usr/bin/env python import rospy from std_msgs.msg import Int32 def cb(message): rospy.loginfo(message.data*2) print (rospy.loginfo) if message.data%2 == 0: print ('0') elif message.data%2 != 0 : print('1') if __name__ == '__main__': rospy.init_node('twice') sub = rospy.Subscriber('count_up', Int32, cb) rospy.spin()
18.6
49
0.612903
[ "BSD-3-Clause" ]
note032/ROS_robosys
mypkg/scripts/twice.py
372
Python
import json from typing import List, Dict from icecream import ic from compiler_idioms.idiom.instruction_sequence import InstructionSequence from compiler_idioms.idiom.utils.magic import compute_magic_numbers_if_not_exists from compiler_idioms.instruction import from_anonymized_pattern, Instruction from compiler_idioms.match import Match from config import TEST_DIR, ROOT #TEST_PATTERN_PATH = TEST_DIR / "mods-pointer.json" TEST_PATTERN_PATH = TEST_DIR / "patterns-mods-O0.json" PATTERN_DIR = ROOT / 'patterns' HEX_BASE = 16 class SignedRemainderInstructionSequence(InstructionSequence): def __init__(self): sequences = self._load_sequences_from_file() # with TEST_PATTERN_PATH.open('r') as f: # seq = json.load(f) # print(seq) # sequences = [from_anonymized_pattern(seq['pattern'])] self.magic_table = compute_magic_numbers_if_not_exists() super().__init__(sequences) def search(self, sequence: List[Instruction], original_constants: Dict[str, str], original_registers: Dict[str, str]) -> Match: if match := super().search(sequence, original_constants, original_registers): match.operation = "modulo" match.operand = self._get_register_operand(original_registers) match.constant = self._get_original_constant_from_magic(original_constants) if not match.constant: return None return match def _get_register_operand(self, original_registers: Dict[str, str]): return original_registers.get("reg_1", []) def _get_original_constant_from_magic(self, original_constants: Dict[str, str]) -> int: magic = int(original_constants.get("const_0"), HEX_BASE) power = int(original_constants.get("const_1"), HEX_BASE) + int(original_constants.get("const_2"), HEX_BASE) return self.magic_table.get((magic, power)) @staticmethod def _load_sequences_from_file(): sequences = [] for patter_file in PATTERN_DIR.glob("*mods*"): try: with patter_file.open("r") as f: data = json.load(f) for seq in data: pattern = seq.get("sequence") anonymized_instruction_list = from_anonymized_pattern(pattern) if anonymized_instruction_list: sequences.append(anonymized_instruction_list) except FileNotFoundError as e: print("No file for division found") return sequences if __name__ == "__main__": idiom = SignedRemainderInstructionSequence() print(idiom.magic_table)
40.545455
131
0.67713
[ "MIT" ]
fkie-cad/pidarci
compiler_idioms/idiom/implementations/remainder_signed_todo.py
2,676
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- #----------------------------------------------------------------------------- # Copyright (c) 2015, IBM Corp. # All rights reserved. # # Distributed under the terms of the BSD Simplified License. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- """ Test module for IdaDataFrameObjects """ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import zip from future import standard_library standard_library.install_aliases() import pandas import pytest import six import ibmdbpy from ibmdbpy import IdaDataBase class Test_OpenDataFrameObject(object): def test_idadf_attr_idadb(self, idadf): assert isinstance(idadf._idadb, IdaDataBase) def test_idadf_attr_name(self, idadf, df): assert isinstance(idadf.name, six.string_types) assert idadf.name == idadf.schema + "." + "TEST_IBMDBPY" assert idadf.name == idadf.schema + "." + idadf.tablename def test_idadf_attr_schema(self, idadf): assert isinstance(idadf.schema, six.string_types) def test_idadf_attr_indexer(self, idadf): assert (isinstance(idadf.indexer, six.string_types)|(idadf.indexer is None)) # TODO : Check more deeply the indexer def test_idadf_attr_loc(self, idadf): assert isinstance(idadf.loc, ibmdbpy.indexing.Loc) def test_idadf_attr_internalstate(self, idadf): assert isinstance(idadf.internal_state, ibmdbpy.internals.InternalState) def test_idadf_attr_type(self, idadf): assert isinstance(idadf.type, six.string_types) assert idadf.type == "Table" def test_idadf_atrr_dtypes(self, idadf, df): assert isinstance(idadf.dtypes, pandas.core.frame.DataFrame) assert len(idadf.dtypes) == len(idadf.columns) assert len(idadf.dtypes) == len(df.columns) def test_idadf_attr_index(self, idadf, df): # Ok, but what do we do if too big ? assert type(idadf.index) in [pandas.Int64Index, pandas.Index, pandas.RangeIndex] # Not sure here assert list(idadf.index) == list(df.index) def test_idadf_attr_columns(self, idadf, df): assert isinstance(idadf.columns, pandas.core.index.Index) assert idadf.columns.equals(df.columns) def test_idadf_attr_axes(self, idadf): assert isinstance(idadf.axes, list) assert len(idadf.axes) == 2 assert idadf.axes[1].equals(idadf.columns) assert list(idadf.axes[0]) == list(idadf.index) def test_idadf_attr_shape(self, idadf, df): assert isinstance(idadf.shape, tuple) assert len(idadf.shape) == 2 assert idadf.shape[0] == len(idadf.index) assert idadf.shape[1] == len(idadf.columns) assert idadf.shape == df.shape def test_idadf_empty(self, idadb, df): idadb._create_table(df, "TEST_EMPTY_3496593727406047264076") to_test = ibmdbpy.IdaDataFrame(idadb, "TEST_EMPTY_3496593727406047264076") assert(to_test.empty is True) idadb.drop_table("TEST_EMPTY_3496593727406047264076") def test_idadf_len(self, idadf, df): assert(len(idadf) == len(df)) def test_idadf_iter(self, idadf, df): for idacol, col in zip(idadf, df): assert(idacol == col) class Test_IdaDataFrameBehavior(object): def test_idadf_getitem_1_col_idadf(self, idadf): if len(idadf.columns) >= 1: newidadf = idadf[[idadf.columns[0]]] assert(isinstance(newidadf, ibmdbpy.IdaDataFrame) is True) assert(len(newidadf.columns) == 1) assert(idadf.columns[0] == newidadf.columns[0]) # We don't check of it is actually the corresponding column newidadf = idadf[[idadf.columns[-1]]] assert(isinstance(newidadf, ibmdbpy.IdaDataFrame) is True) assert(len(newidadf.columns) == 1) assert(idadf.columns[-1] == newidadf.columns[0]) def test_idadf_getitem_1_col_idadf_keyerror(self, idadf): with pytest.raises(KeyError): idadf[["NOTEXISTING_COLUMN_455849820205"]] def test_idadf_getitem_2_cols_idadf(self, idadf): if len(idadf.columns) >= 2: newidadf = idadf[[idadf.columns[0], idadf.columns[-1]]] assert(isinstance(newidadf, ibmdbpy.IdaDataFrame) is True) assert(len(newidadf.columns) == 2) assert(idadf.columns[0] == newidadf.columns[0]) assert(idadf.columns[-1] == newidadf.columns[-1]) def test_idadf_getitem_2_cols_idadf_keyerror(self, idadf): with pytest.raises(KeyError): idadf[[idadf.columns[0], "NOTEXISTING_COLUMN_455849820205"]] # TODO : FIX If you select twice the same columns, only one with be taken into account # (This is because they are referenced in a dictionary, maybe force modifying the name of the columns) def test_idadf_getitem_all_cols_idadf(self, idadf): if len(idadf.columns) >= 1: newidadf = idadf[list(idadf.columns)] assert(isinstance(newidadf, ibmdbpy.IdaDataFrame) is True) assert(len(newidadf.columns) == len(idadf.columns)) assert(newidadf.shape == idadf.shape) def test_idadf_getitem_idaseries(self, idadf): if len(idadf.columns) >= 1: newidaseries = idadf[idadf.columns[0]] assert(isinstance(newidaseries, ibmdbpy.IdaSeries)) assert(len(newidaseries.columns) == 1) assert(idadf.columns[0] == newidaseries.columns[0]) newidaseries = idadf[idadf.columns[-1]] assert(isinstance(newidaseries, ibmdbpy.IdaDataFrame)) assert(len(newidaseries.columns) == 1) assert(idadf.columns[-1] == newidaseries.columns[0]) def test_idadf_getitem_idaseries_keyerror(self, idadf): with pytest.raises(KeyError): idadf["NOTEXISTING_COLUMN_455849820205"] def test_idadf_getitem_idaseries_keyerror_several_columns(self, idadf): if len(idadf.columns) >= 2: with pytest.raises(KeyError): idadf[idadf.columns[0], idadf.columns[1]] def test_idadf_getitem_slice(self, idadb, idadf, idadf_tmp): if len(idadf) > 10: newidadf = idadf[0:9] assert(len(newidadf) == 10) if len(idadf_tmp) > 10: idadb.add_column_id(idadf_tmp, destructive = True) newidadf_1 = idadf_tmp[0:9] newidadf_2 = idadf_tmp[0:9] assert(all(newidadf_1.head(10) == newidadf_2.head(10))) def test_idaseries_getitem_slice(self, idadb, idadf, idadf_tmp): # Set them as series first and do the same test as above if len(idadf.columns) >= 1: idadf = idadf[idadf.columns[0]] idadf_tmp = idadf_tmp[idadf_tmp.columns[0]] assert(isinstance(idadf, ibmdbpy.IdaDataFrame)) assert(isinstance(idadf_tmp, ibmdbpy.IdaSeries)) if len(idadf) > 10: newidadf = idadf[0:9] assert(len(newidadf) == 10) def test_idadf_setitem(self, idadf): pass def test_idadf_delitem(self, idadf): pass def test_idadf_filter_lt(self, idadf): pass def test_idadf_filter_le(self, idadf): pass def test_idadf_filter_eq(self, idadf): pass def test_idadf_filter_ne(self, idadf): pass def test_idadf_filter_ge(self, idadf): pass def test_idadf_filter_gt(self, idadf): pass def test_idadf_feature_add(self, idadf): pass def test_idadf_feature_radd(self, idadf): pass def test_idadf_feature_div(self, idadf): pass def test_idadf_feature_rdiv(self, idadf): pass def test_idadf_feature_floordiv(self, idadf): pass def test_idadf_feature_rfloordiv(self, idadf): pass def test_idadf_feature_mod(self, idadf): pass def test_idadf_feature_rmod(self, idadf): pass def test_idadf_feature_mul(self, idadf): pass def test_idadf_feature_rmul(self, idadf): pass def test_idadf_feature_neg(self, idadf): pass def test_idadf_feature_rpos(self, idadf): pass def test_idadf_feature_pow(self, idadf): pass def test_idadf_feature_rpow(self, idadf): pass def test_idadf_feature_sub(self, idadf): pass def test_idadf_feature_rsub(self, idadf): pass class Test_DataBaseFeatures(object): def test_idadf_exists(self, idadf): assert(idadf.exists() is True) pass def test_idadf_is_view(self, idadf): assert(idadf.is_view() is False) pass def test_idadf_is_table(self, idadf): assert(idadf.exists() is True) pass def test_idadf_get_primary_key(self, idadf): pass def test_idadf_ida_query(self, idadf): pass def test_idadf_ida_scalar_query(self, idadf): pass class Test_DataExploration(object): ### head # For head and tail we do not test if the rows match because # the order is not guaranteed anyway def test_idadf_head_default(self, idadb, idadf, df): sortkey = idadf.columns[0] if idadf._get_numerical_columns(): sortkey = idadf._get_numerical_columns()[0] ida_head = idadf.head() assert isinstance(ida_head, pandas.core.frame.DataFrame) assert len(ida_head) == 5 df_head = df.sort_values(sortkey).head() assert (ida_head[sortkey].tolist() == df_head[sortkey].tolist()) def test_idadf_head_10(self, idadb, idadf, df): ida_head = idadf.head(10) assert isinstance(ida_head, pandas.core.frame.DataFrame) assert len(ida_head) == 10 def test_idadf_head_10_sort(self, idadb, idadf, df): ida_head = idadf.head(10, sort=False) assert isinstance(ida_head, pandas.core.frame.DataFrame) assert len(ida_head) == 10 def test_idadf_head_with_indexer(self, idadb, idadf_indexer, df): ida_head = idadf_indexer.head() sortby = len(df.columns)-1 df_head = df.sort_values(df.columns[sortby]).head() assert isinstance(ida_head, pandas.core.frame.DataFrame) assert len(ida_head) == 5 assert(ida_head[idadf_indexer.columns[sortby]].tolist() == df_head[df.columns[sortby]].tolist()) def test_idadf_head_projected_3col(self, idadf, df): if len(idadf.columns) >= 4: columns = idadf.columns[1:4].tolist() newidadf = idadf[columns] sortkey = newidadf.columns[0] if newidadf._get_numerical_columns(): sortkey = newidadf._get_numerical_columns()[0] ida_head = newidadf.head() df_sorted = df.sort_values(sortkey) df_head = df_sorted[columns].head() assert isinstance(ida_head, pandas.core.frame.DataFrame) assert len(ida_head) == 5 assert(ida_head[sortkey].tolist() == df_head[sortkey].tolist()) def test_idadf_head_sorted(self, idadf, df): sortIdx = len(df.columns) - 1 sortkey = idadf.columns[sortIdx] newidadf = idadf.sort(sortkey) ida_head = newidadf.head() df_head = df.sort_values(sortkey).head() assert(" ORDER BY " in newidadf.internal_state.get_state()) assert isinstance(ida_head, pandas.core.frame.DataFrame) assert len(ida_head) == 5 assert(ida_head[sortkey].tolist() == df_head[sortkey].tolist()) def test_idadf_head_0(self, idadf): with pytest.raises(ValueError): idadf.head(0) def test_idadf_head_negative(self, idadf): with pytest.raises(ValueError): idadf.head(-1) ### tail def test_idadf_tail_default(self, idadb, idadf, df): sortkey = idadf.columns[0] if idadf._get_numerical_columns(): sortkey = idadf._get_numerical_columns()[0] ida_tail = idadf.tail() assert isinstance(ida_tail, pandas.core.frame.DataFrame) assert len(ida_tail) == 5 df_tail = df.sort_values(sortkey).tail() assert (ida_tail[sortkey].tolist() == df_tail[sortkey].tolist()) def test_idadf_tail_10(self, idadb, idadf, df): ida_tail = idadf.tail(10) assert isinstance(ida_tail, pandas.core.frame.DataFrame) assert len(ida_tail) == 10 def test_idadf_tail_10_sort(self, idadb, idadf, df): ida_tail = idadf.tail(10, sort=False) assert isinstance(ida_tail, pandas.core.frame.DataFrame) assert len(ida_tail) == 10 def test_idadf_tail_with_indexer(self, idadb, idadf_indexer, df): ida_tail = idadf_indexer.tail() sortby = len(df.columns)-1 df_head = df.sort_values(df.columns[sortby]).tail() assert isinstance(ida_tail, pandas.core.frame.DataFrame) assert len(ida_tail) == 5 assert(ida_tail[idadf_indexer.columns[sortby]].tolist() == df_head[df.columns[sortby]].tolist()) def test_idadf_tail_projected_3col(self, idadf, df): if len(idadf.columns) >= 4: columns = idadf.columns[1:4].tolist() newidadf = idadf[columns] sortkey = newidadf.columns[0] if newidadf._get_numerical_columns(): sortkey = newidadf._get_numerical_columns()[0] ida_tail = newidadf.tail() df_sorted = df.sort_values(sortkey) df_tail = df_sorted[columns].tail() assert isinstance(ida_tail, pandas.core.frame.DataFrame) assert len(ida_tail) == 5 assert(ida_tail[sortkey].tolist() == df_tail[sortkey].tolist()) @pytest.mark.skip(reason="tail on sorted dataframe fails in general, needs fixing first") def test_idadf_tail_sorted(self, idadf, df): sortIdx = len(df.columns) - 1 sortkey = idadf.columns[sortIdx] newidadf = idadf.sort(sortkey) ida_tail = newidadf.tail() df_tail = df.sort_values(sortkey).tail() assert(" ORDER BY " in newidadf.internal_state.get_state()) assert isinstance(ida_tail, pandas.core.frame.DataFrame) assert len(ida_tail) == 5 assert(ida_tail[sortkey].tolist() == df_tail[sortkey].tolist()) def test_idadf_tail_0(self, idadf): with pytest.raises(ValueError): idadf.tail(0) def test_idadf_tail_negative(self, idadf): with pytest.raises(ValueError): idadf.tail(-1) def test_idadf_pivot_table(self, idadf): pass def test_idadf_sort(self, idadf): pass # no test #__enter__ #__exit__
34.152074
106
0.643773
[ "BSD-3-Clause" ]
alexmid/ibmdbpy
ibmdbpy/tests/test_frame.py
14,822
Python
#!/usr/bin/env python # Copyright 2013 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. import datetime import json import logging import os import re import StringIO import sys import tempfile import threading import time import traceback import unittest # net_utils adjusts sys.path. import net_utils from depot_tools import auto_stub import auth import isolateserver import swarming import test_utils from depot_tools import fix_encoding from utils import file_path from utils import logging_utils from utils import subprocess42 from utils import tools import httpserver_mock import isolateserver_mock FILE_HASH = u'1' * 40 TEST_NAME = u'unit_tests' OUTPUT = 'Ran stuff\n' SHARD_OUTPUT_1 = 'Shard 1 of 3.' SHARD_OUTPUT_2 = 'Shard 2 of 3.' SHARD_OUTPUT_3 = 'Shard 3 of 3.' def gen_yielded_data(index, **kwargs): """Returns an entry as it would be yielded by yield_results().""" return index, gen_result_response(**kwargs) def get_results(keys, output_collector=None): """Simplifies the call to yield_results(). The timeout is hard-coded to 10 seconds. """ return list( swarming.yield_results( 'https://host:9001', keys, 10., None, True, output_collector, False, True)) def collect(url, task_ids, task_stdout=('console', 'json')): """Simplifies the call to swarming.collect().""" return swarming.collect( swarming=url, task_ids=task_ids, timeout=10, decorate=True, print_status_updates=True, task_summary_json=None, task_output_dir=None, task_output_stdout=task_stdout, include_perf=False) def main(args): """Bypasses swarming.main()'s exception handling. It gets in the way when debugging test failures. """ dispatcher = swarming.subcommand.CommandDispatcher('swarming') return dispatcher.execute(swarming.OptionParserSwarming(), args) def gen_properties(**kwargs): out = { 'caches': [], 'cipd_input': None, 'command': None, 'relative_cwd': None, 'dimensions': [ {'key': 'foo', 'value': 'bar'}, {'key': 'os', 'value': 'Mac'}, ], 'env': [], 'env_prefixes': [], 'execution_timeout_secs': 60, 'extra_args': ['--some-arg', '123'], 'grace_period_secs': 30, 'idempotent': False, 'inputs_ref': { 'isolated': None, 'isolatedserver': '', 'namespace': 'default-gzip', }, 'io_timeout_secs': 60, 'outputs': [], 'secret_bytes': None, } out.update(kwargs) return out def gen_request_data(properties=None, **kwargs): out = { 'name': 'unit_tests', 'parent_task_id': '', 'priority': 101, 'task_slices': [ { 'expiration_secs': 3600, 'properties': gen_properties(**(properties or {})), }, ], 'tags': ['tag:a', 'tag:b'], 'user': 'joe@localhost', } out.update(kwargs) return out def gen_request_response(request, **kwargs): # As seen in services/swarming/handlers_api.py. out = { 'request': request.copy(), 'task_id': '12300', } out.update(kwargs) return out def gen_result_response(**kwargs): out = { u'bot_id': u'swarm6', u'completed_ts': u'2014-09-24T13:49:16.012345', u'created_ts': u'2014-09-24T13:49:03.012345', u'duration': 0.9636809825897217, u'exit_code': 0, u'failure': False, u'internal_failure': False, u'modified_ts': u'2014-09-24T13:49:17.012345', u'name': u'heartbeat-canary-2014-09-24_13:49:01-os=Ubuntu', u'server_versions': [u'1'], u'started_ts': u'2014-09-24T13:49:09.012345', u'state': 'COMPLETED', u'tags': [u'cpu:x86', u'priority:100', u'user:joe@localhost'], u'task_id': u'10100', u'try_number': 1, u'user': u'joe@localhost', } out.update(kwargs) return out # Silence pylint 'Access to a protected member _Event of a client class'. class NonBlockingEvent(threading._Event): # pylint: disable=W0212 """Just like threading.Event, but a class and ignores timeout in 'wait'. Intended to be used as a mock for threading.Event in tests. """ def wait(self, timeout=None): return super(NonBlockingEvent, self).wait(0) class SwarmingServerHandler(httpserver_mock.MockHandler): """An extremely minimal implementation of the swarming server API v1.0.""" def do_GET(self): logging.info('S GET %s', self.path) if self.path == '/auth/api/v1/server/oauth_config': self.send_json({ 'client_id': 'c', 'client_not_so_secret': 's', 'primary_url': self.server.url}) elif self.path == '/auth/api/v1/accounts/self': self.send_json({'identity': 'user:joe', 'xsrf_token': 'foo'}) else: m = re.match(r'/api/swarming/v1/task/(\d+)/request', self.path) if m: logging.info('%s', m.group(1)) self.send_json(self.server.tasks[int(m.group(1))]) else: self.send_json( {'a': 'b'}) #raise NotImplementedError(self.path) def do_POST(self): logging.info('POST %s', self.path) raise NotImplementedError(self.path) class MockSwarmingServer(httpserver_mock.MockServer): _HANDLER_CLS = SwarmingServerHandler def __init__(self): super(MockSwarmingServer, self).__init__() self._server.tasks = {} class Common(object): def setUp(self): self._tempdir = None self.mock(auth, 'ensure_logged_in', lambda _: None) self.mock(sys, 'stdout', StringIO.StringIO()) self.mock(sys, 'stderr', StringIO.StringIO()) self.mock(logging_utils, 'prepare_logging', lambda *args: None) self.mock(logging_utils, 'set_console_level', lambda *args: None) def tearDown(self): if self._tempdir: file_path.rmtree(self._tempdir) if not self.has_failed(): self._check_output('', '') @property def tempdir(self): """Creates the directory on first reference.""" if not self._tempdir: self._tempdir = tempfile.mkdtemp(prefix=u'swarming_test') return self._tempdir maxDiff = None def _check_output(self, out, err): self.assertMultiLineEqual(out, sys.stdout.getvalue()) self.assertMultiLineEqual(err, sys.stderr.getvalue()) # Flush their content by mocking them again. self.mock(sys, 'stdout', StringIO.StringIO()) self.mock(sys, 'stderr', StringIO.StringIO()) def main_safe(self, args): """Bypasses swarming.main()'s exception handling. It gets in the way when debugging test failures. """ # pylint: disable=bare-except try: return main(args) except: data = '%s\nSTDOUT:\n%s\nSTDERR:\n%s' % ( traceback.format_exc(), sys.stdout.getvalue(), sys.stderr.getvalue()) self.fail(data) class NetTestCase(net_utils.TestCase, Common): """Base class that defines the url_open mock.""" def setUp(self): net_utils.TestCase.setUp(self) Common.setUp(self) self.mock(time, 'sleep', lambda _: None) self.mock(subprocess42, 'call', lambda *_: self.fail()) self.mock(threading, 'Event', NonBlockingEvent) class TestIsolated(auto_stub.TestCase, Common): """Test functions with isolated_ prefix.""" def setUp(self): auto_stub.TestCase.setUp(self) Common.setUp(self) self._isolate = isolateserver_mock.MockIsolateServer() self._swarming = MockSwarmingServer() def tearDown(self): try: self._isolate.close() self._swarming.close() finally: Common.tearDown(self) auto_stub.TestCase.tearDown(self) def test_reproduce_isolated(self): old_cwd = os.getcwd() try: os.chdir(self.tempdir) def call(cmd, env, cwd): # 'out' is the default value for --output-dir. outdir = os.path.join(self.tempdir, 'out') self.assertTrue(os.path.isdir(outdir)) self.assertEqual( [sys.executable, u'main.py', u'foo', outdir, '--bar'], cmd) expected = os.environ.copy() expected['SWARMING_TASK_ID'] = 'reproduce' expected['SWARMING_BOT_ID'] = 'reproduce' self.assertEqual(expected, env) self.assertEqual(unicode(os.path.abspath('work')), cwd) return 0 self.mock(subprocess42, 'call', call) main_hash = self._isolate.add_content_compressed( 'default-gzip', 'not executed') isolated = { 'files': { 'main.py': { 'h': main_hash, 's': 12, 'm': 0700, }, }, 'command': ['python', 'main.py'], } isolated_hash = self._isolate.add_content_compressed( 'default-gzip', json.dumps(isolated)) self._swarming._server.tasks[123] = { 'properties': { 'inputs_ref': { 'isolatedserver': self._isolate.url, 'namespace': 'default-gzip', 'isolated': isolated_hash, }, 'extra_args': ['foo', '${ISOLATED_OUTDIR}'], 'secret_bytes': None, }, } ret = self.main_safe( [ 'reproduce', '--swarming', self._swarming.url, '123', '--', '--bar', ]) self._check_output('', '') self.assertEqual(0, ret) finally: os.chdir(old_cwd) class TestSwarmingTrigger(NetTestCase): def test_trigger_task_shards_2_shards(self): task_request = swarming.NewTaskRequest( name=TEST_NAME, parent_task_id=None, priority=101, task_slices=[ { 'expiration_secs': 60*60, 'properties': swarming.TaskProperties( caches=[], cipd_input=None, command=['a', 'b'], relative_cwd=None, dimensions=[('foo', 'bar'), ('os', 'Mac')], env={}, env_prefixes=[], execution_timeout_secs=60, extra_args=[], grace_period_secs=30, idempotent=False, inputs_ref={ 'isolated': None, 'isolatedserver': '', 'namespace': 'default-gzip', }, io_timeout_secs=60, outputs=[], secret_bytes=None), }, ], service_account=None, tags=['tag:a', 'tag:b'], user='joe@localhost') request_1 = swarming.task_request_to_raw_request(task_request) request_1['name'] = u'unit_tests:0:2' request_1['task_slices'][0]['properties']['env'] = [ {'key': 'GTEST_SHARD_INDEX', 'value': '0'}, {'key': 'GTEST_TOTAL_SHARDS', 'value': '2'}, ] result_1 = gen_request_response(request_1) request_2 = swarming.task_request_to_raw_request(task_request) request_2['name'] = u'unit_tests:1:2' request_2['task_slices'][0]['properties']['env'] = [ {'key': 'GTEST_SHARD_INDEX', 'value': '1'}, {'key': 'GTEST_TOTAL_SHARDS', 'value': '2'}, ] result_2 = gen_request_response(request_2, task_id='12400') self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request_1}, result_1, ), ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request_2}, result_2, ), ]) tasks = swarming.trigger_task_shards( swarming='https://localhost:1', task_request=task_request, shards=2) expected = { u'unit_tests:0:2': { 'shard_index': 0, 'task_id': '12300', 'view_url': 'https://localhost:1/user/task/12300', }, u'unit_tests:1:2': { 'shard_index': 1, 'task_id': '12400', 'view_url': 'https://localhost:1/user/task/12400', }, } self.assertEqual(expected, tasks) def test_trigger_task_shards_priority_override(self): task_request = swarming.NewTaskRequest( name=TEST_NAME, parent_task_id='123', priority=101, task_slices=[ { 'expiration_secs': 60*60, 'properties': swarming.TaskProperties( caches=[], cipd_input=None, command=['a', 'b'], relative_cwd=None, dimensions=[('foo', 'bar'), ('os', 'Mac')], env={}, env_prefixes=[], execution_timeout_secs=60, extra_args=[], grace_period_secs=30, idempotent=False, inputs_ref={ 'isolated': None, 'isolatedserver': '', 'namespace': 'default-gzip', }, io_timeout_secs=60, outputs=[], secret_bytes=None), }, ], service_account=None, tags=['tag:a', 'tag:b'], user='joe@localhost') request = swarming.task_request_to_raw_request(task_request) self.assertEqual('123', request['parent_task_id']) result = gen_request_response(request) result['request']['priority'] = 200 self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) os.environ['SWARMING_TASK_ID'] = '123' try: tasks = swarming.trigger_task_shards( swarming='https://localhost:1', shards=1, task_request=task_request) finally: os.environ.pop('SWARMING_TASK_ID') expected = { u'unit_tests': { 'shard_index': 0, 'task_id': '12300', 'view_url': 'https://localhost:1/user/task/12300', } } self.assertEqual(expected, tasks) self._check_output('', 'Priority was reset to 200\n') def test_trigger_cipd_package(self): task_request = swarming.NewTaskRequest( name=TEST_NAME, parent_task_id='123', priority=101, task_slices=[ { 'expiration_secs': 60*60, 'properties': swarming.TaskProperties( caches=[], cipd_input=swarming.CipdInput( client_package=None, packages=[ swarming.CipdPackage( package_name='mypackage', path='path/to/package', version='abc123')], server=None), command=['a', 'b'], relative_cwd=None, dimensions=[('foo', 'bar'), ('os', 'Mac')], env={}, env_prefixes=[], execution_timeout_secs=60, extra_args=[], grace_period_secs=30, idempotent=False, inputs_ref={ 'isolated': None, 'isolatedserver': '', 'namespace': 'default-gzip', }, io_timeout_secs=60, outputs=[], secret_bytes=None), }, ], service_account=None, tags=['tag:a', 'tag:b'], user='joe@localhost') request = swarming.task_request_to_raw_request(task_request) expected = { 'client_package': None, 'packages': [{ 'package_name': 'mypackage', 'path': 'path/to/package', 'version': 'abc123', }], 'server': None } self.assertEqual( expected, request['task_slices'][0]['properties']['cipd_input']) result = gen_request_response(request) result['request']['priority'] = 200 self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) os.environ['SWARMING_TASK_ID'] = '123' try: tasks = swarming.trigger_task_shards( swarming='https://localhost:1', shards=1, task_request=task_request) finally: os.environ.pop('SWARMING_TASK_ID') expected = { u'unit_tests': { 'shard_index': 0, 'task_id': '12300', 'view_url': 'https://localhost:1/user/task/12300', } } self.assertEqual(expected, tasks) self._check_output('', 'Priority was reset to 200\n') class TestSwarmingCollection(NetTestCase): def test_success(self): self.expected_requests( [ ( 'https://host:9001/api/swarming/v1/task/10100/result', {'retry_50x': False}, gen_result_response(), ), ( 'https://host:9001/api/swarming/v1/task/10100/stdout', {}, {'output': OUTPUT}, ), ]) expected = [gen_yielded_data(0, output=OUTPUT)] self.assertEqual(expected, get_results(['10100'])) def test_failure(self): self.expected_requests( [ ( 'https://host:9001/api/swarming/v1/task/10100/result', {'retry_50x': False}, gen_result_response(exit_code=1), ), ( 'https://host:9001/api/swarming/v1/task/10100/stdout', {}, {'output': OUTPUT}, ), ]) expected = [gen_yielded_data(0, output=OUTPUT, exit_code=1)] self.assertEqual(expected, get_results(['10100'])) def test_no_ids(self): actual = get_results([]) self.assertEqual([], actual) def test_url_errors(self): self.mock(logging, 'error', lambda *_, **__: None) # NOTE: get_results() hardcodes timeout=10. now = {} lock = threading.Lock() def get_now(): t = threading.current_thread() with lock: return now.setdefault(t, range(10)).pop(0) self.mock(swarming.net, 'sleep_before_retry', lambda _x, _y: None) self.mock(swarming, 'now', get_now) # The actual number of requests here depends on 'now' progressing to 10 # seconds. It's called once per loop. Loop makes 9 iterations. self.expected_requests( 9 * [ ( 'https://host:9001/api/swarming/v1/task/10100/result', {'retry_50x': False}, None, ) ]) actual = get_results(['10100']) self.assertEqual([], actual) self.assertTrue(all(not v for v in now.itervalues()), now) def test_many_shards(self): self.expected_requests( [ ( 'https://host:9001/api/swarming/v1/task/10100/result', {'retry_50x': False}, gen_result_response(), ), ( 'https://host:9001/api/swarming/v1/task/10100/stdout', {}, {'output': SHARD_OUTPUT_1}, ), ( 'https://host:9001/api/swarming/v1/task/10200/result', {'retry_50x': False}, gen_result_response(), ), ( 'https://host:9001/api/swarming/v1/task/10200/stdout', {}, {'output': SHARD_OUTPUT_2}, ), ( 'https://host:9001/api/swarming/v1/task/10300/result', {'retry_50x': False}, gen_result_response(), ), ( 'https://host:9001/api/swarming/v1/task/10300/stdout', {}, {'output': SHARD_OUTPUT_3}, ), ]) expected = [ gen_yielded_data(0, output=SHARD_OUTPUT_1), gen_yielded_data(1, output=SHARD_OUTPUT_2), gen_yielded_data(2, output=SHARD_OUTPUT_3), ] actual = get_results(['10100', '10200', '10300']) self.assertEqual(expected, sorted(actual)) def test_output_collector_called(self): # Three shards, one failed. All results are passed to output collector. self.expected_requests( [ ( 'https://host:9001/api/swarming/v1/task/10100/result', {'retry_50x': False}, gen_result_response(), ), ( 'https://host:9001/api/swarming/v1/task/10100/stdout', {}, {'output': SHARD_OUTPUT_1}, ), ( 'https://host:9001/api/swarming/v1/task/10200/result', {'retry_50x': False}, gen_result_response(), ), ( 'https://host:9001/api/swarming/v1/task/10200/stdout', {}, {'output': SHARD_OUTPUT_2}, ), ( 'https://host:9001/api/swarming/v1/task/10300/result', {'retry_50x': False}, gen_result_response(exit_code=1), ), ( 'https://host:9001/api/swarming/v1/task/10300/stdout', {}, {'output': SHARD_OUTPUT_3}, ), ]) class FakeOutputCollector(object): def __init__(self): self.results = [] self._lock = threading.Lock() def process_shard_result(self, index, result): with self._lock: self.results.append((index, result)) output_collector = FakeOutputCollector() get_results(['10100', '10200', '10300'], output_collector) expected = [ gen_yielded_data(0, output=SHARD_OUTPUT_1), gen_yielded_data(1, output=SHARD_OUTPUT_2), gen_yielded_data(2, output=SHARD_OUTPUT_3, exit_code=1), ] self.assertEqual(sorted(expected), sorted(output_collector.results)) def test_collect_nothing(self): self.mock(swarming, 'yield_results', lambda *_: []) self.assertEqual(1, collect('https://localhost:1', ['10100', '10200'])) self._check_output('', 'Results from some shards are missing: 0, 1\n') def test_collect_success(self): data = gen_result_response(output='Foo') self.mock(swarming, 'yield_results', lambda *_: [(0, data)]) self.assertEqual(0, collect('https://localhost:1', ['10100'])) expected = u'\n'.join(( '+------------------------------------------------------+', '| Shard 0 https://localhost:1/user/task/10100 |', '+------------------------------------------------------+', 'Foo', '+------------------------------------------------------+', '| End of shard 0 |', '| Pending: 6.0s Duration: 1.0s Bot: swarm6 Exit: 0 |', '+------------------------------------------------------+', 'Total duration: 1.0s', '')) self._check_output(expected, '') def test_collect_success_nostdout(self): data = gen_result_response(output='Foo') self.mock(swarming, 'yield_results', lambda *_: [(0, data)]) self.assertEqual(0, collect('https://localhost:1', ['10100'], [])) expected = u'\n'.join(( '+------------------------------------------------------+', '| Shard 0 https://localhost:1/user/task/10100 |', '| Pending: 6.0s Duration: 1.0s Bot: swarm6 Exit: 0 |', '+------------------------------------------------------+', 'Total duration: 1.0s', '')) self._check_output(expected, '') def test_collect_fail(self): data = gen_result_response(output='Foo', exit_code=-9) data['output'] = 'Foo' self.mock(swarming, 'yield_results', lambda *_: [(0, data)]) self.assertEqual(-9, collect('https://localhost:1', ['10100'])) expected = u'\n'.join(( '+-------------------------------------------------------+', '| Shard 0 https://localhost:1/user/task/10100 |', '+-------------------------------------------------------+', 'Foo', '+-------------------------------------------------------+', '| End of shard 0 |', '| Pending: 6.0s Duration: 1.0s Bot: swarm6 Exit: -9 |', '+-------------------------------------------------------+', 'Total duration: 1.0s', '')) self._check_output(expected, '') def test_collect_one_missing(self): data = gen_result_response(output='Foo') data['output'] = 'Foo' self.mock(swarming, 'yield_results', lambda *_: [(0, data)]) self.assertEqual(1, collect('https://localhost:1', ['10100', '10200'])) expected = u'\n'.join(( '+------------------------------------------------------+', '| Shard 0 https://localhost:1/user/task/10100 |', '+------------------------------------------------------+', 'Foo', '+------------------------------------------------------+', '| End of shard 0 |', '| Pending: 6.0s Duration: 1.0s Bot: swarm6 Exit: 0 |', '+------------------------------------------------------+', '', 'Total duration: 1.0s', '')) self._check_output(expected, 'Results from some shards are missing: 1\n') def test_collect_multi(self): actual_calls = [] def fetch_isolated(isolated_hash, storage, cache, outdir, use_symlinks): self.assertIs(storage.__class__, isolateserver.Storage) self.assertIs(cache.__class__, isolateserver.MemoryCache) # Ensure storage is pointing to required location. self.assertEqual('https://localhost:2', storage.location) self.assertEqual('default', storage.namespace) self.assertEqual(False, use_symlinks) actual_calls.append((isolated_hash, outdir)) self.mock(isolateserver, 'fetch_isolated', fetch_isolated) collector = swarming.TaskOutputCollector( self.tempdir, ['json', 'console'], 2) for index in xrange(2): collector.process_shard_result( index, gen_result_response( outputs_ref={ 'isolated': str(index) * 40, 'isolatedserver': 'https://localhost:2', 'namespace': 'default', })) summary = collector.finalize() expected_calls = [ ('0'*40, os.path.join(self.tempdir, '0')), ('1'*40, os.path.join(self.tempdir, '1')), ] self.assertEqual(expected_calls, actual_calls) # Ensure collected summary is correct. outputs_refs = [ { 'isolated': '0'*40, 'isolatedserver': 'https://localhost:2', 'namespace': 'default', 'view_url': 'https://localhost:2/browse?namespace=default&hash=' + '0'*40, }, { 'isolated': '1'*40, 'isolatedserver': 'https://localhost:2', 'namespace': 'default', 'view_url': 'https://localhost:2/browse?namespace=default&hash=' + '1'*40, }, ] expected = { 'shards': [gen_result_response(outputs_ref=o) for o in outputs_refs], } self.assertEqual(expected, summary) # Ensure summary dumped to a file is correct as well. with open(os.path.join(self.tempdir, 'summary.json'), 'r') as f: summary_dump = json.load(f) self.assertEqual(expected, summary_dump) def test_ensures_same_server(self): self.mock(logging, 'error', lambda *_: None) # Two shard results, attempt to use different servers. actual_calls = [] self.mock( isolateserver, 'fetch_isolated', lambda *args: actual_calls.append(args)) data = [ gen_result_response( outputs_ref={ 'isolatedserver': 'https://server1', 'namespace': 'namespace', 'isolated':'hash1', }), gen_result_response( outputs_ref={ 'isolatedserver': 'https://server2', 'namespace': 'namespace', 'isolated':'hash1', }), ] # Feed them to collector. collector = swarming.TaskOutputCollector( self.tempdir, ['json', 'console'], 2) for index, result in enumerate(data): collector.process_shard_result(index, result) collector.finalize() # Only first fetch is made, second one is ignored. self.assertEqual(1, len(actual_calls)) isolated_hash, storage, _, outdir, _ = actual_calls[0] self.assertEqual( ('hash1', os.path.join(self.tempdir, '0')), (isolated_hash, outdir)) self.assertEqual('https://server1', storage.location) class TestMain(NetTestCase): # Tests calling main(). def test_bot_delete(self): self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/bot/foo/delete', {'method': 'POST', 'data': {}}, {}, ), ]) ret = self.main_safe( ['bot_delete', '--swarming', 'https://localhost:1', 'foo', '--force']) self._check_output('', '') self.assertEqual(0, ret) def test_trigger_raw_cmd(self): # Minimalist use. request = { 'name': u'None/foo=bar', 'parent_task_id': '', 'priority': 100, 'task_slices': [ { 'expiration_secs': 21600, 'properties': gen_properties( command=['python', '-c', 'print(\'hi\')'], dimensions=[{'key': 'foo', 'value': 'bar'}], execution_timeout_secs=3600, extra_args=None, inputs_ref=None, io_timeout_secs=1200, relative_cwd='deeep'), }, ], 'tags': [], 'user': None, } result = gen_request_response(request) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'trigger', '--swarming', 'https://localhost:1', '--dimension', 'foo', 'bar', '--raw-cmd', '--relative-cwd', 'deeep', '--', 'python', '-c', 'print(\'hi\')', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (actual, sys.stderr.getvalue())) self._check_output( 'Triggered task: None/foo=bar\n' 'To collect results, use:\n' ' swarming.py collect -S https://localhost:1 12300\n' 'Or visit:\n' ' https://localhost:1/user/task/12300\n', '') def test_trigger_raw_cmd_isolated(self): # Minimalist use. request = { 'name': u'None/foo=bar/' + FILE_HASH, 'parent_task_id': '', 'priority': 100, 'task_slices': [ { 'expiration_secs': 21600, 'properties': gen_properties( command=['python', '-c', 'print(\'hi\')'], dimensions=[{'key': 'foo', 'value': 'bar'}], execution_timeout_secs=3600, extra_args=None, inputs_ref={ 'isolated': u'1111111111111111111111111111111111111111', 'isolatedserver': 'https://localhost:2', 'namespace': 'default-gzip', }, io_timeout_secs=1200), }, ], 'tags': [], 'user': None, } result = gen_request_response(request) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'trigger', '--swarming', 'https://localhost:1', '--dimension', 'foo', 'bar', '--raw-cmd', '--isolate-server', 'https://localhost:2', '--isolated', FILE_HASH, '--', 'python', '-c', 'print(\'hi\')', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (actual, sys.stderr.getvalue())) self._check_output( u'Triggered task: None/foo=bar/' + FILE_HASH + u'\n' u'To collect results, use:\n' u' swarming.py collect -S https://localhost:1 12300\n' u'Or visit:\n' u' https://localhost:1/user/task/12300\n', u'') def test_trigger_raw_cmd_with_service_account(self): # Minimalist use. request = { 'name': u'None/foo=bar', 'parent_task_id': '', 'priority': 100, 'task_slices': [ { 'expiration_secs': 21600, 'properties': gen_properties( command=['python', '-c', 'print(\'hi\')'], dimensions=[{'key': 'foo', 'value': 'bar'}], execution_timeout_secs=3600, extra_args=None, inputs_ref=None, io_timeout_secs=1200), }, ], 'service_account': 'bot', 'tags': [], 'user': None, } result = gen_request_response(request) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'trigger', '--swarming', 'https://localhost:1', '--dimension', 'foo', 'bar', '--service-account', 'bot', '--raw-cmd', '--', 'python', '-c', 'print(\'hi\')', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (actual, sys.stderr.getvalue())) self._check_output( 'Triggered task: None/foo=bar\n' 'To collect results, use:\n' ' swarming.py collect -S https://localhost:1 12300\n' 'Or visit:\n' ' https://localhost:1/user/task/12300\n', '') def test_trigger_isolated_hash(self): # pylint: disable=unused-argument self.mock(swarming, 'now', lambda: 123456) request = gen_request_data( task_slices=[ { 'expiration_secs': 3600, 'properties': gen_properties( inputs_ref={ 'isolated': u'1111111111111111111111111111111111111111', 'isolatedserver': 'https://localhost:2', 'namespace': 'default-gzip', }), }, ]) result = gen_request_response(request) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'trigger', '--swarming', 'https://localhost:1', '--isolate-server', 'https://localhost:2', '--shards', '1', '--priority', '101', '--dimension', 'foo', 'bar', '--dimension', 'os', 'Mac', '--expiration', '3600', '--user', 'joe@localhost', '--tags', 'tag:a', '--tags', 'tag:b', '--hard-timeout', '60', '--io-timeout', '60', '--task-name', 'unit_tests', '--isolated', FILE_HASH, '--', '--some-arg', '123', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (actual, sys.stderr.getvalue())) self._check_output( 'Triggered task: unit_tests\n' 'To collect results, use:\n' ' swarming.py collect -S https://localhost:1 12300\n' 'Or visit:\n' ' https://localhost:1/user/task/12300\n', '') def test_trigger_isolated_and_json(self): # pylint: disable=unused-argument write_json_calls = [] self.mock(tools, 'write_json', lambda *args: write_json_calls.append(args)) subprocess_calls = [] self.mock(subprocess42, 'call', lambda *c: subprocess_calls.append(c)) self.mock(swarming, 'now', lambda: 123456) isolated = os.path.join(self.tempdir, 'zaz.isolated') content = '{}' with open(isolated, 'wb') as f: f.write(content) isolated_hash = isolateserver_mock.hash_content(content) request = gen_request_data( task_slices=[ { 'expiration_secs': 3600, 'properties': gen_properties( idempotent=True, inputs_ref={ 'isolated': isolated_hash, 'isolatedserver': 'https://localhost:2', 'namespace': 'default-gzip', }), }, ]) result = gen_request_response(request) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'trigger', '--swarming', 'https://localhost:1', '--isolate-server', 'https://localhost:2', '--shards', '1', '--priority', '101', '--dimension', 'foo', 'bar', '--dimension', 'os', 'Mac', '--expiration', '3600', '--user', 'joe@localhost', '--tags', 'tag:a', '--tags', 'tag:b', '--hard-timeout', '60', '--io-timeout', '60', '--idempotent', '--task-name', 'unit_tests', '--dump-json', 'foo.json', '--isolated', isolated_hash, '--', '--some-arg', '123', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (actual, sys.stderr.getvalue())) self.assertEqual([], subprocess_calls) self._check_output( 'Triggered task: unit_tests\n' 'To collect results, use:\n' ' swarming.py collect -S https://localhost:1 --json foo.json\n' 'Or visit:\n' ' https://localhost:1/user/task/12300\n', '') expected = [ ( u'foo.json', { 'base_task_name': 'unit_tests', 'tasks': { 'unit_tests': { 'shard_index': 0, 'task_id': '12300', 'view_url': 'https://localhost:1/user/task/12300', } }, 'request': { 'name': 'unit_tests', 'parent_task_id': '', 'priority': 101, 'task_slices': [ { 'expiration_secs': 3600, 'properties': gen_properties( idempotent=True, inputs_ref={ 'isolated': isolated_hash, 'isolatedserver': 'https://localhost:2', 'namespace': 'default-gzip', }), }, ], 'tags': ['tag:a', 'tag:b'], 'user': 'joe@localhost', }, }, True, ), ] self.assertEqual(expected, write_json_calls) def test_trigger_cipd(self): self.mock(swarming, 'now', lambda: 123456) request = gen_request_data( task_slices=[ { 'expiration_secs': 3600, 'properties': gen_properties( cipd_input={ 'client_package': None, 'packages': [ { 'package_name': 'super/awesome/pkg', 'path': 'path/to/pkg', 'version': 'version:42', }, ], 'server': None, }, inputs_ref={ 'isolated': u'1111111111111111111111111111111111111111', 'isolatedserver': 'https://localhost:2', 'namespace': 'default-gzip', }), }, ]) result = gen_request_response(request) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'trigger', '--swarming', 'https://localhost:1', '--isolate-server', 'https://localhost:2', '--shards', '1', '--priority', '101', '--dimension', 'foo', 'bar', '--dimension', 'os', 'Mac', '--expiration', '3600', '--user', 'joe@localhost', '--tags', 'tag:a', '--tags', 'tag:b', '--hard-timeout', '60', '--io-timeout', '60', '--task-name', 'unit_tests', '--isolated', FILE_HASH, '--cipd-package', 'path/to/pkg:super/awesome/pkg:version:42', '--', '--some-arg', '123', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (actual, sys.stderr.getvalue())) self._check_output( 'Triggered task: unit_tests\n' 'To collect results, use:\n' ' swarming.py collect -S https://localhost:1 12300\n' 'Or visit:\n' ' https://localhost:1/user/task/12300\n', '') def test_trigger_no_request(self): with self.assertRaises(SystemExit): main([ 'trigger', '--swarming', 'https://host', '--isolate-server', 'https://host', '-T', 'foo', '-d', 'os', 'amgia', ]) self._check_output( '', 'Usage: swarming.py trigger [options] (hash|isolated) ' '[-- extra_args|raw command]\n' '\n' 'swarming.py: error: Specify at least one of --raw-cmd or --isolated ' 'or both\n') def test_trigger_no_env_vars(self): with self.assertRaises(SystemExit): main(['trigger']) self._check_output( '', 'Usage: swarming.py trigger [options] (hash|isolated) ' '[-- extra_args|raw command]' '\n\n' 'swarming.py: error: --swarming is required.' '\n') def test_trigger_no_swarming_env_var(self): with self.assertRaises(SystemExit): with test_utils.EnvVars({'ISOLATE_SERVER': 'https://host'}): main(['trigger', '-T' 'foo', 'foo.isolated']) self._check_output( '', 'Usage: swarming.py trigger [options] (hash|isolated) ' '[-- extra_args|raw command]' '\n\n' 'swarming.py: error: --swarming is required.' '\n') def test_trigger_no_isolate_server(self): with self.assertRaises(SystemExit): with test_utils.EnvVars({'SWARMING_SERVER': 'https://host'}): main(['trigger', 'foo.isolated', '-d', 'os', 'amiga']) self._check_output( '', 'Usage: swarming.py trigger [options] (hash|isolated) ' '[-- extra_args|raw command]' '\n\n' 'swarming.py: error: Specify at least one of --raw-cmd or --isolated ' 'or both\n') def test_trigger_no_dimension(self): with self.assertRaises(SystemExit): main([ 'trigger', '--swarming', 'https://host', '--raw-cmd', '--', 'foo', ]) self._check_output( '', 'Usage: swarming.py trigger [options] (hash|isolated) ' '[-- extra_args|raw command]' '\n\n' 'swarming.py: error: Please at least specify one --dimension\n') def test_collect_default_json(self): j = os.path.join(self.tempdir, 'foo.json') data = { 'base_task_name': 'unit_tests', 'tasks': { 'unit_tests': { 'shard_index': 0, 'task_id': '12300', 'view_url': 'https://localhost:1/user/task/12300', } }, 'request': { 'name': 'unit_tests', 'parent_task_id': '', 'priority': 101, 'task_slices': [ { 'expiration_secs': 3600, 'properties': gen_properties( command=['python', '-c', 'print(\'hi\')'], relative_cwd='deeep'), }, ], 'tags': ['tag:a', 'tag:b'], 'user': 'joe@localhost', }, } with open(j, 'wb') as f: json.dump(data, f) def stub_collect( swarming_server, task_ids, timeout, decorate, print_status_updates, task_summary_json, task_output_dir, task_output_stdout, include_perf): self.assertEqual('https://host', swarming_server) self.assertEqual([u'12300'], task_ids) # It is automatically calculated from hard timeout + expiration + 10. self.assertEqual(3670., timeout) self.assertEqual(True, decorate) self.assertEqual(True, print_status_updates) self.assertEqual('/a', task_summary_json) self.assertEqual('/b', task_output_dir) self.assertSetEqual(set(['console', 'json']), set(task_output_stdout)) self.assertEqual(False, include_perf) print('Fake output') self.mock(swarming, 'collect', stub_collect) self.main_safe( ['collect', '--swarming', 'https://host', '--json', j, '--decorate', '--print-status-updates', '--task-summary-json', '/a', '--task-output-dir', '/b', '--task-output-stdout', 'all']) self._check_output('Fake output\n', '') def test_post(self): out = StringIO.StringIO() err = StringIO.StringIO() self.mock(sys, 'stdin', StringIO.StringIO('{"a":"b"}')) self.mock(sys, 'stdout', out) self.mock(sys, 'stderr', err) self.expected_requests( [ ( 'http://localhost:1/api/swarming/v1/tasks/new', {'data': '{"a":"b"}', 'method': 'POST'}, '{"yo":"dawg"}', {}, ), ]) ret = self.main_safe(['post', '-S', 'http://localhost:1', 'tasks/new']) self.assertEqual(0, ret) self.assertEqual('{"yo":"dawg"}', out.getvalue()) self.assertEqual('', err.getvalue()) def test_post_fail(self): out = StringIO.StringIO() err = StringIO.StringIO() self.mock(sys, 'stdin', StringIO.StringIO('{"a":"b"}')) self.mock(sys, 'stdout', out) self.mock(sys, 'stderr', err) ret = self.main_safe(['post', '-S', 'http://localhost:1', 'tasks/new']) self.assertEqual(1, ret) self.assertEqual('', out.getvalue()) self.assertEqual('No response!\n', err.getvalue()) def test_query_base(self): self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/bot/botid/tasks?limit=200', {}, {'yo': 'dawg'}, ), ]) ret = self.main_safe( [ 'query', '--swarming', 'https://localhost:1', 'bot/botid/tasks', ]) self._check_output('{\n "yo": "dawg"\n}\n', '') self.assertEqual(0, ret) def test_query_cursor(self): self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/bot/botid/tasks?' 'foo=bar&limit=2', {}, { 'cursor': '%', 'extra': False, 'items': ['A'], }, ), ( 'https://localhost:1/api/swarming/v1/bot/botid/tasks?' 'foo=bar&cursor=%25&limit=1', {}, { 'cursor': None, 'items': ['B'], 'ignored': True, }, ), ]) ret = self.main_safe( [ 'query', '--swarming', 'https://localhost:1', 'bot/botid/tasks?foo=bar', '--limit', '2', ]) expected = ( '{\n' ' "extra": false, \n' ' "items": [\n' ' "A", \n' ' "B"\n' ' ]\n' '}\n') self._check_output(expected, '') self.assertEqual(0, ret) def test_reproduce(self): old_cwd = os.getcwd() try: os.chdir(self.tempdir) def call(cmd, env, cwd): w = os.path.abspath('work') self.assertEqual([os.path.join(w, 'foo'), '--bar'], cmd) expected = os.environ.copy() expected['aa'] = 'bb' expected['PATH'] = os.pathsep.join( (os.path.join(w, 'foo', 'bar'), os.path.join(w, 'second'), expected['PATH'])) expected['SWARMING_TASK_ID'] = 'reproduce' expected['SWARMING_BOT_ID'] = 'reproduce' self.assertEqual(expected, env) self.assertEqual(unicode(w), cwd) return 0 self.mock(subprocess42, 'call', call) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/task/123/request', {}, { 'properties': { 'command': ['foo'], 'env': [ {'key': 'aa', 'value': 'bb'}, ], 'env_prefixes': [ {'key': 'PATH', 'value': ['foo/bar', 'second']}, ], 'secret_bytes': None, }, }, ), ]) ret = self.main_safe( [ 'reproduce', '--swarming', 'https://localhost:1', '123', '--', '--bar', ]) self._check_output('', '') self.assertEqual(0, ret) finally: os.chdir(old_cwd) def test_run(self): request = { 'name': u'None/foo=bar', 'parent_task_id': '', 'priority': 100, 'task_slices': [ { 'expiration_secs': 21600, 'properties': gen_properties( command=['python', '-c', 'print(\'hi\')'], dimensions=[{'key': 'foo', 'value': 'bar'}], execution_timeout_secs=3600, extra_args=None, inputs_ref=None, io_timeout_secs=1200, relative_cwd='deeep'), }, ], 'tags': [], 'user': None, } result = gen_request_response(request) def stub_collect( swarming_server, task_ids, timeout, decorate, print_status_updates, task_summary_json, task_output_dir, task_output_stdout, include_perf): self.assertEqual('https://localhost:1', swarming_server) self.assertEqual([u'12300'], task_ids) # It is automatically calculated from hard timeout + expiration + 10. self.assertEqual(25210., timeout) self.assertEqual(None, decorate) self.assertEqual(None, print_status_updates) self.assertEqual(None, task_summary_json) self.assertEqual(None, task_output_dir) self.assertSetEqual(set(['console', 'json']), set(task_output_stdout)) self.assertEqual(False, include_perf) print('Fake output') return 0 self.mock(swarming, 'collect', stub_collect) self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/tasks/new', {'data': request}, result, ), ]) ret = self.main_safe([ 'run', '--swarming', 'https://localhost:1', '--dimension', 'foo', 'bar', '--raw-cmd', '--relative-cwd', 'deeep', '--', 'python', '-c', 'print(\'hi\')', ]) actual = sys.stdout.getvalue() self.assertEqual(0, ret, (ret, actual, sys.stderr.getvalue())) self._check_output( u'Triggered task: None/foo=bar\nFake output\n', '') def test_cancel(self): self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/task/10100/cancel', {'data': {'kill_running': False}, 'method': 'POST'}, {'yo': 'dawg'}, ), ]) ret = self.main_safe( [ 'cancel', '--swarming', 'https://localhost:1', '10100', ]) self._check_output('', '') self.assertEqual(0, ret) def test_collect_timeout_zero(self): j = os.path.join(self.tempdir, 'foo.json') pending = gen_result_response(state='PENDING') self.expected_requests( [ ( 'https://localhost:1/api/swarming/v1/task/10100/result', {'retry_50x': True}, pending, ), ]) self.main_safe( [ 'collect', '--swarming', 'https://localhost:1', '--task-summary-json', j, '--timeout', '-1', '10100', ]) self._check_output('swarm6: 10100 0\n', '') with open(j, 'r') as f: actual = json.load(f) self.assertEqual({u'shards': [pending]}, actual) class TestCommandBot(NetTestCase): # Specialized test fixture for command 'bot'. def setUp(self): super(TestCommandBot, self).setUp() # Sample data retrieved from actual server. self.now = unicode(datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')) self.bot_1 = { u'bot_id': u'swarm1', u'created_ts': self.now, u'dimensions': [ {u'key': u'cores', u'value': [u'8']}, {u'key': u'cpu', u'value': [u'x86', u'x86-64']}, {u'key': u'gpu', u'value': []}, {u'key': u'id', u'value': [u'swarm1']}, {u'key': u'os', u'value': [u'Ubuntu', u'Ubuntu-12.04']}, ], u'external_ip': u'1.1.1.1', u'hostname': u'swarm1.example.com', u'internal_ip': u'192.168.0.1', u'is_dead': True, u'last_seen_ts': 'A long time ago', u'quarantined': False, u'task_id': u'', u'task_name': None, u'version': u'56918a2ea28a6f51751ad14cc086f118b8727905', } self.bot_2 = { u'bot_id': u'swarm2', u'created_ts': self.now, u'dimensions': [ {u'key': u'cores', u'value': [u'8']}, {u'key': u'cpu', u'value': [u'x86', u'x86-64']}, {u'key': u'gpu', u'value': [ u'15ad', u'15ad:0405', u'VMware Virtual SVGA 3D Graphics Adapter', ]}, {u'key': u'id', u'value': [u'swarm2']}, {u'key': u'os', u'value': [u'Windows', u'Windows-6.1']}, ], u'external_ip': u'1.1.1.2', u'hostname': u'swarm2.example.com', u'internal_ip': u'192.168.0.2', u'is_dead': False, u'last_seen_ts': self.now, u'quarantined': False, u'task_id': u'', u'task_name': None, u'version': u'56918a2ea28a6f51751ad14cc086f118b8727905', } self.bot_3 = { u'bot_id': u'swarm3', u'created_ts': self.now, u'dimensions': [ {u'key': u'cores', u'value': [u'4']}, {u'key': u'cpu', u'value': [u'x86', u'x86-64']}, {u'key': u'gpu', u'value': [u'15ad', u'15ad:0405']}, {u'key': u'id', u'value': [u'swarm3']}, {u'key': u'os', u'value': [u'Mac', u'Mac-10.9']}, ], u'external_ip': u'1.1.1.3', u'hostname': u'swarm3.example.com', u'internal_ip': u'192.168.0.3', u'is_dead': False, u'last_seen_ts': self.now, u'quarantined': False, u'task_id': u'148569b73a89501', u'task_name': u'browser_tests', u'version': u'56918a2ea28a6f51751ad14cc086f118b8727905', } self.bot_4 = { u'bot_id': u'swarm4', u'created_ts': self.now, u'dimensions': [ {u'key': u'cores', u'value': [u'8']}, {u'key': u'cpu', u'value': [u'x86', u'x86-64']}, {u'key': u'gpu', u'value': []}, {u'key': u'id', u'value': [u'swarm4']}, {u'key': u'os', u'value': [u'Ubuntu', u'Ubuntu-12.04']}, ], u'external_ip': u'1.1.1.4', u'hostname': u'swarm4.example.com', u'internal_ip': u'192.168.0.4', u'is_dead': False, u'last_seen_ts': self.now, u'quarantined': False, u'task_id': u'14856971a64c601', u'task_name': u'base_unittests', u'version': u'56918a2ea28a6f51751ad14cc086f118b8727905', } def mock_swarming_api(self, bots, cursor): """Returns fake /api/swarming/v1/bots/list data.""" # Sample data retrieved from actual server. return { u'items': bots, u'cursor': cursor, u'death_timeout': 1800.0, u'limit': 4, u'now': unicode(self.now), } def test_bots(self): base_url = 'https://localhost:1/api/swarming/v1/bots/list?' self.expected_requests( [ ( base_url + 'is_dead=FALSE&is_busy=NONE&is_mp=NONE', {}, self.mock_swarming_api([self.bot_2], 'opaque'), ), ( base_url + 'is_dead=FALSE&is_busy=NONE&is_mp=NONE&cursor=opaque', {}, self.mock_swarming_api([self.bot_3], 'opaque2'), ), ( base_url + 'is_dead=FALSE&is_busy=NONE&is_mp=NONE&cursor=opaque2', {}, self.mock_swarming_api([self.bot_4], None), ), ]) ret = self.main_safe(['bots', '--swarming', 'https://localhost:1']) expected = ( u'swarm2\n' u' {"cores": ["8"], "cpu": ["x86", "x86-64"], "gpu": ' '["15ad", "15ad:0405", "VMware Virtual SVGA 3D Graphics Adapter"], ' '"id": ["swarm2"], "os": ["Windows", "Windows-6.1"]}\n' 'swarm3\n' ' {"cores": ["4"], "cpu": ["x86", "x86-64"], "gpu": ["15ad", ' '"15ad:0405"], "id": ["swarm3"], "os": ["Mac", "Mac-10.9"]}\n' u' task: 148569b73a89501\n' u'swarm4\n' u' {"cores": ["8"], "cpu": ["x86", "x86-64"], "gpu": [], ' '"id": ["swarm4"], "os": ["Ubuntu", "Ubuntu-12.04"]}\n' u' task: 14856971a64c601\n') self._check_output(expected, '') self.assertEqual(0, ret) def test_bots_bare(self): base_url = 'https://localhost:1/api/swarming/v1/bots/list?' self.expected_requests( [ ( base_url + 'is_dead=FALSE&is_busy=NONE&is_mp=NONE', {}, self.mock_swarming_api([self.bot_2], 'opaque'), ), ( base_url + 'is_dead=FALSE&is_busy=NONE&is_mp=NONE&cursor=opaque', {}, self.mock_swarming_api([self.bot_3], 'opaque2'), ), ( base_url + 'is_dead=FALSE&is_busy=NONE&is_mp=NONE&cursor=opaque2', {}, self.mock_swarming_api([self.bot_4], None), ), ]) ret = self.main_safe( ['bots', '--swarming', 'https://localhost:1', '--bare']) self._check_output("swarm2\nswarm3\nswarm4\n", '') self.assertEqual(0, ret) def test_bots_filter(self): base_url = 'https://localhost:1/api/swarming/v1/bots/list?' self.expected_requests( [ ( base_url + 'is_dead=FALSE&is_busy=TRUE&is_mp=NONE&dimensions=os%3AWindows', {}, self.mock_swarming_api([self.bot_2], None), ), ]) ret = self.main_safe( [ 'bots', '--swarming', 'https://localhost:1', '--busy', '--dimension', 'os', 'Windows', ]) expected = ( u'swarm2\n {"cores": ["8"], "cpu": ["x86", "x86-64"], ' '"gpu": ["15ad", "15ad:0405", "VMware Virtual SVGA 3D Graphics ' 'Adapter"], "id": ["swarm2"], ' '"os": ["Windows", "Windows-6.1"]}\n') self._check_output(expected, '') self.assertEqual(0, ret) def test_bots_filter_keep_dead(self): base_url = 'https://localhost:1/api/swarming/v1/bots/list?' self.expected_requests( [ ( base_url + 'is_dead=NONE&is_busy=NONE&is_mp=NONE', {}, self.mock_swarming_api([self.bot_1, self.bot_4], None), ), ]) ret = self.main_safe( [ 'bots', '--swarming', 'https://localhost:1', '--keep-dead', ]) expected = ( u'swarm1\n {"cores": ["8"], "cpu": ["x86", "x86-64"], "gpu": [], ' '"id": ["swarm1"], "os": ["Ubuntu", "Ubuntu-12.04"]}\n' u'swarm4\n' u' {"cores": ["8"], "cpu": ["x86", "x86-64"], "gpu": [], ' '"id": ["swarm4"], "os": ["Ubuntu", "Ubuntu-12.04"]}\n' u' task: 14856971a64c601\n') self._check_output(expected, '') self.assertEqual(0, ret) def test_bots_filter_dead_only(self): base_url = 'https://localhost:1/api/swarming/v1/bots/list?' self.expected_requests( [ ( base_url + 'is_dead=TRUE&is_busy=NONE&is_mp=NONE&dimensions=os%3AUbuntu', {}, self.mock_swarming_api([self.bot_1], None), ), ]) ret = self.main_safe( [ 'bots', '--swarming', 'https://localhost:1', '--dimension', 'os', 'Ubuntu', '--dead-only', ]) expected = ( u'swarm1\n {"cores": ["8"], "cpu": ["x86", "x86-64"], "gpu": [], ' '"id": ["swarm1"], "os": ["Ubuntu", "Ubuntu-12.04"]}\n') self._check_output(expected, '') self.assertEqual(0, ret) if __name__ == '__main__': fix_encoding.fix_encoding() logging.basicConfig( level=logging.DEBUG if '-v' in sys.argv else logging.CRITICAL) if '-v' in sys.argv: unittest.TestCase.maxDiff = None for e in ('ISOLATE_SERVER', 'SWARMING_TASK_ID', 'SWARMING_SERVER'): os.environ.pop(e, None) unittest.main()
31.401368
80
0.526184
[ "BSD-3-Clause" ]
FLOSSBoxIN/src
tools/swarming_client/tests/swarming_test.py
59,694
Python
