content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# Script that uses meshgrid to get map coordinates and then plots # the DEM in 3d. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from osgeo import gdal ds = gdal.Open(r'D:\osgeopy-data\Washington\dem\sthelens_utm.tif') band = ds.GetRasterBand(1) ov_band = band.GetOverview(band.GetOverviewCount() - 3) data = ov_band.ReadAsArray() # Calculate bounding coordinates. geotransform = ds.GetGeoTransform() minx = geotransform[0] maxy = geotransform[3] maxx = minx + ov_band.XSize * geotransform[1] miny = maxy + ov_band.YSize * geotransform[5] # Get the x and y arrays. x = np.arange(minx, maxx, geotransform[1]) y = np.arange(maxy, miny, geotransform[5]) x, y = np.meshgrid(x[:ov_band.XSize], y[:ov_band.YSize]) # Make the 3D plot. fig = plt.figure() ax = fig.gca(projection='3d') ax.plot_surface(x, y, data, cmap='gist_earth', lw=0) plt.axis('equal') # # Change the viewpoint and turn the ticks off. # ax.view_init(elev=55, azim=60) # plt.axis('off') # # Create an animation. # import matplotlib.animation as animation # def animate(i): # ax.view_init(elev=65, azim=i) # anim = animation.FuncAnimation( # fig, animate, frames=range(0, 360, 10), interval=100) # plt.axis('off') # # If you have FFmpeg and it's in your path, you can save the # # animation. # anim.save('d:/temp/helens.mp4', 'ffmpeg') plt.show()
27.4
66
0.713869
[ "MIT" ]
ClaudeCoulombe/osgeopy-code
Chapter13/listing13_7.py
1,370
Python
# -*- coding: utf-8 -*- """ :mod:`plots` -- Tests data plots ================================ .. module:: plots :platform: Unix, Windows :synopsis: Tests of the raster plots and processed data plots. .. moduleauthor:: Andre Rocha <[email protected]> """ import matplotlib.pyplot as plt from matplotlib.testing.decorators import image_comparison from src.rocha import plots @image_comparison(baseline_images=['test_plot'], extensions=['png']) def test_plot(): """ Test the rasters plot as multiples subplots. """ rasters = ['data/relatives/forest_111.tif', 'data/relatives/forest_112.tif', 'data/relatives/forest_113.tif', 'data/relatives/forest_121.tif', 'data/relatives/forest_122.tif', 'data/relatives/forest_123.tif', 'data/relatives/forest_211.tif', 'data/relatives/forest_212.tif', 'data/relatives/forest_213.tif', 'data/relatives/forest_221.tif', 'data/relatives/forest_222.tif', 'data/relatives/forest_223.tif'] title = 'Mean precipitation (mm/day)' subtitles = ['HadGEM2 RCP4.5', 'HadGEM2 RCP8.5', 'MIROC5 RCP4.5', 'MIROC5 RCP8.5'] labels = ['2011-2040', '2041-2070', '2071-2100'] color = 'RdYlBu_r' rows = 3 cols = 4 plots.maps(rasters, rows, cols, color, title, subtitles, labels)
31.977778
86
0.599027
[ "MIT" ]
rochamatcomp/python-rocha
tests/test_plots.py
1,439
Python
from models.flowpp_cifar import CifarFlowPP from models.rvae import RVAE from models.modules import init_mode model_registry = { # MNIST 'rvae_mnist': lambda **kwargs: RVAE(z_size=16, h_size=40, kl_min=0.1, x_channels=1, **kwargs), # CIFAR 'tiny_rvae': lambda **kwargs: RVAE(z_size=2, h_size=2, kl_min=0.1, **kwargs), 'rvae': lambda **kwargs: RVAE(z_size=8, h_size=256, kl_min=0.1, **kwargs), 'tiny_flow_pp': lambda **kwargs: CifarFlowPP(hdim=4, blocks=1, dequant_blocks=1, mix_components=1, attn_version=False, force_float32_cond=False, **kwargs), 'flow_pp': lambda **kwargs: CifarFlowPP(hdim=120, blocks=10, dequant_blocks=2, mix_components=8, attn_version=False, force_float32_cond=False, dropout=0.2, **kwargs), 'flow_pp_wide': lambda **kwargs: CifarFlowPP(hdim=180, blocks=10, dequant_blocks=2, mix_components=8, attn_version=False, force_float32_cond=False, dropout=0.2, **kwargs) }
48.173913
125
0.611011
[ "MIT" ]
tom-bird/binary-gen-models
models/__init__.py
1,108
Python
""" A python script to run a parameter sweep """ # Python tools import numpy as np import yaml import os # WISDEM tools from wisdem.aeroelasticse import runFAST_pywrapper, CaseGen_General from wisdem.aeroelasticse.Util import FileTools # ROSCO tools from ROSCO_toolbox import controller as ROSCO_controller from ROSCO_toolbox import turbine as ROSCO_turbine from ROSCO_toolbox import utilities as ROSCO_utilities from pCrunch import CaseGen_Control, Analysis, Processing # FLAGS eagle = True multi = False # Controller tuning yaml if eagle: parameter_filename = '/home/nabbas/Documents/TurbineModels/ControllerYamls/BAR.yaml' else: parameter_filename = '../../Turbine_Tuning/BAR/BAR.yaml' # Generate case inputs for control related stuff input_params = ['zeta_flp', 'omega_flp'] DISCON_params = ['Flp_Kp', 'Flp_Ki'] # values = [[0.7], [2.73]] values = [np.around(np.arange(0.5, 2.5, 0.05), decimals=3), # use np.around to avoid precision issues np.around(np.arange(2.2, 3.5, 0.05) , decimals=3)] group = 1 # Some path specifics/ if eagle: FAST_InputFile = 'BAR_10p_75s.fst' # FAST input file (ext=.fst) FAST_directory = '/projects/bar/nabbas/TurbineModels/BAR_10p_75s' FAST_runDirectory = '/projects/bar/nabbas/batch_GainSweep_10p_75s_2' wind_dir = '/projects/bar/nabbas/TurbineModels/wind' dll_filename = '/home/nabbas/ROSCO_toolbox/ROSCO/build/libdiscon.so' Turbsim_exe = 'turbsim' FAST_exe = 'openfast' else: FAST_InputFile = 'OpenFAST_BAR_10.fst' # FAST input file (ext=.fst) FAST_directory = '/Users/nabbas/Documents/TurbineModels/BAR/OpenFAST_Models/BAR_10/' FAST_runDirectory = 'temp' wind_dir = '/Users/nabbas/Documents/TurbineModels/BAR/wind' dll_filename = '/Users/nabbas/Documents/TurbineModels/TurbineControllers/FortranControllers/ROSCO/build/libdiscon.dylib' Turbsim_exe = 'turbsim_dev' FAST_exe = 'openfast_dev' case_name_base = 'BAR_10p_75s' debug_level = 2 # Wind WindType = [3] Uref = [8.25, 10.25] seeds = [13428, 1524] # Time TMax = 330 # Turbine Definition D = 206 # Rotor Diameter z_hub = 137 # Tower Height # Multiprocessing/Eagle related if eagle: cores = 36 else: cores = 4 # Initialize CaseGen cgc = CaseGen_Control.CaseGen_Control(parameter_filename) # Modify some parameters cgc.path_params['FAST_InputFile'] = FAST_InputFile cgc.path_params['FAST_directory'] = FAST_directory cgc.AnalysisTime = TMax cgc.case_name_base = case_name_base cgc.D = D cgc.z_hub = z_hub cgc.debug_level = debug_level cgc.overwrite = True # Generate wind speeds cgc.seeds = seeds cgc.wind_dir = wind_dir cgc.Turbsim_exe = Turbsim_exe wind_file, wind_file_type = cgc.gen_turbwind(Uref) # Generate control case inputs # NOTE: Usually, group=1 is easiest. Then some baseline characteristics in group 0, etc... case_inputs, tuning_inputs = cgc.gen_control_cases(input_params, DISCON_params, values, group) # Add time specification if group 0 if group == 0: ci_key = list(case_inputs.keys())[0] TMax_list = [TMax]*len(case_inputs[ci_key]['vals']) case_inputs[("Fst", "TMax")] = {'vals': TMax_list, 'group': 0} else: case_inputs[("Fst", "TMax")] = {'vals': [TMax], 'group': 0} # DISCON case_inputs[('ServoDyn', 'DLL_FileName')] = {'vals': [dll_filename], 'group': 0} # Wind case_inputs[("InflowWind", "WindType")] = {'vals': [wind_file_type], 'group': 0} case_inputs[("InflowWind", "Filename")] = {'vals': [wind_file], 'group': 0} # FAST details fastBatch = runFAST_pywrapper.runFAST_pywrapper_batch(FAST_ver='OpenFAST', dev_branch=True) fastBatch.FAST_exe = FAST_exe # Path to executable fastBatch.FAST_InputFile = FAST_InputFile fastBatch.FAST_directory = FAST_directory fastBatch.FAST_runDirectory = FAST_runDirectory fastBatch.debug_level = debug_level # Generate cases case_list, case_name_list = CaseGen_General.CaseGen_General( case_inputs, dir_matrix=fastBatch.FAST_runDirectory, namebase=case_name_base) # Append case matrix with controller tuning parameters for file in os.listdir(fastBatch.FAST_runDirectory): if file.endswith(".yaml"): yfile = file yamldata = FileTools.load_yaml(os.path.join(fastBatch.FAST_runDirectory, yfile), package=1) CaseGen_Control.append_case_matrix_yaml( fastBatch.FAST_runDirectory, yfile, tuning_inputs, 'tuning_inputs') # Make sure flags are on var_out = [ # ElastoDyn "BldPitch1", "BldPitch2", "BldPitch3", "Azimuth", "RotSpeed", "GenSpeed", "NacYaw", "OoPDefl1", "IPDefl1", "TwstDefl1", "OoPDefl2", "IPDefl2", "TwstDefl2", "OoPDefl3", "IPDefl3", "TwstDefl3", "TwrClrnc1", "TwrClrnc2", "TwrClrnc3", "NcIMUTAxs", "NcIMUTAys", "NcIMUTAzs", "TTDspFA", "TTDspSS", "TTDspTwst", "PtfmSurge", "PtfmSway", "PtfmHeave", "PtfmRoll", "PtfmPitch", "PtfmYaw", "PtfmTAxt", "PtfmTAyt", "PtfmTAzt", "RootFxc1", "RootFyc1", "RootFzc1", "RootMxc1", "RootMyc1", "RootMzc1", "RootFxc2", "RootFyc2", "RootFzc2", "RootMxc2", "RootMyc2", "RootMzc2", "RootFxc3", "RootFyc3", "RootFzc3", "RootMxc3", "RootMyc3", "RootMzc3", "Spn1MLxb1", "Spn1MLyb1", "Spn1MLzb1", "Spn1MLxb2", "Spn1MLyb2", "Spn1MLzb2", "Spn1MLxb3", "Spn1MLyb3", "Spn1MLzb3", "RotThrust", "LSSGagFya", "LSSGagFza", "RotTorq", "LSSGagMya", "LSSGagMza", "YawBrFxp", "YawBrFyp", "YawBrFzp", "YawBrMxp", "YawBrMyp", "YawBrMzp", "TwrBsFxt", "TwrBsFyt", "TwrBsFzt", "TwrBsMxt", "TwrBsMyt", "TwrBsMzt", "TwHt1MLxt", "TwHt1MLyt", "TwHt1MLzt", # ServoDyn "GenPwr", "GenTq", # AeroDyn15 "RtArea", "RtVAvgxh", "B1N3Clrnc", "B2N3Clrnc", "B3N3Clrnc", "RtAeroCp", 'RtAeroCq', 'RtAeroCt', 'RtTSR', # InflowWind "Wind1VelX", "Wind1VelY", "Wind1VelZ", # FLAPS # "BLFLAP1", "BLFLAP2", "BLFLAP3", "RtVAvgxh", "OoPDefl1") ] channels = {} for var in var_out: channels[var] = True fastBatch.channels = channels fastBatch.case_list = case_list fastBatch.case_name_list = case_name_list if multi: fastBatch.run_multi(cores) # fastBatch.run_mpi() else: fastBatch.run_serial() # Post processing case_info = FileTools.load_yaml(FAST_runDirectory + '/case_matrix.yaml', package=1) outfiles = [FAST_runDirectory + fname + '.outb' for fname in case_info['Case_Name']] fp = Processing.FAST_Processing() fp.OpenFAST_outfile_list = outfiles fp.t0 = 30 fp.parallel_analysis = True fp.verbose=True fp.results_dir = os.path.join(run_dir,'stats') fp.save_LoadRanking = True fp.save_SummaryStats = True stats, load_ranking = fp.batch_processing()
34.280423
124
0.722334
[ "Apache-2.0" ]
NREL/pCrunch
runBatch/run_FlapGainSweep_BAR.py
6,479
Python
import requests import time from bs4 import BeautifulSoup class crawl: """Keep track of time between scrape requests. args: wait: time between requests retry_max: number of times to retry """ def __init__(self, wait, retry_max): self.wait = wait self.retry_max = retry_max self.last_scrape = time.time() - (self.wait * 0.5) # can let user scrape faster the first time. def since_scrape(self): return (time.time() - self.last_scrape) > self.wait def wait_till(self): while not self.since_scrape(): time.sleep(1) def get(self, url): count = 0 while count < self.retry_max: time.sleep(self.wait * count) # sleep for successively longer times try: self.wait_till() response = requests.get(url) self.last_scrape = time.time() if response.status_code == requests.codes.ok: return response else: raise Exception( "Non-standard issue connecting to " + f"{url}: {response.status_code}." ) except requests.exceptions.RequestException as e: pass count += 1 def get_html(self, url): return self.get(url).text def get_soup(self, url): return BeautifulSoup(self.get(url).text, "html.parser") def get_json(self, url): return self.get(url).json()
29.226415
80
0.550032
[ "Unlicense" ]
seanbreckenridge/MALUserVsAverage
manual_crawler.py
1,549
Python
# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import import json from six.moves import zip from tensorflow.python.keras import backend as K from tensorflow.python.keras import optimizers from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import serialization def save_tf_keras_optimizer(optimizer, h5py_file): if isinstance(optimizer, optimizers.TFOptimizer): logging.warning( 'TensorFlow optimizers do not ' 'make it possible to access ' 'optimizer attributes or optimizer state ' 'after instantiation. ' 'As a result, we cannot save the optimizer ' 'as part of the model save file.' 'You will have to compile your model again after loading it. ' 'Prefer using a Keras optimizer instead ' '(see keras.io/optimizers).') else: h5py_file.attrs['training_config'] = json.dumps( { 'optimizer_config': { 'class_name': optimizer.__class__.__name__, 'config': optimizer.get_config() } }, default=serialization.get_json_type).encode('utf8') # Save optimizer weights. symbolic_weights = getattr(optimizer, 'weights') if symbolic_weights: optimizer_weights_group = h5py_file.create_group('optimizer_weights') weight_values = K.batch_get_value(symbolic_weights) weight_names = [] for w, val in zip(symbolic_weights, weight_values): name = str(w.name) weight_names.append(name.encode('utf8')) optimizer_weights_group.attrs['weight_names'] = weight_names for name, val in zip(weight_names, weight_values): param_dset = optimizer_weights_group.create_dataset( name, val.shape, dtype=val.dtype) if not val.shape: # scalar param_dset[()] = val else: param_dset[:] = val h5py_file.flush() def load_tf_keras_optimizer(h5py_file, custom_objects=None): if not custom_objects: custom_objects = {} def convert_custom_objects(obj): """Handles custom object lookup. Arguments: obj: object, dict, or list. Returns: The same structure, where occurrences of a custom object name have been replaced with the custom object. """ if isinstance(obj, list): deserialized = [] for value in obj: deserialized.append(convert_custom_objects(value)) return deserialized if isinstance(obj, dict): deserialized = {} for key, value in obj.items(): deserialized[key] = convert_custom_objects(value) return deserialized if obj in custom_objects: return custom_objects[obj] return obj optimizer, optimizer_weight_values = None, None # instantiate optimizer training_config = h5py_file.attrs.get('training_config') training_config = json.loads(training_config.decode('utf-8')) optimizer_config = training_config['optimizer_config'] optimizer = optimizers.deserialize(optimizer_config, custom_objects=custom_objects) if 'optimizer_weights' in h5py_file: optimizer_weights_group = h5py_file['optimizer_weights'] optimizer_weight_names = [ n.decode('utf8') for n in optimizer_weights_group.attrs['weight_names'] ] optimizer_weight_values = [optimizer_weights_group[n].value for n in optimizer_weight_names] if optimizer_weight_values: optimizer.set_weights(optimizer_weight_values) return optimizer
38.686441
87
0.62782
[ "Apache-2.0" ]
HCYXAS/horovod
horovod/spark/keras/tensorflow.py
4,565
Python
# ----------------------------------------------------------------------------- # Copyright (c) 2021 Trevor P. Martin. All rights reserved. # Distributed under the MIT License. # ----------------------------------------------------------------------------- from Data import encode_data # from utils import cross_validation from Models import utils from Models import build_models from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.linear_model import Perceptron from sklearn.svm import LinearSVC import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager import numpy as np import pandas as pd import tensorflow as tf import copy class CNN01(tf.keras.Model): @staticmethod def build(rows, columns, channels, classes): model = tf.keras.Sequential() input_shape = (rows, columns, channels) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv2D( filters=32, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv2D( filters=64, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D( filters=128, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN02(tf.keras.Model): @staticmethod def build(rows, columns, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv1D( filters=32, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv1D( filters=64, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Conv1D( filters=128, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN03(tf.keras.Model): @staticmethod def build(rows, columns, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv1D( filters=32, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Conv1D( filters=64, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN04(tf.keras.Model): @staticmethod def build(rows, columns, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv1D( filters=32, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN05(tf.keras.Model): @staticmethod def build(rows, columns, channels, classes): model = tf.keras.Sequential() input_shape = (rows, columns, channels) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv2D( filters=32, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv2D( filters=64, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv2D( filters=64, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D( filters=128, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class DNN01(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dense(units=units//2, kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dropout(rate=0.15)) model.add(tf.keras.layers.Dense(units=units//4, kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class DNN02(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dropout(rate=0.50)) model.add(tf.keras.layers.Dense(units=units//2, kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class DNN03(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=units*2, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dropout(rate=0.50)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class RNN(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.LSTM( units=units, activation='tanh', return_sequences=True, ) ) model.add(tf.keras.layers.Dropout(rate=0.20)) model.add(tf.keras.layers.LSTM( units=units//2, activation='tanh', ) ) model.add(tf.keras.layers.Dropout(rate=0.20)) model.add(tf.keras.layers.Dense(64, activation="relu")) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model def run(datasets, splice_sites, sub_models, save, vis, iter, metrics, summary, config, num_folds, bal, imbal, imbal_t, imbal_f, batch_size, epochs ): """ Parameters ---------- dataset: a string {nn269, ce, hs3d} indicating which dataset to use splice_site_type: a string {acceptor, donor} indicating which splice site to train on model_architecture: a string {cnn, dnn, rnn} indicating which model architecture to use for training save_model: boolean, whether to save the current model bal: boolean, whether to balance the dataset summary: boolean, whether to print out the model architecture summary config: boolean, whether to print out the model's configuration visualize: boolean, whether to save a performance graph of the model metrics: boolean, whether to print out the evaluation metrics for the model num_folds: int (default 10), the number of folds for k-fold cross validation epochs: int (default 15), the number of epochs for the chosen model batch_size: int (default 32), the model batch size model_iter: integer, the iteration of the current model architecture (e.g. if this is the third cnn architecture you are testing, use 3) """ # (acceptor row len, donor row len) by dataset network_rows = { 'acceptor':{ 'nn269':90, 'ce':141, 'hs3d':140, 'hs2':602, 'ce2':602, 'dm':602, 'ar':602, 'or':602, }, 'donor':{ 'nn269':15, 'ce':141, 'hs3d':140, 'hs2':602, 'ce2':602, 'dm':602, 'ar':602, 'or':602, }, } # initialize selected sub models to_run = dict( [ (sub_model,{ 'nn269':'', 'ce':'', 'hs3d':'', 'hs2':'', 'ce2':'', 'dm':'', 'ar':'', 'or':'' }) for sub_model in sub_models ] ) # results dictionary results = copy.deepcopy(to_run) # populate sub models with encoded data for sub_model in sub_models: for dataset in datasets: # encode datasets -> return (acc_x, acc_y, don_x, don_y) to_run[sub_model][dataset] = encode_data.encode(dataset, sub_model, bal) # get a metrics dictionary evals = dict( [ (sub_model, { 'f1':'', 'precision':'', 'sensitivity':'', 'specificity':'', 'recall':'', 'mcc':'', 'err_rate':'' }) for sub_model in sub_models ] ) # accumulate results from running cross validation for sub_model in sub_models: for dataset in datasets: if to_run[sub_model][dataset] == '': pass else: results[sub_model][dataset] = utils.cross_validation( num_folds, sub_model, splice_sites, dataset, to_run[sub_model][dataset],# encoded data for dataset (ds) network_rows, # donor, acceptor rows for ds evals, summary, config, batch_size, epochs, save, ) # if vis: print(results) return results # plot results # loss_acc_sub_models( # results, # datasets, # sub_models, # epochs, # num_folds, # bal # ) # # different by splice site type # if splice_site_type == 'acceptor': # cnn_X_train, cnn_y_train = cnn_acc_x, acc_y # # same name to preserve for loop structure # X_train, y_train = rd_acc_x, acc_y # dataset_row_num = network_rows[dataset][0] # if splice_site_type == 'donor': # cnn_X_train, cnn_y_train = cnn_don_x, don_y # X_train, y_train = rd_don_x, don_y # dataset_row_num = network_rows[dataset][1] # # # # if tune_rnn: # # tune_rnn() # # # perform cross validation # # general # trn_fold_accs, trn_fold_losses = [], [] # val_fold_accs, val_fold_losses = [], [] # # esplice # rnn_va, rnn_vl, cnn_vl, cnn_va, dnn_vl, dnn_va = [],[],[],[],[],[] # rnn_ta, rnn_tl, cnn_tl, cnn_ta, dnn_tl, dnn_ta = [],[],[],[],[],[] # # # this loop inspired by https://www.machinecurve.com/ # #index.php/2020/02/18/how-to-use-k-fold-cross-validation-with-keras/ # k_fold = KFold(n_splits=num_folds, shuffle=False) # fold = 1 # for train, test in k_fold.split(X_train, y_train): # if model_architecture != 'esplice': # X_trn, y_trn = X_train[train], y_train[train] # X_val, y_val = X_train[test], y_train[test] # if model_architecture=='cnn': # history, model = build_cnn( # dataset_row_num, # summary, # X_trn, # y_trn, # batch_size, # epochs, # X_val,#becomes X_val # y_val,#becomes y_val # fold, # num_folds # ) # if model_architecture=='dnn': # history, model = build_dnn( # dataset_row_num, # summary, # X_trn, # y_trn, # batch_size, # epochs, # X_val,#becomes X_val # y_val,#becomes y_val # fold, # num_folds # ) # if model_architecture=='rnn': # history, model = build_rnn( # dataset_row_num, # summary, # X_trn, # y_trn, # batch_size, # epochs, # X_val,#becomes X_val # y_val,#becomes y_val # fold, # num_folds # ) # # model.predict(X_trn) # val_fold_accs.append(history.history['val_accuracy']) # val_fold_losses.append(history.history['val_loss']) # trn_fold_accs.append(history.history['accuracy']) # trn_fold_losses.append(history.history['loss']) # fold += 1 # else: # # set up submodel datasets # cnn_X_trn, cnn_y_trn = cnn_X_train[train], cnn_y_train[train] # cnn_X_val, cnn_y_val = cnn_X_train[test], cnn_y_train[test] # rd_X_trn, rd_y_trn = X_train[train], y_train[train] # rd_X_val, rd_y_val = X_train[test], y_train[test] # # build each submodel # hist01, submodel_01 = build_cnn( # dataset_row_num, # summary, # cnn_X_trn, # cnn_y_trn, # batch_size, # epochs, # cnn_X_val, # cnn_y_val, # fold, # num_folds # ) # hist02, submodel_02 = build_dnn( # dataset_row_num, # summary, # rd_X_trn, # rd_y_trn, # batch_size, # epochs, # rd_X_val, # rd_y_val, # fold, # num_folds # ) # # hist03, submodel_03 = build_rnn( # # dataset_row_num, # # summary, # # rd_X_trn, # # rd_y_trn, # # batch_size, # # epochs, # # rd_X_val, # # rd_y_val, # # fold, # # num_folds # # ) # models = [submodel_01, submodel_02]#, submodel_03] # trn_scores, val_scores = EnsembleSplice.build( # models, # batch_size, # cnn_X_trn, # cnn_y_trn, # cnn_X_val, # cnn_y_val, # rd_X_trn, # rd_y_trn, # rd_X_val, # rd_y_val, # ) # # get final epoch accuracy # trn_fold_accs.append(trn_scores) # val_fold_accs.append(val_scores) # # rnn_va.append(hist03.history['val_accuracy']) # # rnn_vl.append(hist03.history['val_loss']) # # rnn_ta.append(hist03.history['accuracy']) # # rnn_tl.append(hist03.history['loss']) # # cnn_vl.append(hist01.history['val_loss']) # # cnn_va.append(hist01.history['val_accuracy']) # # cnn_tl.append(hist01.history['loss']) # # cnn_ta.append(hist01.history['accuracy']) # # dnn_vl.append(hist02.history['val_loss']) # # dnn_va.append(hist02.history['val_accuracy']) # # dnn_tl.append(hist02.history['loss']) # # dnn_ta.append(hist02.history['accuracy']) # # # rnn_va.append(hist03.history['val_accuracy'][-1]) # # rnn_vl.append(hist03.history['val_loss'][-1]) # # rnn_ta.append(hist03.history['accuracy'][-1]) # # rnn_tl.append(hist03.history['loss'][-1]) # cnn_vl.append(hist01.history['val_loss'][-1]) # cnn_va.append(hist01.history['val_accuracy'][-1]) # cnn_tl.append(hist01.history['loss'][-1]) # cnn_ta.append(hist01.history['accuracy'][-1]) # dnn_vl.append(hist02.history['val_loss'][-1]) # dnn_va.append(hist02.history['val_accuracy'][-1]) # dnn_tl.append(hist02.history['loss'][-1]) # dnn_ta.append(hist02.history['accuracy'][-1]) # # fold += 1 # # # do something with predicted values and real values to get AUC-ROC scores # # sklearn.metrics.roc_auc_score # # also get f-score and other scores here # # maybe connect tune_rnn and build_rnn -> get tuned parameters and plug them # # in automatically to RNN # # if model_architecture != 'esplice': # # val_acc_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(val_fold_accs).T) # val_loss_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(val_fold_losses).T) # trn_acc_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(trn_fold_accs).T) # trn_loss_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(trn_fold_losses).T) # # std_val_acc = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(val_fold_accs).T) # std_val_loss = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(val_fold_losses).T) # std_trn_acc = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(trn_fold_accs).T) # std_trn_loss = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(trn_fold_losses).T) # # values = [ # val_acc_by_epoch, # std_val_acc, # trn_acc_by_epoch, # std_trn_acc, # val_loss_by_epoch, # std_val_loss, # trn_loss_by_epoch, # std_trn_loss # ] # # if model_architecture == 'esplice': # # # make a DICTIONARY AREY # # ES_Val_ACc: (vacc, std_va) # mean_good = lambda seq: np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(seq).T) # std_good = lambda seq: np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(seq).T) # vacc = val_fold_accs # tacc = trn_fold_accs # # std_va = val_fold_accs # # std_ta = trn_fold_accs # # values = [ # val_fold_accs, # trn_fold_accs, # #rnn_va, # # rnn_vl, # #rnn_ta, # # rnn_tl, # # cnn_vl, # cnn_va, # # cnn_tl, # cnn_ta, # # dnn_vl, # dnn_va, # # dnn_tl, # dnn_ta # ] # # # cnn_mva = mean_good(cnn_va) # # cnn_mvl = mean_good(cnn_vl) # # cnn_mta = mean_good(cnn_ta) # # cnn_mtl = mean_good(cnn_tl) # # cnn_sva = std_good(cnn_va) # # cnn_svl = std_good(cnn_vl) # # cnn_sta = std_good(cnn_ta) # # cnn_stl = std_good(cnn_tl) # # # # dnn_mva = mean_good(dnn_va) # # dnn_mvl = mean_good(dnn_vl) # # dnn_mta = mean_good(dnn_ta) # # dnn_mtl = mean_good(dnn_tl) # # dnn_sva = std_good(dnn_va) # # dnn_svl = std_good(dnn_vl) # # dnn_sta = std_good(dnn_ta) # # dnn_stl = std_good(dnn_tl) # # # # rnn_mva = mean_good(rnn_va) # # rnn_mvl = mean_good(rnn_vl) # # rnn_mta = mean_good(rnn_ta) # # rnn_mtl = mean_good(rnn_tl) # # rnn_sva = std_good(rnn_va) # # rnn_svl = std_good(rnn_vl) # # rnn_sta = std_good(rnn_ta) # # rnn_stl = std_good(rnn_tl) # # # values = [ # # vacc, # # # std_va, # # tacc, # # # std_ta, # # cnn_mva, # # cnn_sva, # # cnn_mvl, # # cnn_svl, # # cnn_mta, # # cnn_sta, # # cnn_mtl, # # cnn_stl, # # dnn_mva, # # dnn_sva, # # dnn_mvl, # # dnn_svl, # # dnn_mta, # # dnn_sta, # # dnn_mtl, # # dnn_stl, # # rnn_mva, # # rnn_sva, # # rnn_mvl, # # rnn_svl, # # rnn_mta, # # rnn_sta, # # rnn_mtl, # # rnn_stl, # # ] # if config: # print(model.get_config()) # if save_model: # name = input('What would you like to name this model?: ') # model.save(f'{name}') # tf.keras.utils.plot_model(model, f'{name}.png', show_shapes=True) # if visualize: # loss_acc_esplice( # values, # model_architecture, # dataset, # splice_site_type, # num_folds, # epochs, # bal, # )
34.781627
126
0.525352
[ "MIT" ]
tmartin2/EnsembleSplice-Inactive
sub_models.py
23,095
Python
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import enum from builtins import _test_sink, _test_source from typing import Annotated, Any, Dict, List class Test1_C: x: int = 0 y: str = "y" z: Annotated[str, "test1"] = "z" def test1_alarm1(): # always-via-type:int c = Test1_C(_test_source()) _test_sink(c.x) def test1_alarm2(): # always-via-type:str c = Test1_C(_test_source()) _test_sink(c.y) def test1_alarm3(): # always-via-type:typing.Annotated[str] c = Test1_C(_test_source()) _test_sink(c.z) def test1_alarm4(foo): # via-type:int, via-type:str, via-type:typing.Annotated[str] c = Test1_C(_test_source()) foo = c.x if 1: foo = c.y elif 2: foo = c.z _test_sink(foo) class Test2_C: x: Dict[str, int] = {} y: List[str] = [] z: Annotated[float, "test2"] = 0.0 def test2_alarm1(): # always-via-type:Dict[str, int] c = Test2_C(_test_source()) _test_sink(c.x) def test2_alarm2(): # always-via-type:List[str] c = Test2_C(_test_source()) _test_sink(c.y) def test2_alarm3(): # always-via-type:float c = Test2_C(_test_source()) _test_sink(c.z) def test2_alarm4(foo): # via-type:Dict[str, int], via-type:List[str], via-type:float c = Test2_C(_test_source()) foo = c.x if 1: foo = c.y elif 2: foo = c.z _test_sink(foo) class Test3_Foo: ... class Test3_C: x: Dict[str, List[int]] = {} y: Test3_Foo = Test3_Foo() z: Annotated[List[List[str]], "test3"] = [] def test3_alarm1(c: Test3_C): # always-via-type:Dict[str, List[int]] _test_sink(c.x) def test3_alarm2(c: Test3_C): # always-via-type:Test3_Foo _test_sink(c.y) def test3_alarm3(c: Test3_C): # always-via-type:typing.Annotated[List[List[str]] _test_sink(c.z) def test3_alarm4(c: Test3_C, foo): # via-type:Dict[str, List[int]], # via-type:Test3_Foo, # via-type:typing.Annotated[List[List[str]] foo = c.x if 1: foo = c.y elif 2: foo = c.z _test_sink(foo) class Test4_C: x = ... y: Any = 0 z: object = [] def test4_alarm1(c: Test4_C): # always-via-type:unknown c.x = _test_source() def test4_alarm2(c: Test4_C): # always-via-type:Any c.y = _test_source() def test4_alarm3(c: Test4_C): # always-via-type:object c.z = _test_source() def return_via_parameter_type(parameter): return 0 def test_strings(): return return_via_parameter_type("A") def test_numerals(): return return_via_parameter_type(1) def test_lists(): return return_via_parameter_type(["a", "b"]) def meta(parameter): return return_via_parameter_type(parameter) def test_via_type_of_does_not_propagate(): return meta("Name") def tito(parameter, other): pass def test_tito(): a = tito(_test_source(), [1, 2]) return a def sink_via_type_of(x, y): pass def test_sink(element): return sink_via_type_of(element, 1) def test_backwards_tito(parameter): return tito(parameter, "by_backwards")
17.741758
65
0.635491
[ "MIT" ]
0xgpapad/pyre-check
source/interprocedural_analyses/taint/test/integration/via_type_of.py
3,229
Python
import os import anyconfig PARSABLES = { 'pickle':['p','pickle'], 'toml':['toml'], 'xml':['xml'], 'yaml':['yml','yaml'], 'json':['json'], 'ini':['ini'], 'properties':['props','properties'], 'shellvars':['env']} class Source(object): def __init__(self, uri, root_path=None, contents={}, parser=None, error=None): self.uri = uri self.root_path = root_path self.error = error self.parser = parser self.contents = contents def __repr__(self): return self.__str__() def __str__(self): return "<Source uri={} root_path={} parser={} error={}>".format(self.uri, self.root_path, self.parser, self.error) def load(self): pass @staticmethod def from_file(full_file_path, root_path): s = SourceFile(full_file_path, root_path) s.load() return s class SourceFile(Source): def _parse(self, parser=None): contents = anyconfig.load(self.uri, ac_parser=parser, ac_ordered=True) parser = parser if parser else os.path.splitext(self.uri)[1].strip('.') return (contents, parser) def load(self): try: self.contents, self.parser = self._parse() except Exception as e: # if the file had a known extension but didn't parse, raise an exception. The danger is that # it be parsed incorrectly as properties file which seems to match everything ext = os.path.splitext(self.uri)[1][1:] if [lext for lext in PARSABLES.values() if ext in lext]: self.error = e # print type(e) # 'exception parsing {}\t{}'.format(ext, e) else: for p in PARSABLES.keys(): try: self.contents, self.parser = self._parse(p) self.error = None break except Exception as e: # print type(e) #'exception parsing as ', p, ' ', e pass
25.9
122
0.543436
[ "MIT" ]
flashashen/flange
flange/source.py
2,072
Python
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'picscope.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), )
23
53
0.652174
[ "MIT" ]
yeaske/picscope
picscope/urls.py
299
Python
"""Data Helpers Data helpers leverage the abstraction layer of ArchivesSnake to provide additional functionality for retrieving, inferring and concatenating data elements. They can also extend (or invert) relationships between different objects. """ from datetime import datetime import re from rapidfuzz import fuzz from asnake.jsonmodel import JSONModelObject from string import Formatter from .decorators import check_type @check_type(dict) def get_note_text(note): """Parses note content from different note types. :param dict: an ArchivesSpace note. :returns: a list containing note content. :rtype: list """ def parse_subnote(subnote): """Parses note content from subnotes. :param dict: an ArchivesSpace subnote. :returns: a list containing subnote content. :rtype: list """ if subnote["jsonmodel_type"] in [ "note_orderedlist", "note_index"]: content = subnote["items"] elif subnote["jsonmodel_type"] in ["note_chronology", "note_definedlist"]: content = [] for k in subnote["items"]: for i in k: content += k.get(i) if isinstance(k.get(i), list) else [k.get(i)] else: content = subnote["content"] if isinstance( subnote["content"], list) else [subnote["content"]] return content if note["jsonmodel_type"] == "note_singlepart": content = note["content"] elif note["jsonmodel_type"] == "note_bibliography": data = [] data += note["content"] data += note["items"] content = data elif note["jsonmodel_type"] == "note_index": data = [] for item in note["items"]: data.append(item["value"]) content = data else: subnote_content_list = list(parse_subnote(sn) for sn in note["subnotes"]) content = [ c for subnote_content in subnote_content_list for c in subnote_content] return content @check_type(dict) def text_in_note(note, query_string): """Performs fuzzy searching against note text. :param dict note: an ArchivesSpace note. :param str query_string: a string to match against. :returns: True if a match is found for `query_string`, False if no match is found. :rtype: bool """ CONFIDENCE_RATIO = 97 """int: Minimum confidence ratio to match against.""" note_content = get_note_text(note) ratio = fuzz.token_sort_ratio( " ".join([n.lower() for n in note_content]), query_string.lower(), score_cutoff=CONFIDENCE_RATIO) return bool(ratio) @check_type(JSONModelObject) def object_locations(archival_object): """Finds locations associated with an archival object. :param JSONModelObject archival_object: an ArchivesSpace archival_object. :returns: Locations objects associated with the archival object. :rtype: list """ locations = [] for instance in archival_object.instances: top_container = instance.sub_container.top_container.reify() locations += top_container.container_locations return locations @check_type(JSONModelObject) def format_from_obj(obj, format_string): """Generates a human-readable string from an object. :param JSONModelObject location: an ArchivesSpace object. :returns: a string in the chosen format. :rtype: str """ if not format_string: raise Exception("No format string provided.") else: try: d = {} matches = [i[1] for i in Formatter().parse(format_string) if i[1]] for m in matches: d.update({m: getattr(obj, m, "")}) return format_string.format(**d) except KeyError as e: raise KeyError( "The field {} was not found in this object".format( str(e))) @check_type(dict) def format_resource_id(resource, separator=":"): """Concatenates the four-part ID for a resource record. :param dict resource: an ArchivesSpace resource. :param str separator: a separator to insert between the id parts. Defaults to `:`. :returns: a concatenated four-part ID for the resource record. :rtype: str """ resource_id = [] for x in range(4): try: resource_id.append(resource["id_{0}".format(x)]) except KeyError: break return separator.join(resource_id) @check_type(JSONModelObject) def closest_value(archival_object, key): """Finds the closest value matching a key. Starts with an archival object, and iterates up through its ancestors until it finds a match for a key that is not empty or null. :param JSONModelObject archival_object: an ArchivesSpace archival_object. :param str key: the key to match against. :returns: The value of the key, which could be a str, list, or dict. :rtype: str, list, or key """ if getattr(archival_object, key) not in ["", [], {}, None]: return getattr(archival_object, key) else: for ancestor in archival_object.ancestors: return closest_value(ancestor, key) def get_orphans(object_list, null_attribute): """Finds objects in a list which do not have a value in a specified field. :param list object_list: a list of ArchivesSpace objects. :param null_attribute: an attribute which must be empty or null. :yields: a list of ArchivesSpace objects. :yield type: dict """ for obj in object_list: if getattr(obj, null_attribute) in ["", [], {}, None]: yield obj @check_type(dict) def get_expression(date): """Returns a date expression for a date object. Concatenates start and end dates if no date expression exists. :param dict date: an ArchivesSpace date :returns: date expression for the date object. :rtype: str """ try: expression = date["expression"] except KeyError: if date.get("end"): expression = "{0}-{1}".format(date["begin"], date["end"]) else: expression = date["begin"] return expression @check_type(dict) def indicates_restriction(rights_statement, restriction_acts): """Parses a rights statement to determine if it indicates a restriction. :param dict rights_statement: an ArchivesSpace rights statement. :returns: True if rights statement indicates a restriction, False if not. :rtype: bool """ def is_expired(date): today = datetime.now() date = date if date else datetime.strftime("%Y-%m-%d") return False if ( datetime.strptime(date, "%Y-%m-%d") >= today) else True if is_expired(rights_statement.get("end_date")): return False for act in rights_statement.get("acts"): if (act.get("restriction") in restriction_acts and not is_expired(act.get("end_date"))): return True return False @check_type(dict) def is_restricted(archival_object, query_string, restriction_acts): """Parses an archival object to determine if it is restricted. Iterates through notes, looking for a conditions governing access note which contains a particular set of strings. Also looks for associated rights statements which indicate object may be restricted. :param dict archival_object: an ArchivesSpace archival_object. :param list restriction_acts: a list of strings to match restriction act against. :returns: True if archival object is restricted, False if not. :rtype: bool """ for note in archival_object["notes"]: if note["type"] == "accessrestrict": if text_in_note(note, query_string.lower()): return True for rights_statement in archival_object["rights_statements"]: if indicates_restriction(rights_statement, restriction_acts): return True return False @check_type(str) def strip_html_tags(string): """Strips HTML tags from a string. :param str string: An input string from which to remove HTML tags. """ tag_match = re.compile("<.*?>") cleantext = re.sub(tag_match, "", string) return cleantext
31.73384
85
0.648454
[ "MIT" ]
RockefellerArchiveCenter/rac_aspace
rac_aspace/data_helpers.py
8,346
Python
# Copyright (c) 2009-2017 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2006-2007 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Ali Saidi # Gabe Black # William Wang from m5.params import * from m5.proxy import * from ClockDomain import ClockDomain from VoltageDomain import VoltageDomain from Device import BasicPioDevice, PioDevice, IsaFake, BadAddr, DmaDevice from PciHost import * from Ethernet import NSGigE, IGbE_igb, IGbE_e1000 from Ide import * from Platform import Platform from Terminal import Terminal from Uart import Uart from SimpleMemory import SimpleMemory from Gic import * from EnergyCtrl import EnergyCtrl from ClockDomain import SrcClockDomain from SubSystem import SubSystem # Platforms with KVM support should generally use in-kernel GIC # emulation. Use a GIC model that automatically switches between # gem5's GIC model and KVM's GIC model if KVM is available. try: from KvmGic import MuxingKvmGic kvm_gicv2_class = MuxingKvmGic except ImportError: # KVM support wasn't compiled into gem5. Fallback to a # software-only GIC. kvm_gicv2_class = Pl390 pass class AmbaPioDevice(BasicPioDevice): type = 'AmbaPioDevice' abstract = True cxx_header = "dev/arm/amba_device.hh" amba_id = Param.UInt32("ID of AMBA device for kernel detection") class AmbaIntDevice(AmbaPioDevice): type = 'AmbaIntDevice' abstract = True cxx_header = "dev/arm/amba_device.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrupt number that connects to GIC") int_delay = Param.Latency("100ns", "Time between action and interrupt generation by device") class AmbaDmaDevice(DmaDevice): type = 'AmbaDmaDevice' abstract = True cxx_header = "dev/arm/amba_device.hh" pio_addr = Param.Addr("Address for AMBA slave interface") pio_latency = Param.Latency("10ns", "Time between action and write/read result by AMBA DMA Device") gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrupt number that connects to GIC") amba_id = Param.UInt32("ID of AMBA device for kernel detection") class A9SCU(BasicPioDevice): type = 'A9SCU' cxx_header = "dev/arm/a9scu.hh" class ArmPciIntRouting(Enum): vals = [ 'ARM_PCI_INT_STATIC', 'ARM_PCI_INT_DEV', 'ARM_PCI_INT_PIN', ] class GenericArmPciHost(GenericPciHost): type = 'GenericArmPciHost' cxx_header = "dev/arm/pci_host.hh" int_policy = Param.ArmPciIntRouting("PCI interrupt routing policy") int_base = Param.Unsigned("PCI interrupt base") int_count = Param.Unsigned("Maximum number of interrupts used by this host") class RealViewCtrl(BasicPioDevice): type = 'RealViewCtrl' cxx_header = "dev/arm/rv_ctrl.hh" proc_id0 = Param.UInt32(0x0C000000, "Processor ID, SYS_PROCID") proc_id1 = Param.UInt32(0x0C000222, "Processor ID, SYS_PROCID1") idreg = Param.UInt32(0x00000000, "ID Register, SYS_ID") class RealViewOsc(ClockDomain): type = 'RealViewOsc' cxx_header = "dev/arm/rv_ctrl.hh" parent = Param.RealViewCtrl(Parent.any, "RealView controller") # TODO: We currently don't have the notion of a clock source, # which means we have to associate oscillators with a voltage # source. voltage_domain = Param.VoltageDomain(Parent.voltage_domain, "Voltage domain") # See ARM DUI 0447J (ARM Motherboard Express uATX -- V2M-P1) and # the individual core/logic tile reference manuals for details # about the site/position/dcc/device allocation. site = Param.UInt8("Board Site") position = Param.UInt8("Position in device stack") dcc = Param.UInt8("Daughterboard Configuration Controller") device = Param.UInt8("Device ID") freq = Param.Clock("Default frequency") class RealViewTemperatureSensor(SimObject): type = 'RealViewTemperatureSensor' cxx_header = "dev/arm/rv_ctrl.hh" parent = Param.RealViewCtrl(Parent.any, "RealView controller") system = Param.System(Parent.any, "system") # See ARM DUI 0447J (ARM Motherboard Express uATX -- V2M-P1) and # the individual core/logic tile reference manuals for details # about the site/position/dcc/device allocation. site = Param.UInt8("Board Site") position = Param.UInt8("Position in device stack") dcc = Param.UInt8("Daughterboard Configuration Controller") device = Param.UInt8("Device ID") class VExpressMCC(SubSystem): """ARM V2M-P1 Motherboard Configuration Controller This subsystem describes a subset of the devices that sit behind the motherboard configuration controller on the the ARM Motherboard Express (V2M-P1) motherboard. See ARM DUI 0447J for details. """ class Osc(RealViewOsc): site, position, dcc = (0, 0, 0) class Temperature(RealViewTemperatureSensor): site, position, dcc = (0, 0, 0) osc_mcc = Osc(device=0, freq="50MHz") osc_clcd = Osc(device=1, freq="23.75MHz") osc_peripheral = Osc(device=2, freq="24MHz") osc_system_bus = Osc(device=4, freq="24MHz") # See Table 4.19 in ARM DUI 0447J (Motherboard Express uATX TRM). temp_crtl = Temperature(device=0) class CoreTile2A15DCC(SubSystem): """ARM CoreTile Express A15x2 Daughterboard Configuration Controller This subsystem describes a subset of the devices that sit behind the daughterboard configuration controller on a CoreTile Express A15x2. See ARM DUI 0604E for details. """ class Osc(RealViewOsc): site, position, dcc = (1, 0, 0) # See Table 2.8 in ARM DUI 0604E (CoreTile Express A15x2 TRM) osc_cpu = Osc(device=0, freq="60MHz") osc_hsbm = Osc(device=4, freq="40MHz") osc_pxl = Osc(device=5, freq="23.75MHz") osc_smb = Osc(device=6, freq="50MHz") osc_sys = Osc(device=7, freq="60MHz") osc_ddr = Osc(device=8, freq="40MHz") class VGic(PioDevice): type = 'VGic' cxx_header = "dev/arm/vgic.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") platform = Param.Platform(Parent.any, "Platform this device is part of.") vcpu_addr = Param.Addr(0, "Address for vcpu interfaces") hv_addr = Param.Addr(0, "Address for hv control") pio_delay = Param.Latency('10ns', "Delay for PIO r/w") # The number of list registers is not currently configurable at runtime. ppint = Param.UInt32("HV maintenance interrupt number") class AmbaFake(AmbaPioDevice): type = 'AmbaFake' cxx_header = "dev/arm/amba_fake.hh" ignore_access = Param.Bool(False, "Ignore reads/writes to this device, (e.g. IsaFake + AMBA)") amba_id = 0; class Pl011(Uart): type = 'Pl011' cxx_header = "dev/arm/pl011.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num = Param.UInt32("Interrupt number that connects to GIC") end_on_eot = Param.Bool(False, "End the simulation when a EOT is received on the UART") int_delay = Param.Latency("100ns", "Time between action and interrupt generation by UART") class Sp804(AmbaPioDevice): type = 'Sp804' cxx_header = "dev/arm/timer_sp804.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num0 = Param.UInt32("Interrupt number that connects to GIC") clock0 = Param.Clock('1MHz', "Clock speed of the input") int_num1 = Param.UInt32("Interrupt number that connects to GIC") clock1 = Param.Clock('1MHz', "Clock speed of the input") amba_id = 0x00141804 class CpuLocalTimer(BasicPioDevice): type = 'CpuLocalTimer' cxx_header = "dev/arm/timer_cpulocal.hh" gic = Param.BaseGic(Parent.any, "Gic to use for interrupting") int_num_timer = Param.UInt32("Interrrupt number used per-cpu to GIC") int_num_watchdog = Param.UInt32("Interrupt number for per-cpu watchdog to GIC") class GenericTimer(SimObject): type = 'GenericTimer' cxx_header = "dev/arm/generic_timer.hh" system = Param.ArmSystem(Parent.any, "system") gic = Param.BaseGic(Parent.any, "GIC to use for interrupting") # @todo: for now only two timers per CPU is supported, which is the # normal behaviour when security extensions are disabled. int_phys = Param.UInt32("Physical timer interrupt number") int_virt = Param.UInt32("Virtual timer interrupt number") class GenericTimerMem(PioDevice): type = 'GenericTimerMem' cxx_header = "dev/arm/generic_timer.hh" gic = Param.BaseGic(Parent.any, "GIC to use for interrupting") base = Param.Addr(0, "Base address") int_phys = Param.UInt32("Interrupt number") int_virt = Param.UInt32("Interrupt number") class PL031(AmbaIntDevice): type = 'PL031' cxx_header = "dev/arm/rtc_pl031.hh" time = Param.Time('01/01/2009', "System time to use ('Now' for actual time)") amba_id = 0x00341031 class Pl050(AmbaIntDevice): type = 'Pl050' cxx_header = "dev/arm/kmi.hh" vnc = Param.VncInput(Parent.any, "Vnc server for remote frame buffer display") is_mouse = Param.Bool(False, "Is this interface a mouse, if not a keyboard") int_delay = '1us' amba_id = 0x00141050 class Pl111(AmbaDmaDevice): type = 'Pl111' cxx_header = "dev/arm/pl111.hh" pixel_clock = Param.Clock('24MHz', "Pixel clock") vnc = Param.VncInput(Parent.any, "Vnc server for remote frame buffer display") amba_id = 0x00141111 enable_capture = Param.Bool(True, "capture frame to system.framebuffer.bmp") class HDLcd(AmbaDmaDevice): type = 'HDLcd' cxx_header = "dev/arm/hdlcd.hh" vnc = Param.VncInput(Parent.any, "Vnc server for remote frame buffer " "display") amba_id = 0x00141000 workaround_swap_rb = Param.Bool(False, "Workaround incorrect color " "selector order in some kernels") workaround_dma_line_count = Param.Bool(True, "Workaround incorrect " "DMA line count (off by 1)") enable_capture = Param.Bool(True, "capture frame to system.framebuffer.bmp") pixel_buffer_size = Param.MemorySize32("2kB", "Size of address range") pxl_clk = Param.ClockDomain("Pixel clock source") pixel_chunk = Param.Unsigned(32, "Number of pixels to handle in one batch") virt_refresh_rate = Param.Frequency("20Hz", "Frame refresh rate " "in KVM mode") class RealView(Platform): type = 'RealView' cxx_header = "dev/arm/realview.hh" system = Param.System(Parent.any, "system") _mem_regions = [(Addr(0), Addr('256MB'))] def _on_chip_devices(self): return [] def _off_chip_devices(self): return [] _off_chip_ranges = [] def _attach_device(self, device, bus, dma_ports=None): if hasattr(device, "pio"): device.pio = bus.master if hasattr(device, "dma"): if dma_ports is None: device.dma = bus.slave else: dma_ports.append(device.dma) def _attach_io(self, devices, *args, **kwargs): for d in devices: self._attach_device(d, *args, **kwargs) def _attach_clk(self, devices, clkdomain): for d in devices: if hasattr(d, "clk_domain"): d.clk_domain = clkdomain def attachPciDevices(self): pass def enableMSIX(self): pass def onChipIOClkDomain(self, clkdomain): self._attach_clk(self._on_chip_devices(), clkdomain) def offChipIOClkDomain(self, clkdomain): self._attach_clk(self._off_chip_devices(), clkdomain) def attachOnChipIO(self, bus, bridge=None, **kwargs): self._attach_io(self._on_chip_devices(), bus, **kwargs) if bridge: bridge.ranges = self._off_chip_ranges def attachIO(self, *args, **kwargs): self._attach_io(self._off_chip_devices(), *args, **kwargs) def setupBootLoader(self, mem_bus, cur_sys, loc): self.nvmem = SimpleMemory(range = AddrRange('2GB', size = '64MB'), conf_table_reported = False) self.nvmem.port = mem_bus.master cur_sys.boot_loader = loc('boot.arm') cur_sys.atags_addr = 0x100 cur_sys.load_addr_mask = 0xfffffff cur_sys.load_offset = 0 # Reference for memory map and interrupt number # RealView Platform Baseboard Explore for Cortex-A9 User Guide(ARM DUI 0440A) # Chapter 4: Programmer's Reference class RealViewPBX(RealView): uart = Pl011(pio_addr=0x10009000, int_num=44) realview_io = RealViewCtrl(pio_addr=0x10000000) mcc = VExpressMCC() dcc = CoreTile2A15DCC() gic = Pl390() pci_host = GenericPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=16, pci_pio_base=0) timer0 = Sp804(int_num0=36, int_num1=36, pio_addr=0x10011000) timer1 = Sp804(int_num0=37, int_num1=37, pio_addr=0x10012000) local_cpu_timer = CpuLocalTimer(int_num_timer=29, int_num_watchdog=30, pio_addr=0x1f000600) clcd = Pl111(pio_addr=0x10020000, int_num=55) kmi0 = Pl050(pio_addr=0x10006000, int_num=52) kmi1 = Pl050(pio_addr=0x10007000, int_num=53, is_mouse=True) a9scu = A9SCU(pio_addr=0x1f000000) cf_ctrl = IdeController(disks=[], pci_func=0, pci_dev=7, pci_bus=2, io_shift = 1, ctrl_offset = 2, Command = 0x1, BAR0 = 0x18000000, BAR0Size = '16B', BAR1 = 0x18000100, BAR1Size = '1B', BAR0LegacyIO = True, BAR1LegacyIO = True) l2x0_fake = IsaFake(pio_addr=0x1f002000, pio_size=0xfff) flash_fake = IsaFake(pio_addr=0x40000000, pio_size=0x20000000, fake_mem=True) dmac_fake = AmbaFake(pio_addr=0x10030000) uart1_fake = AmbaFake(pio_addr=0x1000a000) uart2_fake = AmbaFake(pio_addr=0x1000b000) uart3_fake = AmbaFake(pio_addr=0x1000c000) smc_fake = AmbaFake(pio_addr=0x100e1000) sp810_fake = AmbaFake(pio_addr=0x10001000, ignore_access=True) watchdog_fake = AmbaFake(pio_addr=0x10010000) gpio0_fake = AmbaFake(pio_addr=0x10013000) gpio1_fake = AmbaFake(pio_addr=0x10014000) gpio2_fake = AmbaFake(pio_addr=0x10015000) ssp_fake = AmbaFake(pio_addr=0x1000d000) sci_fake = AmbaFake(pio_addr=0x1000e000) aaci_fake = AmbaFake(pio_addr=0x10004000) mmc_fake = AmbaFake(pio_addr=0x10005000) rtc = PL031(pio_addr=0x10017000, int_num=42) energy_ctrl = EnergyCtrl(pio_addr=0x1000f000) # Attach I/O devices that are on chip and also set the appropriate # ranges for the bridge def attachOnChipIO(self, bus, bridge=None, dma_ports =[]): self.gic.pio = bus.master self.l2x0_fake.pio = bus.master self.a9scu.pio = bus.master self.local_cpu_timer.pio = bus.master if bridge: # Bridge ranges based on excluding what is part of on-chip I/O # (gic, l2x0, a9scu, local_cpu_timer) bridge.ranges = [AddrRange(self.realview_io.pio_addr, self.a9scu.pio_addr - 1), AddrRange(self.flash_fake.pio_addr, self.flash_fake.pio_addr + \ self.flash_fake.pio_size - 1)] # Set the clock domain for IO objects that are considered # to be "close" to the cores. def onChipIOClkDomain(self, clkdomain): self.gic.clk_domain = clkdomain self.l2x0_fake.clk_domain = clkdomain self.a9scu.clkdomain = clkdomain self.local_cpu_timer.clk_domain = clkdomain # Attach I/O devices to specified bus object. Can't do this # earlier, since the bus object itself is typically defined at the # System level. def attachIO(self, bus, dma_ports = []): self.uart.pio = bus.master self.realview_io.pio = bus.master self.pci_host.pio = bus.master self.timer0.pio = bus.master self.timer1.pio = bus.master self.clcd.pio = bus.master if dma_ports.count(self.clcd.dma) == 0: self.clcd.dma = bus.slave self.kmi0.pio = bus.master self.kmi1.pio = bus.master self.cf_ctrl.pio = bus.master if dma_ports.count(self.cf_ctrl.dma) == 0: self.cf_ctrl.dma = bus.slave self.dmac_fake.pio = bus.master self.uart1_fake.pio = bus.master self.uart2_fake.pio = bus.master self.uart3_fake.pio = bus.master self.smc_fake.pio = bus.master self.sp810_fake.pio = bus.master self.watchdog_fake.pio = bus.master self.gpio0_fake.pio = bus.master self.gpio1_fake.pio = bus.master self.gpio2_fake.pio = bus.master self.ssp_fake.pio = bus.master self.sci_fake.pio = bus.master self.aaci_fake.pio = bus.master self.mmc_fake.pio = bus.master self.rtc.pio = bus.master self.flash_fake.pio = bus.master self.energy_ctrl.pio = bus.master # Set the clock domain for IO objects that are considered # to be "far" away from the cores. def offChipIOClkDomain(self, clkdomain): self.uart.clk_domain = clkdomain self.realview_io.clk_domain = clkdomain self.timer0.clk_domain = clkdomain self.timer1.clk_domain = clkdomain self.clcd.clk_domain = clkdomain self.kmi0.clk_domain = clkdomain self.kmi1.clk_domain = clkdomain self.cf_ctrl.clk_domain = clkdomain self.dmac_fake.clk_domain = clkdomain self.uart1_fake.clk_domain = clkdomain self.uart2_fake.clk_domain = clkdomain self.uart3_fake.clk_domain = clkdomain self.smc_fake.clk_domain = clkdomain self.sp810_fake.clk_domain = clkdomain self.watchdog_fake.clk_domain = clkdomain self.gpio0_fake.clk_domain = clkdomain self.gpio1_fake.clk_domain = clkdomain self.gpio2_fake.clk_domain = clkdomain self.ssp_fake.clk_domain = clkdomain self.sci_fake.clk_domain = clkdomain self.aaci_fake.clk_domain = clkdomain self.mmc_fake.clk_domain = clkdomain self.rtc.clk_domain = clkdomain self.flash_fake.clk_domain = clkdomain self.energy_ctrl.clk_domain = clkdomain # Reference for memory map and interrupt number # RealView Emulation Baseboard User Guide (ARM DUI 0143B) # Chapter 4: Programmer's Reference class RealViewEB(RealView): uart = Pl011(pio_addr=0x10009000, int_num=44) realview_io = RealViewCtrl(pio_addr=0x10000000, idreg=0x01400500) mcc = VExpressMCC() dcc = CoreTile2A15DCC() gic = Pl390(dist_addr=0x10041000, cpu_addr=0x10040000) timer0 = Sp804(int_num0=36, int_num1=36, pio_addr=0x10011000) timer1 = Sp804(int_num0=37, int_num1=37, pio_addr=0x10012000) clcd = Pl111(pio_addr=0x10020000, int_num=23) kmi0 = Pl050(pio_addr=0x10006000, int_num=20) kmi1 = Pl050(pio_addr=0x10007000, int_num=21, is_mouse=True) l2x0_fake = IsaFake(pio_addr=0x1f002000, pio_size=0xfff, warn_access="1") flash_fake = IsaFake(pio_addr=0x40000000, pio_size=0x20000000-1, fake_mem=True) dmac_fake = AmbaFake(pio_addr=0x10030000) uart1_fake = AmbaFake(pio_addr=0x1000a000) uart2_fake = AmbaFake(pio_addr=0x1000b000) uart3_fake = AmbaFake(pio_addr=0x1000c000) smcreg_fake = IsaFake(pio_addr=0x10080000, pio_size=0x10000-1) smc_fake = AmbaFake(pio_addr=0x100e1000) sp810_fake = AmbaFake(pio_addr=0x10001000, ignore_access=True) watchdog_fake = AmbaFake(pio_addr=0x10010000) gpio0_fake = AmbaFake(pio_addr=0x10013000) gpio1_fake = AmbaFake(pio_addr=0x10014000) gpio2_fake = AmbaFake(pio_addr=0x10015000) ssp_fake = AmbaFake(pio_addr=0x1000d000) sci_fake = AmbaFake(pio_addr=0x1000e000) aaci_fake = AmbaFake(pio_addr=0x10004000) mmc_fake = AmbaFake(pio_addr=0x10005000) rtc_fake = AmbaFake(pio_addr=0x10017000, amba_id=0x41031) energy_ctrl = EnergyCtrl(pio_addr=0x1000f000) # Attach I/O devices that are on chip and also set the appropriate # ranges for the bridge def attachOnChipIO(self, bus, bridge=None, dma_ports =[]): self.gic.pio = bus.master self.l2x0_fake.pio = bus.master if bridge: # Bridge ranges based on excluding what is part of on-chip I/O # (gic, l2x0) bridge.ranges = [AddrRange(self.realview_io.pio_addr, self.gic.cpu_addr - 1), AddrRange(self.flash_fake.pio_addr, Addr.max)] # Set the clock domain for IO objects that are considered # to be "close" to the cores. def onChipIOClkDomain(self, clkdomain): self.gic.clk_domain = clkdomain self.l2x0_fake.clk_domain = clkdomain # Attach I/O devices to specified bus object. Can't do this # earlier, since the bus object itself is typically defined at the # System level. def attachIO(self, bus, dma_ports = []): self.uart.pio = bus.master self.realview_io.pio = bus.master self.pci_host.pio = bus.master self.timer0.pio = bus.master self.timer1.pio = bus.master self.clcd.pio = bus.master if dma_ports.count(self.clcd.dma) == 0: self.clcd.dma = bus.slave self.kmi0.pio = bus.master self.kmi1.pio = bus.master self.dmac_fake.pio = bus.master self.uart1_fake.pio = bus.master self.uart2_fake.pio = bus.master self.uart3_fake.pio = bus.master self.smc_fake.pio = bus.master self.sp810_fake.pio = bus.master self.watchdog_fake.pio = bus.master self.gpio0_fake.pio = bus.master self.gpio1_fake.pio = bus.master self.gpio2_fake.pio = bus.master self.ssp_fake.pio = bus.master self.sci_fake.pio = bus.master self.aaci_fake.pio = bus.master self.mmc_fake.pio = bus.master self.rtc_fake.pio = bus.master self.flash_fake.pio = bus.master self.smcreg_fake.pio = bus.master self.energy_ctrl.pio = bus.master # Set the clock domain for IO objects that are considered # to be "far" away from the cores. def offChipIOClkDomain(self, clkdomain): self.uart.clk_domain = clkdomain self.realview_io.clk_domain = clkdomain self.timer0.clk_domain = clkdomain self.timer1.clk_domain = clkdomain self.clcd.clk_domain = clkdomain self.kmi0.clk_domain = clkdomain self.kmi1.clk_domain = clkdomain self.dmac_fake.clk_domain = clkdomain self.uart1_fake.clk_domain = clkdomain self.uart2_fake.clk_domain = clkdomain self.uart3_fake.clk_domain = clkdomain self.smc_fake.clk_domain = clkdomain self.sp810_fake.clk_domain = clkdomain self.watchdog_fake.clk_domain = clkdomain self.gpio0_fake.clk_domain = clkdomain self.gpio1_fake.clk_domain = clkdomain self.gpio2_fake.clk_domain = clkdomain self.ssp_fake.clk_domain = clkdomain self.sci_fake.clk_domain = clkdomain self.aaci_fake.clk_domain = clkdomain self.mmc_fake.clk_domain = clkdomain self.rtc.clk_domain = clkdomain self.flash_fake.clk_domain = clkdomain self.smcreg_fake.clk_domain = clkdomain self.energy_ctrl.clk_domain = clkdomain class VExpress_EMM(RealView): _mem_regions = [(Addr('2GB'), Addr('2GB'))] uart = Pl011(pio_addr=0x1c090000, int_num=37) realview_io = RealViewCtrl( proc_id0=0x14000000, proc_id1=0x14000000, idreg=0x02250000, pio_addr=0x1C010000) mcc = VExpressMCC() dcc = CoreTile2A15DCC() gic = Pl390(dist_addr=0x2C001000, cpu_addr=0x2C002000) pci_host = GenericPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=16, pci_pio_base=0) local_cpu_timer = CpuLocalTimer(int_num_timer=29, int_num_watchdog=30, pio_addr=0x2C080000) generic_timer = GenericTimer(int_phys=29, int_virt=27) timer0 = Sp804(int_num0=34, int_num1=34, pio_addr=0x1C110000, clock0='1MHz', clock1='1MHz') timer1 = Sp804(int_num0=35, int_num1=35, pio_addr=0x1C120000, clock0='1MHz', clock1='1MHz') clcd = Pl111(pio_addr=0x1c1f0000, int_num=46) hdlcd = HDLcd(pxl_clk=dcc.osc_pxl, pio_addr=0x2b000000, int_num=117, workaround_swap_rb=True) kmi0 = Pl050(pio_addr=0x1c060000, int_num=44) kmi1 = Pl050(pio_addr=0x1c070000, int_num=45, is_mouse=True) vgic = VGic(vcpu_addr=0x2c006000, hv_addr=0x2c004000, ppint=25) cf_ctrl = IdeController(disks=[], pci_func=0, pci_dev=0, pci_bus=2, io_shift = 2, ctrl_offset = 2, Command = 0x1, BAR0 = 0x1C1A0000, BAR0Size = '256B', BAR1 = 0x1C1A0100, BAR1Size = '4096B', BAR0LegacyIO = True, BAR1LegacyIO = True) vram = SimpleMemory(range = AddrRange(0x18000000, size='32MB'), conf_table_reported = False) rtc = PL031(pio_addr=0x1C170000, int_num=36) l2x0_fake = IsaFake(pio_addr=0x2C100000, pio_size=0xfff) uart1_fake = AmbaFake(pio_addr=0x1C0A0000) uart2_fake = AmbaFake(pio_addr=0x1C0B0000) uart3_fake = AmbaFake(pio_addr=0x1C0C0000) sp810_fake = AmbaFake(pio_addr=0x1C020000, ignore_access=True) watchdog_fake = AmbaFake(pio_addr=0x1C0F0000) aaci_fake = AmbaFake(pio_addr=0x1C040000) lan_fake = IsaFake(pio_addr=0x1A000000, pio_size=0xffff) usb_fake = IsaFake(pio_addr=0x1B000000, pio_size=0x1ffff) mmc_fake = AmbaFake(pio_addr=0x1c050000) energy_ctrl = EnergyCtrl(pio_addr=0x1c080000) # Attach any PCI devices that are supported def attachPciDevices(self): self.ethernet = IGbE_e1000(pci_bus=0, pci_dev=0, pci_func=0, InterruptLine=1, InterruptPin=1) self.ide = IdeController(disks = [], pci_bus=0, pci_dev=1, pci_func=0, InterruptLine=2, InterruptPin=2) def enableMSIX(self): self.gic = Pl390(dist_addr=0x2C001000, cpu_addr=0x2C002000, it_lines=512) self.gicv2m = Gicv2m() self.gicv2m.frames = [Gicv2mFrame(spi_base=256, spi_len=64, addr=0x2C1C0000)] def setupBootLoader(self, mem_bus, cur_sys, loc): self.nvmem = SimpleMemory(range = AddrRange('64MB'), conf_table_reported = False) self.nvmem.port = mem_bus.master cur_sys.boot_loader = loc('boot_emm.arm') cur_sys.atags_addr = 0x8000000 cur_sys.load_addr_mask = 0xfffffff cur_sys.load_offset = 0x80000000 # Attach I/O devices that are on chip and also set the appropriate # ranges for the bridge def attachOnChipIO(self, bus, bridge=None, dma_ports =[]): self.gic.pio = bus.master self.vgic.pio = bus.master self.local_cpu_timer.pio = bus.master if hasattr(self, "gicv2m"): self.gicv2m.pio = bus.master if dma_ports.count(self.hdlcd.dma) == 0: self.hdlcd.dma = bus.slave if bridge: # Bridge ranges based on excluding what is part of on-chip I/O # (gic, a9scu) bridge.ranges = [AddrRange(0x2F000000, size='16MB'), AddrRange(0x2B000000, size='4MB'), AddrRange(0x30000000, size='256MB'), AddrRange(0x40000000, size='512MB'), AddrRange(0x18000000, size='64MB'), AddrRange(0x1C000000, size='64MB')] # Set the clock domain for IO objects that are considered # to be "close" to the cores. def onChipIOClkDomain(self, clkdomain): self.gic.clk_domain = clkdomain if hasattr(self, "gicv2m"): self.gicv2m.clk_domain = clkdomain self.hdlcd.clk_domain = clkdomain self.vgic.clk_domain = clkdomain # Attach I/O devices to specified bus object. Done here # as the specified bus to connect to may not always be fixed. def attachIO(self, bus, dma_ports =[]): self.uart.pio = bus.master self.realview_io.pio = bus.master self.pci_host.pio = bus.master self.timer0.pio = bus.master self.timer1.pio = bus.master self.clcd.pio = bus.master if dma_ports.count(self.clcd.dma) == 0: self.clcd.dma = bus.slave self.hdlcd.pio = bus.master self.kmi0.pio = bus.master self.kmi1.pio = bus.master self.cf_ctrl.pio = bus.master if dma_ports.count(self.cf_ctrl.dma) == 0: self.cf_ctrl.dma = bus.slave self.rtc.pio = bus.master self.vram.port = bus.master self.l2x0_fake.pio = bus.master self.uart1_fake.pio = bus.master self.uart2_fake.pio = bus.master self.uart3_fake.pio = bus.master self.sp810_fake.pio = bus.master self.watchdog_fake.pio = bus.master self.aaci_fake.pio = bus.master self.lan_fake.pio = bus.master self.usb_fake.pio = bus.master self.mmc_fake.pio = bus.master self.energy_ctrl.pio = bus.master # Try to attach the I/O if it exists try: self.ide.pio = bus.master if dma_ports.count(self.ide.dma) == 0: self.ide.dma = bus.slave self.ethernet.pio = bus.master if dma_ports.count(self.ethernet.dma) == 0: self.ethernet.dma = bus.slave except: pass # Set the clock domain for IO objects that are considered # to be "far" away from the cores. def offChipIOClkDomain(self, clkdomain): self.uart.clk_domain = clkdomain self.realview_io.clk_domain = clkdomain self.timer0.clk_domain = clkdomain self.timer1.clk_domain = clkdomain self.clcd.clk_domain = clkdomain self.kmi0.clk_domain = clkdomain self.kmi1.clk_domain = clkdomain self.cf_ctrl.clk_domain = clkdomain self.rtc.clk_domain = clkdomain self.vram.clk_domain = clkdomain self.l2x0_fake.clk_domain = clkdomain self.uart1_fake.clk_domain = clkdomain self.uart2_fake.clk_domain = clkdomain self.uart3_fake.clk_domain = clkdomain self.sp810_fake.clk_domain = clkdomain self.watchdog_fake.clk_domain = clkdomain self.aaci_fake.clk_domain = clkdomain self.lan_fake.clk_domain = clkdomain self.usb_fake.clk_domain = clkdomain self.mmc_fake.clk_domain = clkdomain self.energy_ctrl.clk_domain = clkdomain class VExpress_EMM64(VExpress_EMM): # Three memory regions are specified totalling 512GB _mem_regions = [(Addr('2GB'), Addr('2GB')), (Addr('34GB'), Addr('30GB')), (Addr('512GB'), Addr('480GB'))] pci_host = GenericPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=12, pci_pio_base=0x2f000000) def setupBootLoader(self, mem_bus, cur_sys, loc): self.nvmem = SimpleMemory(range=AddrRange(0, size='64MB'), conf_table_reported=False) self.nvmem.port = mem_bus.master cur_sys.boot_loader = loc('boot_emm.arm64') cur_sys.atags_addr = 0x8000000 cur_sys.load_addr_mask = 0xfffffff cur_sys.load_offset = 0x80000000 class VExpress_GEM5_V1(RealView): """ The VExpress gem5 memory map is loosely based on a modified Versatile Express RS1 memory map. The gem5 platform has been designed to implement a subset of the original Versatile Express RS1 memory map. Off-chip peripherals should, when possible, adhere to the Versatile Express memory map. Non-PCI off-chip devices that are gem5-specific should live in the CS5 memory space to avoid conflicts with existing devices that we might want to model in the future. Such devices should normally have interrupts in the gem5-specific SPI range. On-chip peripherals are loosely modeled after the ARM CoreTile Express A15x2 A7x3 memory and interrupt map. In particular, the GIC and Generic Timer have the same interrupt lines and base addresses. Other on-chip devices are gem5 specific. Unlike the original Versatile Express RS2 extended platform, gem5 implements a large contigious DRAM space, without aliases or holes, starting at the 2GiB boundary. This means that PCI memory is limited to 1GiB. Memory map: 0x00000000-0x03ffffff: Boot memory (CS0) 0x04000000-0x07ffffff: Reserved 0x08000000-0x0bffffff: Reserved (CS0 alias) 0x0c000000-0x0fffffff: Reserved (Off-chip, CS4) 0x10000000-0x13ffffff: gem5-specific peripherals (Off-chip, CS5) 0x10000000-0x1000ffff: gem5 energy controller 0x10010000-0x1001ffff: gem5 pseudo-ops 0x14000000-0x17ffffff: Reserved (Off-chip, PSRAM, CS1) 0x18000000-0x1bffffff: Reserved (Off-chip, Peripherals, CS2) 0x1c000000-0x1fffffff: Peripheral block 1 (Off-chip, CS3): 0x1c010000-0x1c01ffff: realview_io (VE system control regs.) 0x1c060000-0x1c06ffff: KMI0 (keyboard) 0x1c070000-0x1c07ffff: KMI1 (mouse) 0x1c090000-0x1c09ffff: UART0 0x1c0a0000-0x1c0affff: UART1 (reserved) 0x1c0b0000-0x1c0bffff: UART2 (reserved) 0x1c0c0000-0x1c0cffff: UART3 (reserved) 0x1c170000-0x1c17ffff: RTC 0x20000000-0x3fffffff: On-chip peripherals: 0x2b000000-0x2b00ffff: HDLCD 0x2c001000-0x2c001fff: GIC (distributor) 0x2c002000-0x2c0020ff: GIC (CPU interface) 0x2c004000-0x2c005fff: vGIC (HV) 0x2c006000-0x2c007fff: vGIC (VCPU) 0x2c1c0000-0x2c1cffff: GICv2m MSI frame 0 0x2d000000-0x2d00ffff: GPU (reserved) 0x2f000000-0x2fffffff: PCI IO space 0x30000000-0x3fffffff: PCI config space 0x40000000-0x7fffffff: Ext. AXI: Used as PCI memory 0x80000000-X: DRAM Interrupts: 0- 15: Software generated interrupts (SGIs) 16- 31: On-chip private peripherals (PPIs) 25 : vgic 26 : generic_timer (hyp) 27 : generic_timer (virt) 28 : Reserved (Legacy FIQ) 29 : generic_timer (phys, sec) 30 : generic_timer (phys, non-sec) 31 : Reserved (Legacy IRQ) 32- 95: Mother board peripherals (SPIs) 32 : Reserved (SP805) 33 : Reserved (IOFPGA SW int) 34-35: Reserved (SP804) 36 : RTC 37-40: uart0-uart3 41-42: Reserved (PL180) 43 : Reserved (AACI) 44-45: kmi0-kmi1 46 : Reserved (CLCD) 47 : Reserved (Ethernet) 48 : Reserved (USB) 95-255: On-chip interrupt sources (we use these for gem5-specific devices, SPIs) 95 : HDLCD 96- 98: GPU (reserved) 100-103: PCI 256-319: MSI frame 0 (gem5-specific, SPIs) 320-511: Unused """ # Everything above 2GiB is memory _mem_regions = [(Addr('2GB'), Addr('510GB'))] _off_chip_ranges = [ # CS1-CS5 AddrRange(0x0c000000, 0x1fffffff), # External AXI interface (PCI) AddrRange(0x2f000000, 0x7fffffff), ] # Platform control device (off-chip) realview_io = RealViewCtrl(proc_id0=0x14000000, proc_id1=0x14000000, idreg=0x02250000, pio_addr=0x1c010000) mcc = VExpressMCC() dcc = CoreTile2A15DCC() ### On-chip devices ### gic = kvm_gicv2_class(dist_addr=0x2c001000, cpu_addr=0x2c002000, it_lines=512) vgic = VGic(vcpu_addr=0x2c006000, hv_addr=0x2c004000, ppint=25) gicv2m = Gicv2m() gicv2m.frames = [ Gicv2mFrame(spi_base=256, spi_len=64, addr=0x2c1c0000), ] generic_timer = GenericTimer(int_phys=29, int_virt=27) hdlcd = HDLcd(pxl_clk=dcc.osc_pxl, pio_addr=0x2b000000, int_num=95) def _on_chip_devices(self): return [ self.gic, self.vgic, self.gicv2m, self.hdlcd, self.generic_timer, ] ### Off-chip devices ### uart0 = Pl011(pio_addr=0x1c090000, int_num=37) kmi0 = Pl050(pio_addr=0x1c060000, int_num=44) kmi1 = Pl050(pio_addr=0x1c070000, int_num=45, is_mouse=True) rtc = PL031(pio_addr=0x1c170000, int_num=36) ### gem5-specific off-chip devices ### pci_host = GenericArmPciHost( conf_base=0x30000000, conf_size='256MB', conf_device_bits=12, pci_pio_base=0x2f000000, int_policy="ARM_PCI_INT_DEV", int_base=100, int_count=4) energy_ctrl = EnergyCtrl(pio_addr=0x10000000) def _off_chip_devices(self): return [ self.realview_io, self.uart0, self.kmi0, self.kmi1, self.rtc, self.pci_host, self.energy_ctrl, ] def attachPciDevice(self, device, *args, **kwargs): device.host = self.pci_host self._attach_device(device, *args, **kwargs) def setupBootLoader(self, mem_bus, cur_sys, loc): self.nvmem = SimpleMemory(range=AddrRange(0, size='64MB'), conf_table_reported=False) self.nvmem.port = mem_bus.master cur_sys.boot_loader = [ loc('boot_emm.arm64'), loc('boot_emm.arm') ] cur_sys.atags_addr = 0x8000000 cur_sys.load_addr_mask = 0xfffffff cur_sys.load_offset = 0x80000000 # Setup m5ops. It's technically not a part of the boot # loader, but this is the only place we can configure the # system. cur_sys.m5ops_base = 0x10010000
41.76078
103
0.654309
[ "BSD-3-Clause" ]
gem5-graphics/gem5-graphics
gem5/src/dev/arm/RealView.py
40,675
Python
#!/usr/bin/env python # File: plot_icd_vs_colorgrad.py # Created on: Tue 08 May 2012 11:03:26 AM CDT # Last Change: Sun 21 Oct 2012 02:43:33 PM CDT # Purpose of script: <+INSERT+> # Author: Steven Boada import pylab as pyl from mk_galaxy_struc import mk_galaxy_struc galaxies = mk_galaxy_struc() f1 = pyl.figure(1,figsize=(8,8)) f1s1 = f1.add_subplot(221) f1s2 = f1.add_subplot(222) f1s3 = f1.add_subplot(223) f1s4 = f1.add_subplot(224) for galaxy in galaxies: if galaxy.ston_I >= 30. and galaxy.Color_grad != None and galaxy.sersic !=\ None: if galaxy.sersic < 1.: col1 =f1s1.scatter(galaxy.ICD_IH, galaxy.Color_grad, s=50, c='k', edgecolor='w') if 1. < galaxy.sersic < 2.: col2 =f1s2.scatter(galaxy.ICD_IH, galaxy.Color_grad, s=50,c='k', edgecolor='w') if 2. < galaxy.sersic < 3.: col3 =f1s3.scatter(galaxy.ICD_IH, galaxy.Color_grad, s=50, c='k', edgecolor='w') if 3. < galaxy.sersic: col4 =f1s4.scatter(galaxy.ICD_IH, galaxy.Color_grad, s=50, c='k', edgecolor='w') #pyl.scatter(galaxy.ICD_IH,galaxy.Color_grad,s=50,edgecolor='w') #f1s1.vlines(0.04,-3.,1,lw=2,zorder=0) #f1s1.hlines(0.0,-0.1,0.25,lw=2,zorder=0) #pyl.text(0.24, 0.7, "Blue Core, Red Edge", size=15, ha="right", va="top", # bbox = dict(boxstyle="round", ec=(1., 0.5, 0.5), # fc=(1., 0.8, 0.8))) #pyl.text(0.24, -2.5, "Red Core, Blue Edge", size=15, ha="right", va="top", # bbox = dict(boxstyle="round", ec=(1., 0.5, 0.5), # fc=(1., 0.8, 0.8))) # Finish Plot f1s1.set_xlim(-0.05,0.25) f1s1.set_ylim(-3.,1) f1s2.set_xlim(-0.05,0.25) f1s2.set_ylim(-3.,1) f1s3.set_xlim(-0.05,0.25) f1s3.set_ylim(-3.,1) f1s4.set_xlim(-0.05,0.25) f1s4.set_ylim(-3.,1) #pyl.subplots_adjust(left=0.15,bottom=0.15) f1s1.set_xlabel(r'$\xi[I,H]$') f1s1.set_ylabel('Color Gradient') pyl.savefig('icd_vs_color_grad_vs_sersic_IH.eps',bbox='tight') pyl.show()
29.537313
79
0.624558
[ "MIT" ]
boada/ICD
sandbox/legacy_plot_code/plot_icd_vs_colorgrad_vs_sersic.py
1,979
Python
# -*- coding: utf-8 -*- """ babel.messages.mofile ~~~~~~~~~~~~~~~~~~~~~ Writing of files in the ``gettext`` MO (machine object) format. :copyright: (c) 2013 by the Babel Team. :license: BSD, see LICENSE for more details. """ import array import struct from babel.messages.catalog import Catalog, Message from babel._compat import range_type, array_tobytes LE_MAGIC = 0x950412de BE_MAGIC = 0xde120495 def read_mo(fileobj): """Read a binary MO file from the given file-like object and return a corresponding `Catalog` object. :param fileobj: the file-like object to read the MO file from :note: The implementation of this function is heavily based on the ``GNUTranslations._parse`` method of the ``gettext`` module in the standard library. """ catalog = Catalog() headers = {} filename = getattr(fileobj, 'name', '') buf = fileobj.read() buflen = len(buf) unpack = struct.unpack # Parse the .mo file header, which consists of 5 little endian 32 # bit words. magic = unpack('<I', buf[:4])[0] # Are we big endian or little endian? if magic == LE_MAGIC: version, msgcount, origidx, transidx = unpack('<4I', buf[4:20]) ii = '<II' elif magic == BE_MAGIC: version, msgcount, origidx, transidx = unpack('>4I', buf[4:20]) ii = '>II' else: raise IOError(0, 'Bad magic number', filename) # Now put all messages from the .mo file buffer into the catalog # dictionary for i in range_type(0, msgcount): mlen, moff = unpack(ii, buf[origidx:origidx + 8]) mend = moff + mlen tlen, toff = unpack(ii, buf[transidx:transidx + 8]) tend = toff + tlen if mend < buflen and tend < buflen: msg = buf[moff:mend] tmsg = buf[toff:tend] else: raise IOError(0, 'File is corrupt', filename) # See if we're looking at GNU .mo conventions for metadata if mlen == 0: # Catalog description lastkey = key = None for item in tmsg.splitlines(): item = item.strip() if not item: continue if b':' in item: key, value = item.split(b':', 1) lastkey = key = key.strip().lower() headers[key] = value.strip() elif lastkey: headers[lastkey] += b'\n' + item if b'\x04' in msg: # context ctxt, msg = msg.split(b'\x04') else: ctxt = None if b'\x00' in msg: # plural forms msg = msg.split(b'\x00') tmsg = tmsg.split(b'\x00') if catalog.charset: msg = [x.decode(catalog.charset) for x in msg] tmsg = [x.decode(catalog.charset) for x in tmsg] else: if catalog.charset: msg = msg.decode(catalog.charset) tmsg = tmsg.decode(catalog.charset) catalog[msg] = Message(msg, tmsg, context=ctxt) # advance to next entry in the seek tables origidx += 8 transidx += 8 catalog.mime_headers = headers.items() return catalog def write_mo(fileobj, catalog, use_fuzzy=False): """Write a catalog to the specified file-like object using the GNU MO file format. >>> import sys >>> from babel.messages import Catalog >>> from gettext import GNUTranslations >>> from babel._compat import BytesIO >>> catalog = Catalog(locale='en_US') >>> catalog.add('foo', 'Voh') <Message ...> >>> catalog.add((u'bar', u'baz'), (u'Bahr', u'Batz')) <Message ...> >>> catalog.add('fuz', 'Futz', flags=['fuzzy']) <Message ...> >>> catalog.add('Fizz', '') <Message ...> >>> catalog.add(('Fuzz', 'Fuzzes'), ('', '')) <Message ...> >>> buf = BytesIO() >>> write_mo(buf, catalog) >>> x = buf.seek(0) >>> translations = GNUTranslations(fp=buf) >>> if sys.version_info[0] >= 3: ... translations.ugettext = translations.gettext ... translations.ungettext = translations.ngettext >>> translations.ugettext('foo') u'Voh' >>> translations.ungettext('bar', 'baz', 1) u'Bahr' >>> translations.ungettext('bar', 'baz', 2) u'Batz' >>> translations.ugettext('fuz') u'fuz' >>> translations.ugettext('Fizz') u'Fizz' >>> translations.ugettext('Fuzz') u'Fuzz' >>> translations.ugettext('Fuzzes') u'Fuzzes' :param fileobj: the file-like object to write to :param catalog: the `Catalog` instance :param use_fuzzy: whether translations marked as "fuzzy" should be included in the output """ messages = list(catalog) if not use_fuzzy: messages[1:] = [m for m in messages[1:] if not m.fuzzy] messages.sort() ids = strs = b'' offsets = [] for message in messages: # For each string, we need size and file offset. Each string is NUL # terminated; the NUL does not count into the size. if message.pluralizable: msgid = b'\x00'.join([ msgid.encode(catalog.charset) for msgid in message.id ]) msgstrs = [] for idx, string in enumerate(message.string): if not string: msgstrs.append(message.id[min(int(idx), 1)]) else: msgstrs.append(string) msgstr = b'\x00'.join([ msgstr.encode(catalog.charset) for msgstr in msgstrs ]) else: msgid = message.id.encode(catalog.charset) if not message.string: msgstr = message.id.encode(catalog.charset) else: msgstr = message.string.encode(catalog.charset) if message.context: msgid = b'\x04'.join([message.context.encode(catalog.charset), msgid]) offsets.append((len(ids), len(msgid), len(strs), len(msgstr))) ids += msgid + b'\x00' strs += msgstr + b'\x00' # The header is 7 32-bit unsigned integers. We don't use hash tables, so # the keys start right after the index tables. keystart = 7 * 4 + 16 * len(messages) valuestart = keystart + len(ids) # The string table first has the list of keys, then the list of values. # Each entry has first the size of the string, then the file offset. koffsets = [] voffsets = [] for o1, l1, o2, l2 in offsets: koffsets += [l1, o1 + keystart] voffsets += [l2, o2 + valuestart] offsets = koffsets + voffsets fileobj.write(struct.pack('Iiiiiii', LE_MAGIC, # magic 0, # version len(messages), # number of entries 7 * 4, # start of key index 7 * 4 + len(messages) * 8, # start of value index 0, 0 # size and offset of hash table ) + array_tobytes(array.array("i", offsets)) + ids + strs)
34.084112
89
0.541815
[ "Apache-2.0" ]
10088/hue
desktop/core/ext-py/Babel-2.5.1/babel/messages/mofile.py
7,294
Python
import pyaf.Bench.web_traffic.Forecaster as fo PROJECTS = ['de.wikipedia.org'] data_dir = 'data/web-traffic-time-series-forecasting' lForecaster = fo.cProjectForecaster() lForecaster.mDataDirectory = data_dir lForecaster.mBackendName = 'pyaf_default_clean' lForecaster.mKeysFileName = 'key_1.csv.zip' last_date = '2016-12-31' horizon = 60 lForecaster.mKeysFileName = 'key_1.csv.zip' lForecaster.forecast(PROJECTS, last_date , horizon)
27.4375
53
0.794989
[ "BSD-3-Clause" ]
antoinecarme/pyaf
tests/bench/web_traffic_jobs/de.wikipedia.org/test_web_traffic_de.wikipedia.org_pyaf_default_clean.py
439
Python
import sys import logging import urlparse import urllib import redis from flask import Flask, current_app from flask_sslify import SSLify from werkzeug.contrib.fixers import ProxyFix from werkzeug.routing import BaseConverter from statsd import StatsClient from flask_mail import Mail from flask_limiter import Limiter from flask_limiter.util import get_ipaddr from flask_migrate import Migrate from redash import settings from redash.query_runner import import_query_runners from redash.destinations import import_destinations __version__ = '7.0.0-beta' import os if os.environ.get("REMOTE_DEBUG"): import ptvsd ptvsd.enable_attach(address=('0.0.0.0', 5678)) def setup_logging(): handler = logging.StreamHandler(sys.stdout if settings.LOG_STDOUT else sys.stderr) formatter = logging.Formatter(settings.LOG_FORMAT) handler.setFormatter(formatter) logging.getLogger().addHandler(handler) logging.getLogger().setLevel(settings.LOG_LEVEL) # Make noisy libraries less noisy if settings.LOG_LEVEL != "DEBUG": logging.getLogger("passlib").setLevel("ERROR") logging.getLogger("requests.packages.urllib3").setLevel("ERROR") logging.getLogger("snowflake.connector").setLevel("ERROR") logging.getLogger('apiclient').setLevel("ERROR") def create_redis_connection(): logging.debug("Creating Redis connection (%s)", settings.REDIS_URL) redis_url = urlparse.urlparse(settings.REDIS_URL) if redis_url.scheme == 'redis+socket': qs = urlparse.parse_qs(redis_url.query) if 'virtual_host' in qs: db = qs['virtual_host'][0] else: db = 0 client = redis.StrictRedis(unix_socket_path=redis_url.path, db=db) else: if redis_url.path: redis_db = redis_url.path[1] else: redis_db = 0 # Redis passwords might be quoted with special characters redis_password = redis_url.password and urllib.unquote(redis_url.password) client = redis.StrictRedis(host=redis_url.hostname, port=redis_url.port, db=redis_db, password=redis_password) return client setup_logging() redis_connection = create_redis_connection() mail = Mail() migrate = Migrate() mail.init_mail(settings.all_settings()) statsd_client = StatsClient(host=settings.STATSD_HOST, port=settings.STATSD_PORT, prefix=settings.STATSD_PREFIX) limiter = Limiter(key_func=get_ipaddr, storage_uri=settings.LIMITER_STORAGE) import_query_runners(settings.QUERY_RUNNERS) import_destinations(settings.DESTINATIONS) from redash.version_check import reset_new_version_status reset_new_version_status() class SlugConverter(BaseConverter): def to_python(self, value): # This is ay workaround for when we enable multi-org and some files are being called by the index rule: # for path in settings.STATIC_ASSETS_PATHS: # full_path = safe_join(path, value) # if os.path.isfile(full_path): # raise ValidationError() return value def to_url(self, value): return value def create_app(): from redash import authentication, extensions, handlers from redash.handlers.webpack import configure_webpack from redash.handlers import chrome_logger from redash.models import db, users from redash.metrics.request import provision_app from redash.utils import sentry sentry.init() app = Flask(__name__, template_folder=settings.STATIC_ASSETS_PATH, static_folder=settings.STATIC_ASSETS_PATH, static_path='/static') # Make sure we get the right referral address even behind proxies like nginx. app.wsgi_app = ProxyFix(app.wsgi_app, settings.PROXIES_COUNT) app.url_map.converters['org_slug'] = SlugConverter if settings.ENFORCE_HTTPS: SSLify(app, skips=['ping']) # configure our database app.config['SQLALCHEMY_DATABASE_URI'] = settings.SQLALCHEMY_DATABASE_URI app.config.update(settings.all_settings()) provision_app(app) db.init_app(app) migrate.init_app(app, db) mail.init_app(app) authentication.init_app(app) limiter.init_app(app) handlers.init_app(app) configure_webpack(app) extensions.init_extensions(app) chrome_logger.init_app(app) users.init_app(app) return app
31.258993
118
0.729574
[ "BSD-2-Clause" ]
CodeGerm/redash
redash/__init__.py
4,345
Python
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 5 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SnapshotScheduleExtended(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'alias': 'str', 'duration': 'int', 'id': 'int', 'name': 'str', 'next_run': 'int', 'next_snapshot': 'str', 'path': 'str', 'pattern': 'str', 'schedule': 'str' } attribute_map = { 'alias': 'alias', 'duration': 'duration', 'id': 'id', 'name': 'name', 'next_run': 'next_run', 'next_snapshot': 'next_snapshot', 'path': 'path', 'pattern': 'pattern', 'schedule': 'schedule' } def __init__(self, alias=None, duration=None, id=None, name=None, next_run=None, next_snapshot=None, path=None, pattern=None, schedule=None): # noqa: E501 """SnapshotScheduleExtended - a model defined in Swagger""" # noqa: E501 self._alias = None self._duration = None self._id = None self._name = None self._next_run = None self._next_snapshot = None self._path = None self._pattern = None self._schedule = None self.discriminator = None if alias is not None: self.alias = alias if duration is not None: self.duration = duration if id is not None: self.id = id if name is not None: self.name = name if next_run is not None: self.next_run = next_run if next_snapshot is not None: self.next_snapshot = next_snapshot if path is not None: self.path = path if pattern is not None: self.pattern = pattern if schedule is not None: self.schedule = schedule @property def alias(self): """Gets the alias of this SnapshotScheduleExtended. # noqa: E501 Alias name to create for each snapshot. # noqa: E501 :return: The alias of this SnapshotScheduleExtended. # noqa: E501 :rtype: str """ return self._alias @alias.setter def alias(self, alias): """Sets the alias of this SnapshotScheduleExtended. Alias name to create for each snapshot. # noqa: E501 :param alias: The alias of this SnapshotScheduleExtended. # noqa: E501 :type: str """ self._alias = alias @property def duration(self): """Gets the duration of this SnapshotScheduleExtended. # noqa: E501 Time in seconds added to creation time to construction expiration time. # noqa: E501 :return: The duration of this SnapshotScheduleExtended. # noqa: E501 :rtype: int """ return self._duration @duration.setter def duration(self, duration): """Sets the duration of this SnapshotScheduleExtended. Time in seconds added to creation time to construction expiration time. # noqa: E501 :param duration: The duration of this SnapshotScheduleExtended. # noqa: E501 :type: int """ self._duration = duration @property def id(self): """Gets the id of this SnapshotScheduleExtended. # noqa: E501 The system ID given to the schedule. # noqa: E501 :return: The id of this SnapshotScheduleExtended. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this SnapshotScheduleExtended. The system ID given to the schedule. # noqa: E501 :param id: The id of this SnapshotScheduleExtended. # noqa: E501 :type: int """ self._id = id @property def name(self): """Gets the name of this SnapshotScheduleExtended. # noqa: E501 The schedule name. # noqa: E501 :return: The name of this SnapshotScheduleExtended. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this SnapshotScheduleExtended. The schedule name. # noqa: E501 :param name: The name of this SnapshotScheduleExtended. # noqa: E501 :type: str """ self._name = name @property def next_run(self): """Gets the next_run of this SnapshotScheduleExtended. # noqa: E501 Unix Epoch time of next snapshot to be created. # noqa: E501 :return: The next_run of this SnapshotScheduleExtended. # noqa: E501 :rtype: int """ return self._next_run @next_run.setter def next_run(self, next_run): """Sets the next_run of this SnapshotScheduleExtended. Unix Epoch time of next snapshot to be created. # noqa: E501 :param next_run: The next_run of this SnapshotScheduleExtended. # noqa: E501 :type: int """ self._next_run = next_run @property def next_snapshot(self): """Gets the next_snapshot of this SnapshotScheduleExtended. # noqa: E501 Formatted name (see pattern) of next snapshot to be created. # noqa: E501 :return: The next_snapshot of this SnapshotScheduleExtended. # noqa: E501 :rtype: str """ return self._next_snapshot @next_snapshot.setter def next_snapshot(self, next_snapshot): """Sets the next_snapshot of this SnapshotScheduleExtended. Formatted name (see pattern) of next snapshot to be created. # noqa: E501 :param next_snapshot: The next_snapshot of this SnapshotScheduleExtended. # noqa: E501 :type: str """ self._next_snapshot = next_snapshot @property def path(self): """Gets the path of this SnapshotScheduleExtended. # noqa: E501 The /ifs path snapshotted. # noqa: E501 :return: The path of this SnapshotScheduleExtended. # noqa: E501 :rtype: str """ return self._path @path.setter def path(self, path): """Sets the path of this SnapshotScheduleExtended. The /ifs path snapshotted. # noqa: E501 :param path: The path of this SnapshotScheduleExtended. # noqa: E501 :type: str """ self._path = path @property def pattern(self): """Gets the pattern of this SnapshotScheduleExtended. # noqa: E501 Pattern expanded with strftime to create snapshot name. # noqa: E501 :return: The pattern of this SnapshotScheduleExtended. # noqa: E501 :rtype: str """ return self._pattern @pattern.setter def pattern(self, pattern): """Sets the pattern of this SnapshotScheduleExtended. Pattern expanded with strftime to create snapshot name. # noqa: E501 :param pattern: The pattern of this SnapshotScheduleExtended. # noqa: E501 :type: str """ self._pattern = pattern @property def schedule(self): """Gets the schedule of this SnapshotScheduleExtended. # noqa: E501 The isidate compatible natural language description of the schedule. # noqa: E501 :return: The schedule of this SnapshotScheduleExtended. # noqa: E501 :rtype: str """ return self._schedule @schedule.setter def schedule(self, schedule): """Sets the schedule of this SnapshotScheduleExtended. The isidate compatible natural language description of the schedule. # noqa: E501 :param schedule: The schedule of this SnapshotScheduleExtended. # noqa: E501 :type: str """ self._schedule = schedule def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SnapshotScheduleExtended): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.498525
159
0.589898
[ "Unlicense" ]
Isilon/isilon_sdk_python
isi_sdk_8_1_0/isi_sdk_8_1_0/models/snapshot_schedule_extended.py
9,661
Python