#!/usr/bin/env python3 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 """ Script to generate gperf tables of kernel object metadata User mode threads making system calls reference kernel objects by memory address, as the kernel/driver APIs in Zephyr are the same for both user and supervisor contexts. It is necessary for the kernel to be able to validate accesses to kernel objects to make the following assertions: - That the memory address points to a kernel object - The kernel object is of the expected type for the API being invoked - The kernel object is of the expected initialization state - The calling thread has sufficient permissions on the object For more details see the :ref:`kernelobjects` section in the documentation. The zephyr build generates an intermediate ELF binary, zephyr_prebuilt.elf, which this script scans looking for kernel objects by examining the DWARF debug information to look for instances of data structures that are considered kernel objects. For device drivers, the API struct pointer populated at build time is also examined to disambiguate between various device driver instances since they are all 'struct device'. This script can generate five different output files: - A gperf script to generate the hash table mapping kernel object memory addresses to kernel object metadata, used to track permissions, object type, initialization state, and any object-specific data. - A header file containing generated macros for validating driver instances inside the system call handlers for the driver subsystem APIs. - A code fragment included by kernel.h with one enum constant for each kernel object type and each driver instance. - The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping the kernel object types and driver instances to their human-readable representation in the otype_to_str() function. - The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping kernel object types to their sizes. This is used for allocating instances of them at runtime (CONFIG_DYNAMIC_OBJECTS) in the obj_size_get() function. """ import sys import argparse import math import os import struct import json from distutils.version import LooseVersion import elftools from elftools.elf.elffile import ELFFile from elftools.elf.sections import SymbolTableSection if LooseVersion(elftools.__version__) < LooseVersion('0.24'): sys.exit("pyelftools is out of date, need version 0.24 or later") from collections import OrderedDict # Keys in this dictionary are structs which should be recognized as kernel # objects. Values are a tuple: # # - The first item is None, or the name of a Kconfig that # indicates the presence of this object's definition in case it is not # available in all configurations. # # - The second item is a boolean indicating whether it is permissible for # the object to be located in user-accessible memory. # Regular dictionaries are ordered only with Python 3.6 and # above. Good summary and pointers to official documents at: # https://stackoverflow.com/questions/39980323/are-dictionaries-ordered-in-python-3-6 kobjects = OrderedDict([ ("k_mem_slab", (None, False)), ("k_msgq", (None, False)), ("k_mutex", (None, False)), ("k_pipe", (None, False)), ("k_queue", (None, False)), ("k_poll_signal", (None, False)), ("k_sem", (None, False)), ("k_stack", (None, False)), ("k_thread", (None, False)), ("k_timer", (None, False)), ("z_thread_stack_element", (None, False)), ("device", (None, False)), ("sys_mutex", (None, True)), ("k_futex", (None, True)) ]) def kobject_to_enum(kobj): if kobj.startswith("k_") or kobj.startswith("z_"): name = kobj[2:] else: name = kobj return "K_OBJ_%s" % name.upper() subsystems = [ # Editing the list is deprecated, add the __subsystem sentinal to your driver # api declaration instead. e.x. # # __subsystem struct my_driver_api { # .... #}; ] def subsystem_to_enum(subsys): return "K_OBJ_DRIVER_" + subsys[:-11].upper() # --- debug stuff --- scr = os.path.basename(sys.argv[0]) def debug(text): if not args.verbose: return sys.stdout.write(scr + ": " + text + "\n") def error(text): sys.exit("%s ERROR: %s" % (scr, text)) def debug_die(die, text): if 'DW_AT_decl_file' not in die.attributes: abs_orig_val = die.attributes["DW_AT_abstract_origin"].value offset = abs_orig_val + die.cu.cu_offset for var in variables: if var.offset == offset: die = var break lp_header = die.dwarfinfo.line_program_for_CU(die.cu).header files = lp_header["file_entry"] includes = lp_header["include_directory"] fileinfo = files[die.attributes["DW_AT_decl_file"].value - 1] filename = fileinfo.name.decode("utf-8") filedir = includes[fileinfo.dir_index - 1].decode("utf-8") path = os.path.join(filedir, filename) lineno = die.attributes["DW_AT_decl_line"].value debug(str(die)) debug("File '%s', line %d:" % (path, lineno)) debug(" %s" % text) # -- ELF processing DW_OP_addr = 0x3 DW_OP_fbreg = 0x91 STACK_TYPE = "z_thread_stack_element" thread_counter = 0 sys_mutex_counter = 0 futex_counter = 0 stack_counter = 0 # Global type environment. Populated by pass 1. type_env = {} extern_env = {} variables = [] class KobjectInstance: def __init__(self, type_obj, addr): global thread_counter global sys_mutex_counter global futex_counter global stack_counter self.addr = addr self.type_obj = type_obj # Type name determined later since drivers needs to look at the # API struct address self.type_name = None if self.type_obj.name == "k_thread": # Assign an ID for this thread object, used to track its # permissions to other kernel objects self.data = thread_counter thread_counter = thread_counter + 1 elif self.type_obj.name == "sys_mutex": self.data = "&kernel_mutexes[%d]" % sys_mutex_counter sys_mutex_counter += 1 elif self.type_obj.name == "k_futex": self.data = "&futex_data[%d]" % futex_counter futex_counter += 1 elif self.type_obj.name == STACK_TYPE: stack_counter += 1 else: self.data = 0 class KobjectType: def __init__(self, offset, name, size, api=False): self.name = name self.size = size self.offset = offset self.api = api def __repr__(self): return "<kobject %s>" % self.name @staticmethod def has_kobject(): return True def get_kobjects(self, addr): return {addr: KobjectInstance(self, addr)} class ArrayType: def __init__(self, offset, elements, member_type): self.elements = elements self.member_type = member_type self.offset = offset def __repr__(self): return "<array of %d>" % self.member_type def has_kobject(self): if self.member_type not in type_env: return False return type_env[self.member_type].has_kobject() def get_kobjects(self, addr): mt = type_env[self.member_type] # Stacks are arrays of _k_stack_element_t but we want to treat # the whole array as one kernel object (a thread stack) # Data value gets set to size of entire region if isinstance(mt, KobjectType) and mt.name == STACK_TYPE: # An array of stacks appears as a multi-dimensional array. # The last size is the size of each stack. We need to track # each stack within the array, not as one huge stack object. *dimensions, stacksize = self.elements num_members = 1 for e in dimensions: num_members = num_members * e ret = {} for i in range(num_members): a = addr + (i * stacksize) o = mt.get_kobjects(a) o[a].data = stacksize ret.update(o) return ret objs = {} # Multidimensional array flattened out num_members = 1 for e in self.elements: num_members = num_members * e for i in range(num_members): objs.update(mt.get_kobjects(addr + (i * mt.size))) return objs class AggregateTypeMember: def __init__(self, offset, member_name, member_type, member_offset): self.member_name = member_name self.member_type = member_type if isinstance(member_offset, list): # DWARF v2, location encoded as set of operations # only "DW_OP_plus_uconst" with ULEB128 argument supported if member_offset[0] == 0x23: self.member_offset = member_offset[1] & 0x7f for i in range(1, len(member_offset)-1): if member_offset[i] & 0x80: self.member_offset += ( member_offset[i+1] & 0x7f) << i*7 else: raise Exception("not yet supported location operation (%s:%d:%d)" % (self.member_name, self.member_type, member_offset[0])) else: self.member_offset = member_offset def __repr__(self): return "<member %s, type %d, offset %d>" % ( self.member_name, self.member_type, self.member_offset) def has_kobject(self): if self.member_type not in type_env: return False return type_env[self.member_type].has_kobject() def get_kobjects(self, addr): mt = type_env[self.member_type] return mt.get_kobjects(addr + self.member_offset) class ConstType: def __init__(self, child_type): self.child_type = child_type def __repr__(self): return "<const %d>" % self.child_type def has_kobject(self): if self.child_type not in type_env: return False return type_env[self.child_type].has_kobject() def get_kobjects(self, addr): return type_env[self.child_type].get_kobjects(addr) class AggregateType: def __init__(self, offset, name, size): self.name = name self.size = size self.offset = offset self.members = [] def add_member(self, member): self.members.append(member) def __repr__(self): return "<struct %s, with %s>" % (self.name, self.members) def has_kobject(self): result = False bad_members = [] for member in self.members: if member.has_kobject(): result = True else: bad_members.append(member) # Don't need to consider this again, just remove it for bad_member in bad_members: self.members.remove(bad_member) return result def get_kobjects(self, addr): objs = {} for member in self.members: objs.update(member.get_kobjects(addr)) return objs # --- helper functions for getting data from DIEs --- def die_get_spec(die): if 'DW_AT_specification' not in die.attributes: return None spec_val = die.attributes["DW_AT_specification"].value # offset of the DW_TAG_variable for the extern declaration offset = spec_val + die.cu.cu_offset return extern_env.get(offset) def die_get_name(die): if 'DW_AT_name' not in die.attributes: die = die_get_spec(die) if not die: return None return die.attributes["DW_AT_name"].value.decode("utf-8") def die_get_type_offset(die): if 'DW_AT_type' not in die.attributes: die = die_get_spec(die) if not die: return None return die.attributes["DW_AT_type"].value + die.cu.cu_offset def die_get_byte_size(die): if 'DW_AT_byte_size' not in die.attributes: return 0 return die.attributes["DW_AT_byte_size"].value def analyze_die_struct(die): name = die_get_name(die) or "<anon>" offset = die.offset size = die_get_byte_size(die) # Incomplete type if not size: return if name in kobjects: type_env[offset] = KobjectType(offset, name, size) elif name in subsystems: type_env[offset] = KobjectType(offset, name, size, api=True) else: at = AggregateType(offset, name, size) type_env[offset] = at for child in die.iter_children(): if child.tag != "DW_TAG_member": continue data_member_location = child.attributes.get("DW_AT_data_member_location") if not data_member_location: continue child_type = die_get_type_offset(child) member_offset = data_member_location.value cname = die_get_name(child) or "<anon>" m = AggregateTypeMember(child.offset, cname, child_type, member_offset) at.add_member(m) return def analyze_die_const(die): type_offset = die_get_type_offset(die) if not type_offset: return type_env[die.offset] = ConstType(type_offset) def analyze_die_array(die): type_offset = die_get_type_offset(die) elements = [] for child in die.iter_children(): if child.tag != "DW_TAG_subrange_type": continue if "DW_AT_upper_bound" not in child.attributes: continue ub = child.attributes["DW_AT_upper_bound"] if not ub.form.startswith("DW_FORM_data"): continue elements.append(ub.value + 1) if not elements: if type_offset in type_env.keys(): mt = type_env[type_offset] if mt.has_kobject(): if isinstance(mt, KobjectType) and mt.name == STACK_TYPE: elements.append(1) type_env[die.offset] = ArrayType(die.offset, elements, type_offset) else: type_env[die.offset] = ArrayType(die.offset, elements, type_offset) def analyze_typedef(die): type_offset = die_get_type_offset(die) if type_offset not in type_env.keys(): return type_env[die.offset] = type_env[type_offset] def unpack_pointer(elf, data, offset): endian_code = "<" if elf.little_endian else ">" if elf.elfclass == 32: size_code = "I" size = 4 else: size_code = "Q" size = 8 return struct.unpack(endian_code + size_code, data[offset:offset + size])[0] def addr_deref(elf, addr): for section in elf.iter_sections(): start = section['sh_addr'] end = start + section['sh_size'] if start <= addr < end: data = section.data() offset = addr - start return unpack_pointer(elf, data, offset) return 0 def device_get_api_addr(elf, addr): # See include/device.h for a description of struct device offset = 8 if elf.elfclass == 32 else 16 return addr_deref(elf, addr + offset) def find_kobjects(elf, syms): if not elf.has_dwarf_info(): sys.exit("ELF file has no DWARF information") app_smem_start = syms["_app_smem_start"] app_smem_end = syms["_app_smem_end"] di = elf.get_dwarf_info() # Step 1: collect all type information. for CU in di.iter_CUs(): for die in CU.iter_DIEs(): # Unions are disregarded, kernel objects should never be union # members since the memory is not dedicated to that object and # could be something else if die.tag == "DW_TAG_structure_type": analyze_die_struct(die) elif die.tag == "DW_TAG_const_type": analyze_die_const(die) elif die.tag == "DW_TAG_array_type": analyze_die_array(die) elif die.tag == "DW_TAG_typedef": analyze_typedef(die) elif die.tag == "DW_TAG_variable": variables.append(die) # Step 2: filter type_env to only contain kernel objects, or structs # and arrays of kernel objects bad_offsets = [] for offset, type_object in type_env.items(): if not type_object.has_kobject(): bad_offsets.append(offset) for offset in bad_offsets: del type_env[offset] # Step 3: Now that we know all the types we are looking for, examine # all variables all_objs = {} for die in variables: name = die_get_name(die) if not name: continue if name.startswith("__init_sys_init"): # Boot-time initialization function; not an actual device continue type_offset = die_get_type_offset(die) # Is this a kernel object, or a structure containing kernel # objects? if type_offset not in type_env: continue if "DW_AT_declaration" in die.attributes: # Extern declaration, only used indirectly extern_env[die.offset] = die continue if "DW_AT_location" not in die.attributes: debug_die(die, "No location information for object '%s'; possibly stack allocated" % name) continue loc = die.attributes["DW_AT_location"] if loc.form != "DW_FORM_exprloc" and \ loc.form != "DW_FORM_block1": debug_die(die, "kernel object '%s' unexpected location format" % name) continue opcode = loc.value[0] if opcode != DW_OP_addr: # Check if frame pointer offset DW_OP_fbreg if opcode == DW_OP_fbreg: debug_die(die, "kernel object '%s' found on stack" % name) else: debug_die(die, "kernel object '%s' unexpected exprloc opcode %s" % (name, hex(opcode))) continue addr = (loc.value[1] | (loc.value[2] << 8) | (loc.value[3] << 16) | (loc.value[4] << 24)) if addr == 0: # Never linked; gc-sections deleted it continue type_obj = type_env[type_offset] objs = type_obj.get_kobjects(addr) all_objs.update(objs) debug("symbol '%s' at %s contains %d object(s)" % (name, hex(addr), len(objs))) # Step 4: objs is a dictionary mapping variable memory addresses to # their associated type objects. Now that we have seen all variables # and can properly look up API structs, convert this into a dictionary # mapping variables to the C enumeration of what kernel object type it # is. ret = {} for addr, ko in all_objs.items(): # API structs don't get into the gperf table if ko.type_obj.api: continue _, user_ram_allowed = kobjects[ko.type_obj.name] if not user_ram_allowed and app_smem_start <= addr < app_smem_end: debug_die(die, "object '%s' found in invalid location %s" % (name, hex(addr))) continue if ko.type_obj.name != "device": # Not a device struct so we immediately know its type ko.type_name = kobject_to_enum(ko.type_obj.name) ret[addr] = ko continue # Device struct. Need to get the address of its API struct, # if it has one. apiaddr = device_get_api_addr(elf, addr) if apiaddr not in all_objs: if apiaddr == 0: debug("device instance at 0x%x has no associated subsystem" % addr) else: debug("device instance at 0x%x has unknown API 0x%x" % (addr, apiaddr)) # API struct does not correspond to a known subsystem, skip it continue apiobj = all_objs[apiaddr] ko.type_name = subsystem_to_enum(apiobj.type_obj.name) ret[addr] = ko debug("found %d kernel object instances total" % len(ret)) # 1. Before python 3.7 dict order is not guaranteed. With Python # 3.5 it doesn't seem random with *integer* keys but can't # rely on that. # 2. OrderedDict means _insertion_ order, so not enough because # built from other (random!) dicts: need to _sort_ first. # 3. Sorting memory address looks good. return OrderedDict(sorted(ret.items())) def get_symbols(elf): for section in elf.iter_sections(): if isinstance(section, SymbolTableSection): return {sym.name: sym.entry.st_value for sym in section.iter_symbols()} raise LookupError("Could not find symbol table") # -- GPERF generation logic header = """%compare-lengths %define lookup-function-name z_object_lookup %language=ANSI-C %global-table %struct-type %{ #include <kernel.h> #include <toolchain.h> #include <syscall_handler.h> #include <string.h> %} struct z_object; """ # Different versions of gperf have different prototypes for the lookup # function, best to implement the wrapper here. The pointer value itself is # turned into a string, we told gperf to expect binary strings that are not # NULL-terminated. footer = """%% struct z_object *z_object_gperf_find(void *obj) { return z_object_lookup((const char *)obj, sizeof(void *)); } void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, void *context) { int i; for (i = MIN_HASH_VALUE; i <= MAX_HASH_VALUE; i++) { if (wordlist[i].name != NULL) { func(&wordlist[i], context); } } } #ifndef CONFIG_DYNAMIC_OBJECTS struct z_object *z_object_find(void *obj) ALIAS_OF(z_object_gperf_find); void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) ALIAS_OF(z_object_gperf_wordlist_foreach); #endif """ def write_gperf_table(fp, syms, objs, little_endian, static_begin, static_end): fp.write(header) if sys_mutex_counter != 0: fp.write("static struct k_mutex kernel_mutexes[%d] = {\n" % sys_mutex_counter) for i in range(sys_mutex_counter): fp.write("Z_MUTEX_INITIALIZER(kernel_mutexes[%d])" % i) if i != sys_mutex_counter - 1: fp.write(", ") fp.write("};\n") if futex_counter != 0: fp.write("static struct z_futex_data futex_data[%d] = {\n" % futex_counter) for i in range(futex_counter): fp.write("Z_FUTEX_DATA_INITIALIZER(futex_data[%d])" % i) if i != futex_counter - 1: fp.write(", ") fp.write("};\n") metadata_names = { "K_OBJ_THREAD" : "thread_id", "K_OBJ_SYS_MUTEX" : "mutex", "K_OBJ_FUTEX" : "futex_data" } if "CONFIG_GEN_PRIV_STACKS" in syms: metadata_names["K_OBJ_THREAD_STACK_ELEMENT"] = "stack_data" if stack_counter != 0: fp.write("static u8_t Z_GENERIC_SECTION(.priv_stacks.noinit) " " __aligned(Z_PRIVILEGE_STACK_ALIGN)" " priv_stacks[%d][CONFIG_PRIVILEGED_STACK_SIZE];\n" % stack_counter) fp.write("static struct z_stack_data stack_data[%d] = {\n" % stack_counter) counter = 0 for _, ko in objs.items(): if ko.type_name != "K_OBJ_THREAD_STACK_ELEMENT": continue # ko.data currently has the stack size. fetch the value to # populate the appropriate entry in stack_data, and put # a reference to the entry in stack_data into the data value # instead size = ko.data ko.data = "&stack_data[%d]" % counter fp.write("\t{ %d, (u8_t *)(&priv_stacks[%d]) }" % (size, counter)) if counter != (stack_counter - 1): fp.write(",") fp.write("\n") counter += 1 fp.write("};\n") else: metadata_names["K_OBJ_THREAD_STACK_ELEMENT"] = "stack_size" fp.write("%%\n") # Setup variables for mapping thread indexes thread_max_bytes = syms["CONFIG_MAX_THREAD_BYTES"] thread_idx_map = {} for i in range(0, thread_max_bytes): thread_idx_map[i] = 0xFF for obj_addr, ko in objs.items(): obj_type = ko.type_name # pre-initialized objects fall within this memory range, they are # either completely initialized at build time, or done automatically # at boot during some PRE_KERNEL_* phase initialized = static_begin <= obj_addr < static_end is_driver = obj_type.startswith("K_OBJ_DRIVER_") if "CONFIG_64BIT" in syms: format_code = "Q" else: format_code = "I" if little_endian: endian = "<" else: endian = ">" byte_str = struct.pack(endian + format_code, obj_addr) fp.write("\"") for byte in byte_str: val = "\\x%02x" % byte fp.write(val) flags = "0" if initialized: flags += " | K_OBJ_FLAG_INITIALIZED" if is_driver: flags += " | K_OBJ_FLAG_DRIVER" if ko.type_name in metadata_names: tname = metadata_names[ko.type_name] else: tname = "unused" fp.write("\", {}, %s, %s, { .%s = %s }\n" % (obj_type, flags, tname, str(ko.data))) if obj_type == "K_OBJ_THREAD": idx = math.floor(ko.data / 8) bit = ko.data % 8 thread_idx_map[idx] = thread_idx_map[idx] & ~(2**bit) fp.write(footer) # Generate the array of already mapped thread indexes fp.write('\n') fp.write('Z_GENERIC_SECTION(.kobject_data.data) ') fp.write('u8_t _thread_idx_map[%d] = {' % (thread_max_bytes)) for i in range(0, thread_max_bytes): fp.write(' 0x%x, ' % (thread_idx_map[i])) fp.write('};\n') driver_macro_tpl = """ #define Z_SYSCALL_DRIVER_%(driver_upper)s(ptr, op) Z_SYSCALL_DRIVER_GEN(ptr, op, %(driver_lower)s, %(driver_upper)s) """ def write_validation_output(fp): fp.write("#ifndef DRIVER_VALIDATION_GEN_H\n") fp.write("#define DRIVER_VALIDATION_GEN_H\n") fp.write("""#define Z_SYSCALL_DRIVER_GEN(ptr, op, driver_lower_case, driver_upper_case) \\ (Z_SYSCALL_OBJ(ptr, K_OBJ_DRIVER_##driver_upper_case) || \\ Z_SYSCALL_DRIVER_OP(ptr, driver_lower_case##_driver_api, op)) """) for subsystem in subsystems: subsystem = subsystem.replace("_driver_api", "") fp.write(driver_macro_tpl % { "driver_lower": subsystem.lower(), "driver_upper": subsystem.upper(), }) fp.write("#endif /* DRIVER_VALIDATION_GEN_H */\n") def write_kobj_types_output(fp): fp.write("/* Core kernel objects */\n") for kobj, obj_info in kobjects.items(): dep, _ = obj_info if kobj == "device": continue if dep: fp.write("#ifdef %s\n" % dep) fp.write("%s,\n" % kobject_to_enum(kobj)) if dep: fp.write("#endif\n") fp.write("/* Driver subsystems */\n") for subsystem in subsystems: subsystem = subsystem.replace("_driver_api", "").upper() fp.write("K_OBJ_DRIVER_%s,\n" % subsystem) def write_kobj_otype_output(fp): fp.write("/* Core kernel objects */\n") for kobj, obj_info in kobjects.items(): dep, _ = obj_info if kobj == "device": continue if dep: fp.write("#ifdef %s\n" % dep) fp.write('case %s: ret = "%s"; break;\n' % (kobject_to_enum(kobj), kobj)) if dep: fp.write("#endif\n") fp.write("/* Driver subsystems */\n") for subsystem in subsystems: subsystem = subsystem.replace("_driver_api", "") fp.write('case K_OBJ_DRIVER_%s: ret = "%s driver"; break;\n' % ( subsystem.upper(), subsystem )) def write_kobj_size_output(fp): fp.write("/* Non device/stack objects */\n") for kobj, obj_info in kobjects.items(): dep, _ = obj_info # device handled by default case. Stacks are not currently handled, # if they eventually are it will be a special case. if kobj in {"device", STACK_TYPE}: continue if dep: fp.write("#ifdef %s\n" % dep) fp.write('case %s: ret = sizeof(struct %s); break;\n' % (kobject_to_enum(kobj), kobj)) if dep: fp.write("#endif\n") def parse_subsystems_list_file(path): with open(path, "r") as fp: subsys_list = json.load(fp) subsystems.extend(subsys_list) def parse_args(): global args parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("-k", "--kernel", required=False, help="Input zephyr ELF binary") parser.add_argument( "-g", "--gperf-output", required=False, help="Output list of kernel object addresses for gperf use") parser.add_argument( "-V", "--validation-output", required=False, help="Output driver validation macros") parser.add_argument( "-K", "--kobj-types-output", required=False, help="Output k_object enum constants") parser.add_argument( "-S", "--kobj-otype-output", required=False, help="Output case statements for otype_to_str()") parser.add_argument( "-Z", "--kobj-size-output", required=False, help="Output case statements for obj_size_get()") parser.add_argument("-i", "--include-subsystem-list", required=False, action='append', help='''Specifies a file with a JSON encoded list of subsystem names to append to the driver subsystems list. Can be specified multiple times: -i file1 -i file2 ...''') parser.add_argument("-v", "--verbose", action="store_true", help="Print extra debugging information") args = parser.parse_args() if "VERBOSE" in os.environ: args.verbose = 1 def main(): parse_args() if args.include_subsystem_list is not None: for list_file in args.include_subsystem_list: parse_subsystems_list_file(list_file) if args.gperf_output: assert args.kernel, "--kernel ELF required for --gperf-output" elf = ELFFile(open(args.kernel, "rb")) syms = get_symbols(elf) max_threads = syms["CONFIG_MAX_THREAD_BYTES"] * 8 objs = find_kobjects(elf, syms) if not objs: sys.stderr.write("WARNING: zero kobject found in %s\n" % args.kernel) if thread_counter > max_threads: sys.exit("Too many thread objects ({})\n" "Increase CONFIG_MAX_THREAD_BYTES to {}" .format(thread_counter, -(-thread_counter // 8))) with open(args.gperf_output, "w") as fp: write_gperf_table(fp, syms, objs, elf.little_endian, syms["_static_kernel_objects_begin"], syms["_static_kernel_objects_end"]) if args.validation_output: with open(args.validation_output, "w") as fp: write_validation_output(fp) if args.kobj_types_output: with open(args.kobj_types_output, "w") as fp: write_kobj_types_output(fp) if args.kobj_otype_output: with open(args.kobj_otype_output, "w") as fp: write_kobj_otype_output(fp) if args.kobj_size_output: with open(args.kobj_size_output, "w") as fp: write_kobj_size_output(fp) if __name__ == "__main__": main()
31.736634
116
0.613621
[ "Apache-2.0" ]
TTJO/zephyr
scripts/gen_kobject_list.py
32,054
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Training script for UNet-3D.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import estimator as tf_estimator from hyperparameters import params_dict import input_reader import tpu_executor import unet_config import unet_model tpu_executor.define_tpu_flags() flags.DEFINE_string( 'mode', 'train', 'Mode to run: train or eval or train_and_eval ' '(default: train)') flags.DEFINE_string('model_dir', None, 'Location of model_dir') flags.DEFINE_string('training_file_pattern', '', 'Location of the train data.') flags.DEFINE_string('eval_file_pattern', '', 'Location of ther eval data') flags.DEFINE_string('config_file', '', 'a YAML file which specifies overrides.') flags.DEFINE_string('params_override', '', 'A JSON-style string that specifies overrides.') flags.DEFINE_integer('min_eval_interval', 180, 'Minimum seconds between evaluations.') flags.DEFINE_integer( 'eval_timeout', None, 'Maximum seconds between checkpoints before evaluation terminates.') FLAGS = flags.FLAGS def run_executer(params, train_input_shapes=None, eval_input_shapes=None, train_input_fn=None, eval_input_fn=None): """Runs Mask RCNN model on distribution strategy defined by the user.""" executer = tpu_executor.TPUEstimatorExecuter( unet_model.unet_model_fn, params, train_input_shapes=train_input_shapes, eval_input_shapes=eval_input_shapes) if FLAGS.mode == 'train': assert train_input_fn is not None results = executer.train(train_input_fn) elif FLAGS.mode == 'eval': assert eval_input_fn is not None results = executer.evaluate(eval_input_fn) elif FLAGS.mode == 'train_and_eval': assert train_input_fn is not None assert eval_input_fn is not None results = executer.train_and_eval(train_input_fn, eval_input_fn) else: raise ValueError('Mode must be one of `train`, `eval`, or `train_and_eval`') return results def main(argv): del argv # Unused. params = params_dict.ParamsDict(unet_config.UNET_CONFIG, unet_config.UNET_RESTRICTIONS) params = params_dict.override_params_dict( params, FLAGS.config_file, is_strict=False) if FLAGS.training_file_pattern: params.override({'training_file_pattern': FLAGS.training_file_pattern}, is_strict=True) if FLAGS.eval_file_pattern: params.override({'eval_file_pattern': FLAGS.eval_file_pattern}, is_strict=True) train_epoch_steps = params.train_item_count // params.train_batch_size eval_epoch_steps = params.eval_item_count // params.eval_batch_size params.override( { 'model_dir': FLAGS.model_dir, 'min_eval_interval': FLAGS.min_eval_interval, 'eval_timeout': FLAGS.eval_timeout, 'tpu_config': tpu_executor.get_tpu_flags(), 'lr_decay_steps': train_epoch_steps, 'train_steps': params.train_epochs * train_epoch_steps, 'eval_steps': eval_epoch_steps, }, is_strict=False) params = params_dict.override_params_dict( params, FLAGS.params_override, is_strict=True) params.validate() params.lock() train_input_fn = None eval_input_fn = None train_input_shapes = None eval_input_shapes = None if FLAGS.mode in ('train', 'train_and_eval'): train_input_fn = input_reader.LiverInputFn( params.training_file_pattern, params, mode=tf_estimator.ModeKeys.TRAIN) train_input_shapes = train_input_fn.get_input_shapes(params) if FLAGS.mode in ('eval', 'train_and_eval'): eval_input_fn = input_reader.LiverInputFn( params.eval_file_pattern, params, mode=tf_estimator.ModeKeys.EVAL) eval_input_shapes = eval_input_fn.get_input_shapes(params) assert train_input_shapes is not None or eval_input_shapes is not None run_executer(params, train_input_shapes=train_input_shapes, eval_input_shapes=eval_input_shapes, train_input_fn=train_input_fn, eval_input_fn=eval_input_fn) if __name__ == '__main__': tf.disable_v2_behavior() app.run(main)
35.928058
80
0.718662
[ "Apache-2.0" ]
tensorflow/tpu-demos
models/official/unet3d/unet_main.py
4,994
Python
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from numpy.random import uniform from fairseq import options, utils from fairseq.models import ( FairseqEncoder, FairseqIncrementalDecoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, LayerNorm, MultiheadAttention, PositionalEmbedding, SinusoidalPositionalEmbedding, ) from bert import BertTokenizer DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 from bert import BertModel @register_model('transformer') class TransformerModel(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ def __init__(self, encoder, decoder, bertencoder, berttokenizer, mask_cls_sep=False, args=None): super().__init__(encoder, decoder, bertencoder, berttokenizer, mask_cls_sep, args) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, 'max_source_positions'): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if not hasattr(args, 'max_target_positions'): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if len(task.datasets) > 0: src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError('--share-all-embeddings requires a joined dictionary') if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( '--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerModel(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep, args) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder(args, tgt_dict, embed_tokens) @register_model('transformers2') class TransformerS2Model(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ def __init__(self, encoder, decoder, bertencoder, berttokenizer, mask_cls_sep=False, args=None): super().__init__(encoder, decoder, bertencoder, berttokenizer, mask_cls_sep, args) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, 'max_source_positions'): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if not hasattr(args, 'max_target_positions'): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if len(task.datasets) > 0: src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError('--share-all-embeddings requires a joined dictionary') if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( '--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerS2Model(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep, args) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerS2Encoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder(args, tgt_dict, embed_tokens) def forward(self, src_tokens, src_lengths, prev_output_tokens, bert_input, **kwargs): """ Run the forward pass for an encoder-decoder model. First feed a batch of source tokens through the encoder. Then, feed the encoder output and previous decoder outputs (i.e., input feeding/teacher forcing) to the decoder to produce the next outputs:: encoder_out = self.encoder(src_tokens, src_lengths) return self.decoder(prev_output_tokens, encoder_out) Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ bert_encoder_padding_mask = bert_input.eq(self.berttokenizer.pad()) bert_encoder_out, _ = self.bert_encoder(bert_input, output_all_encoded_layers=True, attention_mask= ~ bert_encoder_padding_mask) bert_encoder_out = bert_encoder_out[self.bert_output_layer] if self.mask_cls_sep: bert_encoder_padding_mask += bert_input.eq(self.berttokenizer.cls()) bert_encoder_padding_mask += bert_input.eq(self.berttokenizer.sep()) bert_encoder_out = bert_encoder_out.permute(1,0,2).contiguous() bert_encoder_out = { 'bert_encoder_out': bert_encoder_out, 'bert_encoder_padding_mask': bert_encoder_padding_mask, } encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, bert_encoder_out=bert_encoder_out) decoder_out = self.decoder(prev_output_tokens, encoder_out=encoder_out, bert_encoder_out=bert_encoder_out, **kwargs) return decoder_out @register_model('transformerstack') class TransformerModelStack(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ def __init__(self, encoder, decoder, bertencoder, berttokenizer, mask_cls_sep=False): super().__init__(encoder, decoder, bertencoder, berttokenizer, mask_cls_sep) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, 'max_source_positions'): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if not hasattr(args, 'max_target_positions'): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if len(task.datasets) > 0: src_berttokenizer = next(iter(task.datasets.values())).berttokenizer else: src_berttokenizer = BertTokenizer.from_pretrained(args.bert_model_name) def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError('--share-all-embeddings requires a joined dictionary') if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( '--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path): raise ValueError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) bertencoder = BertModel.from_pretrained(args.bert_model_name) args.bert_out_dim = bertencoder.hidden_size encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return TransformerModel(encoder, decoder, bertencoder, src_berttokenizer, args.mask_cls_sep) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoderStack(args, tgt_dict, embed_tokens) class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(dictionary) self.register_buffer('version', torch.Tensor([3])) self.dropout = args.dropout embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None self.layers = nn.ModuleList([]) self.layers.extend([ TransformerEncoderLayer(args) for i in range(args.encoder_layers) ]) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, src_tokens, src_lengths): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions x = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): encoder_padding_mask = None # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask) if self.layer_norm: x = self.layer_norm(x) return { 'encoder_out': x, # T x B x C 'encoder_padding_mask': encoder_padding_mask, # B x T } def reorder_encoder_out(self, encoder_out, bert_outs, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out['encoder_out'] is not None: encoder_out['encoder_out'] = \ encoder_out['encoder_out'].index_select(1, new_order) if encoder_out['encoder_padding_mask'] is not None: encoder_out['encoder_padding_mask'] = \ encoder_out['encoder_padding_mask'].index_select(0, new_order) if bert_outs['bert_encoder_out'] is not None: bert_outs['bert_encoder_out'] = \ bert_outs['bert_encoder_out'].index_select(1, new_order) if bert_outs['bert_encoder_padding_mask'] is not None: bert_outs['bert_encoder_padding_mask'] = \ bert_outs['bert_encoder_padding_mask'].index_select(0, new_order) return encoder_out, bert_outs def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions()) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): # update layer norms self.layers[i].upgrade_state_dict_named(state_dict, "{}.layers.{}".format(name, i)) version_key = '{}.version'.format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerS2Encoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(dictionary) self.register_buffer('version', torch.Tensor([3])) self.dropout = args.dropout self.output_mask = nn.Softmax(dim = 0) self.t_layer = nn.Linear(512, 1) self.output_vocab_linear = nn.Linear(512, embed_tokens.num_embeddings) embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None bert_gates = getattr(args, 'bert_gates', [1, 1, 1, 1, 1, 1]) bert_gates = [x == 1 for x in bert_gates] assert len(bert_gates) == args.encoder_layers self.layers = nn.ModuleList([]) self.layers.extend([ TransformerS2EncoderLayer(args, bert_gate=bert_gates[i]) for i in range(args.encoder_layers) ]) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None self.mask_embedding = nn.init.normal_(nn.Parameter(torch.zeros((1, embed_dim)))) self.mask_layers = nn.ModuleList([]) self.mask_layers.extend([ TransformerEncoderLayer(args) for i in range(2) ]) if args.encoder_normalize_before: self.mask_layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None ''' self.x = None self.unmask_output = None self.mask_output = None self.encoder_vocab_output = None self.backwards = 0 ''' self.i = 0 def forward(self, src_tokens, src_lengths, bert_encoder_out): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions x = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C # T x B mask model ########### ########### ########### ''' mask_output = self.mask(src_tokens , x) p = mask_output p = p.transpose(0, 1) t_p = torch.argsort(p,dim=1) ratio = 0.2 self.ratio = ratio p_mask = torch.where(t_p<t_p.size(1)*ratio,torch.zeros_like(p),torch.ones_like(p)) self.p_mask = p_mask p_mask = p_mask.unsqueeze(-1).transpose(0,1) self.mask_output = p if self.training: x = x * p_mask.detach() else: x = x ########### ########### ########### # t_p[t_p>t_p.size*ratio] = 1 # t_p[t_p<=t_p.size*ratio] = 0 # t_p.permute(1,0) # model.encoder.mask_output ''' x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): encoder_padding_mask = None # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask']) if self.layer_norm: x = self.layer_norm(x) # if self.training: ''' self.encoder_vocab_output = self.encodeMLM(src_tokens, src_lengths, bert_encoder_out) ''' ''' ########################## if self.i%1==0: import scipy.io as scio self.encoder_vocab_output = self.encodeMLM(src_tokens, src_lengths, bert_encoder_out) scio.savemat("/home/iojhui/bert-nmt/data"+str(self.i)+".mat", {'mask_output':self.mask_output.detach().cpu().numpy(),"src_tokens":src_tokens.cpu().numpy()}) self.i+=1 ######################## ''' return { 'encoder_out': x, # T x B x C 'encoder_padding_mask': encoder_padding_mask, # B x T } def encodeMLM(self, src_tokens, src_lengths, bert_encoder_out): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions self.src_tokens = src_tokens x = self.embed_scale * self.embed_tokens(src_tokens) ''' ratio = 0.3 mask = np.random.choice(src_tokens.size()[1], (int(src_tokens.size()[1] * ratio), ),replace = False) if mask is not None: ''' ''' if x.size(1)<10: mask = [4] else: mask = [7,9] x[:, mask] = self.mask_embedding ''' mask_output = self.mask(src_tokens , x) p = mask_output p = p t_p = torch.argsort(p,dim=1) ratio = 0.2 self.ratio = ratio p_mask = torch.where(t_p<t_p.size(1)*ratio,torch.zeros_like(p),torch.ones_like(p)) self.p_mask = p_mask p_mask = p_mask.unsqueeze(-1) self.mask_output = p x = x * p_mask.detach() if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): encoder_padding_mask = None # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask']) if self.layer_norm: x = self.layer_norm(x) encoder_vocab_output = self.output_vocab_linear(x) self.encoder_vocab_output2 = torch.nn.functional.softmax(encoder_vocab_output,dim=-1) self.token = src_tokens return encoder_vocab_output def mask(self, src_tokens, x): x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): encoder_padding_mask = None # encoder layers for layer in self.mask_layers: x = layer(x, encoder_padding_mask) if self.layer_norm: x = self.mask_layer_norm(x) x = self.t_layer(x).squeeze(-1) if encoder_padding_mask is not None: x = x.masked_fill(encoder_padding_mask.transpose(0,1),value=torch.tensor(float('-inf'))) return self.output_mask(x).transpose(0, 1) def reorder_encoder_out(self, encoder_out, bert_outs, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out['encoder_out'] is not None: encoder_out['encoder_out'] = \ encoder_out['encoder_out'].index_select(1, new_order) if encoder_out['encoder_padding_mask'] is not None: encoder_out['encoder_padding_mask'] = \ encoder_out['encoder_padding_mask'].index_select(0, new_order) if bert_outs['bert_encoder_out'] is not None: bert_outs['bert_encoder_out'] = \ bert_outs['bert_encoder_out'].index_select(1, new_order) if bert_outs['bert_encoder_padding_mask'] is not None: bert_outs['bert_encoder_padding_mask'] = \ bert_outs['bert_encoder_padding_mask'].index_select(0, new_order) return encoder_out, bert_outs def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions()) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): # update layer norms self.layers[i].upgrade_state_dict_named(state_dict, "{}.layers.{}".format(name, i)) version_key = '{}.version'.format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(dictionary) self.register_buffer('version', torch.Tensor([3])) self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.output_embed_dim = args.decoder_output_dim padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None self.embed_positions = PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None bert_gates = getattr(args, 'bert_gates', [1, 1, 1, 1, 1, 1]) bert_gates = [x == 1 for x in bert_gates] assert len(bert_gates) == args.decoder_layers print('bert_gates', bert_gates) self.layers = nn.ModuleList([]) decoder_no_bert = getattr(args, 'decoder_no_bert', False) if decoder_no_bert: self.layers.extend([ TransformerStandardDecoderLayer(args, no_encoder_attn, bert_gate=bert_gates[i]) for i in range(args.decoder_layers) ]) else: self.layers.extend([ TransformerDecoderLayer(args, no_encoder_attn, bert_gate=bert_gates[i]) for i in range(args.decoder_layers) ]) self.adaptive_softmax = None self.project_out_dim = Linear(embed_dim, self.output_embed_dim, bias=False) \ if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, options.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_out = nn.Parameter(torch.Tensor(len(dictionary), self.output_embed_dim)) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5) if args.decoder_normalize_before and not getattr(args, 'no_decoder_final_norm', False): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features(prev_output_tokens, encoder_out, bert_encoder_out, incremental_state) x = self.output_layer(x) return x, extra def extract_features(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: x, attn = layer( x, encoder_out['encoder_out'] if encoder_out is not None else None, encoder_out['encoder_padding_mask'] if encoder_out is not None else None, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask'], incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {'attn': attn, 'inner_states': inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions()) def buffered_future_mask(self, tensor): dim = tensor.size(0) if not hasattr(self, '_future_mask') or self._future_mask is None or self._future_mask.device != tensor.device: self._future_mask = torch.triu(utils.fill_with_neg_inf(tensor.new(dim, dim)), 1) if self._future_mask.size(0) < dim: self._future_mask = torch.triu(utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): # update layer norms layer_norm_map = { '0': 'self_attn_layer_norm', '1': 'encoder_attn_layer_norm', '2': 'final_layer_norm' } for old, new in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layers.{}.layer_norms.{}.{}'.format(name, i, old, m) if k in state_dict: state_dict['{}.layers.{}.{}.{}'.format(name, i, new, m)] = state_dict[k] del state_dict[k] version_key = '{}.version'.format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoderStack(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(dictionary) self.register_buffer('version', torch.Tensor([3])) self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.output_embed_dim = args.decoder_output_dim padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None self.embed_positions = PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None self.layers = nn.ModuleList([]) self.layers.extend([ TransformerDecoderLayerStack(args, no_encoder_attn) for _ in range(args.decoder_layers) ]) self.adaptive_softmax = None self.project_out_dim = Linear(embed_dim, self.output_embed_dim, bias=False) \ if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, options.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_out = nn.Parameter(torch.Tensor(len(dictionary), self.output_embed_dim)) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5) if args.decoder_normalize_before and not getattr(args, 'no_decoder_final_norm', False): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features(prev_output_tokens, encoder_out, bert_encoder_out, incremental_state) x = self.output_layer(x) return x, extra def extract_features(self, prev_output_tokens, encoder_out=None, bert_encoder_out=None, incremental_state=None, **unused): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: x, attn = layer( x, encoder_out['encoder_out'] if encoder_out is not None else None, encoder_out['encoder_padding_mask'] if encoder_out is not None else None, bert_encoder_out['bert_encoder_out'], bert_encoder_out['bert_encoder_padding_mask'], incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {'attn': attn, 'inner_states': inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions()) def buffered_future_mask(self, tensor): dim = tensor.size(0) if not hasattr(self, '_future_mask') or self._future_mask is None or self._future_mask.device != tensor.device: self._future_mask = torch.triu(utils.fill_with_neg_inf(tensor.new(dim, dim)), 1) if self._future_mask.size(0) < dim: self._future_mask = torch.triu(utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = '{}.embed_positions.weights'.format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1) for i in range(len(self.layers)): # update layer norms layer_norm_map = { '0': 'self_attn_layer_norm', '1': 'encoder_attn_layer_norm', '2': 'final_layer_norm' } for old, new in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layers.{}.layer_norms.{}.{}'.format(name, i, old, m) if k in state_dict: state_dict['{}.layers.{}.{}.{}'.format(name, i, new, m)] = state_dict[k] del state_dict[k] version_key = '{}.version'.format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True ) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu') ) self.activation_dropout = getattr(args, 'activation_dropout', 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, 'relu_dropout', 0) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = { '0': 'self_attn_layer_norm', '1': 'final_layer_norm' } for old, new in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layer_norms.{}.{}'.format(name, old, m) if k in state_dict: state_dict[ '{}.{}.{}'.format(name, new, m) ] = state_dict[k] del state_dict[k] def forward(self, x, encoder_padding_mask): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) x, attn_weight = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) self.attn_weight = attn_weight residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x class TransformerS2EncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args, bert_gate=True): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True ) bert_out_dim = args.bert_out_dim self.bert_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, kdim=bert_out_dim, vdim=bert_out_dim, dropout=args.attention_dropout, ) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu') ) self.activation_dropout = getattr(args, 'activation_dropout', 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, 'relu_dropout', 0) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) self.encoder_ratio = args.encoder_ratio self.bert_ratio = args.bert_ratio self.encoder_bert_dropout = getattr(args, 'encoder_bert_dropout', False) self.encoder_bert_dropout_ratio = getattr(args, 'encoder_bert_dropout_ratio', 0.25) assert self.encoder_bert_dropout_ratio >= 0. and self.encoder_bert_dropout_ratio <= 0.5 self.encoder_bert_mixup = getattr(args, 'encoder_bert_mixup', False) if not bert_gate: self.bert_ratio = 0. self.encoder_bert_dropout = False self.encoder_bert_mixup = False def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = { '0': 'self_attn_layer_norm', '1': 'final_layer_norm' } for old, new in layer_norm_map.items(): for m in ('weight', 'bias'): k = '{}.layer_norms.{}.{}'.format(name, old, m) if k in state_dict: state_dict[ '{}.{}.{}'.format(name, new, m) ] = state_dict[k] del state_dict[k] def forward(self, x, encoder_padding_mask, bert_encoder_out, bert_encoder_padding_mask): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) x1, _ = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask) x2, _ = self.bert_attn(query=x, key=bert_encoder_out, value=bert_encoder_out, key_padding_mask=bert_encoder_padding_mask) x1 = F.dropout(x1, p=self.dropout, training=self.training) x2 = F.dropout(x2, p=self.dropout, training=self.training) ratios = self.get_ratio() x = residual + ratios[0] * x1 + ratios[1] * x2 x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x def get_ratio(self): if self.encoder_bert_dropout: frand = float(uniform(0, 1)) if self.encoder_bert_mixup and self.training: return [frand, 1 - frand] if frand < self.encoder_bert_dropout_ratio and self.training: return [1, 0] elif frand > 1 - self.encoder_bert_dropout_ratio and self.training: return [0, 1] else: return [0.5, 0.5] else: return [self.encoder_ratio, self.bert_ratio] def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, bert_gate=True): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( embed_dim=self.embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu') ) self.activation_dropout = getattr(args, 'activation_dropout', 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, 'relu_dropout', 0) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, 'char_inputs', False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, encoder_decoder_attention=True ) bert_out_dim = args.bert_out_dim self.bert_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, kdim=bert_out_dim, vdim=bert_out_dim, dropout=args.attention_dropout, encoder_decoder_attention=True ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False self.encoder_ratio = args.encoder_ratio self.bert_ratio = args.bert_ratio self.encoder_bert_dropout = getattr(args, 'encoder_bert_dropout', False) self.encoder_bert_dropout_ratio = getattr(args, 'encoder_bert_dropout_ratio', 0.25) assert self.encoder_bert_dropout_ratio >= 0. and self.encoder_bert_dropout_ratio <= 0.5 self.encoder_bert_mixup = getattr(args, 'encoder_bert_mixup', False) if not bert_gate: self.bert_ratio = 0. self.encoder_bert_dropout = False self.encoder_bert_mixup = False def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if prev_self_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_self_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x1, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x2, _ = self.bert_attn( query=x, key=bert_encoder_out, value=bert_encoder_out, key_padding_mask=bert_encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x1 = F.dropout(x1, p=self.dropout, training=self.training) x2 = F.dropout(x2, p=self.dropout, training=self.training) ratios = self.get_ratio() x = residual + ratios[0] * x1 + ratios[1] * x2 x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = saved_state["prev_key"], saved_state["prev_value"] return x, attn, self_attn_state return x, attn def get_ratio(self): if self.encoder_bert_dropout: frand = float(uniform(0, 1)) if self.encoder_bert_mixup and self.training: return [frand, 1 - frand] if frand < self.encoder_bert_dropout_ratio and self.training: return [1, 0] elif frand > 1 - self.encoder_bert_dropout_ratio and self.training: return [0, 1] else: return [0.5, 0.5] else: return [self.encoder_ratio, self.bert_ratio] def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn class TransformerStandardDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, bert_gate=True): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( embed_dim=self.embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu') ) self.activation_dropout = getattr(args, 'activation_dropout', 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, 'relu_dropout', 0) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, 'char_inputs', False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, encoder_decoder_attention=True ) # bert_out_dim = args.bert_out_dim # self.bert_attn = MultiheadAttention( # self.embed_dim, args.decoder_attention_heads, # kdim=bert_out_dim, vdim=bert_out_dim, # dropout=args.attention_dropout, encoder_decoder_attention=True # ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False self.encoder_ratio = args.encoder_ratio self.bert_ratio = args.bert_ratio if not bert_gate: self.bert_ratio = 0. self.encoder_bert_dropout = getattr(args, 'encoder_bert_dropout', False) self.encoder_bert_dropout_ratio = getattr(args, 'encoder_bert_dropout_ratio', 0.25) assert self.encoder_bert_dropout_ratio >= 0. and self.encoder_bert_dropout_ratio <= 0.5 self.encoder_bert_mixup = getattr(args, 'encoder_bert_mixup', False) def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if prev_self_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_self_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x1, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) # x2, _ = self.bert_attn( # query=x, # key=bert_encoder_out, # value=bert_encoder_out, # key_padding_mask=bert_encoder_padding_mask, # incremental_state=incremental_state, # static_kv=True, # need_weights=(not self.training and self.need_attn), # ) x1 = F.dropout(x1, p=self.dropout, training=self.training) # x2 = F.dropout(x2, p=self.dropout, training=self.training) # ratios = self.get_ratio() x = residual + x1 x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = saved_state["prev_key"], saved_state["prev_value"] return x, attn, self_attn_state return x, attn def get_ratio(self): if self.encoder_bert_dropout: frand = float(uniform(0, 1)) if self.encoder_bert_mixup and self.training: return [frand, 1 - frand] if frand < self.encoder_bert_dropout_ratio and self.training: return [1, 0] elif frand > 1 - self.encoder_bert_dropout_ratio and self.training: return [0, 1] else: return [0.5, 0.5] else: return [self.encoder_ratio, self.bert_ratio] def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn class TransformerDecoderLayerStack(nn.Module): def __init__(self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( embed_dim=self.embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu') ) self.activation_dropout = getattr(args, 'activation_dropout', 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, 'relu_dropout', 0) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, 'char_inputs', False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, encoder_decoder_attention=True ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) bert_out_dim = args.bert_out_dim self.bert_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, kdim=bert_out_dim, vdim=bert_out_dim, dropout=args.attention_dropout, encoder_decoder_attention=True ) self.bert_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.bert_first = args.bert_first self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, x, encoder_out=None, encoder_padding_mask=None, bert_encoder_out=None, bert_encoder_padding_mask=None, incremental_state=None, prev_self_attn_state=None, prev_attn_state=None, self_attn_mask=None, self_attn_padding_mask=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if prev_self_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_self_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if self.encoder_attn is not None: if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) def sinattn(attnlayer, x, layer_norm, keyorvalue, key_padding, incremental_state): residual = x x = self.maybe_layer_norm(layer_norm, x, before=True) x, attn = attnlayer( query=x, key=keyorvalue, value=keyorvalue, key_padding_mask=key_padding, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(layer_norm, x, after=True) return x, attn if self.bert_first: x, attn = sinattn(self.bert_attn, x, self.bert_attn_layer_norm, bert_encoder_out, bert_encoder_padding_mask, incremental_state) x, attn = sinattn(self.encoder_attn, x, self.encoder_attn_layer_norm, encoder_out, encoder_padding_mask, incremental_state) else: x, attn = sinattn(self.encoder_attn, x, self.encoder_attn_layer_norm, encoder_out, encoder_padding_mask, incremental_state) x, attn = sinattn(self.bert_attn, x, self.bert_attn_layer_norm, bert_encoder_out, bert_encoder_padding_mask, incremental_state) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) self_attn_state = saved_state["prev_key"], saved_state["prev_value"] return x, attn, self_attn_state return x, attn def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.) return m @register_model_architecture('transformer', 'transformer') def base_architecture(args): args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 2048) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 8) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.encoder_learned_pos = getattr(args, 'encoder_learned_pos', False) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', args.encoder_ffn_embed_dim) args.decoder_layers = getattr(args, 'decoder_layers', 6) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', False) args.decoder_learned_pos = getattr(args, 'decoder_learned_pos', False) args.attention_dropout = getattr(args, 'attention_dropout', 0.) args.activation_dropout = getattr(args, 'activation_dropout', 0.) args.activation_fn = getattr(args, 'activation_fn', 'relu') args.dropout = getattr(args, 'dropout', 0.1) args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', None) args.adaptive_softmax_dropout = getattr(args, 'adaptive_softmax_dropout', 0) args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) args.share_all_embeddings = getattr(args, 'share_all_embeddings', False) args.no_token_positional_embeddings = getattr(args, 'no_token_positional_embeddings', False) args.adaptive_input = getattr(args, 'adaptive_input', False) args.decoder_output_dim = getattr(args, 'decoder_output_dim', args.decoder_embed_dim) args.decoder_input_dim = getattr(args, 'decoder_input_dim', args.decoder_embed_dim) @register_model_architecture('transformers2', 'transformers2') def base_architecture_s2(args): args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 2048) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 8) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.encoder_learned_pos = getattr(args, 'encoder_learned_pos', False) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', args.encoder_ffn_embed_dim) args.decoder_layers = getattr(args, 'decoder_layers', 6) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', False) args.decoder_learned_pos = getattr(args, 'decoder_learned_pos', False) args.attention_dropout = getattr(args, 'attention_dropout', 0.) args.activation_dropout = getattr(args, 'activation_dropout', 0.) args.activation_fn = getattr(args, 'activation_fn', 'relu') args.dropout = getattr(args, 'dropout', 0.1) args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', None) args.adaptive_softmax_dropout = getattr(args, 'adaptive_softmax_dropout', 0) args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) args.share_all_embeddings = getattr(args, 'share_all_embeddings', False) args.no_token_positional_embeddings = getattr(args, 'no_token_positional_embeddings', False) args.adaptive_input = getattr(args, 'adaptive_input', False) args.decoder_output_dim = getattr(args, 'decoder_output_dim', args.decoder_embed_dim) args.decoder_input_dim = getattr(args, 'decoder_input_dim', args.decoder_embed_dim) @register_model_architecture('transformerstack', 'transformerstack') def base_stack_architecture(args): args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 2048) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 8) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.encoder_learned_pos = getattr(args, 'encoder_learned_pos', False) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', args.encoder_ffn_embed_dim) args.decoder_layers = getattr(args, 'decoder_layers', 6) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', False) args.decoder_learned_pos = getattr(args, 'decoder_learned_pos', False) args.attention_dropout = getattr(args, 'attention_dropout', 0.) args.activation_dropout = getattr(args, 'activation_dropout', 0.) args.activation_fn = getattr(args, 'activation_fn', 'relu') args.dropout = getattr(args, 'dropout', 0.1) args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', None) args.adaptive_softmax_dropout = getattr(args, 'adaptive_softmax_dropout', 0) args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) args.share_all_embeddings = getattr(args, 'share_all_embeddings', False) args.no_token_positional_embeddings = getattr(args, 'no_token_positional_embeddings', False) args.adaptive_input = getattr(args, 'adaptive_input', False) args.decoder_output_dim = getattr(args, 'decoder_output_dim', args.decoder_embed_dim) args.decoder_input_dim = getattr(args, 'decoder_input_dim', args.decoder_embed_dim) @register_model_architecture('transformer', 'transformer_iwslt_de_en') def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 1024) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 4) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 1024) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 4) args.decoder_layers = getattr(args, 'decoder_layers', 6) base_architecture(args) @register_model_architecture('transformers2', 'transformer_s2_iwslt_de_en') def transformer_s2_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 1024) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 4) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 1024) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 4) args.decoder_layers = getattr(args, 'decoder_layers', 6) base_architecture_s2(args) @register_model_architecture('transformerstack', 'transformerstack_iwslt_de_en') def transformerstack_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 1024) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 4) args.encoder_layers = getattr(args, 'encoder_layers', 6) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 1024) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 4) args.decoder_layers = getattr(args, 'decoder_layers', 6) base_stack_architecture(args) @register_model_architecture('transformers2', 'transformer_wmt_en_de') def transformer_wmt_en_de(args): base_architecture_s2(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture('transformer', 'transformer_vaswani_wmt_en_de_big') def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) args.dropout = getattr(args, 'dropout', 0.3) base_architecture(args) @register_model_architecture('transformers2', 'transformer_s2_vaswani_wmt_en_de_big') def transformer_s2_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) args.dropout = getattr(args, 'dropout', 0.3) base_architecture_s2(args) @register_model_architecture('transformer', 'transformer_vaswani_wmt_en_fr_big') def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, 'dropout', 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture('transformer', 'transformer_wmt_en_de_big') def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, 'attention_dropout', 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture('transformer', 'transformer_wmt_en_de_big_t2t') def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', True) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', True) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_dropout = getattr(args, 'activation_dropout', 0.1) transformer_vaswani_wmt_en_de_big(args)