from decimal import Decimal as D from django.utils.translation import ugettext_lazy as _ from oscar.core.loading import get_class, get_classes, get_model from oscar.templatetags.currency_filters import currency Benefit = get_model('offer', 'Benefit') BasketDiscount, SHIPPING_DISCOUNT, ZERO_DISCOUNT = get_classes('offer.results', [ 'BasketDiscount', 'SHIPPING_DISCOUNT', 'ZERO_DISCOUNT']) CoverageCondition, ValueCondition = get_classes('offer.conditions', ['CoverageCondition', 'ValueCondition']) range_anchor = get_class('offer.utils', 'range_anchor') __all__ = [ 'PercentageDiscountBenefit', 'AbsoluteDiscountBenefit', 'FixedPriceBenefit', 'ShippingBenefit', 'MultibuyDiscountBenefit', 'ShippingAbsoluteDiscountBenefit', 'ShippingFixedPriceBenefit', 'ShippingPercentageDiscountBenefit', ] def apply_discount(line, discount, quantity, offer=None): """ Apply a given discount to the passed basket """ line.discount(discount, quantity, incl_tax=False, offer=offer) class PercentageDiscountBenefit(Benefit): """ An offer benefit that gives a percentage discount """ _description = _("%(value)s%% discount on %(range)s") @property def name(self): return self._description % { 'value': self.value, 'range': self.range.name} @property def description(self): return self._description % { 'value': self.value, 'range': range_anchor(self.range)} class Meta: app_label = 'offer' proxy = True verbose_name = _("Percentage discount benefit") verbose_name_plural = _("Percentage discount benefits") def apply(self, basket, condition, offer, discount_percent=None, max_total_discount=None): if discount_percent is None: discount_percent = self.value discount_amount_available = max_total_discount line_tuples = self.get_applicable_lines(offer, basket) discount_percent = min(discount_percent, D('100.0')) discount = D('0.00') affected_items = 0 max_affected_items = self._effective_max_affected_items() affected_lines = [] for price, line in line_tuples: if affected_items >= max_affected_items: break if discount_amount_available == 0: break quantity_affected = min( line.quantity_without_offer_discount(offer), max_affected_items - affected_items) line_discount = self.round(discount_percent / D('100.0') * price * int(quantity_affected)) if discount_amount_available is not None: line_discount = min(line_discount, discount_amount_available) discount_amount_available -= line_discount apply_discount(line, line_discount, quantity_affected, offer) affected_lines.append((line, line_discount, quantity_affected)) affected_items += quantity_affected discount += line_discount if discount > 0: condition.consume_items(offer, basket, affected_lines) return BasketDiscount(discount) class AbsoluteDiscountBenefit(Benefit): """ An offer benefit that gives an absolute discount """ _description = _("%(value)s discount on %(range)s") @property def name(self): return self._description % { 'value': currency(self.value), 'range': self.range.name.lower()} @property def description(self): return self._description % { 'value': currency(self.value), 'range': range_anchor(self.range)} class Meta: app_label = 'offer' proxy = True verbose_name = _("Absolute discount benefit") verbose_name_plural = _("Absolute discount benefits") def apply(self, basket, condition, offer, discount_amount=None, max_total_discount=None): if discount_amount is None: discount_amount = self.value # Fetch basket lines that are in the range and available to be used in # an offer. line_tuples = self.get_applicable_lines(offer, basket) # Determine which lines can have the discount applied to them max_affected_items = self._effective_max_affected_items() num_affected_items = 0 affected_items_total = D('0.00') lines_to_discount = [] for price, line in line_tuples: if num_affected_items >= max_affected_items: break qty = min( line.quantity_without_offer_discount(offer), max_affected_items - num_affected_items) lines_to_discount.append((line, price, qty)) num_affected_items += qty affected_items_total += qty * price # Ensure we don't try to apply a discount larger than the total of the # matching items. discount = min(discount_amount, affected_items_total) if max_total_discount is not None: discount = min(discount, max_total_discount) if discount == 0: return ZERO_DISCOUNT # Apply discount equally amongst them affected_lines = [] applied_discount = D('0.00') for i, (line, price, qty) in enumerate(lines_to_discount): if i == len(lines_to_discount) - 1: # If last line, then take the delta as the discount to ensure # the total discount is correct and doesn't mismatch due to # rounding. line_discount = discount - applied_discount else: # Calculate a weighted discount for the line line_discount = self.round( ((price * qty) / affected_items_total) * discount) apply_discount(line, line_discount, qty, offer) affected_lines.append((line, line_discount, qty)) applied_discount += line_discount condition.consume_items(offer, basket, affected_lines) return BasketDiscount(discount) class FixedPriceBenefit(Benefit): """ An offer benefit that gives the items in the condition for a fixed price. This is useful for "bundle" offers. Note that we ignore the benefit range here and only give a fixed price for the products in the condition range. The condition cannot be a value condition. We also ignore the max_affected_items setting. """ _description = _("The products that meet the condition are sold " "for %(amount)s") @property def name(self): return self._description % { 'amount': currency(self.value)} class Meta: app_label = 'offer' proxy = True verbose_name = _("Fixed price benefit") verbose_name_plural = _("Fixed price benefits") def apply(self, basket, condition, offer): # noqa (too complex (10)) if isinstance(condition, ValueCondition): return ZERO_DISCOUNT # Fetch basket lines that are in the range and available to be used in # an offer. line_tuples = self.get_applicable_lines(offer, basket, range=condition.range) if not line_tuples: return ZERO_DISCOUNT # Determine the lines to consume num_permitted = int(condition.value) num_affected = 0 value_affected = D('0.00') covered_lines = [] for price, line in line_tuples: if isinstance(condition, CoverageCondition): quantity_affected = 1 else: quantity_affected = min( line.quantity_without_offer_discount(offer), num_permitted - num_affected) num_affected += quantity_affected value_affected += quantity_affected * price covered_lines.append((price, line, quantity_affected)) if num_affected >= num_permitted: break discount = max(value_affected - self.value, D('0.00')) if not discount: return ZERO_DISCOUNT # Apply discount to the affected lines discount_applied = D('0.00') last_line = covered_lines[-1][1] for price, line, quantity in covered_lines: if line == last_line: # If last line, we just take the difference to ensure that # rounding doesn't lead to an off-by-one error line_discount = discount - discount_applied else: line_discount = self.round( discount * (price * quantity) / value_affected) apply_discount(line, line_discount, quantity, offer) discount_applied += line_discount return BasketDiscount(discount) class MultibuyDiscountBenefit(Benefit): _description = _("Cheapest product from %(range)s is free") @property def name(self): return self._description % { 'range': self.range.name.lower()} @property def description(self): return self._description % { 'range': range_anchor(self.range)} class Meta: app_label = 'offer' proxy = True verbose_name = _("Multibuy discount benefit") verbose_name_plural = _("Multibuy discount benefits") def apply(self, basket, condition, offer): line_tuples = self.get_applicable_lines(offer, basket) if not line_tuples: return ZERO_DISCOUNT # Cheapest line gives free product discount, line = line_tuples[0] apply_discount(line, discount, 1, offer) affected_lines = [(line, discount, 1)] condition.consume_items(offer, basket, affected_lines) return BasketDiscount(discount) # ================= # Shipping benefits # ================= class ShippingBenefit(Benefit): def apply(self, basket, condition, offer): condition.consume_items(offer, basket, affected_lines=()) return SHIPPING_DISCOUNT class Meta: app_label = 'offer' proxy = True class ShippingAbsoluteDiscountBenefit(ShippingBenefit): _description = _("%(amount)s off shipping cost") @property def name(self): return self._description % { 'amount': currency(self.value)} class Meta: app_label = 'offer' proxy = True verbose_name = _("Shipping absolute discount benefit") verbose_name_plural = _("Shipping absolute discount benefits") def shipping_discount(self, charge): return min(charge, self.value) class ShippingFixedPriceBenefit(ShippingBenefit): _description = _("Get shipping for %(amount)s") @property def name(self): return self._description % { 'amount': currency(self.value)} class Meta: app_label = 'offer' proxy = True verbose_name = _("Fixed price shipping benefit") verbose_name_plural = _("Fixed price shipping benefits") def shipping_discount(self, charge): if charge < self.value: return D('0.00') return charge - self.value class ShippingPercentageDiscountBenefit(ShippingBenefit): _description = _("%(value)s%% off of shipping cost") @property def name(self): return self._description % { 'value': self.value} class Meta: app_label = 'offer' proxy = True verbose_name = _("Shipping percentage discount benefit") verbose_name_plural = _("Shipping percentage discount benefits") def shipping_discount(self, charge): discount = charge * self.value / D('100.0') return discount.quantize(D('0.01'))
33.862857
108
0.626645
[ "BSD-3-Clause" ]
AMuratTuran/mkn
src/oscar/apps/offer/benefits.py
11,852
Python
import os import shutil import tempfile import time class TemporaryDirectory(): def __init__(self, remove: bool=True, prefix: str='tmp'): self._remove = remove self._prefix = prefix def __enter__(self) -> str: if 'KACHERY_STORAGE_DIR' in os.environ: storage_dir = os.getenv('KACHERY_STORAGE_DIR') else: storage_dir = None if storage_dir is not None: dirpath = os.path.join(storage_dir, 'tmp') if not os.path.exists(dirpath): try: os.mkdir(dirpath) except: # maybe somebody else created this directory if not os.path.exists: raise Exception(f'Unexpected problem creating temporary directory: {dirpath}') else: dirpath = None self._path = str(tempfile.mkdtemp(prefix=self._prefix, dir=dirpath)) return self._path def __exit__(self, exc_type, exc_val, exc_tb): if self._remove: _rmdir_with_retries(self._path, num_retries=5) def path(self): return self._path def _rmdir_with_retries(dirname: str, num_retries: int, delay_between_tries: float=1): for retry_num in range(1, num_retries + 1): if not os.path.exists(dirname): return try: shutil.rmtree(dirname) break except: # pragma: no cover if retry_num < num_retries: print('Retrying to remove directory: {}'.format(dirname)) time.sleep(delay_between_tries) else: raise Exception('Unable to remove directory after {} tries: {}'.format(num_retries, dirname))
33.307692
109
0.586028
[ "Apache-2.0" ]
flatironinstitute/kachery
kachery/_temporarydirectory.py
1,732
Python
from pypy.objspace.std.multimethod import * from rpython.annotator.annrpython import RPythonAnnotator class W_Root(object): pass class W_Int(W_Root): pass class W_Str(W_Root): pass str_w = MultiMethodTable(1, root_class=W_Root, argnames_before=['space']) int_w = MultiMethodTable(1, root_class=W_Root, argnames_before=['space']) def int_w__Int(space, w_x): assert space == 'space' assert isinstance(w_x, W_Int) return 1 def str_w__Str(space, w_x): assert space == 'space' assert isinstance(w_x, W_Str) return "string" int_w.register(int_w__Int, W_Int) str_w.register(str_w__Str, W_Str) def setup_module(mod): typeorder = { W_Int: [(W_Int, None)], W_Str: [(W_Str, None)], } mod.typeorder = typeorder mod.str_w1 = str_w.install('__str_w', [typeorder]) mod.int_w1 = int_w.install('__int_w', [typeorder]) def test_str_w_ann(): a = RPythonAnnotator() s1 = a.build_types(str_w1,[str, W_Str]) s2 = a.build_types(str_w1,[str, W_Root]) assert s1.knowntype == str assert s2.knowntype == str def test_int_w_ann(): a = RPythonAnnotator() s1 = a.build_types(int_w1,[str, W_Int]) s2 = a.build_types(int_w1,[str, W_Str]) assert s1.knowntype == int assert s2.knowntype == int
22.877193
73
0.669479
[ "MIT" ]
kantai/passe-pypy-taint-tracking
pypy/objspace/std/test/test_annmm.py
1,304
Python
# -------------------------------------------------------- # Deformable Convolutional Networks # Copyright (c) 2017 Microsoft # Licensed under The Apache-2.0 License [see LICENSE for details] # Modified by Haozhi Qi, from py-faster-rcnn (https://github.com/rbgirshick/py-faster-rcnn) # -------------------------------------------------------- """ Pascal VOC database This class loads ground truth notations from standard Pascal VOC XML data formats and transform them into IMDB format. Selective search is used for proposals, see roidb function. Results are written as the Pascal VOC format. Evaluation is based on mAP criterion. """ import cPickle import cv2 import os import numpy as np import PIL from imdb import IMDB from pascal_voc_eval import voc_eval #voc_eval_sds from ds_utils import unique_boxes, filter_small_boxes class PascalVOC(IMDB): def __init__(self, image_set, root_path, devkit_path, result_path=None, mask_size=-1, binary_thresh=None): """ fill basic information to initialize imdb :param image_set: 2007_trainval, 2007_test, etc :param root_path: 'selective_search_data' and 'cache' :param devkit_path: data and results :return: imdb object """ year = image_set.split('_')[0] image_set = image_set[len(year) + 1 : len(image_set)] super(PascalVOC, self).__init__('voc_' + year, image_set, root_path, devkit_path, result_path) # set self.name self.year = year self.root_path = root_path self.devkit_path = devkit_path self.data_path = os.path.join(devkit_path, 'VOC' + year) self.classes = ['__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] self.num_classes = len(self.classes) self.image_set_index = self.load_image_set_index() self.num_images = len(self.image_set_index) print 'num_images', self.num_images self.mask_size = mask_size self.binary_thresh = binary_thresh self.config = {'comp_id': 'comp4', 'use_diff': False, 'min_size': 2} def load_image_set_index(self): """ find out which indexes correspond to given image set (train or val) :return: """ image_set_index_file = os.path.join(self.data_path, 'ImageSets', 'Main', self.image_set + '.txt') assert os.path.exists(image_set_index_file), 'Path does not exist: {}'.format(image_set_index_file) with open(image_set_index_file) as f: image_set_index = [x.strip() for x in f.readlines()] return image_set_index def image_path_from_index(self, index): """ given image index, find out full path :param index: index of a specific image :return: full path of this image """ image_file = os.path.join(self.data_path, 'JPEGImages', index + '.jpg') assert os.path.exists(image_file), 'Path does not exist: {}'.format(image_file) return image_file def segmentation_path_from_index(self, index): """ given image index, find out the full path of segmentation class :param index: index of a specific image :return: full path of segmentation class """ seg_class_file = os.path.join(self.data_path, 'SegmentationClass', index + '.png') assert os.path.exists(seg_class_file), 'Path does not exist: {}'.format(seg_class_file) return seg_class_file def gt_roidb(self): """ return ground truth image regions database :return: imdb[image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self.load_pascal_annotation(index) for index in self.image_set_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb def gt_segdb(self): """ return ground truth image regions database :return: imdb[image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] """ cache_file = os.path.join(self.cache_path, self.name + '_gt_segdb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: segdb = cPickle.load(fid) print '{} gt segdb loaded from {}'.format(self.name, cache_file) return segdb gt_segdb = [self.load_pascal_segmentation_annotation(index) for index in self.image_set_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_segdb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt segdb to {}'.format(cache_file) return gt_segdb def load_pascal_annotation(self, index): """ for a given index, load image and bounding boxes info from XML file :param index: index of a specific image :return: record['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] """ import xml.etree.ElementTree as ET roi_rec = dict() roi_rec['image'] = self.image_path_from_index(index) filename = os.path.join(self.data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) size = tree.find('size') roi_rec['height'] = float(size.find('height').text) roi_rec['width'] = float(size.find('width').text) #im_size = cv2.imread(roi_rec['image'], cv2.IMREAD_COLOR|cv2.IMREAD_IGNORE_ORIENTATION).shape #assert im_size[0] == roi_rec['height'] and im_size[1] == roi_rec['width'] objs = tree.findall('object') if not self.config['use_diff']: non_diff_objs = [obj for obj in objs if int(obj.find('difficult').text) == 0] objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) class_to_index = dict(zip(self.classes, range(self.num_classes))) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based x1 = float(bbox.find('xmin').text) - 1 y1 = float(bbox.find('ymin').text) - 1 x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 cls = class_to_index[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 roi_rec.update({'boxes': boxes, 'gt_classes': gt_classes, 'gt_overlaps': overlaps, 'max_classes': overlaps.argmax(axis=1), 'max_overlaps': overlaps.max(axis=1), 'flipped': False}) return roi_rec def load_selective_search_roidb(self, gt_roidb): """ turn selective search proposals into selective search roidb :param gt_roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] :return: roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] """ import scipy.io matfile = os.path.join(self.root_path, 'selective_search_data', self.name + '.mat') assert os.path.exists(matfile), 'selective search data does not exist: {}'.format(matfile) raw_data = scipy.io.loadmat(matfile)['boxes'].ravel() # original was dict ['images', 'boxes'] box_list = [] for i in range(raw_data.shape[0]): boxes = raw_data[i][:, (1, 0, 3, 2)] - 1 # pascal voc dataset starts from 1. keep = unique_boxes(boxes) boxes = boxes[keep, :] keep = filter_small_boxes(boxes, self.config['min_size']) boxes = boxes[keep, :] box_list.append(boxes) return self.create_roidb_from_box_list(box_list, gt_roidb) def selective_search_roidb(self, gt_roidb, append_gt=False): """ get selective search roidb and ground truth roidb :param gt_roidb: ground truth roidb :param append_gt: append ground truth :return: roidb of selective search """ cache_file = os.path.join(self.cache_path, self.name + '_ss_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} ss roidb loaded from {}'.format(self.name, cache_file) return roidb if append_gt: print 'appending ground truth annotations' ss_roidb = self.load_selective_search_roidb(gt_roidb) roidb = IMDB.merge_roidbs(gt_roidb, ss_roidb) else: roidb = self.load_selective_search_roidb(gt_roidb) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote ss roidb to {}'.format(cache_file) return roidb def load_pascal_segmentation_annotation(self, index): """ for a given index, load image and bounding boxes info from XML file :param index: index of a specific image :return: record['seg_cls_path', 'flipped'] """ import xml.etree.ElementTree as ET seg_rec = dict() seg_rec['image'] = self.image_path_from_index(index) size = cv2.imread(seg_rec['image']).shape seg_rec['height'] = size[0] seg_rec['width'] = size[1] seg_rec['seg_cls_path'] = self.segmentation_path_from_index(index) seg_rec['flipped'] = False return seg_rec def evaluate_detections(self, detections): """ top level evaluations :param detections: result matrix, [bbox, confidence] :return: None """ # make all these folders for results result_dir = os.path.join(self.result_path, 'results') if not os.path.exists(result_dir): os.mkdir(result_dir) year_folder = os.path.join(self.result_path, 'results', 'VOC' + self.year) if not os.path.exists(year_folder): os.mkdir(year_folder) res_file_folder = os.path.join(self.result_path, 'results', 'VOC' + self.year, 'Main') if not os.path.exists(res_file_folder): os.mkdir(res_file_folder) self.write_pascal_results(detections) info = self.do_python_eval() return info def evaluate_segmentations(self, pred_segmentations=None): """ top level evaluations :param pred_segmentations: the pred segmentation result :return: the evaluation results """ # make all these folders for results if not (pred_segmentations is None): self.write_pascal_segmentation_result(pred_segmentations) info = self._py_evaluate_segmentation() return info def write_pascal_segmentation_result(self, pred_segmentations): """ Write pred segmentation to res_file_folder :param pred_segmentations: the pred segmentation results :param res_file_folder: the saving folder :return: [None] """ result_dir = os.path.join(self.result_path, 'results') if not os.path.exists(result_dir): os.mkdir(result_dir) year_folder = os.path.join(self.result_path, 'results', 'VOC' + self.year) if not os.path.exists(year_folder): os.mkdir(year_folder) res_file_folder = os.path.join(self.result_path, 'results', 'VOC' + self.year, 'Segmentation') if not os.path.exists(res_file_folder): os.mkdir(res_file_folder) result_dir = os.path.join(self.result_path, 'results', 'VOC' + self.year, 'Segmentation') if not os.path.exists(result_dir): os.mkdir(result_dir) pallete = self.get_pallete(256) for i, index in enumerate(self.image_set_index): segmentation_result = np.uint8(np.squeeze(np.copy(pred_segmentations[i]))) segmentation_result = PIL.Image.fromarray(segmentation_result) segmentation_result.putpalette(pallete) segmentation_result.save(os.path.join(result_dir, '%s.png'%(index))) def get_pallete(self, num_cls): """ this function is to get the colormap for visualizing the segmentation mask :param num_cls: the number of visulized class :return: the pallete """ n = num_cls pallete = [0]*(n*3) for j in xrange(0,n): lab = j pallete[j*3+0] = 0 pallete[j*3+1] = 0 pallete[j*3+2] = 0 i = 0 while (lab > 0): pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i)) pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i)) pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i)) i = i + 1 lab >>= 3 return pallete def get_confusion_matrix(self, gt_label, pred_label, class_num): """ Calcute the confusion matrix by given label and pred :param gt_label: the ground truth label :param pred_label: the pred label :param class_num: the nunber of class :return: the confusion matrix """ index = (gt_label * class_num + pred_label).astype('int32') label_count = np.bincount(index) confusion_matrix = np.zeros((class_num, class_num)) for i_label in range(class_num): for i_pred_label in range(class_num): cur_index = i_label * class_num + i_pred_label if cur_index < len(label_count): confusion_matrix[i_label, i_pred_label] = label_count[cur_index] return confusion_matrix def _py_evaluate_segmentation(self): """ This function is a wrapper to calculte the metrics for given pred_segmentation results :param pred_segmentations: the pred segmentation result :return: the evaluation metrics """ confusion_matrix = np.zeros((self.num_classes,self.num_classes)) result_dir = os.path.join(self.result_path, 'results', 'VOC' + self.year, 'Segmentation') for i, index in enumerate(self.image_set_index): seg_gt_info = self.load_pascal_segmentation_annotation(index) seg_gt_path = seg_gt_info['seg_cls_path'] seg_gt = np.array(PIL.Image.open(seg_gt_path)).astype('float32') seg_pred_path = os.path.join(result_dir, '%s.png'%(index)) seg_pred = np.array(PIL.Image.open(seg_pred_path)).astype('float32') seg_gt = cv2.resize(seg_gt, (seg_pred.shape[1], seg_pred.shape[0]), interpolation=cv2.INTER_NEAREST) ignore_index = seg_gt != 255 seg_gt = seg_gt[ignore_index] seg_pred = seg_pred[ignore_index] confusion_matrix += self.get_confusion_matrix(seg_gt, seg_pred, self.num_classes) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) IU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IU = IU_array.mean() return {'meanIU':mean_IU, 'IU_array':IU_array} def get_result_file_template(self): """ this is a template VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt :return: a string template """ res_file_folder = os.path.join(self.result_path, 'results', 'VOC' + self.year, 'Main') comp_id = self.config['comp_id'] filename = comp_id + '_det_' + self.image_set + '_{:s}.txt' path = os.path.join(res_file_folder, filename) return path def write_pascal_results(self, all_boxes): """ write results files in pascal devkit path :param all_boxes: boxes to be processed [bbox, confidence] :return: None """ for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue print 'Writing {} VOC results file'.format(cls) filename = self.get_result_file_template().format(cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(self.image_set_index): dets = all_boxes[cls_ind][im_ind] if len(dets) == 0: continue # the VOCdevkit expects 1-based indices for k in range(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index, dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1)) def do_python_eval(self): """ python evaluation wrapper :return: info_str """ info_str = '' annopath = os.path.join(self.data_path, 'Annotations', '{0!s}.xml') imageset_file = os.path.join(self.data_path, 'ImageSets', 'Main', self.image_set + '.txt') annocache = os.path.join(self.cache_path, self.name + '_annotations.pkl') aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = True if self.year == 'SDS' or int(self.year) < 2010 else False print 'VOC07 metric? ' + ('Y' if use_07_metric else 'No') info_str += 'VOC07 metric? ' + ('Y' if use_07_metric else 'No') info_str += '\n' for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue filename = self.get_result_file_template().format(cls) rec, prec, ap = voc_eval(filename, annopath, imageset_file, cls, annocache, ovthresh=0.5, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) info_str += 'AP for {} = {:.4f}\n'.format(cls, ap) print('Mean [email protected] = {:.4f}'.format(np.mean(aps))) info_str += 'Mean [email protected] = {:.4f}\n\n'.format(np.mean(aps)) # @0.7 aps = [] for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue filename = self.get_result_file_template().format(cls) rec, prec, ap = voc_eval(filename, annopath, imageset_file, cls, annocache, ovthresh=0.7, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) info_str += 'AP for {} = {:.4f}\n'.format(cls, ap) print('Mean [email protected] = {:.4f}'.format(np.mean(aps))) info_str += 'Mean [email protected] = {:.4f}'.format(np.mean(aps)) return info_str
42.781182
119
0.591428
[ "MIT" ]
alphadadajuju/Deep-Feature-Flow-mod
lib/dataset/pascal_voc.py
19,551
Python
from typing import List from yandex_market_language import models, exceptions from yandex_market_language.models import fields from yandex_market_language.models.abstract import XMLElement, XMLSubElement from yandex_market_language.exceptions import ValidationError class Shop( fields.EnableAutoDiscountField, fields.DeliveryOptionsField, fields.PickupOptionsField, models.AbstractModel ): """ Shop model. Docs: https://yandex.ru/support/partnermarket/elements/shop.html """ __slots__ = [ '_url', 'name', 'company', 'currencies', 'categories', 'offers', 'platform', 'version', 'agency', 'email', '_delivery_options', '_pickup_options', '_enable_auto_discounts', 'gifts', 'promos' ] def __init__( self, name: str, company: str, url: str, currencies: List["models.Currency"], categories: List["models.Category"], offers: List["models.offers.AbstractOffer"], platform: str = None, version: str = None, agency: str = None, email: str = None, delivery_options: List["models.Option"] = None, pickup_options: List["models.Option"] = None, enable_auto_discounts=None, gifts: List["models.Gift"] = None, promos: List["models.Promo"] = None, ): self.name = name self.company = company self.url = url self.platform = platform self.version = version self.agency = agency self.email = email self.currencies = currencies self.categories = categories self.delivery_options = delivery_options self.pickup_options = pickup_options self.enable_auto_discounts = enable_auto_discounts self.offers = offers self.gifts = gifts self.promos = promos @property def url(self): return self._url @url.setter def url(self, value: str): if len(value) > 512: raise ValidationError("The maximum url length is 512 characters.") self._url = value def create_dict(self, **kwargs) -> dict: return dict( name=self.name, company=self.company, url=self.url, platform=self.platform, version=self.version, agency=self.agency, email=self.email, currencies=[c.to_dict() for c in self.currencies], categories=[c.to_dict() for c in self.categories], delivery_options=[o.to_dict() for o in self.delivery_options], pickup_options=[o.to_dict() for o in self.pickup_options], enable_auto_discounts=self.enable_auto_discounts, offers=[o.to_dict() for o in self.offers], gifts=[g.to_dict() for g in self.gifts] if self.gifts else [], promos=[p.to_dict() for p in self.promos] if self.promos else [], ) def create_xml(self, **kwargs) -> XMLElement: shop_el = XMLElement("shop") # Add simple elements for tag in ( "name", "company", "url", "platform", "version", "agency", "email", ): value = getattr(self, tag) if value: el = XMLSubElement(shop_el, tag) el.text = value # Add currencies currencies_el = XMLSubElement(shop_el, "currencies") for c in self.currencies: c.to_xml(currencies_el) # Add categories categories_el = XMLSubElement(shop_el, "categories") for c in self.categories: c.to_xml(categories_el) # Add delivery options if self.delivery_options: delivery_options_el = XMLSubElement(shop_el, "delivery-options") for o in self.delivery_options: o.to_xml(delivery_options_el) # Add pickup options if self.pickup_options: pickup_options_el = XMLSubElement(shop_el, "pickup-options") for o in self.pickup_options: o.to_xml(pickup_options_el) # Add enable_auto_discounts if self._enable_auto_discounts: enable_auto_discounts_el = XMLSubElement( shop_el, "enable_auto_discounts" ) enable_auto_discounts_el.text = self._enable_auto_discounts # Add offers offers_el = XMLSubElement(shop_el, "offers") for o in self.offers: o.to_xml(offers_el) # Add gifts if self.gifts: gifts_el = XMLSubElement(shop_el, "gifts") for g in self.gifts: g.to_xml(gifts_el) # Add promos if self.promos: promos_el = XMLSubElement(shop_el, "promos") for p in self.promos: p.to_xml(promos_el) return shop_el @staticmethod def from_xml(shop_el: XMLElement) -> "Shop": kwargs = {} for el in shop_el: if el.tag == "currencies": currencies = [] for currency_el in el: currencies.append(models.Currency.from_xml(currency_el)) kwargs["currencies"] = currencies elif el.tag == "categories": categories = [] for category_el in el: categories.append(models.Category.from_xml(category_el)) kwargs["categories"] = categories elif el.tag == "delivery-options": delivery_options = [] for option_el in el: delivery_options.append(models.Option.from_xml(option_el)) kwargs["delivery_options"] = delivery_options elif el.tag == "pickup-options": pickup_options = [] for option_el in el: pickup_options.append(models.Option.from_xml(option_el)) kwargs["pickup_options"] = pickup_options elif el.tag == "offers": offers = [] for offer_el in el: offer_type = offer_el.attrib.get("type") if offer_type is None: offer = models.SimplifiedOffer.from_xml(offer_el) elif offer_type == "vendor.model": offer = models.ArbitraryOffer.from_xml(offer_el) elif offer_type == "book": offer = models.BookOffer.from_xml(offer_el) elif offer_type == "audiobook": offer = models.AudioBookOffer.from_xml(offer_el) elif offer_type == "artist.title": offer = models.MusicVideoOffer.from_xml(offer_el) elif offer_type == "medicine": offer = models.MedicineOffer.from_xml(offer_el) elif offer_type == "event-ticket": offer = models.EventTicketOffer.from_xml(offer_el) elif offer_type == "alco": offer = models.AlcoholOffer.from_xml(offer_el) else: raise exceptions.ParseError( "Got unexpected offer type: {0}".format(offer_type) ) offers.append(offer) kwargs["offers"] = offers elif el.tag == "gifts": gifts = [] for gift_el in el: gifts.append(models.Gift.from_xml(gift_el)) if gifts: kwargs["gifts"] = gifts elif el.tag == "promos": promos = [] for promo_el in el: promos.append(models.Promo.from_xml(promo_el)) if promos: kwargs["promos"] = promos else: kwargs[el.tag] = el.text return Shop(**kwargs)
34.172996
79
0.540684
[ "MIT" ]
stefanitsky/yandex_market_language
yandex_market_language/models/shop.py
8,099
Python
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2017-10-02 09:43 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hkm', '0025_userprofile_printer_presets'), ] operations = [ migrations.AddField( model_name='userprofile', name='printer_password', field=models.CharField(blank=True, max_length=255, null=True, verbose_name='Printer password'), ), migrations.AddField( model_name='userprofile', name='printer_username', field=models.CharField(blank=True, max_length=255, null=True, verbose_name='Printer username'), ), ]
28.807692
107
0.636849
[ "MIT" ]
City-of-Helsinki/kuvaselaamo
hkm/migrations/0026_hkm_museum_printer_credentials.py
749
Python
# ============================================================================= # IMPORTS # ============================================================================= import torch from espaloma.nn.readout.base_readout import BaseReadout # ============================================================================= # MODULE CLASSES # ============================================================================= class NodeTyping(BaseReadout): """Simple typing on homograph.""" def __init__(self, in_features, n_classes=100): super(NodeTyping, self).__init__() self.c = torch.nn.Linear(in_features, n_classes) def forward(self, g): g.apply_nodes( ntype="n1", func=lambda node: {"nn_typing": self.c(node.data["h"])}, ) return g
32.48
79
0.383005
[ "MIT" ]
choderalab/espaloma
espaloma/nn/readout/node_typing.py
812
Python
from __future__ import print_function, division import json import torch from torch.utils.data import Dataset import numpy as np import os import sys import collections import torch.utils.data as data import shutil from PIL import Image from torchvision.datasets.utils import download_url, check_integrity class ADE20KDataset(Dataset): def __init__(self,ROOT_DIR, period, transform=None): self.root_dir = ROOT_DIR self.rst_dir = os.path.join(self.root_dir,'ADEChallengeData2016','result') self.period = period self.num_categories = 150 self.transform = transform self.odgt = None if self.period == 'train': self.odgt = os.path.join(self.root_dir,'ADEChallengeData2016','train.odgt') else: self.odgt = os.path.join(self.root_dir,'ADEChallengeData2016','validation.odgt') self.list_sample = [json.loads(x.rstrip()) for x in open(self.odgt, 'r')] def __len__(self): return len(self.list_sample) def __getitem__(self, idx): image_path = os.path.join(self.root_dir, self.list_sample[idx]['fpath_img']) img = Image.open(image_path).convert('RGB') r = self.list_sample[idx]['height'] c = self.list_sample[idx]['width'] name = self.list_sample[idx]['fpath_img'].replace('ADEChallengeData2016/images/','') if self.period == 'train': name = name.replace('train/','') if 'val' in self.period: name = name.replace('validation/','') assert(self.period != 'test') name = name.replace('.jpg','') sample = {'image': img, 'name': name, 'row': r, 'col': c} if self.period == 'train' or self.period == 'val': seg_path = os.path.join(self.root_dir, self.list_sample[idx]['fpath_segm']) seg = Image.open(seg_path) sample['segmentation'] = seg #assert(seg.ndim == 2) assert(img.size[0] == seg.size[0]) assert(img.size[1] == seg.size[1]) if self.transform is not None: img, target = self.transform(img, seg) return img, target def decode_target(self, label): m = label.astype(np.uint16) r,c = m.shape cmap = np.zeros((r,c,3), dtype=np.uint8) cmap[:,:,0] = (m&1)<<7 | (m&8)<<3 | (m&64)>>1 cmap[:,:,1] = (m&2)<<6 | (m&16)<<2 | (m&128)>>2 cmap[:,:,2] = (m&4)<<5 | (m&32)<<1 return cmap