45.987847
169
0.625363
[ "MIT" ]
NCTUMLlab/Adversarial-Masking-Transformers-for-Language-Understanding
models/transformer.py
105,956
Python
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilites to computed GuidedBackprop SaliencyMasks""" from .base import SaliencyMask import tensorflow.compat.v1 as tf class GuidedBackprop(SaliencyMask): """A SaliencyMask class that computes saliency masks with GuidedBackProp. This implementation copies the TensorFlow graph to a new graph with the ReLU gradient overwritten as in the paper: https://arxiv.org/abs/1412.6806 Thanks to Chris Olah for generously sharing his implementation of the ReLU backprop. """ GuidedReluRegistered = False def __init__(self, graph, session, y, x, tmp_ckpt_path='/tmp/guided_backprop_ckpt'): """Constructs a GuidedBackprop SaliencyMask.""" super(GuidedBackprop, self).__init__(graph, session, y, x) self.x = x if GuidedBackprop.GuidedReluRegistered is False: #### Acknowledgement to Chris Olah #### @tf.RegisterGradient("GuidedRelu") def _GuidedReluGrad(op, grad): gate_g = tf.cast(grad > 0, "float32") gate_y = tf.cast(op.outputs[0] > 0, "float32") return gate_y * gate_g * grad GuidedBackprop.GuidedReluRegistered = True with graph.as_default(): saver = tf.train.Saver() saver.save(session, tmp_ckpt_path) graph_def = graph.as_graph_def() self.guided_graph = tf.Graph() with self.guided_graph.as_default(): self.guided_sess = tf.Session(graph = self.guided_graph) with self.guided_graph.gradient_override_map({'Relu': 'GuidedRelu'}): # Import the graph def, and all the variables. tf.import_graph_def(graph_def, name='') saver.restore(self.guided_sess, tmp_ckpt_path) imported_y = self.guided_graph.get_tensor_by_name(y.name) imported_x = self.guided_graph.get_tensor_by_name(x.name) self.guided_grads_node = tf.gradients(imported_y, imported_x)[0] def GetMask(self, x_value, feed_dict = {}): """Returns a GuidedBackprop mask.""" with self.guided_graph.as_default(): # Move all the feed dict tensor keys to refer to the same tensor on the # new graph. guided_feed_dict = {} for tensor in feed_dict: guided_feed_dict[tensor.name] = feed_dict[tensor] guided_feed_dict[self.x.name] = [x_value] return self.guided_sess.run( self.guided_grads_node, feed_dict = guided_feed_dict)[0]
35.5
78
0.697183
[ "Apache-2.0" ]
aliabd/history-of-interpretation
saliency/guided_backprop.py
2,982
Python
import jax.numpy as jnp import jax.random as random import numpyro import numpyro.distributions as dist from numpyro.infer import MCMC, NUTS from typing import Any, Dict, Optional class PlayerModel(object): """ numpyro implementation of the AIrsenal player model. """ def __init__(self): self.player_ids = None self.samples = None @staticmethod def _model( nplayer: int, nmatch: int, minutes: jnp.array, y: jnp.array, alpha: jnp.array ): theta = dist.Dirichlet(concentration=alpha) # one sample from the prior per player with numpyro.plate("nplayer", nplayer): dprobs = numpyro.sample("probs", theta) # now it's all about how to broadcast in the right dimensions..... prob_score = numpyro.deterministic( "prob_score", dprobs[:, 0, None] * (minutes / 90.0) ) prob_assist = numpyro.deterministic( "prob_assist", dprobs[:, 1, None] * (minutes / 90.0) ) prob_neither = numpyro.deterministic( "prob_neither", dprobs[:, 2, None] * (minutes / 90.0) + (90.0 - minutes) ) theta_mins = dist.Multinomial( probs=jnp.moveaxis(jnp.array([prob_score, prob_assist, prob_neither]), 0, 2) ) return numpyro.sample("obs", theta_mins, obs=y) def fit( self, data, random_state: int = 42, num_warmup: int = 500, num_samples: int = 2000, mcmc_kwargs: Optional[Dict[str, Any]] = None, run_kwargs: Optional[Dict[str, Any]] = None, ): self.player_ids = data["player_ids"] kernel = NUTS(self._model) mcmc = MCMC( kernel, num_warmup=num_warmup, num_samples=num_samples, num_chains=1, progress_bar=True, **(mcmc_kwargs or {}), ) rng_key, rng_key_predict = random.split(random.PRNGKey(44)) mcmc.run( rng_key, data["nplayer"], data["nmatch"], data["minutes"], data["y"], data["alpha"], **(run_kwargs or {}), ) self.samples = mcmc.get_samples() return self def get_probs(self): prob_dict = { "player_id": [], "prob_score": [], "prob_assist": [], "prob_neither": [], } for i, pid in enumerate(self.player_ids): prob_dict["player_id"].append(pid) prob_dict["prob_score"].append(float(self.samples["probs"][:, i, 0].mean())) prob_dict["prob_assist"].append( float(self.samples["probs"][:, i, 1].mean()) ) prob_dict["prob_neither"].append( float(self.samples["probs"][:, i, 2].mean()) ) return prob_dict def get_probs_for_player(self, player_id): try: index = list(self.player_ids).index(player_id) except (ValueError): raise RuntimeError(f"Unknown player_id {player_id}") prob_score = float(self.samples["probs"][:, index, 0].mean()) prob_assist = float(self.samples["probs"][:, index, 1].mean()) prob_neither = float(self.samples["probs"][:, index, 2].mean()) return (prob_score, prob_assist, prob_neither)
33.227723
88
0.554827
[ "MIT" ]
JPKFin/AIrsenal
airsenal/framework/player_model.py
3,356
Python
from .plot import plot from .simple_plot import simple_plot
20
36
0.833333
[ "BSD-3-Clause" ]
ebolyen/q2-gamma
q2_gamma/visualizers/__init__.py
60
Python
# -*- coding: utf-8 -*- """ OneLogin_Saml2_Settings class Copyright (c) 2010-2018 OneLogin, Inc. MIT License Setting class of OneLogin's Python Toolkit. """ from time import time import re from os.path import dirname, exists, join, sep from app.utils.onelogin.saml2 import compat from app.utils.onelogin.saml2.constants import OneLogin_Saml2_Constants from app.utils.onelogin.saml2.errors import OneLogin_Saml2_Error from app.utils.onelogin.saml2.metadata import OneLogin_Saml2_Metadata from app.utils.onelogin.saml2.utils import OneLogin_Saml2_Utils from app.utils.onelogin.saml2.xml_utils import OneLogin_Saml2_XML try: import ujson as json except ImportError: import json try: basestring except NameError: basestring = str # Regex from Django Software Foundation and individual contributors. # Released under a BSD 3-Clause License url_regex = re.compile( r'^(?:[a-z0-9\.\-]*)://' # scheme is validated separately r'(?:(?:[A-Z0-9_](?:[A-Z0-9-_]{0,61}[A-Z0-9_])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4 r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) url_schemes = ['http', 'https', 'ftp', 'ftps'] def validate_url(url): """ Auxiliary method to validate an urllib :param url: An url to be validated :type url: string :returns: True if the url is valid :rtype: bool """ scheme = url.split('://')[0].lower() if scheme not in url_schemes: return False if not bool(url_regex.search(url)): return False return True class OneLogin_Saml2_Settings(object): """ Handles the settings of the Python toolkits. """ def __init__(self, settings=None, custom_base_path=None, sp_validation_only=False): """ Initializes the settings: - Sets the paths of the different folders - Loads settings info from settings file or array/object provided :param settings: SAML Toolkit Settings :type settings: dict :param custom_base_path: Path where are stored the settings file and the cert folder :type custom_base_path: string :param sp_validation_only: Avoid the IdP validation :type sp_validation_only: boolean """ self.__sp_validation_only = sp_validation_only self.__paths = {} self.__strict = False self.__debug = False self.__sp = {} self.__idp = {} self.__security = {} self.__contacts = {} self.__organization = {} self.__errors = [] self.__load_paths(base_path=custom_base_path) self.__update_paths(settings) if settings is None: try: valid = self.__load_settings_from_file() except Exception as e: raise e if not valid: raise OneLogin_Saml2_Error( 'Invalid dict settings at the file: %s', OneLogin_Saml2_Error.SETTINGS_INVALID, ','.join(self.__errors) ) elif isinstance(settings, dict): if not self.__load_settings_from_dict(settings): raise OneLogin_Saml2_Error( 'Invalid dict settings: %s', OneLogin_Saml2_Error.SETTINGS_INVALID, ','.join(self.__errors) ) else: raise OneLogin_Saml2_Error( 'Unsupported settings object', OneLogin_Saml2_Error.UNSUPPORTED_SETTINGS_OBJECT ) self.format_idp_cert() if 'x509certMulti' in self.__idp: self.format_idp_cert_multi() self.format_sp_cert() if 'x509certNew' in self.__sp: self.format_sp_cert_new() self.format_sp_key() def __load_paths(self, base_path=None): """ Set the paths of the different folders """ if base_path is None: base_path = dirname(dirname(dirname(__file__))) if not base_path.endswith(sep): base_path += sep self.__paths = { 'base': base_path, 'cert': base_path + 'certs' + sep, 'lib': base_path + 'lib' + sep, 'extlib': base_path + 'extlib' + sep, } def __update_paths(self, settings): """ Set custom paths if necessary """ if not isinstance(settings, dict): return if 'custom_base_path' in settings: base_path = settings['custom_base_path'] base_path = join(dirname(__file__), base_path) self.__load_paths(base_path) def get_base_path(self): """ Returns base path :return: The base toolkit folder path :rtype: string """ return self.__paths['base'] def get_cert_path(self): """ Returns cert path :return: The cert folder path :rtype: string """ return self.__paths['cert'] def get_lib_path(self): """ Returns lib path :return: The library folder path :rtype: string """ return self.__paths['lib'] def get_ext_lib_path(self): """ Returns external lib path :return: The external library folder path :rtype: string """ return self.__paths['extlib'] def get_schemas_path(self): """ Returns schema path :return: The schema folder path :rtype: string """ return self.__paths['lib'] + 'schemas/' def __load_settings_from_dict(self, settings): """ Loads settings info from a settings Dict :param settings: SAML Toolkit Settings :type settings: dict :returns: True if the settings info is valid :rtype: boolean """ errors = self.check_settings(settings) if len(errors) == 0: self.__errors = [] self.__sp = settings['sp'] self.__idp = settings.get('idp', {}) self.__strict = settings.get('strict', False) self.__debug = settings.get('debug', False) self.__security = settings.get('security', {}) self.__contacts = settings.get('contactPerson', {}) self.__organization = settings.get('organization', {}) self.__add_default_values() return True self.__errors = errors return False def __load_settings_from_file(self): """ Loads settings info from the settings json file :returns: True if the settings info is valid :rtype: boolean """ filename = self.get_base_path() + 'settings.json' if not exists(filename): raise OneLogin_Saml2_Error( 'Settings file not found: %s', OneLogin_Saml2_Error.SETTINGS_FILE_NOT_FOUND, filename ) # In the php toolkit instead of being a json file it is a php file and # it is directly included with open(filename, 'r') as json_data: settings = json.loads(json_data.read()) advanced_filename = self.get_base_path() + 'advanced_settings.json' if exists(advanced_filename): with open(advanced_filename, 'r') as json_data: settings.update(json.loads(json_data.read())) # Merge settings return self.__load_settings_from_dict(settings) def __add_default_values(self): """ Add default values if the settings info is not complete """ self.__sp.setdefault('assertionConsumerService', {}) self.__sp['assertionConsumerService'].setdefault('binding', OneLogin_Saml2_Constants.BINDING_HTTP_POST) self.__sp.setdefault('attributeConsumingService', {}) self.__sp.setdefault('singleLogoutService', {}) self.__sp['singleLogoutService'].setdefault('binding', OneLogin_Saml2_Constants.BINDING_HTTP_REDIRECT) self.__idp.setdefault('singleLogoutService', {}) # Related to nameID self.__sp.setdefault('NameIDFormat', OneLogin_Saml2_Constants.NAMEID_UNSPECIFIED) self.__security.setdefault('nameIdEncrypted', False) # Metadata format self.__security.setdefault('metadataValidUntil', None) # None means use default self.__security.setdefault('metadataCacheDuration', None) # None means use default # Sign provided self.__security.setdefault('authnRequestsSigned', False) self.__security.setdefault('logoutRequestSigned', False) self.__security.setdefault('logoutResponseSigned', False) self.__security.setdefault('signMetadata', False) # Sign expected self.__security.setdefault('wantMessagesSigned', False) self.__security.setdefault('wantAssertionsSigned', False) # NameID element expected self.__security.setdefault('wantNameId', True) # Encrypt expected self.__security.setdefault('wantAssertionsEncrypted', False) self.__security.setdefault('wantNameIdEncrypted', False) # Signature Algorithm self.__security.setdefault('signatureAlgorithm', OneLogin_Saml2_Constants.RSA_SHA1) # Digest Algorithm self.__security.setdefault('digestAlgorithm', OneLogin_Saml2_Constants.SHA1) # AttributeStatement required by default self.__security.setdefault('wantAttributeStatement', True) self.__idp.setdefault('x509cert', '') self.__idp.setdefault('certFingerprint', '') self.__idp.setdefault('certFingerprintAlgorithm', 'sha1') self.__sp.setdefault('x509cert', '') self.__sp.setdefault('privateKey', '') self.__security.setdefault('requestedAuthnContext', True) self.__security.setdefault('failOnAuthnContextMismatch', False) def check_settings(self, settings): """ Checks the settings info. :param settings: Dict with settings data :type settings: dict :returns: Errors found on the settings data :rtype: list """ assert isinstance(settings, dict) errors = [] if not isinstance(settings, dict) or len(settings) == 0: errors.append('invalid_syntax') else: if not self.__sp_validation_only: errors += self.check_idp_settings(settings) sp_errors = self.check_sp_settings(settings) errors += sp_errors return errors def check_idp_settings(self, settings): """ Checks the IdP settings info. :param settings: Dict with settings data :type settings: dict :returns: Errors found on the IdP settings data :rtype: list """ assert isinstance(settings, dict) errors = [] if not isinstance(settings, dict) or len(settings) == 0: errors.append('invalid_syntax') else: if not settings.get('idp'): errors.append('idp_not_found') else: idp = settings['idp'] if not idp.get('entityId'): errors.append('idp_entityId_not_found') if not idp.get('singleSignOnService', {}).get('url'): errors.append('idp_sso_not_found') elif not validate_url(idp['singleSignOnService']['url']): errors.append('idp_sso_url_invalid') slo_url = idp.get('singleLogoutService', {}).get('url') if slo_url and not validate_url(slo_url): errors.append('idp_slo_url_invalid') if 'security' in settings: security = settings['security'] exists_x509 = bool(idp.get('x509cert')) exists_fingerprint = bool(idp.get('certFingerprint')) exists_multix509sign = 'x509certMulti' in idp and \ 'signing' in idp['x509certMulti'] and \ idp['x509certMulti']['signing'] exists_multix509enc = 'x509certMulti' in idp and \ 'encryption' in idp['x509certMulti'] and \ idp['x509certMulti']['encryption'] want_assert_sign = bool(security.get('wantAssertionsSigned')) want_mes_signed = bool(security.get('wantMessagesSigned')) nameid_enc = bool(security.get('nameIdEncrypted')) if (want_assert_sign or want_mes_signed) and \ not(exists_x509 or exists_fingerprint or exists_multix509sign): errors.append('idp_cert_or_fingerprint_not_found_and_required') if nameid_enc and not (exists_x509 or exists_multix509enc): errors.append('idp_cert_not_found_and_required') return errors def check_sp_settings(self, settings): """ Checks the SP settings info. :param settings: Dict with settings data :type settings: dict :returns: Errors found on the SP settings data :rtype: list """ assert isinstance(settings, dict) errors = [] if not isinstance(settings, dict) or not settings: errors.append('invalid_syntax') else: if not settings.get('sp'): errors.append('sp_not_found') else: # check_sp_certs uses self.__sp so I add it old_sp = self.__sp self.__sp = settings['sp'] sp = settings['sp'] security = settings.get('security', {}) if not sp.get('entityId'): errors.append('sp_entityId_not_found') if not sp.get('assertionConsumerService', {}).get('url'): errors.append('sp_acs_not_found') elif not validate_url(sp['assertionConsumerService']['url']): errors.append('sp_acs_url_invalid') if sp.get('attributeConsumingService'): attributeConsumingService = sp['attributeConsumingService'] if 'serviceName' not in attributeConsumingService: errors.append('sp_attributeConsumingService_serviceName_not_found') elif not isinstance(attributeConsumingService['serviceName'], basestring): errors.append('sp_attributeConsumingService_serviceName_type_invalid') if 'requestedAttributes' not in attributeConsumingService: errors.append('sp_attributeConsumingService_requestedAttributes_not_found') elif not isinstance(attributeConsumingService['requestedAttributes'], list): errors.append('sp_attributeConsumingService_serviceName_type_invalid') else: for req_attrib in attributeConsumingService['requestedAttributes']: if 'name' not in req_attrib: errors.append('sp_attributeConsumingService_requestedAttributes_name_not_found') if 'name' in req_attrib and not req_attrib['name'].strip(): errors.append('sp_attributeConsumingService_requestedAttributes_name_invalid') if 'attributeValue' in req_attrib and type(req_attrib['attributeValue']) != list: errors.append('sp_attributeConsumingService_requestedAttributes_attributeValue_type_invalid') if 'isRequired' in req_attrib and type(req_attrib['isRequired']) != bool: errors.append('sp_attributeConsumingService_requestedAttributes_isRequired_type_invalid') if "serviceDescription" in attributeConsumingService and not isinstance(attributeConsumingService['serviceDescription'], basestring): errors.append('sp_attributeConsumingService_serviceDescription_type_invalid') slo_url = sp.get('singleLogoutService', {}).get('url') if slo_url and not validate_url(slo_url): errors.append('sp_sls_url_invalid') if 'signMetadata' in security and isinstance(security['signMetadata'], dict): if 'keyFileName' not in security['signMetadata'] or \ 'certFileName' not in security['signMetadata']: errors.append('sp_signMetadata_invalid') authn_sign = bool(security.get('authnRequestsSigned')) logout_req_sign = bool(security.get('logoutRequestSigned')) logout_res_sign = bool(security.get('logoutResponseSigned')) want_assert_enc = bool(security.get('wantAssertionsEncrypted')) want_nameid_enc = bool(security.get('wantNameIdEncrypted')) if not self.check_sp_certs(): if authn_sign or logout_req_sign or logout_res_sign or \ want_assert_enc or want_nameid_enc: errors.append('sp_cert_not_found_and_required') if 'contactPerson' in settings: types = settings['contactPerson'] valid_types = ['technical', 'support', 'administrative', 'billing', 'other'] for c_type in types: if c_type not in valid_types: errors.append('contact_type_invalid') break for c_type in settings['contactPerson']: contact = settings['contactPerson'][c_type] if ('givenName' not in contact or len(contact['givenName']) == 0) or \ ('emailAddress' not in contact or len(contact['emailAddress']) == 0): errors.append('contact_not_enought_data') break if 'organization' in settings: for org in settings['organization']: organization = settings['organization'][org] if ('name' not in organization or len(organization['name']) == 0) or \ ('displayname' not in organization or len(organization['displayname']) == 0) or \ ('url' not in organization or len(organization['url']) == 0): errors.append('organization_not_enought_data') break # Restores the value that had the self.__sp if 'old_sp' in locals(): self.__sp = old_sp return errors def check_sp_certs(self): """ Checks if the x509 certs of the SP exists and are valid. :returns: If the x509 certs of the SP exists and are valid :rtype: boolean """ key = self.get_sp_key() cert = self.get_sp_cert() return key is not None and cert is not None def get_sp_key(self): """ Returns the x509 private key of the SP. :returns: SP private key :rtype: string or None """ key = self.__sp.get('privateKey') key_file_name = self.__paths['cert'] + 'sp.key' if not key and exists(key_file_name): with open(key_file_name) as f: key = f.read() return key or None def get_sp_cert(self): """ Returns the x509 public cert of the SP. :returns: SP public cert :rtype: string or None """ cert = self.__sp.get('x509cert') cert_file_name = self.__paths['cert'] + 'sp.crt' if not cert and exists(cert_file_name): with open(cert_file_name) as f: cert = f.read() return cert or None def get_sp_cert_new(self): """ Returns the x509 public of the SP planned to be used soon instead the other public cert :returns: SP public cert new :rtype: string or None """ cert = self.__sp.get('x509certNew') cert_file_name = self.__paths['cert'] + 'sp_new.crt' if not cert and exists(cert_file_name): with open(cert_file_name) as f: cert = f.read() return cert or None def get_idp_cert(self): """ Returns the x509 public cert of the IdP. :returns: IdP public cert :rtype: string """ return self.__idp.get('x509cert') def get_idp_data(self): """ Gets the IdP data. :returns: IdP info :rtype: dict """ return self.__idp def get_sp_data(self): """ Gets the SP data. :returns: SP info :rtype: dict """ return self.__sp def get_security_data(self): """ Gets security data. :returns: Security info :rtype: dict """ return self.__security def get_contacts(self): """ Gets contact data. :returns: Contacts info :rtype: dict """ return self.__contacts def get_organization(self): """ Gets organization data. :returns: Organization info :rtype: dict """ return self.__organization def get_sp_metadata(self): """ Gets the SP metadata. The XML representation. :returns: SP metadata (xml) :rtype: string """ metadata = OneLogin_Saml2_Metadata.builder( self.__sp, self.__security['authnRequestsSigned'], self.__security['wantAssertionsSigned'], self.__security['metadataValidUntil'], self.__security['metadataCacheDuration'], self.get_contacts(), self.get_organization() ) add_encryption = self.__security['wantNameIdEncrypted'] or self.__security['wantAssertionsEncrypted'] cert_new = self.get_sp_cert_new() metadata = OneLogin_Saml2_Metadata.add_x509_key_descriptors(metadata, cert_new, add_encryption) cert = self.get_sp_cert() metadata = OneLogin_Saml2_Metadata.add_x509_key_descriptors(metadata, cert, add_encryption) # Sign metadata if 'signMetadata' in self.__security and self.__security['signMetadata'] is not False: if self.__security['signMetadata'] is True: # Use the SP's normal key to sign the metadata: if not cert: raise OneLogin_Saml2_Error( 'Cannot sign metadata: missing SP public key certificate.', OneLogin_Saml2_Error.PUBLIC_CERT_FILE_NOT_FOUND ) cert_metadata = cert key_metadata = self.get_sp_key() if not key_metadata: raise OneLogin_Saml2_Error( 'Cannot sign metadata: missing SP private key.', OneLogin_Saml2_Error.PRIVATE_KEY_FILE_NOT_FOUND ) else: # Use a custom key to sign the metadata: if ('keyFileName' not in self.__security['signMetadata'] or 'certFileName' not in self.__security['signMetadata']): raise OneLogin_Saml2_Error( 'Invalid Setting: signMetadata value of the sp is not valid', OneLogin_Saml2_Error.SETTINGS_INVALID_SYNTAX ) key_file_name = self.__security['signMetadata']['keyFileName'] cert_file_name = self.__security['signMetadata']['certFileName'] key_metadata_file = self.__paths['cert'] + key_file_name cert_metadata_file = self.__paths['cert'] + cert_file_name try: with open(key_metadata_file, 'r') as f_metadata_key: key_metadata = f_metadata_key.read() except IOError: raise OneLogin_Saml2_Error( 'Private key file not readable: %s', OneLogin_Saml2_Error.PRIVATE_KEY_FILE_NOT_FOUND, key_metadata_file ) try: with open(cert_metadata_file, 'r') as f_metadata_cert: cert_metadata = f_metadata_cert.read() except IOError: raise OneLogin_Saml2_Error( 'Public cert file not readable: %s', OneLogin_Saml2_Error.PUBLIC_CERT_FILE_NOT_FOUND, cert_metadata_file ) signature_algorithm = self.__security['signatureAlgorithm'] digest_algorithm = self.__security['digestAlgorithm'] metadata = OneLogin_Saml2_Metadata.sign_metadata(metadata, key_metadata, cert_metadata, signature_algorithm, digest_algorithm) return metadata def validate_metadata(self, xml): """ Validates an XML SP Metadata. :param xml: Metadata's XML that will be validate :type xml: string :returns: The list of found errors :rtype: list """ assert isinstance(xml, compat.text_types) if len(xml) == 0: raise Exception('Empty string supplied as input') errors = [] root = OneLogin_Saml2_XML.validate_xml(xml, 'saml-schema-metadata-2.0.xsd', self.__debug) if isinstance(root, str): errors.append(root) else: if root.tag != '{%s}EntityDescriptor' % OneLogin_Saml2_Constants.NS_MD: errors.append('noEntityDescriptor_xml') else: if (len(root.findall('.//md:SPSSODescriptor', namespaces=OneLogin_Saml2_Constants.NSMAP))) != 1: errors.append('onlySPSSODescriptor_allowed_xml') else: valid_until, cache_duration = root.get('validUntil'), root.get('cacheDuration') if valid_until: valid_until = OneLogin_Saml2_Utils.parse_SAML_to_time(valid_until) expire_time = OneLogin_Saml2_Utils.get_expire_time(cache_duration, valid_until) if expire_time is not None and int(time()) > int(expire_time): errors.append('expired_xml') # TODO: Validate Sign return errors def format_idp_cert(self): """ Formats the IdP cert. """ self.__idp['x509cert'] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509cert']) def format_idp_cert_multi(self): """ Formats the Multple IdP certs. """ if 'x509certMulti' in self.__idp: if 'signing' in self.__idp['x509certMulti']: for idx in range(len(self.__idp['x509certMulti']['signing'])): self.__idp['x509certMulti']['signing'][idx] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509certMulti']['signing'][idx]) if 'encryption' in self.__idp['x509certMulti']: for idx in range(len(self.__idp['x509certMulti']['encryption'])): self.__idp['x509certMulti']['encryption'][idx] = OneLogin_Saml2_Utils.format_cert(self.__idp['x509certMulti']['encryption'][idx]) def format_sp_cert(self): """ Formats the SP cert. """ self.__sp['x509cert'] = OneLogin_Saml2_Utils.format_cert(self.__sp['x509cert']) def format_sp_cert_new(self): """ Formats the SP cert. """ self.__sp['x509certNew'] = OneLogin_Saml2_Utils.format_cert(self.__sp['x509certNew']) def format_sp_key(self): """ Formats the private key. """ self.__sp['privateKey'] = OneLogin_Saml2_Utils.format_private_key(self.__sp['privateKey']) def get_errors(self): """ Returns an array with the errors, the array is empty when the settings is ok. :returns: Errors :rtype: list """ return self.__errors def set_strict(self, value): """ Activates or deactivates the strict mode. :param value: Strict parameter :type value: boolean """ assert isinstance(value, bool) self.__strict = value def is_strict(self): """ Returns if the 'strict' mode is active. :returns: Strict parameter :rtype: boolean """ return self.__strict def is_debug_active(self): """ Returns if the debug is active. :returns: Debug parameter :rtype: boolean """ return self.__debug
36.322055
153
0.583198
[ "MIT" ]
nycrecords/intranet
app/utils/onelogin/saml2/settings.py
28,985
Python
from emonitor.utils import Module from emonitor.extensions import babel from .content_frontend import getFrontendContent, getFrontendData class LocationsModule(Module): info = dict(area=['frontend'], name='locations', path='locations', icon='fa-code-fork', version='0.1') def __repr__(self): return "locations" def __init__(self, app): Module.__init__(self, app) # add template path app.jinja_loader.searchpath.append("%s/emonitor/modules/locations/templates" % app.config.get('PROJECT_ROOT')) # translations babel.gettext(u'module.locations') def frontendContent(self): return 1 def getFrontendContent(self, **params): return getFrontendContent(**params) def getFrontendData(self): return getFrontendData(self)
29.142857
118
0.693627
[ "BSD-3-Clause" ]
Durburz/eMonitor
emonitor/modules/locations/__init__.py
816
Python
import functools import os import random import matplotlib.pyplot as plt import networkx as nx def make_graph(path): G = nx.DiGraph() with open(path, 'r') as f: lines = f.readlines() # random.seed(0) sample_nums = int(len(lines) * 0.00006) lines = random.sample(lines, sample_nums) lines = [line.strip() for line in lines] for line in lines: edge_node = line.split(' ') source = int(edge_node[0]) target = int(edge_node[1]) G.add_edge(source, target) return G def degree_centrality(G): # 节点的度中心性 if len(G) <= 1: return {n: 1 for n in G} s = 1.0 / (len(G) - 1.0) centrality = {n: d * s for n, d in G.degree()} return centrality def closeness_centrality(G, u=None, distance=None, wf_improved=True): # 节点的接近中心性 if G.is_directed(): G = G.reverse() if distance is not None: path_length = functools.partial( nx.single_source_dijkstra_path_length, weight=distance ) else: path_length = nx.single_source_shortest_path_length if u is None: nodes = G.nodes else: nodes = [u] closeness_centrality = {} for n in nodes: sp = path_length(G, n) totsp = sum(sp.values()) len_G = len(G) _closeness_centrality = 0.0 if totsp > 0.0 and len_G > 1: _closeness_centrality = (len(sp) - 1.0) / totsp if wf_improved: s = (len(sp) - 1.0) / (len_G - 1) _closeness_centrality *= s closeness_centrality[n] = _closeness_centrality if u is not None: return closeness_centrality[u] else: return closeness_centrality def core_number(G): # 节点的核数 degrees = dict(G.degree()) nodes = sorted(degrees, key=degrees.get) bin_boundaries = [0] curr_degree = 0 for i, v in enumerate(nodes): if degrees[v] > curr_degree: bin_boundaries.extend([i] * (degrees[v] - curr_degree)) curr_degree = degrees[v] node_pos = {v: pos for pos, v in enumerate(nodes)} core = degrees nbrs = {v: list(nx.all_neighbors(G, v)) for v in G} for v in nodes: for u in nbrs[v]: if core[u] > core[v]: nbrs[u].remove(v) pos = node_pos[u] bin_start = bin_boundaries[core[u]] node_pos[u] = bin_start node_pos[nodes[bin_start]] = pos nodes[bin_start], nodes[pos] = nodes[pos], nodes[bin_start] bin_boundaries[core[u]] += 1 core[u] -= 1 return core def pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1.0e-6, nstart=None, weight="weight", dangling=None): # 节点的pagerank值 if len(G) == 0: return {} if not G.is_directed(): D = G.to_directed() else: D = G W = nx.stochastic_graph(D, weight=weight) N = W.number_of_nodes() if nstart is None: x = dict.fromkeys(W, 1.0 / N) else: s = float(sum(nstart.values())) x = {k: v / s for k, v in nstart.items()} if personalization is None: p = dict.fromkeys(W, 1.0 / N) else: s = float(sum(personalization.values())) p = {k: v / s for k, v in personalization.items()} if dangling is None: dangling_weights = p else: s = float(sum(dangling.values())) dangling_weights = {k: v / s for k, v in dangling.items()} dangling_nodes = [n for n in W if W.out_degree(n, weight=weight) == 0.0] for _ in range(max_iter): xlast = x x = dict.fromkeys(xlast.keys(), 0) danglesum = alpha * sum(xlast[n] for n in dangling_nodes) for n in x: for nbr in W[n]: x[nbr] += alpha * xlast[n] * W[n][nbr][weight] x[n] += danglesum * dangling_weights.get(n, 0) + (1.0 - alpha) * p.get(n, 0) err = sum([abs(x[n] - xlast[n]) for n in x]) if err < N * tol: return x raise nx.PowerIterationFailedConvergence(max_iter) def hits(G, max_iter=100, tol=1.0e-8, nstart=None, normalized=True): # 节点的hub值和authority值 if len(G) == 0: return {}, {} if nstart is None: h = dict.fromkeys(G, 1.0 / G.number_of_nodes()) else: h = nstart s = 1.0 / sum(h.values()) for k in h: h[k] *= s for _ in range(max_iter): hlast = h h = dict.fromkeys(hlast.keys(), 0) a = dict.fromkeys(hlast.keys(), 0) for n in h: for nbr in G[n]: a[nbr] += hlast[n] * G[n][nbr].get("weight", 1) for n in h: for nbr in G[n]: h[n] += a[nbr] * G[n][nbr].get("weight", 1) s = 1.0 / max(h.values()) for n in h: h[n] *= s s = 1.0 / max(a.values()) for n in a: a[n] *= s err = sum([abs(h[n] - hlast[n]) for n in h]) if err < tol: break else: raise nx.PowerIterationFailedConvergence(max_iter) if normalized: s = 1.0 / sum(a.values()) for n in a: a[n] *= s s = 1.0 / sum(h.values()) for n in h: h[n] *= s return h, a def metrics_fuse(G): degree = degree_centrality(G) closeness = closeness_centrality(G) betweenness = nx.betweenness_centrality(G) # 节点的介数中心性 core = core_number(G) pageranks = pagerank(G) hubs, authorities = hits(G) fused = dict() for node in G.nodes: deg = degree[node] cl = closeness[node] bet = betweenness[node] co = core[node] pr = pageranks[node] auth = authorities[node] M = 0.05 * deg + 0.15 * cl + 0.1 * bet + 0.3 * co + 0.25 * pr + 0.15 * auth fused[node] = M pageranks = sorted(pageranks.items(), key=lambda x: x[1], reverse=True) print("使用PageRank算法,影响力前10的节点为:") for i in range(10): print("节点 {}".format(pageranks[i][0])) pos = nx.random_layout(G) top_nodes = [k for k, v in pageranks[:10]] other_nodes = [k for k, v in pageranks[10:]] nx.draw_networkx_nodes(G, pos, top_nodes, node_size=200, node_color='Red', alpha=0.6) nx.draw_networkx_nodes(G, pos, other_nodes, node_size=200, node_color='Green', alpha=0.6) nx.draw_networkx_edges(G, pos) labels = dict() for k, v in pageranks[:10]: labels[k] = k nx.draw_networkx_labels(G, pos, labels=labels) plt.savefig("./pagerank_result.png") plt.show() print("---------------------------------------------") authorities = sorted(authorities.items(), key=lambda x: x[1], reverse=True) print("使用HITS算法,影响力前10的节点为:") for i in range(10): print("节点 {}".format(authorities[i][0])) pos = nx.random_layout(G) top_nodes = [k for k, v in authorities[:10]] other_nodes = [k for k, v in authorities[10:]] nx.draw_networkx_nodes(G, pos, top_nodes, node_size=200, node_color='Red', alpha=0.6) nx.draw_networkx_nodes(G, pos, other_nodes, node_size=200, node_color='Green', alpha=0.6) nx.draw_networkx_edges(G, pos) labels = dict() for k, v in authorities[:10]: labels[k] = k nx.draw_networkx_labels(G, pos, labels=labels) plt.savefig("./hits_result.png") plt.show() print("---------------------------------------------") fused = sorted(fused.items(), key=lambda x: x[1], reverse=True) print("使用混合算法,影响力前10的节点为:") for i in range(10): print("节点 {}".format(fused[i][0])) pos = nx.random_layout(G) top_nodes = [k for k, v in fused[:10]] other_nodes = [k for k, v in fused[10:]] nx.draw_networkx_nodes(G, pos, top_nodes, node_size=200, node_color='Red', alpha=0.6) nx.draw_networkx_nodes(G, pos, other_nodes, node_size=200, node_color='Green', alpha=0.6) nx.draw_networkx_edges(G, pos) labels = dict() for k, v in fused[:10]: labels[k] = k nx.draw_networkx_labels(G, pos, labels=labels) plt.savefig("./fused_result.png") plt.show() print("---------------------------------------------") return fused if __name__ == '__main__': path = './课程设计数据集.txt' if not os.path.exists(path): print('未找到数据集') exit(1) G = make_graph(path) metrics_fuse(G)
31.066914
105
0.551514
[ "MIT" ]
showerhhh/ComplexNetwork
homework_3/main.py
8,559
Python
from nlu import * from nlu.pipe_components import SparkNLUComponent from sparknlp.annotator import * class Lemmatizer(SparkNLUComponent): def __init__(self,component_name='lemma', language='en', component_type='lemmatizer', get_default=False,model = None, sparknlp_reference=''): component_name = 'lemmatizer' SparkNLUComponent.__init__(self,component_name,component_type) # component_name = utils.lower_case(component_name) TODO if model != None : self.model = model else : if 'lemma' in component_name : from nlu import SparkNLPLemmatizer if get_default : self.model = SparkNLPLemmatizer.get_default_model() else : self.model = SparkNLPLemmatizer.get_pretrained_model(sparknlp_reference,language)
44.888889
145
0.709158
[ "Apache-2.0" ]
sumanthratna/nlu
nlu/components/lemmatizer.py
808
Python
import base64 import os import tkinter as tk import tkinter.messagebox as msg import tkinter.ttk as ttk from functools import partial from chatwindow import ChatWindow from requester import Requester from avatarwindow import AvatarWindow from addfriendwindow import AddFriendWindow friend_avatars_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "images/friends")) default_avatar_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "images/default.png")) class FriendsList(tk.Tk): def __init__(self, **kwargs): super().__init__(**kwargs) self.title('Tk Chat') self.geometry('700x500') self.menu = tk.Menu(self, bg="lightgrey", fg="black", tearoff=0) self.friends_menu = tk.Menu(self.menu, fg="black", bg="lightgrey", tearoff=0) self.friends_menu.add_command(label="Add Friend", command=self.show_add_friend_window) self.avatar_menu = tk.Menu(self.menu, fg="black", bg="lightgrey", tearoff=0) self.avatar_menu.add_command(label="Change Avatar", command=self.change_avatar) self.menu.add_cascade(label="Friends", menu=self.friends_menu) self.menu.add_cascade(label="Avatar", menu=self.avatar_menu) self.requester = Requester() self.show_login_screen() def show_login_screen(self): self.login_frame = ttk.Frame(self) username_label = ttk.Label(self.login_frame, text="Username") self.username_entry = ttk.Entry(self.login_frame) self.username_entry.focus_force() real_name_label = ttk.Label(self.login_frame, text="Real Name") self.real_name_entry = ttk.Entry(self.login_frame) login_button = ttk.Button(self.login_frame, text="Login", command=self.login) create_account_button = ttk.Button(self.login_frame, text="Create Account", command=self.create_account) username_label.grid(row=0, column=0, sticky='e') self.username_entry.grid(row=0, column=1) real_name_label.grid(row=1, column=0, sticky='e') self.real_name_entry.grid(row=1, column=1) login_button.grid(row=2, column=0, sticky='e') create_account_button.grid(row=2, column=1) for i in range(3): tk.Grid.rowconfigure(self.login_frame, i, weight=1) tk.Grid.columnconfigure(self.login_frame, i, weight=1) self.login_frame.pack(fill=tk.BOTH, expand=1) self.login_event = self.bind("<Return>", self.login) def login(self, event=None): username = self.username_entry.get() real_name = self.real_name_entry.get() if self.requester.login(username, real_name): self.username = username self.real_name = real_name self.unbind("<Return>", self.login_event) self.show_friends() else: msg.showerror("Failed", f"Could not log in as {username}") def create_account(self): username = self.username_entry.get() real_name = self.real_name_entry.get() if self.requester.create_account(username, real_name): self.username = username self.real_name = real_name self.show_friends() else: msg.showerror("Failed", "Account already exists!") def show_friends(self): self.configure(menu=self.menu) self.login_frame.pack_forget() self.canvas = tk.Canvas(self, bg="white") self.canvas_frame = tk.Frame(self.canvas) self.scrollbar = ttk.Scrollbar(self, orient="vertical", command=self.canvas.yview) self.canvas.configure(yscrollcommand=self.scrollbar.set) self.scrollbar.pack(side=tk.LEFT, fill=tk.Y) self.canvas.pack(side=tk.LEFT, expand=1, fill=tk.BOTH) self.friends_area = self.canvas.create_window((0, 0), window=self.canvas_frame, anchor="nw") self.bind_events() self.load_friends() def bind_events(self): self.bind('<Configure>', self.on_frame_resized) self.canvas.bind('<Configure>', self.friends_width) def friends_width(self, event): canvas_width = event.width self.canvas.itemconfig(self.friends_area, width=canvas_width) def on_frame_resized(self, event=None): self.canvas.configure(scrollregion=self.canvas.bbox("all")) def load_friends(self): my_friends = self.requester.get_friends(self.username) for user in my_friends["friends"]: if user['username'] != self.username: friend_frame = ttk.Frame(self.canvas_frame) friend_avatar_path = os.path.join(friend_avatars_dir, f"{user['username']}.png") if user["avatar"]: with open(friend_avatar_path, 'wb') as friend_avatar: img = base64.urlsafe_b64decode(user['avatar']) friend_avatar.write(img) else: friend_avatar_path = default_avatar_path profile_photo = tk.PhotoImage(file=friend_avatar_path) profile_photo_label = ttk.Label(friend_frame, image=profile_photo) profile_photo_label.image = profile_photo friend_name = ttk.Label(friend_frame, text=user['real_name'], anchor=tk.W) message_this_friend = partial(self.open_chat_window, username=user["username"], real_name=user["real_name"], avatar=friend_avatar_path) block_this_friend = partial(self.block_friend, username=user["username"]) message_button = ttk.Button(friend_frame, text="Chat", command=message_this_friend) block_button = ttk.Button(friend_frame, text="Block", command=block_this_friend) profile_photo_label.pack(side=tk.LEFT) friend_name.pack(side=tk.LEFT) message_button.pack(side=tk.RIGHT) block_button.pack(side=tk.RIGHT, padx=(0, 30)) friend_frame.pack(fill=tk.X, expand=1) def reload_friends(self): for child in self.canvas_frame.winfo_children(): child.pack_forget() self.load_friends() def show_add_friend_window(self): AddFriendWindow(self) def add_friend(self, username): if self.requester.add_friend(self.username, username): msg.showinfo("Friend Added", "Friend Added") success = True self.reload_friends() else: msg.showerror("Add Failed", "Friend was not found") success = False return success def open_chat_window(self, username, real_name, avatar): cw = ChatWindow(self, real_name, username, avatar) def block_friend(self, username): self.requester.block_friend(self.username, username) self.reload_friends() def change_avatar(self): AvatarWindow(self) if __name__ == '__main__': f = FriendsList() f.mainloop()
35.891192
151
0.651653
[ "MIT" ]
PacktPublishing/Tkinter-GUI-Programming-by-Example
Chapter10/Ch10/friendslist.py
6,927
Python
#!/usr/bin/env python """ Solution to Project Euler Problem http://projecteuler.net/ by Apalala <[email protected]> (cc) Attribution-ShareAlike http://creativecommons.org/licenses/by-sa/3.0/ We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? """ from digits import is_pandigital from primality import primes_upto, is_prime def pandigital_primes(digits=7): for p in primes_upto(int("9" * digits)): if is_pandigital(p): yield p def test(): assert not is_prime(123) assert not is_prime(132) assert not is_prime(213) assert not is_prime(231) assert not is_prime(312) assert not is_prime(321) assert is_prime(2143) assert is_pandigital(2143) assert 2143 in set(pandigital_primes(digits=4)) def run(): print(list(pandigital_primes())[-1]) if __name__ == "__main__": test() run()
22.391304
73
0.707767
[ "MIT" ]
Web-Dev-Collaborative/PYTHON_PRAC
projecteuler/euler041_pandigital_prime.py
1,030
Python
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Zyxel.ZyNOS.get_inventory # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.core.script.base import BaseScript from noc.sa.interfaces.igetinventory import IGetInventory class Script(BaseScript): name = "Zyxel.ZyNOS.get_inventory" interface = IGetInventory def remove_non_ascii(self, s, sub="?"): return "".join([i if ord(i) < 128 else sub for i in s]) def execute(self): objects = [] v = self.scripts.get_version() part_no = v["platform"] vendor = v["vendor"] p = { "type": "CHASSIS", "number": 1, "vendor": vendor, "description": part_no, "part_no": [part_no], "builtin": False, } if v.get("attributes", {}).get("Serial Number", ""): p["serial"] = v["attributes"]["Serial Number"] objects += [p] objects += self.get_transceivers() return objects def get_transceivers(self): def get_offset(offset): def wrap(x): return str(int(x) + offset) return wrap objects = [] if self.match_version(version__startswith="3.90"): xcvr_n = get_offset(0) inv = self.cli("show interface transceiver *") rx_trans = re.compile( r"Port\s+:\s+(?P<number>\d+)\s+\S+\n" r"Vendor\s+:\s+(?P<vendor>\S+)\s*\n" r"Part Number\s+:\s+(?P<part_no>\S+\s*\S*)\s*\n" r"Serial Number\s+:\s+(?P<serial>\S+)\s*\n" r"Revision\s+:\s+(?P<rev>\S+)?\s*\n" r"Date Code\s+:\s+\S+\n" r"Transceiver\s+:\s+(?P<type>\S+)", re.MULTILINE | re.DOTALL, ) else: if self.match_version(platform__contains="2024"): xcvr_n = get_offset(25) elif self.match_version(platform__contains="2108"): xcvr_n = get_offset(9) else: xcvr_n = get_offset(1) with self.zynos_mode(): inv = self.cli("sys sw sfp disp") rx_trans = re.compile( r"SFP\s+:\s+(?P<number>\d+)\s*\n" r"Vendor\s+:\s+(?P<vendor>\S+)\s*\n" r"Part\sNumber\s+:\s+(?P<part_no>\S+\s*\S*)\s*\n" r"Series\sNumber\s+:\s+(?P<serial>\S+)\s*\n" r"Revision\s+:\s+(?P<rev>\S+)?\s*\n" r"Transceiver\s+:\s+(?P<type>\S+)", re.MULTILINE | re.DOTALL, ) for match in rx_trans.finditer(inv): try: vendor = match.group("vendor").encode("utf-8") except UnicodeDecodeError: vendor = "NONAME" try: part_no = match.group("part_no").encode("utf-8").strip() except UnicodeDecodeError: part_no = "NoName | Transceiver | Unknown SFP" part_no_orig = self.remove_non_ascii(match.group("part_no").strip()) if vendor in ["NONAME", "OEM", "CISCO-FINISAR", "AODevices"]: part_no = "NoName | Transceiver | " description = match.group("type") if description.endswith(tuple([" EX", "-EX"])): part_no = part_no + "1G | SFP EX" elif description.endswith(tuple([" LH", "-LH"])): part_no = part_no + "1G | SFP LH" elif description.endswith(tuple([" LX", "-LX"])): part_no = part_no + "1G | SFP LX" elif description.endswith(tuple([" SX", "-SX"])): part_no = part_no + "1G | SFP SX" elif description.endswith(tuple([" T", "-T"])): part_no = part_no + "1G | SFP T" elif description.endswith(tuple([" TX", "-TX"])): part_no = part_no + "1G | SFP TX" elif description.endswith(tuple([" ZX", "-ZX"])): part_no = part_no + "1G | SFP ZX" elif part_no_orig.endswith(tuple(["BX-U", "BX-1"])): part_no = part_no + "1G | SFP BXU" elif part_no_orig.endswith("BX-D"): part_no = part_no + "1G | SFP BXD" else: part_no = part_no + "Unknown SFP" revision = self.remove_non_ascii(match.group("rev"), "") if match.group("rev") else None o = { "type": "XCVR", "number": xcvr_n(match.group("number")), "vendor": vendor, "description": "%s (%s)" % (match.group("type"), vendor), "part_no": [part_no.strip()], "builtin": False, } if revision: o["revision"] = revision try: o["serial"] = match.group("serial").encode("utf-8") except UnicodeDecodeError: pass objects += [o] return objects
39.87218
100
0.456723
[ "BSD-3-Clause" ]
ewwwcha/noc
sa/profiles/Zyxel/ZyNOS/get_inventory.py
5,303
Python
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2015-2018 by ExopyHqcLegacy Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Tests for the ApplyMagFieldTask """ from multiprocessing import Event import pytest import enaml from exopy.tasks.api import RootTask from exopy.tasks.tasks.logic.loop_task import LoopTask from exopy.testing.util import show_and_close_widget from exopy_hqc_legacy.tasks.tasks.instr.apply_mag_field_task\ import ApplyMagFieldTask with enaml.imports(): from exopy.tasks.tasks.logic.views.loop_view import LoopView from exopy_hqc_legacy.tasks.tasks.instr.views.apply_mag_field_view\ import ApplyMagFieldView from .instr_helper import (InstrHelper, InstrHelperStarter, DummyJob, PROFILES, DRIVERS) class TestApplyMagFieldTask(object): def setup(self): self.root = RootTask(should_stop=Event(), should_pause=Event()) self.task = ApplyMagFieldTask(name='Test', parallel={'activated': False}) self.root.add_child_task(0, self.task) self.root.run_time[DRIVERS] = {'Test': (InstrHelper, InstrHelperStarter())} self.root.run_time[PROFILES] =\ {'Test1': {'connections': {'C': {'owner': [], 'output_fluctuations': 1e-6, 'heater_state': []}}, 'settings': {'S': {'sweep_to_field': [DummyJob(), DummyJob(), DummyJob()], 'sweep_to_persistent_field': [DummyJob()], 'read_persistent_field': [1], 'check_connection': [True]}} } } # This is set simply to make sure the test of InstrTask pass. self.task.selected_instrument = ('Test1', 'Test', 'C', 'S') def test_check1(self): """Simply test that everything is ok if field can be evaluated. """ self.task.field = '3.0' test, traceback = self.task.check(test_instr=True) assert test assert not traceback assert self.task.get_from_database('Test_field') == 3.0 def test_check2(self): """Check handling a wrong field. """ self.task.field = '*1.0*' test, traceback = self.task.check(test_instr=True) assert not test assert len(traceback) == 1 assert 'root/Test-field'in traceback assert self.task.get_from_database('Test_field') == 0.01 def test_perform1(self): """Simple test when everything is right. """ self.task.field = '2.0' self.root.prepare() self.task.perform() assert self.root.get_from_database('Test_field') == 2.0 @pytest.mark.ui def test_apply_mag_field_view1(exopy_qtbot, root_view, task_workbench): """Test ApplyMagFieldView widget outisde of a LoopTask. """ task = ApplyMagFieldTask(name='Test') root_view.task.add_child_task(0, task) show_and_close_widget(exopy_qtbot, ApplyMagFieldView(task=task, root=root_view)) @pytest.mark.ui def test_apply_mag_field_view2(exopy_qtbot, root_view, task_workbench): """Test ApplyMagFieldView widget inside of a LoopTask. """ task = ApplyMagFieldTask(name='Test') loop = LoopTask(name='r', task=task) root_view.task.add_child_task(0, loop) # XXX check for absence of target field show_and_close_widget(exopy_qtbot, LoopView(task=loop, root=root_view))
34.131579
84
0.58751
[ "BSD-3-Clause" ]
Qcircuits/exopy_hqc_legacy
tests/tasks/tasks/instr/test_apply_mag_field_task.py
3,891
Python
from asyncio import sleep from discord import FFmpegPCMAudio, PCMVolumeTransformer from configs import bot_enum from ..session.Session import Session async def alert(session: Session): vc = session.ctx.voice_client if not vc: return path = bot_enum.AlertPath.POMO_END if session.state == bot_enum.State.COUNTDOWN: pass elif session.stats.pomos_completed % session.settings.intervals == 0: path = bot_enum.AlertPath.LONG_BREAK_START elif session.state != bot_enum.State.POMODORO: path = bot_enum.AlertPath.POMO_START source = PCMVolumeTransformer(FFmpegPCMAudio(path, executable='/usr/bin/ffmpeg'), volume=0.1) if vc.is_playing(): vc.stop() vc.play(source) while vc.is_playing(): await sleep(1)
29.321429
85
0.678441
[ "MIT" ]
SlenderCylinder/pomoji
bot/src/utils/player.py
821
Python
#!/usr/bin/env python # $Id$ # # Author: Thilee Subramaniam # # Copyright 2012 Quantcast Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # This code is used to generate a plan file for metaserver vs namenode # benchmarking. # import optparse import sys import subprocess import time import os import math import getpass """ This program is used to create the directory/file layout to be used in metaserver/namenode stress test. You basically specify the depth of the directory tree and the number of elements (files or directories) per level, along with the list of client-hosts you want to use and the number of clients per client-host that you want to use. This script will generate the plan file, and copy it to the /tmp on the given list of client hosts. Thereafter, you can execute the mstress.py with this plan file. """ class Globals: PATH_PREFIX = 'Dir_' PLAN_OUTPUT = './planfile.txt' def ParseCommandline(): epi = ('Example: "%s -c h1,h2 -n 3 -l 4 -i 3 -s 100" would create 4 levels of 3 inodes ' % sys.argv[0] + '(3+9+27+81=120) per client process. Since there are 3 ' + 'processes on 2 hosts, we create 120x6=720 inodes. We will attempt ' + 'to stat 100 random leaf paths using all client processes. We will do a readdir ' + 'all through the directory tree.') parser = optparse.OptionParser(epilog=epi) parser.add_option('-c', '--client-hosts', action='store', default='localhost', type='string', help='Comma-separated list of client host names.') parser.add_option('-n', '--clients-per-host', action='store', default=1, type='int', help='Number of clients per client host.') parser.add_option('-l', '--levels', action='store', default=1, type='int', help='File-tree depth on each client.') parser.add_option('-i', '--inodes-per-level', action='store', default=100, type='int', help='Inodes per each level on each client.') parser.add_option('-t', '--path-type', action='store', default='dir', type='string', help='Whether to create "dir" or "file" inodes.') parser.add_option('-s', '--num-to-stat', action='store', default=100, type='int', help='Number of inodes to stat (<=total leaf inodes).') parser.add_option('-o', '--output-file', action='store', default=None, type='string', help='Output plan file.') opts, args = parser.parse_args() if args: sys.exit('Unexpected arguments: %s.' % str(args)) if opts.output_file is None: opts.output_file = '/tmp/mstress_%s_%s.plan' % (getpass.getuser(), time.strftime("%F-%H-%M-%S", time.gmtime())) return opts def main(): opts = ParseCommandline() hostlist = opts.client_hosts.split(',') numClientProcesses = float(len(hostlist) * opts.clients_per_host) if numClientProcesses == 0.0: sys.exit('Invalid client processes') #get the smallest number larger than 'opts.num_to_stat' that is a multiple of opts.num_to_stat statPerClient = int(math.ceil(float(opts.num_to_stat) / numClientProcesses)) #print opts outfile = open(opts.output_file, 'w') outfile.write('# *** DO NOT EDIT THIS FILE BY HAND *** \n# USE mstress_plan.py TO MODIFY INSTEAD\n#\n') outfile.write('#List of hosts taking part in the plan\nhostslist=%s\n' % opts.client_hosts) outfile.write('#Number of mstress cliends per client host\nclientsperhost=%d\n' % opts.clients_per_host) outfile.write('#File or directory\ntype=%s\n' % opts.path_type) outfile.write('#Number of levels in created tree\nlevels=%d\n' % opts.levels) outfile.write('#Number of inodes per level\ninodes=%d\n' % opts.inodes_per_level) outfile.write('#Number of random paths to stat, per client\nnstat=%d\n' % statPerClient) """ old code begin_tree_delta = 0 for level in range(0,opts.levels): begin_tree_delta = begin_tree_delta + pow(opts.inodes_per_level, level + 1) #print "delta = ", begin_tree_delta outfile.write('#host\tclient\tlevel\tdistribution\n') begin_tree_idx = 0 for host_no in range(0,len(hostlist)): host = hostlist[host_no] for client_no in range(0,opts.clients_per_host): # tree for this level begin_idx = begin_tree_idx for level in range(0,opts.levels): prefix = '%s\tproc_%02d\t%d\t' % (host, client_no, level) # print '-- h=%d, c=%d level=%d, begin idx = %d' % (host_no, client_no, level, begin_idx) suffix = '' for ranges in range(0, pow(opts.inodes_per_level, level)): if len(suffix) != 0: suffix = suffix + ',' suffix = suffix + '%d-%d'%(begin_idx, begin_idx + opts.inodes_per_level - 1) begin_idx = begin_idx + opts.inodes_per_level outfile.write('%s\t%s\n' % (prefix, suffix)) begin_tree_idx = begin_tree_idx + begin_tree_delta #print "next begin tree idx = ", begin_tree_idx """ outfile.close() print '==> Created planfile: %s' % opts.output_file print 'copying file %s to all client hosts' % opts.output_file for client in hostlist: p = subprocess.Popen(['/usr/bin/scp', os.path.abspath(opts.output_file), '%s:%s' % (client, opts.output_file)]) while 1: ret = p.poll() if ret == None: time.sleep(0.5) else: print 'transfered %s to %s' % (opts.output_file, client) break if __name__ == '__main__': main()
37.170588
115
0.627947
[ "Apache-2.0" ]
chanwit/qfs
benchmarks/mstress/mstress_plan.py
6,319
Python
""" Support for Syslog-based networking devices. For now, support is limited to hostapd and dnsmasq. Example syslog lines: <30>Dec 31 13:03:21 router hostapd: wlan1: STA a4:77:33:e3:17:7c WPA: group key handshake completed (RSN) <29>Dec 31 13:05:15 router hostapd: wlan0: AP-STA-CONNECTED 64:20:0c:37:52:82 <30>Dec 31 13:15:22 router hostapd: wlan0: STA 64:20:0c:37:52:82 IEEE 802.11: disassociated <30>Dec 31 13:15:23 router hostapd: wlan0: STA 64:20:0c:37:52:82 IEEE 802.11: deauthenticated due to inactivity (timer DEAUTH/REMOVE) <29>Dec 31 13:20:15 router hostapd: wlan0: AP-STA-CONNECTED 64:20:0c:37:52:82 <30>Dec 31 13:02:33 router dnsmasq-dhcp[1601]: DHCPACK(br-lan) 192.168.0.101 f4:6d:04:ae:ac:d7 leon-pc """ from asyncio import coroutine from collections import namedtuple from datetime import timedelta import logging import voluptuous as vol from homeassistant.components.device_tracker import PLATFORM_SCHEMA, SOURCE_TYPE_ROUTER from homeassistant.const import CONF_HOST, CONF_PORT, CONF_DEVICES from homeassistant.helpers.event import async_track_time_interval import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ #vol.Optional(CONF_WHITELIST): cv.string, # ACL vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=514): cv.port, # mac => name vol.Required(CONF_DEVICES): {cv.string: cv.string}, # TODO: TCP vs UDP # TODO: periodically ARP ping wired devices }) Event = namedtuple('Event', 'mac kind is_sta reason') STA_EVENTS = { 'WPA: group key handshake completed': 'home', 'WPA: pairwise key handshake completed': 'home', 'deauthenticated due to local deauth request': 'not_home', 'IEEE 802.11: disconnected due to excessive missing ACKs': 'timeout', 'IEEE 802.11: disassociated due to inactivity': 'timeout', 'IEEE 802.11: deauthenticated due to inactivity': 'timeout', # Ignored, should be covered by AP-STA-* 'IEEE 802.11: associated': '', 'IEEE 802.11: authenticated': '', 'IEEE 802.11: disassociated': '', } def _skip_date_tokens(tokens): """ Based on RFC 3164 + RFC 5424 and real-world logs """ if tokens and tokens[0].startswith('<'): tokens.pop(0) while tokens and (not tokens[0] or tokens[0][:1].isdigit()): tokens.pop(0) def _find_process(tokens): while tokens: token = tokens.pop(0) if token.endswith(':'): c = token.find('[') if c > -1: return token[:c] return token[:-1] def _remove_param(tokens): i = len(tokens) - 1 while i > 0: if tokens[i].startswith('('): return tokens[:i] i -= 1 return tokens def parse_syslog_line(line): """Parses lines created by hostapd and dnsmasq DHCP""" tokens = line.split(' ') _skip_date_tokens(tokens) process = _find_process(tokens) if not process or not tokens: _LOGGER.debug('Unable to process line: %r', line) return if process == 'hostapd': # <iface>: AP-STA-<event>: <mac> if len(tokens) == 3: if tokens[1] == 'AP-STA-CONNECTED': return Event(tokens[2], 'home', True, tokens[1]) elif tokens[1] == 'AP-STA-DISCONNECTED': # Disconnected, but we might get the real reason later return Event(tokens[2], 'timeout', True, tokens[1]) elif len(tokens) > 4 and tokens[1] == 'STA': # <iface>: STA <mac> WPA: <...> # <iface>: STA <mac> IEEE 802.11: <...> suffix = ' '.join(_remove_param(tokens[3:])) for consider, status in STA_EVENTS.items(): if suffix.endswith(consider): if status == '': return return Event(tokens[2], status, True, suffix) _LOGGER.warning('Unhandled line: %r', line) elif process == 'dnsmasq-dhcp': if len(tokens) >= 3: # <event>(<iface> <ip> <mac> <name> if tokens[0].startswith('DHCPACK('): return Event(tokens[2], 'home', False, tokens[0]) class SyslogScanner: def __init__(self, hass, async_see, devices): self.hass = hass self.devices = devices self.wireless_devices = set() self.async_see = async_see # TODO: consider marking all devices as offline after start self.debug_marked = {} #async_track_time_interval(hass, self.scan_online_devices, # timedelta(minutes=1)) @coroutine def scan_online_devices(self, now=None): _LOGGER.info('Check online devices') for mac, name in self.devices.items(): if mac in self.wireless_devices: continue _LOGGER.info('Check %r', mac) def process_line(self, line): event = parse_syslog_line(line.rstrip('\n')) if not event: return _LOGGER.info('%r', event) mac = event.mac.replace(':', '') if event.is_sta: self.wireless_devices.add(mac) device = self.devices.get(mac) if not device: # Automatic tracking device = self.devices[mac] = mac consider_home = None state = event.kind if event.kind == 'timeout': state = 'not_home' # TODO: this feature has not been added yet consider_home = timedelta(minutes=5) if self.debug_marked.get(device) != state: _LOGGER.info('Mark %r as %r [%s]', device, state, consider_home) self.debug_marked[device] = state self.hass.async_add_job(self.async_see(dev_id=device, source_type=SOURCE_TYPE_ROUTER, mac=event.mac, #consider_home=consider_home, location_name=state)) class SyslogScannerUDP(SyslogScanner): def connection_made(self, transport): self.transport = transport def datagram_received(self, data, addr): message = data.decode('utf8', 'replace') self.process_line(message) @coroutine def async_setup_scanner(hass, config, async_see, discovery_info=None): bind = (config[CONF_HOST], config[CONF_PORT]) _LOGGER.info('Listening on %s:%s', bind[0], bind[1]) proto = lambda: SyslogScannerUDP(hass, async_see, config[CONF_DEVICES]) listen = hass.loop.create_datagram_endpoint(proto, local_addr=bind) hass.async_add_job(listen) return True
35.089005
137
0.609669
[ "MIT" ]
Bun/ha-syslog-devtracker
syslog.py
6,702
Python
import xlrd import os import sys import copy import json import codecs from collections import OrderedDict # Constant Values PARENT_NAME_ROW = 0 PARENT_NAME_COL = 0 COLUMN_NAMES_ROW = 1 DATA_STARTING_ROW = 2 ROOT_NAME = '*root' ID_COLUMN_NAME = 'id' PARENT_COLUMN_NAME = '*parent' IGNORE_WILDCARD = '_' REQUIRE_VERSION = (3, 5) EXCEL_PATH = './excel/' JSON_PATH = '../../asset/json/' # Class class TypeUtility: # xlrd is giving number as float @staticmethod def check_integer(value): return type(value) == float and int(value) == value # xlrd is giving boolean as integer @staticmethod def check_boolean(value): return type(value) == int @staticmethod def convert_value(value): if TypeUtility.check_integer(value): return int(value) elif TypeUtility.check_boolean(value): return bool(value) else: return value class Table: def __init__(self, sheet): self.init_name(sheet) self.init_parent_name(sheet) self.init_metadata(sheet) self.init_descriptors(sheet) self.init_id_index_map() def init_name(self, sheet): self.name = sheet.name def init_parent_name(self, sheet): row = sheet.row_values(PARENT_NAME_ROW) self.parent_name = row[PARENT_NAME_COL] if type(self.parent_name) is not str: raise Exception('[' + self.name + ']' + 'Parent name is not string') sys.exit() self.is_root = self.parent_name == ROOT_NAME def init_metadata(self, sheet): row = sheet.row_values(COLUMN_NAMES_ROW) self.is_parent = False self.is_child = False self.column_names = [] for value in row: if type(value) is not str: raise Exception('[' + self.name + ']' + 'Column name is not string') sys.exit() if value == ID_COLUMN_NAME: self.is_parent = True if value == PARENT_COLUMN_NAME: self.is_child = True self.column_names.append(value) if self.is_root and self.is_child: raise Exception('[' + self.name + ']' + 'Root table must not have a "' + PARENT_COLUMN_NAME + '" column') sys.exit() if not self.is_root and not self.is_child: raise Exception('[' + self.name + ']' + 'Child table must have a "' + PARENT_COLUMN_NAME + '" column') sys.exit() def init_descriptors(self, sheet): self.descriptors = [] id_table = [] for i in range(DATA_STARTING_ROW, sheet.nrows): #add metadata row count rowcount = i + 1 col = sheet.row_values(i) desc = self.get_descriptor(col) if self.is_parent: id = desc[ID_COLUMN_NAME] if not id: raise Exception('[' + self.name + ']' + 'Descriptor id must have a value - row : ' + str(i + 1)) sys.exit() if id in id_table: raise Exception('[' + self.name + ']' + 'Descriptor id is duplicated - row : ' + str(i + 1)) sys.exit() id_table.append(id) self.descriptors.append(desc) def get_descriptor(self, col): descriptor = OrderedDict() for i in range(0, len(col)): key = self.column_names[i] if key[0] == IGNORE_WILDCARD: continue descriptor[key] = TypeUtility.convert_value(col[i]) return descriptor def init_id_index_map(self): if not self.is_parent: return self.id_index_map = {} for descriptor in self.descriptors: id = descriptor[ID_COLUMN_NAME] self.id_index_map[id] = self.descriptors.index(descriptor) def merge_child_table(self, table): self.add_child_descriptor_list(table.name) for descriptor in table.descriptors: parent_id = descriptor[PARENT_COLUMN_NAME] parent_idx = self.id_index_map[parent_id] parent_descriptor = self.descriptors[parent_idx] parent_descriptor[table.name].append(descriptor) def add_child_descriptor_list(self, name): for descriptor in self.descriptors: descriptor[name] = [] def remove_parent_column(self): for descriptor in self.descriptors: del descriptor[PARENT_COLUMN_NAME] def save_to_json(self, pretty_print, export_path): if pretty_print: string = json.dumps(self.descriptors, ensure_ascii=False, indent=4) else: string = json.dumps(self.descriptors, ensure_ascii=False) with codecs.open(export_path + self.name + '.json', 'w', 'utf-8') as f: f.write(string) class Converter: def __init__(self, pretty_print, export_path): self.pretty_print = pretty_print self.export_path = export_path def convert(self, filename): print(filename + ' convert starting...') sheets = Converter.get_sheets(filename) root_table, tables = Converter.get_tables(sheets) Converter.post_process(tables) root_table.save_to_json(self.pretty_print, self.export_path) print(filename + ' convert is Done\n') @staticmethod def get_sheets(filename): path = os.path.abspath(filename) workbook = xlrd.open_workbook(path) return workbook.sheets() @staticmethod def get_tables(sheets): tables = {} root_tables = [] for sheet in sheets: if sheet.name[0] == IGNORE_WILDCARD: continue table = Table(sheet) tables[table.name] = table if table.is_root: root_tables.append(table) if len(root_tables) == 1: return root_tables[0], tables else: raise Exception('Root table must be one') sys.exit() @staticmethod def post_process(tables): for name, table in tables.items(): if table.is_root: continue parent_table = tables[table.parent_name] if not parent_table.is_parent: raise Exception('Parent table must have a id column') sys.exit() parent_table.merge_child_table(table) table.remove_parent_column() # Script current_version = sys.version_info if current_version < REQUIRE_VERSION: raise Exception('[eeror]You Need Python 3.5 or later') sys.exit() json_path = sys.argv[1] if len(sys.argv) > 1 else './' converter = Converter(True, JSON_PATH + json_path) for path, dirs, files in os.walk(EXCEL_PATH): for file in files: if file[0] is "~": continue if os.path.splitext(file)[1].lower() == '.xlsx': converter.convert(EXCEL_PATH + file)
30.017094
117
0.589408
[ "CC0-1.0" ]
mousedoc/Prism
third-party/language/generator.py
7,024
Python
import torch.nn as nn import torch.nn.functional as F import torch from mmcv.cnn import ConvModule from mmcv.runner import force_fp32 from mmdet.models.builder import HEADS, build_loss from mmdet.models.losses import accuracy from .bbox_head import BBoxHead from mmdet.core import multi_apply, multiclass_nms from mmdet.core.bbox.iou_calculators.builder import build_iou_calculator @HEADS.register_module() class ConvFCBBoxHead(BBoxHead): r"""More general bbox head, with shared conv and fc layers and two optional separated branches. .. code-block:: none /-> cls convs -> cls fcs -> cls shared convs -> shared fcs \-> reg convs -> reg fcs -> reg (\-> dis convs -> dis fcs -> dis) """ # noqa: W605 def __init__(self, num_shared_convs=0, num_shared_fcs=0, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, conv_out_channels=256, fc_out_channels=1024, conv_cfg=None, norm_cfg=None, with_dis=False, #for leaves num_dis_convs=0, num_dis_fcs=0, *args, **kwargs): super(ConvFCBBoxHead, self).__init__(*args, **kwargs) #only for leaves self.with_dis = with_dis self.num_dis_convs = num_dis_convs self.num_dis_fcs = num_dis_fcs assert (num_shared_convs + num_shared_fcs + num_cls_convs + num_cls_fcs + num_reg_convs + num_reg_fcs > 0) if num_cls_convs > 0 or num_reg_convs > 0: assert num_shared_fcs == 0 if not self.with_cls: assert num_cls_convs == 0 and num_cls_fcs == 0 if not self.with_reg: assert num_reg_convs == 0 and num_reg_fcs == 0 if not self.with_dis: assert num_dis_convs == 0 and num_dis_fcs == 0 self.num_shared_convs = num_shared_convs self.num_shared_fcs = num_shared_fcs self.num_cls_convs = num_cls_convs self.num_cls_fcs = num_cls_fcs self.num_reg_convs = num_reg_convs self.num_reg_fcs = num_reg_fcs self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg # add shared convs and fcs self.shared_convs, self.shared_fcs, last_layer_dim = \ self._add_conv_fc_branch( self.num_shared_convs, self.num_shared_fcs, self.in_channels, True) self.shared_out_channels = last_layer_dim # add cls specific branch self.cls_convs, self.cls_fcs, self.cls_last_dim = \ self._add_conv_fc_branch( self.num_cls_convs, self.num_cls_fcs, self.shared_out_channels) # add reg specific branch self.reg_convs, self.reg_fcs, self.reg_last_dim = \ self._add_conv_fc_branch( self.num_reg_convs, self.num_reg_fcs, self.shared_out_channels) #add dis branch(only for leaves) if self.with_dis: self.dis_convs, self.dis_fcs, self.dis_last_dim = \ self._add_conv_fc_branch( self.num_dis_convs, self.num_dis_fcs, self.shared_out_channels) if self.num_shared_fcs == 0 and not self.with_avg_pool: if self.num_cls_fcs == 0: self.cls_last_dim *= self.roi_feat_area if self.num_reg_fcs == 0: self.reg_last_dim *= self.roi_feat_area self.relu = nn.ReLU(inplace=True) # reconstruct fc_cls and fc_reg since input channels are changed if self.with_cls: self.fc_cls = nn.Linear(self.cls_last_dim, self.num_classes + 1) if self.with_reg: out_dim_reg = (4 if self.reg_class_agnostic else 4 * self.num_classes) self.fc_reg = nn.Linear(self.reg_last_dim, out_dim_reg) if self.with_dis: if self.dis_selector == 0 or self.dis_selector == 1: self.fc_dis = nn.Linear(self.cls_last_dim, 1) elif self.dis_selector == 2: self.fc_dis = nn.Linear(self.cls_last_dim, 4) def _add_conv_fc_branch(self, num_branch_convs, num_branch_fcs, in_channels, is_shared=False): """Add shared or separable branch. convs -> avg pool (optional) -> fcs """ last_layer_dim = in_channels # add branch specific conv layers branch_convs = nn.ModuleList() if num_branch_convs > 0: for i in range(num_branch_convs): conv_in_channels = ( last_layer_dim if i == 0 else self.conv_out_channels) branch_convs.append( ConvModule( conv_in_channels, self.conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) last_layer_dim = self.conv_out_channels # add branch specific fc layers branch_fcs = nn.ModuleList() if num_branch_fcs > 0: # for shared branch, only consider self.with_avg_pool # for separated branches, also consider self.num_shared_fcs if (is_shared or self.num_shared_fcs == 0) and not self.with_avg_pool: last_layer_dim *= self.roi_feat_area for i in range(num_branch_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) branch_fcs.append( nn.Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels return branch_convs, branch_fcs, last_layer_dim def init_weights(self): super(ConvFCBBoxHead, self).init_weights() # conv layers are already initialized by ConvModule if self.with_dis: for module_list in [self.shared_fcs, self.cls_fcs, self.reg_fcs, self.dis_fcs]: for m in module_list.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0) else: for module_list in [self.shared_fcs, self.cls_fcs, self.reg_fcs]: for m in module_list.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0) def forward(self, x): # shared part if self.num_shared_convs > 0: for conv in self.shared_convs: x = conv(x) if self.num_shared_fcs > 0: if self.with_avg_pool: x = self.avg_pool(x) x = x.flatten(1) for fc in self.shared_fcs: x = self.relu(fc(x)) # separate branches x_cls = x x_reg = x if self.with_dis: x_dis = x for conv in self.dis_convs: x_dis = conv(x_dis) if x_dis.dim() > 2: if self.with_avg_pool: x_dis = self.avg_pool(x_dis) x_dis = x_dis.flatten(1) for fc in self.dis_fcs: x_dis = self.relu(fc(x_dis)) for conv in self.cls_convs: x_cls = conv(x_cls) if x_cls.dim() > 2: if self.with_avg_pool: x_cls = self.avg_pool(x_cls) x_cls = x_cls.flatten(1) for fc in self.cls_fcs: x_cls = self.relu(fc(x_cls)) for conv in self.reg_convs: x_reg = conv(x_reg) if x_reg.dim() > 2: if self.with_avg_pool: x_reg = self.avg_pool(x_reg) x_reg = x_reg.flatten(1) for fc in self.reg_fcs: x_reg = self.relu(fc(x_reg)) cls_score = self.fc_cls(x_cls) if self.with_cls else None bbox_pred = self.fc_reg(x_reg) if self.with_reg else None dis_pred = self.fc_dis(x_dis) if self.with_dis else None return cls_score, bbox_pred, dis_pred @HEADS.register_module() class Shared2FCBBoxHead(ConvFCBBoxHead): def __init__(self, fc_out_channels=1024, *args, **kwargs): super(Shared2FCBBoxHead, self).__init__( num_shared_convs=0, num_shared_fcs=2, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, fc_out_channels=fc_out_channels, *args, **kwargs) @HEADS.register_module() class Shared2FCBBoxHeadLeaves(ConvFCBBoxHead): def __init__(self, fc_out_channels=1024, *args, **kwargs): loss_dis = kwargs['loss_dis'] self.reference_labels = kwargs['reference_labels'] self.classes = kwargs['classes'] self.dis_selector = kwargs['dis_selector'] assert self.dis_selector in (0, 1, 2) kwargs.pop('loss_dis') kwargs.pop('reference_labels') kwargs.pop('classes') kwargs.pop('dis_selector') super(Shared2FCBBoxHeadLeaves, self).__init__( num_shared_convs=0, num_shared_fcs=2, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, fc_out_channels=fc_out_channels, with_dis=True, #only for leaves num_dis_convs=0, num_dis_fcs=0, *args, **kwargs) if self.dis_selector == 0 or self.dis_selector == 1: assert loss_dis['use_sigmoid'], "used invalid loss_dis" elif self.dis_selector == 2: assert not loss_dis['use_sigmoid'], "used invalid loss_dis" self.loss_dis = build_loss(loss_dis) #DEBUG #loss_dis_py =dict(type='py_FocalLoss', # alpha=torch.tensor(self.dis_weights, device=torch.device('cpu')), # gamma = 2.0, # reduction = 'mean') #self.loss_dis_py = build_loss(loss_dis_py) #Override def get_targets(self, sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg, reference_labels, classes, concat=True): """Calculate the ground truth for all samples in a batch according to the sampling_results. Almost the same as the implementation in bbox_head, we passed additional parameters pos_inds_list and neg_inds_list to `_get_target_single` function. Args: sampling_results (List[obj:SamplingResults]): Assign results of all images in a batch after sampling. gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch, each tensor has shape (num_gt, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. gt_labels (list[Tensor]): Gt_labels of all images in a batch, each tensor has shape (num_gt,). rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN. concat (bool): Whether to concatenate the results of all the images in a single batch. Returns: Tuple[Tensor]: Ground truth for proposals in a single image. Containing the following list of Tensors: - labels (list[Tensor],Tensor): Gt_labels for all proposals in a batch, each tensor in list has shape (num_proposals,) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals,). - label_weights (list[Tensor]): Labels_weights for all proposals in a batch, each tensor in list has shape (num_proposals,) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals,). - bbox_targets (list[Tensor],Tensor): Regression target for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. - bbox_weights (list[tensor],Tensor): Regression weights for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals, 4). - dis_targets (list[tensor], Tensor): Gt_dis for all proposal in a batch, each tensor in list has shape (num_proposal,) when 'concat=False`, otherwise just a single tensor has shape (num_all_proposals,). """ pos_bboxes_list = [res.pos_bboxes for res in sampling_results] neg_bboxes_list = [res.neg_bboxes for res in sampling_results] pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results] labels, label_weights, bbox_targets, bbox_weights = multi_apply( self._get_target_single, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=rcnn_train_cfg) #processing for dis_target iou_calculator=dict(type='BboxOverlaps2D') iou_calculator = build_iou_calculator(iou_calculator) isolation_thr = 0.45 #TODO da mettere come arg #retrive the gt_superclass bboxes dis_targets = [] for i, res in enumerate(sampling_results): ref_grap_list =[] ref_leav_list =[] ref_grap_dis_list =[] ref_leav_dis_list =[] for j, bbox in enumerate(gt_bboxes[i]): if self.dis_selector == 0: if 'grappolo' in classes[gt_labels[i][j]] and gt_labels[i][j] != reference_labels['grappolo_vite']: ref_grap_dis_list.append(bbox) elif (('foglia' in classes[gt_labels[i][j]] or classes[gt_labels[i][j]] == 'malattia_esca'\ or classes[gt_labels[i][j]] == 'virosi_pinot_grigio') and gt_labels[i][j] != reference_labels['foglia_vite']): ref_leav_dis_list.append(bbox) elif self.dis_selector == 1: if gt_labels[i][j] == reference_labels['grappolo_vite']: ref_grap_list.append(bbox) elif gt_labels[i][j] == reference_labels['foglia_vite']: ref_leav_list.append(bbox) elif self.dis_selector == 2: if gt_labels[i][j] == reference_labels['grappolo_vite']: ref_grap_list.append(bbox) elif gt_labels[i][j] == reference_labels['foglia_vite']: ref_leav_list.append(bbox) elif 'grappolo' in classes[gt_labels[i][j]]: ref_grap_dis_list.append(bbox) elif 'foglia' in classes[gt_labels[i][j]] or classes[gt_labels[i][j]] == 'malattia_esca'\ or classes[gt_labels[i][j]] == 'virosi_pinot_grigio': ref_leav_dis_list.append(bbox) ''' if 'grappolo' in classes[gt_labels[i][j]] and gt_labels[i][j] != reference_labels['grappolo_vite']: ref_grap_dis_list.append(bbox) elif (('foglia' in classes[gt_labels[i][j]] or classes[gt_labels[i][j]] == 'malattia_esca'\ or classes[gt_labels[i][j]] == 'virosi_pinot_grigio') and gt_labels[i][j] != reference_labels['foglia_vite']): ref_leav_dis_list.append(bbox) ''' if len(ref_grap_list) > 0: ref_grap_tensor = torch.cat(ref_grap_list) ref_grap_tensor = torch.reshape(ref_grap_tensor, (len(ref_grap_list), 4)) if len(ref_leav_list) > 0: ref_leav_tensor = torch.cat(ref_leav_list) ref_leav_tensor = torch.reshape(ref_leav_tensor, (len(ref_leav_list), 4)) if len(ref_grap_dis_list) > 0: ref_grap_dis_tensor = torch.cat(ref_grap_dis_list) ref_grap_dis_tensor = torch.reshape(ref_grap_dis_tensor, (len(ref_grap_dis_list), 4)) if len(ref_leav_dis_list) > 0: ref_leav_dis_tensor = torch.cat(ref_leav_dis_list) ref_leav_dis_tensor = torch.reshape(ref_leav_dis_tensor, (len(ref_leav_dis_list), 4)) num_pos = res.pos_bboxes.size(0) num_neg = res.neg_bboxes.size(0) num_samples = num_pos + num_neg dis_tensor= res.pos_bboxes.new_full((num_samples, ), -1, dtype=torch.long) dis_list = [] for j, bbox in enumerate(res.pos_bboxes): #trick for using the iof calculator bbox = bbox.unsqueeze(0) if res.pos_gt_labels[j] == reference_labels['grappolo_vite']: if self.dis_selector == 0: dis_list.append(-1) #the grape is not considered elif self.dis_selector == 1 or self.dis_selector == 2: if len(ref_grap_dis_list) > 0: overlaps = iou_calculator(ref_grap_dis_tensor, bbox, mode='iof') overlaps = overlaps < isolation_thr if overlaps.all(): dis_list.append(0) #the grape is healthy else: dis_list.append(1) #the grape is affected by a disease else: dis_list.append(0) #the grape is healthy elif res.pos_gt_labels[j] == reference_labels['foglia_vite']: if self.dis_selector == 0: dis_list.append(-1) #the leaf is not considered elif self.dis_selector == 1 or self.dis_selector == 2: if len(ref_leav_dis_list) > 0: overlaps = iou_calculator(ref_leav_dis_tensor, bbox, mode='iof') overlaps = overlaps < isolation_thr if overlaps.all(): dis_list.append(0) #the leaf is healthy else: dis_list.append(1) #the leaf is affected by a disease else: dis_list.append(0) #the leaf is healthy elif 'grappolo' in classes[res.pos_gt_labels[j]] and res.pos_gt_labels[j] != reference_labels['grappolo_vite']: if self.dis_selector == 1: dis_list.append(-1) #the disease is not considered elif self.dis_selector == 0: if len(ref_grap_list) > 0: overlaps = iou_calculator(bbox, ref_grap_tensor, mode='iof') overlaps = overlaps < isolation_thr if overlaps.all(): dis_list.append(0) #the disease is isolated else: dis_list.append(1) #the disease is inside a leaf or grape else: dis_list.append(0) #the disease is isolated elif self.dis_selector == 2: if len(ref_grap_list) > 0: overlaps = iou_calculator(bbox, ref_grap_tensor, mode='iof') overlaps = overlaps < isolation_thr if overlaps.all(): dis_list.append(2) #the disease is isolated else: dis_list.append(3) #the disease is inside a leaf or grape else: dis_list.append(2) #the disease is isolated elif (('foglia' in classes[res.pos_gt_labels[j]] or classes[res.pos_gt_labels[j]] == 'malattia_esca' or classes[res.pos_gt_labels[j]] == 'virosi_pinot_grigio') and res.pos_gt_labels[j] != reference_labels['foglia_vite']): if self.dis_selector == 1: dis_list.append(-1) #the disease is not considered elif self.dis_selector == 0: if len(ref_leav_list) > 0: overlaps = iou_calculator(bbox, ref_leav_tensor, mode='iof') overlaps = overlaps < isolation_thr if overlaps.all(): dis_list.append(0) #the disease is isolated else: dis_list.append(1) #the disease is inside a leaf or grape else: dis_list.append(0) #the disease is isolated elif self.dis_selector == 2: if len(ref_leav_list) > 0: overlaps = iou_calculator(bbox, ref_leav_tensor, mode='iof') overlaps = overlaps < isolation_thr if overlaps.all(): dis_list.append(2) #the disease is isolated else: dis_list.append(3) #the disease is inside a leaf or grape else: dis_list.append(2) #the disease is isolated #elif res.pos_gt_labels[j] == reference_labels['oidio_tralci']: # dis_list.append(-1) #the disease is not considered dis_tensor[:num_pos] = torch.tensor(dis_list) dis_targets.append(dis_tensor) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) dis_targets = torch.cat(dis_targets, 0) #del dis_tensor #torch.cuda.empty_cache() return labels, label_weights, bbox_targets, bbox_weights, dis_targets #Override @force_fp32(apply_to=('cls_score', 'bbox_pred', 'dis_pred')) def loss(self, cls_score, bbox_pred, dis_pred, rois, labels, label_weights, bbox_targets, bbox_weights, dis_targets, reduction_override=None): losses = dict() if cls_score is not None: avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.) if cls_score.numel() > 0: losses['loss_cls'] = self.loss_cls( cls_score, labels, label_weights, avg_factor=avg_factor, reduction_override=reduction_override) losses['acc'] = accuracy(cls_score, labels) if bbox_pred is not None: bg_class_ind = self.num_classes # 0~self.num_classes-1 are FG, self.num_classes is BG pos_inds = (labels >= 0) & (labels < bg_class_ind) # do not perform bounding box regression for BG anymore. if pos_inds.any(): if self.reg_decoded_bbox: # When the regression loss (e.g. `IouLoss`, # `GIouLoss`, `DIouLoss`) is applied directly on # the decoded bounding boxes, it decodes the # already encoded coordinates to absolute format. bbox_pred = self.bbox_coder.decode(rois[:, 1:], bbox_pred) if self.reg_class_agnostic: pos_bbox_pred = bbox_pred.view( bbox_pred.size(0), 4)[pos_inds.type(torch.bool)] else: pos_bbox_pred = bbox_pred.view( bbox_pred.size(0), -1, 4)[pos_inds.type(torch.bool), labels[pos_inds.type(torch.bool)]] losses['loss_bbox'] = self.loss_bbox( pos_bbox_pred, bbox_targets[pos_inds.type(torch.bool)], bbox_weights[pos_inds.type(torch.bool)], avg_factor=bbox_targets.size(0), reduction_override=reduction_override) else: losses['loss_bbox'] = bbox_pred[pos_inds].sum() if dis_pred is not None: pos_inds = dis_targets != -1 if pos_inds.any(): pos_dis_pred = dis_pred[pos_inds.type(torch.bool)] pos_dis_targets = dis_targets[pos_inds.type(torch.bool)] avg_factor = dis_pred.size(0) losses['loss_dis'] = self.loss_dis( pos_dis_pred, pos_dis_targets, avg_factor=avg_factor, reduction_override=reduction_override) #DEBUG #loss_py = self.loss_dis_py(pos_dis_pred, # pos_dis_targets) #from mmcv.utils import print_log #import logging #logger = logging.getLogger(__name__) #print_log("loss_dis:{:0.4f}, loss_dis_py:{:0.4f}".format(losses['loss_dis'], loss_py), logger = logger) return losses #Override @force_fp32(apply_to=('cls_score', 'bbox_pred', 'dis_pred')) def get_bboxes(self, rois, cls_score, bbox_pred, dis_pred, img_shape, scale_factor, rescale=False, cfg=None): if isinstance(cls_score, list): cls_score = sum(cls_score) / float(len(cls_score)) scores = F.softmax(cls_score, dim=1) if cls_score is not None else None if bbox_pred is not None: bboxes = self.bbox_coder.decode( rois[:, 1:], bbox_pred, max_shape=img_shape) else: bboxes = rois[:, 1:].clone() if img_shape is not None: bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1]) bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0]) if rescale and bboxes.size(0) > 0: if isinstance(scale_factor, float): bboxes /= scale_factor else: scale_factor = bboxes.new_tensor(scale_factor) bboxes = (bboxes.view(bboxes.size(0), -1, 4) / scale_factor).view(bboxes.size()[0], -1) if dis_pred is not None: if self.dis_selector == 0 or self.dis_selector == 1: diseases = F.sigmoid(dis_pred) elif self.dis_selector == 2: diseases = F.softmax(dis_pred, dim=1) if cfg is None: return bboxes, scores, diseases else: det_bboxes, det_labels, inds = multiclass_nms(bboxes, scores, cfg.score_thr, cfg.nms, cfg.max_per_img, return_inds=True) if self.dis_selector == 0 or self.dis_selector == 1: diseases = diseases.expand(bboxes.size(0), scores.size(1) - 1) diseases = diseases.reshape(-1) elif self.dis_selector == 2: diseases = diseases[:, None].expand(bboxes.size(0), scores.size(1) - 1, 4) diseases = diseases.reshape(-1, 4) det_dis = diseases[inds] return det_bboxes, det_labels, det_dis @HEADS.register_module() class Shared4Conv1FCBBoxHead(ConvFCBBoxHead): def __init__(self, fc_out_channels=1024, *args, **kwargs): super(Shared4Conv1FCBBoxHead, self).__init__( num_shared_convs=4, num_shared_fcs=1, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, fc_out_channels=fc_out_channels, *args, **kwargs)
45.200603
154
0.521523
[ "Apache-2.0" ]
marcovalenti/mmdetection
mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py
29,968
Python
#! /usr/bin/env python3 """ example module: extra.good.best.tau """ def FunT(): return "Tau" if __name__ == "__main__": print("I prefer to be a module")
17.444444
43
0.649682
[ "MIT" ]
tomasfriz/Curso-de-Cisco
Curso de Cisco/Actividades/py/packages/extra/good/best/tau.py
157
Python
#!/usr/bin/env python3 import os import requests os.system("clear") print(""" ██ ██ █████ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ █ ██ ███████ ██ ██ ██ ██ ███ ██ ███ ██ ██ ██ ██ ██ ██ ██ ██ ██ ███ ███ ██ ██ ███████ ███████ ██████ ██ ██ """) print("[INFO] Initializing...\n") baseurl = "https://raw.githubusercontent.com/Wallux-0/Wallpapers/main/" req = requests.get( "https://raw.githubusercontent.com/Wallux-0/Wallux/main/static/tags.json") if req: content = eval(req.content) content = content['wallpaper'] else: print("[ERROR] Please connect to internet and try again.") print("""Hello! Wallux is a wallpaper library hosted on Github. Please visit https://wallux-0.github.io/Wallux/ to choose a wallpaper and enter its Wallux ID here. Wallux ID:""") try: walluxid = int(input()) except: print("[ERROR] Not a valid Wallux ID.") exit() for w in content: if str(walluxid) == ''.join([n for n in w['path'] if n.isdigit()]): print("[INFO] Downloading your new wallpaper...") req = requests.get(baseurl+w['path'], stream=True) if req: img = req.raw.read() path = os.path.expanduser( "~/Documents/"+w['path'].lstrip("wallpapers/").strip()) with open(path, 'wb') as f: f.write(img) print("[INFO] Image Downloaded") else: print("[ERROR] Please connect to an internet connection.") break os.system("""echo $(ps -e | grep -E -i "xfce|kde|gnome") > /tmp/wallux.file""") parseStr = '' with open("/tmp/wallux.file") as f: parseStr = f.read() os.remove("/tmp/wallux.file") de = {} de['kde'] = parseStr.lower().count("kde") de['gnome'] = parseStr.lower().count('gnome') de['xfce'] = parseStr.lower().count('xfce') if max(de, key=de.get) == "gnome": os.system( "gsettings set org.gnome.desktop.background picture-uri file://{}".format(path)) print("[SUCCESS] Enjoy your new wallpaper!") exit() elif max(de, key=de.get) == "kde": import dbus plugin = 'org.kde.image' jscript = """ var allDesktops = desktops(); print (allDesktops); for (i=0;i<allDesktops.length;i++) { d = allDesktops[i]; d.wallpaperPlugin = "%s"; d.currentConfigGroup = Array("Wallpaper", "%s", "General"); d.writeConfig("Image", "file://%s") } """ bus = dbus.SessionBus() plasma = dbus.Interface(bus.get_object( 'org.kde.plasmashell', '/PlasmaShell'), dbus_interface='org.kde.PlasmaShell') plasma.evaluateScript(jscript % (plugin, plugin, path)) print("[SUCCESS] Enjoy your new wallpaper!") exit() elif max(de, key=de.get) == "xfce": """ To find out what property is changed when the backgound changes, run the following command in a terminal window: xfconf-query -c xfce4-desktop -m ...and then change the background using the Settings Manager > Desktop. The command monitors channel xfce4-desktop for changes. It will tell which property on channel xfce4-desktop is changed. Then the command to change that property would be like this xfconf-query -c xfce4-desktop -p insert_property_here -s path/image """ os.system("xfconf-query --channel xfce4-desktop --property /backdrop/screen0/monitoreDP-1/workspace0/last-image --set {}".format(path)) print("[SUCCESS] Enjoy your new wallpaper!") exit() else: print("[ERROR] Oops. Your desktop enviroinment is not supported at the moment. But I saved the wallpaper to your Documents folder. Enjoy!")
40.086957
143
0.588124
[ "MIT" ]
Manoj-Paramsetti/Wallux
wallux.py
3,930
Python
# SPDX-FileCopyrightText: 2017 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 from decisionengine.framework.modules.Publisher import Publisher def test_publisher_structure(): """ The module.publisher itself is a bit of a skeleton... """ params = {"1": 1, "2": 2, "channel_name": "test"} test_publisher = Publisher(params) assert test_publisher.get_parameters() == {"1": 1, "2": 2, "channel_name": "test"} test_publisher.set_data_block("example") assert test_publisher.get_data_block() == "example" assert test_publisher._consumes == {} test_publisher.publish() test_publisher.publish(data_block="asdf") test_publisher.shutdown()
31.909091
86
0.706553
[ "Apache-2.0" ]
BrunoCoimbra/decisionengine
src/decisionengine/framework/modules/tests/test_Publisher.py
702
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """NCF model input pipeline.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools # pylint: disable=g-bad-import-order import tensorflow.compat.v2 as tf # pylint: enable=g-bad-import-order from utils.recommendation import constants as rconst from utils.recommendation import movielens from utils.recommendation import data_pipeline NUM_SHARDS = 16 def create_dataset_from_tf_record_files(input_file_pattern, pre_batch_size, batch_size, is_training=True): """Creates dataset from (tf)records files for training/evaluation.""" files = tf.data.Dataset.list_files(input_file_pattern, shuffle=is_training) def make_dataset(files_dataset, shard_index): """Returns dataset for sharded tf record files.""" if pre_batch_size != batch_size: raise ValueError("Pre-batch ({}) size is not equal to batch " "size ({})".format(pre_batch_size, batch_size)) files_dataset = files_dataset.shard(NUM_SHARDS, shard_index) dataset = files_dataset.interleave(tf.data.TFRecordDataset) decode_fn = functools.partial( data_pipeline.DatasetManager.deserialize, batch_size=pre_batch_size, is_training=is_training) dataset = dataset.map( decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset dataset = tf.data.Dataset.range(NUM_SHARDS) map_fn = functools.partial(make_dataset, files) dataset = dataset.interleave( map_fn, cycle_length=NUM_SHARDS, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) return dataset def create_dataset_from_data_producer(producer, params): """Return dataset online-generating data.""" def preprocess_train_input(features, labels): """Pre-process the training data. This is needed because - The label needs to be extended to be used in the loss fn - We need the same inputs for training and eval so adding fake inputs for DUPLICATE_MASK in training data. Args: features: Dictionary of features for training. labels: Training labels. Returns: Processed training features. """ fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN]) features[rconst.DUPLICATE_MASK] = fake_dup_mask features[rconst.TRAIN_LABEL_KEY] = labels return features train_input_fn = producer.make_input_fn(is_training=True) train_input_dataset = train_input_fn(params).map(preprocess_train_input) def preprocess_eval_input(features): """Pre-process the eval data. This is needed because: - The label needs to be extended to be used in the loss fn - We need the same inputs for training and eval so adding fake inputs for VALID_PT_MASK in eval data. Args: features: Dictionary of features for evaluation. Returns: Processed evaluation features. """ labels = tf.cast(tf.zeros_like( features[movielens.USER_COLUMN]), tf.bool) fake_valid_pt_mask = tf.cast( tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool) features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask features[rconst.TRAIN_LABEL_KEY] = labels return features eval_input_fn = producer.make_input_fn(is_training=False) eval_input_dataset = eval_input_fn(params).map(preprocess_eval_input) return train_input_dataset, eval_input_dataset def create_ncf_input_data(params, producer=None, input_meta_data=None, strategy=None): """Creates NCF training/evaluation dataset. Args: params: Dictionary containing parameters for train/evaluation data. producer: Instance of BaseDataConstructor that generates data online. Must not be None when params['train_dataset_path'] or params['eval_dataset_path'] is not specified. input_meta_data: A dictionary of input metadata to be used when reading data from tf record files. Must be specified when params["train_input_dataset"] is specified. strategy: Distribution strategy used for distributed training. If specified, used to assert that evaluation batch size is correctly a multiple of total number of devices used. Returns: (training dataset, evaluation dataset, train steps per epoch, eval steps per epoch) Raises: ValueError: If data is being generated online for when using TPU's. """ # NCF evaluation metric calculation logic assumes that evaluation data # sample size are in multiples of (1 + number of negative samples in # evaluation) for each device. As so, evaluation batch size must be a # multiple of (number of replicas * (1 + number of negative samples)). num_devices = strategy.num_replicas_in_sync if strategy else 1 if (params["eval_batch_size"] % (num_devices * (1 + rconst.NUM_EVAL_NEGATIVES))): raise ValueError("Evaluation batch size must be divisible by {} " "times {}".format(num_devices, (1 + rconst.NUM_EVAL_NEGATIVES))) if params["train_dataset_path"]: assert params["eval_dataset_path"] train_dataset = create_dataset_from_tf_record_files( params["train_dataset_path"], input_meta_data["train_prebatch_size"], params["batch_size"], is_training=True) eval_dataset = create_dataset_from_tf_record_files( params["eval_dataset_path"], input_meta_data["eval_prebatch_size"], params["eval_batch_size"], is_training=False) num_train_steps = int(input_meta_data["num_train_steps"]) num_eval_steps = int(input_meta_data["num_eval_steps"]) else: if params["use_tpu"]: raise ValueError( "TPU training does not support data producer yet. " "Use pre-processed data.") assert producer # Start retrieving data from producer. train_dataset, eval_dataset = create_dataset_from_data_producer( producer, params) num_train_steps = producer.train_batches_per_epoch num_eval_steps = producer.eval_batches_per_epoch return train_dataset, eval_dataset, num_train_steps, num_eval_steps
39.84492
82
0.668232
[ "Apache-2.0" ]
Ezra-H/autodist
examples/benchmark/utils/recommendation/ncf_input_pipeline.py
7,451
Python
# coding=utf-8 """ A utility module for working with playbooks in the `origin-ci-tool` repository. """ from __future__ import absolute_import, division, print_function from os.path import abspath, dirname, exists, join from click import ClickException def playbook_path(playbook_name): """ Get the path to the named playbook. To allow for as much brevity as possible in the given playbook name, we will attempt to search under: - oct/playbooks - openshift-ansible/playbooks :param playbook_name: the name of the playbook :type playbook_name: str :return: the path to the playbook :rtype: str :raises ClickException: when no playbook is found """ from ..oct import __file__ as root_path for parent_repo in ['oct', 'openshift-ansible']: playbook_file = join(abspath(dirname(root_path)), 'ansible', parent_repo, 'playbooks', playbook_name + '.yml') if exists(playbook_file): return playbook_file raise ClickException('No playbook named {} found!'.format(playbook_name))
29.666667
118
0.707865
[ "Apache-2.0" ]
DennisPeriquet/origin-ci-tool
oct/util/playbook.py
1,068
Python
import os import json CONFIG_FILE_PATH = os.path.expanduser("~/.coinbase-indicator") GENERAL_OPTION_KEY = 'general' OPTION_KEY_LARGE_LABEL = 'show_crypto_currency_in_the_label' OPTION_KEY_NOTIFICATION = 'show_notifications' OPTION_KEY_THEME_MONOCHROME = 'theme_monochrome' CRYPTO_CURRENCY_OPTION_KEY = 'crypto_currency' OPTION_KEY_CRYPTO_CURRENCY_SHOW = 'show_exchange_price' class Option(object): def __init__(self, status, label): self.status = status self.label = label def get_label(self): return self.label def get_status(self): return self.status def set_status(self, status): self.status = status class Config(object): def __init__(self): self.general_options = { OPTION_KEY_LARGE_LABEL: Option(False, self.__get_label(OPTION_KEY_LARGE_LABEL)), OPTION_KEY_NOTIFICATION: Option(True, self.__get_label(OPTION_KEY_NOTIFICATION)), OPTION_KEY_THEME_MONOCHROME: Option(True, self.__get_label(OPTION_KEY_THEME_MONOCHROME)), } self.crypto_currency_options = {} def set_crypto_currencies_options(self, crypto_currencies): for crypto_currency in crypto_currencies: if crypto_currency not in self.crypto_currency_options: self.crypto_currency_options[crypto_currency] = { OPTION_KEY_CRYPTO_CURRENCY_SHOW: Option(False, self.__get_label(OPTION_KEY_CRYPTO_CURRENCY_SHOW)), } def load(self): if not os.path.isfile(CONFIG_FILE_PATH): return with open(CONFIG_FILE_PATH, 'r') as config_file: config_dict = json.load(config_file) if GENERAL_OPTION_KEY in config_dict: for option_key in config_dict[GENERAL_OPTION_KEY]: self.general_options[option_key] = Option(config_dict[GENERAL_OPTION_KEY][option_key], self.__get_label(option_key)) if CRYPTO_CURRENCY_OPTION_KEY in config_dict: for crypto_currency in config_dict[CRYPTO_CURRENCY_OPTION_KEY]: if crypto_currency not in self.crypto_currency_options: self.crypto_currency_options[crypto_currency] = {} for option_key in config_dict[CRYPTO_CURRENCY_OPTION_KEY][crypto_currency]: self.crypto_currency_options[crypto_currency][option_key] = Option(config_dict[CRYPTO_CURRENCY_OPTION_KEY][crypto_currency][option_key], self.__get_label(option_key)) def persist(self): config_dict = { GENERAL_OPTION_KEY: {}, CRYPTO_CURRENCY_OPTION_KEY: {}, } for option_key in self.general_options: config_dict[GENERAL_OPTION_KEY][option_key] = self.general_options[option_key].get_status() for crypto_currency in self.crypto_currency_options: config_dict[CRYPTO_CURRENCY_OPTION_KEY][crypto_currency] = {} for option_key in self.crypto_currency_options[crypto_currency]: config_dict[CRYPTO_CURRENCY_OPTION_KEY][crypto_currency][option_key] = self.crypto_currency_options[crypto_currency][option_key].get_status() with open(CONFIG_FILE_PATH, 'w') as config_file: json.dump(config_dict, config_file) def get_crypto_currency_options(self): return self.crypto_currency_options def get_general_options(self): return self.general_options def is_crypto_currency_visible(self, crypto_currency): return \ crypto_currency in self.crypto_currency_options \ and OPTION_KEY_CRYPTO_CURRENCY_SHOW in self.crypto_currency_options[crypto_currency] \ and self.crypto_currency_options[crypto_currency][OPTION_KEY_CRYPTO_CURRENCY_SHOW].get_status() def is_theme_monochrome(self): return \ OPTION_KEY_THEME_MONOCHROME in self.general_options \ and self.general_options[OPTION_KEY_THEME_MONOCHROME].get_status() def is_notification_visible(self): return \ OPTION_KEY_NOTIFICATION in self.general_options \ and self.general_options[OPTION_KEY_NOTIFICATION].get_status() def is_large_label_visible(self): return \ OPTION_KEY_LARGE_LABEL in self.general_options \ and self.general_options[OPTION_KEY_LARGE_LABEL].get_status() @staticmethod def __get_label(key): label = key.replace('_', ' ') return label[:1].upper() + label[1:]
39.415929
186
0.705658
[ "Apache-2.0" ]
amitkumarj441/Cryptocoin-Price-Indicator
indicator/config.py
4,454
Python
# pylint: disable=redefined-outer-name import pytest from dagster.core.code_pointer import ModuleCodePointer from dagster.core.definitions.reconstructable import ReconstructableRepository from dagster.core.host_representation.grpc_server_registry import ProcessGrpcServerRegistry from dagster.core.host_representation.handle import GrpcServerRepositoryLocationHandle from dagster.core.host_representation.origin import ( ExternalPipelineOrigin, ExternalRepositoryOrigin, InProcessRepositoryLocationOrigin, ) from dagster.core.storage.pipeline_run import IN_PROGRESS_RUN_STATUSES, PipelineRunStatus from dagster.core.storage.tags import PRIORITY_TAG from dagster.core.test_utils import create_run_for_test, instance_for_test from dagster.daemon.run_coordinator.queued_run_coordinator_daemon import QueuedRunCoordinatorDaemon from dagster_tests.api_tests.utils import get_foo_pipeline_handle @pytest.fixture() def instance(): overrides = { "run_launcher": {"module": "dagster.core.test_utils", "class": "MockedRunLauncher"}, } with instance_for_test(overrides=overrides) as inst: yield inst @pytest.fixture() def grpc_server_registry(instance): # pylint: disable=unused-argument with ProcessGrpcServerRegistry(wait_for_processes_on_exit=True) as registry: yield registry def create_run(instance, **kwargs): with get_foo_pipeline_handle() as pipeline_handle: create_run_for_test( instance, external_pipeline_origin=pipeline_handle.get_external_origin(), pipeline_name="foo", **kwargs, ) def create_invalid_run(instance, **kwargs): create_run_for_test( instance, external_pipeline_origin=ExternalPipelineOrigin( ExternalRepositoryOrigin( InProcessRepositoryLocationOrigin( ReconstructableRepository(ModuleCodePointer("fake", "fake")) ), "foo", ), "wrong-pipeline", ), pipeline_name="wrong-pipeline", **kwargs, ) def get_run_ids(runs_queue): return [run.run_id for run in runs_queue] def test_attempt_to_launch_runs_filter(instance, grpc_server_registry): create_run( instance, run_id="queued-run", status=PipelineRunStatus.QUEUED, ) create_run( instance, run_id="non-queued-run", status=PipelineRunStatus.NOT_STARTED, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == ["queued-run"] def test_attempt_to_launch_runs_no_queued(instance, grpc_server_registry): create_run( instance, run_id="queued-run", status=PipelineRunStatus.STARTED, ) create_run( instance, run_id="non-queued-run", status=PipelineRunStatus.NOT_STARTED, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert instance.run_launcher.queue() == [] @pytest.mark.parametrize( "num_in_progress_runs", [0, 1, 3, 4, 5], ) def test_get_queued_runs_max_runs(instance, num_in_progress_runs, grpc_server_registry): max_runs = 4 # fill run store with ongoing runs in_progress_run_ids = ["in_progress-run-{}".format(i) for i in range(num_in_progress_runs)] for i, run_id in enumerate(in_progress_run_ids): # get a selection of all in progress statuses status = IN_PROGRESS_RUN_STATUSES[i % len(IN_PROGRESS_RUN_STATUSES)] create_run( instance, run_id=run_id, status=status, ) # add more queued runs than should be launched queued_run_ids = ["queued-run-{}".format(i) for i in range(max_runs + 1)] for run_id in queued_run_ids: create_run( instance, run_id=run_id, status=PipelineRunStatus.QUEUED, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=max_runs, ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert len(instance.run_launcher.queue()) == max(0, max_runs - num_in_progress_runs) def test_priority(instance, grpc_server_registry): create_run(instance, run_id="default-pri-run", status=PipelineRunStatus.QUEUED) create_run( instance, run_id="low-pri-run", status=PipelineRunStatus.QUEUED, tags={PRIORITY_TAG: "-1"}, ) create_run( instance, run_id="hi-pri-run", status=PipelineRunStatus.QUEUED, tags={PRIORITY_TAG: "3"}, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == [ "hi-pri-run", "default-pri-run", "low-pri-run", ] def test_priority_on_malformed_tag(instance, grpc_server_registry): create_run( instance, run_id="bad-pri-run", status=PipelineRunStatus.QUEUED, tags={PRIORITY_TAG: "foobar"}, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == ["bad-pri-run"] def test_tag_limits(instance, grpc_server_registry): create_run( instance, run_id="tiny-1", status=PipelineRunStatus.QUEUED, tags={"database": "tiny"}, ) create_run( instance, run_id="tiny-2", status=PipelineRunStatus.QUEUED, tags={"database": "tiny"}, ) create_run( instance, run_id="large-1", status=PipelineRunStatus.QUEUED, tags={"database": "large"}, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, tag_concurrency_limits=[{"key": "database", "value": "tiny", "limit": 1}], ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == ["tiny-1", "large-1"] def test_multiple_tag_limits(instance, grpc_server_registry): create_run( instance, run_id="run-1", status=PipelineRunStatus.QUEUED, tags={"database": "tiny", "user": "johann"}, ) create_run( instance, run_id="run-2", status=PipelineRunStatus.QUEUED, tags={"database": "tiny"}, ) create_run( instance, run_id="run-3", status=PipelineRunStatus.QUEUED, tags={"user": "johann"}, ) create_run( instance, run_id="run-4", status=PipelineRunStatus.QUEUED, tags={"user": "johann"}, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, tag_concurrency_limits=[ {"key": "database", "value": "tiny", "limit": 1}, {"key": "user", "value": "johann", "limit": 2}, ], ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == ["run-1", "run-3"] def test_overlapping_tag_limits(instance, grpc_server_registry): create_run( instance, run_id="run-1", status=PipelineRunStatus.QUEUED, tags={"foo": "bar"}, ) create_run( instance, run_id="run-2", status=PipelineRunStatus.QUEUED, tags={"foo": "bar"}, ) create_run( instance, run_id="run-3", status=PipelineRunStatus.QUEUED, tags={"foo": "other"}, ) create_run( instance, run_id="run-4", status=PipelineRunStatus.QUEUED, tags={"foo": "other"}, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, tag_concurrency_limits=[ {"key": "foo", "limit": 2}, {"key": "foo", "value": "bar", "limit": 1}, ], ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == ["run-1", "run-3"] def test_location_handles_reused(instance, monkeypatch, grpc_server_registry): """ verifies that only one repository location is created when two queued runs from the same location are dequeued in the same iteration """ create_run( instance, run_id="queued-run", status=PipelineRunStatus.QUEUED, ) create_run( instance, run_id="queued-run-2", status=PipelineRunStatus.QUEUED, ) original_method = GrpcServerRepositoryLocationHandle.__init__ method_calls = [] def mocked_handle_init( self, origin, host=None, port=None, socket=None, server_id=None, heartbeat=False, watch_server=True, ): method_calls.append(origin) return original_method(self, origin, host, port, socket, server_id, heartbeat, watch_server) monkeypatch.setattr( GrpcServerRepositoryLocationHandle, "__init__", mocked_handle_init, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, ) list(coordinator.run_iteration(instance, grpc_server_registry)) assert get_run_ids(instance.run_launcher.queue()) == ["queued-run", "queued-run-2"] assert len(method_calls) == 1 def test_skip_error_runs(instance, grpc_server_registry): create_invalid_run( instance, run_id="bad-run", status=PipelineRunStatus.QUEUED, ) create_run( instance, run_id="good-run", status=PipelineRunStatus.QUEUED, ) coordinator = QueuedRunCoordinatorDaemon( interval_seconds=5, max_concurrent_runs=10, ) errors = [ error for error in list(coordinator.run_iteration(instance, grpc_server_registry)) if error ] assert len(errors) == 1 assert "ModuleNotFoundError" in errors[0].message assert get_run_ids(instance.run_launcher.queue()) == ["good-run"] assert instance.get_run_by_id("bad-run").status == PipelineRunStatus.FAILURE
28.32
100
0.655932
[ "Apache-2.0" ]
PenguinToast/dagster
python_modules/dagster/dagster_tests/daemon_tests/test_queued_run_coordinator_daemon.py
10,620
Python
# -*- coding: utf-8 -*- import tensorflow as tf import logging logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) import argparse from aquaman_net import AquamanNet from utils import IMAGE_SIZE EPOCHS = 1000 BATCH_SIZE = 4 def preproc(image_bytes): image_jpg = tf.image.decode_jpeg(image_bytes, channels=3) image_jpg = tf.image.resize_images(image_jpg, IMAGE_SIZE) image_jpg = tf.to_float(image_jpg) / 255.0 image_jpg = tf.reshape( image_jpg, [IMAGE_SIZE[0], IMAGE_SIZE[1], 3], name="Reshape_Preproc") return image_jpg def input_fn(tf_records_list, epochs=10, batch_size=8, n_frames=16): def _parse_proto(example_proto): parsed_dict = { "target": tf.FixedLenFeature((), tf.float32, default_value=0) } for i in range(n_frames): parsed_dict['frame_{}'.format(i)] = tf.FixedLenFeature( (), tf.string, default_value="") parsed_features = tf.parse_single_example(example_proto, parsed_dict) return parsed_features def _split_xy(feat_dict): target = tf.one_hot(tf.to_int32( feat_dict['target']), depth=2, dtype=tf.float32) input_frames = {} for i in range(n_frames): frame_id = 'frame_{}'.format(i) input_frames[frame_id] = feat_dict[frame_id] return input_frames, {'target': target} def _input_fn(): dataset = tf.data.TFRecordDataset( tf_records_list, compression_type='GZIP') dataset = dataset.map(_parse_proto) dataset = dataset.map(_split_xy) dataset = dataset.shuffle(buffer_size=2 * batch_size) dataset = dataset.repeat(epochs) dataset = dataset.batch(batch_size) return dataset return _input_fn def metrics(logits, labels): argmax_logits = tf.argmax(logits, axis=1) argmax_labels = tf.argmax(labels, axis=1) return {'accuracy': tf.metrics.accuracy(argmax_labels, argmax_logits)} def get_serving_fn(window_size): input_tensor = {"frame_{}".format(i): tf.placeholder( dtype=tf.string, shape=[None]) for i in range(window_size)} return tf.estimator.export.build_raw_serving_input_receiver_fn(input_tensor) def model_fn(n_frames): def _model_fn(features, labels, mode, params): input_tensors_list = [] for i in range(n_frames): frame_id = 'frame_{}'.format(i) frame_tensor = tf.map_fn(preproc, features[frame_id], tf.float32) frame_tensor = tf.expand_dims(frame_tensor, axis=-1) frame_tensor = tf.transpose(frame_tensor, [0, 1, 2, 4, 3]) print(frame_tensor) input_tensors_list.append(frame_tensor) input_tensor_stream = tf.concat(input_tensors_list, axis=3) print(input_tensor_stream) is_training = mode == tf.estimator.ModeKeys.TRAIN logits = AquamanNet(input_tensor_stream, is_training, 2) # Loss, training and eval operations are not needed during inference. total_loss = None loss = None train_op = None eval_metric_ops = {} export_outputs = None prediction_dict = {'class': tf.argmax( logits, axis=1, name="predictions")} if mode != tf.estimator.ModeKeys.PREDICT: # IT IS VERY IMPORTANT TO RETRIEVE THE REGULARIZATION LOSSES reg_loss = tf.losses.get_regularization_loss() # This summary is automatically caught by the Estimator API tf.summary.scalar("Regularization_Loss", tensor=reg_loss) loss = tf.losses.softmax_cross_entropy( onehot_labels=labels['target'], logits=logits) tf.summary.scalar("XEntropy_LOSS", tensor=loss) total_loss = loss + reg_loss learning_rate = tf.constant(1e-4, name='fixed_learning_rate') #optimizer = tf.train.GradientDescentOptimizer(learning_rate) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) vars_to_train = tf.trainable_variables() tf.logging.info("Variables to train: {}".format(vars_to_train)) if is_training: # You DO must get this collection in order to perform updates on batch_norm variables update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize( loss=total_loss, global_step=tf.train.get_global_step(), var_list=vars_to_train) eval_metric_ops = metrics(logits, labels['target']) else: # pass export_outputs = { 'logits': tf.estimator.export.PredictOutput(outputs=logits)} return tf.estimator.EstimatorSpec( mode=mode, predictions=prediction_dict, loss=total_loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs) return _model_fn if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--train-tf-list', dest='train_tf_list', type=str, required=True) parser.add_argument('--test-tf-list', dest='test_tf_list', type=str, required=True) parser.add_argument('--output-dir', dest='output_dir', type=str, required=True) parser.add_argument('--window-size', dest='window_size', type=int, required=True) args = parser.parse_args() tfrecord_list_train = args.train_tf_list.split(',') tfrecord_list_test = args.test_tf_list.split(',') session_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False ) run_config = tf.estimator.RunConfig( model_dir=args.output_dir, save_summary_steps=100, session_config=session_config, save_checkpoints_steps=100, save_checkpoints_secs=None, keep_checkpoint_max=1 ) estimator = tf.estimator.Estimator( model_fn=model_fn(args.window_size), config=run_config ) train_input_fn = input_fn( batch_size=BATCH_SIZE, tf_records_list=tfrecord_list_train, epochs=EPOCHS, n_frames=args.window_size) test_input_fn = input_fn( batch_size=BATCH_SIZE, tf_records_list=tfrecord_list_test, epochs=1, n_frames=args.window_size) train_spec = tf.estimator.TrainSpec( input_fn=train_input_fn, max_steps=10000) # eval_steps = math.ceil(EVAL_SET_SIZE / FLAGS.batch_size) eval_spec = tf.estimator.EvalSpec( input_fn=test_input_fn, # steps=eval_steps, start_delay_secs=60, throttle_secs=60) tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) estimator.export_savedmodel( export_dir_base=args.output_dir, serving_input_receiver_fn=get_serving_fn(args.window_size))
32.63964
109
0.637593
[ "MIT" ]
brungcm/health-hack-2019
ml/train_net.py
7,246
Python
#!/usr/bin/env python """ Test Service """ from ..debugging import bacpypes_debugging, ModuleLogger # some debugging _debug = 0 _log = ModuleLogger(globals()) def some_function(*args): if _debug: some_function._debug("f %r", args) return args[0] + 1 bacpypes_debugging(some_function)
16.5
56
0.720539
[ "MIT" ]
ChristianTremblay/bacpypes
py25/bacpypes/service/test.py
297
Python
# Copyright 2021 The Couler Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import couler.core.templates.output from couler.core import states, utils from couler.core.templates import OutputArtifact, Step def update_step(func_name, args, step_name, caller_line): if states.workflow.dag_mode_enabled(): step_name = _update_dag_tasks( func_name, states._dag_caller_line, states._upstream_dag_task, states._upstream_dag_depends_logic, args, step_name=step_name, ) states._upstream_dag_task = [step_name] else: if states._run_concurrent_lock: step_name = _update_steps( "concurrent_func_name", states._concurrent_func_line, args, func_name, ) else: step_name = _update_steps(func_name, caller_line, args) return step_name def _update_dag_tasks( function_name, caller_line, dependencies, depends_logic, args=None, template_name=None, step_name=None, ): """ A task in DAG of Argo YAML contains name, related template and parameters. Here we insert a single task into the global tasks. """ if step_name is None: function_id = utils.invocation_name(function_name, caller_line) else: function_id = step_name task_template = states.workflow.get_dag_task(function_id) if task_template is None: task_template = OrderedDict({"name": function_id}) if dependencies is not None and isinstance(dependencies, list): if "dependencies" in task_template: task_template["dependencies"].extend(dependencies) else: task_template["dependencies"] = dependencies if depends_logic is not None: task_template["depends"] = depends_logic if template_name is None: task_template["template"] = function_name else: task_template["template"] = template_name # configure the args if args is not None: parameters, artifacts = _get_params_and_artifacts_from_args( args, function_name, prefix="tasks" ) if len(parameters) > 0: task_template["arguments"] = OrderedDict() task_template["arguments"]["parameters"] = parameters if len(artifacts) > 0: if "arguments" not in task_template: task_template["arguments"] = OrderedDict() task_template["arguments"]["artifacts"] = artifacts else: # step exist on the dag, thus, we update its dependency if dependencies is not None: if "dependencies" in task_template: task_template["dependencies"].extend(dependencies) else: task_template["dependencies"] = [dependencies] if depends_logic is not None: task_template["depends"] = depends_logic t_name = function_name if template_name is None else template_name step = Step(name=function_id, template=t_name) if states._exit_handler_enable: if states._when_prefix is not None: step.when = states._when_prefix if function_id in states.workflow.exit_handler_step: states.workflow.exit_handler_step.get(function_id).append( step.to_dict() ) else: states.workflow.exit_handler_step[function_id] = [step.to_dict()] elif states._when_prefix is not None: step.when = states._when_prefix if step.name not in states.workflow.dag_tasks.keys(): step_spec = step.to_dict() step_spec["dependencies"] = [states._when_task] states.workflow.dag_tasks[step.name] = step_spec else: states.workflow.update_dag_task(function_id, task_template) # return the current task name return function_id def _update_steps(function_name, caller_line, args=None, template_name=None): """ A step in Argo YAML contains name, related template and parameters. Here we insert a single step into the global steps. """ function_id = utils.invocation_name(function_name, caller_line) # Update `steps` only if needed if states._update_steps_lock: name = function_id if states._run_concurrent_lock: _id = utils.invocation_name(template_name, caller_line) name = "%s-%s" % (_id, states._concurrent_func_id) if states._sub_steps is not None: states._concurrent_func_id = states._concurrent_func_id + 1 t_name = function_name if template_name is None else template_name step = Step(name=name, template=t_name) if states._when_prefix is not None: step.when = states._when_prefix if args is not None: parameters, artifacts = _get_params_and_artifacts_from_args( args, template_name if states._run_concurrent_lock else function_name, prefix="steps", ) if len(parameters) > 0: step.arguments = OrderedDict() step.arguments["parameters"] = parameters if len(artifacts) > 0: if step.arguments is None: step.arguments = OrderedDict() step.arguments["artifacts"] = artifacts if states._condition_id is not None: function_id = states._condition_id if states._while_lock: if function_id in states._while_steps: states._while_steps.get(function_id).append(step.to_dict()) else: states._while_steps[function_id] = [step.to_dict()] else: if states._sub_steps is not None: if function_id in states._sub_steps: states._sub_steps.get(function_id).append(step.to_dict()) else: states._sub_steps[function_id] = [step.to_dict()] elif states._exit_handler_enable is True: if function_id in states.workflow.exit_handler_step: states.workflow.exit_handler_step.get(function_id).append( step.to_dict() ) else: states.workflow.exit_handler_step[function_id] = [ step.to_dict() ] else: states.workflow.add_step(function_id, step) return step.name else: return function_id def _get_params_and_artifacts_from_args(args, input_param_name, prefix): parameters = [] artifacts = [] if not isinstance(args, list): args = [args] i = 0 for arg in args: values = couler.core.templates.output.parse_argo_output(arg, prefix) if isinstance(values, list): for value in values: parameters.append( { "name": utils.input_parameter_name( input_param_name, i ), "value": value, } ) i += 1 else: if isinstance(arg, OutputArtifact): artifact_dict = { "name": ".".join(arg.value.split(".")[5:]), "from": values, } if not any( [artifact_dict["from"] == x["from"] for x in artifacts] ): artifacts.append(artifact_dict) else: parameters.append( { "name": utils.input_parameter_name( input_param_name, i ), "value": values, } ) i += 1 return parameters, artifacts
35.506173