36.411765
92
0.5937
[ "MIT" ]
hsfzxjy/ESSNet
datasets/ade.py
2,476
Python
# coding: utf-8 # # Copyright 2018 Moriyoshi Koizumi # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import six import pandas from .column import _DataFrameColumn, _Function, _Literal, eval_column, infer_data_type, compile_to_raf, resolve_alias from .functions import SimpleAggregationFunctionSpec from .group import GroupedData from .types import StructType, StructField class _Raw(object): def __init__(self, pdf): self.pdf = pdf def __call__(self, df): return self.pdf class _Filter(object): def __init__(self, df, expr): self.df = df self.expr = expr def __call__(self, df): raf = compile_to_raf(df, self.expr) pdf = self.df._yield_pdf() return pdf.loc[raf] class _Aggregation(object): def __init__(self, grouped_data, agg_cols): self.grouped_data = grouped_data self.agg_cols = agg_cols def __call__(self, df): pdf = self.grouped_data.df._yield_pdf() agg_fn_cols = [] agg_variations = set() const_cols = [] resolved_cols = [] for col in self.agg_cols: col = resolve_alias(col) resolved_cols.append(col) if isinstance(col, _Function): agg_fn_cols.append(col) if isinstance(col.spec, SimpleAggregationFunctionSpec): agg_variations.add(col.spec.fn) else: raise TypeError() elif isinstance(col, _Literal): const_cols.append(col) else: raise TypeError(col.__class__) if len(self.grouped_data.cols) > 0: pg = pdf.groupby( by=[pdf.iloc[:,col.index] for col in self.grouped_data.cols] ) agg_result = pg.aggregate(list(agg_variations)) agg_result = pandas.concat([agg_result.index.to_frame(), agg_result], axis=1) # convert columns to a set of series agg_result_index = agg_result.index.to_frame() series_set = [ agg_result_index[col].rename(i) for i, col in enumerate(agg_result_index.columns) ] for col in resolved_cols: if isinstance(col, _Function): if isinstance(col.spec, SimpleAggregationFunctionSpec): series = agg_result[col.operands[0].index, col.spec.fn].rename(len(series_set)) else: # should never get here; already validated in the above loop assert False elif isinstance(col, _Literal): series = pandas.Series([col.value], name=len(series_set)) else: # should never get here; already validated in the above loop assert False series_set.append(series) else: agg_result = pdf.aggregate(list(agg_variations)) # convert columns to a set of series series_set = [] for col in self.agg_cols: if isinstance(col, _Function): if isinstance(col.spec, SimpleAggregationFunctionSpec): series = pandas.Series([agg_result[col.operands[0].index][col.spec.fn]], name=len(series_set)) else: # should never get here; already validated in the above loop assert False elif isinstance(col, _Literal): series = pandas.Series([col.value], name=len(series_set)) else: # should never get here; already validated in the above loop assert False series_set.append(series) return pandas.concat(series_set, axis=1) class _WithColumns(object): def __init__(self, df, name_col_pairs): self.df = df self.name_col_pairs = name_col_pairs def __call__(self, df): extra_fields = df.schema.fields[len(self.df.schema.fields):] lhs = self.df._yield_pdf() return pandas.concat( [lhs] + [ eval_column(df, lhs, col).rename(i) for i, (_, col) in enumerate(self.name_col_pairs, len(self.df.columns)) ], axis=1 ) class _Union(object): def __init__(self, df, following): self.df = df self.following = following def __call__(self, df): return pandas.concat([self.df._yield_pdf(), self.following._yield_pdf()], axis=0) class _OrderBy(object): def __init__(self, df, cols, ascending=None): self.df = df self.cols = cols self.ascending = ascending def __call__(self, df): assert all(isinstance(col, _DataFrameColumn) for col in self.cols) return self.df._yield_pdf().sort_values(by=[col.index for col in self.cols], ascending=self.ascending) class Row(object): def __init__(self, pdf, schema, i, name_to_column_map): self.pdf = pdf self.schema = schema self.i = i self.name_to_column_map = name_to_column_map def __str__(self): return str(self.pdf.iloc[self.i]) def __getitem__(self, i): if isinstance(i, six.string_types): return self.pdf.iloc[self.i][self.name_to_column_map[i].index] else: return self.pdf.iloc[self.i][i] class DataFrame(object): def __init__(self, sql_ctx, schema, modifier=None): self.sql_ctx = sql_ctx self.schema = schema self.modifier = modifier self._columns = [ _DataFrameColumn(self, f, i) for i, f in enumerate(schema.fields) ] self._name_to_column_map = { f.name: c for f, c in zip(schema.fields, self._columns) } def __getitem__(self, i): if isinstance(i, six.string_types): return self._name_to_column_map[i] elif isinstance(i, (int, long)): return self._columns[i] else: raise TypeError() def filter(self, cond): return DataFrame( self.sql_ctx, self.schema, _Filter(self, cond) ) def groupBy(self, *cols): return GroupedData(self, cols) def agg(self, *exprs): return self.groupBy().agg(*exprs) def withColumn(self, name, col): return self._with_columns([(name, col)]) def unionAll(self, following): return DataFrame( self.sql_ctx, self.schema, _Union(self, following) ) def orderBy(self, *cols, **kwargs): ascending = kwargs.pop('ascending', None) return DataFrame( self.sql_ctx, self.schema, _OrderBy(self, cols, ascending) ) @property def columns(self): return [col.field.name for col in self._columns] def _with_columns(self, name_col_pairs): return DataFrame( self.sql_ctx, StructType( fields=self.schema.fields + [ StructField( name, infer_data_type(col) ) for name, col in name_col_pairs ] ), _WithColumns(self, name_col_pairs) ) def _yield_pdf(self): return self.modifier(self) def collect(self): pdf = self._yield_pdf() return [ Row(pdf, self.schema, i, self._name_to_column_map) for i in range(0, len(pdf)) ]
33.796875
118
0.589112
[ "MIT" ]
moriyoshi/dummydf
dummydf/sql/dataframe.py
8,652
Python
from kivy.uix.screenmanager import Screen # Declara o Menu do Jogo class TelaMenu(Screen): pass # Declara a Tela do Pong class TelaJogo(Screen): pass # Declara a Tela do Vencedor 3 class TelaVencedor1(Screen): pass # Declara a Tela do Vencedor 2 class TelaVencedor2(Screen): pass
13.818182
41
0.723684
[ "MIT" ]
LivioAlvarenga/Tutoriais_Kivy_KivyMD
Jogo_pong/telas/Telas.py
304
Python
def printBigHeadline(text): print("") print("#######################################################################") print(text) print("#######################################################################") print("") def printSmallHeadline(text): print("") print("-----------------------------------------------------------------------") print(text) print("-----------------------------------------------------------------------") print("")
30.5625
84
0.216769
[ "MIT" ]
recursinging/daisyHat
python/daisyHat/Tools.py
489
Python
import re from social_core.backends.oauth import OAuthAuth NAME_RE = re.compile(r'([^O])Auth') LEGACY_NAMES = ['username', 'email'] def backend_name(backend): name = backend.__name__ name = name.replace('OAuth', ' OAuth') name = name.replace('OpenId', ' OpenId') name = name.replace('Sandbox', '') name = NAME_RE.sub(r'\1 Auth', name) return name def backend_class(backend): return backend.name.replace('-', ' ') def icon_name(name): return { 'stackoverflow': 'stack-overflow', 'google-oauth': 'google', 'google-oauth2': 'google', 'google-openidconnect': 'google', 'yahoo-oauth': 'yahoo', 'facebook-app': 'facebook', 'email': 'envelope', 'vimeo': 'vimeo-square', 'linkedin-oauth2': 'linkedin', 'vk-oauth2': 'vk', 'live': 'windows', 'username': 'user', }.get(name, name) def slice_by(value, items): return [value[n:n + items] for n in range(0, len(value), items)] def social_backends(backends): return filter_backends( backends, lambda name, backend: name not in LEGACY_NAMES ) def legacy_backends(backends): return filter_backends( backends, lambda name, backend: name in LEGACY_NAMES ) def oauth_backends(backends): return filter_backends( backends, lambda name, backend: issubclass(backend, OAuthAuth) ) def filter_backends(backends, filter_func): backends = [item for item in backends.items() if filter_func(*item)] backends.sort(key=lambda backend: backend[0]) return backends
23.157143
72
0.624923
[ "MIT" ]
776166/yggdrasil-django
site/social_auth/filters.py
1,621
Python
""" Get a list of Packages in CI, Deployed, or all Images """ from __future__ import print_function from pc_lib import pc_api, pc_utility # --Configuration-- # parser = pc_utility.get_arg_parser() parser.add_argument( '--mode', type=str, choices=['ci', 'deployed', 'all'], default='all', help='(Optional) - Report on CI, Deployed, or all Images.') parser.add_argument( '--package_type', type=str, choices=['binary', 'gem', 'go', 'jar', 'nodejs', 'nuget', 'package', 'python', 'windows', 'all'], default='all', help='(Optional) - Report on one or all Package Types.') parser.add_argument( '--image_id', type=str, help='(Optional) - ID of the Image (sha256:...).') parser.add_argument( '--package_id', type=str, help='(Optional) - ID of the Package (name:version).') args = parser.parse_args() search_package_name = None search_package_version = None if args.package_id: print_all_packages = False if ':' in args.package_id: [search_package_name, search_package_version] = args.package_id.split(':') else: search_package_name = args.package_id else: print_all_packages = True # --Helpers-- # def optional_print(txt='', mode=True): if mode: print(txt) # --Initialize-- # settings = pc_utility.get_settings(args) pc_api.configure(settings) pc_api.validate_api_compute() # --Main-- # get_deployed_images = True get_ci_images = True deployed_images_with_package = [] ci_images_with_package = [] """ "instances": [{ "image": "k8s.gcr.io/etcd:3.4.3-0", "host": "demo", "registry": "k8s.gcr.io" "repo": "etcd", "tag": "3.4.3-0", }], "packages": [{ "pkgsType": "package", "pkgs": [{ "version": "2.27-2", "name": "grep", "cveCount": 12, "license": "GPL-3+", "layerTime": 1557275612 }], "pkgsType": [ "binary", "gem", "go", "jar", "nodejs", "nuget", "package", "python", "windows", ] """ print('Testing Compute API Access ...', end='') intelligence = pc_api.statuses_intelligence() print(' done.') print() if search_package_name: print('Searching for Package: (%s) Version: (%s)' % (search_package_name, search_package_version)) print() # Monitor > Vulnerabilities/Compliance > Images > Deployed deployed_images = {} if args.mode in ['deployed', 'all']: print('Getting Deployed Images ...') images = pc_api.images_list_read(args.image_id) for image in images: image_id = image['_id'] # TODO: Verify instances array length. image_ii = '%s %s' % (image['instances'][0]['image'], image['instances'][0]['host']) deployed_images[image_id] = { 'id': image['_id'], 'instance': image_ii, 'instances': image['instances'], 'packages': image['packages']} optional_print(mode=print_all_packages) for image in deployed_images: optional_print('Deployed Image', mode=print_all_packages) optional_print('ID: %s' % image, mode=print_all_packages) optional_print('Instance: %s' % deployed_images[image]['instance'], mode=print_all_packages) optional_print(mode=print_all_packages) if not deployed_images[image]['packages']: continue for package_type in deployed_images[image]['packages']: for package in package_type['pkgs']: optional_print('\tType: %s' % package_type['pkgsType'], mode=print_all_packages) optional_print('\tName: %s' % package['name'], mode=print_all_packages) optional_print('\tVers: %s' % package['version'], mode=print_all_packages) optional_print('\tCVEs: %s' % package['cveCount'], mode=print_all_packages) optional_print(mode=print_all_packages) if args.package_type in [package_type['pkgsType'], 'all']: if search_package_name and (search_package_name == package['name']): if search_package_version: if search_package_version == package['version']: deployed_images_with_package.append(deployed_images[image]['instance']) else: deployed_images_with_package.append(deployed_images[image]['instance']) print('Done.') print() # Monitor > Vulnerabilities/Compliance > Images > CI ci_images = {} if args.mode in ['ci', 'all']: print('Getting CI Images ...') images = pc_api.scans_list_read(args.image_id) for image in images: image_id = image['entityInfo']['id'] if image['entityInfo']['instances']: image_ii = '%s %s' % (image['entityInfo']['instances'][0]['image'], image['entityInfo']['instances'][0]['host']) else: image_ii = None ci_images[image_id] = { 'id': image['entityInfo']['id'], 'instance': image_ii, 'instances': image['entityInfo']['instances'], 'packages': image['entityInfo']['packages']} optional_print(mode=print_all_packages) for image in ci_images: optional_print('CI Image', mode=print_all_packages) optional_print('ID: %s' % image, mode=print_all_packages) optional_print('Instance: %s' % ci_images[image]['instance'], mode=print_all_packages) optional_print(mode=print_all_packages) if not ci_images[image]['packages']: continue for package_type in ci_images[image]['packages']: for package in package_type['pkgs']: optional_print('\tType: %s' % package_type['pkgsType'], mode=print_all_packages) optional_print('\tName: %s' % package['name'], mode=print_all_packages) optional_print('\tVers: %s' % package['version'], mode=print_all_packages) optional_print('\tCVEs: %s' % package['cveCount'], mode=print_all_packages) optional_print(mode=print_all_packages) if args.package_type in [package_type['pkgsType'], 'all']: if search_package_name and (search_package_name == package['name']): if search_package_version: if search_package_version == package['version']: ci_images_with_package.append(deployed_images[image]['instance']) else: ci_images_with_package.append(deployed_images[image]['instance']) print('Done.') print() if args.package_id: if args.mode in ['deployed', 'all']: print() if deployed_images_with_package: print('Package: (%s) Version: (%s) found in these Deployed Images:' % (search_package_name, search_package_version)) print() for image in deployed_images_with_package: print('\t%s' % image) else: print('Package: (%s) Version: (%s) not found in any Deployed Images' % (search_package_name, search_package_version)) if args.mode in ['ci', 'all']: print() if ci_images_with_package: print('Package: (%s) Version: (%s) found in these CI Images:' % (search_package_name, search_package_version)) print() for image in ci_images_with_package: print('\t%s' % image) else: print('Package: (%s) Version: (%s) not found in any CI Images' % (search_package_name, search_package_version))
37.351485
129
0.605302
[ "MIT" ]
moonman81/pc-toolbox
pcs_images_packages_read.py
7,545
Python
import numpy as np import theano def intX(X): return np.asarray(X, dtype=np.int32) def floatX(X): return np.asarray(X, dtype=theano.config.floatX) def sharedX(X, dtype=theano.config.floatX, name=None): return theano.shared(np.asarray(X, dtype=dtype), name=name) def shared0s(shape, dtype=theano.config.floatX, name=None): return sharedX(np.zeros(shape), dtype=dtype, name=name) def sharedNs(shape, n, dtype=theano.config.floatX, name=None): return sharedX(np.ones(shape)*n, dtype=dtype, name=name) def downcast_float(X): return np.asarray(X, dtype=np.float32)
28.095238
63
0.727119
[ "MIT" ]
IndicoDataSolutions/Passage
passage/theano_utils.py
590
Python
import sys from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import QMainWindow, QAction, QMessageBox, QStatusBar from PyMailConfigWindow import ConfigWindow from PyMailReceiverModel import ReceiverModel from PyMailReceiverView import ReceiverView from PyMailSenderModel import SenderModel from PyMailSenderWindow import SenderWindow from PyMailSplitWidget import SplitWidget from PyMailStartUpWindow import StartUpWindow from PyMailToolBar import ToolBar class PyMailMainWindow(QMainWindow): def __init__(self, delegate): super().__init__() self.setWindowTitle("PyMail") self.setWindowIcon(QIcon(r"res\logo.png")) self.setCentralWidget(SplitWidget(self)) self.setMinimumWidth(800) self.setMinimumHeight(600) self.setupUI() self.show() self.addToolBar(ToolBar(self)) self.delegate = delegate self.delegate.registerView(self) self.setStatusBar(QStatusBar()) self.statusBar() self.setStatusTip("Ready") self.startUpWindow = StartUpWindow(self, self.delegate) def setupUI(self): self.setupMenuBar() def setupMenuBar(self): menuBar = self.menuBar() self.setupFileMenu(menuBar) self.setupEditMenu(menuBar) self.setupOptionsMenu(menuBar) self.setupHelpMenu(menuBar) def setupFileMenu(self, menuBar): fileMenu = menuBar.addMenu("File") self.setFileMenuActions(fileMenu) def setupEditMenu(self, menuBar): editMenu = menuBar.addMenu("Edit") def setupOptionsMenu(self, menuBar): optionsMenu = menuBar.addMenu("Options") settingsAction = QAction(QIcon(r"res\settings.png"), "Settings", optionsMenu) settingsAction.setStatusTip("Settings") settingsAction.triggered.connect(self.showSettings) optionsMenu.addAction(settingsAction) def setupHelpMenu(self, menuBar): helpMenu = menuBar.addMenu("Help") def setFileMenuActions(self, fileMenu): exitAction = QAction(QIcon(r"res\exit.png"), "Exit", fileMenu) exitAction.setShortcut("Ctrl+Q") exitAction.triggered.connect(self.close) fileMenu.addAction(exitAction) def showSettings(self): settingsView = ConfigWindow(self) self.delegate.reset() self.delegate.configView = settingsView self.centralWidget().changeRightWidget(settingsView) def showHelp(self): pass def receiveMail(self): self.delegate.reset() receiverView = ReceiverView() self.delegate.receiverView = receiverView receiverModel = ReceiverModel() receiverModel.delegate = self.delegate self.delegate.receiverModel = receiverModel receiverView.delegate = self.delegate self.centralWidget().changeLeftWidget(receiverView) def showNewMail(self): newMailView = SenderWindow() newMailModel = SenderModel() self.delegate.reset() self.delegate.senderView = newMailView self.delegate.senderModel = newMailModel newMailView.delegate = self.delegate newMailModel.delegate = self.delegate newMailView.set_actions() self.centralWidget().changeRightWidget(newMailView) def closeEvent(self, event): event.ignore() self.exit() def resizeEvent(self, event): self.centralWidget().resizeWidget() def exit(self): msg = QMessageBox.question(None, "Exit PyMail", "Do You want to quit") if msg == QMessageBox.Yes: self.destroy() sys.exit()
33.663551
85
0.68573
[ "MIT" ]
LolsonX/PyMail
PyMailMainWindow.py
3,602
Python
from abc import ABC from types import NoneType import logictest import http_connector from log import log class TestHttp(logictest.SuiteRunner, ABC): def __init__(self, kind, pattern): super().__init__(kind, pattern) self._http = None def get_connection(self): if self._http is None: self._http = http_connector.HttpConnector() self._http.connect(**self.driver) return self._http def reset_connection(self): self._http.reset_session() def batch_execute(self, statement_list): for statement in statement_list: self.execute_statement(statement) self.reset_connection() def execute_ok(self, statement): self.get_connection().query_with_session(statement) return None def execute_error(self, statement): resp = self.get_connection().query_with_session(statement) return http_connector.get_error(resp) def execute_query(self, statement): results = self.get_connection().fetch_all(statement.text) query_type = statement.s_type.query_type vals = [] for (ri, row) in enumerate(results): for (i, v) in enumerate(row): if isinstance(v, NoneType): vals.append("NULL") continue if query_type[i] == 'I': if not isinstance(v, int): log.error( "Expected int, got type {} in query {} row {} col {} value {}" .format(type(v), statement.text, ri, i, v)) elif query_type[i] == 'F' or query_type[i] == 'R': if not isinstance(v, float): log.error( "Expected float, got type {} in query {} row {} col {} value {}" .format(type(v), statement.text, ri, i, v)) elif query_type[i] == 'T': # include data, timestamp, dict, list ... if not (isinstance(v, str) or isinstance(v, dict) or isinstance(v, list)): log.error( "Expected string, got type {} in query {} row {} col {} value {}" .format(type(v), statement.text, ri, i, v)) elif query_type[i] == 'B': if not isinstance(v, bool): log.error( "Expected bool, got type {} in query {} row {} col {} value {}" .format(type(v), statement.text, ri, i, v)) else: log.error( "Unknown type {} in query {} row {} col {} value {}". format(query_type[i], statement.text, ri, i, v)) if isinstance(v, bool): v = str(v).lower( ) # bool to string in python will be True/False vals.append(str(v)) return vals
39.192308
93
0.499836
[ "Apache-2.0" ]
LiuYuHui/databend
tests/logictest/http_runner.py
3,057
Python
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-14 18:05 from __future__ import unicode_literals import common.blocks.columns import common.blocks.tabs from django.db import migrations, models import wagtail.wagtailcore.blocks import wagtail.wagtailcore.fields import wagtail.wagtailembeds.blocks import wagtail.wagtailimages.blocks class Migration(migrations.Migration): dependencies = [ ('common', '0017_upimagepath'), ] operations = [ migrations.AlterField( model_name='custompage', name='content', field=wagtail.wagtailcore.fields.StreamField((('appeal', wagtail.wagtailcore.blocks.StructBlock((('icon', wagtail.wagtailcore.blocks.ChoiceBlock(choices=[('none', 'none'), ('flask', 'flask'), ('group', 'group'), ('laptop', 'laptop'), ('sitemap', 'sitemap'), ('user', 'user'), ('book', 'book'), ('download', 'download')])), ('topic', wagtail.wagtailcore.blocks.CharBlock(max_length=35, required=True)), ('content', wagtail.wagtailcore.blocks.TextBlock(max_length=255, required=True))), classname='appeal', icon='tick', template='common/blocks/appeal.html')), ('heading', wagtail.wagtailcore.blocks.CharBlock(classname='full title')), ('statement', wagtail.wagtailcore.blocks.CharBlock()), ('paragraph', wagtail.wagtailcore.blocks.RichTextBlock()), ('imagechooser', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('column', common.blocks.columns.RowBlock()), ('tabbed_block', common.blocks.tabs.TabListBlock()), ('image', wagtail.wagtailcore.blocks.StructBlock((('main_image', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('style', wagtail.wagtailcore.blocks.ChoiceBlock(choices=[('max-width:225px;max-height:145px', 'small display'), ('max_width:250px;max-height:250px', 'middle display'), ('max_width:250px;max-height:250px;padding-top:20px', 'middle + padding display'), ('height:auto', 'auto display')], default='height:auto')), ('url', wagtail.wagtailcore.blocks.CharBlock(max_length=250, required=False))))), ('rich_text', wagtail.wagtailcore.blocks.RichTextBlock()), ('raw_html', wagtail.wagtailcore.blocks.RawHTMLBlock(help_text='With great power comes great responsibility. This HTML is unescaped. Be careful!')), ('people_block', wagtail.wagtailcore.blocks.StructBlock((('displayStyle', wagtail.wagtailcore.blocks.ChoiceBlock(choices=[('concise-team', 'concise-team'), ('concise-ambassador', 'concise-ambassador'), ('detailed', 'detailed')], default='concise')), ('tag', wagtail.wagtailcore.blocks.CharBlock(max_length=20))))), ('centered_text', wagtail.wagtailcore.blocks.StructBlock((('text', wagtail.wagtailcore.blocks.RichTextBlock()),))), ('hero_block', wagtail.wagtailcore.blocks.StructBlock((('image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=True)), ('description', wagtail.wagtailcore.blocks.RichTextBlock(required=True))))), ('spotlight_block', wagtail.wagtailcore.blocks.StructBlock((('bubbles', wagtail.wagtailcore.blocks.StreamBlock((('bubble_block', wagtail.wagtailcore.blocks.StructBlock((('image', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('title', wagtail.wagtailcore.blocks.CharBlock(max_length=35, required=True)), ('description', wagtail.wagtailcore.blocks.RichTextBlock(required=True))))),))),))), ('job_whole_block', wagtail.wagtailcore.blocks.StructBlock(())), ('embed_block', wagtail.wagtailembeds.blocks.EmbedBlock()), ('whitespaceblock', wagtail.wagtailcore.blocks.StructBlock((('height', wagtail.wagtailcore.blocks.IntegerBlock()),))), ('clear_fixblock', wagtail.wagtailcore.blocks.StructBlock(())), ('code_block', wagtail.wagtailcore.blocks.StructBlock((('language', wagtail.wagtailcore.blocks.ChoiceBlock(choices=[('python', 'python'), ('css', 'css'), ('sql', 'sql'), ('javascript', 'javascript'), ('clike', 'clike'), ('markup', 'markup'), ('java', 'java')], default='python')), ('codes', wagtail.wagtailcore.blocks.TextBlock())))), ('calender_blog', wagtail.wagtailcore.blocks.StructBlock((('source', wagtail.wagtailcore.blocks.CharBlock(help_text='Such as: [email protected]', max_length=255, required=True)),)))), blank=True, null=True), ), migrations.AlterField( model_name='upimagepath', name='upImagePath', field=models.CharField(default='https://cosio.s3.amazonaws.com/images/up.original.png', help_text='Up image path', max_length=255), ), ]
136.59375
3,522
0.732098
[ "Apache-2.0" ]
baylee-d/cos.io
common/migrations/0018_auto_20161014_1805.py
4,371
Python
# Copyright 2013 IBM Corp # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # yardstick comment: this is a modified copy of # ceilometer/ceilometer/dispatcher/http.py from __future__ import absolute_import import logging import os from oslo_serialization import jsonutils import requests from oslo_config import cfg from yardstick.dispatcher.base import Base as DispatchBase LOG = logging.getLogger(__name__) CONF = cfg.CONF http_dispatcher_opts = [ cfg.StrOpt('target', default='http://127.0.0.1:8000/results', help='The target where the http request will be sent. ' 'If this is not set, no data will be posted. For ' 'example: target = http://hostname:1234/path'), cfg.IntOpt('timeout', default=5, help='The max time in seconds to wait for a request to ' 'timeout.'), ] CONF.register_opts(http_dispatcher_opts, group="dispatcher_http") class HttpDispatcher(DispatchBase): """Dispatcher class for posting data into a http target. """ __dispatcher_type__ = "Http" def __init__(self, conf): super(HttpDispatcher, self).__init__(conf) self.headers = {'Content-type': 'application/json'} self.timeout = CONF.dispatcher_http.timeout self.target = CONF.dispatcher_http.target self.raw_result = [] self.result = { "project_name": "yardstick", "description": "yardstick test cases result", "pod_name": os.environ.get('NODE_NAME', 'unknown'), "installer": os.environ.get('INSTALLER_TYPE', 'unknown'), "version": os.environ.get('YARDSTICK_VERSION', 'unknown') } def record_result_data(self, data): self.raw_result.append(data) def flush_result_data(self): if self.target == '': # if the target was not set, do not do anything LOG.error('Dispatcher target was not set, no data will' 'be posted.') return self.result["details"] = self.raw_result case_name = "" for v in self.raw_result: if isinstance(v, dict) and "scenario_cfg" in v: case_name = v["scenario_cfg"]["tc"] break if case_name == "": LOG.error('Test result : %s', jsonutils.dump_as_bytes(self.result)) LOG.error('The case_name cannot be found, no data will be posted.') return self.result["case_name"] = case_name try: LOG.debug('Test result : %s', jsonutils.dump_as_bytes(self.result)) res = requests.post(self.target, data=jsonutils.dump_as_bytes(self.result), headers=self.headers, timeout=self.timeout) LOG.debug('Test result posting finished with status code' ' %d.' % res.status_code) except Exception as err: LOG.exception('Failed to record result data: %s', err)
35.257143
79
0.603998
[ "Apache-2.0" ]
kkltcjk/kklt
yardstick/dispatcher/http.py
3,702
Python
#created by Angus Clark on 8/01/2017 # toDo incoperate the saving program into this_dir import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = '130.56.253.43' print host # remove when done debugging port = 5201 # edit when port for comm is decided s.bind((host,port)) f = open('temp.json','wb') s.listen(5) while True: c, addr = s.accept() while(l): f.write(l) l = c.recv(1024) f.close() c.close()
19.956522
53
0.651416
[ "BSD-2-Clause" ]
wmizzi/tn2capstone
ServerScript/recievejson(legacy).py
459
Python
import json import requests HUE_NUPNP_URL = "https://www.meethue.com/api/nupnp" class APIException(Exception): pass class HueAPI(object): def __init__(self, username): self.username = username self.ip = self.discover_hub_ip() @property def base_url(self): return "http://{}/api/{}".format(self.ip, self.username) def get_groups(self): url = "{}/groups".format(self.base_url) try: r = requests.get(url) except: raise APIException("Failed to send group get GET") try: return list(r.json().keys()) except: raise APIException("Failed to decode group get json response") def set_group(self, group_id, state): url = "{}/groups/{}/action".format(self.base_url, group_id) try: r = requests.put(url, data=json.dumps({"on": state})) except: raise APIException("Failed to send group set PUT") def set_groups(self, state): for group in self.get_groups(): self.set_group(group, state) def discover_hub_ip(self): try: r = requests.get(HUE_NUPNP_URL) except: raise APIException("Failed to send hub ip GET") try: json_resp = r.json() except: raise APIException("Failed to decode hub ip json response") if len(json_resp) > 0: return [0]['internalipaddress'] else: raise APIException("Failed to find hub ip") def _main(): pass if __name__ == '__main__': _main()
23.910448
74
0.576779
[ "MIT" ]
BenDoan/playground
hue/hue_api.py
1,602
Python
# Generated by Django 2.2.1 on 2019-05-21 10:29 from django.db import migrations, models import uni_ticket.models class Migration(migrations.Migration): dependencies = [ ('uni_ticket', '0030_auto_20190520_1532'), ] operations = [ migrations.AlterField( model_name='ticketcategoryinputlist', name='input_type', field=models.CharField(choices=[('CustomSignedP7MField', 'Allegato P7M firmato'), ('CustomFileField', 'Allegato PDF'), ('CustomSignedFileField', 'Allegato PDF'), ('CustomSignedPdfField', 'Allegato PDF firmato'), ('CustomHiddenField', 'Campo nascosto'), ('CheckBoxField', 'Checkbox'), ('BaseDateField', 'Data'), ('BaseDateTimeField', 'Data e Ora'), ('DateStartEndComplexField', 'Data inizio e Data fine'), ('DurataComeInteroField', 'Durata come numero intero (anni,mesi,ore)'), ('CustomComplexTableField', 'Inserimenti multipli'), ('CustomRadioBoxField', 'Lista di opzioni (checkbox)'), ('CustomSelectBoxField', 'Lista di opzioni (tendina)'), ('PositiveFloatField', 'Numero con virgola positivo'), ('PositiveIntegerField', 'Numero intero positivo'), ('ProtocolloField', 'Protocollo (tipo/numero/data)'), ('CustomCharField', 'Testo'), ('TextAreaField', 'Testo lungo')], max_length=33), ), migrations.AlterField( model_name='ticketreply', name='attachment', field=models.FileField(blank=True, default=None, null=True, upload_to=uni_ticket.models._reply_attachment_upload), ), ]
60.72
895
0.690382
[ "Apache-2.0" ]
mspasiano/uniTicket
uni_ticket/migrations/0031_auto_20190521_1229.py
1,518
Python
from typing import List, Literal, Union, Callable, Tuple from dataclasses import dataclass, replace from .config_types import ( TWInterface, TWSettingStorage, TWSettingBool, TWSetting, WrapType, Fields, AnkiModel, LabelText, WhichField, Tags, Falsifiable, ) ScriptKeys = Literal[ 'enabled', 'name', 'version', 'description', 'conditions', 'code', ] def __list_to_tw_bool(prototype, vals: List[ScriptKeys]): return replace( prototype, **dict([(key, True) for key in vals]) ) def make_interface( # name for the type of the interface tag: str, prototype: WrapType, getter: Callable[[str, TWSettingStorage], TWSetting], # result is used for storing, setter: Callable[[str, TWSetting], Union[bool, TWSetting]], wrapper: Callable[[str, TWSettingStorage, AnkiModel, Fields, WhichField, slice, Tags], Tuple[Fields, Tags]], label: Falsifiable(Callable[[str, TWSettingStorage], LabelText]), reset: Falsifiable(Callable[[str, TWSettingStorage], TWSetting]), deletable: Falsifiable(Callable[[str, TWSettingStorage], bool]), # list of values that are readonly,, readonly: TWSettingBool, # list of values or stored in `storage` field, store: TWSettingBool, ) -> TWInterface: return TWInterface( tag, prototype, getter, setter, wrapper, label, reset, deletable, readonly, store, )