78
0.585883
[ "Apache-2.0" ]
javoweb/couler
couler/core/step_update_utils.py
8,628
Python
""" Pymode utils. """ import os.path import sys import threading import warnings from contextlib import contextmanager import vim # noqa from ._compat import StringIO, PY2 DEBUG = int(vim.eval('g:pymode_debug')) warnings.filterwarnings('ignore') @contextmanager def silence_stderr(): """ Redirect stderr. """ if DEBUG: yield else: with threading.Lock(): stderr = sys.stderr sys.stderr = StringIO() yield with threading.Lock(): sys.stderr = stderr def patch_paths(): """ Function description. """ sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs')) if PY2: sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs2')) else: sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'libs3'))
20
76
0.630952
[ "MIT" ]
Jenkin0603/myvim
bundle/python-mode/pymode/utils.py
840
Python
import graphene import graphql_jwt from graphql_jwt.refresh_token.mixins import RefreshTokenMixin from ..testcases import SchemaTestCase from . import mixins class TokenAuthTests(mixins.TokenAuthMixin, SchemaTestCase): query = ''' mutation TokenAuth($username: String!, $password: String!) { tokenAuth(username: $username, password: $password) { token refreshToken } }''' refresh_token_mutations = { 'token_auth': graphql_jwt.ObtainJSONWebToken, } class Refresh(RefreshTokenMixin, graphql_jwt.Refresh): class Arguments(RefreshTokenMixin.Fields): """Refresh Arguments""" class RefreshTests(mixins.RefreshMixin, SchemaTestCase): query = ''' mutation RefreshToken($refreshToken: String!) { refreshToken(refreshToken: $refreshToken) { token refreshToken payload } }''' refresh_token_mutations = { 'refresh_token': Refresh, } class RevokeTests(mixins.RevokeMixin, SchemaTestCase): query = ''' mutation RevokeToken($refreshToken: String!) { revokeToken(refreshToken: $refreshToken) { revoked } }''' class Mutation(graphene.ObjectType): revoke_token = graphql_jwt.Revoke.Field()
22.945455
64
0.674326
[ "MIT" ]
CZZLEGEND/django-graphql-jwt
tests/refresh_token/test_mutations.py
1,262
Python
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import glob import os.path import sys DIR = os.path.dirname(os.path.abspath(__file__)) REPO = os.path.dirname(os.path.dirname(DIR)) SRC_DIR = os.path.join(REPO, "src") def check_header_files(component): component_dir = os.path.join(SRC_DIR, component) header_files = (glob.glob(os.path.join(component_dir, "*.h")) + glob.glob(os.path.join(component_dir, "*", "*.h"))) assert header_files errors = [] for filename in header_files: assert filename.endswith(".h"), filename rel_filename = os.path.relpath(filename, start=component_dir) guard = rel_filename.replace(".", "_").replace("/", "_").replace("-", "_").upper() expected = "#ifndef " + guard for line in open(filename): line = line.rstrip("\n") if line.startswith("#ifndef"): if line != expected: errors.append('%s uses guard "%s" but should use "%s"' % (filename, line, expected)) break return errors def main(): errors = [] errors.extend(check_header_files("preprocess")) errors.extend(check_header_files("search")) for error in errors: print(error) if errors: sys.exit(1) if __name__ == "__main__": main()
28.979167
90
0.591661
[ "MIT" ]
karthikv792/PlanningAssistance
planner/FAST-DOWNWARD/misc/style/check-include-guard-convention.py
1,391
Python
# Copyright (C) 2017-2019 New York University, # University at Buffalo, # Illinois Institute of Technology. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Abstract class for interpreter commands. Each command has to implement two methods: - eval(list(string)): Given a list of tokens check whether the tokens reference the given command. If yes, evaluate the command and return True. Otherwise, return False. - help: Print a simple help statement """ from abc import abstractmethod from typing import List class Command(object): """Abstract class for interpreter commands.""" @abstractmethod def eval(self, tokens: List[str]) -> bool: """If the given tokens sequence matches the given command execute it and return True. Otherwise, return False. Parameters ---------- tokens: list(string) List of tokens in the command line Returns ------- bool """ raise NotImplementedError() @abstractmethod def help(self) -> None: """Print a simple help statement for the command.""" raise NotImplementedError() def output(self, rows): """Output the given rows in tabular format. Each rows is a list of string values. All rows are expected to have the sam elength. The first row is the table header. Parameters ---------- rows: list(string) List of rows in the table """ # Determine the longest value for each column. columns = [0] * len(rows[0]) for row in rows: for col in range(len(columns)): count = len(row[col]) if count > columns[col]: columns[col] = count # Create format string format = None divider = list() for col_len in columns: f = '%-' + str(col_len) + 's' if format is None: format = f else: format += ' | ' + f if len(divider) in [0, len(columns) - 1]: i = 1 else: i = 2 divider.append('-' * (col_len + i)) # Print fomrated rows print(format % tuple(rows[0])) print('|'.join(divider)) for row in rows[1:]: print(format % tuple(row))
32.943182
79
0.588134
[ "ECL-2.0", "Apache-2.0" ]
VizierDB/web-api-async
vizier/api/client/cli/command.py
2,899
Python
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.water_heaters_and_thermal_storage import WaterHeaterMixed log = logging.getLogger(__name__) class TestWaterHeaterMixed(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_waterheatermixed(self): pyidf.validation_level = ValidationLevel.error obj = WaterHeaterMixed() # alpha var_name = "Name" obj.name = var_name # real var_tank_volume = 0.0 obj.tank_volume = var_tank_volume # object-list var_setpoint_temperature_schedule_name = "object-list|Setpoint Temperature Schedule Name" obj.setpoint_temperature_schedule_name = var_setpoint_temperature_schedule_name # real var_deadband_temperature_difference = 0.0 obj.deadband_temperature_difference = var_deadband_temperature_difference # real var_maximum_temperature_limit = 5.5 obj.maximum_temperature_limit = var_maximum_temperature_limit # alpha var_heater_control_type = "Cycle" obj.heater_control_type = var_heater_control_type # real var_heater_maximum_capacity = 0.0 obj.heater_maximum_capacity = var_heater_maximum_capacity # real var_heater_minimum_capacity = 0.0 obj.heater_minimum_capacity = var_heater_minimum_capacity # real var_heater_ignition_minimum_flow_rate = 0.0 obj.heater_ignition_minimum_flow_rate = var_heater_ignition_minimum_flow_rate # real var_heater_ignition_delay = 0.0 obj.heater_ignition_delay = var_heater_ignition_delay # alpha var_heater_fuel_type = "Electricity" obj.heater_fuel_type = var_heater_fuel_type # real var_heater_thermal_efficiency = 0.50005 obj.heater_thermal_efficiency = var_heater_thermal_efficiency # object-list var_part_load_factor_curve_name = "object-list|Part Load Factor Curve Name" obj.part_load_factor_curve_name = var_part_load_factor_curve_name # real var_off_cycle_parasitic_fuel_consumption_rate = 0.0 obj.off_cycle_parasitic_fuel_consumption_rate = var_off_cycle_parasitic_fuel_consumption_rate # alpha var_off_cycle_parasitic_fuel_type = "Electricity" obj.off_cycle_parasitic_fuel_type = var_off_cycle_parasitic_fuel_type # real var_off_cycle_parasitic_heat_fraction_to_tank = 0.5 obj.off_cycle_parasitic_heat_fraction_to_tank = var_off_cycle_parasitic_heat_fraction_to_tank # real var_on_cycle_parasitic_fuel_consumption_rate = 0.0 obj.on_cycle_parasitic_fuel_consumption_rate = var_on_cycle_parasitic_fuel_consumption_rate # alpha var_on_cycle_parasitic_fuel_type = "Electricity" obj.on_cycle_parasitic_fuel_type = var_on_cycle_parasitic_fuel_type # real var_on_cycle_parasitic_heat_fraction_to_tank = 0.5 obj.on_cycle_parasitic_heat_fraction_to_tank = var_on_cycle_parasitic_heat_fraction_to_tank # alpha var_ambient_temperature_indicator = "Schedule" obj.ambient_temperature_indicator = var_ambient_temperature_indicator # object-list var_ambient_temperature_schedule_name = "object-list|Ambient Temperature Schedule Name" obj.ambient_temperature_schedule_name = var_ambient_temperature_schedule_name # object-list var_ambient_temperature_zone_name = "object-list|Ambient Temperature Zone Name" obj.ambient_temperature_zone_name = var_ambient_temperature_zone_name # node var_ambient_temperature_outdoor_air_node_name = "node|Ambient Temperature Outdoor Air Node Name" obj.ambient_temperature_outdoor_air_node_name = var_ambient_temperature_outdoor_air_node_name # real var_off_cycle_loss_coefficient_to_ambient_temperature = 0.0 obj.off_cycle_loss_coefficient_to_ambient_temperature = var_off_cycle_loss_coefficient_to_ambient_temperature # real var_off_cycle_loss_fraction_to_zone = 0.5 obj.off_cycle_loss_fraction_to_zone = var_off_cycle_loss_fraction_to_zone # real var_on_cycle_loss_coefficient_to_ambient_temperature = 0.0 obj.on_cycle_loss_coefficient_to_ambient_temperature = var_on_cycle_loss_coefficient_to_ambient_temperature # real var_on_cycle_loss_fraction_to_zone = 0.5 obj.on_cycle_loss_fraction_to_zone = var_on_cycle_loss_fraction_to_zone # real var_peak_use_flow_rate = 0.0 obj.peak_use_flow_rate = var_peak_use_flow_rate # object-list var_use_flow_rate_fraction_schedule_name = "object-list|Use Flow Rate Fraction Schedule Name" obj.use_flow_rate_fraction_schedule_name = var_use_flow_rate_fraction_schedule_name # object-list var_cold_water_supply_temperature_schedule_name = "object-list|Cold Water Supply Temperature Schedule Name" obj.cold_water_supply_temperature_schedule_name = var_cold_water_supply_temperature_schedule_name # node var_use_side_inlet_node_name = "node|Use Side Inlet Node Name" obj.use_side_inlet_node_name = var_use_side_inlet_node_name # node var_use_side_outlet_node_name = "node|Use Side Outlet Node Name" obj.use_side_outlet_node_name = var_use_side_outlet_node_name # real var_use_side_effectiveness = 0.5 obj.use_side_effectiveness = var_use_side_effectiveness # node var_source_side_inlet_node_name = "node|Source Side Inlet Node Name" obj.source_side_inlet_node_name = var_source_side_inlet_node_name # node var_source_side_outlet_node_name = "node|Source Side Outlet Node Name" obj.source_side_outlet_node_name = var_source_side_outlet_node_name # real var_source_side_effectiveness = 0.5 obj.source_side_effectiveness = var_source_side_effectiveness # real var_use_side_design_flow_rate = 0.0 obj.use_side_design_flow_rate = var_use_side_design_flow_rate # real var_source_side_design_flow_rate = 0.0 obj.source_side_design_flow_rate = var_source_side_design_flow_rate # real var_indirect_water_heating_recovery_time = 0.0001 obj.indirect_water_heating_recovery_time = var_indirect_water_heating_recovery_time # alpha var_source_side_flow_control_mode = "StorageTank" obj.source_side_flow_control_mode = var_source_side_flow_control_mode # object-list var_indirect_alternate_setpoint_temperature_schedule_name = "object-list|Indirect Alternate Setpoint Temperature Schedule Name" obj.indirect_alternate_setpoint_temperature_schedule_name = var_indirect_alternate_setpoint_temperature_schedule_name idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.waterheatermixeds[0].name, var_name) self.assertAlmostEqual(idf2.waterheatermixeds[0].tank_volume, var_tank_volume) self.assertEqual(idf2.waterheatermixeds[0].setpoint_temperature_schedule_name, var_setpoint_temperature_schedule_name) self.assertAlmostEqual(idf2.waterheatermixeds[0].deadband_temperature_difference, var_deadband_temperature_difference) self.assertAlmostEqual(idf2.waterheatermixeds[0].maximum_temperature_limit, var_maximum_temperature_limit) self.assertEqual(idf2.waterheatermixeds[0].heater_control_type, var_heater_control_type) self.assertAlmostEqual(idf2.waterheatermixeds[0].heater_maximum_capacity, var_heater_maximum_capacity) self.assertAlmostEqual(idf2.waterheatermixeds[0].heater_minimum_capacity, var_heater_minimum_capacity) self.assertAlmostEqual(idf2.waterheatermixeds[0].heater_ignition_minimum_flow_rate, var_heater_ignition_minimum_flow_rate) self.assertAlmostEqual(idf2.waterheatermixeds[0].heater_ignition_delay, var_heater_ignition_delay) self.assertEqual(idf2.waterheatermixeds[0].heater_fuel_type, var_heater_fuel_type) self.assertAlmostEqual(idf2.waterheatermixeds[0].heater_thermal_efficiency, var_heater_thermal_efficiency) self.assertEqual(idf2.waterheatermixeds[0].part_load_factor_curve_name, var_part_load_factor_curve_name) self.assertAlmostEqual(idf2.waterheatermixeds[0].off_cycle_parasitic_fuel_consumption_rate, var_off_cycle_parasitic_fuel_consumption_rate) self.assertEqual(idf2.waterheatermixeds[0].off_cycle_parasitic_fuel_type, var_off_cycle_parasitic_fuel_type) self.assertAlmostEqual(idf2.waterheatermixeds[0].off_cycle_parasitic_heat_fraction_to_tank, var_off_cycle_parasitic_heat_fraction_to_tank) self.assertAlmostEqual(idf2.waterheatermixeds[0].on_cycle_parasitic_fuel_consumption_rate, var_on_cycle_parasitic_fuel_consumption_rate) self.assertEqual(idf2.waterheatermixeds[0].on_cycle_parasitic_fuel_type, var_on_cycle_parasitic_fuel_type) self.assertAlmostEqual(idf2.waterheatermixeds[0].on_cycle_parasitic_heat_fraction_to_tank, var_on_cycle_parasitic_heat_fraction_to_tank) self.assertEqual(idf2.waterheatermixeds[0].ambient_temperature_indicator, var_ambient_temperature_indicator) self.assertEqual(idf2.waterheatermixeds[0].ambient_temperature_schedule_name, var_ambient_temperature_schedule_name) self.assertEqual(idf2.waterheatermixeds[0].ambient_temperature_zone_name, var_ambient_temperature_zone_name) self.assertEqual(idf2.waterheatermixeds[0].ambient_temperature_outdoor_air_node_name, var_ambient_temperature_outdoor_air_node_name) self.assertAlmostEqual(idf2.waterheatermixeds[0].off_cycle_loss_coefficient_to_ambient_temperature, var_off_cycle_loss_coefficient_to_ambient_temperature) self.assertAlmostEqual(idf2.waterheatermixeds[0].off_cycle_loss_fraction_to_zone, var_off_cycle_loss_fraction_to_zone) self.assertAlmostEqual(idf2.waterheatermixeds[0].on_cycle_loss_coefficient_to_ambient_temperature, var_on_cycle_loss_coefficient_to_ambient_temperature) self.assertAlmostEqual(idf2.waterheatermixeds[0].on_cycle_loss_fraction_to_zone, var_on_cycle_loss_fraction_to_zone) self.assertAlmostEqual(idf2.waterheatermixeds[0].peak_use_flow_rate, var_peak_use_flow_rate) self.assertEqual(idf2.waterheatermixeds[0].use_flow_rate_fraction_schedule_name, var_use_flow_rate_fraction_schedule_name) self.assertEqual(idf2.waterheatermixeds[0].cold_water_supply_temperature_schedule_name, var_cold_water_supply_temperature_schedule_name) self.assertEqual(idf2.waterheatermixeds[0].use_side_inlet_node_name, var_use_side_inlet_node_name) self.assertEqual(idf2.waterheatermixeds[0].use_side_outlet_node_name, var_use_side_outlet_node_name) self.assertAlmostEqual(idf2.waterheatermixeds[0].use_side_effectiveness, var_use_side_effectiveness) self.assertEqual(idf2.waterheatermixeds[0].source_side_inlet_node_name, var_source_side_inlet_node_name) self.assertEqual(idf2.waterheatermixeds[0].source_side_outlet_node_name, var_source_side_outlet_node_name) self.assertAlmostEqual(idf2.waterheatermixeds[0].source_side_effectiveness, var_source_side_effectiveness) self.assertAlmostEqual(idf2.waterheatermixeds[0].use_side_design_flow_rate, var_use_side_design_flow_rate) self.assertAlmostEqual(idf2.waterheatermixeds[0].source_side_design_flow_rate, var_source_side_design_flow_rate) self.assertAlmostEqual(idf2.waterheatermixeds[0].indirect_water_heating_recovery_time, var_indirect_water_heating_recovery_time) self.assertEqual(idf2.waterheatermixeds[0].source_side_flow_control_mode, var_source_side_flow_control_mode) self.assertEqual(idf2.waterheatermixeds[0].indirect_alternate_setpoint_temperature_schedule_name, var_indirect_alternate_setpoint_temperature_schedule_name)
61.848485
164
0.787686
[ "Apache-2.0" ]
marcelosalles/pyidf
tests/test_waterheatermixed.py
12,246
Python
# coding=UTF-8 import os import re import sys class BaseStringScript: # State STATE_SEARCHING='STATE_SEARCHING' STATE_IN_STR='STATE_IN_STR' STATE_IN_PLUR='STATE_IN_PLUR' # Tag types TYPE_STR='TYPE_STR' TYPE_PLUR='TYPE_PLUR' # String tag start/end START_STR = '<string' END_STR = '</string' # Plurals tag start/end START_PLUR='<plurals' END_PLUR = '</plurals' def ProcessTag(self, line, type): """ Process a single string tag. :param line: an array of lines making a single string tag. :param type: the tag type, such as TYPE_STR or TYPE_PLUR :return: an array of lines representing the processed tag. """ return line def ProcessFile(self, file_name): """ Process and write a file of string resources. :param file_name: path to the file to process. :return: None. """ lines = [] state = self.STATE_SEARCHING curr_tag = [] pending_process_type = None with open(file_name, 'r') as myfile: data = myfile.read() for line in data.split('\n'): # Searching for a new tag if state == self.STATE_SEARCHING: if self.START_STR in line: state = self.STATE_IN_STR elif self.START_PLUR in line: state = self.STATE_IN_PLUR else: lines.append(line) # Inside of a string tag if state == self.STATE_IN_STR: curr_tag.append(line) if self.END_STR in line: pending_process_type = self.TYPE_STR # Inside of a plurals tag if state == self.STATE_IN_PLUR: curr_tag.append(line) if self.END_PLUR in line: pending_process_type = self.TYPE_PLUR # Some processing needs doing if pending_process_type: # Do processing lines += self.ProcessTag(curr_tag, pending_process_type) # Reset processing state pending_process_type = None state = self.STATE_SEARCHING curr_tag = [] # Write back to the file self.WriteFile(file_name, '\n'.join(lines)) def WriteFile(self, file_name, file_contents): """ Overwrite the contents of a file. :param file_name: path to the file to write. :param file_contents: string containing new file contents. :return: None """ with open(file_name, 'w') as myfile: myfile.write(file_contents)
24.72449
66
0.626083
[ "Apache-2.0" ]
1y445rc/FirebaseUI-Android
scripts/translations/base_string_script.py
2,423
Python
from cloudify import ctx from cloudify.state import ctx_parameters as inputs from cloudify.decorators import operation from cloudify.exceptions import * from plugin.nodes.utils import * def build_radl_flavour(config): ctx.logger.debug('{0} Infrastructure Manager deployment info:'.format(get_log_indentation())) increase_log_indentation() type = get_child(dictionary=config, key='type', required=True) cores = get_child(dictionary=config, key='cores', required=True) memory = get_child(dictionary=config, key='memory', required=True) flavour_radl = \ " instance_type = '" + str(type) + "' and \n" + \ " cpu.count = " + str(cores) + " and \n" + \ " memory.size = " + str(memory) + " and \n" decrease_log_indentation() return flavour_radl @operation def configure(config, simulate, **kwargs): if (not simulate): reset_log_indentation() ctx.logger.debug('{0} Configure operation: Begin'.format(get_log_indentation())) increase_log_indentation() radl = get_child(ctx.instance.runtime_properties, key='settings') if not radl: radl = create_child(ctx.instance.runtime_properties, key='settings', value={}) radl_network = create_child(radl, key='flavour', value=build_radl_flavour(config)) decrease_log_indentation() ctx.logger.debug('{0} Configure operation: End'.format(get_log_indentation()))
39.444444
97
0.697887
[ "Apache-2.0" ]
MSO4SC/cloudify-im-extension
plugin/nodes/flavour.py
1,420
Python
"""Certbot client.""" # version number like 1.2.3a0, must have at least 2 parts, like 1.2 __version__ = '1.14.0.dev0'
29.5
67
0.686441
[ "Apache-2.0" ]
4n3i5v74/certbot
certbot/certbot/__init__.py
118
Python
import subprocess import py import pytest @pytest.fixture( params=["tests/dataset-rdstmc", "tests/dataset-wiki", "tests/dataset-rntutor"] ) def datasetdir(request): return py.path.local(request.param) @pytest.fixture def messages(datasetdir): msgdir = datasetdir.join("messages") return msgdir.listdir(fil="*.xml") @pytest.fixture def rncdir(datasetdir): return datasetdir.join("schemas") @pytest.fixture def rootrnc(rncdir): return rncdir.join("root.rnc") @pytest.fixture def rncschemas(rootrnc): return rootrnc.dirpath().listdir("*.rnc") def test_validate_by_rnc_onemsg(rootrnc, messages): cmd = ["pyjing", "-c"] cmd.append(rootrnc.strpath) cmd.append(messages[0].strpath) subprocess.check_call(cmd) def test_validate_by_rnc_allmsgs(rootrnc, messages): cmd = ["pyjing", "-c"] cmd.append(rootrnc.strpath) cmd.extend(map(str, messages)) subprocess.check_call(cmd) def test_rnc2rng(rootrnc, tmpdir, rncschemas): cmd = ["pytrang"] rngname = rootrnc.new(dirname=tmpdir, ext=".rng") cmd.append(rootrnc.strpath) cmd.append(rngname.strpath) subprocess.check_call(cmd) rngnames = tmpdir.listdir(fil="*.rng") assert len(rngnames) == len(rncschemas) for rnc, rng in zip(sorted(rngnames), sorted(rncschemas)): assert rnc.purebasename == rng.purebasename """RNG section ======================== """ @pytest.fixture def rngschemas(rootrnc, tmpdir, rncschemas): cmd = ["pytrang"] rngname = rootrnc.new(dirname=tmpdir, ext=".rng") cmd.append(rootrnc.strpath) cmd.append(rngname.strpath) subprocess.check_call(cmd) rngnames = tmpdir.listdir(fil="*.rng") assert len(rngnames) == len(rncschemas) for rnc, rng in zip(sorted(rngnames), sorted(rncschemas)): assert rnc.purebasename == rng.purebasename return rngnames @pytest.fixture def rootrng(rngschemas): rootschema = rngschemas[0].new(basename="root.rng") assert rootschema in rngschemas rootschema.ensure() return rootschema def test_validate_by_rng_onemsg(rootrng, messages): cmd = ["pyjing"] cmd.append(rootrng.strpath) cmd.append(messages[0].strpath) subprocess.check_call(cmd) def test_validate_by_rng_allmsgs(rootrng, messages): cmd = ["pyjing"] cmd.append(rootrng.strpath) cmd.extend(map(str, messages)) subprocess.check_call(cmd)
23.93
82
0.695779
[ "MIT" ]
eugenehp/jingtrang
tests/test_it.py
2,393
Python
"""Config flow to configure the Netgear integration.""" from __future__ import annotations import logging from typing import cast from urllib.parse import urlparse from pynetgear import DEFAULT_HOST, DEFAULT_PORT, DEFAULT_USER import voluptuous as vol from homeassistant import config_entries from homeassistant.components import ssdp from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_PORT, CONF_SSL, CONF_USERNAME, ) from homeassistant.core import callback from homeassistant.data_entry_flow import FlowResult from homeassistant.util.network import is_ipv4_address from .const import ( CONF_CONSIDER_HOME, DEFAULT_CONSIDER_HOME, DEFAULT_NAME, DOMAIN, MODELS_PORT_80, MODELS_PORT_5555, PORT_80, PORT_5555, ) from .errors import CannotLoginException from .router import get_api _LOGGER = logging.getLogger(__name__) def _discovery_schema_with_defaults(discovery_info): return vol.Schema(_ordered_shared_schema(discovery_info)) def _user_schema_with_defaults(user_input): user_schema = {vol.Optional(CONF_HOST, default=user_input.get(CONF_HOST, "")): str} user_schema.update(_ordered_shared_schema(user_input)) return vol.Schema(user_schema) def _ordered_shared_schema(schema_input): return { vol.Optional(CONF_USERNAME, default=schema_input.get(CONF_USERNAME, "")): str, vol.Required(CONF_PASSWORD, default=schema_input.get(CONF_PASSWORD, "")): str, } class OptionsFlowHandler(config_entries.OptionsFlow): """Options for the component.""" def __init__(self, config_entry: config_entries.ConfigEntry) -> None: """Init object.""" self.config_entry = config_entry async def async_step_init(self, user_input=None): """Manage the options.""" if user_input is not None: return self.async_create_entry(title="", data=user_input) settings_schema = vol.Schema( { vol.Optional( CONF_CONSIDER_HOME, default=self.config_entry.options.get( CONF_CONSIDER_HOME, DEFAULT_CONSIDER_HOME.total_seconds() ), ): int, } ) return self.async_show_form(step_id="init", data_schema=settings_schema) class NetgearFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow.""" VERSION = 1 def __init__(self): """Initialize the netgear config flow.""" self.placeholders = { CONF_HOST: DEFAULT_HOST, CONF_PORT: DEFAULT_PORT, CONF_USERNAME: DEFAULT_USER, CONF_SSL: False, } self.discovered = False @staticmethod @callback def async_get_options_flow( config_entry: config_entries.ConfigEntry, ) -> OptionsFlowHandler: """Get the options flow.""" return OptionsFlowHandler(config_entry) async def _show_setup_form(self, user_input=None, errors=None): """Show the setup form to the user.""" if not user_input: user_input = {} if self.discovered: data_schema = _discovery_schema_with_defaults(user_input) else: data_schema = _user_schema_with_defaults(user_input) return self.async_show_form( step_id="user", data_schema=data_schema, errors=errors or {}, description_placeholders=self.placeholders, ) async def async_step_ssdp(self, discovery_info: ssdp.SsdpServiceInfo) -> FlowResult: """Initialize flow from ssdp.""" updated_data: dict[str, str | int | bool] = {} device_url = urlparse(discovery_info.ssdp_location) if hostname := device_url.hostname: hostname = cast(str, hostname) updated_data[CONF_HOST] = hostname if not is_ipv4_address(str(hostname)): return self.async_abort(reason="not_ipv4_address") _LOGGER.debug("Netgear ssdp discovery info: %s", discovery_info) await self.async_set_unique_id(discovery_info.upnp[ssdp.ATTR_UPNP_SERIAL]) self._abort_if_unique_id_configured(updates=updated_data) if device_url.scheme == "https": updated_data[CONF_SSL] = True else: updated_data[CONF_SSL] = False updated_data[CONF_PORT] = DEFAULT_PORT for model in MODELS_PORT_80: if discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NUMBER, "").startswith( model ) or discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NAME, "").startswith( model ): updated_data[CONF_PORT] = PORT_80 for model in MODELS_PORT_5555: if discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NUMBER, "").startswith( model ) or discovery_info.upnp.get(ssdp.ATTR_UPNP_MODEL_NAME, "").startswith( model ): updated_data[CONF_PORT] = PORT_5555 updated_data[CONF_SSL] = True self.placeholders.update(updated_data) self.discovered = True return await self.async_step_user() async def async_step_user(self, user_input=None): """Handle a flow initiated by the user.""" errors = {} if user_input is None: return await self._show_setup_form() host = user_input.get(CONF_HOST, self.placeholders[CONF_HOST]) port = self.placeholders[CONF_PORT] ssl = self.placeholders[CONF_SSL] username = user_input.get(CONF_USERNAME, self.placeholders[CONF_USERNAME]) password = user_input[CONF_PASSWORD] if not username: username = self.placeholders[CONF_USERNAME] # Open connection and check authentication try: api = await self.hass.async_add_executor_job( get_api, password, host, username, port, ssl ) except CannotLoginException: errors["base"] = "config" if errors: return await self._show_setup_form(user_input, errors) # Check if already configured info = await self.hass.async_add_executor_job(api.get_info) await self.async_set_unique_id(info["SerialNumber"], raise_on_progress=False) self._abort_if_unique_id_configured() config_data = { CONF_USERNAME: username, CONF_PASSWORD: password, CONF_HOST: host, CONF_PORT: api.port, CONF_SSL: api.ssl, } if info.get("ModelName") is not None and info.get("DeviceName") is not None: name = f"{info['ModelName']} - {info['DeviceName']}" else: name = info.get("ModelName", DEFAULT_NAME) return self.async_create_entry( title=name, data=config_data, )
32.00463
88
0.645885
[ "Apache-2.0" ]
2004happy/core
homeassistant/components/netgear/config_flow.py
6,913
Python
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # import RandomUtils from VectorTestSequence import VectorTestSequence from base.ChoicesModifier import ChoicesModifier from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV # This test verifies that a basic add vector instruction can be generated and # executed. It verifies that the initial values are correctly communicated to # the simulator and that the resulting values are successfully returned. The # test assumes the use of 512-bit vector registers and 32-bit vector register # elements. class MainSequence(VectorTestSequence): def __init__(self, aGenThread, aName=None): super().__init__(aGenThread, aName) self._mInstrList = ("VADD.VV##RISCV",) self._mRegIndex1 = None self._mRegIndex2 = None self._mElemVals1 = None self._mElemVals2 = None # Set up the environment prior to generating the test instructions. def _setUpTest(self): # Ensure vector element size is set to 32 bits and vector register # group size is set to 1 choices_mod = ChoicesModifier(self.genThread) vsew_choice_weights = { "0x0": 0, "0x1": 0, "0x2": 10, "0x3": 0, "0x4": 0, "0x5": 0, "0x6": 0, "0x7": 0, } choices_mod.modifyRegisterFieldValueChoices("vtype.VSEW", vsew_choice_weights) vlmul_choice_weights = { "0x0": 10, "0x1": 0, "0x2": 0, "0x3": 0, "0x4": 0, "0x5": 0, "0x6": 0, "0x7": 0, } choices_mod.modifyRegisterFieldValueChoices("vtype.VLMUL", vlmul_choice_weights) choices_mod.commitSet() (self._mRegIndex1, self._mRegIndex2) = self.getRandomRegisters(2, "VECREG", exclude="0") self._mElemVals1 = self._initializeVectorRegister("v%d" % self._mRegIndex1) self._mElemVals2 = self._initializeVectorRegister("v%d" % self._mRegIndex2) # Return a list of test instructions to randomly choose from. def _getInstructionList(self): return self._mInstrList # Return parameters to be passed to Sequence.genInstruction(). def _getInstructionParameters(self): return { "vd": self._mRegIndex1, "vs1": self._mRegIndex1, "vs2": self._mRegIndex2, "vm": 1, } # Verify additional aspects of the instruction generation and execution. # # @param aInstr The name of the instruction. # @param aInstrRecord A record of the generated instruction. def _performAdditionalVerification(self, aInstr, aInstrRecord): for (elem_index, val) in enumerate(self._mElemVals2): self._mElemVals1[elem_index] += val reg_name_1 = "v%d" % self._mRegIndex1 for sub_index in range(8): field_name = "%s_%d" % (reg_name_1, sub_index) (field_val, valid) = self.readRegister(reg_name_1, field=field_name) self.assertValidRegisterValue(reg_name_1, valid) expected_field_val = self._getFieldValue(sub_index, self._mElemVals1) if field_val != expected_field_val: self.error( "Register field %s has unexpected value; " "Expected=0x%x, Actual=0x%x" % (field_name, expected_field_val, field_val) ) # Initialize the specified vector register and return a list of 32-bit # element values. def _initializeVectorRegister(self, aRegName): elem_vals = [] for elem_index in range(16): elem_val = RandomUtils.random32(0, 0xFFFF) elem_vals.append(elem_val) for sub_index in range(8): field_name = "%s_%d" % (aRegName, sub_index) field_val = self._getFieldValue(sub_index, elem_vals) self.initializeRegisterFields(aRegName, {field_name: field_val}) return elem_vals # Get the value of a 64-bit field for a vector register. # # @param aSubIndex A 64-bit vector register field index. # @param aElemVals A list of 32-bit element values. def _getFieldValue(self, aSubIndex, aElemVals): field_value = aElemVals[2 * aSubIndex] field_value |= aElemVals[2 * aSubIndex + 1] << 32 return field_value MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV
37.641791
96
0.652458
[ "Apache-2.0" ]
Wlgen/force-riscv
tests/riscv/vector/vector_simple_add_force.py
5,044
Python
from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QWidget class JogWidget(QWidget): def __init__(self, parent, callback): super(JogWidget, self).__init__(parent) self.parent = parent self.callback = callback self.wx_current = 0 self.wy_current = 0 self.wz_current = 0 self._x_start_screen = 0 self._y_start_screen = 0 self._z_accumulator = 0 def onIdle(self): self._z_accumulator = 0 def mousePressEvent(self, event): pos = event.pos() self._x_start_screen = pos.x() self._y_start_screen = pos.y() self._relative_origin_x = self.wx_current self._relative_origin_y = self.wy_current def mouseReleaseEvent(self, event): """ Safe Feed """ pass #self.callback("F111") def wheelEvent(self, event): delta = event.angleDelta().y() self._z_accumulator += delta z_goto = self.wz_current + self._z_accumulator / 1000 self.callback("G1 Z{:0.2f} F100".format(z_goto)) def mouseMoveEvent(self, event): pos = event.pos() x_current_screen = pos.x() y_current_screen = pos.y() x_goto = self._relative_origin_x + (x_current_screen - self._x_start_screen) / 20 y_goto = self._relative_origin_y + (self._y_start_screen - y_current_screen) / 20 self.callback("G1 X{:0.2f} Y{:0.2f} F400".format(x_goto, y_goto)) #print("G1 X{:0.2f} Y{:0.2f} F400".format(x_goto, y_goto))
30.622642
89
0.585952
[ "MIT" ]
comgram/gerbil_gui
classes/jogwidget.py
1,623
Python
from collections import namedtuple import logging import random from Items import ItemFactory #This file sets the item pools for various modes. Timed modes and triforce hunt are enforced first, and then extra items are specified per mode to fill in the remaining space. #Some basic items that various modes require are placed here, including pendants and crystals. Medallion requirements for the two relevant entrances are also decided. alwaysitems = (['Kokiri Sword', 'Gilded Sword', 'Great Fairy Sword', 'Hylian Shield', 'Mirror Shield'] + ['Deku Mask', 'Goron Mask', 'Zora Mask', 'Fierce Deity Mask'] + ['Postmans Hat', 'Blast Mask', 'Great Fairy Mask', 'All Night Mask', 'Stone Mask'] + ['Keaton Mask', 'Bremen Mask', 'Bunny Hood', 'Don Geros Mask', 'Mask of Scents'] + ['Romani Mask', 'Circus Leader Mask', 'Couple Mask', 'Mask of Truth'] + ['Kamaros Mask', 'Garo Mask', 'Captains Hat', 'Gibdo Mask', 'Giant Mask'] + ['Bow', 'Large Quiver', 'Largest Quiver'] + ['Fire Arrows', 'Ice Arrows', 'Light Arrows'] + ['Powder Keg', 'Pictograph Box', 'Lens of Truth', 'Hookshot'] + ['Bomb Bag', 'Big Bomb Bag', ] + ['Bottle'] * 2 + ['Bottle with Gold Dust'] + ['Bottle with Red Potion'] + ['Bottle with Milk'] + ['Bottle with Chateau Romani'] + ['Piece of Heart'] * 52 + ['Heart Container'] * 4 + ['Adult Wallet', 'Giant Wallet']) notmapcompass = ['Ice Trap'] * 8 rewardlist = ['Odolwa\'s Remains', 'Goht\'s Remains', 'Gyorg\'s Remains', 'Twinmold\'s Remains'] songlist = ['Song of Time', 'Song of Healing', 'Song of Soaring', 'Eponas Song','Song of Storms', 'Sonata of Awakening', 'Goron Lullaby', 'New Wave Bossa Nova', 'Elegy of Emptiness', 'Oath to Order'] # TODO: this could need to be aligned with the location_table stray_fairy_locations = (['WF-SF1', 'WF-SF2', 'WF-SF3', 'WF-SF4', 'WF-SF5', 'WF-SF6', 'WF-SF7', 'WF-SF8', 'WF-SF9', 'WF-SF10', 'WF-SF11', 'WF-SF12', 'WF-SF13', 'WF-SF14', 'WF-SF15'] + ['SH-SF1', 'SH-SF2', 'SH-SF3', 'SH-SF4', 'SH-SF5', 'SH-SF6', 'SH-SF7', 'SH-SF8', 'SH-SF9', 'SH-SF10', 'SH-SF11', 'SH-SF12', 'SH-SF13', 'SH-SF14', 'SH-SF15'] + ['GB-SF1', 'GB-SF2', 'GB-SF3', 'GB-SF4', 'GB-SF5', 'GB-SF6', 'GB-SF7', 'GB-SF8', 'GB-SF9', 'GB-SF10', 'GB-SF11', 'GB-SF12', 'GB-SF13', 'GB-SF14', 'GB-SF15'] + ['ST-SF1', 'ST-SF2', 'ST-SF3', 'ST-SF4', 'ST-SF5', 'ST-SF6', 'ST-SF7', 'ST-SF8', 'ST-SF9', 'ST-SF10', 'ST-SF11', 'ST-SF12', 'ST-SF13', 'ST-SF14', 'ST-SF15']) tradeitems = (['Moon Tear', 'Town Title Deed', 'Swamp Title Deed', 'Mountain Title Deed', 'Ocean Title Deed']) WF_vanilla = (['Recovery Heart'] * 2) SH_vanilla = (['Recovery Heart'] * 2) GB_vanilla = (['Recovery Heart'] * 2) ST_vanilla = (['Recovery Heart'] * 2) PF_vanilla = (['Recovery Heart'] * 2) normal_bottles = [ 'Bottle', 'Bottle with Milk', 'Bottle with Red Potion', 'Bottle with Green Potion', 'Bottle with Blue Potion', 'Bottle with Fairy', 'Bottle with Fish', 'Bottle with Bugs', 'Bottle with Poe', 'Bottle with Big Poe'] normal_bottle_count = 6 normal_rupees = ( ['Rupees (5)'] * 13 + ['Rupees (20)'] * 5 + ['Rupees (50)'] * 7 + ['Rupees (200)'] * 3) shopsanity_rupees = ( ['Rupees (5)'] * 2 + ['Rupees (20)'] * 10 + ['Rupees (50)'] * 10 + ['Rupees (200)'] * 5 + ['Progressive Wallet']) vanilla_shop_items = { 'Trading Post Item 1': 'Buy Hylian Shield', # TODO: Fill out the rest } titledeeds = { 'Sad Moon Crater': 'Moon\'s Tear', # TODO: fill out the rest } npc_items = { # TODO: List all locations which give items by NPC, and set them to give that specific item } eventlocations = { 'Majora': 'Majora\'s Mask' } junk_pool = ( 8 * ['Bombs (5)'] + 2 * ['Bombs (10)'] + 8 * ['Arrows (5)'] + 2 * ['Arrows (10)'] + 5 * ['Deku Stick (1)'] + 5 * ['Deku Nuts (5)'] + 10 * ['Rupees (5)'] + 4 * ['Rupees (20)'] + 20 * ['Ice Trap']) def get_junk_item(count=1): ret_junk = [] for _ in range(count): ret_junk.append(random.choice(junk_pool)) return ret_junk def generate_itempool(world): # set up item pool (pool, placed_items) = get_pool_core(world) world.itempool = ItemFactory(pool, world) for (location, item) in placed_items.items(): world.push_item(location, ItemFactory(item, world)) world.get_location(location).event = True fill_bosses(world) world.initialize_items() ''' This is where we decide what items to place and how ''' def get_pool_core(world): pool = [] placed_items = {} ''' # Used to place an item randomly into the pool pool.append('Kokiri Sword') # Used to place a specific item in a specific location placed_items['Kokiri Sword Chest'] = 'Kokiri Sword' # Adds x items to the pool which are not progression items pool.extend(get_junk_item(37)) # locations_with_items is a list of key value pairs where # the key is the location name for an item # the value is the item being placed at that location placed_items.update(locations_with_items) # tells the logic that you start out with the given item world.state.collect(item) ''' pool.extend(songlist) if world.shuffle_mapcompass == 'remove': for item in [item for dungeon in world.dungeons for item in dungeon.dungeon_items]: world.state.collect(item) pool.extend(get_junk_item()) if world.shuffle_smallkeys == 'remove': for item in [item for dungeon in world.dungeons for item in dungeon.small_keys]: world.state.collect(item) pool.extend(get_junk_item()) if world.shuffle_bosskeys == 'remove': for item in [item for dungeon in world.dungeons for item in dungeon.boss_key]: world.state.collect(item) pool.extend(get_junk_item()) return (pool, placed_items) def fill_songs(world, attempts=15): songs = ItemFactory(songlist) song_locations = [world.get_location('Song from Skull Kid'), world.get_location('Song from HMS'), world.get_location('Song from Owl Tablet'), world.get_location('Song from Romani'), world.get_location('Song at Grave'), world.get_location('Song from Monkey'), world.get_location('Song from Baby Goron'), world.get_location('Song from Goron Elder'), world.get_location('Song from Zora Eggs'), world.get_location('Song from Igos'), world.get_location('Song from the Giants')] placed_prizes = [loc.item.name for loc in song_locations if loc.item is not None] unplaced_prizes = [song for song in songs if song.name not in placed_prizes] empty_song_locations = [loc for loc in song_locations if loc.item is None] while attempts: attempts -= 1 try: prizepool = list(unplaced_prizes) prize_locs = list(empty_song_locations) random.shuffle(prizepool) random.shuffle(prize_locs) fill_restrictive(world, world.get_all_state(keys=True), prize_locs, prizepool) #TODO: Set keys to true once keys are properly implemented except FillError: logging.getLogger('').info("Failed to place songs. Will retry %s more times", attempts) for location in empty_song_locations: location.item = None continue break else: raise FillError('Unable to place songs') def fill_bosses(world, bossCount=4): boss_rewards = ItemFactory(rewardlist) boss_locations = [world.get_location('Odolwa'), world.get_location('Goht'), world.get_location('Gyorg'), world.get_location('Twinmold')] placed_prizes = [loc.item.name for loc in boss_locations if loc.item is not None] unplaced_prizes = [item for item in boss_rewards if item.name not in placed_prizes] empty_boss_locations = [loc for loc in boss_locations if loc.item is None] prizepool = list(unplaced_prizes) prize_locs = list(empty_boss_locations) while bossCount: bossCount -= 1 random.shuffle(prizepool) random.shuffle(prize_locs) item = prizepool.pop() loc = prize_locs.pop() world.push_item(loc, item, False) world.get_location(loc).event = True
45.354497
477
0.615726
[ "MIT" ]
mzxrules/MM-Randomizer
ItemList.py
8,572
Python
# Generated by Django 3.1 on 2020-08-08 11:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('socialpages', '0001_initial'), ] operations = [ migrations.CreateModel( name='tags', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ], ), migrations.AlterModelOptions( name='editor', options={'ordering': ['first_name']}, ), ]
25.12
114
0.555732
[ "MIT" ]
OjureFred/SocialGram
socialpages/migrations/0002_auto_20200808_1457.py
628
Python
from __future__ import unicode_literals from django.core.management.base import BaseCommand, CommandError from optparse import make_option from redis_metrics.utils import generate_test_metrics class Command(BaseCommand): args = '<metric-name> [<metric-name> ...]' help = "Creates Lots of Dummy Metrics" option_list = BaseCommand.option_list + ( make_option( '-r', '--randomize', action='store_true', dest='randomize', default=True, help='Randomize Metric Data' ), make_option( '--no-randomize', action='store_false', dest='randomize', default=True, help='Do not randomize Metric Data' ), make_option( '-n', '--num-days', action='store', dest='num_days', type="int", default=365 * 3, # Default to 3 years help='Number of Days worth of data to generate' ), make_option( '-c', '--cap', action='store', dest='cap', default=None, help='Cap the maximum metric value' ), ) def handle(self, *args, **options): if len(args) == 0: raise CommandError("You must provide at least one metric name") slugs = args cap = options["cap"] days = options["num_days"] randomize = options["randomize"] self.stdout.write("\nGenerating metrics using the following:\n") self.stdout.write("Slugs: {0}\n".format(u", ".join(slugs))) self.stdout.write("Days: {0}\n".format(days)) self.stdout.write("Randomize: {0}\n".format(randomize)) self.stdout.write("Cap: {0}\n".format(cap)) for slug in slugs: generate_test_metrics(slug, num=days, randomize=randomize, cap=cap)
31.096774
79
0.544606
[ "MIT" ]
bradmontgomery/django-redis-metrics
redis_metrics/management/commands/generate_test_metrics.py
1,928
Python
from pathlib import Path from datetime import datetime import fire import torch import torch.nn as nn import torch.optim as optim import ignite import ignite.distributed as idist from ignite.engine import Events, Engine, create_supervised_evaluator from ignite.metrics import Accuracy, Loss from ignite.handlers import Checkpoint, DiskSaver from ignite.utils import manual_seed, setup_logger from ignite.contrib.engines import common from ignite.contrib.handlers import PiecewiseLinear import utils def training(local_rank, config): rank = idist.get_rank() manual_seed(config["seed"] + rank) device = idist.device() logger = setup_logger(name="CIFAR10-Training", distributed_rank=local_rank) log_basic_info(logger, config) output_path = config["output_path"] if rank == 0: if config["stop_iteration"] is None: now = datetime.now().strftime("%Y%m%d-%H%M%S") else: now = "stop-on-{}".format(config["stop_iteration"]) folder_name = "{}_backend-{}-{}_{}".format(config["model"], idist.backend(), idist.get_world_size(), now) output_path = Path(output_path) / folder_name if not output_path.exists(): output_path.mkdir(parents=True) config["output_path"] = output_path.as_posix() logger.info("Output path: {}".format(config["output_path"])) if "cuda" in device.type: config["cuda device name"] = torch.cuda.get_device_name(local_rank) if config["with_trains"]: from trains import Task task = Task.init("CIFAR10-Training", task_name=output_path.stem) task.connect_configuration(config) # Log hyper parameters hyper_params = [ "model", "batch_size", "momentum", "weight_decay", "num_epochs", "learning_rate", "num_warmup_epochs", ] task.connect({k: config[k] for k in hyper_params}) # Setup dataflow, model, optimizer, criterion train_loader, test_loader = get_dataflow(config) config["num_iters_per_epoch"] = len(train_loader) model, optimizer, criterion, lr_scheduler = initialize(config) # Create trainer for current task trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger) # Let's now setup evaluator engine to perform model's validation and compute metrics metrics = { "accuracy": Accuracy(), "loss": Loss(criterion), } # We define two evaluators as they wont have exactly similar roles: # - `evaluator` will save the best model based on validation score evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def run_validation(engine): epoch = trainer.state.epoch state = train_evaluator.run(train_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(test_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED, run_validation) if rank == 0: # Setup TensorBoard logging on trainer and evaluators. Logged values are: # - Training metrics, e.g. running average loss values # - Learning rate # - Evaluation train/test metrics evaluators = {"training": train_evaluator, "test": evaluator} tb_logger = common.setup_tb_logging(output_path, trainer, optimizer, evaluators=evaluators) # Store 3 best models by validation accuracy: common.gen_save_best_models_by_val_score( save_handler=get_save_handler(config), evaluator=evaluator, models={"model": model}, metric_name="accuracy", n_saved=3, trainer=trainer, tag="test", ) # In order to check training resuming we can stop training on a given iteration if config["stop_iteration"] is not None: @trainer.on(Events.ITERATION_STARTED(once=config["stop_iteration"])) def _(): logger.info("Stop training on {} iteration".format(trainer.state.iteration)) trainer.terminate() try: trainer.run(train_loader, max_epochs=config["num_epochs"]) except Exception as e: import traceback print(traceback.format_exc()) if rank == 0: tb_logger.close() def run( seed=543, data_path="/tmp/cifar10", output_path="/tmp/output-cifar10/", model="resnet18", batch_size=512, momentum=0.9, weight_decay=1e-4, num_workers=12, num_epochs=24, learning_rate=0.4, num_warmup_epochs=4, validate_every=3, checkpoint_every=200, backend=None, resume_from=None, log_every_iters=15, nproc_per_node=None, stop_iteration=None, with_trains=False, **spawn_kwargs ): """Main entry to train an model on CIFAR10 dataset. Args: seed (int): random state seed to set. Default, 543. data_path (str): input dataset path. Default, "/tmp/cifar10". output_path (str): output path. Default, "/tmp/output-cifar10". model (str): model name (from torchvision) to setup model to train. Default, "resnet18". batch_size (int): total batch size. Default, 512. momentum (float): optimizer's momentum. Default, 0.9. weight_decay (float): weight decay. Default, 1e-4. num_workers (int): number of workers in the data loader. Default, 12. num_epochs (int): number of epochs to train the model. Default, 24. learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 0.4. num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 4. validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3. checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 200. backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu", "gloo" etc. Default, None. nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful, when main python process is spawning training as child processes. resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None. log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations. It can be 0 to disable it. Default, 15. stop_iteration (int, optional): iteration to stop the training. Can be used to check resume from checkpoint. with_trains (bool): if True, experiment Trains logger is setup. Default, False. **spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes """ # catch all local parameters config = locals() config.update(config["spawn_kwargs"]) del config["spawn_kwargs"] spawn_kwargs["nproc_per_node"] = nproc_per_node with idist.Parallel(backend=backend, **spawn_kwargs) as parallel: parallel.run(training, config) def get_dataflow(config): # - Get train/test datasets if idist.get_rank() > 0: # Ensure that only rank 0 download the dataset idist.barrier() train_dataset, test_dataset = utils.get_train_test_datasets(config["data_path"]) if idist.get_rank() == 0: # Ensure that only rank 0 download the dataset idist.barrier() # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu train_loader = idist.auto_dataloader( train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True, ) test_loader = idist.auto_dataloader( test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False, ) return train_loader, test_loader def initialize(config): model = utils.get_model(config["model"]) # Adapt model for distributed settings if configured model = idist.auto_model(model) optimizer = optim.SGD( model.parameters(), lr=config["learning_rate"], momentum=config["momentum"], weight_decay=config["weight_decay"], nesterov=True, ) optimizer = idist.auto_optim(optimizer) criterion = nn.CrossEntropyLoss().to(idist.device()) le = config["num_iters_per_epoch"] milestones_values = [ (0, 0.0), (le * config["num_warmup_epochs"], config["learning_rate"]), (le * config["num_epochs"], 0.0), ] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) return model, optimizer, criterion, lr_scheduler def log_metrics(logger, epoch, elapsed, tag, metrics): logger.info( "\nEpoch {} - elapsed: {} - {} metrics:\n {}".format( epoch, elapsed, tag, "\n".join(["\t{}: {}".format(k, v) for k, v in metrics.items()]) ) ) def log_basic_info(logger, config): logger.info("Train {} on CIFAR10".format(config["model"])) logger.info("- PyTorch version: {}".format(torch.__version__)) logger.info("- Ignite version: {}".format(ignite.__version__)) logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info("\t{}: {}".format(key, value)) logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info("\tbackend: {}".format(idist.backend())) logger.info("\tworld size: {}".format(idist.get_world_size())) logger.info("\n") def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger): device = idist.device() # Setup Ignite trainer: # - let's define training step # - add other common handlers: # - TerminateOnNan, # - handler to setup learning rate scheduling, # - ModelCheckpoint # - RunningAverage` on `train_step` output # - Two progress bars on epochs and optionally on iterations def train_step(engine, batch): x, y = batch[0], batch[1] if x.device != device: x = x.to(device, non_blocking=True) y = y.to(device, non_blocking=True) model.train() # Supervised part y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() # This can be helpful for XLA to avoid performance slow down if fetch loss.item() every iteration if config["log_every_iters"] > 0 and (engine.state.iteration - 1) % config["log_every_iters"] == 0: batch_loss = loss.item() engine.state.saved_batch_loss = batch_loss else: batch_loss = engine.state.saved_batch_loss return { "batch loss": batch_loss, } trainer = Engine(train_step) trainer.state.saved_batch_loss = -1.0 trainer.state_dict_user_keys.append("saved_batch_loss") trainer.logger = logger to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler} metric_names = [ "batch loss", ] common.setup_common_training_handlers( trainer=trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=config["checkpoint_every"], save_handler=get_save_handler(config), lr_scheduler=lr_scheduler, output_names=metric_names if config["log_every_iters"] > 0 else None, with_pbars=False, clear_cuda_cache=False, ) resume_from = config["resume_from"] if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), "Checkpoint '{}' is not found".format(checkpoint_fp.as_posix()) logger.info("Resume from a checkpoint: {}".format(checkpoint_fp.as_posix())) checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def get_save_handler(config): if config["with_trains"]: from ignite.contrib.handlers.trains_logger import TrainsSaver return TrainsSaver(dirname=config["output_path"]) return DiskSaver(config["output_path"], require_empty=False) if __name__ == "__main__": fire.Fire({"run": run})
35.907303
120
0.662833
[ "BSD-3-Clause" ]
HelioStrike/ignite
examples/contrib/cifar10/main.py
12,783
Python
""" Required device info for the PIC16F1768 devices """ from pymcuprog.deviceinfo.eraseflags import ChiperaseEffect DEVICE_INFO = { 'name': 'pic16f1768', 'architecture': 'PIC16', # Will erase Flash, User ID and Config words 'default_bulk_erase_address_word': 0x8000, # Flash 'flash_address_word': 0, 'flash_size_words': 4*1024, # 4KW 'flash_page_size_words': 32, 'flash_write_size_words': 1, 'flash_read_size_words': 1, 'flash_chiperase_effect': ChiperaseEffect.ALWAYS_ERASED, 'flash_isolated_erase': False, # User ID 'user_id_address_word': 0x8000, 'user_id_size_words': 4, 'user_id_page_size_words': 1, 'user_id_write_size_words': 1, 'user_id_read_size_words': 1, 'user_id_chiperase_effect': ChiperaseEffect.ALWAYS_ERASED, 'user_id_isolated_erase': False, # Config words 'config_words_address_word': 0x8007, 'config_words_size_words': 2, 'config_words_page_size_words': 1, 'config_words_write_size_words': 1, 'config_words_read_size_words': 1, 'config_words_erase_address_word': 0, 'config_words_chiperase_effect': ChiperaseEffect.ALWAYS_ERASED, 'config_words_isolated_erase': False, }
30.2
67
0.725993
[ "MIT" ]
KrystianD-contribution/pymcuprog
pymcuprog/deviceinfo/devices/pic16f1768.py
1,208
Python
__copyright__ = """ Copyright (C) 2020 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import numpy as np import numpy.linalg as la # noqa import pyopencl as cl import pyopencl.clrandom import pyopencl.clmath import pytest from meshmode.array_context import PyOpenCLArrayContext from meshmode.dof_array import thaw from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa from mirgecom.initializers import Vortex2D from mirgecom.initializers import Lump from mirgecom.euler import split_conserved from mirgecom.initializers import SodShock1D from mirgecom.eos import IdealSingleGas from grudge.eager import EagerDGDiscretization from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests, ) logger = logging.getLogger(__name__) def test_lump_init(ctx_factory): """ Simple test to check that Lump initializer creates the expected solution field. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 2 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=[(0.0,), (-5.0,)], b=[(10.0,), (5.0,)], n=(nel_1d,) * dim ) order = 3 logger.info(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) # Init soln with Vortex center = np.zeros(shape=(dim,)) velocity = np.zeros(shape=(dim,)) center[0] = 5 velocity[0] = 1 lump = Lump(center=center, velocity=velocity) lump_soln = lump(0, nodes) cv = split_conserved(dim, lump_soln) p = 0.4 * (cv.energy - 0.5 * np.dot(cv.momentum, cv.momentum) / cv.mass) exp_p = 1.0 errmax = discr.norm(p - exp_p, np.inf) logger.info(f"lump_soln = {lump_soln}") logger.info(f"pressure = {p}") assert errmax < 1e-15 def test_vortex_init(ctx_factory): """ Simple test to check that Vortex2D initializer creates the expected solution field. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 2 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=[(0.0,), (-5.0,)], b=[(10.0,), (5.0,)], n=(nel_1d,) * dim ) order = 3 logger.info(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) # Init soln with Vortex vortex = Vortex2D() vortex_soln = vortex(0, nodes) gamma = 1.4 cv = split_conserved(dim, vortex_soln) p = 0.4 * (cv.energy - 0.5 * np.dot(cv.momentum, cv.momentum) / cv.mass) exp_p = cv.mass ** gamma errmax = discr.norm(p - exp_p, np.inf) logger.info(f"vortex_soln = {vortex_soln}") logger.info(f"pressure = {p}") assert errmax < 1e-15 def test_shock_init(ctx_factory): """ Simple test to check that Shock1D initializer creates the expected solution field. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 10 dim = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=[(0.0,), (1.0,)], b=[(-0.5,), (0.5,)], n=(nel_1d,) * dim ) order = 3 print(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) initr = SodShock1D() initsoln = initr(t=0.0, x_vec=nodes) print("Sod Soln:", initsoln) xpl = 1.0 xpr = 0.1 tol = 1e-15 nodes_x = nodes[0] eos = IdealSingleGas() cv = split_conserved(dim, initsoln) p = eos.pressure(cv) assert discr.norm(actx.np.where(nodes_x < 0.5, p-xpl, p-xpr), np.inf) < tol @pytest.mark.parametrize("dim", [1, 2, 3]) def test_uniform(ctx_factory, dim): """ Simple test to check that Uniform initializer creates the expected solution field. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,) * dim, b=(0.5,) * dim, n=(nel_1d,) * dim ) order = 1 print(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) print(f"DIM = {dim}, {len(nodes)}") print(f"Nodes={nodes}") from mirgecom.initializers import Uniform initr = Uniform(numdim=dim) initsoln = initr(t=0.0, x_vec=nodes) tol = 1e-15 ssoln = split_conserved(dim, initsoln) assert discr.norm(ssoln.mass - 1.0, np.inf) < tol assert discr.norm(ssoln.energy - 2.5, np.inf) < tol print(f"Uniform Soln:{initsoln}") eos = IdealSingleGas() cv = split_conserved(dim, initsoln) p = eos.pressure(cv) print(f"Press:{p}") assert discr.norm(p - 1.0, np.inf) < tol @pytest.mark.parametrize("dim", [1, 2, 3]) def test_pulse(ctx_factory, dim): """ Test of Gaussian pulse generator. If it looks, walks, and quacks like a duck, then ... """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 10 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,) * dim, b=(0.5,) * dim, n=(nel_1d,) * dim ) order = 1 print(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) print(f"DIM = {dim}, {len(nodes)}") print(f"Nodes={nodes}") tol = 1e-15 from mirgecom.initializers import _make_pulse amp = 1.0 w = .1 rms2 = w * w r0 = np.zeros(dim) r2 = np.dot(nodes, nodes) / rms2 pulse = _make_pulse(amp=amp, r0=r0, w=w, r=nodes) print(f"Pulse = {pulse}") # does it return the expected exponential? pulse_check = actx.np.exp(-.5 * r2) print(f"exact: {pulse_check}") pulse_resid = pulse - pulse_check print(f"pulse residual: {pulse_resid}") assert(discr.norm(pulse_resid, np.inf) < tol) # proper scaling with amplitude? amp = 2.0 pulse = 0 pulse = _make_pulse(amp=amp, r0=r0, w=w, r=nodes) pulse_resid = pulse - (pulse_check + pulse_check) assert(discr.norm(pulse_resid, np.inf) < tol) # proper scaling with r? amp = 1.0 rcheck = np.sqrt(2.0) * nodes pulse = _make_pulse(amp=amp, r0=r0, w=w, r=rcheck) assert(discr.norm(pulse - (pulse_check * pulse_check), np.inf) < tol) # proper scaling with w? w = w / np.sqrt(2.0) pulse = _make_pulse(amp=amp, r0=r0, w=w, r=nodes) assert(discr.norm(pulse - (pulse_check * pulse_check), np.inf) < tol)
29.278388
79
0.671337
[ "MIT" ]
anderson2981/mirgecom
test/test_init.py
7,993
Python
import asyncio from aiohttp import web from tt_web import log from tt_web import postgresql async def initialize(config, loop): await postgresql.initialize(config['database'], loop=loop) async def deinitialize(config, loop): await postgresql.deinitialize() async def on_startup(app): await initialize(app['config'], loop=app.loop) async def on_cleanup(app): await deinitialize(app['config'], loop=app.loop) def register_routers(app): from . import handlers app.router.add_post('/accounts/balance', handlers.account_balance) app.router.add_post('/accounts/history', handlers.account_history) app.router.add_post('/transactions/start', handlers.start_transaction) app.router.add_post('/transactions/commit', handlers.commit_transaction) app.router.add_post('/transactions/rollback', handlers.rollback_transaction) app.router.add_post('/debug-clear-service', handlers.debug_clear_service) def create_application(config, loop=None): app = web.Application(loop=loop) app['config'] = config log.initilize(config['log']) app.on_startup.append(on_startup) app.on_cleanup.append(on_cleanup) register_routers(app) return app def run_utility(config, utility): loop = asyncio.get_event_loop() async def runner(): await initialize(config, loop=loop) log.initilize(config['log']) await utility(loop=loop) await deinitialize(config, loop=loop) loop.run_until_complete(runner())
22.522388
80
0.726972
[ "BSD-3-Clause" ]
devapromix/the-tale
src/tt_bank/tt_bank/service.py
1,509
Python
import pickle import fcntl import os import struct from collections import defaultdict from functools import partial from asyncio import new_event_loop from io import BytesIO from .utils import opposite_dict MESSAGE_LENGTH_FMT = 'I' def set_nonblocking(fd): flags = fcntl.fcntl(fd, fcntl.F_GETFL) fcntl.fcntl(fd, fcntl.F_SETFL, flags | os.O_NONBLOCK) def blocking_read(fd, n): io = BytesIO() read_amount = 0 while read_amount < n: data = os.read(fd, n - read_amount) if not data: raise IOError('FD closed before all bytes read') read_amount += len(data) io.write(data) return io.getvalue() class Piping: def __init__(self, pipe_dict): self.buffers = defaultdict(bytes) self.loop = new_event_loop() for src_fd, dest_fd in pipe_dict.items(): self.loop.add_reader(src_fd, partial(self._read, src_fd, dest_fd)) self.loop.add_writer(dest_fd, partial(self._write, dest_fd)) self.readers_to_writers = dict(pipe_dict) self.writers_to_readers = opposite_dict(pipe_dict) def _remove_writer(self, writer_fd): self.loop.remove_writer(writer_fd) for reader_fd in self.writers_to_readers.pop(writer_fd): self.readers_to_writers.pop(reader_fd) def _remove_reader(self, reader_fd): # remove all writers that im the last to write to, remove all that write to me, if nothing left stop loop self.loop.remove_reader(reader_fd) writer_fd = self.readers_to_writers.pop(reader_fd) writer_readers = self.writers_to_readers[writer_fd] writer_readers.remove(reader_fd) if not writer_fd: self._remove_writer(writer_fd) def _read(self, src_fd, dest_fd): try: data = os.read(src_fd, 1024) except OSError: data = '' if data: self.buffers[dest_fd] += data else: self._remove_reader(src_fd) if src_fd in self.writers_to_readers: self._remove_writer(src_fd) if not self.readers_to_writers: self.loop.stop() def _write(self, dest_fd): buffer = self.buffers[dest_fd] if buffer: self.buffers[dest_fd] = buffer[os.write(dest_fd, buffer):] def run(self): self.loop.run_forever() # TODO: is this needed? # for dest_fd, buffer in self.buffers.items(): # while buffer: # buffer = buffer[os.write(dest_fd, buffer):] def send_message(sock, obj): message = pickle.dumps(obj) message_len = struct.pack(MESSAGE_LENGTH_FMT, len(message)) sock.sendall(message_len) sock.sendall(message) def receive_message(sock): len_len = struct.calcsize(MESSAGE_LENGTH_FMT) len_bytes = blocking_read(sock, len_len) message_len = struct.unpack(MESSAGE_LENGTH_FMT, len_bytes)[0] message = blocking_read(sock, message_len) return pickle.loads(message)
32.239583
114
0.636187
[ "MIT" ]
kmaork/madbg
madbg/communication.py
3,095
Python
import logging import sys import time from rdflib.graph import Graph from hexastore import turtle from hexastore.memory import InMemoryHexastore logger = logging.getLogger(__name__) root = logging.getLogger() root.setLevel(logging.DEBUG) class Timer: def __enter__(self): self.start = time.perf_counter() return self def __exit__(self, *args): self.end = time.perf_counter() self.interval = self.end - self.start handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) root.addHandler(handler) try: with Timer() as t: store = InMemoryHexastore() with Timer() as t1: triples = [] with open("/Users/alex/Downloads/BNBLODBooks_sample_nt/BNBLODB_sample.nt") as fo: turtle.parse(fo.read(), lambda s, p, o: triples.append((s, p, o))) logger.info(f"library=mutant-parse time={t1.interval}") with Timer() as t2: store.bulk_insert(triples) logger.info(f"library=mutant-bulk-insert time={t2.interval}") finally: logger.info(f"library=mutant time={t.interval}") try: with Timer() as t: g = Graph() g.parse("/Users/alex/Downloads/BNBLODBooks_sample_nt/BNBLODB_sample.nt", format="nt") finally: logger.info(f"library=rdflib time={t.interval}")
25.421053
93
0.668737
[ "MIT" ]
alexchamberlain/mutant
benchmarks/bnb.py
1,449
Python
""" Host management app """ from django.urls import path from .views import * app_name = 'sys_inspect' urlpatterns = [ # 设备列表 path('device/list', InspectDevInfoViews.as_view(), name='inspect_devices_list'), # 添加设备 path('device/add', AddDevView.as_view(), name='inspect_devices_add'), # 删除设备 path('device/delete', DeleteDevView.as_view(), name='inspect_device_delete'), # 编辑设备 path('device/edit', EditDevInfoView.as_view(), name='inspect_device_edit'), # 任务列表 path('content/list', ContentViews.as_view(), name='inspect_contents_list'), # 添加任务 path('content/add', AddContView.as_view(), name='inspect_contents_add'), # 删除任务 path('content/delete', DeleteContView.as_view(), name='inspect_contents_delete'), ]
22.114286
85
0.686047
[ "MIT" ]
MaLei666/oms
apps/sys_inspect/urls.py
830
Python
# -*- coding: utf-8 -*- import itertools import logging import numpy as np from collections import OrderedDict from collections.abc import Mapping from typing import Dict, List, Optional, Tuple, Union import torch from omegaconf import DictConfig, OmegaConf from torch import Tensor, nn from detectron2.layers import ShapeSpec from detectron2.structures import BitMasks, Boxes, ImageList, Instances from detectron2.utils.events import get_event_storage from .backbone import Backbone logger = logging.getLogger(__name__) def _to_container(cfg): """ mmdet will assert the type of dict/list. So convert omegaconf objects to dict/list. """ if isinstance(cfg, DictConfig): cfg = OmegaConf.to_container(cfg, resolve=True) from mmcv.utils import ConfigDict return ConfigDict(cfg) class MMDetBackbone(Backbone): """ Wrapper of mmdetection backbones to use in detectron2. mmdet backbones produce list/tuple of tensors, while detectron2 backbones produce a dict of tensors. This class wraps the given backbone to produce output in detectron2's convention, so it can be used in place of detectron2 backbones. """ def __init__( self, backbone: Union[nn.Module, Mapping], neck: Union[nn.Module, Mapping, None] = None, *, pretrained_backbone: Optional[str] = None, output_shapes: List[ShapeSpec], output_names: Optional[List[str]] = None, ): """ Args: backbone: either a backbone module or a mmdet config dict that defines a backbone. The backbone takes a 4D image tensor and returns a sequence of tensors. neck: either a backbone module or a mmdet config dict that defines a neck. The neck takes outputs of backbone and returns a sequence of tensors. If None, no neck is used. pretrained_backbone: defines the backbone weights that can be loaded by mmdet, such as "torchvision://resnet50". output_shapes: shape for every output of the backbone (or neck, if given). stride and channels are often needed. output_names: names for every output of the backbone (or neck, if given). By default, will use "out0", "out1", ... """ super().__init__() if isinstance(backbone, Mapping): from mmdet.models import build_backbone backbone = build_backbone(_to_container(backbone)) self.backbone = backbone if isinstance(neck, Mapping): from mmdet.models import build_neck neck = build_neck(_to_container(neck)) self.neck = neck # It's confusing that backbone weights are given as a separate argument, # but "neck" weights, if any, are part of neck itself. This is the interface # of mmdet so we follow it. Reference: # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/detectors/two_stage.py logger.info(f"Initializing mmdet backbone weights: {pretrained_backbone} ...") self.backbone.init_weights(pretrained_backbone) # train() in mmdet modules is non-trivial, and has to be explicitly # called. Reference: # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/backbones/resnet.py self.backbone.train() if self.neck is not None: logger.info("Initializing mmdet neck weights ...") if isinstance(self.neck, nn.Sequential): for m in self.neck: m.init_weights() else: self.neck.init_weights() self.neck.train() self._output_shapes = output_shapes if not output_names: output_names = [f"out{i}" for i in range(len(output_shapes))] self._output_names = output_names def forward(self, x) -> Dict[str, Tensor]: outs = self.backbone(x) if self.neck is not None: outs = self.neck(outs) assert isinstance( outs, (list, tuple) ), "mmdet backbone should return a list/tuple of tensors!" if len(outs) != len(self._output_shapes): raise ValueError( "Length of output_shapes does not match outputs from the mmdet backbone: " f"{len(outs)} != {len(self._output_shapes)}" ) return {k: v for k, v in zip(self._output_names, outs)} def output_shape(self) -> Dict[str, ShapeSpec]: return {k: v for k, v in zip(self._output_names, self._output_shapes)} class MMDetDetector(nn.Module): """ Wrapper of a mmdetection detector model, for detection and instance segmentation. Input/output formats of this class follow detectron2's convention, so a mmdetection model can be trained and evaluated in detectron2. """ def __init__( self, detector: Union[nn.Module, Mapping], *, # Default is 32 regardless of model: # https://github.com/open-mmlab/mmdetection/tree/master/configs/_base_/datasets size_divisibility=32, pixel_mean: Tuple[float], pixel_std: Tuple[float], ): """ Args: detector: a mmdet detector, or a mmdet config dict that defines a detector. size_divisibility: pad input images to multiple of this number pixel_mean: per-channel mean to normalize input image pixel_std: per-channel stddev to normalize input image """ super().__init__() if isinstance(detector, Mapping): from mmdet.models import build_detector detector = build_detector(_to_container(detector)) self.detector = detector self.size_divisibility = size_divisibility self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" def forward(self, batched_inputs: Tuple[Dict[str, torch.Tensor]]): images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, size_divisibility=self.size_divisibility).tensor metas = [] rescale = {"height" in x for x in batched_inputs} if len(rescale) != 1: raise ValueError("Some inputs have original height/width, but some don't!") rescale = list(rescale)[0] output_shapes = [] for input in batched_inputs: meta = {} c, h, w = input["image"].shape meta["img_shape"] = meta["ori_shape"] = (h, w, c) if rescale: scale_factor = np.sqrt(h * w / (input["height"] * input["width"])) ori_shape = (input["height"], input["width"]) output_shapes.append(ori_shape) meta["ori_shape"] = ori_shape + (c,) else: scale_factor = 1.0 output_shapes.append((h, w)) meta["scale_factor"] = scale_factor meta["flip"] = False padh, padw = images.shape[-2:] meta["pad_shape"] = (padh, padw, c) metas.append(meta) if self.training: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] if gt_instances[0].has("gt_masks"): from mmdet.core import PolygonMasks as mm_PolygonMasks, BitmapMasks as mm_BitMasks def convert_mask(m, shape): # mmdet mask format if isinstance(m, BitMasks): return mm_BitMasks(m.tensor.cpu().numpy(), shape[0], shape[1]) else: return mm_PolygonMasks(m.polygons, shape[0], shape[1]) gt_masks = [convert_mask(x.gt_masks, x.image_size) for x in gt_instances] else: gt_masks = None losses_and_metrics = self.detector.forward_train( images, metas, [x.gt_boxes.tensor for x in gt_instances], [x.gt_classes for x in gt_instances], gt_masks=gt_masks, ) return _parse_losses(losses_and_metrics) else: results = self.detector.simple_test(images, metas, rescale=rescale) results = [ {"instances": _convert_mmdet_result(r, shape)} for r, shape in zip(results, output_shapes) ] return results @property def device(self): return self.pixel_mean.device # Reference: show_result() in # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/detectors/base.py def _convert_mmdet_result(result, shape: Tuple[int, int]) -> Instances: if isinstance(result, tuple): bbox_result, segm_result = result if isinstance(segm_result, tuple): segm_result = segm_result[0] else: bbox_result, segm_result = result, None bboxes = torch.from_numpy(np.vstack(bbox_result)) # Nx5 bboxes, scores = bboxes[:, :4], bboxes[:, -1] labels = [ torch.full((bbox.shape[0],), i, dtype=torch.int32) for i, bbox in enumerate(bbox_result) ] labels = torch.cat(labels) inst = Instances(shape) inst.pred_boxes = Boxes(bboxes) inst.scores = scores inst.pred_classes = labels if segm_result is not None and len(labels) > 0: segm_result = list(itertools.chain(*segm_result)) segm_result = [torch.from_numpy(x) if isinstance(x, np.ndarray) else x for x in segm_result] segm_result = torch.stack(segm_result, dim=0) inst.pred_masks = segm_result return inst # reference: https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/detectors/base.py def _parse_losses(losses: Dict[str, Tensor]) -> Dict[str, Tensor]: log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError(f"{loss_name} is not a tensor or list of tensors") if "loss" not in loss_name: # put metrics to storage; don't return them storage = get_event_storage() value = log_vars.pop(loss_name).cpu().item() storage.put_scalar(loss_name, value) return log_vars
39.900369
100
0.620827
[ "Apache-2.0" ]
KnightOfTheMoonlight/visdom4detectron2
detectron2/modeling/mmdet_wrapper.py
10,813
Python
""" @Author: Rossi Created At: 2021-02-21 """ import json import time from mako.template import Template from Broca.faq_engine.index import ESIndex, VectorIndex from Broca.message import BotMessage class FAQAgent: def __init__(self, agent_name, es_index, vector_index, threshold, topk, prompt_threshold, template, prompt_template): self.agent_name = agent_name self.es_index = es_index self.vector_index = vector_index self.threshold = threshold self.topk = topk self.prompt_threshold = prompt_threshold self.template = template self.prompt_template = prompt_template @classmethod def from_config(cls, config): agent_name = config["agent_name"] es_config = config["es_index"] es_index = ESIndex.from_config(es_config) vector_index_config = config["vector_index"] vector_index = VectorIndex.from_config(vector_index_config) if config["build_index_at_start"]: es_index.build_index_from_file(config["document_file"]) time.sleep(5) # wait until the es index gets ready vector_index.build_index(es_index) vector_index.load_index() threshold = config["threshold"] topk = config["topk"] prompt_threshold = config["prompt_threshold"] template = Template(filename=config["template"]) prompt_template = Template(filename=config["prompt_template"]) return cls(agent_name, es_index, vector_index, threshold, topk, prompt_threshold, template, prompt_template) @classmethod def from_config_file(cls, config_file): with open(config_file, encoding="utf-8") as fi: config = json.load(fi) return cls.from_config(config) def handle_message(self, message): """Respond to the user message by retriving documents from the knowledge base. Args: message ([type]): [description] """ query = message.text candidates, similarities = self.vector_index.retrieve(query, self.topk) selected = [candidate for candidate, similarity in zip(candidates, similarities) if similarity >= self.threshold] result = {} if selected: documents = self.es_index.get_answer_by_question_ids(selected) response = self.template.render(documents=documents) result["response"] = BotMessage(message.sender_id, response.strip()) else: selected = [candidate for candidate, similarity in zip(candidates, similarities) if similarity >= self.prompt_threshold] if selected: documents = self.es_index.get_documents_by_ids(selected) prompt = self.prompt_template.render(documents=documents) result["prompt"] = BotMessage(message.sender_id, prompt.strip()) return result
39.684932
132
0.669313
[ "MIT" ]
lawRossi/Broca
Broca/faq_engine/agent.py
2,897
Python
# -*- coding: utf-8 -*- ''' Local settings - Run in Debug mode - Use console backend for emails - Add Django Debug Toolbar - Add django-extensions as app ''' from .common import * # noqa # DEBUG # ------------------------------------------------------------------------------ DEBUG = env.bool('DJANGO_DEBUG', default=True) TEMPLATES[0]['OPTIONS']['debug'] = DEBUG # SECRET CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#secret-key # Note: This key only used for development and testing. SECRET_KEY = env("DJANGO_SECRET_KEY", default='CHANGEME!!!gjwrp$!ldm&fccwk7-bwajlwga)m)!js+pouvnhnxb9+^nbwbw') # Mail settings # ------------------------------------------------------------------------------ EMAIL_HOST = 'localhost' EMAIL_PORT = 1025 EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.console.EmailBackend') # CACHING # ------------------------------------------------------------------------------ CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': '' } } # django-debug-toolbar # ------------------------------------------------------------------------------ MIDDLEWARE_CLASSES += ('debug_toolbar.middleware.DebugToolbarMiddleware',) INSTALLED_APPS += ('debug_toolbar', ) INTERNAL_IPS = ('127.0.0.1', '10.0.2.2',) DEBUG_TOOLBAR_CONFIG = { 'DISABLE_PANELS': [ 'debug_toolbar.panels.redirects.RedirectsPanel', ], 'SHOW_TEMPLATE_CONTEXT': True, } # django-extensions # ------------------------------------------------------------------------------ INSTALLED_APPS += ('django_extensions', ) # TESTING # ------------------------------------------------------------------------------ TEST_RUNNER = 'django.test.runner.DiscoverRunner' # Your local stuff: Below this line define 3rd party library settings
31.126984
110
0.500765
[ "BSD-3-Clause" ]
megcunningham/django-diesel
config/settings/local.py
1,961
Python
import argparse import torch.optim as optim import sys from utils import * from data import data_generator import time import math from setproctitle import setproctitle import warnings sys.path.append("../") from model import TrellisNetModel warnings.filterwarnings("ignore") # Suppress the RunTimeWarning on unicode parser = argparse.ArgumentParser(description='PyTorch TrellisNet Language Model') parser.add_argument('--dataset', type=str, default='ptb', help='dataset to use') parser.add_argument('--name', type=str, default='Trellis_charPTB', help='name of the process') parser.add_argument('--emsize', type=int, default=200, help='size of word embeddings') parser.add_argument('--nhid', type=int, default=1050, help='number of hidden units per layer') parser.add_argument('--nout', type=int, default=200, help='number of output units') parser.add_argument('--lr', type=float, default=2e-3, help='initial learning rate (default: 2e-3)') parser.add_argument('--clip', type=float, default=0.2, help='gradient clipping') parser.add_argument('--epochs', type=int, default=400, help='upper epoch limit (default: 400)') parser.add_argument('--batch_size', type=int, default=24, metavar='N', help='batch size') # For most of the time, you should change these two together parser.add_argument('--nlevels', type=int, default=140, help='levels of the network') parser.add_argument('--horizon', type=int, default=140, help='The effective history size') parser.add_argument('--dropout', type=float, default=0.1, help='output dropout (0 = no dropout)') parser.add_argument('--dropouti', type=float, default=0.1, help='input dropout (0 = no dropout)') parser.add_argument('--wdrop', type=float, default=0.26, help='dropout applied to weights (0 = no dropout)') parser.add_argument('--emb_dropout', type=float, default=0.02, help='dropout applied to embedding layer (0 = no dropout)') parser.add_argument('--dropouth', type=float, default=0.29, help='dropout applied to hidden layers (0 = no dropout)') parser.add_argument('--wdecay', type=float, default=8e-7, help='weight decay') parser.add_argument('--tied', action='store_false', help='tie the word embedding and softmax weights (default: True)') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--anneal', type=int, default=5, help='learning rate annealing criteria (default: 5)') parser.add_argument('--cuda', action='store_false', help='use CUDA (default: True)') parser.add_argument('--wnorm', action='store_false', help='use weight normalization (default: True)') parser.add_argument('--temporalwdrop', action='store_false', help='only drop the temporal weights (default: True)') parser.add_argument('--optim', type=str, default='Adam', help='optimizer to use (default: Adam)') parser.add_argument('--repack', action='store_false', help='use repackaging (default: True)') parser.add_argument('--eval', action='store_true', help='evaluation only mode') parser.add_argument('--aux', type=float, default=0.3, help='use auxiliary loss (default: 0.3), -1 means no auxiliary loss used') parser.add_argument('--aux_freq', type=float, default=80, help='auxiliary loss frequency (default: 80)') parser.add_argument('--seq_len', type=int, default=0, help='total sequence length; if this is 0 then it defaults to args.horizon (default: 0)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='report interval') parser.add_argument('--when', nargs='+', type=int, default=[220, 350], help='When to decay the learning rate') parser.add_argument('--ksize', type=int, default=2, help='conv kernel size (default: 2)') parser.add_argument('--dilation', nargs='+', type=int, default=[1], help='dilation rate (default: [1])') parser.add_argument('--n_experts', type=int, default=0, help='number of softmax experts (default: 0)') parser.add_argument('--load', type=str, default='', help='path to load the model') parser.add_argument('--load_weight', type=str, default='', help='path to load the model weights (please only use --load or --load_weight)') args = parser.parse_args() args.save = args.name + ".pt" # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) setproctitle(args.name) torch.set_default_tensor_type('torch.FloatTensor') if torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) ############################################################################### # Load data ############################################################################### file, file_len, valfile, valfile_len, testfile, testfile_len, corpus = data_generator(args) ntokens = len(corpus.dictionary) eval_batch_size = 10 test_batch_size = 10 train_data = batchify(char_tensor(corpus, file), args.batch_size, args) val_data = batchify(char_tensor(corpus, valfile), eval_batch_size, args) test_data = batchify(char_tensor(corpus, testfile), eval_batch_size, args) print(train_data.size(), val_data.size()) class Logger(object): def __init__(self): self.terminal = sys.stdout self.log = open("logs/" + args.name + ".log", "a") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): # this flush method is needed for python 3 compatibility. # this handles the flush command by doing nothing. # you might want to specify some extra behavior here. self.log.flush() self.terminal.flush() pass sys.stdout = Logger() ############################################################################### # Build the model ############################################################################### if len(args.load) > 0: print("Loaded model\n") model = torch.load(args.load) else: model = TrellisNetModel(ntoken=ntokens, ninp=args.emsize, nhid=args.nhid, nout=args.nout, nlevels=args.nlevels, kernel_size=args.ksize, dilation=args.dilation, dropout=args.dropout, dropouti=args.dropouti, dropouth=args.dropouth, emb_dropout=args.emb_dropout, wdrop=args.wdrop, temporalwdrop=args.temporalwdrop, tie_weights=args.tied, repack=args.repack, wnorm=args.wnorm, aux=(args.aux > 0), aux_frequency=args.aux_freq, load=args.load_weight) if args.cuda: model.cuda() criterion = nn.CrossEntropyLoss() optimizer = getattr(optim, args.optim)(model.parameters(), lr=args.lr, weight_decay=args.wdecay) ############################################################################### # Training code ############################################################################### def evaluate(data_source): model.eval() with torch.no_grad(): total_loss = 0 hidden = model.init_hidden(eval_batch_size) eff_history_mode = (args.seq_len > args.horizon and not args.repack) if eff_history_mode: validseqlen = args.seq_len - args.horizon seq_len = args.seq_len else: validseqlen = args.horizon seq_len = args.horizon processed_data_size = 0 for i in range(0, data_source.size(0) - 1, validseqlen): eff_history = args.horizon if eff_history_mode else 0 if i + eff_history >= data_source.size(0) - 1: continue data, targets = get_batch(data_source, i, seq_len, evaluation=True) if args.repack: hidden = repackage_hidden(hidden) else: hidden = model.init_hidden(eval_batch_size) data = data.t() net = nn.DataParallel(model) if data.size(0) > 10 else model (_, _, decoded), hidden, all_decoded = net(data, hidden) decoded = decoded.transpose(0, 1) targets = targets[eff_history:].contiguous().view(-1) final_decoded = decoded[eff_history:].contiguous().view(-1, ntokens) loss = criterion(final_decoded, targets) loss = loss.data total_loss += (data.size(1) - eff_history) * loss processed_data_size += data.size(1) - eff_history decoded = None final_decoded = None targets = None all_decoded = None # This is for auxiliary losses; not used in evaluation return total_loss.item() / processed_data_size def train(epoch): model.train() total_loss = 0 total_aux_losses = 0 start_time = time.time() ntokens = len(corpus.dictionary) hidden = model.init_hidden(args.batch_size) eff_history_mode = (args.seq_len > args.horizon and not args.repack) if eff_history_mode: validseqlen = args.seq_len - args.horizon seq_len = args.seq_len else: validseqlen = args.horizon seq_len = args.horizon for batch, i in enumerate(range(0, train_data.size(0) - 1, validseqlen)): # When not using repackaging mode, we DISCARD the first arg.horizon outputs in backprop (which are # the "effective history". eff_history = args.horizon if eff_history_mode else 0 if i + eff_history >= train_data.size(0) - 1: continue data, targets = get_batch(train_data, i, seq_len) if args.repack: hidden = repackage_hidden(hidden) else: hidden = model.init_hidden(args.batch_size) optimizer.zero_grad() data = data.t() net = nn.DataParallel(model) if data.size(0) > 10 else model (_, _, decoded), hidden, all_decoded = net(data, hidden) decoded = decoded.transpose(0, 1) targets = targets[eff_history:].contiguous().view(-1) final_decoded = decoded[eff_history:].contiguous().view(-1, ntokens) # Loss 1: CE loss raw_loss = criterion(final_decoded, targets) # Loss 2: Aux loss aux_losses = 0 if args.aux > 0: all_decoded = all_decoded[:, :, eff_history:].permute(1, 2, 0, 3).contiguous() aux_size = all_decoded.size(0) all_decoded = all_decoded.view(aux_size, -1, ntokens) aux_losses = args.aux * sum([criterion(all_decoded[i], targets) for i in range(aux_size)]) # Combine losses loss = raw_loss + aux_losses loss.backward() if args.clip > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() total_loss += raw_loss.data if args.aux: total_aux_losses += aux_losses.data if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss.item() / args.log_interval cur_aux_loss = total_aux_losses.item() / args.log_interval if args.aux else 0 elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | ' 'raw_loss {:5.3f} | aux_loss {:5.2f} | bpc {:5.3f}'.format( epoch, batch, len(train_data) // validseqlen, lr, elapsed * 1000 / args.log_interval, cur_loss, cur_aux_loss, cur_loss / math.log(2))) total_loss = 0 total_aux_losses = 0 start_time = time.time() sys.stdout.flush() decoded = None targets = None final_decoded = None all_decoded = None def inference(epoch): val_loss = evaluate(val_data) print('-' * 89) print('| End of epoch {:3d} | valid loss {:5.3f} | valid bpc {:8.3f}'.format( epoch, val_loss, val_loss / math.log(2))) test_loss = evaluate(test_data) print('| End of epoch {:3d} | test loss {:5.3f} | test bpc {:8.3f}'.format( epoch, test_loss, test_loss / math.log(2))) print('-' * 89) return val_loss, test_loss if args.eval: print("Eval only mode") inference(-1) sys.exit(0) lr = args.lr best_val_loss = None all_val_losses = [] all_test_losses = [] try: for epoch in range(1, args.epochs + 1): loss = train(epoch) val_loss, test_loss = inference(epoch) if not best_val_loss or val_loss < best_val_loss: print("Saving model (new best validation) in " + args.save) save(model, args) best_val_loss = val_loss if epoch in args.when: print("\n" + "*" * 89) if lr > 1e-5: print("Annealing learning rate") lr = lr / 10. for param_group in optimizer.param_groups: param_group['lr'] = lr all_val_losses.append(val_loss) all_test_losses.append(test_loss) sys.stdout.flush() except KeyboardInterrupt: print('-' * 89) print("Saving before quit...") save(model, args) # Load the best saved model with open(args.save, 'rb') as f: model = torch.load(f) model.save_weights('weights/pretrained_charptb.pkl') # Run on test data test_loss = evaluate(test_data) print('=' * 89) print('| End of training | test loss {:5.3f} | test bpc {:8.3f}'.format( test_loss, test_loss / math.log(2))) print('=' * 89)
39.111717
109
0.585063
[ "MIT" ]
CookieBox26/trellisnet
char_PTB/char_ptb.py
14,354
Python
import copy import sys from abc import ABC, abstractmethod from enum import Enum from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Tuple, Union import yaml from ._utils import ( _DEFAULT_MARKER_, ValueKind, _ensure_container, _get_value, _is_interpolation, _is_missing_literal, _is_missing_value, _is_none, _is_special, _is_union, _resolve_optional, get_ref_type, get_structured_config_data, get_value_kind, get_yaml_loader, is_container_annotation, is_dict_annotation, is_list_annotation, is_primitive_dict, is_primitive_type, is_structured_config, is_tuple_annotation, ) from .base import Container, ContainerMetadata, DictKeyType, Node, SCMode from .errors import ( ConfigCycleDetectedException, ConfigTypeError, InterpolationResolutionError, KeyValidationError, MissingMandatoryValue, OmegaConfBaseException, ReadonlyConfigError, ValidationError, ) if TYPE_CHECKING: from .dictconfig import DictConfig # pragma: no cover class BaseContainer(Container, ABC): _resolvers: ClassVar[Dict[str, Any]] = {} def __init__(self, parent: Optional["Container"], metadata: ContainerMetadata): if not (parent is None or isinstance(parent, Container)): raise ConfigTypeError("Parent type is not omegaconf.Container") super().__init__(parent=parent, metadata=metadata) self.__dict__["_content"] = None def _resolve_with_default( self, key: Union[DictKeyType, int], value: Node, default_value: Any = _DEFAULT_MARKER_, ) -> Any: """returns the value with the specified key, like obj.key and obj['key']""" if _is_missing_value(value): if default_value is not _DEFAULT_MARKER_: return default_value raise MissingMandatoryValue("Missing mandatory value: $FULL_KEY") resolved_node = self._maybe_resolve_interpolation( parent=self, key=key, value=value, throw_on_resolution_failure=True, ) return _get_value(resolved_node) def __str__(self) -> str: return self.__repr__() def __repr__(self) -> str: if self.__dict__["_content"] is None: return "None" elif self._is_interpolation() or self._is_missing(): v = self.__dict__["_content"] return f"'{v}'" else: return self.__dict__["_content"].__repr__() # type: ignore # Support pickle def __getstate__(self) -> Dict[str, Any]: dict_copy = copy.copy(self.__dict__) # no need to serialize the flags cache, it can be re-constructed later dict_copy.pop("_flags_cache", None) dict_copy["_metadata"] = copy.copy(dict_copy["_metadata"]) ref_type = self._metadata.ref_type if is_container_annotation(ref_type): if is_dict_annotation(ref_type): dict_copy["_metadata"].ref_type = Dict elif is_list_annotation(ref_type): dict_copy["_metadata"].ref_type = List else: assert False if sys.version_info < (3, 7): # pragma: no cover element_type = self._metadata.element_type if _is_union(element_type): raise OmegaConfBaseException( "Serializing structured configs with `Union` element type requires python >= 3.7" ) return dict_copy # Support pickle def __setstate__(self, d: Dict[str, Any]) -> None: from omegaconf import DictConfig from omegaconf._utils import is_generic_dict, is_generic_list if isinstance(self, DictConfig): key_type = d["_metadata"].key_type # backward compatibility to load OmegaConf 2.0 configs if key_type is None: key_type = Any d["_metadata"].key_type = key_type element_type = d["_metadata"].element_type # backward compatibility to load OmegaConf 2.0 configs if element_type is None: element_type = Any d["_metadata"].element_type = element_type ref_type = d["_metadata"].ref_type if is_container_annotation(ref_type): if is_generic_dict(ref_type): d["_metadata"].ref_type = Dict[key_type, element_type] # type: ignore elif is_generic_list(ref_type): d["_metadata"].ref_type = List[element_type] # type: ignore else: assert False d["_flags_cache"] = None self.__dict__.update(d) @abstractmethod def __delitem__(self, key: Any) -> None: ... def __len__(self) -> int: if self._is_none() or self._is_missing() or self._is_interpolation(): return 0 content = self.__dict__["_content"] return len(content) def merge_with_cli(self) -> None: args_list = sys.argv[1:] self.merge_with_dotlist(args_list) def merge_with_dotlist(self, dotlist: List[str]) -> None: from omegaconf import OmegaConf def fail() -> None: raise ValueError("Input list must be a list or a tuple of strings") if not isinstance(dotlist, (list, tuple)): fail() for arg in dotlist: if not isinstance(arg, str): fail() idx = arg.find("=") if idx == -1: key = arg value = None else: key = arg[0:idx] value = arg[idx + 1 :] value = yaml.load(value, Loader=get_yaml_loader()) OmegaConf.update(self, key, value) def is_empty(self) -> bool: """return true if config is empty""" return len(self.__dict__["_content"]) == 0 @staticmethod def _to_content( conf: Container, resolve: bool, throw_on_missing: bool, enum_to_str: bool = False, structured_config_mode: SCMode = SCMode.DICT, ) -> Union[None, Any, str, Dict[DictKeyType, Any], List[Any]]: from omegaconf import MISSING, DictConfig, ListConfig def convert(val: Node) -> Any: value = val._value() if enum_to_str and isinstance(value, Enum): value = f"{value.name}" return value def get_node_value(key: Union[DictKeyType, int]) -> Any: try: node = conf._get_node(key, throw_on_missing_value=throw_on_missing) except MissingMandatoryValue as e: conf._format_and_raise(key=key, value=None, cause=e) assert isinstance(node, Node) if resolve: try: node = node._dereference_node() except InterpolationResolutionError as e: conf._format_and_raise(key=key, value=None, cause=e) if isinstance(node, Container): value = BaseContainer._to_content( node, resolve=resolve, throw_on_missing=throw_on_missing, enum_to_str=enum_to_str, structured_config_mode=structured_config_mode, ) else: value = convert(node) return value if conf._is_none(): return None elif conf._is_missing(): if throw_on_missing: conf._format_and_raise( key=None, value=None, cause=MissingMandatoryValue("Missing mandatory value"), ) else: return MISSING elif not resolve and conf._is_interpolation(): inter = conf._value() assert isinstance(inter, str) return inter if resolve: _conf = conf._dereference_node() assert isinstance(_conf, Container) conf = _conf if isinstance(conf, DictConfig): if ( conf._metadata.object_type not in (dict, None) and structured_config_mode == SCMode.DICT_CONFIG ): return conf if structured_config_mode == SCMode.INSTANTIATE and is_structured_config( conf._metadata.object_type ): return conf._to_object() retdict: Dict[DictKeyType, Any] = {} for key in conf.keys(): value = get_node_value(key) if enum_to_str and isinstance(key, Enum): key = f"{key.name}" retdict[key] = value return retdict elif isinstance(conf, ListConfig): retlist: List[Any] = [] for index in range(len(conf)): item = get_node_value(index) retlist.append(item) return retlist assert False @staticmethod def _map_merge(dest: "BaseContainer", src: "BaseContainer") -> None: """merge src into dest and return a new copy, does not modified input""" from omegaconf import AnyNode, DictConfig, ValueNode assert isinstance(dest, DictConfig) assert isinstance(src, DictConfig) src_type = src._metadata.object_type src_ref_type = get_ref_type(src) assert src_ref_type is not None # If source DictConfig is: # - None => set the destination DictConfig to None # - an interpolation => set the destination DictConfig to be the same interpolation if src._is_none() or src._is_interpolation(): dest._set_value(src._value()) _update_types(node=dest, ref_type=src_ref_type, object_type=src_type) return dest._validate_merge(value=src) def expand(node: Container) -> None: rt = node._metadata.ref_type val: Any if rt is not Any: if is_dict_annotation(rt): val = {} elif is_list_annotation(rt) or is_tuple_annotation(rt): val = [] else: val = rt elif isinstance(node, DictConfig): val = {} else: assert False node._set_value(val) if ( src._is_missing() and not dest._is_missing() and is_structured_config(src_ref_type) ): # Replace `src` with a prototype of its corresponding structured config # whose fields are all missing (to avoid overwriting fields in `dest`). src = _create_structured_with_missing_fields( ref_type=src_ref_type, object_type=src_type ) if (dest._is_interpolation() or dest._is_missing()) and not src._is_missing(): expand(dest) src_items = src.items_ex(resolve=False) if not src._is_missing() else [] for key, src_value in src_items: src_node = src._get_node(key, validate_access=False) dest_node = dest._get_node(key, validate_access=False) assert src_node is None or isinstance(src_node, Node) assert dest_node is None or isinstance(dest_node, Node) if isinstance(dest_node, DictConfig): dest_node._validate_merge(value=src_node) missing_src_value = _is_missing_value(src_value) if ( isinstance(dest_node, Container) and dest_node._is_none() and not missing_src_value and not _is_none(src_value, resolve=True) ): expand(dest_node) if dest_node is not None and dest_node._is_interpolation(): target_node = dest_node._maybe_dereference_node() if isinstance(target_node, Container): dest[key] = target_node dest_node = dest._get_node(key) is_optional, et = _resolve_optional(dest._metadata.element_type) if dest_node is None and is_structured_config(et) and not missing_src_value: # merging into a new node. Use element_type as a base dest[key] = DictConfig( et, parent=dest, ref_type=et, is_optional=is_optional ) dest_node = dest._get_node(key) if dest_node is not None: if isinstance(dest_node, BaseContainer): if isinstance(src_value, BaseContainer): dest_node._merge_with(src_value) elif not missing_src_value: dest.__setitem__(key, src_value) else: if isinstance(src_value, BaseContainer): dest.__setitem__(key, src_value) else: assert isinstance(dest_node, ValueNode) assert isinstance(src_node, ValueNode) # Compare to literal missing, ignoring interpolation src_node_missing = _is_missing_literal(src_value) try: if isinstance(dest_node, AnyNode): if src_node_missing: node = copy.copy(src_node) # if src node is missing, use the value from the dest_node, # but validate it against the type of the src node before assigment node._set_value(dest_node._value()) else: node = src_node dest.__setitem__(key, node) else: if not src_node_missing: dest_node._set_value(src_value) except (ValidationError, ReadonlyConfigError) as e: dest._format_and_raise(key=key, value=src_value, cause=e) else: from omegaconf import open_dict if is_structured_config(src_type): # verified to be compatible above in _validate_merge with open_dict(dest): dest[key] = src._get_node(key) else: dest[key] = src._get_node(key) _update_types(node=dest, ref_type=src_ref_type, object_type=src_type) # explicit flags on the source config are replacing the flag values in the destination flags = src._metadata.flags assert flags is not None for flag, value in flags.items(): if value is not None: dest._set_flag(flag, value) @staticmethod def _list_merge(dest: Any, src: Any) -> None: from omegaconf import DictConfig, ListConfig, OmegaConf assert isinstance(dest, ListConfig) assert isinstance(src, ListConfig) if src._is_none(): dest._set_value(None) elif src._is_missing(): # do not change dest if src is MISSING. if dest._metadata.element_type is Any: dest._metadata.element_type = src._metadata.element_type elif src._is_interpolation(): dest._set_value(src._value()) else: temp_target = ListConfig(content=[], parent=dest._get_parent()) temp_target.__dict__["_metadata"] = copy.deepcopy( dest.__dict__["_metadata"] ) is_optional, et = _resolve_optional(dest._metadata.element_type) if is_structured_config(et): prototype = DictConfig(et, ref_type=et, is_optional=is_optional) for item in src._iter_ex(resolve=False): if isinstance(item, DictConfig): item = OmegaConf.merge(prototype, item) temp_target.append(item) else: for item in src._iter_ex(resolve=False): temp_target.append(item) dest.__dict__["_content"] = temp_target.__dict__["_content"] # explicit flags on the source config are replacing the flag values in the destination flags = src._metadata.flags assert flags is not None for flag, value in flags.items(): if value is not None: dest._set_flag(flag, value) def merge_with( self, *others: Union[ "BaseContainer", Dict[str, Any], List[Any], Tuple[Any, ...], Any ], ) -> None: try: self._merge_with(*others) except Exception as e: self._format_and_raise(key=None, value=None, cause=e) def _merge_with( self, *others: Union[ "BaseContainer", Dict[str, Any], List[Any], Tuple[Any, ...], Any ], ) -> None: from .dictconfig import DictConfig from .listconfig import ListConfig """merge a list of other Config objects into this one, overriding as needed""" for other in others: if other is None: raise ValueError("Cannot merge with a None config") my_flags = {} if self._get_flag("allow_objects") is True: my_flags = {"allow_objects": True} other = _ensure_container(other, flags=my_flags) if isinstance(self, DictConfig) and isinstance(other, DictConfig): BaseContainer._map_merge(self, other) elif isinstance(self, ListConfig) and isinstance(other, ListConfig): BaseContainer._list_merge(self, other) else: raise TypeError("Cannot merge DictConfig with ListConfig") # recursively correct the parent hierarchy after the merge self._re_parent() # noinspection PyProtectedMember def _set_item_impl(self, key: Any, value: Any) -> None: """ Changes the value of the node key with the desired value. If the node key doesn't exist it creates a new one. """ from .nodes import AnyNode, ValueNode if isinstance(value, Node): do_deepcopy = not self._get_flag("no_deepcopy_set_nodes") if not do_deepcopy and isinstance(value, Container): # if value is from the same config, perform a deepcopy no matter what. if self._get_root() is value._get_root(): do_deepcopy = True if do_deepcopy: value = copy.deepcopy(value) value._set_parent(None) try: old = value._key() value._set_key(key) self._validate_set(key, value) finally: value._set_key(old) else: self._validate_set(key, value) if self._get_flag("readonly"): raise ReadonlyConfigError("Cannot change read-only config container") input_is_node = isinstance(value, Node) target_node_ref = self._get_node(key) input_is_typed_vnode = isinstance(value, ValueNode) and not isinstance( value, AnyNode ) target_is_vnode = isinstance(target_node_ref, ValueNode) def get_target_type_hint(val: Any) -> Any: if not is_structured_config(val): type_hint = self._metadata.element_type else: target = self._get_node(key) if target is None: type_hint = self._metadata.element_type else: assert isinstance(target, Node) type_hint = target._metadata.type_hint return type_hint def assign(value_key: Any, val: Node) -> None: assert val._get_parent() is None v = val v._set_parent(self) v._set_key(value_key) _deep_update_type_hint(node=v, type_hint=self._metadata.element_type) self.__dict__["_content"][value_key] = v if input_is_typed_vnode: assign(key, value) else: # input is not a ValueNode, can be primitive or container special_value = _is_special(value) type_hint = get_target_type_hint(value) # We use the `Node._set_value` method if the target node exists # 1. the value is special (i.e. MISSING or None or interpolation), or # 2. the target is a Container and has an explicit ref_type, or # 3. the target is a typed ValueNode, or # 4. the target is an AnyNode and the input is a primitive type. should_set_value = target_node_ref is not None and ( special_value or ( isinstance(target_node_ref, Container) and target_node_ref._has_ref_type() ) or (target_is_vnode and not isinstance(target_node_ref, AnyNode)) or (isinstance(target_node_ref, AnyNode) and is_primitive_type(value)) ) if should_set_value: if special_value and isinstance(value, Node): value = value._value() self.__dict__["_content"][key]._set_value(value) elif input_is_node: _, ref_type = _resolve_optional(type_hint) if special_value and ( is_container_annotation(ref_type) or is_structured_config(ref_type) ): self._wrap_value_and_set(key, value._value(), type_hint) else: assign(key, value) else: self._wrap_value_and_set(key, value, type_hint) def _wrap_value_and_set(self, key: Any, val: Any, type_hint: Any) -> None: from omegaconf.omegaconf import _maybe_wrap is_optional, ref_type = _resolve_optional(type_hint) wrapped = _maybe_wrap( ref_type=ref_type, key=key, value=val, is_optional=is_optional, parent=self, ) self.__dict__["_content"][key] = wrapped @staticmethod def _item_eq( c1: Container, k1: Union[DictKeyType, int], c2: Container, k2: Union[DictKeyType, int], ) -> bool: v1 = c1._get_node(k1) v2 = c2._get_node(k2) assert v1 is not None and v2 is not None assert isinstance(v1, Node) assert isinstance(v2, Node) if v1._is_none() and v2._is_none(): return True if v1._is_missing() and v2._is_missing(): return True v1_inter = v1._is_interpolation() v2_inter = v2._is_interpolation() dv1: Optional[Node] = v1 dv2: Optional[Node] = v2 if v1_inter: dv1 = v1._maybe_dereference_node() if v2_inter: dv2 = v2._maybe_dereference_node() if v1_inter and v2_inter: if dv1 is None or dv2 is None: return v1 == v2 else: # both are not none, if both are containers compare as container if isinstance(dv1, Container) and isinstance(dv2, Container): if dv1 != dv2: return False dv1 = _get_value(dv1) dv2 = _get_value(dv2) return dv1 == dv2 elif not v1_inter and not v2_inter: v1 = _get_value(v1) v2 = _get_value(v2) ret = v1 == v2 assert isinstance(ret, bool) return ret else: dv1 = _get_value(dv1) dv2 = _get_value(dv2) ret = dv1 == dv2 assert isinstance(ret, bool) return ret def _is_optional(self) -> bool: return self.__dict__["_metadata"].optional is True def _is_interpolation(self) -> bool: return _is_interpolation(self.__dict__["_content"]) @abstractmethod def _validate_get(self, key: Any, value: Any = None) -> None: ... @abstractmethod def _validate_set(self, key: Any, value: Any) -> None: ... def _value(self) -> Any: return self.__dict__["_content"] def _get_full_key(self, key: Union[DictKeyType, int, slice, None]) -> str: from .listconfig import ListConfig from .omegaconf import _select_one if not isinstance(key, (int, str, Enum, float, bool, slice, bytes, type(None))): return "" def _slice_to_str(x: slice) -> str: if x.step is not None: return f"{x.start}:{x.stop}:{x.step}" else: return f"{x.start}:{x.stop}" def prepand(full_key: str, parent_type: Any, cur_type: Any, key: Any) -> str: if isinstance(key, slice): key = _slice_to_str(key) elif isinstance(key, Enum): key = key.name elif isinstance(key, (int, float, bool)): key = str(key) if issubclass(parent_type, ListConfig): if full_key != "": if issubclass(cur_type, ListConfig): full_key = f"[{key}]{full_key}" else: full_key = f"[{key}].{full_key}" else: full_key = f"[{key}]" else: if full_key == "": full_key = key else: if issubclass(cur_type, ListConfig): full_key = f"{key}{full_key}" else: full_key = f"{key}.{full_key}" return full_key if key is not None and key != "": assert isinstance(self, Container) cur, _ = _select_one( c=self, key=str(key), throw_on_missing=False, throw_on_type_error=False ) if cur is None: cur = self full_key = prepand("", type(cur), None, key) if cur._key() is not None: full_key = prepand( full_key, type(cur._get_parent()), type(cur), cur._key() ) else: full_key = prepand("", type(cur._get_parent()), type(cur), cur._key()) else: cur = self if cur._key() is None: return "" full_key = self._key() assert cur is not None memo = {id(cur)} # remember already visited nodes so as to detect cycles while cur._get_parent() is not None: cur = cur._get_parent() if id(cur) in memo: raise ConfigCycleDetectedException( f"Cycle when iterating over parents of key `{key!s}`" ) memo.add(id(cur)) assert cur is not None if cur._key() is not None: full_key = prepand( full_key, type(cur._get_parent()), type(cur), cur._key() ) return full_key def _create_structured_with_missing_fields( ref_type: type, object_type: Optional[type] = None ) -> "DictConfig": from . import MISSING, DictConfig cfg_data = get_structured_config_data(ref_type) for v in cfg_data.values(): v._set_value(MISSING) cfg = DictConfig(cfg_data) cfg._metadata.optional, cfg._metadata.ref_type = _resolve_optional(ref_type) cfg._metadata.object_type = object_type return cfg def _update_types(node: Node, ref_type: Any, object_type: Optional[type]) -> None: if object_type is not None and not is_primitive_dict(object_type): node._metadata.object_type = object_type if node._metadata.ref_type is Any: _deep_update_type_hint(node, ref_type) def _deep_update_type_hint(node: Node, type_hint: Any) -> None: """Ensure node is compatible with type_hint, mutating if necessary.""" from omegaconf import DictConfig, ListConfig from ._utils import get_dict_key_value_types, get_list_element_type if type_hint is Any: return _shallow_validate_type_hint(node, type_hint) new_is_optional, new_ref_type = _resolve_optional(type_hint) node._metadata.ref_type = new_ref_type node._metadata.optional = new_is_optional if is_list_annotation(new_ref_type) and isinstance(node, ListConfig): new_element_type = get_list_element_type(new_ref_type) node._metadata.element_type = new_element_type if not _is_special(node): for i in range(len(node)): _deep_update_subnode(node, i, new_element_type) if is_dict_annotation(new_ref_type) and isinstance(node, DictConfig): new_key_type, new_element_type = get_dict_key_value_types(new_ref_type) node._metadata.key_type = new_key_type node._metadata.element_type = new_element_type if not _is_special(node): for key in node: if new_key_type is not Any and not isinstance(key, new_key_type): raise KeyValidationError( f"Key {key!r} ({type(key).__name__}) is incompatible" + f" with key type hint '{new_key_type.__name__}'" ) _deep_update_subnode(node, key, new_element_type) def _deep_update_subnode(node: BaseContainer, key: Any, value_type_hint: Any) -> None: """Get node[key] and ensure it is compatible with value_type_hint, mutating if necessary.""" subnode = node._get_node(key) assert isinstance(subnode, Node) if _is_special(subnode): # Ensure special values are wrapped in a Node subclass that # is compatible with the type hint. node._wrap_value_and_set(key, subnode._value(), value_type_hint) subnode = node._get_node(key) assert isinstance(subnode, Node) _deep_update_type_hint(subnode, value_type_hint) def _shallow_validate_type_hint(node: Node, type_hint: Any) -> None: """Error if node's type, content and metadata are not compatible with type_hint.""" from omegaconf import DictConfig, ListConfig, ValueNode is_optional, ref_type = _resolve_optional(type_hint) vk = get_value_kind(node) if node._is_none(): if not is_optional: value = _get_value(node) raise ValidationError( f"Value {value!r} ({type(value).__name__})" + f" is incompatible with type hint '{ref_type.__name__}'" ) return elif vk in (ValueKind.MANDATORY_MISSING, ValueKind.INTERPOLATION): return elif vk == ValueKind.VALUE: if is_primitive_type(ref_type) and isinstance(node, ValueNode): value = node._value() if not isinstance(value, ref_type): raise ValidationError( f"Value {value!r} ({type(value).__name__})" + f" is incompatible with type hint '{ref_type.__name__}'" ) elif is_structured_config(ref_type) and isinstance(node, DictConfig): return elif is_dict_annotation(ref_type) and isinstance(node, DictConfig): return elif is_list_annotation(ref_type) and isinstance(node, ListConfig): return else: if isinstance(node, ValueNode): value = node._value() raise ValidationError( f"Value {value!r} ({type(value).__name__})" + f" is incompatible with type hint '{ref_type}'" ) else: raise ValidationError( f"'{type(node).__name__}' is incompatible" + f" with type hint '{ref_type}'" ) else: assert False
36.87931
103
0.569331
[ "BSD-3-Clause" ]
gwenzek/omegaconf
omegaconf/basecontainer.py
32,085
Python
# Copyright 2019-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from pydantic import Field from braket.device_schema.device_capabilities import DeviceCapabilities from braket.device_schema.dwave.dwave_provider_properties_v1 import DwaveProviderProperties from braket.schema_common import BraketSchemaBase, BraketSchemaHeader class DwaveDeviceCapabilities(DeviceCapabilities, BraketSchemaBase): """ These are the capabilities specific to D-Wave device Attributes: provider: Properties specific to D-Wave provider Examples: >>> import json >>> input_json = ...{ ... "braketSchemaHeader": { ... "name": "braket.device_schema.dwave.dwave_device_capabilities", ... "version": "1", ... }, ... "provider": { ... "braketSchemaHeader": { ... "name": "braket.device_schema.dwave.dwave_provider_properties", ... "version": "1", ... }, ... "annealingOffsetStep": 1.45, ... "annealingOffsetStepPhi0": 1.45, ... "annealingOffsetRanges": [[1.45, 1.45], [1.45, 1.45]], ... "annealingDurationRange": [1, 2, 3], ... "couplers": [[1, 2, 3], [1, 2, 3]], ... "defaultAnnealingDuration": 1, ... "defaultProgrammingThermalizationDuration": 1, ... "defaultReadoutThermalizationDuration": 1, ... "extendedJRange": [1, 2, 3], ... "hGainScheduleRange": [1, 2, 3], ... "hRange": [1, 2, 3], ... "jRange": [1, 2, 3], ... "maximumAnnealingSchedulePoints": 1, ... "maximumHGainSchedulePoints": 1, ... "perQubitCouplingRange": [1, 2, 3], ... "programmingThermalizationDurationRange": [1, 2, 3], ... "qubits": [1, 2, 3], ... "qubitCount": 1, ... "quotaConversionRate": 1, ... "readoutThermalizationDurationRange": [1, 2, 3], ... "taskRunDurationRange": [1, 2, 3], ... "topology": {}, ... }, ... "service": { ... "braketSchemaHeader": { ... "name": "braket.device_schema.device_service_properties", ... "version": "1", ... }, ... "executionWindows": [ ... { ... "executionDay": "Everyday", ... "windowStartHour": "09:00", ... "windowEndHour": "19:00", ... } ... ], ... "shotsRange": [1, 10], ... "deviceCost": { ... "price": 0.25, ... "unit": "minute" ... }, ... "deviceDocumentation": { ... "imageUrl": "image_url", ... "summary": "Summary on the device", ... "externalDocumentationUrl": "exter doc link", ... }, ... "deviceLocation": "us-east-1", ... "updatedAt": "2020-06-16T19:28:02.869136" ... }, ... "action": { ... "braket.ir.annealing.problem": { ... "actionType": "braket.ir.annealing.problem", ... "version": ["1"], ... } ... }, ... "deviceParameters": {DwaveDeviceParameters.schema_json()}, ... } >>> DwaveDeviceCapabilities.parse_raw_schema(json.dumps(input_json)) """ _PROGRAM_HEADER = BraketSchemaHeader( name="braket.device_schema.dwave.dwave_device_capabilities", version="1" ) braketSchemaHeader: BraketSchemaHeader = Field(default=_PROGRAM_HEADER, const=_PROGRAM_HEADER) provider: DwaveProviderProperties
41.866667
98
0.512966
[ "Apache-2.0" ]
QPC-database/amazon-braket-schemas-python
src/braket/device_schema/dwave/dwave_device_capabilities_v1.py
4,396
Python
import unittest from programy.bot import Bot from programy.config.bot.bot import BotConfiguration from programy.sentiment.extension import SentimentExtension from programytest.client import TestClient class SentimentExtensionTests(unittest.TestCase): def setUp(self): self._client = TestClient() config = BotConfiguration() config.sentiment_analyser._classname = "programy.sentiment.textblob_sentiment.TextBlobSentimentAnalyser" config.sentiment_analyser._scores = "programy.sentiment.scores.SentimentScores" self.client_context = self._client.create_client_context("testuser") self.client_context._bot = Bot(config=config, client=self._client) self.client_context._bot.initiate_sentiment_analyser() def test_invalid_command(self): extension = SentimentExtension() self.assertIsNotNone(extension) result = extension.execute(self.client_context, "XXX") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) result = extension.execute(self.client_context, "SENTIMENT") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) result = extension.execute(self.client_context, "SENTIMENT SCOREX") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) result = extension.execute(self.client_context, "SENTIMENT FEELING") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) result = extension.execute(self.client_context, "SENTIMENT FEELING LAST") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) result = extension.execute(self.client_context, "SENTIMENT SCORES") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) result = extension.execute(self.client_context, "SENTIMENT CURRENT") self.assertIsNotNone(result) self.assertEqual("SENTIMENT INVALID COMMAND", result) def test_valid_scores_command(self): extension = SentimentExtension() self.assertIsNotNone(extension) result = extension.execute(self.client_context, "SENTIMENT ENABLED") self.assertIsNotNone(result) self.assertEqual("SENTIMENT ENABLED", result) result = extension.execute(self.client_context, "SENTIMENT FEELING LAST 1") self.assertIsNotNone(result) self.assertEqual("SENTIMENT FEELING NEUTRAL AND NEUTRAL", result) result = extension.execute(self.client_context, "SENTIMENT FEELING OVERALL") self.assertIsNotNone(result) self.assertEqual("SENTIMENT FEELING NEUTRAL AND NEUTRAL", result) result = extension.execute(self.client_context, "SENTIMENT SCORE I LIKE YOU") self.assertIsNotNone(result) self.assertEqual("SENTIMENT SCORES POSITIVITY NEUTRAL SUBJECTIVITY COMPLETELY OBJECTIVE", result)
39.25974
112
0.726431
[ "MIT" ]
motazsaad/fit-bot-fb-clt
test/programytest/sentiment/test_extension.py
3,023
Python