26.854545
112
0.654705
[ "MIT" ]
hgiesel/anki_text_wrapper
src/lib/interface.py
1,477
Python
import pymysql.cursors import ldap def get_domain_name(): """ Returns the domain name of the current configuration from a config file Returns ------- string the domain name """ with open("/var/www/logic_webapp/webapp_config") as file: line = file.readline() domain = line.split("=")[1].rstrip() # Take right hand side of = and remove \n return domain def get_db_password(): with open("/var/www/logic_webapp/webapp_config") as file: line = file.readlines()[1] password = line.split("=")[ 1 ].rstrip() # Take right hand side of = and remove \n return password def create_slurm_db_connection(host, port, user, password, db): """ Creates the connection to the database (MySQL) so it can be queried Parameters ---------- host : string hostname on which is located the DB port : integer port on which the connection is to be established user : string user name with which the connection is to be established password : string password of the user on the database (of the user `user`) db : string name of the database which will be queried Returns ------- PyMySQL Connection object """ connection = pymysql.connect( host=host, port=port, user=user, password=password, db=db, ) print("[+] Slurm accounting DB connection is up! [+]") return connection def create_ldap_connection(host): """ Creates an LDAP connection object with a given hostname Parameters ---------- host : hostname with the LDAP database in the form of (ldap://host) Returns ------- LDAP connection object """ connection = ldap.initialize(host) connection.set_option(ldap.OPT_REFERRALS, 0) connection.simple_bind_s() return connection
25.608108
87
0.626385
[ "MIT" ]
Quoding/petricore
webapp/external_access.py
1,895
Python
"""Form definitions, allow easy validation of input and rendering of forms """ # future imports from __future__ import absolute_import # local imports from app.forms.pages.base import PageForm class AboutPageForm(PageForm): pass
18.230769
74
0.780591
[ "Apache-2.0" ]
mjmcconnell/sra
src-server/app/forms/pages/about.py
237
Python
from typing import Union, Iterator, Tuple from ...symbols import NOUN, PROPN, PRON from ...errors import Errors from ...tokens import Doc, Span def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]: """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ labels = [ "oprd", "nsubj", "dobj", "nsubjpass", "pcomp", "pobj", "dative", "appos", "attr", "ROOT", ] doc = doclike.doc # Ensure works on both Doc and Span. if not doc.has_annotation("DEP"): raise ValueError(Errors.E029) np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") np_label = doc.vocab.strings.add("NP") prev_end = -1 for i, word in enumerate(doclike): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.left_edge.i <= prev_end: continue if word.dep in np_deps: prev_end = word.i yield word.left_edge.i, word.i + 1, np_label elif word.dep == conj: head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: prev_end = word.i yield word.left_edge.i, word.i + 1, np_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
30.784314
81
0.56879
[ "Apache-2.0", "MIT" ]
Alan-love/spaCy
spacy/lang/en/syntax_iterators.py
1,570
Python
"""Permissions for the client app""" from rest_framework import permissions class ClientPermissions(permissions.BasePermission): """Handles authorization of requests to the client app.""" def has_permission(self, request, view): if view.action == 'create' \ and request.user.has_perm('client.add_client'): return True if view.action in ['update', 'partial_update'] \ and request.user.has_perm('client.change_client'): return True if view.action in ['list', 'retrieve'] \ and request.user.has_perm('client.view_client'): return True
34.315789
66
0.628834
[ "MIT" ]
My-Garage/resourceideaapi
client/permissions.py
652
Python
import os import discord import youtube_dl as ytdl class MusicPlayer: ''' This module is responsible for connecting and disconnecting the bot from a voice channel, downloading songs from youtube and add them in the queue . Basic music functions like pause, resume, stop and play, in order to give users a simple music bot based on the new api of discord. ''' def __init__(self): self.queue = [] self.voiceChannel = None self.ydl_opts = { 'format': 'bestaudio/best', # 'quiet' : True, 'outtmpl': 'songs/%(title)s-%(id)s.%(ext)s', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], } async def connect(self, channel): ''' Connects bot to the given voice channel. If it is not already connected. :param channel: The channel from which the user send the command ''' if self.voiceChannel is None or not self.voiceChannel.is_connected(): self.voiceChannel = await channel.connect() async def disconnect(self): ''' Disconnects from the channel that the bot is already connected. If there is no such a channel, this function will simply do nothing ''' if self.voiceChannel is not None and self.voiceChannel.is_connected(): await self.voiceChannel.disconnect() def getNextSong(self): ''' If the queue is not empty this function will remove the first song from the queue and return it :return: the next song of the queue, or None if the queue is empty ''' if self.queue: return self.queue.pop(0) else: return None def clear_folder(self): ''' Because the songs will be downloaded, it is important to delete them if there are not longer needed. This function deletes the songs that are not in the queue (not one of the upcoming songs) ''' for song in os.listdir("songs/"): if "songs/" + song not in self.queue: os.remove("songs/" + song) async def add_song(self, url, ctx): ''' Add a new song from the youtube in the queue. It will not be downloaded if it is already in the songs file :param url: The url of the youtube song :param ctx: The channel from which the user send the command ''' with ytdl.YoutubeDL(self.ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=False) title = "songs/" + info_dict['title'] + "-" + info_dict['id'] + ".mp3" if title not in self.queue: await ctx.send("Your song is downloading now!") ydl.extract_info(url, download=True) self.queue.append(title) if self.voiceChannel is None or not self.voiceChannel.is_connected() or not self.voiceChannel.is_playing(): await ctx.send("Your song has added to the queue, use $play to start the party!!") else: await ctx.send("Your song has added to the queue") def load_next_song(self): ''' This will create a FFMPEG object and start playing it in the voice channel ''' if not self.voiceChannel.is_playing() and self.queue: audio_source = discord.FFmpegPCMAudio(self.getNextSong()) # TODO: make the bot play the next song after the previous one has ended self.voiceChannel.play(audio_source, after=None) async def pause_song(self, ctx): ''' Pauses a song that is already being played or send a message if there is no such song :param ctx: The channel from which the user gave the command. ''' if self.voiceChannel is not None and self.voiceChannel.is_connected() and self.voiceChannel.is_playing(): self.voiceChannel.pause() else: await ctx.send("There is no song playing in order to pause it") async def resume_song(self, ctx): ''' Resumes a song if there is one that has been paused or send a message if there is no such song :param ctx: The channel from which the user gave the command. ''' if self.voiceChannel is not None and self.voiceChannel.is_connected() and self.voiceChannel.is_paused(): self.voiceChannel.resume() else: await ctx.send("There is no song paused in order to resume it") async def stop(self, ctx): ''' Stops the music if there is music or sends message if there is not. At the end clears the file of the unnecessary songs. :param ctx: The channel from which the user gave the command. ''' if self.voiceChannel is not None and self.voiceChannel.is_connected() and self.voiceChannel.is_playing(): self.voiceChannel.stop() else: await ctx.send("There is no song playing in order to stop it") self.clear_folder() async def next(self, ctx): ''' Stops this song and start the next one. The user will be informed with message if there is no other song or if there is no song playing at the moment :param ctx: The channel from which the user gave the command. ''' if self.voiceChannel is not None and self.voiceChannel.is_connected() and self.voiceChannel.is_playing() \ and self.queue: await self.stop(ctx) self.load_next_song() elif not self.queue: await ctx.send("There is no other song in the queue") else: await ctx.send("There is no song playing, maybe use $play to start playing songs from the queue") async def play(self, ctx, channel): ''' Starts playing the first song in the queue. If there are not songs in the queue or there is some music playing at this moment the user will ne informed with messages :param ctx: The channel from which the user gave the command. ''' await self.connect(channel) if self.voiceChannel is not None and self.voiceChannel.is_connected() and not self.voiceChannel.is_playing()\ and self.queue: self.load_next_song() elif not self.queue: await ctx.send("There is no song in the list") elif self.voiceChannel.is_playing(): await ctx.send("THere is already some music playing. Increase the volume and join the party!")
43.117647
120
0.621949
[ "MIT" ]
mavroudo/jarvis-discord
modules/youtube_music.py
6,597
Python
from typing import Any, Dict, Iterable, Optional, Tuple from datastore.shared.util import DeletedModelsBehaviour from ....models.checker import Checker, CheckException from ....models.models import Organization from ....shared.exceptions import ActionException from ....shared.filters import FilterOperator from ....shared.interfaces.event import EventType from ....shared.interfaces.write_request import WriteRequest from ....shared.patterns import Collection, FullQualifiedId from ....shared.util import INITIAL_DATA_FILE, get_initial_data_file from ...action import Action from ...mixins.singular_action_mixin import SingularActionMixin from ...util.action_type import ActionType from ...util.default_schema import DefaultSchema from ...util.register import register_action from ...util.typing import ActionData, ActionResults @register_action("organization.initial_import", action_type=ActionType.STACK_INTERNAL) class OrganizationInitialImport(SingularActionMixin, Action): """ Action to import an initial-data.json in an empty datastore. Should be callable from the management service. """ model = Organization() schema = DefaultSchema(Organization()).get_default_schema( additional_required_fields={"data": {"type": "object"}}, title="Import initial data.", description="Import an initial data json in an empty datastore.", ) def perform( self, action_data: ActionData, user_id: int, internal: bool = False ) -> Tuple[Optional[WriteRequest], Optional[ActionResults]]: """ Simplified entrypoint to perform the action. """ self.user_id = user_id self.index = 0 instance = next(iter(action_data)) self.validate_instance(instance) instance = self.update_instance(instance) self.write_requests.extend(self.create_write_requests(instance)) final_write_request = self.process_write_requests() return (final_write_request, [None]) def update_instance(self, instance: Dict[str, Any]) -> Dict[str, Any]: data = instance["data"] self.check_empty_datastore() if not data: data = get_initial_data_file(INITIAL_DATA_FILE) instance["data"] = data # check datavalidation checker = Checker(data=data, mode="all") try: checker.run_check() except CheckException as ce: raise ActionException(str(ce)) return instance def check_empty_datastore(self) -> None: filter_ = FilterOperator("id", ">=", 1) if self.datastore.exists( Collection("organization"), filter_, DeletedModelsBehaviour.ALL_MODELS, False, ): raise ActionException("Datastore is not empty.") def create_write_requests(self, instance: Dict[str, Any]) -> Iterable[WriteRequest]: json_data = instance["data"] write_requests = [] for collection in json_data: for entry in json_data[collection].values(): fqid = FullQualifiedId(Collection(collection), entry["id"]) write_requests.append( self.build_write_request( EventType.Create, fqid, "initial import", entry, ) ) return write_requests
36.978495
88
0.655714
[ "MIT" ]
JLkp/openslides-backend
openslides_backend/action/actions/organization/initial_import.py
3,439
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkecs.endpoint import endpoint_data class ModifyLaunchTemplateDefaultVersionRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'ModifyLaunchTemplateDefaultVersion') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_LaunchTemplateName(self): return self.get_query_params().get('LaunchTemplateName') def set_LaunchTemplateName(self,LaunchTemplateName): self.add_query_param('LaunchTemplateName',LaunchTemplateName) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_LaunchTemplateId(self): return self.get_query_params().get('LaunchTemplateId') def set_LaunchTemplateId(self,LaunchTemplateId): self.add_query_param('LaunchTemplateId',LaunchTemplateId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_DefaultVersionNumber(self): return self.get_query_params().get('DefaultVersionNumber') def set_DefaultVersionNumber(self,DefaultVersionNumber): self.add_query_param('DefaultVersionNumber',DefaultVersionNumber)
36.918919
87
0.786603
[ "Apache-2.0" ]
hetw/aliyun-openapi-python-sdk
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/ModifyLaunchTemplateDefaultVersionRequest.py
2,732
Python
""" @brief test log(time=20s) """ import sys import os import unittest from pyquickhelper.loghelper import fLOG, run_cmd from pyquickhelper.pycode import get_temp_folder, fix_tkinter_issues_virtualenv, skipif_appveyor, skipif_travis from pyquickhelper.pycode import add_missing_development_version class TestPyData2016Animation(unittest.TestCase): @skipif_appveyor("no ffmpeg installed") @skipif_travis("issue with datashader.bokeh_ext, skipping") @skipif_appveyor("issue with pyproj") def test_matplotlib_example(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") progs = ["ffmpeg"] if not sys.platform.startswith("win"): progs.append("avconv") errs = [] prog = None for prog in progs: out, err = run_cmd(prog, wait=True, fLOG=fLOG) exps = "usage:" if (exps not in out and exps not in err) or err is None or len(err) == 0: errs.append((prog, err)) else: break if len(errs) >= len(progs): if sys.platform.startswith("win"): fLOG("download ffmpeg") add_missing_development_version( ["pyensae"], __file__, hide=True) from pyensae.datasource import download_data download_data("ffmpeg.zip", website="xd") else: raise FileNotFoundError( "Unable to find '{1}'.\nPATH='{0}'\n--------\n[OUT]\n{2}\n[ERR]\n{3}".format( os.environ["PATH"], prog, out, "\n----\n".join("{0}:\n{1}".format(*_) for _ in errs))) temp = get_temp_folder(__file__, "temp_example_example") fix_tkinter_issues_virtualenv() # update a distribution based on new data. import numpy as np import matplotlib.pyplot as plt import scipy.stats as ss from matplotlib.animation import FuncAnimation, writers # To get the list of available writers if not writers.is_available(prog): writers.register(prog) fLOG(writers.list()) class UpdateDist: def __init__(self, ax, prob=0.5): self.success = 0 self.prob = prob self.line, = ax.plot([], [], 'k-') self.x = np.linspace(0, 1, 200) self.ax = ax # Set up plot parameters self.ax.set_xlim(0, 1) self.ax.set_ylim(0, 15) self.ax.grid(True) # This vertical line represents the theoretical value, to # which the plotted distribution should converge. self.ax.axvline(prob, linestyle='--', color='black') def init(self): self.success = 0 self.line.set_data([], []) return self.line, def __call__(self, i): # This way the plot can continuously run and we just keep # watching new realizations of the process if i == 0: return self.init() # Choose success based on exceed a threshold with a uniform # pick if np.random.rand(1,) < self.prob: # pylint: disable=W0143 self.success += 1 y = ss.beta.pdf(self.x, self.success + 1, (i - self.success) + 1) self.line.set_data(self.x, y) return self.line, fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ud = UpdateDist(ax, prob=0.7) anim = FuncAnimation(fig, ud, frames=np.arange(100), init_func=ud.init, interval=100, blit=True) try: Writer = writers[prog] except KeyError as e: if prog == "avconv": from matplotlib.animation import AVConvWriter Writer = AVConvWriter else: raise e writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) anim.save(os.path.join(temp, 'lines2.mp4'), writer=writer) plt.close('all') fLOG("end") if __name__ == "__main__": unittest.main()
34.816
111
0.535156
[ "MIT" ]
sdpython/jupytalk
_unittests/ut_talk_examples/test_pydata2016_animation.py
4,352
Python
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.login_root, name='login_root'), url(r'^success/$', views.login_success, name='login_success'), url(r'^fail/$', views.login_fail, name='login_fail'), ]
25.1
66
0.673307
[ "MIT" ]
omiguelperez/DjangoLoginBDD
bdd_example/login/urls.py
251
Python
#!/usr/bin/python # -*- coding: utf-8 -*- # # Scaleway IP management module # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: scaleway_ip short_description: Scaleway IP management module author: Remy Leone (@remyleone) description: - This module manages IP on Scaleway account U(https://developer.scaleway.com) extends_documentation_fragment: - community.general.scaleway options: state: type: str description: - Indicate desired state of the IP. default: present choices: - present - absent organization: type: str description: - Scaleway organization identifier required: true region: type: str description: - Scaleway region to use (for example par1). required: true choices: - ams1 - EMEA-NL-EVS - par1 - EMEA-FR-PAR1 - par2 - EMEA-FR-PAR2 - waw1 - EMEA-PL-WAW1 id: type: str description: - id of the Scaleway IP (UUID) server: type: str description: - id of the server you want to attach an IP to. - To unattach an IP don't specify this option reverse: type: str description: - Reverse to assign to the IP ''' EXAMPLES = ''' - name: Create an IP community.general.scaleway_ip: organization: '{{ scw_org }}' state: present region: par1 register: ip_creation_task - name: Make sure IP deleted community.general.scaleway_ip: id: '{{ ip_creation_task.scaleway_ip.id }}' state: absent region: par1 ''' RETURN = ''' data: description: This is only present when C(state=present) returned: when C(state=present) type: dict sample: { "ips": [ { "organization": "951df375-e094-4d26-97c1-ba548eeb9c42", "reverse": null, "id": "dd9e8df6-6775-4863-b517-e0b0ee3d7477", "server": { "id": "3f1568ca-b1a2-4e98-b6f7-31a0588157f1", "name": "ansible_tuto-1" }, "address": "212.47.232.136" } ] } ''' from ansible_collections.community.general.plugins.module_utils.scaleway import SCALEWAY_LOCATION, scaleway_argument_spec, Scaleway from ansible.module_utils.basic import AnsibleModule def ip_attributes_should_be_changed(api, target_ip, wished_ip): patch_payload = {} if target_ip["reverse"] != wished_ip["reverse"]: patch_payload["reverse"] = wished_ip["reverse"] # IP is assigned to a server if target_ip["server"] is None and wished_ip["server"]: patch_payload["server"] = wished_ip["server"] # IP is unassigned to a server try: if target_ip["server"]["id"] and wished_ip["server"] is None: patch_payload["server"] = wished_ip["server"] except (TypeError, KeyError): pass # IP is migrated between 2 different servers try: if target_ip["server"]["id"] != wished_ip["server"]: patch_payload["server"] = wished_ip["server"] except (TypeError, KeyError): pass return patch_payload def payload_from_wished_ip(wished_ip): return dict( (k, v) for k, v in wished_ip.items() if k != 'id' and v is not None ) def present_strategy(api, wished_ip): changed = False response = api.get('ips') if not response.ok: api.module.fail_json(msg='Error getting IPs [{0}: {1}]'.format( response.status_code, response.json['message'])) ips_list = response.json["ips"] ip_lookup = dict((ip["id"], ip) for ip in ips_list) if wished_ip["id"] not in ip_lookup.keys(): changed = True if api.module.check_mode: return changed, {"status": "An IP would be created."} # Create IP creation_response = api.post('/ips', data=payload_from_wished_ip(wished_ip)) if not creation_response.ok: msg = "Error during ip creation: %s: '%s' (%s)" % (creation_response.info['msg'], creation_response.json['message'], creation_response.json) api.module.fail_json(msg=msg) return changed, creation_response.json["ip"] target_ip = ip_lookup[wished_ip["id"]] patch_payload = ip_attributes_should_be_changed(api=api, target_ip=target_ip, wished_ip=wished_ip) if not patch_payload: return changed, target_ip changed = True if api.module.check_mode: return changed, {"status": "IP attributes would be changed."} ip_patch_response = api.patch(path="ips/%s" % target_ip["id"], data=patch_payload) if not ip_patch_response.ok: api.module.fail_json(msg='Error during IP attributes update: [{0}: {1}]'.format( ip_patch_response.status_code, ip_patch_response.json['message'])) return changed, ip_patch_response.json["ip"] def absent_strategy(api, wished_ip): response = api.get('ips') changed = False status_code = response.status_code ips_json = response.json ips_list = ips_json["ips"] if not response.ok: api.module.fail_json(msg='Error getting IPs [{0}: {1}]'.format( status_code, response.json['message'])) ip_lookup = dict((ip["id"], ip) for ip in ips_list) if wished_ip["id"] not in ip_lookup.keys(): return changed, {} changed = True if api.module.check_mode: return changed, {"status": "IP would be destroyed"} response = api.delete('/ips/' + wished_ip["id"]) if not response.ok: api.module.fail_json(msg='Error deleting IP [{0}: {1}]'.format( response.status_code, response.json)) return changed, response.json def core(module): wished_ip = { "organization": module.params['organization'], "reverse": module.params["reverse"], "id": module.params["id"], "server": module.params["server"] } region = module.params["region"] module.params['api_url'] = SCALEWAY_LOCATION[region]["api_endpoint"] api = Scaleway(module=module) if module.params["state"] == "absent": changed, summary = absent_strategy(api=api, wished_ip=wished_ip) else: changed, summary = present_strategy(api=api, wished_ip=wished_ip) module.exit_json(changed=changed, scaleway_ip=summary) def main(): argument_spec = scaleway_argument_spec() argument_spec.update(dict( state=dict(default='present', choices=['absent', 'present']), organization=dict(required=True), server=dict(), reverse=dict(), region=dict(required=True, choices=list(SCALEWAY_LOCATION.keys())), id=dict() )) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, ) core(module) if __name__ == '__main__': main()
27.178707
131
0.615837
[ "MIT" ]
elixir-no-nels/usegalaxy
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/cloud/scaleway/scaleway_ip.py
7,148
Python
""" # Interaction Tracker # @license http://www.apache.org/licenses/LICENSE-2.0 # Author @ Jamil Hussain, Zaki """ from django.conf import settings from django.contrib.auth.models import ( BaseUserManager, AbstractBaseUser ) from django.core.validators import RegexValidator from django.db import models from django.db.models.signals import post_save # Create your models here. from .utils import code_generator USERNAME_REGEX = '^[a-zA-Z0-9.+-]*$' class MyUserManager(BaseUserManager): def create_user(self, username, email, password=None): """ Creates and saves a User with the given email, date of birth and password. """ if not email: raise ValueError('Users must have an email address') user = self.model( username = username, email=self.normalize_email(email), ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, username, email, password): """ Creates and saves a superuser with the given email, date of birth and password. """ user = self.create_user( username, email, password=password, ) user.is_admin = True user.is_staff = True user.save(using=self._db) return user #The data should be collected on the bases of user ID. This Model store information about the user class MyUser(AbstractBaseUser): username = models.CharField( max_length=255, validators=[ RegexValidator( regex = USERNAME_REGEX, message = 'Username must be Alpahnumeric or contain any of the following: ". @ + -" ', code='invalid_username' )], unique=True, ) email = models.EmailField( verbose_name='email address', max_length=255, unique=True, ) GENDER_CHOICES = ( ('male', 'Male'), ('female', 'Female'), ) password = models.CharField(max_length=255) date_of_birth= models.DateField(blank=True,null=True) gender= models.CharField(max_length=50, null=True, choices=GENDER_CHOICES) height= models.IntegerField(blank=True,null=True) weight=models.IntegerField(blank=True,null=True) user_sight = models.CharField(max_length=50, null=True) user_hearing = models.CharField(max_length=50, null=True) user_touch = models.CharField(max_length=50, null=True) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) is_admin = models.BooleanField(default=False) objects = MyUserManager() USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email'] def get_full_name(self): # The user is identified by their email address return self.email def get_short_name(self): # The user is identified by their email address return self.email def __str__(self): # __unicode__ on Python 2 return self.email def has_perm(self, perm, obj=None): "Does the user have a specific permission?" # Simplest possible answer: Yes, always return True def has_module_perms(self, app_label): "Does the user have permissions to view the app `app_label`?" # Simplest possible answer: Yes, always return True class ActivationProfile(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL) key = models.CharField(max_length=120) expired = models.BooleanField(default=False) def save(self, *args, **kwargs): self.key = code_generator() super(ActivationProfile, self).save(*args, **kwargs) def post_save_activation_receiver(sender, instance, created, *args, **kwargs): if created: #send email print('activation created') post_save.connect(post_save_activation_receiver, sender=ActivationProfile) class Profile(models.Model): user = models.OneToOneField(settings.AUTH_USER_MODEL) city = models.CharField(max_length=120, null=True, blank=True) def __str__(self): return str(self.user.username) def __unicode__(self): return str(self.user.username) def post_save_user_model_receiver(sender, instance, created, *args, **kwargs): if created: try: Profile.objects.create(user=instance) ActivationProfile.objects.create(user=instance) except: pass post_save.connect(post_save_user_model_receiver, sender=settings.AUTH_USER_MODEL)
29.099379
110
0.646105
[ "Apache-2.0" ]
Ahmar123/Lean-UX-Platform
InteractionTracker/accounts/models.py
4,685
Python
from __future__ import unicode_literals import os import inspect from webob import Request, Response from parse import parse from jinja2 import FileSystemLoader, Environment from requests import session as RequestsSession from wsgiadapter import WSGIAdapter as RequestWSGIAdapter class API: """ this is just for examples to get reponse Hello World in web browser """ def __call__(self, environ, start_response): response_body = b"Hello World!" status = "200 OK" start_response(status, headers=[]) return iter([response_body]) class RequestAPI: """ this is just for examples to get reponse Hello World in web browser """ def __call__(self, environ, start_response): request = Request(environ) response = Response() response.text = "Hello, World!" return response(environ, start_response) class UserRequest: def __call__(self, environ, start_response): request = Request(environ) response = self.handle_request(request) return response(environ, start_response) def handle_request(self, request): """ based on mozilla documentation """ user = request.environ.get("HTTP_USER_AGENT", "No User Agent Found") response = Response() response.text = f"This is {user}" return response class UserRequestHandler: def __init__(self): self.routes = {} def __call__(self, environ, start_response): request = Request(environ) response = self.handle_request(request) return response(environ, start_response) def route_url(self, path, handler): assert path not in self.routes, "Routes Already Exists" self.routes[path] = handler def route(self, path): def wrapper(handler): self.route_url(path, handler) return handler return wrapper def default_response(self, response): response.status_code = 404 response.text = "Page Not Found." def handle_request(self, request): response = Response() handler, kwargs = self.find_handler(request_path=request.path) if handler is not None: handler(request, response, **kwargs) else: self.default_response(response) return response def find_handler(self, request_path): for path, handler in self.routes.items(): parse_result = parse(path, request_path) if parse_result is not None: return handler, parse_result.named return None, None class UserRequestBasedHandler: """ class for implemented alternative route using class-based handlers """ def __init__(self, templates_dirs="templates"): self.routes = {} self.templates_env = Environment( loader=FileSystemLoader(os.path.abspath(templates_dirs))) def __call__(self, environ, start_response): request = Request(environ) response = self.class_based_request(request) return response(environ, start_response) def url(self, path, handler): assert path not in self.routes, "Routes Already Exists" self.routes[path] = handler def route(self, path): def wrapper(handler): self.url(path, handler) return handler return wrapper def default_response(self, response): response.status_code = 404 response.text = "Page Not Found" def class_based_request(self, request): """ class based views such as Django already implemented """ response = Response() handler, kwargs = self.find_handler_request(request_path=request.path) if handler is not None: if inspect.isclass(handler): handler = getattr(handler(), request.method.lower(), None) if handler is None: raise AttributeError("Method now allowed", request.method) handler(request, response, **kwargs) else: self.default_response(response) return response def find_handler_request(self, request_path): for path, handler in self.routes.items(): parse_result = parse(path, request_path) if parse_result is not None: return handler, parse_result.named return None, None def template(self, template_name, context=None): if context is None: context = {} return self.templates_env.get_template(template_name).render(**context) def session(self, base_url="http://baseserver"): """ mount it to session object any request will start using URL given by prefix base_url """ session = RequestsSession() session.mount(prefix=base_url, adapter=RequestWSGIAdapter(self)) return session
25.218274
79
0.633655
[ "BSD-3-Clause" ]
sodrooome/diy
diy/api.py
4,968
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ConnectionMonitorQueryResult(Model): """List of connection states snaphots. :param source_status: Status of connection monitor source. Possible values include: 'Uknown', 'Active', 'Inactive' :type source_status: str or ~azure.mgmt.network.v2018_10_01.models.ConnectionMonitorSourceStatus :param states: Information about connection states. :type states: list[~azure.mgmt.network.v2018_10_01.models.ConnectionStateSnapshot] """ _attribute_map = { 'source_status': {'key': 'sourceStatus', 'type': 'str'}, 'states': {'key': 'states', 'type': '[ConnectionStateSnapshot]'}, } def __init__(self, **kwargs): super(ConnectionMonitorQueryResult, self).__init__(**kwargs) self.source_status = kwargs.get('source_status', None) self.states = kwargs.get('states', None)
38.138889
78
0.633649
[ "MIT" ]
acured/azure-sdk-for-python
azure-mgmt-network/azure/mgmt/network/v2018_10_01/models/connection_monitor_query_result.py
1,373
Python
#!/usr/bin/env python import unittest from tests.base import PyangBindTestCase class EnumerationTests(PyangBindTestCase): yang_files = ["enumeration.yang"] def setUp(self): self.enum_obj = self.bindings.enumeration() def test_container_has_all_leafs(self): for leaf in ["e", "f"]: with self.subTest(leaf=leaf): self.assertTrue( hasattr(self.enum_obj.container, leaf), "Container does not contain enumeration %s" % leaf ) def test_assign_to_enum(self): self.enum_obj.container.e = "one" self.assertEqual( self.enum_obj.container.e, "one", "Enumeration value was not correctly set (%s)" % self.enum_obj.container.e, ) def test_enum_does_not_allow_invalid_value(self): allowed = True try: self.enum_obj.container.e = "twentyseven" except ValueError: allowed = False self.assertFalse( allowed, "Erroneous value was not caught by restriction handler (%s)" % self.enum_obj.container.e ) def test_enum_default_value(self): self.assertEqual( self.enum_obj.container.f._default, "c", "Erroneous default value for 'f' (%s)" % self.enum_obj.container.f._default, ) def test_static_enum_value(self): self.enum_obj.container.e = "two" self.assertEqual( self.enum_obj.container.e.getValue(mapped=True), 42, "Erroneously statically defined value returned (%s)" % self.enum_obj.container.e.getValue(mapped=True), ) if __name__ == "__main__": unittest.main()
30.070175
115
0.608518
[ "Apache-2.0" ]
JoseIgnacioTamayo/pyangbind
tests/enumeration/run.py
1,714
Python
import os from flask_script import Manager from flask_migrate import MigrateCommand from App import create_app env = os.environ.get("flask_env", "develop") app = create_app(env) manager = Manager(app) manager.add_command("db", MigrateCommand) if __name__ == '__main__': manager.run()
16.388889
44
0.755932
[ "MIT" ]
jonathan-hxj/FlaskTpp
manager.py
295
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import unittest import numpy as np from enum import Enum import paddle import paddle.static map_np_dtype_to_fluid_dtype = { 'bool': "bool", 'int8': "int8", 'uint8': "uint8", "int32": "int32", "int64": "int64", "float16": "float16", "float32": "float32", "float64": "float64", } class ExecutionMode(Enum): CPU_FP32 = 1 IPU_FP32 = 2 # enable_fp16 through ipu_strategy.enable_fp16 IPU_POPART_FP16 = 3 def __lt__(self, other): return self.value < other.value def __gt__(self, other): return self.value > other.value def np_dtype_to_fluid_str(dtype: np.dtype) -> str: return map_np_dtype_to_fluid_dtype[dtype.name] class IPUOpTest(unittest.TestCase): @classmethod def setUpClass(cls): # Get random seeds cls._np_rand_state = np.random.get_state() cls._py_rand_state = random.getstate() cls.SEED = 2021 np.random.seed(cls.SEED) random.seed(cls.SEED) # Enable paddle static graph mode paddle.enable_static() @classmethod def tearDownClass(cls): """Restore random seeds""" np.random.set_state(cls._np_rand_state) random.setstate(cls._py_rand_state) @classmethod def use_ipumodel(cls): if 'POPLAR_IPUMODEL' not in os.environ: return False else: flag = os.environ['POPLAR_IPUMODEL'] if flag.upper() in ['1', "TRUE"]: return True def set_atol(self): self.atol = 1e-10 self.rtol = 1e-6 self.atol_fp16 = 1e-3 self.rtol_fp16 = 1e-3 def set_training(self): self.is_training = False self.epoch = 1 def check(self, outputs, check_shape=False): cpu_fp32 = outputs[ExecutionMode.CPU_FP32] ipu_fp32 = outputs[ExecutionMode.IPU_FP32] max_diff = np.abs(cpu_fp32 - ipu_fp32).max() fp32_flag = np.allclose( cpu_fp32, ipu_fp32, rtol=self.rtol, atol=self.atol) self.assertTrue(fp32_flag, "max diff is %f" % (max_diff)) if check_shape: self.assertTrue(cpu_fp32.shape == ipu_fp32.shape) ipu_popart_fp16 = None if ExecutionMode.IPU_POPART_FP16 in outputs.keys(): ipu_popart_fp16 = outputs[ExecutionMode.IPU_POPART_FP16] max_diff = np.abs(ipu_popart_fp16.astype(np.float32) - cpu_fp32).max() fp16_flag = np.allclose( ipu_popart_fp16.astype(np.float32), cpu_fp32, rtol=self.rtol_fp16, atol=self.atol_fp16) self.assertTrue(fp16_flag, "max diff is %f" % (max_diff)) if check_shape: self.assertTrue(ipu_popart_fp16.shape == cpu_fp32.shape)
29.376068
74
0.635438
[ "Apache-2.0" ]
Abraham-Xu/Paddle
python/paddle/fluid/tests/unittests/ipu/op_test_ipu.py
3,437
Python
# Copyright 2021 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for zaza.events.plugins.conncheck.py.""" import mock import subprocess import unit_tests.utils as tests_utils import zaza.events.plugins.conncheck as conncheck class TestAutoConfigureFunction(tests_utils.BaseTestCase): def setUp(self): super().setUp() self.patch_object(conncheck, 'logger', name='mock_logger') self.patch_object( conncheck, 'get_plugin_manager', name='mock_get_plugin_manager') self.mock_collection = mock.Mock() self.mock_conncheck_manager = mock.Mock() def test_autoconfigure_no_config(self): self.mock_get_plugin_manager.return_value = self.mock_conncheck_manager conncheck.auto_configure_with_collection(self.mock_collection) self.mock_get_plugin_manager.assert_called_once_with('DEFAULT') self.mock_collection.add_logging_manager.assert_called_once_with( self.mock_conncheck_manager) def test_autoconfigure_with_config(self): self.mock_get_plugin_manager.return_value = self.mock_conncheck_manager config = { 'manager-name': 'a-manager', 'source': 'a-source', } conncheck.auto_configure_with_collection(self.mock_collection, config=config) self.mock_get_plugin_manager.assert_called_once_with('a-manager') self.mock_collection.add_logging_manager.assert_called_once_with( self.mock_conncheck_manager) self.mock_conncheck_manager.configure.assert_called_once_with( module_source='a-source') class TestGetConncheckManager(tests_utils.BaseTestCase): def test_get_conncheck_manager(self): self.patch_object(conncheck, 'get_option', name='mock_get_option') self.mock_get_option.return_value = 'a-name' self.patch_object(conncheck, 'get_plugin_manager', name='mock_get_plugin_manager') self.mock_get_plugin_manager.return_value = 'a-manager' self.assertEqual(conncheck.get_conncheck_manager(), 'a-manager') self.mock_get_option.assert_called_once_with( 'zaza-events.modules.conncheck.manager-name', 'DEFAULT') self.mock_get_plugin_manager.assert_called_once_with('a-name') class TestGetPluginManager(tests_utils.BaseTestCase): def test_get_plugin_manager(self): self.patch_object(conncheck, '_conncheck_plugin_managers', new={}) self.patch_object(conncheck, 'ConnCheckPluginManager', name='mock_ConnCheckPluginManager') self.mock_ConnCheckPluginManager.return_value = 'a-manager' self.assertEqual(conncheck.get_plugin_manager(), 'a-manager') self.mock_ConnCheckPluginManager.assert_called_once_with( managed_name='DEFAULT') def test_get_plugin_manager_non_default(self): self.patch_object(conncheck, '_conncheck_plugin_managers', new={}) self.patch_object(conncheck, 'ConnCheckPluginManager', name='mock_ConnCheckPluginManager') self.mock_ConnCheckPluginManager.return_value = 'a-manager' self.assertEqual(conncheck.get_plugin_manager('a-name'), 'a-manager') self.mock_ConnCheckPluginManager.assert_called_once_with( managed_name='a-name') def test_get_plugin_manager_check_caches(self): self.patch_object(conncheck, '_conncheck_plugin_managers', new={}, name='mock__conncheck_plugin_managers') self.mock__conncheck_plugin_managers['a-name'] = 'a-manager' self.patch_object(conncheck, 'ConnCheckPluginManager', name='mock_ConnCheckPluginManager') self.mock_ConnCheckPluginManager.return_value = 'the-manager' self.assertEqual(conncheck.get_plugin_manager('a-name'), 'a-manager') self.mock_ConnCheckPluginManager.assert_not_called() class TestConnCheckPluginManager(tests_utils.BaseTestCase): def setUp(self): super().setUp() self.patch_object(conncheck, 'ConnCheckManager', name='mock_ConnCheckManager') self.mock_conncheck_manager = mock.Mock() self.mock_ConnCheckManager.return_value = self.mock_conncheck_manager self.mock_collection_object = mock.Mock() self.mock_collection_object.logs_dir = "a-logs-dir" self.mock_collection_object.log_format = conncheck.LogFormats.InfluxDB self.mock_collection_object.collection = 'a-collection' def test_init(self): cpm = conncheck.ConnCheckPluginManager() self.assertEqual(cpm.managed_name, 'DEFAULT') self.assertEqual(cpm._conncheck_manager, self.mock_conncheck_manager) cpm = conncheck.ConnCheckPluginManager(managed_name='a-manager') self.assertEqual(cpm.managed_name, 'a-manager') def test_configure(self): cpm = conncheck.ConnCheckPluginManager() self.patch_object( cpm, 'configure_plugin', name='mock_cpm_configure_plugin') cpm.configure(collection_object=self.mock_collection_object) self.mock_cpm_configure_plugin.assert_called_once_with() def test_configure_plugin(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.configure(collection_object=self.mock_collection_object) self.mock_conncheck_manager.configure.assert_called_once_with( collection='a-collection', logs_dir='a-logs-dir', module_source='a-source', tags='abc') def test_manager_property(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') self.assertEqual(cpm.manager, self.mock_conncheck_manager) cpm._conncheck_manager = None with self.assertRaises(AssertionError): cpm.manager def test_add_instance(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.add_instance('a-spec', this='that') self.mock_conncheck_manager.add_instance.assert_called_once_with( 'a-spec', this='that') def test_get_instance(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') self.mock_conncheck_manager.get_instance.return_value = 'an-instance' self.assertEqual(cpm.get_instance('a-spec'), 'an-instance') self.mock_conncheck_manager.get_instance.assert_called_once_with( 'a-spec') def test_start(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.start('a-spec') self.mock_conncheck_manager.start.assert_called_once_with('a-spec') def test_stop(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.stop('a-spec') self.mock_conncheck_manager.stop.assert_called_once_with('a-spec') def test_finalise(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.finalise() self.mock_conncheck_manager.finalise.assert_called_once_with() def test_log_files(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.log_files() self.mock_conncheck_manager.log_files.assert_called_once_with() def test_clean_up(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.clean_up() self.mock_conncheck_manager.clean_up.assert_called_once_with() def test_reset(self): cpm = conncheck.ConnCheckPluginManager( module_source='a-source', tags='abc') cpm.reset() self.mock_conncheck_manager.clean_up.assert_called_once_with() self.assertIsNone(cpm._conncheck_manager) class TestConnCheckManager(tests_utils.BaseTestCase): def setUp(self): super().setUp() self.c = conncheck.ConnCheckManager( collection='a-collection', logs_dir='/some/dir', tags=['tag1']) def test_init(self): self.assertEqual(self.c.collection, 'a-collection') self.assertEqual(self.c.logs_dir, '/some/dir') self.assertEqual(self.c.tags, ['tag1']) def test_add_instance(self): self.patch_object(self.c, 'make_instance_with', name='mock_make_instance_with') self.mock_make_instance_with.return_value = 'an-instance' self.c.add_instance('juju:0', this='that', some='thing') self.mock_make_instance_with.assert_called_once_with( 'juju:0', this='that', some='thing', module_source='conncheck', collection='a-collection') self.assertIn('juju:0', self.c._instances) self.assertEqual(self.c._instances['juju:0'], 'an-instance') # add again to check for error with self.assertRaises(RuntimeError): self.c.add_instance('juju:0', this='that', some='thing') def test_get_instance(self): self.c._instances['juju:0'] = 'an-instance' self.assertEqual(self.c.get_instance('juju:0'), 'an-instance') def test_start(self): mock_instance1 = mock.Mock() mock_instance2 = mock.Mock() self.c._instances = {'i1': mock_instance1, 'i2': mock_instance2} self.c.start('i1') mock_instance1.start.assert_called_once_with() mock_instance2.start.assert_not_called() mock_instance1.reset_mock() self.c.start() mock_instance1.start.assert_called_once_with() mock_instance2.start.assert_called_once_with() def test_stop(self): mock_instance1 = mock.Mock() mock_instance2 = mock.Mock() self.c._instances = {'i1': mock_instance1, 'i2': mock_instance2} self.c.stop('i1') mock_instance1.stop.assert_called_once_with() mock_instance2.stop.assert_not_called() mock_instance1.reset_mock() self.c.stop() mock_instance1.stop.assert_called_once_with() mock_instance2.stop.assert_called_once_with() def test_finalise(self): mock_instance1 = mock.Mock() mock_instance2 = mock.Mock() self.c._instances = {'i1': mock_instance1, 'i2': mock_instance2} self.c.finalise() mock_instance1.finalise.assert_called_once_with() mock_instance2.finalise.assert_called_once_with() mock_instance1.stop.assert_called_once_with() mock_instance2.stop.assert_called_once_with() mock_instance1.reset_mock() mock_instance2.reset_mock() self.c.finalise() mock_instance1.stop.assert_not_called() mock_instance2.stop.assert_not_called() mock_instance1.finalise.assert_not_called() mock_instance2.finalise.assert_not_called() def test_log_files(self): mock_instance1 = mock.Mock() mock_instance2 = mock.Mock() self.c._instances = {'i1': mock_instance1, 'i2': mock_instance2} mock_instance1.get_logfile_to_local.return_value = 'i1.log' mock_instance1.log_format = 'f' mock_instance2.get_logfile_to_local.return_value = 'i2.log' mock_instance2.log_format = 'f' log_specs = list(self.c.log_files()) mock_instance1.finalise.assert_called_once_with() mock_instance2.finalise.assert_called_once_with() mock_instance1.get_logfile_to_local.assert_called_once_with( '/some/dir') mock_instance2.get_logfile_to_local.assert_called_once_with( '/some/dir') self.assertEqual( log_specs, [('i1', 'f', 'i1.log'), ('i2', 'f', 'i2.log')]) mock_instance1.get_logfile_to_local.reset_mock() mock_instance2.get_logfile_to_local.reset_mock() log_specs = list(self.c.log_files()) mock_instance1.get_logfile_to_local.assert_not_called() mock_instance2.get_logfile_to_local.assert_not_called() self.assertEqual( log_specs, [('i1', 'f', 'i1.log'), ('i2', 'f', 'i2.log')]) def test_clean_up(self): self.patch_object(self.c, 'finalise', name='mock_finalise') self.c.clean_up() self.mock_finalise.assert_called_once_with() def test_register_spec_handler(self): self.patch_object(conncheck.ConnCheckManager, '_spec_handlers', name='mock_cls__spec_handlers', new={}) def handler(): pass conncheck.ConnCheckManager.register_spec_handler('juju', handler) self.assertIn('juju', conncheck.ConnCheckManager._spec_handlers) self.assertEqual(conncheck.ConnCheckManager._spec_handlers['juju'], handler) # verify can't be added twice. with self.assertRaises(RuntimeError): conncheck.ConnCheckManager.register_spec_handler('juju', handler) def test_make_instance_with(self): mock_handler = mock.Mock() mock_handler.return_value = 'an-instance' self.patch_object(conncheck.ConnCheckManager, '_spec_handlers', name='mock_cls__spec_handlers', new={}) conncheck.ConnCheckManager.register_spec_handler('juju', mock_handler) # first check for ':' in spec with self.assertRaises(ValueError): self.c.make_instance_with('i') # Now check for unhandled spec with self.assertRaises(KeyError): self.c.make_instance_with('some:thing') # finally make one with juju self.assertEqual( self.c.make_instance_with('juju:0', this='that', some='thing'), 'an-instance') mock_handler.assert_called_once_with('0', this='that', some='thing') class TestConnCheckInstanceBase(tests_utils.BaseTestCase): def setUp(self): super().setUp() self.c = conncheck.ConnCheckInstanceBase( name='base', module_source='/some/source', collection='a-collection') def test_init(self): c = conncheck.ConnCheckInstanceBase( name='a-name', log_format=conncheck.LogFormats.CSV, config_file='thing.yaml', install_dir='/opt', module_source='/some/other/source', install_user='a-user') self.assertEqual(c.name, 'a-name') self.assertEqual(c.log_format, conncheck.LogFormats.CSV) self.assertEqual(c.config_file, 'thing.yaml') self.assertEqual(c.install_dir, '/opt') self.assertEqual(c.module_source, '/some/other/source') self.assertEqual(c.install_user, 'a-user') self.assertEqual(self.c.name, 'base') self.assertEqual(self.c.log_format, conncheck.LogFormats.InfluxDB) self.assertEqual(self.c.config_file, 'config.yaml') self.assertEqual(self.c.install_dir, '.') self.assertEqual(self.c.module_source, '/some/source') self.assertEqual(self.c.install_user, 'conncheck') def test__validate_not_existing_listener(self): with self.assertRaises(AssertionError): self.c._validate_not_existing_listener('thing', 1024) self.c._validate_not_existing_listener('udp', 1024) self.c._listeners = {('udp', 1024): None} with self.assertRaises(RuntimeError): self.c._validate_not_existing_listener('udp', 1024) self.c._validate_not_existing_listener('udp', 1023) def test_add_listener(self): with self.assertRaises(NotImplementedError): self.c.add_listener() def test_add_listener_spec(self): self.patch_object(self.c, 'write_configuration', name='mock_c_write_configuration') self.c.add_listener_spec('udp', 1024, '0.0.0.0', reply_size=50) self.assertIn(('udp', 1024), self.c._listeners) self.assertEqual(self.c._listeners[('udp', 1024)], {'name': 'base:listen:udp:0.0.0.0:1024', 'ipv4': '0.0.0.0', 'port': 1024, 'protocol': 'udp', 'reply-size': 50}) self.mock_c_write_configuration.assert_called_once_with() def test_add_speaker(self): self.patch_object(self.c, '_get_remote_address', name='mock__get_remote_address') self.mock__get_remote_address.return_value = '1.2.3.4' self.patch_object(self.c, 'add_speaker_spec', name='mock_add_speaker_spec') self.c.add_speaker('udp', 1024, instance='an-instance', address=None, wait=10, interval=20, send_size=5) self.mock__get_remote_address.assert_called_once_with( 'an-instance', 'udp', 1024) self.mock_add_speaker_spec.assert_called_once_with( 'udp', 1024, '1.2.3.4', wait=10, interval=20, send_size=5) def test__validate_not_existing_speaker(self): with self.assertRaises(AssertionError): self.c._validate_not_existing_speaker('thing', '1.2.3.4', 1024) self.c._validate_not_existing_speaker('udp', '1.2.3.4', 1024) self.c._speakers = {('udp', '1.2.3.4', 1024): None} with self.assertRaises(RuntimeError): self.c._validate_not_existing_speaker('udp', '1.2.3.4', 1024) self.c._validate_not_existing_speaker('udp', '1.2.3.4', 1023) def test_add_speaker_spec(self): self.patch_object(self.c, 'write_configuration', name='mock_c_write_configuration') self.c.add_speaker_spec('udp', 1024, '1.2.3.4', send_size=50) self.assertIn(('udp', '1.2.3.4', 1024), self.c._speakers) self.assertEqual(self.c._speakers[('udp', '1.2.3.4', 1024)], {'name': 'base:send:udp:1.2.3.4:1024', 'ipv4': '1.2.3.4', 'port': 1024, 'protocol': 'udp', 'send-size': 50, 'wait': 5, 'interval': 10}) self.mock_c_write_configuration.assert_called_once_with() self.mock_c_write_configuration.reset_mock() self.c.add_speaker_spec('http', 1024, '1.2.3.4', send_size=50) self.assertIn(('http', '1.2.3.4', 1024), self.c._speakers) self.assertEqual(self.c._speakers[('http', '1.2.3.4', 1024)], {'name': 'base:request:http:1.2.3.4:1024', 'url': 'http://1.2.3.4:1024/{uuid}', 'protocol': 'http', 'wait': 5, 'interval': 10}) self.mock_c_write_configuration.assert_called_once_with() self.mock_c_write_configuration.reset_mock() with self.assertRaises(AssertionError): self.c.add_speaker_spec('thing', 1024, '1.2.3.4', send_size=50) def test__get_remote_address(self): mock_instance = mock.Mock() mock_instance._listeners = {('udp', 1024): {'ipv4': '1.2.3.4'}} self.assertEqual( self.c._get_remote_address(mock_instance, 'udp', 1024), '1.2.3.4') def test__conncheck_home_dir(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' self.assertEqual(self.c._conncheck_home_dir, '/some/dir') self.mock_user_directory.assert_called_once_with( None, 'conncheck') self.mock_user_directory.reset_mock() # check property caches self.assertEqual(self.c._conncheck_home_dir, '/some/dir') self.mock_user_directory.assert_not_called() def test_install_no_user_relative_homedir(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' self.patch('zaza.utilities.installers.user_exists', name='mock_user_exists') self.patch('zaza.utilities.installers.create_user', name='mock_create_user') self.mock_create_user.return_value = '/home/conncheck' self.patch('zaza.utilities.installers.install_module_in_venv', name='mock_install_module_in_venv') self.patch('zaza.utilities.installers.SystemdControl', name='mock_SystemdControl') mock__systemd = mock.Mock() self.mock_SystemdControl.return_value = mock__systemd self.c._ssh_fn = 'ssh-fn' self.c._scp_fn = 'scp-fn' self.mock_user_exists.return_value = False self.c.install() self.mock_user_exists.assert_called_once_with('ssh-fn', 'conncheck') self.mock_create_user.assert_called_once_with('ssh-fn', 'conncheck') self.mock_install_module_in_venv.assert_called_once_with( '/some/source', '/home/conncheck/.', 'scp-fn', 'ssh-fn', run_user='conncheck') mock__systemd.install.assert_called_once_with() self.assertTrue(self.c._installed) def test_install_user_exists_absolute_homedir(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' self.patch('zaza.utilities.installers.user_exists', name='mock_user_exists') self.patch('zaza.utilities.installers.create_user', name='mock_create_user') self.mock_create_user.return_value = '/home/conncheck' self.patch('zaza.utilities.installers.install_module_in_venv', name='mock_install_module_in_venv') self.patch('zaza.utilities.installers.SystemdControl', name='mock_SystemdControl') mock__systemd = mock.Mock() self.mock_SystemdControl.return_value = mock__systemd self.c._ssh_fn = 'ssh-fn' self.c._scp_fn = 'scp-fn' self.mock_user_exists.return_value = True self.c.install_dir = '/fixed' self.c.install() self.mock_user_exists.assert_called_once_with('ssh-fn', 'conncheck') self.mock_create_user.assert_not_called() self.mock_install_module_in_venv.assert_called_once_with( '/some/source', '/fixed', 'scp-fn', 'ssh-fn', run_user='conncheck') mock__systemd.install.assert_called_once_with() self.assertTrue(self.c._installed) def test__verify_systemd_not_none(self): self.c._systemd = 'thing' self.c._verify_systemd_not_none() self.c._systemd = None with self.assertRaises(AssertionError): self.c._verify_systemd_not_none() def test_remote_log_filename_property(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' self.assertEqual(self.c.remote_log_filename, '/some/dir/conncheck.log') def test_local_log_filename_property(self): with self.assertRaises(NotImplementedError): self.c.local_log_filename def test_get_logfile_to_local(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' mock_scp_fn = mock.Mock() self.c._scp_fn = mock_scp_fn with mock.patch.object( conncheck.ConnCheckInstanceBase, 'local_log_filename', new_callable=mock.PropertyMock) as mock_local_log_filename: mock_local_log_filename.return_value = 'some-filename' self.assertEqual(self.c.get_logfile_to_local('/a/dir'), '/a/dir/some-filename') mock_scp_fn.assert_called_once_with('/some/dir/conncheck.log', '/a/dir/some-filename', copy_from=True) def test_write_configuration_not_installed_not_running(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' self.patch_object(self.c, 'install', name='mock_c_install') self.patch_object(self.c, 'is_running', name='mock_c_is_running') self.mock_c_is_running.return_value = False self.patch_object(self.c, 'restart', name='mock_c_restart') mock_scp_fn = mock.Mock() self.c._scp_fn = mock_scp_fn mock_ssh_fn = mock.Mock() self.c._ssh_fn = mock_ssh_fn self.patch('yaml.dump', name='mock_yaml_dump') self.patch('tempfile.TemporaryDirectory', name='mock_TemporaryDirectory') mock_td = mock.MagicMock() mock_td.__enter__.return_value = '/target' self.mock_TemporaryDirectory.return_value = mock_td with tests_utils.patch_open() as (mock_open, mock_file): self.c.write_configuration() self.mock_c_install.assert_called_once_with() mock_open.assert_called_once_with('/target/config.yaml', 'wt') expected_config = { 'name': 'base', 'file-log-path': '/some/dir/conncheck.log', 'collection': 'a-collection', 'log-format': 'InfluxDB', 'listeners': [], 'speakers': [] } self.mock_yaml_dump.assert_called_once_with(expected_config, mock_file) mock_scp_fn.assert_called_once_with('/target/config.yaml', 'config.yaml') mock_ssh_fn.assert_called_once_with( ['sudo', 'mv', 'config.yaml', '/some/dir/config.yaml']) self.mock_c_is_running.assert_called_once_with() self.mock_c_restart.assert_not_called() def test_write_configuration_installed_and_running(self): self.patch('zaza.utilities.installers.user_directory', name='mock_user_directory') self.mock_user_directory.return_value = '/some/dir' self.patch_object(self.c, 'install', name='mock_c_install') self.patch_object(self.c, 'is_running', name='mock_c_is_running') self.mock_c_is_running.return_value = True self.patch_object(self.c, 'restart', name='mock_c_restart') mock_scp_fn = mock.Mock() self.c._scp_fn = mock_scp_fn mock_ssh_fn = mock.Mock() self.c._ssh_fn = mock_ssh_fn self.patch('yaml.dump', name='mock_yaml_dump') self.patch('tempfile.TemporaryDirectory', name='mock_TemporaryDirectory') mock_td = mock.MagicMock() mock_td.__enter__.return_value = '/target' self.mock_TemporaryDirectory.return_value = mock_td self.c._installed = True with tests_utils.patch_open() as (mock_open, mock_file): self.c.write_configuration() self.mock_c_install.assert_not_called() mock_open.assert_called_once_with('/target/config.yaml', 'wt') expected_config = { 'name': 'base', 'file-log-path': '/some/dir/conncheck.log', 'collection': 'a-collection', 'log-format': 'InfluxDB', 'listeners': [], 'speakers': [] } self.mock_yaml_dump.assert_called_once_with(expected_config, mock_file) mock_scp_fn.assert_called_once_with('/target/config.yaml', 'config.yaml') mock_ssh_fn.assert_called_once_with( ['sudo', 'mv', 'config.yaml', '/some/dir/config.yaml']) self.mock_c_is_running.assert_called_once_with() self.mock_c_restart.assert_called_once_with() def test_is_running(self): self.patch_object(self.c, '_verify_systemd_not_none', name='mock__verify_systemd_not_none') mock__systemd = mock.Mock() mock__systemd.is_running.return_value = False self.c._systemd = mock__systemd self.assertFalse(self.c.is_running()) self.mock__verify_systemd_not_none.assert_called_once_with() mock__systemd.is_running.assert_called_once_with() def test_start(self): self.patch_object(self.c, '_verify_systemd_not_none', name='mock__verify_systemd_not_none') mock__systemd = mock.Mock() self.c._systemd = mock__systemd self.c.start() self.mock__verify_systemd_not_none.assert_called_once_with() mock__systemd.start.assert_called_once_with() def test_stop(self): self.patch_object(conncheck, 'logger', name='mock_logger') self.c._systemd = None self.c.stop() self.mock_logger.debug.assert_called_once_with(mock.ANY, self.c) mock__systemd = mock.Mock() self.c._systemd = mock__systemd self.mock_logger.reset_mock() self.c.stop() mock__systemd.stop.assert_called_once_with() def test_restart(self): self.patch_object(self.c, '_verify_systemd_not_none', name='mock__verify_systemd_not_none') mock__systemd = mock.Mock() self.c._systemd = mock__systemd self.c.restart() self.mock__verify_systemd_not_none.assert_called_once_with() mock__systemd.restart.assert_called_once_with() def test_finalise(self): self.c._installed = False mock__systemd = mock.Mock() self.c._systemd = mock__systemd self.patch_object(self.c, 'stop', name='mock_c_stop') self.c.finalise() self.mock_c_stop.assert_not_called() mock__systemd.disable.assert_not_called() self.c._installed = True self.c.finalise() self.mock_c_stop.assert_called_once_with() mock__systemd.disable.assert_called_once_with() def test_clean_up(self): self.c._installed = False mock__systemd = mock.Mock() self.c._systemd = mock__systemd self.patch_object(self.c, 'stop', name='mock_c_stop') self.c.clean_up() self.mock_c_stop.assert_not_called() mock__systemd.disable.assert_not_called() mock__systemd.remove.assert_not_called() self.c._installed = True self.c.clean_up() self.mock_c_stop.assert_called_once_with() mock__systemd.disable.assert_called_once_with() mock__systemd.remove.assert_called_once_with() class TestConnCheckInstanceJuju(tests_utils.BaseTestCase): def setUp(self): super().setUp() self.patch('zaza.utilities.installers.make_juju_ssh_fn', name='mock_make_juju_ssh_fn') self.mock_ssh_fn = mock.Mock() self.mock_make_juju_ssh_fn = self.mock_ssh_fn self.patch('zaza.utilities.installers.make_juju_scp_fn', name='mock_make_juju_scp_fn') self.mock_scp_fn = mock.Mock() self.mock_make_juju_scp_fn = self.mock_scp_fn self.c = conncheck.ConnCheckInstanceJuju( '0', model='some-model', user='a-user', module_source='/some/source', collection='a-collection') def test_init(self): c = conncheck.ConnCheckInstanceJuju( '0/lxd/15', log_format=conncheck.LogFormats.CSV, config_file='thing.yaml', install_dir='/opt', module_source='/some/other/source', install_user='a-user') self.assertEqual(c.machine_or_unit_spec, '0/lxd/15') self.assertEqual(c.name, '0/lxd/15') self.assertEqual(c.log_format, conncheck.LogFormats.CSV) self.assertEqual(c.config_file, 'thing.yaml') self.assertEqual(c.install_dir, '/opt') self.assertEqual(c.module_source, '/some/other/source') self.assertEqual(c.install_user, 'a-user') self.assertEqual(self.c.machine_or_unit_spec, '0') self.assertEqual(self.c.name, '0') self.assertEqual(self.c.log_format, conncheck.LogFormats.InfluxDB) self.assertEqual(self.c.config_file, 'config.yaml') self.assertEqual(self.c.install_dir, '.') self.assertEqual(self.c.module_source, '/some/source') self.assertEqual(self.c.install_user, 'conncheck') def test_local_log_filename(self): self.assertEqual(self.c.local_log_filename, '0.log') self.c.machine_or_unit_spec = '0/lxd/15' self.assertEqual(self.c.local_log_filename, '0_lxd_15.log') def test__validate_spec(self): MACHINE = self.c.JujuTypes.MACHINE UNIT = self.c.JujuTypes.UNIT valid_specs = (('0', MACHINE), ('9', MACHINE), ('15', MACHINE), ('0/lxd/10', MACHINE), ('1/LXD/4', MACHINE), ('some-unit-0/14', UNIT), ('other/23', UNIT)) invalid_specs = ('b', '1/spec/2', 'other-unit', 'd/10/10') for spec, type_ in valid_specs: self.c.machine_or_unit_spec = spec self.c._validate_spec() self.assertEqual(self.c._juju_type, type_) for spec in invalid_specs: self.c.machine_or_unit_spec = spec with self.assertRaises(ValueError): self.c._validate_spec() def test_add_listener(self): self.patch_object(self.c, '_validate_not_existing_listener', name='mock__validate_not_existing_listener') self.patch_object(self.c, '_get_address', name='mock__get_address') self.mock__get_address.return_value = '1.2.3.4' self.patch_object(self.c, 'add_listener_spec', name='mock_add_listener_spec') self.c.add_listener('udp', 1024, space='default', cidr='cidr') self.mock__validate_not_existing_listener.assert_called_once_with( 'udp', 1024) self.mock__get_address('default', 'cidr') self.mock_add_listener_spec.assert_called_once_with( 'udp', 1024, '1.2.3.4', reply_size=1024) def test__get_address(self): self.patch_object(self.c, '_get_address_unit', name='mock__get_address_unit') self.mock__get_address_unit.return_value = '1.2.3.4' self.patch_object(self.c, '_get_address_machine', name='mock__get_address_machine') self.mock__get_address_machine.return_value = '5.6.7.8' self.c._juju_type = self.c.JujuTypes.UNIT self.assertEqual(self.c._get_address(None, 'cidr'), '1.2.3.4') self.mock__get_address_unit.assert_called_once_with( 'juju-info', 'cidr') self.mock__get_address_unit.reset_mock() self.c._juju_type = self.c.JujuTypes.MACHINE self.assertEqual(self.c._get_address(None, 'cidr'), '5.6.7.8') self.mock__get_address_machine.assert_called_once_with('cidr') self.c._juju_type = None with self.assertRaises(RuntimeError): self.c._get_address(None, 'cidr') def test__get_address_unit_single_address(self): self.patch('subprocess.check_output', name='mock_check_output') self.patch_object(conncheck, 'logger', name='mock_logger') self.patch('yaml.safe_load', name='mock_yaml_safe_load') self.mock_check_output.return_value = b'1.2.3.4' self.mock_yaml_safe_load.return_value = '1.2.3.4\n' self.assertEqual(self.c._get_address_unit('a-space', 'a-cidr'), '1.2.3.4') self.mock_check_output.assert_called_once_with( ['juju', 'run', '-u', '0', '--', 'network-get', '--format', 'yaml', '--bind-address', 'a-space']) self.mock_yaml_safe_load.assert_called_once_with('1.2.3.4') def test__get_address_unit_multiple_address(self): self.patch('subprocess.check_output', name='mock_check_output') self.patch_object(conncheck, 'logger', name='mock_logger') self.patch('yaml.safe_load', name='mock_yaml_safe_load') self.mock_check_output.return_value = b'1.2.3.4' self.mock_yaml_safe_load.return_value = ['1.2.3.4', '5.6.7.8'] with self.assertRaises(NotImplementedError): self.c._get_address_unit('a-space', 'a-cidr') def test__get_address_unit_network_get_fails(self): self.patch('subprocess.check_output', name='mock_check_output') self.patch_object(conncheck, 'logger', name='mock_logger') self.patch('yaml.safe_load', name='mock_yaml_safe_load') self.mock_check_output.return_value = b'1.2.3.4' def raise_(*args): raise subprocess.CalledProcessError(cmd='bang', returncode=1) self.mock_check_output.side_effect = raise_ with self.assertRaises(subprocess.CalledProcessError): self.c._get_address_unit('a-space', 'a-cidr') def test__get_address_machine(self): with self.assertRaises(NotImplementedError): self.c._get_address_machine() class TestConnCheckInstanceSSH(tests_utils.BaseTestCase): def setUp(self): super().setUp() self.patch('zaza.utilities.installers.make_ssh_fn', name='mock_make_ssh_fn') self.mock_ssh_fn = mock.Mock() self.mock_make_ssh_fn = self.mock_ssh_fn self.patch('zaza.utilities.installers.make_scp_fn', name='mock_make_scp_fn') self.mock_scp_fn = mock.Mock() self.mock_make_scp_fn = self.mock_scp_fn self.c = conncheck.ConnCheckInstanceSSH( address='1.2.3.4', key_file='a-file', user='a-user', module_source='/some/source', collection='a-collection') def test_init(self): c = conncheck.ConnCheckInstanceSSH( '5.6.7.8', 'my-key-file', log_format=conncheck.LogFormats.CSV, config_file='thing.yaml', install_dir='/opt', module_source='/some/other/source', install_user='a-user') self.assertEqual(c.address, '5.6.7.8') self.assertEqual(c.key_file, 'my-key-file') self.assertEqual(c.name, '5.6.7.8') self.assertEqual(c.log_format, conncheck.LogFormats.CSV) self.assertEqual(c.config_file, 'thing.yaml') self.assertEqual(c.install_dir, '/opt') self.assertEqual(c.module_source, '/some/other/source') self.assertEqual(c.install_user, 'a-user') self.assertEqual(self.c.address, '1.2.3.4') self.assertEqual(self.c.key_file, 'a-file') self.assertEqual(self.c.name, '1.2.3.4') self.assertEqual(self.c.log_format, conncheck.LogFormats.InfluxDB) self.assertEqual(self.c.config_file, 'config.yaml') self.assertEqual(self.c.install_dir, '.') self.assertEqual(self.c.module_source, '/some/source') self.assertEqual(self.c.install_user, 'conncheck') def test_local_log_filename(self): self.c.address = '[email protected]' self.assertEqual(self.c.local_log_filename, 'user_1-2-3-4.log') def test_add_listener(self): self.patch_object(self.c, '_validate_not_existing_listener', name='mock__validate_not_existing_listener') self.patch_object(self.c, 'add_listener_spec', name='mock_add_listener_spec') self.c.add_listener('udp', 1024) self.mock__validate_not_existing_listener.assert_called_once_with( 'udp', 1024) self.mock_add_listener_spec.assert_called_once_with( 'udp', 1024, '0.0.0.0', reply_size=1024)
43.203191