from pathlib import Path from subprocess import PIPE, CalledProcessError from typing import Iterable, List, Tuple, Union import matplotlib.pyplot as plt PathLike = Union[Path, str] conf_opening, conf_closing = "+++++", "-----" def profile_config_file( binary_path: PathLike, config_path: PathLike, output_config_path: PathLike, progress_bar: bool = True, profile_filename: str = "profile_info.txt", qos_filename: str = "final_accuracy", ) -> None: r"""Profile an HPVM configuration file with an HPVM binary, and write the updated configuration file to a given location. The configuration file must have the baseline as the first configuration. :param binary_path: Path to binary to be executed in profiling. :param config_path: Path to config file (HPVM configuration format) with configs to enumerate for profiling. :param output_config_path: Path where the output configs are written. The output config file has the same configs as the input `config_path` file, but the performance and energy readings are updated. :param progress_bar: If `True`, show a progress bar for number of configs already profiled. :param profile_filename: Name of profile file generated by the binary (in current directory). This defaults to "profile_info.txt" and should not be changed for HPVM binaries. :param qos_filename: Name of QoS file generated by the binary (in current directory). It contains a single float number as the QoS of this run. This defaults to "final_accuracy" and should not be changed for HPVM binaries. """ # Read first line ("the float") and configs in config file header, configs = read_hpvm_configs(Path(config_path)) if not configs: raise ValueError("Config file with no configs is unsupported.") # Modifies configs in place. profile_configs( binary_path, configs[1:], configs[0], progress_bar, profile_filename, qos_filename, ) write_hpvm_configs(header, configs, Path(output_config_path)) def profile_configs( binary_path: PathLike, configs: Iterable["Config"], baseline_config: "Config", progress_bar: bool = True, profile_filename: str = "profile_info.txt", qos_filename: str = "final_accuracy", ) -> None: """Profile a sequence of HPVM configs. This function modifies argument `configs` in place.""" from tqdm import tqdm baseline_time, baseline_acc = measure_config(binary_path, baseline_config) iterable = tqdm(configs, desc="Configs profiled") if progress_bar else configs for config in iterable: time, acc = measure_config(binary_path, config, profile_filename, qos_filename) speedup = baseline_time / time config.update_profile_results(speedup, acc, baseline_acc) return configs def measure_config( binary_path: PathLike, config: "Config", profile_filename: str = "profile_info.txt", qos_filename: str = "final_accuracy", ): from subprocess import check_call from tempfile import NamedTemporaryFile import os temp_file = NamedTemporaryFile("w") write_hpvm_configs("0.0", [config], Path(temp_file.name)) # Run binary_path binary, # which generates `profile_filename` and `qos_filename` file in cwd. try: with open(os.devnull, "w") as f: check_call([str(binary_path), "-c", str(temp_file.name)], stdout=f) except CalledProcessError as e: print("Output from the program:") print(e.output) raise e time = _read_profile_file(Path(profile_filename)) acc = _read_qos_file(Path(qos_filename)) temp_file.close() return time, acc def plot_hpvm_configs( config_path: PathLike, save_to: PathLike = None, show_qos_loss: bool = True, **fig_kwargs, ) -> plt.Figure: """ Plot the QoS-speedup information in an HPVM configuration file. It is recommended to profile the config file first (using `profile_configs`) to obtain real speedup numbers. This function creates a `matplotlib.pyplot.Figure`, plots on it, and returns it. :param config_path: Path to the config file (HPVM configuration format). :param save_to: File to save figure into. Default is None: don't save figure (just return it). :param show_qos_loss: Show the loss of QoS on x axis of the figure. Defaults to True. If False, will use (absolute) QoS instead of QoS loss. :param fig_kwargs: Arguments to pass to `plt.subplots`. """ import numpy as np _, configs = read_hpvm_configs(config_path) get_qos = lambda c: c.qos_loss if show_qos_loss else c.qos qos_speedup = np.array([(get_qos(c), c.speedup) for c in configs]) qoses, speedups = qos_speedup.T fig, ax = plt.subplots(**fig_kwargs) ax.scatter(qoses, speedups) ax.set_xlabel("QoS Loss") ax.set_ylabel("Speedup (X)") if save_to: fig.savefig(save_to, dpi=300) return fig class Config: def __init__( self, conf_name: str, speedup: float, energy: float, qos: float, qos_loss: float, config_body: List[str], ): self.conf_name = conf_name self.speedup = speedup self.energy = energy self.qos = qos self.qos_loss = qos_loss # We don't care about the information in this part, and we don't parse this. self.config_body = config_body def update_profile_results(self, speedup: float, qos: float, base_qos: float): recorded_base_qos = self.qos + self.qos_loss if abs(recorded_base_qos - base_qos) > 0.025: raise ValueError( f"Baseline QoS mismatch. Original: {recorded_base_qos}, measured: {base_qos}" ) self.speedup = speedup self.qos = qos self.qos_loss = base_qos - qos def __repr__(self) -> str: header_fields = [ self.conf_name, self.speedup, self.energy, self.qos, self.qos_loss, ] header = " ".join(str(field) for field in header_fields) lines = [conf_opening, header, *self.config_body, conf_closing] return "\n".join(lines) __str__ = __repr__ def read_hpvm_configs(config_file: PathLike) -> Tuple[str, List[Config]]: # def read_hpvm_configs(config_file, config_num, temp_file): ret_configs = [] with open(config_file) as f: text = f.read() # There's 1 float sitting on the first line of config file. # We don't use it, but want to keep that intact. header, *configs = text.split(conf_opening) header = header.strip() for config_text in configs: config_text = config_text.replace(conf_closing, "").strip() config_header, *config_body = config_text.splitlines() conf_name, *number_fields = config_header.split(" ") speedup, energy, qos, qos_drop = [float(s) for s in number_fields] ret_configs.append( Config(conf_name, speedup, energy, qos, qos_drop, config_body) ) return header, ret_configs def write_hpvm_configs(header: str, configs: Iterable[Config], to_file: PathLike): text_segs = [header] + [str(config) for config in configs] with open(to_file, "w") as f: f.write("\n".join(text_segs)) f.flush() def _read_profile_file(profile_file_path: Path): with profile_file_path.open() as f: target_lines = [line.strip() for line in f if "Total Time" in line] if len(target_lines) != 1: raise RuntimeError(f"Profile {profile_file_path} malformed") (target_line,) = target_lines return float(target_line.split()[3]) def _read_qos_file(qos_file_path: Path): with qos_file_path.open() as f: return float(f.read().strip())
36.170507
98
0.673844
[ "Apache-2.0" ]
vzyrianov/hpvm-autograd
hpvm/projects/hpvm-profiler/hpvm_profiler/__init__.py
7,849
Python
# pylint: disable=too-many-lines import os import random import shutil import time import uuid from retval import RetVal from pycryptostring import CryptoString from pymensago.encryption import EncryptionPair from pymensago.hash import blake2hash from pymensago.serverconn import ServerConnection from integration_setup import login_admin, regcode_admin, setup_test, init_server, init_user, \ init_user2, reset_top_dir from tests.integration.integration_setup import funcname server_response = { 'title' : 'Mensago Server Response', 'type' : 'object', 'required' : [ 'Code', 'Status', 'Info', 'Data' ], 'properties' : { 'Code' : { 'type' : 'integer' }, 'Status' : { 'type' : 'string' }, 'Info' : { 'type' : 'string' }, 'Data' : { 'type' : 'object' } } } def make_test_file(path: str, file_size=-1, file_name='') -> RetVal: '''Generate a test file containing nothing but zeroes. If the file size is negative, a random size between 1 and 10 Kb will be chosen. If the file name is empty, a random one will be generated. Returns: name: (str) name of the test file generated size: (int) size of the test file generated ''' if file_size < 0: file_size = random.randint(1,10) * 1024 if file_name == '' or not file_name: file_name = f"{int(time.time())}.{file_size}.{str(uuid.uuid4())}" try: fhandle = open(os.path.join(path, file_name), 'w') except Exception as e: return RetVal().wrap_exception(e) fhandle.write('0' * file_size) fhandle.close() return RetVal().set_values({ 'name':file_name, 'size':file_size }) def setup_testdir(name) -> str: '''Creates a test folder for holding files''' topdir = os.path.join(os.path.dirname(os.path.realpath(__file__)),'testfiles') if not os.path.exists(topdir): os.mkdir(topdir) testdir = os.path.join(topdir, name) while os.path.exists(testdir): try: shutil.rmtree(testdir) except: print("Waiting a second for test folder to unlock") time.sleep(1.0) os.mkdir(testdir) return testdir def test_copy(): '''Tests the COPY command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Set up the directory hierarchy admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) inner_dir = os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111') os.mkdir(inner_dir) # Subtest #1: Nonexistent source file conn.send_message({ 'Action': 'COPY', 'Data': { 'SourceFile': '/ wsp ' + dbdata['admin_wid'] + ' 1.1.01234567-89ab-cdef-0123-456789abcdef', 'DestDir': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_copy: #1 failed to handle nonexistent source file' # Subtest #2: Nonexistent destination directory # By making this 1MB + 1byte, the file's mere existence will put us over the limit of the 1MB # disk quota status = make_test_file(admin_dir, file_size=0x10_0001) assert not status.error(), 'test_copy: #2 failed to create a test file' testfile1 = status['name'] conn.send_message({ 'Action': 'COPY', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 22222222-2222-2222-2222-222222222222" } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_copy: #2 failed to handle nonexistent destination dir' # Subtest #3: Source path is a directory conn.send_message({ 'Action': 'COPY', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111" } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_copy: #3 failed to handle directory as source' # Subtest #4: Destination is file path # Normally each file on the system has a unique name, but having a duplicate in this case # won't matter status = make_test_file(inner_dir, 102400, testfile1) conn.send_message({ 'Action': 'COPY', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111 {testfile1}" } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_copy: #4 failed to handle file as destination' # Subtest #5: Insufficient quota remaining # The administrator normally can't have a quota. We'll just fix that just for this one test # *heh* # We actually have to do an update instead of an insert because the quota checks in earlier # calls ensure that there is a quota record for admin in the database cur = dbconn.cursor() cur.execute(f"UPDATE quotas SET quota=1 WHERE wid='{dbdata['admin_wid']}'") dbconn.commit() conn.send_message({ 'Action': 'COPY', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111" } }) response = conn.read_response(server_response) assert response['Code'] == 409, 'test_copy: #5 failed to handle quota limit' # We need this to be unlimited for later tests cur = dbconn.cursor() cur.execute(f"UPDATE quotas SET quota=0 WHERE wid = '{dbdata['admin_wid']}'") dbconn.commit() # Subtest #6: Actual success conn.send_message({ 'Action': 'COPY', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111" } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_copy: #6 failed to succeed' conn.disconnect() def test_delete(): '''Test the DELETE command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Bad path conn.send_message({ 'Action': 'DELETE', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} some_dir_name" } }) response = conn.read_response(server_response) assert response['Code'] == 400, f"{funcname()}: failed to handle bad path" # Subtest #2: Directory doesn't exist conn.send_message({ 'Action': 'DELETE', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} 1234.1234.11111111-1111-1111-1111-111111111111" } }) response = conn.read_response(server_response) assert response['Code'] == 404, f"{funcname()}: #2 failed to handle nonexistent file" # Subtest #3: Actual success admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) status = make_test_file(admin_dir) assert not status.error(), f"{funcname()}: #3 failed to create test file" filename = status["name"] conn.send_message({ 'Action': 'DELETE', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} {filename}" } }) response = conn.read_response(server_response) assert response['Code'] == 200, f"{funcname()}: #3 failed to delete file" def test_download(): '''This tests the command DOWNLOAD''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) init_user(dbdata, conn) # Subtest #1: Missing parameters conn.send_message({'Action': 'DOWNLOAD','Data': {}}) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_download: #1 failed to handle missing parameter' # Subtest #2: Non-existent path conn.send_message({ 'Action': 'DOWNLOAD', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 22222222-2222-2222-2222-222222222222' + ' 1000.1000.22222222-2222-2222-2222-222222222222' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_download: #2 failed to handle non-existent path' # Subtest #3: Actual success status = make_test_file(os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']), file_size=1000) assert not status.error(), f"test_download: #3 failed to create test file: {status.info}" testname = status['name'] conn.send_message({ 'Action': 'DOWNLOAD', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} {testname}" } }) response = conn.read_response(server_response) assert response['Code'] == 100, 'test_download: #3 failed to proceed to file download' assert 'Size' in response['Data'] and response['Data']['Size'] == '1000', \ 'test_download: #3 server failed to respond with file size' conn.send_message({ 'Action': 'DOWNLOAD', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} {testname}", 'Size': '1000' } }) rawdata = conn.read() assert len(rawdata) == 1000, 'test_download: #3 downloaded file had wrong length' # Set up an 'interrupted' transfer status = make_test_file(os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']), file_size=1000) assert not status.error(), f"test_download: #4 failed to create test file: {status.info}" testname = status['name'] # Subtest #7: Resume offset larger than size of data stored server-side conn.send_message({ 'Action': 'DOWNLOAD', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} {testname}", 'Offset': '2500' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_download: #4 failed to handle offset > file size' # Subtest #5: Resume interrupted transfer - exact match conn.send_message({ 'Action': 'DOWNLOAD', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} {testname}", 'Offset': '500' } }) response = conn.read_response(server_response) assert response['Code'] == 100, 'test_download: #3 failed to proceed to file download' assert 'Size' in response['Data'] and response['Data']['Size'] == '1000', \ 'test_download: #5 server failed to respond with file size' conn.send_message({ 'Action': 'DOWNLOAD', 'Data': { 'Path': f"/ wsp {dbdata['admin_wid']} {testname}", 'Offset': '500', 'Size': '1000' } }) rawdata = conn.read() assert len(rawdata) == 500, 'test_download: #5 resumed data had wrong length' assert blake2hash((('0' * 500) + rawdata).encode()) == \ 'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', \ 'test_download: #8 resumed file hash failure' conn.disconnect() def test_getquotainfo(): '''This tests the command GETQUOTAINFO, which gets both the quota for the workspace and the disk usage''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) init_user(dbdata, conn) status = make_test_file(os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']), file_size=1000) assert not status.error(), f"Failed to create test workspace file: {status.info}" conn.send_message({ 'Action': 'GETQUOTAINFO', 'Data': {} }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_getquotainfo: failed to get quota information' assert response['Data']['DiskUsage'] == '1000', 'test_getquotainfo: disk usage was incorrect' assert response['Data']['QuotaSize'] == '0', \ "test_getquotainfo: admin quota wasn't unlimited" conn.disconnect() def test_list(): '''Tests the LIST command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Nonexistent path conn.send_message({ 'Action': 'LIST', 'Data': { 'Path': '/ 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_list: #1 failed to handle missing path' # Subtest #2: Path is a file admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) status = make_test_file(admin_dir) assert not status.error(), "test_list: #2 failed to create test file" conn.send_message({ 'Action': 'LIST', 'Data': { 'Path': ' '.join(['/ wsp', dbdata['admin_wid'], status['name']]) } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_list: #2 failed to handle path as file' # Subtest #3: Empty directory os.mkdir(os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111')) conn.send_message({ 'Action': 'LIST', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_list: #3 failed to handle empty directory' assert 'Files' in response['Data'] and len(response['Data']['Files']) == 0, \ 'test_list: #3 failed to have empty response for empty directory' # Subtest #4: A list of files for i in range(1,6): tempname = '.'.join([str(1000 * i), '500', str(uuid.uuid4())]) try: fhandle = open(os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111', tempname), 'w') except Exception as e: assert False, 'test_list: #4 failed to create test files: ' + e fhandle.write('0' * 500) fhandle.close() conn.send_message({ 'Action': 'LIST', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_list: #4 failed to handle non-empty directory' assert 'Files' in response['Data'] and len(response['Data']['Files']) == 5, \ 'test_list: #4 failed to list all files in directory' # Subtest #5: A list of files with time specifier conn.send_message({ 'Action': 'LIST', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111', 'Time': '3000' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_list: #5 failed to handle non-empty directory' assert 'Files' in response['Data'] and len(response['Data']['Files']) == 3, \ 'test_list: #5 failed to filter files' conn.disconnect() def test_listdirs(): '''Tests the LISTDIRS command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Nonexistent path conn.send_message({ 'Action': 'LISTDIRS', 'Data': { 'Path': '/ 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_listdirs: #1 failed to handle missing path' # Subtest #2: Path is a file admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) status = make_test_file(admin_dir) assert not status.error(), "test_listdirs: #2 failed to create test file" conn.send_message({ 'Action': 'LIST', 'Data': { 'Path': ' '.join(['/ wsp', dbdata['admin_wid'], status['name']]) } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_listdirs: #2 failed to handle path as file' # Subtest #3: Empty directory os.mkdir(os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111')) conn.send_message({ 'Action': 'LISTDIRS', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_listdirs: #3 failed to handle empty directory' assert 'Directories' in response['Data'] and len(response['Data']['Directories']) == 0, \ 'test_listdirs: #3 failed to have empty response for empty directory' # Subtest #4: A list of directories for i in range(2,7): tempname = '-'.join([(str(i) * 8), (str(i) * 4), (str(i) * 4), (str(i) * 4), (str(i) * 12)]) try: os.mkdir(os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111', tempname)) except Exception as e: assert False, 'test_listdirs: #4 failed to create test directories: ' + e make_test_file(os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111')) conn.send_message({ 'Action': 'LISTDIRS', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_listdirs: #4 failed to handle non-empty directory' assert 'Directories' in response['Data'] and len(response['Data']['Directories']) == 5, \ 'test_list: #4 failed to list all subdirectories' conn.disconnect() def test_mkdir(): '''Tests the MKDIR command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Bad directory name conn.send_message({ 'Action': 'MKDIR', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' some_dir_name' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_mkdir: #1 failed to handle bad path' # Subtest #2: Actual success - 1 directory conn.send_message({ 'Action': 'MKDIR', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_mkdir: #2 failed to create legitimate directory' # Subtest #3: Directory already exists conn.send_message({ 'Action': 'MKDIR', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 408, 'test_mkdir: #3 failed to handle existing directory' # Subtest #4: Actual success - nested directories multipath = ' '.join(['/', dbdata['admin_wid'], '22222222-2222-2222-2222-222222222222', '33333333-3333-3333-3333-333333333333', '44444444-4444-4444-4444-444444444444', '55555555-5555-5555-5555-555555555555' ]) conn.send_message({ 'Action': 'MKDIR', 'Data': { 'Path': multipath } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_mkdir: #2 failed to create legitimate directory' conn.disconnect() def test_move(): '''Tests the MOVE command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Set up the directory hierarchy admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) inner_dir = os.path.join(admin_dir, '11111111-1111-1111-1111-111111111111') os.mkdir(inner_dir) # Subtest #1: Nonexistent source file conn.send_message({ 'Action': 'MOVE', 'Data': { 'SourceFile': '/ ' + dbdata['admin_wid'] + ' 1.1.01234567-89ab-cdef-0123-456789abcdef', 'DestDir': '/ ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_move: #1 failed to handle nonexistent source file' # Subtest #2: Nonexistent destination directory status = make_test_file(admin_dir) assert not status.error(), 'test_move: #2 failed to create a test file' testfile1 = status['name'] conn.send_message({ 'Action': 'MOVE', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 22222222-2222-2222-2222-222222222222" } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_move: #2 failed to handle nonexistent destination dir' # Subtest #3: Source path is a directory conn.send_message({ 'Action': 'MOVE', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111" } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_move: #3 failed to handle directory as source' # Subtest #4: Destination is file path # Normally each file on the system has a unique name, but having a duplicate in this case # won't matter status = make_test_file(inner_dir, 102400, testfile1) conn.send_message({ 'Action': 'MOVE', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111 {testfile1}" } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_copy: #4 failed to handle file as destination' os.remove(os.path.join(inner_dir, status['name'])) # Subtest #5: Actual success conn.send_message({ 'Action': 'MOVE', 'Data': { 'SourceFile': f"/ wsp {dbdata['admin_wid']} {testfile1}", 'DestDir': f"/ wsp {dbdata['admin_wid']} 11111111-1111-1111-1111-111111111111" } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_copy: #6 failed to succeed' conn.disconnect() def test_replace(): '''Test the REPLACE command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Bad old file path conn.send_message({ 'Action': 'REPLACE', 'Data': { 'OldPath': f"/ wsp {dbdata['admin_wid']} some_dir_name", 'NewPath': f"/ wsp {dbdata['admin_wid']} 1234.1234.11111111-1111-1111-1111-111111111111", 'Size': "1234", 'Hash': 'BLAKE2B-256:tSl@QzD1w-vNq@CC-5`($KuxO0#aOl^-cy(l7XXT' } }) response = conn.read_response(server_response) assert response['Code'] == 400, f"{funcname()}: #1 failed to handle bad old file path" admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) status = make_test_file(admin_dir) filename = status['name'] # Subtest #2: Bad new file path conn.send_message({ 'Action': 'REPLACE', 'Data': { 'OldPath': f"/ wsp {dbdata['admin_wid']} {filename}", 'NewPath': f"/ wsp {dbdata['admin_wid']} some_dir_name", 'Size': "1234", 'Hash': 'BLAKE2B-256:tSl@QzD1w-vNq@CC-5`($KuxO0#aOl^-cy(l7XXT' } }) response = conn.read_response(server_response) assert response['Code'] == 400, f"{funcname()}: #2 failed to handle bad new file path" # Subtest #4: Destination directory doesn't exist conn.send_message({ 'Action': 'REPLACE', 'Data': { 'OldPath': f"/ wsp {dbdata['admin_wid']} 1234.1234.11111111-1111-1111-1111-111111111111", 'NewPath': "/ wsp 11111111-1111-1111-1111-111111111111", 'Size': "4321", 'Hash': 'BLAKE2B-256:tSl@QzD1w-vNq@CC-5`($KuxO0#aOl^-cy(l7XXT' } }) response = conn.read_response(server_response) assert response['Code'] == 404, f"{funcname()}: #4 failed to handle nonexistent destination dir" # Subtest #5: Actual success status = make_test_file(admin_dir) assert not status.error(), f"{funcname()}: #3 failed to create test file" filename = status["name"] conn.send_message({ 'Action': 'REPLACE', 'Data': { 'OldPath': f"/ wsp {dbdata['admin_wid']} {filename}", 'NewPath': f"/ wsp {dbdata['admin_wid']}", 'Size': "1000", 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp' } }) response = conn.read_response(server_response) assert response['Code'] == 100, f'{funcname()}: #6 failed to proceed to file upload' conn.write('0' * 1000) response = conn.read_response(server_response) assert response['Code'] == 200, f'{funcname()}: #6 failed to replace file' conn.disconnect() def test_rmdir(): '''Tests the RMDIR command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Bad directory name conn.send_message({ 'Action': 'RMDIR', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' some_dir_name', 'Recursive': 'False' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_rmdir: #1 failed to handle bad path' # Subtest #2: Directory doesn't exist conn.send_message({ 'Action': 'RMDIR', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 11111111-1111-1111-1111-111111111111', 'Recursive': 'False' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_rmdir: #2 failed to handle nonexistent directory' # Subtest #3: Call fails because of non-empty directory multipath = ' '.join(['/ wsp', dbdata['admin_wid'], '22222222-2222-2222-2222-222222222222', '33333333-3333-3333-3333-333333333333', '44444444-4444-4444-4444-444444444444', '55555555-5555-5555-5555-555555555555' ]) conn.send_message({ 'Action': 'MKDIR', 'Data': { 'Path': multipath } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_rmdir: #3 failed to create test hierarchy' conn.send_message({ 'Action': 'RMDIR', 'Data': { 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 22222222-2222-2222-2222-222222222222', 'Recursive': 'False' } }) response = conn.read_response(server_response) assert response['Code'] == 408, 'test_rmdir: #3 failed to handle non-empty directory' # Subtest #4: Actual success - non-recursively remove an empty directory conn.send_message({ 'Action': 'RMDIR', 'Data': { 'Path': multipath } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_rmdir: #4 failed to remove an empty directory' def test_select(): '''Tests the SELECT command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) # Subtest #1: Nonexistent path conn.send_message({ 'Action': 'SELECT', 'Data': { 'Path': '/ 11111111-1111-1111-1111-111111111111' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_select: #1 failed to handle missing path' # Subtest #2: Path is a file admin_dir = os.path.join(dbdata['configfile']['global']['workspace_dir'], dbdata['admin_wid']) status = make_test_file(admin_dir) assert not status.error(), "test_select: #2 failed to create test file" conn.send_message({ 'Action': 'SELECT', 'Data': { 'Path': ' '.join(['/ wsp', dbdata['admin_wid'], status['name']]) } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_select: #2 failed to handle path as file' # Subtest #3: Actual success innerpath = ' '.join(['/ wsp', dbdata['admin_wid'], '22222222-2222-2222-2222-222222222222']) conn.send_message({ 'Action': 'MKDIR', 'Data': { 'Path': innerpath } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_select: #3 failed to create test directory' conn.send_message({ 'Action': 'SELECT', 'Data': { 'Path': innerpath } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_select: #3 failed to work correctly' conn.disconnect() def test_setquota(): '''Tests the SETQUOTA command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) init_user(dbdata, conn) init_user2(dbdata, conn) # Subtest #1: Bad sizes conn.send_message({ 'Action': 'SETQUOTA', 'Data': { 'Size': '0', 'Workspaces': '33333333-3333-3333-3333-333333333333' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_setquota: failed to handle bad size value' conn.send_message({ 'Action': 'SETQUOTA', 'Data': { 'Size': "Real programmers don't eat quiche ;)", 'Workspaces': '33333333-3333-3333-3333-333333333333' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_setquota: failed to handle bad size data type' # Subtest #2: Bad workspace list conn.send_message({ 'Action': 'SETQUOTA', 'Data': { 'Size': "4096", 'Workspaces': '33333333-3333-3333-3333-333333333333,' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_setquota: failed to handle bad workspace list' # Subtest #3: Actual success conn.send_message({ 'Action': 'SETQUOTA', 'Data': { 'Size': "4096", 'Workspaces': '33333333-3333-3333-3333-333333333333, ' \ '44444444-4444-4444-4444-444444444444' } }) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_setquota: failed to handle actual success' conn.disconnect() def test_upload(): '''Tests the UPLOAD command''' dbconn = setup_test() dbdata = init_server(dbconn) conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" reset_top_dir(dbdata) # password is 'SandstoneAgendaTricycle' pwhash = '$argon2id$v=19$m=65536,t=2,p=1$ew5lqHA5z38za+257DmnTA$0LWVrI2r7XCq' \ 'dcCYkJLok65qussSyhN5TTZP+OTgzEI' devid = '22222222-2222-2222-2222-222222222222' devpair = EncryptionPair(CryptoString(r'CURVE25519:@X~msiMmBq0nsNnn0%~x{M|NU_{?<Wj)cYybdh&Z'), CryptoString(r'CURVE25519:W30{oJ?w~NBbj{F8Ag4~<bcWy6_uQ{i{X?NDq4^l')) dbdata['pwhash'] = pwhash dbdata['devid'] = devid dbdata['devpair'] = devpair regcode_admin(dbdata, conn) login_admin(dbdata, conn) init_user(dbdata, conn) # Subtest #1: Missing parameters conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': '1000', # Hash parameter is missing 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_upload: #1 failed to handle missing parameter' # Subtest #2: Non-existent path conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': '1000', 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] + ' 22222222-2222-2222-2222-222222222222' } }) response = conn.read_response(server_response) assert response['Code'] == 404, 'test_upload: #2 failed to handle non-existent path' # Subtest #3: Size too big conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(0x4000_0000 * 200), # 200GiB isn't all that big :P 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) assert response['Code'] == 414, 'test_upload: #3 failed to handle file too big' # Subtest #4: Insufficient quota remaining # The administrator normally can't have a quota. We'll just fix that just for this one test # *heh* # Normally in Python direct string substitution is a recipe for SQL injection. We're not # bringing in any insecure code here, so it's only a little bit bad. cur = dbconn.cursor() cur.execute(f"INSERT INTO quotas(wid, usage, quota) VALUES('{dbdata['admin_wid']}', 5100 , 5120)") dbconn.commit() conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(0x10_0000 * 30), # 30MiB 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) assert response['Code'] == 409, 'test_upload: #4 quota check failed' # We need this to be unlimited for later tests cur = dbconn.cursor() cur.execute(f"UPDATE quotas SET quota=0 WHERE wid = '{dbdata['admin_wid']}'") dbconn.commit() # Subtest #5: Hash mismatch conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:5(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) assert response['Code'] == 100, 'test_upload: #5 failed to proceed to file upload' conn.write('0' * 1000) response = conn.read_response(server_response) assert response['Code'] == 410, 'test_upload: #5 failed to handle file hash mismatch' # Subtest #6: Actual success conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) assert response['Code'] == 100, 'test_upload: #6 failed to proceed to file upload' conn.write('0' * 1000) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_upload: #6 failed to handle file hash mismatch' # Set up an interrupted transfer conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) tempFileName = response['Data']['TempName'] assert response['Code'] == 100, 'test_upload: #6 failed to proceed to file upload' assert tempFileName != '', 'test_upload: #6 server failed to return temp file name' conn.write('0' * 500) del conn conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" login_admin(dbdata, conn) # Subtest #7: Resume offset larger than size of data stored server-side conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'], 'TempName': tempFileName, 'Offset': '2000' } }) response = conn.read_response(server_response) assert response['Code'] == 400, 'test_upload: #7 failed to handle offset > file size' # Subtest #8: Resume interrupted transfer - exact match conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'], 'TempName': tempFileName, 'Offset': '500' } }) response = conn.read_response(server_response) assert response['Code'] == 100, 'test_upload: #8 failed to proceed to file upload' conn.write('0' * 500) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_upload: #8 failed to resume with exact offset match' # Set up one last interrupted transfer conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'] } }) response = conn.read_response(server_response) tempFileName = response['Data']['TempName'] assert response['Code'] == 100, 'test_upload: #6 failed to proceed to file upload' assert tempFileName != '', 'test_upload: #6 server failed to return temp file name' conn.write('0' * 500) del conn conn = ServerConnection() assert conn.connect('localhost', 2001), "Connection to server at localhost:2001 failed" login_admin(dbdata, conn) # Subtest #9: Overlapping resume conn.send_message({ 'Action': 'UPLOAD', 'Data': { 'Size': str(1000), 'Hash': r'BLAKE2B-256:4(8V*JuSdLH#SL%edxldiA<&TayrTtdIV9yiK~Tp', 'Path': '/ wsp ' + dbdata['admin_wid'], 'TempName': tempFileName, 'Offset': '400' } }) response = conn.read_response(server_response) assert response['Code'] == 100, 'test_upload: #9 failed to proceed to file upload' conn.write('0' * 600) response = conn.read_response(server_response) assert response['Code'] == 200, 'test_upload: #9 failed to resume with overlapping offset' conn.disconnect() if __name__ == '__main__': # test_copy() # test_delete() # test_download() # test_getquotainfo() # test_list() # test_listdirs() # test_mkdir() # test_move() test_replace() # test_rmdir() # test_setquota() # test_select() # test_upload()
29.59148
99
0.693192
[ "MIT" ]
mensago/mensagod
tests/integration/test_fscmds.py
42,375
Python
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on May 8, 2018 @author: talbpaul Originally from SupervisedLearning.py, split in PR #650 in July 2018 Specific ROM implementation for pickledROM """ #for future compatibility with Python 3-------------------------------------------------------------- from __future__ import division, print_function, unicode_literals, absolute_import #End compatibility block for Python 3---------------------------------------------------------------- #External Modules------------------------------------------------------------------------------------ #External Modules End-------------------------------------------------------------------------------- #Internal Modules------------------------------------------------------------------------------------ from .SupervisedLearning import supervisedLearning #Internal Modules End-------------------------------------------------------------------------------- class pickledROM(supervisedLearning): """ Placeholder for ROMs that will be generated by unpickling from file. """ def __init__(self,messageHandler,**kwargs): """ A constructor that will appropriately intialize a supervised learning object @ In, messageHandler, MessageHandler object, it is in charge of raising errors, and printing messages @ In, kwargs, dict, an arbitrary list of kwargs @ Out, None """ self.printTag = 'pickledROM' self.messageHandler = messageHandler self._dynamicHandling = False self.initOptionDict = {} self.features = ['PlaceHolder'] self.target = 'PlaceHolder' def __confidenceLocal__(self,featureVals): """ This should return an estimation of the quality of the prediction. @ In, featureVals, 2-D numpy array, [n_samples,n_features] @ Out, confidence, float, the confidence """ pass def __resetLocal__(self): """ Reset ROM. After this method the ROM should be described only by the initial parameter settings @ In, None @ Out, None """ pass def __returnCurrentSettingLocal__(self): """ Returns a dictionary with the parameters and their current values @ In, None @ Out, params, dict, dictionary of parameter names and current values """ pass def __returnInitialParametersLocal__(self): """ Returns a dictionary with the parameters and their initial values @ In, None @ Out, params, dict, dictionary of parameter names and initial values """ params = {} return params def __evaluateLocal__(self,featureVals): """ Evaluates a point. @ In, featureVals, list, of values at which to evaluate the ROM @ Out, returnDict, dict, the evaluated point for each target """ self.raiseAnError(RuntimeError, 'PickledROM has not been loaded from file yet! An IO step is required to perform this action.') def __trainLocal__(self,featureVals,targetVals): """ Trains ROM. @ In, featureVals, np.ndarray, feature values @ In, targetVals, np.ndarray, target values """ self.raiseAnError(RuntimeError, 'PickledROM has not been loaded from file yet! An IO step is required to perform this action.')
37.821782
132
0.620942
[ "Apache-2.0" ]
alptezbasaran/raven
framework/SupervisedLearning/pickledROM.py
3,820
Python
#****************************************************************************** # Copyright (C) 2013 Kenneth L. Ho # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. Redistributions in binary # form must reproduce the above copyright notice, this list of conditions and # the following disclaimer in the documentation and/or other materials # provided with the distribution. # # None of the names of the copyright holders may be used to endorse or # promote products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. #****************************************************************************** # Python module for interfacing with `id_dist`. r""" ====================================================================== Interpolative matrix decomposition (:mod:`scipy.linalg.interpolative`) ====================================================================== .. moduleauthor:: Kenneth L. Ho <[email protected]> .. versionadded:: 0.13 .. currentmodule:: scipy.linalg.interpolative An interpolative decomposition (ID) of a matrix :math:`A \in \mathbb{C}^{m \times n}` of rank :math:`k \leq \min \{ m, n \}` is a factorization .. math:: A \Pi = \begin{bmatrix} A \Pi_{1} & A \Pi_{2} \end{bmatrix} = A \Pi_{1} \begin{bmatrix} I & T \end{bmatrix}, where :math:`\Pi = [\Pi_{1}, \Pi_{2}]` is a permutation matrix with :math:`\Pi_{1} \in \{ 0, 1 \}^{n \times k}`, i.e., :math:`A \Pi_{2} = A \Pi_{1} T`. This can equivalently be written as :math:`A = BP`, where :math:`B = A \Pi_{1}` and :math:`P = [I, T] \Pi^{\mathsf{T}}` are the *skeleton* and *interpolation matrices*, respectively. If :math:`A` does not have exact rank :math:`k`, then there exists an approximation in the form of an ID such that :math:`A = BP + E`, where :math:`\| E \| \sim \sigma_{k + 1}` is on the order of the :math:`(k + 1)`-th largest singular value of :math:`A`. Note that :math:`\sigma_{k + 1}` is the best possible error for a rank-:math:`k` approximation and, in fact, is achieved by the singular value decomposition (SVD) :math:`A \approx U S V^{*}`, where :math:`U \in \mathbb{C}^{m \times k}` and :math:`V \in \mathbb{C}^{n \times k}` have orthonormal columns and :math:`S = \mathop{\mathrm{diag}} (\sigma_{i}) \in \mathbb{C}^{k \times k}` is diagonal with nonnegative entries. The principal advantages of using an ID over an SVD are that: - it is cheaper to construct; - it preserves the structure of :math:`A`; and - it is more efficient to compute with in light of the identity submatrix of :math:`P`. Routines ======== Main functionality: .. autosummary:: :toctree: generated/ interp_decomp reconstruct_matrix_from_id reconstruct_interp_matrix reconstruct_skel_matrix id_to_svd svd estimate_spectral_norm estimate_spectral_norm_diff estimate_rank Support functions: .. autosummary:: :toctree: generated/ seed rand References ========== This module uses the ID software package [1]_ by Martinsson, Rokhlin, Shkolnisky, and Tygert, which is a Fortran library for computing IDs using various algorithms, including the rank-revealing QR approach of [2]_ and the more recent randomized methods described in [3]_, [4]_, and [5]_. This module exposes its functionality in a way convenient for Python users. Note that this module does not add any functionality beyond that of organizing a simpler and more consistent interface. We advise the user to consult also the `documentation for the ID package <http://tygert.com/id_doc.4.pdf>`_. .. [1] P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, M. Tygert. "ID: a software package for low-rank approximation of matrices via interpolative decompositions, version 0.2." http://tygert.com/id_doc.4.pdf. .. [2] H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. "On the compression of low rank matrices." *SIAM J. Sci. Comput.* 26 (4): 1389--1404, 2005. :doi:`10.1137/030602678`. .. [3] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M. Tygert. "Randomized algorithms for the low-rank approximation of matrices." *Proc. Natl. Acad. Sci. U.S.A.* 104 (51): 20167--20172, 2007. :doi:`10.1073/pnas.0709640104`. .. [4] P.G. Martinsson, V. Rokhlin, M. Tygert. "A randomized algorithm for the decomposition of matrices." *Appl. Comput. Harmon. Anal.* 30 (1): 47--68, 2011. :doi:`10.1016/j.acha.2010.02.003`. .. [5] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert. "A fast randomized algorithm for the approximation of matrices." *Appl. Comput. Harmon. Anal.* 25 (3): 335--366, 2008. :doi:`10.1016/j.acha.2007.12.002`. Tutorial ======== Initializing ------------ The first step is to import :mod:`scipy.linalg.interpolative` by issuing the command: >>> import scipy.linalg.interpolative as sli Now let's build a matrix. For this, we consider a Hilbert matrix, which is well know to have low rank: >>> from scipy.linalg import hilbert >>> n = 1000 >>> A = hilbert(n) We can also do this explicitly via: >>> import numpy as np >>> n = 1000 >>> A = np.empty((n, n), order='F') >>> for j in range(n): >>> for i in range(m): >>> A[i,j] = 1. / (i + j + 1) Note the use of the flag ``order='F'`` in :func:`numpy.empty`. This instantiates the matrix in Fortran-contiguous order and is important for avoiding data copying when passing to the backend. We then define multiplication routines for the matrix by regarding it as a :class:`scipy.sparse.linalg.LinearOperator`: >>> from scipy.sparse.linalg import aslinearoperator >>> L = aslinearoperator(A) This automatically sets up methods describing the action of the matrix and its adjoint on a vector. Computing an ID --------------- We have several choices of algorithm to compute an ID. These fall largely according to two dichotomies: 1. how the matrix is represented, i.e., via its entries or via its action on a vector; and 2. whether to approximate it to a fixed relative precision or to a fixed rank. We step through each choice in turn below. In all cases, the ID is represented by three parameters: 1. a rank ``k``; 2. an index array ``idx``; and 3. interpolation coefficients ``proj``. The ID is specified by the relation ``np.dot(A[:,idx[:k]], proj) == A[:,idx[k:]]``. From matrix entries ................... We first consider a matrix given in terms of its entries. To compute an ID to a fixed precision, type: >>> k, idx, proj = sli.interp_decomp(A, eps) where ``eps < 1`` is the desired precision. To compute an ID to a fixed rank, use: >>> idx, proj = sli.interp_decomp(A, k) where ``k >= 1`` is the desired rank. Both algorithms use random sampling and are usually faster than the corresponding older, deterministic algorithms, which can be accessed via the commands: >>> k, idx, proj = sli.interp_decomp(A, eps, rand=False) and: >>> idx, proj = sli.interp_decomp(A, k, rand=False) respectively. From matrix action .................. Now consider a matrix given in terms of its action on a vector as a :class:`scipy.sparse.linalg.LinearOperator`. To compute an ID to a fixed precision, type: >>> k, idx, proj = sli.interp_decomp(L, eps) To compute an ID to a fixed rank, use: >>> idx, proj = sli.interp_decomp(L, k) These algorithms are randomized. Reconstructing an ID -------------------- The ID routines above do not output the skeleton and interpolation matrices explicitly but instead return the relevant information in a more compact (and sometimes more useful) form. To build these matrices, write: >>> B = sli.reconstruct_skel_matrix(A, k, idx) for the skeleton matrix and: >>> P = sli.reconstruct_interp_matrix(idx, proj) for the interpolation matrix. The ID approximation can then be computed as: >>> C = np.dot(B, P) This can also be constructed directly using: >>> C = sli.reconstruct_matrix_from_id(B, idx, proj) without having to first compute ``P``. Alternatively, this can be done explicitly as well using: >>> B = A[:,idx[:k]] >>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)] >>> C = np.dot(B, P) Computing an SVD ---------------- An ID can be converted to an SVD via the command: >>> U, S, V = sli.id_to_svd(B, idx, proj) The SVD approximation is then: >>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T))) The SVD can also be computed "fresh" by combining both the ID and conversion steps into one command. Following the various ID algorithms above, there are correspondingly various SVD algorithms that one can employ. From matrix entries ................... We consider first SVD algorithms for a matrix given in terms of its entries. To compute an SVD to a fixed precision, type: >>> U, S, V = sli.svd(A, eps) To compute an SVD to a fixed rank, use: >>> U, S, V = sli.svd(A, k) Both algorithms use random sampling; for the determinstic versions, issue the keyword ``rand=False`` as above. From matrix action .................. Now consider a matrix given in terms of its action on a vector. To compute an SVD to a fixed precision, type: >>> U, S, V = sli.svd(L, eps) To compute an SVD to a fixed rank, use: >>> U, S, V = sli.svd(L, k) Utility routines ---------------- Several utility routines are also available. To estimate the spectral norm of a matrix, use: >>> snorm = sli.estimate_spectral_norm(A) This algorithm is based on the randomized power method and thus requires only matrix-vector products. The number of iterations to take can be set using the keyword ``its`` (default: ``its=20``). The matrix is interpreted as a :class:`scipy.sparse.linalg.LinearOperator`, but it is also valid to supply it as a :class:`numpy.ndarray`, in which case it is trivially converted using :func:`scipy.sparse.linalg.aslinearoperator`. The same algorithm can also estimate the spectral norm of the difference of two matrices ``A1`` and ``A2`` as follows: >>> diff = sli.estimate_spectral_norm_diff(A1, A2) This is often useful for checking the accuracy of a matrix approximation. Some routines in :mod:`scipy.linalg.interpolative` require estimating the rank of a matrix as well. This can be done with either: >>> k = sli.estimate_rank(A, eps) or: >>> k = sli.estimate_rank(L, eps) depending on the representation. The parameter ``eps`` controls the definition of the numerical rank. Finally, the random number generation required for all randomized routines can be controlled via :func:`scipy.linalg.interpolative.seed`. To reset the seed values to their original values, use: >>> sli.seed('default') To specify the seed values, use: >>> sli.seed(s) where ``s`` must be an integer or array of 55 floats. If an integer, the array of floats is obtained by using ``numpy.random.rand`` with the given integer seed. To simply generate some random numbers, type: >>> sli.rand(n) where ``n`` is the number of random numbers to generate. Remarks ------- The above functions all automatically detect the appropriate interface and work with both real and complex data types, passing input arguments to the proper backend routine. """ import scipy.linalg._interpolative_backend as _backend import numpy as np import sys __all__ = [ 'estimate_rank', 'estimate_spectral_norm', 'estimate_spectral_norm_diff', 'id_to_svd', 'interp_decomp', 'rand', 'reconstruct_interp_matrix', 'reconstruct_matrix_from_id', 'reconstruct_skel_matrix', 'seed', 'svd', ] _DTYPE_ERROR = ValueError("invalid input dtype (input must be float64 or complex128)") _TYPE_ERROR = TypeError("invalid input type (must be array or LinearOperator)") _32BIT_ERROR = ValueError("interpolative decomposition on 32-bit systems " "with complex128 is buggy") _IS_32BIT = (sys.maxsize < 2**32) def _is_real(A): try: if A.dtype == np.complex128: return False elif A.dtype == np.float64: return True else: raise _DTYPE_ERROR except AttributeError as e: raise _TYPE_ERROR from e def seed(seed=None): """ Seed the internal random number generator used in this ID package. The generator is a lagged Fibonacci method with 55-element internal state. Parameters ---------- seed : int, sequence, 'default', optional If 'default', the random seed is reset to a default value. If `seed` is a sequence containing 55 floating-point numbers in range [0,1], these are used to set the internal state of the generator. If the value is an integer, the internal state is obtained from `numpy.random.RandomState` (MT19937) with the integer used as the initial seed. If `seed` is omitted (None), ``numpy.random.rand`` is used to initialize the generator. """ # For details, see :func:`_backend.id_srand`, :func:`_backend.id_srandi`, # and :func:`_backend.id_srando`. if isinstance(seed, str) and seed == 'default': _backend.id_srando() elif hasattr(seed, '__len__'): state = np.asfortranarray(seed, dtype=float) if state.shape != (55,): raise ValueError("invalid input size") elif state.min() < 0 or state.max() > 1: raise ValueError("values not in range [0,1]") _backend.id_srandi(state) elif seed is None: _backend.id_srandi(np.random.rand(55)) else: rnd = np.random.RandomState(seed) _backend.id_srandi(rnd.rand(55)) def rand(*shape): """ Generate standard uniform pseudorandom numbers via a very efficient lagged Fibonacci method. This routine is used for all random number generation in this package and can affect ID and SVD results. Parameters ---------- *shape Shape of output array """ # For details, see :func:`_backend.id_srand`, and :func:`_backend.id_srando`. return _backend.id_srand(np.prod(shape)).reshape(shape) def interp_decomp(A, eps_or_k, rand=True): """ Compute ID of a matrix. An ID of a matrix `A` is a factorization defined by a rank `k`, a column index array `idx`, and interpolation coefficients `proj` such that:: numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]] The original matrix can then be reconstructed as:: numpy.hstack([A[:,idx[:k]], numpy.dot(A[:,idx[:k]], proj)] )[:,numpy.argsort(idx)] or via the routine :func:`reconstruct_matrix_from_id`. This can equivalently be written as:: numpy.dot(A[:,idx[:k]], numpy.hstack([numpy.eye(k), proj]) )[:,np.argsort(idx)] in terms of the skeleton and interpolation matrices:: B = A[:,idx[:k]] and:: P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)] respectively. See also :func:`reconstruct_interp_matrix` and :func:`reconstruct_skel_matrix`. The ID can be computed to any relative precision or rank (depending on the value of `eps_or_k`). If a precision is specified (`eps_or_k < 1`), then this function has the output signature:: k, idx, proj = interp_decomp(A, eps_or_k) Otherwise, if a rank is specified (`eps_or_k >= 1`), then the output signature is:: idx, proj = interp_decomp(A, eps_or_k) .. This function automatically detects the form of the input parameters and passes them to the appropriate backend. For details, see :func:`_backend.iddp_id`, :func:`_backend.iddp_aid`, :func:`_backend.iddp_rid`, :func:`_backend.iddr_id`, :func:`_backend.iddr_aid`, :func:`_backend.iddr_rid`, :func:`_backend.idzp_id`, :func:`_backend.idzp_aid`, :func:`_backend.idzp_rid`, :func:`_backend.idzr_id`, :func:`_backend.idzr_aid`, and :func:`_backend.idzr_rid`. Parameters ---------- A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator` with `rmatvec` Matrix to be factored eps_or_k : float or int Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of approximation. rand : bool, optional Whether to use random sampling if `A` is of type :class:`numpy.ndarray` (randomized algorithms are always used if `A` is of type :class:`scipy.sparse.linalg.LinearOperator`). Returns ------- k : int Rank required to achieve specified relative precision if `eps_or_k < 1`. idx : :class:`numpy.ndarray` Column index array. proj : :class:`numpy.ndarray` Interpolation coefficients. """ from scipy.sparse.linalg import LinearOperator real = _is_real(A) if isinstance(A, np.ndarray): if eps_or_k < 1: eps = eps_or_k if rand: if real: k, idx, proj = _backend.iddp_aid(eps, A) else: if _IS_32BIT: raise _32BIT_ERROR k, idx, proj = _backend.idzp_aid(eps, A) else: if real: k, idx, proj = _backend.iddp_id(eps, A) else: k, idx, proj = _backend.idzp_id(eps, A) return k, idx - 1, proj else: k = int(eps_or_k) if rand: if real: idx, proj = _backend.iddr_aid(A, k) else: if _IS_32BIT: raise _32BIT_ERROR idx, proj = _backend.idzr_aid(A, k) else: if real: idx, proj = _backend.iddr_id(A, k) else: idx, proj = _backend.idzr_id(A, k) return idx - 1, proj elif isinstance(A, LinearOperator): m, n = A.shape matveca = A.rmatvec if eps_or_k < 1: eps = eps_or_k if real: k, idx, proj = _backend.iddp_rid(eps, m, n, matveca) else: if _IS_32BIT: raise _32BIT_ERROR k, idx, proj = _backend.idzp_rid(eps, m, n, matveca) return k, idx - 1, proj else: k = int(eps_or_k) if real: idx, proj = _backend.iddr_rid(m, n, matveca, k) else: if _IS_32BIT: raise _32BIT_ERROR idx, proj = _backend.idzr_rid(m, n, matveca, k) return idx - 1, proj else: raise _TYPE_ERROR def reconstruct_matrix_from_id(B, idx, proj): """ Reconstruct matrix from its ID. A matrix `A` with skeleton matrix `B` and ID indices and coefficients `idx` and `proj`, respectively, can be reconstructed as:: numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)] See also :func:`reconstruct_interp_matrix` and :func:`reconstruct_skel_matrix`. .. This function automatically detects the matrix data type and calls the appropriate backend. For details, see :func:`_backend.idd_reconid` and :func:`_backend.idz_reconid`. Parameters ---------- B : :class:`numpy.ndarray` Skeleton matrix. idx : :class:`numpy.ndarray` Column index array. proj : :class:`numpy.ndarray` Interpolation coefficients. Returns ------- :class:`numpy.ndarray` Reconstructed matrix. """ if _is_real(B): return _backend.idd_reconid(B, idx + 1, proj) else: return _backend.idz_reconid(B, idx + 1, proj) def reconstruct_interp_matrix(idx, proj): """ Reconstruct interpolation matrix from ID. The interpolation matrix can be reconstructed from the ID indices and coefficients `idx` and `proj`, respectively, as:: P = numpy.hstack([numpy.eye(proj.shape[0]), proj])[:,numpy.argsort(idx)] The original matrix can then be reconstructed from its skeleton matrix `B` via:: numpy.dot(B, P) See also :func:`reconstruct_matrix_from_id` and :func:`reconstruct_skel_matrix`. .. This function automatically detects the matrix data type and calls the appropriate backend. For details, see :func:`_backend.idd_reconint` and :func:`_backend.idz_reconint`. Parameters ---------- idx : :class:`numpy.ndarray` Column index array. proj : :class:`numpy.ndarray` Interpolation coefficients. Returns ------- :class:`numpy.ndarray` Interpolation matrix. """ if _is_real(proj): return _backend.idd_reconint(idx + 1, proj) else: return _backend.idz_reconint(idx + 1, proj) def reconstruct_skel_matrix(A, k, idx): """ Reconstruct skeleton matrix from ID. The skeleton matrix can be reconstructed from the original matrix `A` and its ID rank and indices `k` and `idx`, respectively, as:: B = A[:,idx[:k]] The original matrix can then be reconstructed via:: numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)] See also :func:`reconstruct_matrix_from_id` and :func:`reconstruct_interp_matrix`. .. This function automatically detects the matrix data type and calls the appropriate backend. For details, see :func:`_backend.idd_copycols` and :func:`_backend.idz_copycols`. Parameters ---------- A : :class:`numpy.ndarray` Original matrix. k : int Rank of ID. idx : :class:`numpy.ndarray` Column index array. Returns ------- :class:`numpy.ndarray` Skeleton matrix. """ if _is_real(A): return _backend.idd_copycols(A, k, idx + 1) else: return _backend.idz_copycols(A, k, idx + 1) def id_to_svd(B, idx, proj): """ Convert ID to SVD. The SVD reconstruction of a matrix with skeleton matrix `B` and ID indices and coefficients `idx` and `proj`, respectively, is:: U, S, V = id_to_svd(B, idx, proj) A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T)) See also :func:`svd`. .. This function automatically detects the matrix data type and calls the appropriate backend. For details, see :func:`_backend.idd_id2svd` and :func:`_backend.idz_id2svd`. Parameters ---------- B : :class:`numpy.ndarray` Skeleton matrix. idx : :class:`numpy.ndarray` Column index array. proj : :class:`numpy.ndarray` Interpolation coefficients. Returns ------- U : :class:`numpy.ndarray` Left singular vectors. S : :class:`numpy.ndarray` Singular values. V : :class:`numpy.ndarray` Right singular vectors. """ if _is_real(B): U, V, S = _backend.idd_id2svd(B, idx + 1, proj) else: U, V, S = _backend.idz_id2svd(B, idx + 1, proj) return U, S, V def estimate_spectral_norm(A, its=20): """ Estimate spectral norm of a matrix by the randomized power method. .. This function automatically detects the matrix data type and calls the appropriate backend. For details, see :func:`_backend.idd_snorm` and :func:`_backend.idz_snorm`. Parameters ---------- A : :class:`scipy.sparse.linalg.LinearOperator` Matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint). its : int, optional Number of power method iterations. Returns ------- float Spectral norm estimate. """ from scipy.sparse.linalg import aslinearoperator A = aslinearoperator(A) m, n = A.shape matvec = lambda x: A. matvec(x) matveca = lambda x: A.rmatvec(x) if _is_real(A): return _backend.idd_snorm(m, n, matveca, matvec, its=its) else: return _backend.idz_snorm(m, n, matveca, matvec, its=its) def estimate_spectral_norm_diff(A, B, its=20): """ Estimate spectral norm of the difference of two matrices by the randomized power method. .. This function automatically detects the matrix data type and calls the appropriate backend. For details, see :func:`_backend.idd_diffsnorm` and :func:`_backend.idz_diffsnorm`. Parameters ---------- A : :class:`scipy.sparse.linalg.LinearOperator` First matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint). B : :class:`scipy.sparse.linalg.LinearOperator` Second matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint). its : int, optional Number of power method iterations. Returns ------- float Spectral norm estimate of matrix difference. """ from scipy.sparse.linalg import aslinearoperator A = aslinearoperator(A) B = aslinearoperator(B) m, n = A.shape matvec1 = lambda x: A. matvec(x) matveca1 = lambda x: A.rmatvec(x) matvec2 = lambda x: B. matvec(x) matveca2 = lambda x: B.rmatvec(x) if _is_real(A): return _backend.idd_diffsnorm( m, n, matveca1, matveca2, matvec1, matvec2, its=its) else: return _backend.idz_diffsnorm( m, n, matveca1, matveca2, matvec1, matvec2, its=its) def svd(A, eps_or_k, rand=True): """ Compute SVD of a matrix via an ID. An SVD of a matrix `A` is a factorization:: A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T)) where `U` and `V` have orthonormal columns and `S` is nonnegative. The SVD can be computed to any relative precision or rank (depending on the value of `eps_or_k`). See also :func:`interp_decomp` and :func:`id_to_svd`. .. This function automatically detects the form of the input parameters and passes them to the appropriate backend. For details, see :func:`_backend.iddp_svd`, :func:`_backend.iddp_asvd`, :func:`_backend.iddp_rsvd`, :func:`_backend.iddr_svd`, :func:`_backend.iddr_asvd`, :func:`_backend.iddr_rsvd`, :func:`_backend.idzp_svd`, :func:`_backend.idzp_asvd`, :func:`_backend.idzp_rsvd`, :func:`_backend.idzr_svd`, :func:`_backend.idzr_asvd`, and :func:`_backend.idzr_rsvd`. Parameters ---------- A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator` Matrix to be factored, given as either a :class:`numpy.ndarray` or a :class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint). eps_or_k : float or int Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of approximation. rand : bool, optional Whether to use random sampling if `A` is of type :class:`numpy.ndarray` (randomized algorithms are always used if `A` is of type :class:`scipy.sparse.linalg.LinearOperator`). Returns ------- U : :class:`numpy.ndarray` Left singular vectors. S : :class:`numpy.ndarray` Singular values. V : :class:`numpy.ndarray` Right singular vectors. """ from scipy.sparse.linalg import LinearOperator real = _is_real(A) if isinstance(A, np.ndarray): if eps_or_k < 1: eps = eps_or_k if rand: if real: U, V, S = _backend.iddp_asvd(eps, A) else: if _IS_32BIT: raise _32BIT_ERROR U, V, S = _backend.idzp_asvd(eps, A) else: if real: U, V, S = _backend.iddp_svd(eps, A) else: U, V, S = _backend.idzp_svd(eps, A) else: k = int(eps_or_k) if k > min(A.shape): raise ValueError("Approximation rank %s exceeds min(A.shape) = " " %s " % (k, min(A.shape))) if rand: if real: U, V, S = _backend.iddr_asvd(A, k) else: if _IS_32BIT: raise _32BIT_ERROR U, V, S = _backend.idzr_asvd(A, k) else: if real: U, V, S = _backend.iddr_svd(A, k) else: U, V, S = _backend.idzr_svd(A, k) elif isinstance(A, LinearOperator): m, n = A.shape matvec = lambda x: A.matvec(x) matveca = lambda x: A.rmatvec(x) if eps_or_k < 1: eps = eps_or_k if real: U, V, S = _backend.iddp_rsvd(eps, m, n, matveca, matvec) else: if _IS_32BIT: raise _32BIT_ERROR U, V, S = _backend.idzp_rsvd(eps, m, n, matveca, matvec) else: k = int(eps_or_k) if real: U, V, S = _backend.iddr_rsvd(m, n, matveca, matvec, k) else: if _IS_32BIT: raise _32BIT_ERROR U, V, S = _backend.idzr_rsvd(m, n, matveca, matvec, k) else: raise _TYPE_ERROR return U, S, V def estimate_rank(A, eps): """ Estimate matrix rank to a specified relative precision using randomized methods. The matrix `A` can be given as either a :class:`numpy.ndarray` or a :class:`scipy.sparse.linalg.LinearOperator`, with different algorithms used for each case. If `A` is of type :class:`numpy.ndarray`, then the output rank is typically about 8 higher than the actual numerical rank. .. This function automatically detects the form of the input parameters and passes them to the appropriate backend. For details, see :func:`_backend.idd_estrank`, :func:`_backend.idd_findrank`, :func:`_backend.idz_estrank`, and :func:`_backend.idz_findrank`. Parameters ---------- A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator` Matrix whose rank is to be estimated, given as either a :class:`numpy.ndarray` or a :class:`scipy.sparse.linalg.LinearOperator` with the `rmatvec` method (to apply the matrix adjoint). eps : float Relative error for numerical rank definition. Returns ------- int Estimated matrix rank. """ from scipy.sparse.linalg import LinearOperator real = _is_real(A) if isinstance(A, np.ndarray): if real: rank = _backend.idd_estrank(eps, A) else: rank = _backend.idz_estrank(eps, A) if rank == 0: # special return value for nearly full rank rank = min(A.shape) return rank elif isinstance(A, LinearOperator): m, n = A.shape matveca = A.rmatvec if real: return _backend.idd_findrank(eps, m, n, matveca) else: return _backend.idz_findrank(eps, m, n, matveca) else: raise _TYPE_ERROR
31.931343
92
0.628743
[ "BSD-3-Clause" ]
AtsushiSakai/scipy
scipy/linalg/interpolative.py
32,091
Python
#!/usr/bin/python # # Copyright (c) 2019 Zim Kalinowski, (@zikalino) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: subscriptionssubscriptionfactory version_added: '2.9' short_description: Manage Azure SubscriptionFactory instance. description: - 'Create, update and delete instance of Azure SubscriptionFactory.' options: enrollment_account_name: description: - >- The name of the enrollment account to which the subscription will be billed. required: true type: str name: description: - The display name of the subscription. type: str owners: description: - >- The list of principals that should be granted Owner access on the subscription. Principals should be of type User, Service Principal or Security Group. type: list suboptions: object_id: description: - Object id of the Principal required: true type: str offer_type: description: - >- The offer type of the subscription. For example, MS-AZR-0017P (EnterpriseAgreement) and MS-AZR-0148P (EnterpriseAgreement devTest) are available. Only valid when creating a subscription in a enrollment account scope. type: str additional_parameters: description: - >- Additional, untyped parameters to support custom subscription creation scenarios. type: >- unknown[DictionaryType {"$id":"45","$type":"DictionaryType","valueType":{"$id":"46","$type":"PrimaryType","knownPrimaryType":"object","name":{"$id":"47","fixed":false,"raw":"Object"},"deprecated":false},"supportsAdditionalProperties":false,"name":{"$id":"48","fixed":false},"deprecated":false}] subscription_link: description: - >- The link to the new subscription. Use this link to check the status of subscription creation operation. type: str state: description: - Assert the state of the SubscriptionFactory. - >- Use C(present) to create or update an SubscriptionFactory and C(absent) to delete it. default: present choices: - absent - present extends_documentation_fragment: - azure author: - Zim Kalinowski (@zikalino) ''' EXAMPLES = ''' - name: createSubscription azure.rm.subscriptionssubscriptionfactory: enrollment_account_name: myEnrollmentAccount body: offerType: MS-AZR-0017P displayName: Test Ea Azure Sub owners: - objectId: 973034ff-acb7-409c-b731-e789672c7b31 - objectId: 67439a9e-8519-4016-a630-f5f805eba567 additionalParameters: customData: key1: value1 key2: true ''' RETURN = ''' subscription_link: description: - >- The link to the new subscription. Use this link to check the status of subscription creation operation. returned: always type: str sample: null ''' import time import json import re from ansible.module_utils.azure_rm_common_ext import AzureRMModuleBaseExt from ansible.module_utils.azure_rm_common_rest import GenericRestClient from copy import deepcopy try: from msrestazure.azure_exceptions import CloudError except ImportError: # this is handled in azure_rm_common pass class Actions: NoAction, Create, Update, Delete = range(4) class AzureRMSubscriptionFactory(AzureRMModuleBaseExt): def __init__(self): self.module_arg_spec = dict( enrollment_account_name=dict( type='str', updatable=False, disposition='enrollmentAccountName', required=true ), name=dict( type='str', updatable=False, disposition='/' ), owners=dict( type='list', disposition='/', options=dict( object_id=dict( type='str', disposition='objectId', required=true ) ) ), offer_type=dict( type='str', updatable=False, disposition='/', choices=['MS-AZR-0017P', 'MS-AZR-0148P'] ), additional_parameters=dict( type='unknown[DictionaryType {"$id":"45","$type":"DictionaryType","valueType":{"$id":"46","$type":"PrimaryType","knownPrimaryType":"object","name":{"$id":"47","fixed":false,"raw":"Object"},"deprecated":false},"supportsAdditionalProperties":false,"name":{"$id":"48","fixed":false},"deprecated":false}]', updatable=False, disposition='/' ), state=dict( type='str', default='present', choices=['present', 'absent'] ) ) self.enrollment_account_name = None self.subscription_link = None self.results = dict(changed=False) self.mgmt_client = None self.state = None self.url = None self.status_code = [200, 201, 202] self.to_do = Actions.NoAction self.body = {} self.query_parameters = {} self.query_parameters['api-version'] = '2018-03-01-preview' self.header_parameters = {} self.header_parameters['Content-Type'] = 'application/json; charset=utf-8' super(AzureRMSubscriptionFactory, self).__init__(derived_arg_spec=self.module_arg_spec, supports_check_mode=True, supports_tags=True) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()): if hasattr(self, key): setattr(self, key, kwargs[key]) elif kwargs[key] is not None: self.body[key] = kwargs[key] self.inflate_parameters(self.module_arg_spec, self.body, 0) old_response = None response = None self.mgmt_client = self.get_mgmt_svc_client(GenericRestClient, base_url=self._cloud_environment.endpoints.resource_manager) self.url = ('/providers' + '/Microsoft.Billing' + '/enrollmentAccounts' + '/{{ enrollment_account_name }}' + '/providers' + '/Microsoft.Subscription' + '/createSubscription') self.url = self.url.replace('{{ enrollment_account_name }}', self.name) old_response = self.get_resource() if not old_response: self.log("SubscriptionFactory instance doesn't exist") if self.state == 'absent': self.log("Old instance didn't exist") else: self.to_do = Actions.Create else: self.log('SubscriptionFactory instance already exists') if self.state == 'absent': self.to_do = Actions.Delete else: modifiers = {} self.create_compare_modifiers(self.module_arg_spec, '', modifiers) self.results['modifiers'] = modifiers self.results['compare'] = [] self.create_compare_modifiers(self.module_arg_spec, '', modifiers) if not self.default_compare(modifiers, self.body, old_response, '', self.results): self.to_do = Actions.Update if (self.to_do == Actions.Create) or (self.to_do == Actions.Update): self.log('Need to Create / Update the SubscriptionFactory instance') if self.check_mode: self.results['changed'] = True return self.results response = self.create_update_resource() # if not old_response: self.results['changed'] = True # else: # self.results['changed'] = old_response.__ne__(response) self.log('Creation / Update done') elif self.to_do == Actions.Delete: self.log('SubscriptionFactory instance deleted') self.results['changed'] = True if self.check_mode: return self.results self.delete_resource() # make sure instance is actually deleted, for some Azure resources, instance is hanging around # for some time after deletion -- this should be really fixed in Azure while self.get_resource(): time.sleep(20) else: self.log('SubscriptionFactory instance unchanged') self.results['changed'] = False response = old_response if response: self.results["subscription_link"] = response["subscription_link"] return self.results def create_update_resource(self): # self.log('Creating / Updating the SubscriptionFactory instance {0}'.format(self.)) try: if self.to_do == Actions.Create: response = self.mgmt_client.query(self.url, 'PUT', self.query_parameters, self.header_parameters, self.body, self.status_code, 600, 30) else: response = self.mgmt_client.query(self.url, 'PUT', self.query_parameters, self.header_parameters, self.body, self.status_code, 600, 30) except CloudError as exc: self.log('Error attempting to create the SubscriptionFactory instance.') self.fail('Error creating the SubscriptionFactory instance: {0}'.format(str(exc))) try: response = json.loads(response.text) except Exception: response = {'text': response.text} pass return response def delete_resource(self): # self.log('Deleting the SubscriptionFactory instance {0}'.format(self.)) try: response = self.mgmt_client.query(self.url, 'DELETE', self.query_parameters, self.header_parameters, None, self.status_code, 600, 30) except CloudError as e: self.log('Error attempting to delete the SubscriptionFactory instance.') self.fail('Error deleting the SubscriptionFactory instance: {0}'.format(str(e))) return True def get_resource(self): # self.log('Checking if the SubscriptionFactory instance {0} is present'.format(self.)) found = False try: response = self.mgmt_client.query(self.url, 'GET', self.query_parameters, self.header_parameters, None, self.status_code, 600, 30) found = True self.log("Response : {0}".format(response)) # self.log("SubscriptionFactory instance : {0} found".format(response.name)) except CloudError as e: self.log('Did not find the SubscriptionFactory instance.') if found is True: return response return False def main(): AzureRMSubscriptionFactory() if __name__ == '__main__': main()
36.099723
319
0.518339
[ "MIT" ]
audevbot/autorest.cli.debug
generated/ansible-collection/subscriptionssubscriptionfactory.py
13,032
Python
from __future__ import print_function import gevent import gevent.core import os import time filename = 'tmp.test__core_stat.%s' % os.getpid() hub = gevent.get_hub() DELAY = 0.5 EV_USE_INOTIFY = getattr(gevent.core, 'EV_USE_INOTIFY', None) try: open(filename, 'wb', buffering=0).close() assert os.path.exists(filename), filename def write(): f = open(filename, 'wb', buffering=0) f.write(b'x') f.close() start = time.time() greenlet = gevent.spawn_later(DELAY, write) # If we don't specify an interval, we default to zero. # libev interprets that as meaning to use its default interval, # which is about 5 seconds. If we go below it's minimum check # threshold, it bumps it up to the minimum. watcher = hub.loop.stat(filename, interval=-1) if hasattr(watcher, 'path'): assert watcher.path == filename assert watcher.interval == -1 with gevent.Timeout(5 + DELAY + 0.5): hub.wait(watcher) reaction = time.time() - start - DELAY print('Watcher %s reacted after %.4f seconds (write)' % (watcher, reaction)) if reaction >= DELAY and EV_USE_INOTIFY: print('WARNING: inotify failed (write)') assert reaction >= 0.0, 'Watcher %s reacted too early (write): %.3fs' % (watcher, reaction) assert watcher.attr is not None, watcher.attr assert watcher.prev is not None, watcher.prev # The watcher interval changed after it started; -1 is illegal assert watcher.interval != -1 greenlet.join() gevent.spawn_later(DELAY, os.unlink, filename) start = time.time() with gevent.Timeout(5 + DELAY + 0.5): hub.wait(watcher) reaction = time.time() - start - DELAY print('Watcher %s reacted after %.4f seconds (unlink)' % (watcher, reaction)) if reaction >= DELAY and EV_USE_INOTIFY: print('WARNING: inotify failed (unlink)') assert reaction >= 0.0, 'Watcher %s reacted too early (unlink): %.3fs' % (watcher, reaction) assert watcher.attr is None, watcher.attr assert watcher.prev is not None, watcher.prev finally: if os.path.exists(filename): os.unlink(filename)
31.691176
96
0.664501
[ "MIT" ]
pubnub/gevent
greentest/test__core_stat.py
2,155
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals try: from django.urls import include, url except ImportError: from django.conf.urls import include, url # noqa: F401
19.3
59
0.715026
[ "MIT" ]
Nikolina2112/django-rest-framework-jwt
src/rest_framework_jwt/compat.py
193
Python
#!/usr/bin/env python import urllib,urllib2 import json import csv import time from datetime import date, timedelta class Admin: '''A class of tools for administering AGO Orgs or Portals''' def __init__(self, username, portal=None, password=None): from . import User self.user = User(username, portal, password) def __users__(self, start=0): '''Retrieve a single page of users.''' parameters = urllib.urlencode({'token' : self.user.token, 'f' : 'json', 'start' : start, 'num' : 100}) portalId = self.user.__portalId__() response = urllib.urlopen(self.user.portalUrl + '/sharing/rest/portals/' + portalId + '/users?' + parameters).read() users = json.loads(response) return users def __roles__(self,start=0): parameters = urllib.urlencode({'token' : self.user.token, 'f' : 'json', 'start' : start, 'num' : 100}) portalId = self.user.__portalId__() response = urllib.urlopen(self.user.portalUrl + '/sharing/rest/portals/' + portalId + '/roles?' + parameters).read() roles = json.loads(response) return roles def __groups__(self,start=0): parameters = urllib.urlencode({'token' : self.user.token, 'q':'orgid:'+ self._getOrgID(), 'f' : 'json', 'start' : start, 'num' : 100}) portalId = self.user.__portalId__() response = urllib.urlopen(self.user.portalUrl + '/sharing/rest/community/groups?' + parameters).read() groups = json.loads(response) return groups def getRoles(self): ''' Returns a list of roles defined in the organization. This is helpful for custom roles because the User's role property simply returns the ID of the role. THIS DOES NOT INCLUDE THE STANDARD ARCGIS ONLINE ROLES OF ['org_admin', 'org_publisher', 'org_author', 'org_viewer'] ''' allRoles = [] roles = self.__roles__() for role in roles['roles']: allRoles.append(role) while roles['nextStart'] > 0: roles=self.__roles__(roles['nextStart']) for role in roles['roles']: allRoles.append(role) return allRoles def getGroups(self): ''' Returns a list of groups defined in the organization. ''' allGroups = [] groups = self.__groups__() for group in groups['results']: allGroups.append(group) while groups['nextStart'] > 0: for group in groups['results']: allGroups.append(group) return allGroups def findGroup(self,title): ''' Gets a group object by its title. ''' parameters = urllib.urlencode({'token' : self.user.token, 'q':'title:'+title, 'f' : 'json'}) portalId = self.user.__portalId__() response = urllib.urlopen(self.user.portalUrl + '/sharing/rest/community/groups?' + parameters).read() groupUsers = json.loads(response) if "results" in groupUsers and len(groupUsers["results"]) > 0: return groupUsers["results"][0] else: return None def getUsersInGroup(self,groupID): ''' Returns a list of users in a group ''' parameters = urllib.urlencode({'token' : self.user.token, 'f' : 'json'}) portalId = self.user.__portalId__() response = urllib.urlopen(self.user.portalUrl + '/sharing/rest/community/groups/'+groupID+'/users?' + parameters).read() groupUsers = json.loads(response) return groupUsers def getUsers(self, roles=None, daysToCheck=10000): ''' Returns a list of all users in the organization (requires admin access). Optionally provide a list of roles to filter the results (e.g. ['org_publisher']). Optionally provide a number to include only accounts created in the last x number of days. ''' #if not roles: # roles = ['org_admin', 'org_publisher', 'org_user'] #roles = ['org_admin', 'org_publisher', 'org_author', 'org_viewer'] # new roles to support Dec 2013 update #the role property of a user is either one of the standard roles or a custom role ID. Loop through and build a list of ids from the queried roles. if roles: standardRoles = ['org_admin', 'org_publisher', 'org_author', 'org_viewer'] queryRoleIDs=[] #if it's a standard role, go ahead and add it. for roleName in roles: if roleName in standardRoles: queryRoleIDs.append(roleName) #if it's not a standard role, we'll have to look it to return the ID. allRoles = self.getRoles() for role in allRoles: for roleName in roles: if roleName == role["name"]: queryRoleIDs.append(role["id"]) allUsers = [] users = self.__users__() for user in users['users']: if roles: if not user['role'] in queryRoleIDs: continue if date.fromtimestamp(float(user['created'])/1000) > date.today()-timedelta(days=daysToCheck): allUsers.append(user) while users['nextStart'] > 0: users = self.__users__(users['nextStart']) for user in users['users']: if roles: if not user['role'] in queryRoleIDs: continue if date.fromtimestamp(float(user['created'])/1000) > date.today()-timedelta(days=daysToCheck): allUsers.append(user) return allUsers def createGroup(self,title,snippet=None,description=None,tags=None,access="org",isViewOnly=False,viewOnly=False,inviteOnly=True,thumbnail=None): ''' Creates a new group ''' portalId = self.user.__portalId__() uri = self.user.portalUrl + '/sharing/rest/community/createGroup' parameters ={'token' : self.user.token, 'f' : 'json', 'title' : title, 'description':description, 'snippet':snippet, 'tags':tags, 'access':access, 'isInvitationOnly':inviteOnly, 'isViewOnly':viewOnly, 'thumbnail':thumbnail} parameters = urllib.urlencode(parameters) req = urllib2.Request(uri,parameters) response = urllib2.urlopen(req) result = response.read() return json.loads(result) def createUser(self,username,password,firstName,lastName,email,description,role,provider): ''' Creates a new user WITHOUT sending an invitation ''' invitations = [{"username":str(username), "password":str(password), "firstname":str(firstName), "lastname":str(lastName), "fullname":str(firstName) + " " + str(lastName), "email":str(email), "role":str(role)}] parameters ={'token' : self.user.token, 'f' : 'json', 'subject':'Welcome to the portal', 'html':"blah", 'invitationList':{'invitations':invitations}} parameters = urllib.urlencode(parameters) portalId = self.user.__portalId__() uri = self.user.portalUrl + '/sharing/rest/portals/' + portalId + '/invite' req = urllib2.Request(uri,parameters) response = urllib2.urlopen(req) result = response.read() return json.loads(result) def addUsersToGroups(self, users, groups): ''' REQUIRES ADMIN ACCESS Add organization users to multiple groups and return a list of the status ''' # Provide one or more usernames in a list. # e.g. ['user_1', 'user_2'] # Provide one or more group IDs in a list. # e.g. ['d93aabd856f8459a8905a5bd434d4d4a', 'f84c841a3dfc4591b1ff83281ea5025f'] toolSummary = [] # Assign users to the specified group(s). parameters = urllib.urlencode({'token': self.user.token, 'f': 'json'}) for group in groups: # Add Users - REQUIRES POST method (undocumented operation as of 2013-11-12). response = urllib.urlopen(self.user.portalUrl + '/sharing/rest/community/groups/' + group + '/addUsers?', 'users=' + ','.join(users) + "&" + parameters).read() # Users not added will be reported back with each group. toolSummary.append({group: json.loads(response)}) return toolSummary def reassignAllUser1ItemsToUser2(self, userFrom, userTo): ''' REQUIRES ADMIN ACCESS Transfers ownership of all items in userFrom/User1's account to userTo/User2's account, keeping same folder names. - Does not check for existing folders in userTo's account. - Does not delete content from userFrom's account. ''' # request user content for userFrom # response contains list of items in root folder and list of all folders parameters = urllib.urlencode({'token': self.user.token, 'f': 'json'}) request = self.user.portalUrl + '/sharing/rest/content/users/' + userFrom + '?' + parameters userContent = json.loads(urllib.urlopen(request).read()) # create same folders in userTo's account like those in userFrom's account for folder in userContent['folders']: parameters2 = urllib.urlencode({'title' : folder['title'], 'token': self.user.token, 'f': 'json'}) request2 = self.user.portalUrl + '/sharing/rest/content/users/' + userTo + '/createFolder?' response2 = urllib.urlopen(request2, parameters2).read() # requires POST # keep track of items and folders numberOfItems = 0 numberOfFolders = 1 # change ownership of items in ROOT folder for item in userContent['items']: parameters3 = urllib.urlencode({'targetUsername' : userTo, 'targetFoldername' : '/', 'token': self.user.token, 'f': 'json'}) request3 = self.user.portalUrl + '/sharing/rest/content/users/' + userFrom + '/items/' + item['id'] + '/reassign?' response3 = urllib.urlopen(request3, parameters3).read() # requires POST if 'success' in response3: numberOfItems += 1 ### change ownership of items in SUBFOLDERS (nested loop) # request content in current folder for folder in userContent['folders']: parameters4 = urllib.urlencode({'token': self.user.token, 'f': 'json'}) request4 = self.user.portalUrl + '/sharing/rest/content/users/' + userFrom + '/' + folder['id'] + '?' + parameters4 folderContent = json.loads(urllib.urlopen(request4).read()) numberOfFolders += 1 # change ownership of items in CURRENT folder to userTo and put in correct folder for item in folderContent['items']: parameters5 = urllib.urlencode({'targetUsername' : userTo, 'targetFoldername' : folder['title'], 'token': self.user.token, 'f': 'pjson'}) request5 = self.user.portalUrl + '/sharing/rest/content/users/' + userFrom + '/' + folder['id'] + '/items/' + item['id'] + '/reassign?' response5 = urllib.urlopen(request5, parameters5).read() # requires POST numberOfItems += 1 # summarize results print ' ' + str(numberOfItems) + ' ITEMS in ' + str(numberOfFolders) + ' FOLDERS (incl. Home folder) copied' print ' from USER ' + userFrom + ' to USER ' + userTo return def reassignGroupOwnership(self,groupId,userTo): parameters ={'token' : self.user.token, 'f' : 'json', 'targetUsername':userTo} parameters = urllib.urlencode(parameters) portalId = self.user.__portalId__() uri = self.user.portalUrl + '/sharing/rest/community/groups/'+groupId+'/reassign' req = urllib2.Request(uri,parameters) response = urllib2.urlopen(req) result = response.read() return json.loads(result) def reassignAllGroupOwnership(self, userFrom, userTo): ''' REQUIRES ADMIN ACCESS Reassigns ownership of all groups between a pair of accounts. ''' groups = 0 groupsReassigned = 0 # Get list of userFrom's groups print 'Requesting ' + userFrom + "'s group info from ArcGIS Online...", parameters = urllib.urlencode({'token': self.user.token, 'f': 'pjson'}) request = self.user.portalUrl + '/sharing/rest/community/users/' + userFrom + '?' + parameters response = urllib.urlopen(request).read() userFromContent = json.loads(response) print 'RECEIVED!' # Determine if userFrom is group owner and, if so, transfer ownership to userTo print 'Checking groups...', for group in userFromContent['groups']: print '.', groups += 1 if group['owner'] == userFrom: parameters = urllib.urlencode({'targetUsername' : userTo, 'token': self.user.token, 'f': 'pjson'}) request = self.user.portalUrl + '/sharing/rest/community/groups/' + group['id'] + '/reassign?' response = urllib.urlopen(request, parameters).read() # requires POST if 'success' in response: groupsReassigned += 1 # Report results print print ' CHECKED ' + str(groups) + ' groups ASSOCIATED with ' + userFrom + '.' print ' REASSIGNED ' + str(groupsReassigned) + ' groups OWNED by ' + userFrom + ' to ' + userTo + '.' return def addUser2ToAllUser1Groups(self, userFrom, userTo): ''' REQUIRES ADMIN ACCESS Adds userTo/User2 to all groups that userFrom/User1 is a member ''' groups = 0 groupsOwned = 0 groupsAdded = 0 # Get list of userFrom's groups parameters = urllib.urlencode({'token': self.user.token, 'f': 'pjson'}) request = self.user.portalUrl + '/sharing/rest/community/users/' + userFrom + '?' + parameters response = urllib.urlopen(request).read() userFromContent = json.loads(response) # Add userTo to each group that userFrom's is a member, but not an owner for group in userFromContent['groups']: groups += 1 if group['owner'] == userFrom: groupsOwned += 1 else: parameters = urllib.urlencode({'users' : userTo, 'token': self.user.token, 'f': 'pjson'}) request = self.user.portalUrl + '/sharing/rest/community/groups/' + group['id'] + '/addUsers?' response = urllib.urlopen(request, parameters).read() # requires POST if '[]' in response: # This currently undocumented operation does not correctly return "success" groupsAdded += 1 print ' CHECKED ' + str(groups) + ' groups associated with ' + userFrom + ':' print ' ' + userFrom + ' OWNS ' + str(groupsOwned) + ' groups (' + userTo + ' NOT added).' print ' ' + userTo + ' is already a MEMBER of ' + str(groups-groupsOwned-groupsAdded) + ' groups.' print ' ' + userTo + ' was ADDED to ' + str(groupsAdded) + ' groups.' return def migrateAccount(self, userFrom, userTo): ''' REQUIRES ADMIN ACCESS Reassigns ownership of all content items and groups from userFrom to userTo. Also adds userTo to all groups which userFrom is a member. ''' print 'Copying all items from ' + userFrom + ' to ' + userTo + '...' self.reassignAllUser1ItemsToUser2(self, userFrom, userTo) print print 'Reassigning groups owned by ' + userFrom + ' to ' + userTo + '...' self.reassignAllGroupOwnership(self, userFrom, userTo) print print 'Adding ' + userTo + ' as a member of ' + userFrom + "'s groups..." self.addUser2ToAllUser1Groups(self, userFrom, userTo) return def migrateAccounts(self, pathUserMappingCSV): ''' REQUIRES ADMIN ACCESS Reassigns ownership of all content items and groups between pairs of accounts specified in a CSV file. Also adds userTo to all groups which userFrom is a member. This function batches migrateAccount using a CSV to feed in the accounts to migrate from/to, the CSV should have two columns (no column headers/labels): col1=userFrom, col2=userTo) ''' with open(pathUserMappingCSV, 'rb') as userMappingCSV: userMapping = csv.reader(userMappingCSV) for user in userMapping: userFrom = user[0] userTo = user[1] print '==========' print 'Copying all items from ' + userFrom + ' to ' + userTo + '...' self.reassignAllUser1ItemsToUser2(self, userFrom, userTo) print print 'Reassigning groups owned by ' + userFrom + ' to ' + userTo + '...' self.reassignAllGroupOwnership(self, userFrom, userTo) print print 'Adding ' + userTo + ' as a member of ' + userFrom + "'s groups..." self.addUser2ToAllUser1Groups(self, userFrom, userTo) print '==========' return def updateServiceItemsThumbnail(self, folder=None): ''' Fetches catalog of items in portal. If there is no thumbnail, assigns the default. ''' if(folder!=None): catalog = self.AGOLUserCatalog(folder,False) else: catalog=self.AGOLCatalog(None) for r in catalog: if(r.thumbnail==None): parameters = urllib.urlencode({'thumbnailURL' : 'http://static.arcgis.com/images/desktopapp.png', 'token' : self.user.token, 'f' : 'json'}) requestToUpdate = self.user.portalUrl + '/sharing/rest/content/users/' + self.user.username + '/items/' +r.id + '/update' try: print ("updating " + r.title + " with thumbnail.") response = urllib.urlopen(requestToUpdate, parameters ).read() jresult = json.loads(response) except: e=1 return None def registerItems (self, mapservices, folder=''): ''' Given a set of AGOL items, register them to the portal, optionally to a specific folder. ''' self.servicesToRegister=mapservices if folder==None: folder='' icount=0 i=0 for ms in self.servicesToRegister.service_list: i = i +1 sURL=ms.url sTitle=ms.title if ms.thumbnail==None: sThumbnail ='http://static.arcgis.com/images/desktopapp.png' elif ms.id !=None: sThumbnail ="http://www.arcgis.com/sharing/content/items/" + ms.id + "/info/" + ms.thumbnail else: sThumbnail='http://static.arcgis.com/images/desktopapp.png' #todo, handle map service exports sTags = 'mapping' if ms.tags==None else ms.tags sType= 'Map Service' if ms.type==None else ms.type sDescription = '' if ms.description==None else ms.description sSnippet = '' if ms.snippet ==None else ms.snippet sExtent = '' if ms.extent==None else ms.extent sSpatialReference='' if ms.spatialReference==None else ms.spatialReference sAccessInfo='' if ms.accessInformation==None else ms.accessInformation sLicenseInfo='' if ms.licenseInfo==None else ms.licenseInfo sCulture='' if ms.culture == None else ms.culture parameters = urllib.urlencode({'URL' : sURL, 'title' : sTitle, 'thumbnailURL' : sThumbnail, 'tags' : sTags, 'description' : sDescription, 'snippet': sSnippet, 'extent':sExtent, 'spatialReference':sSpatialReference, 'accessInformation': sAccessInfo, 'licenseInfo': sLicenseInfo, 'culture': sCulture, 'type' : sType, 'token' : self.user.token, 'f' : 'json'}) #todo- use export map on map service items for thumbnail requestToAdd = self.user.portalUrl + '/sharing/rest/content/users/' + self.user.username + folder + '/addItem' try: if(sType.find('Service')>=0 or sType.find('Web Mapping Application')>=0): response = urllib.urlopen(requestToAdd, parameters ).read() jresult = json.loads(response) print str(i) + ") " + ms.title + ": success= " + str(jresult["success"]) + "," + ms.url + ", " + "(" + jresult["id"] + ")" if jresult["success"]: icount=icount+1 except: print str(i) + ") " + ms.title + ':error!' print str(icount) + " item(s) added." def getFolderID(self, folderName): ''' Return the ID of the folder with the given name. ''' folders = self._getUserFolders() for f in folders: if str(f['title']) == folderName: return str(f['id']) return '' def _getUserFolders(self): ''' Return all folder objects. ''' requestToAdd = self.user.portalUrl + '/sharing/rest/content/users/' + self.user.username + '?f=json&token=' + self.user.token; response = urllib.urlopen(requestToAdd).read() jresult = json.loads(response) return jresult["folders"] def deleteGroup(self,groupid): ''' Deletes group ''' portalId = self.user.__portalId__() uri = self.user.portalUrl + '/sharing/rest/community/groups/'+groupid+'/delete' parameters ={'token' : self.user.token, 'f' : 'json'} parameters = urllib.urlencode(parameters) req = urllib2.Request(uri,parameters) response = urllib2.urlopen(req) result = response.read() return json.loads(result) def clearGroup(self, groupid): ''' Unshare all content from the specified group. CAUTION ''' groupcatalog = self.AGOLGroupCatalog(groupid) sItems='' for f in groupcatalog: requestToDelete = self.user.portalUrl + '/sharing/rest/content/items/' + f.id + "/unshare?groups=" + groupid parameters = urllib.urlencode({ 'token' : self.user.token, 'f' : 'json'}) print "Unsharing " + f.title response = urllib.urlopen(requestToDelete,parameters).read() jresult = json.loads(response) print "Complete." return None def clearFolder(self, folderid): ''' Delete all content from the specified folder. CAUTION ''' foldercatalog = self.AGOLUserCatalog(folderid) sItems='' for f in foldercatalog: sItems+= f.id + "," if len(sItems)>0: sItems=sItems[:-1] requestToDelete = self.user.portalUrl + '/sharing/rest/content/users/' + self.user.username + "/deleteItems" parameters = urllib.urlencode({'items':sItems, 'token' : self.user.token, 'f' : 'json'}) print "Deleting " + str(len(foldercatalog)) + " items..." response = urllib.urlopen(requestToDelete,parameters).read() jresult = json.loads(response) print "Complete." return None def AGOLGroupCatalog(self, groupid): ''' Return the catalog of items in desiginated group. ''' sCatalogURL=self.user.portalUrl + "/sharing/rest/search?q=%20group%3A" + groupid + "%20-type:%22Code%20Attachment%22%20-type:%22Featured%20Items%22%20-type:%22Symbol%20Set%22%20-type:%22Color%20Set%22%20-type:%22Windows%20Viewer%20Add%20In%22%20-type:%22Windows%20Viewer%20Configuration%22%20%20-type:%22Code%20Attachment%22%20-type:%22Featured%20Items%22%20-type:%22Symbol%20Set%22%20-type:%22Color%20Set%22%20-type:%22Windows%20Viewer%20Add%20In%22%20-type:%22Windows%20Viewer%20Configuration%22%20&num=100&sortField=title&sortOrder=asc" return self.AGOLCatalog(None,None,sCatalogURL) def AGOLUserCatalog(self, folder, includeSize=False): ''' Return the catalog of CURRENT USER's items from portal, optionally from only a folder. ''' sCatalogURL = self.user.portalUrl + "/sharing/rest/content/users/" + self.user.username + folder return self.AGOLCatalog(None,None,sCatalogURL) def AGOLCatalog(self, query=None, includeSize=False, sCatalogURL=None): ''' Return all items from all users in a portal, optionally matching a specified query. optionally make the additional requests for SIZE. sCatalogURL can be specified to use a specific folder ''' resultCount = 0 searchURL = "" viewURL = "" orgID = "" self.sFullSearch = "" self.bIncludeSize=includeSize self.orgID = self._getOrgID() self.catalogURL=sCatalogURL #for cataloging folders if self.user.portalUrl != None: self.searchURL = self.user.portalUrl + "/sharing/rest" self.viewURL = self.user.portalUrl + "/home/item.html?id=" self.query = query pList=[] allResults = [] sQuery=self._getCatalogQuery(1,100)#get first batch print("fetching records 1-100...") response = urllib.urlopen(sQuery).read() jresult=json.loads(response) nextRecord = jresult['nextStart'] totalRecords = jresult['total'] num = jresult['num'] start =jresult['start'] #if this is a folder catalog, use items, not results sItemsProperty = 'results' if self.catalogURL!=None and str(self.catalogURL).find("/sharing/rest/content/users/")>0: sItemsProperty='items' pList = AGOLItems( jresult[sItemsProperty]) for r in pList.AGOLItems_list: r.itemURL = self.viewURL + r.id r.created = time.strftime("%Y-%m-%d",time.gmtime(r.created/1000)) r.modified = time.strftime("%Y-%m-%d",time.gmtime(r.modified/1000)) if r.size== -1: r.size=0 r.size = self._getSize(r) r.myRowID = len(allResults) + 1; allResults.append(r) if (nextRecord>0): while(nextRecord>0): sQuery = self._getCatalogQuery(nextRecord, 100) print("fetching records " + str(nextRecord) + "-" + str(nextRecord+100) + "...") response = urllib.urlopen(sQuery).read() jresult=json.loads(response) nextRecord = jresult['nextStart'] totalRecords = jresult['total'] num = jresult['num'] start =jresult['start'] pList = AGOLItems( jresult['results']) for r in pList.AGOLItems_list: r.itemURL = self.viewURL + r.id r.created = time.strftime("%Y-%m-%d",time.gmtime(r.created/1000)) r.modified = time.strftime("%Y-%m-%d",time.gmtime(r.modified/1000)) if r.size== -1: r.size=0 r.size = self._getSize(r) r.myRowID = len(allResults) + 1; allResults.append(r) return allResults def _getSize(self, r): ''' Issue query for item size. ''' if(self.bIncludeSize != True): return 0 print ("fetching size for " + r.title + " (" + r.type + ")") result=0 sURL = self.searchURL + "/content/items/" + str(r.id) + "?f=json&token=" + self.user.token; response = urllib.urlopen(sURL).read() result = json.loads(response)['size'] if(result>0): result = result/1024 else: result=0 return result def _getOrgID(self): ''' Return the organization's ID. ''' sURL = self.user.portalUrl + "/sharing/rest/portals/self?f=json&token=" + self.user.token response = urllib.urlopen(sURL).read() return str(json.loads(response)['id']) def _getCatalogQuery(self, start, num): ''' Format a content query from specified start and number of records. ''' sQuery=None if self.query != None: sQuery = self.query else: sQuery = self.sFullSearch if(self.catalogURL==None): sCatalogQuery = self.searchURL + "/search?q=" + sQuery if self.orgID != None: sCatalogQuery += " orgid:" + self.orgID else: #check to ensure ? vs & if(str(self.catalogURL).find('?')<0): char="?" else: char="&" sCatalogQuery = self.catalogURL + char + "ts=1" sCatalogQuery += "&f=json&num="+ str(num) + "&start=" + str(start) sCatalogQuery += "&token=" + self.user.token return sCatalogQuery def updateUserRoles(self, users): self.usersToUpdate=users requestToUpdate= self.user.portalUrl + '/sharing/rest/portals/self/updateuserrole' for u in self.usersToUpdate.user_list: parameters = urllib.urlencode({'user':u.Username, 'role':u.Role, 'token' : self.user.token, 'f' : 'json'}) print "Updating Role for " + u.Username + " to " + u.Role + "..." response = urllib.urlopen(requestToUpdate,parameters).read() jresult = json.loads(response) success= str(jresult["success"]) print "Success: " + success print "Complete." return None #collection of AGOLItem class AGOLItems: def __init__ (self, item_list): self.AGOLItems_list=[] for item in item_list: self.AGOLItems_list.append(AGOLItem(item)) #AGOL item class AGOLItem: def __init__(self, item_attributes): for k, v in item_attributes.items(): setattr(self, k, v) #collection of Map Services class MapServices: def __init__ (self, import_list): self.service_list=[] for service in import_list: self.service_list.append(MapService(service)) #Map Service class MapService: def __init__(self, service_attributes): for k, v in service_attributes.items(): setattr(self, k, v) #Collection of Usernames and roles class UsersAttributes: def __init__ (self, import_list): self.user_list=[] for user in import_list: self.user_list.append(UserAttributes(user)) class UserAttributes: def __init__(self, user_attributes): for k, v in user_attributes.items(): setattr(self, k, v)
41.250636
547
0.559603
[ "Apache-2.0" ]
SpatialStrout/ago-tools
admin.py
32,423
Python
import re from typing import TypeVar import questionary EnumType = TypeVar("EnumType") # 驼峰命名转蛇形命名 def camel_to_snake(text: str) -> str: return re.sub(r"(?<!^)(?=[A-Z])", "_", text).lower() # 蛇形命名转驼峰命名 def snake_to_camel(text: str) -> str: return text.split('_')[0] + "".join(x.title() for x in text.split('_')[1:]) # 驼峰命名转帕斯卡命名 def camel_to_pascal(text: str) -> str: return text[0].upper() + text[1:] def question(choices: EnumType) -> questionary.Question: prompt = camel_to_snake(choices.__name__).replace("_", " ") # type: ignore return questionary.select(f"Select the {prompt}: ", choices=list(choices)) def binary_question(option: str) -> questionary.Question: return questionary.confirm(f"Do you want {option}?", default=False) def text_question(default: str) -> questionary.Question: return questionary.text(f"The name of the database you want to create? ", default=default)
28
94
0.691558
[ "MIT" ]
fmw666/fastapi-builder
fastapi_builder/helpers.py
980
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['NetworkVirtualApplianceArgs', 'NetworkVirtualAppliance'] @pulumi.input_type class NetworkVirtualApplianceArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], boot_strap_configuration_blobs: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, cloud_init_configuration: Optional[pulumi.Input[str]] = None, cloud_init_configuration_blobs: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, id: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input['ManagedServiceIdentityArgs']] = None, location: Optional[pulumi.Input[str]] = None, network_virtual_appliance_name: Optional[pulumi.Input[str]] = None, nva_sku: Optional[pulumi.Input['VirtualApplianceSkuPropertiesArgs']] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, virtual_appliance_asn: Optional[pulumi.Input[float]] = None, virtual_hub: Optional[pulumi.Input['SubResourceArgs']] = None): """ The set of arguments for constructing a NetworkVirtualAppliance resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Sequence[pulumi.Input[str]]] boot_strap_configuration_blobs: BootStrapConfigurationBlobs storage URLs. :param pulumi.Input[str] cloud_init_configuration: CloudInitConfiguration string in plain text. :param pulumi.Input[Sequence[pulumi.Input[str]]] cloud_init_configuration_blobs: CloudInitConfigurationBlob storage URLs. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input['ManagedServiceIdentityArgs'] identity: The service principal that has read access to cloud-init and config blob. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] network_virtual_appliance_name: The name of Network Virtual Appliance. :param pulumi.Input['VirtualApplianceSkuPropertiesArgs'] nva_sku: Network Virtual Appliance SKU. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[float] virtual_appliance_asn: VirtualAppliance ASN. :param pulumi.Input['SubResourceArgs'] virtual_hub: The Virtual Hub where Network Virtual Appliance is being deployed. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if boot_strap_configuration_blobs is not None: pulumi.set(__self__, "boot_strap_configuration_blobs", boot_strap_configuration_blobs) if cloud_init_configuration is not None: pulumi.set(__self__, "cloud_init_configuration", cloud_init_configuration) if cloud_init_configuration_blobs is not None: pulumi.set(__self__, "cloud_init_configuration_blobs", cloud_init_configuration_blobs) if id is not None: pulumi.set(__self__, "id", id) if identity is not None: pulumi.set(__self__, "identity", identity) if location is not None: pulumi.set(__self__, "location", location) if network_virtual_appliance_name is not None: pulumi.set(__self__, "network_virtual_appliance_name", network_virtual_appliance_name) if nva_sku is not None: pulumi.set(__self__, "nva_sku", nva_sku) if tags is not None: pulumi.set(__self__, "tags", tags) if virtual_appliance_asn is not None: pulumi.set(__self__, "virtual_appliance_asn", virtual_appliance_asn) if virtual_hub is not None: pulumi.set(__self__, "virtual_hub", virtual_hub) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="bootStrapConfigurationBlobs") def boot_strap_configuration_blobs(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ BootStrapConfigurationBlobs storage URLs. """ return pulumi.get(self, "boot_strap_configuration_blobs") @boot_strap_configuration_blobs.setter def boot_strap_configuration_blobs(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "boot_strap_configuration_blobs", value) @property @pulumi.getter(name="cloudInitConfiguration") def cloud_init_configuration(self) -> Optional[pulumi.Input[str]]: """ CloudInitConfiguration string in plain text. """ return pulumi.get(self, "cloud_init_configuration") @cloud_init_configuration.setter def cloud_init_configuration(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "cloud_init_configuration", value) @property @pulumi.getter(name="cloudInitConfigurationBlobs") def cloud_init_configuration_blobs(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ CloudInitConfigurationBlob storage URLs. """ return pulumi.get(self, "cloud_init_configuration_blobs") @cloud_init_configuration_blobs.setter def cloud_init_configuration_blobs(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "cloud_init_configuration_blobs", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def identity(self) -> Optional[pulumi.Input['ManagedServiceIdentityArgs']]: """ The service principal that has read access to cloud-init and config blob. """ return pulumi.get(self, "identity") @identity.setter def identity(self, value: Optional[pulumi.Input['ManagedServiceIdentityArgs']]): pulumi.set(self, "identity", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="networkVirtualApplianceName") def network_virtual_appliance_name(self) -> Optional[pulumi.Input[str]]: """ The name of Network Virtual Appliance. """ return pulumi.get(self, "network_virtual_appliance_name") @network_virtual_appliance_name.setter def network_virtual_appliance_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network_virtual_appliance_name", value) @property @pulumi.getter(name="nvaSku") def nva_sku(self) -> Optional[pulumi.Input['VirtualApplianceSkuPropertiesArgs']]: """ Network Virtual Appliance SKU. """ return pulumi.get(self, "nva_sku") @nva_sku.setter def nva_sku(self, value: Optional[pulumi.Input['VirtualApplianceSkuPropertiesArgs']]): pulumi.set(self, "nva_sku", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="virtualApplianceAsn") def virtual_appliance_asn(self) -> Optional[pulumi.Input[float]]: """ VirtualAppliance ASN. """ return pulumi.get(self, "virtual_appliance_asn") @virtual_appliance_asn.setter def virtual_appliance_asn(self, value: Optional[pulumi.Input[float]]): pulumi.set(self, "virtual_appliance_asn", value) @property @pulumi.getter(name="virtualHub") def virtual_hub(self) -> Optional[pulumi.Input['SubResourceArgs']]: """ The Virtual Hub where Network Virtual Appliance is being deployed. """ return pulumi.get(self, "virtual_hub") @virtual_hub.setter def virtual_hub(self, value: Optional[pulumi.Input['SubResourceArgs']]): pulumi.set(self, "virtual_hub", value) class NetworkVirtualAppliance(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, boot_strap_configuration_blobs: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, cloud_init_configuration: Optional[pulumi.Input[str]] = None, cloud_init_configuration_blobs: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, id: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']]] = None, location: Optional[pulumi.Input[str]] = None, network_virtual_appliance_name: Optional[pulumi.Input[str]] = None, nva_sku: Optional[pulumi.Input[pulumi.InputType['VirtualApplianceSkuPropertiesArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, virtual_appliance_asn: Optional[pulumi.Input[float]] = None, virtual_hub: Optional[pulumi.Input[pulumi.InputType['SubResourceArgs']]] = None, __props__=None): """ NetworkVirtualAppliance Resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] boot_strap_configuration_blobs: BootStrapConfigurationBlobs storage URLs. :param pulumi.Input[str] cloud_init_configuration: CloudInitConfiguration string in plain text. :param pulumi.Input[Sequence[pulumi.Input[str]]] cloud_init_configuration_blobs: CloudInitConfigurationBlob storage URLs. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']] identity: The service principal that has read access to cloud-init and config blob. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] network_virtual_appliance_name: The name of Network Virtual Appliance. :param pulumi.Input[pulumi.InputType['VirtualApplianceSkuPropertiesArgs']] nva_sku: Network Virtual Appliance SKU. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[float] virtual_appliance_asn: VirtualAppliance ASN. :param pulumi.Input[pulumi.InputType['SubResourceArgs']] virtual_hub: The Virtual Hub where Network Virtual Appliance is being deployed. """ ... @overload def __init__(__self__, resource_name: str, args: NetworkVirtualApplianceArgs, opts: Optional[pulumi.ResourceOptions] = None): """ NetworkVirtualAppliance Resource. :param str resource_name: The name of the resource. :param NetworkVirtualApplianceArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(NetworkVirtualApplianceArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, boot_strap_configuration_blobs: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, cloud_init_configuration: Optional[pulumi.Input[str]] = None, cloud_init_configuration_blobs: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, id: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']]] = None, location: Optional[pulumi.Input[str]] = None, network_virtual_appliance_name: Optional[pulumi.Input[str]] = None, nva_sku: Optional[pulumi.Input[pulumi.InputType['VirtualApplianceSkuPropertiesArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, virtual_appliance_asn: Optional[pulumi.Input[float]] = None, virtual_hub: Optional[pulumi.Input[pulumi.InputType['SubResourceArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = NetworkVirtualApplianceArgs.__new__(NetworkVirtualApplianceArgs) __props__.__dict__["boot_strap_configuration_blobs"] = boot_strap_configuration_blobs __props__.__dict__["cloud_init_configuration"] = cloud_init_configuration __props__.__dict__["cloud_init_configuration_blobs"] = cloud_init_configuration_blobs __props__.__dict__["id"] = id __props__.__dict__["identity"] = identity __props__.__dict__["location"] = location __props__.__dict__["network_virtual_appliance_name"] = network_virtual_appliance_name __props__.__dict__["nva_sku"] = nva_sku if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["virtual_appliance_asn"] = virtual_appliance_asn __props__.__dict__["virtual_hub"] = virtual_hub __props__.__dict__["address_prefix"] = None __props__.__dict__["etag"] = None __props__.__dict__["inbound_security_rules"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None __props__.__dict__["virtual_appliance_nics"] = None __props__.__dict__["virtual_appliance_sites"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20201101:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20191201:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20191201:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20200301:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20200301:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20200401:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20200401:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20200501:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20200501:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20200601:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20200601:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20200701:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20200701:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20200801:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20200801:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20210201:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20210201:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-native:network/v20210301:NetworkVirtualAppliance"), pulumi.Alias(type_="azure-nextgen:network/v20210301:NetworkVirtualAppliance")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NetworkVirtualAppliance, __self__).__init__( 'azure-native:network/v20201101:NetworkVirtualAppliance', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NetworkVirtualAppliance': """ Get an existing NetworkVirtualAppliance resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = NetworkVirtualApplianceArgs.__new__(NetworkVirtualApplianceArgs) __props__.__dict__["address_prefix"] = None __props__.__dict__["boot_strap_configuration_blobs"] = None __props__.__dict__["cloud_init_configuration"] = None __props__.__dict__["cloud_init_configuration_blobs"] = None __props__.__dict__["etag"] = None __props__.__dict__["identity"] = None __props__.__dict__["inbound_security_rules"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["nva_sku"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None __props__.__dict__["virtual_appliance_asn"] = None __props__.__dict__["virtual_appliance_nics"] = None __props__.__dict__["virtual_appliance_sites"] = None __props__.__dict__["virtual_hub"] = None return NetworkVirtualAppliance(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="addressPrefix") def address_prefix(self) -> pulumi.Output[str]: """ Address Prefix. """ return pulumi.get(self, "address_prefix") @property @pulumi.getter(name="bootStrapConfigurationBlobs") def boot_strap_configuration_blobs(self) -> pulumi.Output[Optional[Sequence[str]]]: """ BootStrapConfigurationBlobs storage URLs. """ return pulumi.get(self, "boot_strap_configuration_blobs") @property @pulumi.getter(name="cloudInitConfiguration") def cloud_init_configuration(self) -> pulumi.Output[Optional[str]]: """ CloudInitConfiguration string in plain text. """ return pulumi.get(self, "cloud_init_configuration") @property @pulumi.getter(name="cloudInitConfigurationBlobs") def cloud_init_configuration_blobs(self) -> pulumi.Output[Optional[Sequence[str]]]: """ CloudInitConfigurationBlob storage URLs. """ return pulumi.get(self, "cloud_init_configuration_blobs") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.ManagedServiceIdentityResponse']]: """ The service principal that has read access to cloud-init and config blob. """ return pulumi.get(self, "identity") @property @pulumi.getter(name="inboundSecurityRules") def inbound_security_rules(self) -> pulumi.Output[Sequence['outputs.SubResourceResponse']]: """ List of references to InboundSecurityRules. """ return pulumi.get(self, "inbound_security_rules") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="nvaSku") def nva_sku(self) -> pulumi.Output[Optional['outputs.VirtualApplianceSkuPropertiesResponse']]: """ Network Virtual Appliance SKU. """ return pulumi.get(self, "nva_sku") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualApplianceAsn") def virtual_appliance_asn(self) -> pulumi.Output[Optional[float]]: """ VirtualAppliance ASN. """ return pulumi.get(self, "virtual_appliance_asn") @property @pulumi.getter(name="virtualApplianceNics") def virtual_appliance_nics(self) -> pulumi.Output[Sequence['outputs.VirtualApplianceNicPropertiesResponse']]: """ List of Virtual Appliance Network Interfaces. """ return pulumi.get(self, "virtual_appliance_nics") @property @pulumi.getter(name="virtualApplianceSites") def virtual_appliance_sites(self) -> pulumi.Output[Sequence['outputs.SubResourceResponse']]: """ List of references to VirtualApplianceSite. """ return pulumi.get(self, "virtual_appliance_sites") @property @pulumi.getter(name="virtualHub") def virtual_hub(self) -> pulumi.Output[Optional['outputs.SubResourceResponse']]: """ The Virtual Hub where Network Virtual Appliance is being deployed. """ return pulumi.get(self, "virtual_hub")
47.744
1,682
0.680379
[ "Apache-2.0" ]
polivbr/pulumi-azure-native
sdk/python/pulumi_azure_native/network/v20201101/network_virtual_appliance.py
23,872
Python
"""Integration tests for Glesys""" from unittest import TestCase import pytest from lexicon.tests.providers.integration_tests import IntegrationTestsV1 # Hook into testing framework by inheriting unittest.TestCase and reuse # the tests which *each and every* implementation of the interface must # pass, by inheritance from define_tests.TheTests # TODO: migrate to IntegrationTestsV2 and its extended test suite class GlesysProviderTests(TestCase, IntegrationTestsV1): """TestCase for Glesys""" provider_name = 'glesys' domain = "capsulecd.com" def _filter_headers(self): return ['Authorization'] # TODO: enable the skipped tests @pytest.mark.skip(reason="new test, missing recording") def test_provider_when_calling_update_record_should_modify_record_name_specified(self): return
34.583333
91
0.774699
[ "MIT" ]
HelixEducation/lexicon
lexicon/tests/providers/test_glesys.py
830
Python
from datetime import timedelta from random import randint from ichnaea.data.tasks import ( monitor_api_key_limits, monitor_api_users, monitor_queue_size, ) from ichnaea import util class TestMonitor(object): def test_monitor_api_keys_empty(self, celery, stats): monitor_api_key_limits.delay().get() stats.check(gauge=[('api.limit', 0)]) def test_monitor_api_keys_one(self, celery, redis, stats): today = util.utcnow().strftime('%Y%m%d') rate_key = 'apilimit:no_key_1:v1.geolocate:' + today redis.incr(rate_key, 13) monitor_api_key_limits.delay().get() stats.check(gauge=[ ('api.limit', ['key:no_key_1', 'path:v1.geolocate']), ]) def test_monitor_api_keys_multiple(self, celery, redis, stats): now = util.utcnow() today = now.strftime('%Y%m%d') yesterday = (now - timedelta(hours=24)).strftime('%Y%m%d') data = { 'test': {'v1.search': 11, 'v1.geolocate': 13}, 'no_key_1': {'v1.search': 12}, 'no_key_2': {'v1.geolocate': 15}, } for key, paths in data.items(): for path, value in paths.items(): rate_key = 'apilimit:%s:%s:%s' % (key, path, today) redis.incr(rate_key, value) rate_key = 'apilimit:%s:%s:%s' % (key, path, yesterday) redis.incr(rate_key, value - 10) # add some other items into Redis redis.lpush('default', 1, 2) redis.set('cache_something', '{}') monitor_api_key_limits.delay().get() stats.check(gauge=[ ('api.limit', ['key:test', 'path:v1.geolocate']), ('api.limit', ['key:test', 'path:v1.search']), ('api.limit', ['key:no_key_1', 'path:v1.search']), ('api.limit', ['key:no_key_2', 'path:v1.geolocate']), ]) def test_monitor_queue_size(self, celery, redis, stats): data = { 'export_queue_internal': 3, 'export_queue_backup:abcd-ef-1234': 7, } for name in celery.all_queues: data[name] = randint(1, 10) for k, v in data.items(): redis.lpush(k, *range(v)) monitor_queue_size.delay().get() stats.check( gauge=[('queue', 1, v, ['queue:' + k]) for k, v in data.items()]) class TestMonitorAPIUsers(object): @property def today(self): return util.utcnow().date() @property def today_str(self): return self.today.strftime('%Y-%m-%d') def test_empty(self, celery, stats): monitor_api_users.delay().get() stats.check(gauge=[('submit.user', 0), ('locate.user', 0)]) def test_one_day(self, celery, geoip_data, redis, stats): bhutan_ip = geoip_data['Bhutan']['ip'] london_ip = geoip_data['London']['ip'] redis.pfadd( 'apiuser:submit:test:' + self.today_str, bhutan_ip, london_ip) redis.pfadd( 'apiuser:submit:valid_key:' + self.today_str, bhutan_ip) redis.pfadd( 'apiuser:locate:valid_key:' + self.today_str, bhutan_ip) monitor_api_users.delay().get() stats.check(gauge=[ ('submit.user', 1, 2, ['key:test', 'interval:1d']), ('submit.user', 1, 2, ['key:test', 'interval:7d']), ('submit.user', 1, 1, ['key:valid_key', 'interval:1d']), ('submit.user', 1, 1, ['key:valid_key', 'interval:7d']), ('locate.user', 1, 1, ['key:valid_key', 'interval:1d']), ('locate.user', 1, 1, ['key:valid_key', 'interval:7d']), ]) def test_many_days(self, celery, geoip_data, redis, stats): bhutan_ip = geoip_data['Bhutan']['ip'] london_ip = geoip_data['London']['ip'] days_6 = (self.today - timedelta(days=6)).strftime('%Y-%m-%d') days_7 = (self.today - timedelta(days=7)).strftime('%Y-%m-%d') redis.pfadd( 'apiuser:submit:test:' + self.today_str, '127.0.0.1', bhutan_ip) # add the same IPs + one new one again redis.pfadd( 'apiuser:submit:test:' + days_6, '127.0.0.1', bhutan_ip, london_ip) # add one entry which is too old redis.pfadd( 'apiuser:submit:test:' + days_7, bhutan_ip) monitor_api_users.delay().get() stats.check(gauge=[ ('submit.user', 1, 2, ['key:test', 'interval:1d']), # we count unique IPs over the entire 7 day period, # so it's just 3 uniques ('submit.user', 1, 3, ['key:test', 'interval:7d']), ]) # the too old key was deleted manually assert not redis.exists('apiuser:submit:test:' + days_7)
36.223077
79
0.561478
[ "Apache-2.0" ]
BBOXX/ichnaea
ichnaea/data/tests/test_monitor.py
4,709
Python
""" # ============================================================================= # Creates the stiffness matrix as requested, using the material properties # provided in the TPD file (for v2020 files). # # Author: William Hunter, Tarcísio L. de Oliveira # Copyright (C) 2008, 2015, William Hunter. # Copyright (C) 2020, 2021, Tarcísio L. de Oliveira # ============================================================================= """ from __future__ import division import os from sympy import symbols, Matrix, diff, integrate, zeros from numpy import abs, array from ..utils import get_logger logger = get_logger(__name__) def create_K(_L, _E, _nu, _k, _t): # Initialize variables _a, _b, _c = _L, _L, _L # element dimensions (half-lengths) _G = _E / (2 * (1 + _nu)) # modulus of rigidity _g = _E / ((1 + _nu) * (1 - 2 * _nu)) # SymPy symbols: x, y, z = symbols('x y z') N1, N2, N3, N4 = symbols('N1 N2 N3 N4') N5, N6, N7, N8 = symbols('N5 N6 N7 N8') xlist = [x, x, x, x, x, x, x, x] ylist = [y, y, y, y, y, y, y, y] zlist = [z, z, z, z, z, z, z, z] # Shape functions: N1 = (_a - x) * (_b - y) * (_c - z) / (8 * _a * _b * _c) N2 = (_a + x) * (_b - y) * (_c - z) / (8 * _a * _b * _c) N3 = (_a + x) * (_b + y) * (_c - z) / (8 * _a * _b * _c) N4 = (_a - x) * (_b + y) * (_c - z) / (8 * _a * _b * _c) N5 = (_a - x) * (_b - y) * (_c + z) / (8 * _a * _b * _c) N6 = (_a + x) * (_b - y) * (_c + z) / (8 * _a * _b * _c) N7 = (_a + x) * (_b + y) * (_c + z) / (8 * _a * _b * _c) N8 = (_a - x) * (_b + y) * (_c + z) / (8 * _a * _b * _c) # Create strain-displacement matrix B: B0 = tuple(map(diff, [N1, N2, N3, N4, N5, N6, N7, N8], xlist)) B1 = tuple(map(diff, [N1, N2, N3, N4, N5, N6, N7, N8], ylist)) B2 = tuple(map(diff, [N1, N2, N3, N4, N5, N6, N7, N8], zlist)) B = Matrix([B0, B1, B2]) # Create conductivity matrix: C = Matrix([[_k, 0, 0], [0, _k, 0], [0, 0, _k]]) dK = B.T * C * B # Integration: logger.info('SymPy is integrating: K for H8T...') K = dK.integrate((x, -_a, _a),(y, -_b, _b),(z, -_c, _c)) # Convert SymPy Matrix to NumPy array: K = array(K, dtype='double') C = array(C, dtype='double') # Set small (<< 0) values equal to zero: K[abs(K) < 1e-6] = 0 # Return result: logger.info('Created stiffness matrix.') return K, B, C # EOF H8T_K.py
32.733333
79
0.479837
[ "MIT" ]
TarcLO/topy
topy/data/H8T_K.py
2,459
Python