79
0.641698
[ "ECL-2.0", "Apache-2.0" ]
Basdbruijne/zaza
unit_tests/events/plugins/test_zaza_events_plugins_conncheck.py
40,611
Python
stages = [''' +---+ | | O | /|\ | / \ | | ========= ''', ''' +---+ | | O | /|\ | / | | ========= ''', ''' +---+ | | O | /|\ | | | ========= ''', ''' +---+ | | O | /| | | | ========= ''', ''' +---+ | | O | | | | | ========= ''', ''' +---+ | | O | | | | ========= ''', ''' +---+ | | | | | | ========= '''] logo = ''' _ | | | |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ | '_ \ / _` | '_ \ / _` | '_ ` _ \ / _` | '_ \ | | | | (_| | | | | (_| | | | | | | (_| | | | | |_| |_|\__,_|_| |_|\__, |_| |_| |_|\__,_|_| |_| __/ | |___/ '''
12.911765
47
0.083144
[ "MIT" ]
iliescua/Hangman
hangman_art.py
878
Python
import argparse import numpy as np from sklearn.metrics import accuracy_score, jaccard_score, balanced_accuracy_score import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import dataloader import track from classifiers import ObservationsConditionsClassifier from classifiers import ClassifierComposition np.seterr(all='ignore') class_set = 9 n_pca_components = 20 def train(): global parsed_args test_sequence = 'Mix' measurement_costs = [0.1*i for i in range(0,15)] measurement_costs.extend([0.01*i for i in range(1, 15)]) loader = dataloader.DataLoaderSpectrogram() features = [f'PC_{i}' for i in range(n_pca_components)] classifiers = [ (ObservationsConditionsClassifier(features, discriminant_model='calibrated_Gaussian', n_angle_bins=8), 'Conditioned on $\phi$', 'Isotonic calibration'), (ObservationsConditionsClassifier(features, discriminant_model='Gaussian', n_angle_bins=8), 'Conditioned on $\phi$','Uncalibrated'), (ClassifierComposition(features, discriminant_model='Gaussian'), 'Not conditioned on $\phi$', 'Uncalibrated'), (ClassifierComposition(features, discriminant_model='calibrated_Gaussian'), 'Not conditioned on $\phi$', 'Isotonic calibration'), ] rows = [] for cost in measurement_costs: for i_model, (classifier, observation_condition, discriminant_model) in enumerate(classifiers): if parsed_args.rebuild: track.state_estimation(load_directory = './data/dataset/RD') dataset_path = r'C:\Users\peter\Documents\pulseON' loader = dataloader.DataLoaderSpectrogram() loader.build(dataset_path,'PCA') else: loader.load('./data/dataset_df') result_df = evaluate_classifier(classifier, loader.df, test_persons = loader.df.person.unique(), test_sequence = test_sequence, measurement_cost = cost) predictions = result_df.loc[result_df['sequence_type'] == test_sequence]['prediction'].to_numpy() lables = result_df.loc[result_df['sequence_type'] == test_sequence]['lable'].to_numpy() accuracy = accuracy_score(lables, predictions) rows.append({ 'Accuracy': accuracy, 'Balanced accuracy': balanced_accuracy_score(lables, predictions), 'Macro-averaged Jaccard index': jaccard_score(lables, predictions, average='macro'), 'Observation conditions': observation_condition, 'Calibration': discriminant_model, 'Cost': cost, 'result_df': result_df, 'model_index': i_model, }) sns.lineplot(data = pd.DataFrame(rows), x = 'Cost', y = 'Accuracy', style = 'Observation conditions', hue = 'Calibration') plt.tight_layout() plt.show() def evaluate_classifier(model, df, test_persons, measurement_cost, test_sequence = 'Mix', prior = [1/class_set for i in range(class_set)], render_seq=False): df['prediction'] = -6666 for test_person in test_persons: training_df = df.loc[df['person'] != test_person] test_df = df.loc[(df['person'] == test_person) & (df['sequence_type'] == test_sequence)].copy() transition_matrix = estimate_transition_matrix( training_df.loc[training_df['sequence_type'] == 'Mix'] ) model.fit(training_df) for j, file in enumerate(test_df.file_index.unique()): print(f'File {j}/{len(test_df.file_index.unique())}') seq_df = test_df.loc[test_df['file_index'] == file].copy() seq_df = predict_sequence(model, seq_df, transition_matrix, measurement_cost) if render_seq: render.render_classification_sequence(seq_df) df.loc[seq_df.index, 'belief'] = seq_df['belief'] df.loc[seq_df.index, 'prediction'] = seq_df['prediction'] df.loc[seq_df.index, 'Selected'] = seq_df['Selected'] return df def predict_sequence(model, df, transition_matrix, measurement_cost, prior=[1/class_set for _ in range(class_set)]): belief = np.reshape(prior, (class_set, 1)) for time in np.sort(df.time.unique()): df_step = df[df['time'] == time].copy() if measurement_cost: selected_sensors = information_selection(df_step, model, belief, measurement_cost) else: selected_sensors = df_step.index df.loc[selected_sensors, 'Selected'] = True for i, row in df_step.loc[selected_sensors].iterrows(): row = row.to_frame().transpose() prop_likelihood = model.predict_proba(row) posterior = prop_likelihood[0, :, np.newaxis] * belief posterior = posterior/(posterior.sum()) belief = posterior # save prediction df['belief'] = np.nan df['belief'] = df['belief'].astype(object) for index in df_step.index: df.loc[index, 'belief'] = [belief] df.loc[index ,'prediction'] = belief.argmax() + 1 # Transition step belief = transition_matrix @ np.reshape(belief, (class_set,1)) return df def information_selection(df, model, belief, measurement_cost): # Calculate information and sort indices by information df['information'] = df.apply(lambda row: model.information(belief, [row['predicted_angle']]), axis=1) potential_sensors = df.sort_values('information').index.to_list() selected_sensors = [] sensor_utility = {0:[]} while potential_sensors: selected_sensors.append(potential_sensors.pop()) information = model.information(belief, sensors=df.loc[selected_sensors]['predicted_angle'].to_list()) utility = information - measurement_cost*len(selected_sensors) sensor_utility[utility] = selected_sensors[:] return sensor_utility[np.max(list(sensor_utility.keys()))] def estimate_transition_matrix(df): transition_count = np.zeros((class_set,class_set)) df = df.loc[df['radar'] == df.radar.unique()[0]] sequences = df['file_index'].unique() for sequence_index in sequences: df_seq = df.loc[df['file_index'] == sequence_index].sort_values('time').reset_index(drop=True) previous_state = None for i, row in df_seq.iterrows(): state = row['lable'] if not previous_state: previous_state = state continue transition_count[state - 1, previous_state - 1] += 1 previous_state = state transition_matrix = transition_count/transition_count.sum(axis=0,keepdims=1) transition_matrix = transition_matrix/transition_matrix.sum(axis=0,keepdims=1) return transition_matrix def load_options(): global parsed_args parser = argparse.ArgumentParser(description='Entry point to fit and evaluate\ a Bayesian model of human motion', formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--rebuild', dest='rebuild', action='store_true') parser.add_argument('--no-rebuild', dest='rebuild', action='store_false') parser.set_defaults(rebuild=False) parsed_args = parser.parse_args() if __name__ == '__main__': load_options() train()
40.949438
189
0.664563
[ "MIT" ]
petersvenningsson/radar-Bayesian-human-motion
train.py
7,289
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the pruning code. WARNING: This test uses 4GB of disk space. This test takes 30 mins or more (up to 2 hours) """ import os from test_framework.blocktools import create_coinbase from test_framework.messages import CBlock from test_framework.script import ( CScript, OP_NOP, OP_RETURN, ) from test_framework.test_framework import UmkoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, ) # Rescans start at the earliest block up to 2 hours before a key timestamp, so # the manual prune RPC avoids pruning blocks in the same window to be # compatible with pruning based on key creation time. TIMESTAMP_WINDOW = 2 * 60 * 60 def mine_large_blocks(node, n): # Make a large scriptPubKey for the coinbase transaction. This is OP_RETURN # followed by 950k of OP_NOP. This would be non-standard in a non-coinbase # transaction but is consensus valid. # Set the nTime if this is the first time this function has been called. # A static variable ensures that time is monotonicly increasing and is therefore # different for each block created => blockhash is unique. if "nTimes" not in mine_large_blocks.__dict__: mine_large_blocks.nTime = 0 # Get the block parameters for the first block big_script = CScript([OP_RETURN] + [OP_NOP] * 950000) best_block = node.getblock(node.getbestblockhash()) height = int(best_block["height"]) + 1 mine_large_blocks.nTime = max(mine_large_blocks.nTime, int(best_block["time"])) + 1 previousblockhash = int(best_block["hash"], 16) for _ in range(n): # Build the coinbase transaction (with large scriptPubKey) coinbase_tx = create_coinbase(height) coinbase_tx.vin[0].nSequence = 2 ** 32 - 1 coinbase_tx.vout[0].scriptPubKey = big_script coinbase_tx.rehash() # Build the block block = CBlock() block.nVersion = best_block["version"] block.hashPrevBlock = previousblockhash block.nTime = mine_large_blocks.nTime block.nBits = int('207fffff', 16) block.nNonce = 0 block.vtx = [coinbase_tx] block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Submit to the node node.submitblock(block.serialize().hex()) previousblockhash = block.sha256 height += 1 mine_large_blocks.nTime += 1 def calc_usage(blockdir): return sum(os.path.getsize(blockdir + f) for f in os.listdir(blockdir) if os.path.isfile(os.path.join(blockdir, f))) / (1024. * 1024.) class PruneTest(UmkoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 6 self.supports_cli = False # Create nodes 0 and 1 to mine. # Create node 2 to test pruning. self.full_node_default_args = ["-maxreceivebuffer=20000", "-checkblocks=5"] # Create nodes 3 and 4 to test manual pruning (they will be re-started with manual pruning later) # Create nodes 5 to test wallet in prune mode, but do not connect self.extra_args = [ self.full_node_default_args, self.full_node_default_args, ["-maxreceivebuffer=20000", "-prune=550"], ["-maxreceivebuffer=20000"], ["-maxreceivebuffer=20000"], ["-prune=550"], ] self.rpc_timeout = 120 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): self.setup_nodes() self.prunedir = os.path.join(self.nodes[2].datadir, self.chain, 'blocks', '') self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.connect_nodes(0, 2) self.connect_nodes(0, 3) self.connect_nodes(0, 4) self.sync_blocks(self.nodes[0:5]) def setup_nodes(self): self.add_nodes(self.num_nodes, self.extra_args) self.start_nodes() self.import_deterministic_coinbase_privkeys() def create_big_chain(self): # Start by creating some coinbases we can spend later self.generate(self.nodes[1], 200) self.sync_blocks(self.nodes[0:2]) self.generate(self.nodes[0], 150) # Then mine enough full blocks to create more than 550MiB of data mine_large_blocks(self.nodes[0], 645) self.sync_blocks(self.nodes[0:5]) def test_invalid_command_line_options(self): self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune cannot be configured with a negative value.', extra_args=['-prune=-1'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune configured below the minimum of 550 MiB. Please use a higher number.', extra_args=['-prune=549'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune mode is incompatible with -txindex.', extra_args=['-prune=550', '-txindex'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune mode is incompatible with -coinstatsindex.', extra_args=['-prune=550', '-coinstatsindex'], ) def test_height_min(self): assert os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), "blk00000.dat is missing, pruning too early" self.log.info("Success") self.log.info(f"Though we're already using more than 550MiB, current usage: {calc_usage(self.prunedir)}") self.log.info("Mining 25 more blocks should cause the first block file to be pruned") # Pruning doesn't run until we're allocating another chunk, 20 full blocks past the height cutoff will ensure this mine_large_blocks(self.nodes[0], 25) # Wait for blk00000.dat to be pruned self.wait_until(lambda: not os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), timeout=30) self.log.info("Success") usage = calc_usage(self.prunedir) self.log.info(f"Usage should be below target: {usage}") assert_greater_than(550, usage) def create_chain_with_staleblocks(self): # Create stale blocks in manageable sized chunks self.log.info("Mine 24 (stale) blocks on Node 1, followed by 25 (main chain) block reorg from Node 0, for 12 rounds") for _ in range(12): # Disconnect node 0 so it can mine a longer reorg chain without knowing about node 1's soon-to-be-stale chain # Node 2 stays connected, so it hears about the stale blocks and then reorg's when node0 reconnects self.disconnect_nodes(0, 1) self.disconnect_nodes(0, 2) # Mine 24 blocks in node 1 mine_large_blocks(self.nodes[1], 24) # Reorg back with 25 block chain from node 0 mine_large_blocks(self.nodes[0], 25) # Create connections in the order so both nodes can see the reorg at the same time self.connect_nodes(0, 1) self.connect_nodes(0, 2) self.sync_blocks(self.nodes[0:3]) self.log.info(f"Usage can be over target because of high stale rate: {calc_usage(self.prunedir)}") def reorg_test(self): # Node 1 will mine a 300 block chain starting 287 blocks back from Node 0 and Node 2's tip # This will cause Node 2 to do a reorg requiring 288 blocks of undo data to the reorg_test chain height = self.nodes[1].getblockcount() self.log.info(f"Current block height: {height}") self.forkheight = height - 287 self.forkhash = self.nodes[1].getblockhash(self.forkheight) self.log.info(f"Invalidating block {self.forkhash} at height {self.forkheight}") self.nodes[1].invalidateblock(self.forkhash) # We've now switched to our previously mined-24 block fork on node 1, but that's not what we want # So invalidate that fork as well, until we're on the same chain as node 0/2 (but at an ancestor 288 blocks ago) mainchainhash = self.nodes[0].getblockhash(self.forkheight - 1) curhash = self.nodes[1].getblockhash(self.forkheight - 1) while curhash != mainchainhash: self.nodes[1].invalidateblock(curhash) curhash = self.nodes[1].getblockhash(self.forkheight - 1) assert self.nodes[1].getblockcount() == self.forkheight - 1 self.log.info(f"New best height: {self.nodes[1].getblockcount()}") # Disconnect node1 and generate the new chain self.disconnect_nodes(0, 1) self.disconnect_nodes(1, 2) self.log.info("Generating new longer chain of 300 more blocks") self.generate(self.nodes[1], 300) self.log.info("Reconnect nodes") self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.sync_blocks(self.nodes[0:3], timeout=120) self.log.info(f"Verify height on node 2: {self.nodes[2].getblockcount()}") self.log.info(f"Usage possibly still high because of stale blocks in block files: {calc_usage(self.prunedir)}") self.log.info("Mine 220 more large blocks so we have requisite history") mine_large_blocks(self.nodes[0], 220) self.sync_blocks(self.nodes[0:3], timeout=120) usage = calc_usage(self.prunedir) self.log.info(f"Usage should be below target: {usage}") assert_greater_than(550, usage) def reorg_back(self): # Verify that a block on the old main chain fork has been pruned away assert_raises_rpc_error(-1, "Block not available (pruned data)", self.nodes[2].getblock, self.forkhash) with self.nodes[2].assert_debug_log(expected_msgs=['block verification stopping at height', '(pruning, no data)']): self.nodes[2].verifychain(checklevel=4, nblocks=0) self.log.info(f"Will need to redownload block {self.forkheight}") # Verify that we have enough history to reorg back to the fork point # Although this is more than 288 blocks, because this chain was written more recently # and only its other 299 small and 220 large blocks are in the block files after it, # it is expected to still be retained self.nodes[2].getblock(self.nodes[2].getblockhash(self.forkheight)) first_reorg_height = self.nodes[2].getblockcount() curchainhash = self.nodes[2].getblockhash(self.mainchainheight) self.nodes[2].invalidateblock(curchainhash) goalbestheight = self.mainchainheight goalbesthash = self.mainchainhash2 # As of 0.10 the current block download logic is not able to reorg to the original chain created in # create_chain_with_stale_blocks because it doesn't know of any peer that's on that chain from which to # redownload its missing blocks. # Invalidate the reorg_test chain in node 0 as well, it can successfully switch to the original chain # because it has all the block data. # However it must mine enough blocks to have a more work chain than the reorg_test chain in order # to trigger node 2's block download logic. # At this point node 2 is within 288 blocks of the fork point so it will preserve its ability to reorg if self.nodes[2].getblockcount() < self.mainchainheight: blocks_to_mine = first_reorg_height + 1 - self.mainchainheight self.log.info(f"Rewind node 0 to prev main chain to mine longer chain to trigger redownload. Blocks needed: {blocks_to_mine}") self.nodes[0].invalidateblock(curchainhash) assert_equal(self.nodes[0].getblockcount(), self.mainchainheight) assert_equal(self.nodes[0].getbestblockhash(), self.mainchainhash2) goalbesthash = self.generate(self.nodes[0], blocks_to_mine)[-1] goalbestheight = first_reorg_height + 1 self.log.info("Verify node 2 reorged back to the main chain, some blocks of which it had to redownload") # Wait for Node 2 to reorg to proper height self.wait_until(lambda: self.nodes[2].getblockcount() >= goalbestheight, timeout=900) assert_equal(self.nodes[2].getbestblockhash(), goalbesthash) # Verify we can now have the data for a block previously pruned assert_equal(self.nodes[2].getblock(self.forkhash)["height"], self.forkheight) def manual_test(self, node_number, use_timestamp): # at this point, node has 995 blocks and has not yet run in prune mode self.start_node(node_number) node = self.nodes[node_number] assert_equal(node.getblockcount(), 995) assert_raises_rpc_error(-1, "not in prune mode", node.pruneblockchain, 500) # now re-start in manual pruning mode self.restart_node(node_number, extra_args=["-prune=1"]) node = self.nodes[node_number] assert_equal(node.getblockcount(), 995) def height(index): if use_timestamp: return node.getblockheader(node.getblockhash(index))["time"] + TIMESTAMP_WINDOW else: return index def prune(index): ret = node.pruneblockchain(height=height(index)) assert_equal(ret, node.getblockchaininfo()['pruneheight']) def has_block(index): return os.path.isfile(os.path.join(self.nodes[node_number].datadir, self.chain, "blocks", f"blk{index:05}.dat")) # should not prune because chain tip of node 3 (995) < PruneAfterHeight (1000) assert_raises_rpc_error(-1, "Blockchain is too short for pruning", node.pruneblockchain, height(500)) # Save block transaction count before pruning, assert value block1_details = node.getblock(node.getblockhash(1)) assert_equal(block1_details["nTx"], len(block1_details["tx"])) # mine 6 blocks so we are at height 1001 (i.e., above PruneAfterHeight) self.generate(node, 6) assert_equal(node.getblockchaininfo()["blocks"], 1001) # Pruned block should still know the number of transactions assert_equal(node.getblockheader(node.getblockhash(1))["nTx"], block1_details["nTx"]) # negative heights should raise an exception assert_raises_rpc_error(-8, "Negative", node.pruneblockchain, -10) # height=100 too low to prune first block file so this is a no-op prune(100) assert has_block(0), "blk00000.dat is missing when should still be there" # Does nothing node.pruneblockchain(height(0)) assert has_block(0), "blk00000.dat is missing when should still be there" # height=500 should prune first file prune(500) assert not has_block(0), "blk00000.dat is still there, should be pruned by now" assert has_block(1), "blk00001.dat is missing when should still be there" # height=650 should prune second file prune(650) assert not has_block(1), "blk00001.dat is still there, should be pruned by now" # height=1000 should not prune anything more, because tip-288 is in blk00002.dat. prune(1000) assert has_block(2), "blk00002.dat is still there, should be pruned by now" # advance the tip so blk00002.dat and blk00003.dat can be pruned (the last 288 blocks should now be in blk00004.dat) self.generate(node, 288) prune(1000) assert not has_block(2), "blk00002.dat is still there, should be pruned by now" assert not has_block(3), "blk00003.dat is still there, should be pruned by now" # stop node, start back up with auto-prune at 550 MiB, make sure still runs self.restart_node(node_number, extra_args=["-prune=550"]) self.log.info("Success") def wallet_test(self): # check that the pruning node's wallet is still in good shape self.log.info("Stop and start pruning node to trigger wallet rescan") self.restart_node(2, extra_args=["-prune=550"]) self.log.info("Success") # check that wallet loads successfully when restarting a pruned node after IBD. # this was reported to fail in #7494. self.log.info("Syncing node 5 to test wallet") self.connect_nodes(0, 5) nds = [self.nodes[0], self.nodes[5]] self.sync_blocks(nds, wait=5, timeout=300) self.restart_node(5, extra_args=["-prune=550"]) # restart to trigger rescan self.log.info("Success") def run_test(self): self.log.info("Warning! This test requires 4GB of disk space") self.log.info("Mining a big blockchain of 995 blocks") self.create_big_chain() # Chain diagram key: # * blocks on main chain # +,&,$,@ blocks on other forks # X invalidated block # N1 Node 1 # # Start by mining a simple chain that all nodes have # N0=N1=N2 **...*(995) # stop manual-pruning node with 995 blocks self.stop_node(3) self.stop_node(4) self.log.info("Check that we haven't started pruning yet because we're below PruneAfterHeight") self.test_height_min() # Extend this chain past the PruneAfterHeight # N0=N1=N2 **...*(1020) self.log.info("Check that we'll exceed disk space target if we have a very high stale block rate") self.create_chain_with_staleblocks() # Disconnect N0 # And mine a 24 block chain on N1 and a separate 25 block chain on N0 # N1=N2 **...*+...+(1044) # N0 **...**...**(1045) # # reconnect nodes causing reorg on N1 and N2 # N1=N2 **...*(1020) *...**(1045) # \ # +...+(1044) # # repeat this process until you have 12 stale forks hanging off the # main chain on N1 and N2 # N0 *************************...***************************(1320) # # N1=N2 **...*(1020) *...**(1045) *.. ..**(1295) *...**(1320) # \ \ \ # +...+(1044) &.. $...$(1319) # Save some current chain state for later use self.mainchainheight = self.nodes[2].getblockcount() # 1320 self.mainchainhash2 = self.nodes[2].getblockhash(self.mainchainheight) self.log.info("Check that we can survive a 288 block reorg still") self.reorg_test() # (1033, ) # Now create a 288 block reorg by mining a longer chain on N1 # First disconnect N1 # Then invalidate 1033 on main chain and 1032 on fork so height is 1032 on main chain # N1 **...*(1020) **...**(1032)X.. # \ # ++...+(1031)X.. # # Now mine 300 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@(1332) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # Reconnect nodes and mine 220 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # N2 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ *...**(1320) # \ \ # ++...++(1044) .. # # N0 ********************(1032) @@...@@@(1552) # \ # *...**(1320) self.log.info("Test that we can rerequest a block we previously pruned if needed for a reorg") self.reorg_back() # Verify that N2 still has block 1033 on current chain (@), but not on main chain (*) # Invalidate 1033 on current chain (@) on N2 and we should be able to reorg to # original main chain (*), but will require redownload of some blocks # In order to have a peer we think we can download from, must also perform this invalidation # on N0 and mine a new longest chain to trigger. # Final result: # N0 ********************(1032) **...****(1553) # \ # X@...@@@(1552) # # N2 **...*(1020) **...**(1032) **...****(1553) # \ \ # \ X@...@@@(1552) # \ # +.. # # N1 doesn't change because 1033 on main chain (*) is invalid self.log.info("Test manual pruning with block indices") self.manual_test(3, use_timestamp=False) self.log.info("Test manual pruning with timestamps") self.manual_test(4, use_timestamp=True) self.log.info("Test wallet re-scan") self.wallet_test() self.log.info("Test invalid pruning command line options") self.test_invalid_command_line_options() self.log.info("Done") if __name__ == '__main__': PruneTest().main()
44.866944
138
0.613781
[ "MIT" ]
umkoin/umkoin
test/functional/feature_pruning.py
21,581
Python
import time from Classes.Packets.PiranhaMessage import PiranhaMessage class OwnHomeDataMessage(PiranhaMessage): def __init__(self, messageData): super().__init__(messageData) self.messageVersion = 0 def encode(self, fields, player): ownedBrawlersCount = len(player.OwnedBrawlers) ownedPinsCount = len(player.OwnedPins) ownedThumbnailCount = len(player.OwnedThumbnails) ownedSkins = [] for brawlerInfo in player.OwnedBrawlers.values(): try: ownedSkins.extend(brawlerInfo["Skins"]) except KeyError: continue self.writeVint(int(time.time())) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(player.Trophies) # Trophies self.writeVint(player.HighestTrophies) # Highest Trophies self.writeVint(player.HighestTrophies) self.writeVint(player.TrophyRoadTier) self.writeVint(player.Experience) # Experience self.writeDataReference(28, player.Thumbnail) # Thumbnail self.writeDataReference(43, player.Namecolor) # Namecolor self.writeVint(0) self.writeVint(0) # Selected Skins self.writeVint(0) # Randomizer Skin Selected self.writeVint(0) # Current Random Skin self.writeVint(len(ownedSkins)) for skinID in ownedSkins: self.writeDataReference(29, skinID) self.writeVint(0) # Unlocked Skin Purchase Option self.writeVint(0) # New Item State self.writeVint(0) self.writeVint(player.HighestTrophies) self.writeVint(0) self.writeVint(1) self.writeBoolean(True) self.writeVint(player.TokensDoubler) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(141) self.writeVint(135) self.writeVint(5) self.writeVint(93) self.writeVint(206) self.writeVint(456) self.writeVint(792) self.writeVint(729) self.writeBoolean(False) # Offer 1 self.writeBoolean(False) # Offer 2 self.writeBoolean(True) # Token Doubler Enabled self.writeVint(2) # Token Doubler New Tag State self.writeVint(2) # Event Tickets New Tag State self.writeVint(2) # Coin Packs New Tag State self.writeVint(0) # Change Name Cost self.writeVint(0) # Timer For the Next Name Change self.writeVint(1) # Offers count self.writeVint(1) # RewardCount for i in range(1): self.writeVint(6) # ItemType self.writeVint(0) self.writeDataReference(0) # CsvID self.writeVint(0) self.writeVint(0) self.writeVint(666) self.writeVint(950400) self.writeVint(2) self.writeVint(0) self.writeBoolean(False) self.writeVint(3917) self.writeVint(0) self.writeBoolean(False) self.writeVint(49) self.writeInt(0) self.writeString("Unlock all skins") self.writeBoolean(False) self.writeString() self.writeVint(-1) self.writeBoolean(False) self.writeVint(0) self.writeVint(0) self.writeString() self.writeBoolean(False) self.writeBoolean(False) self.writeVint(0) self.writeVint(player.Tokens) self.writeVint(-1) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(len(player.SelectedBrawlers)) for i in player.SelectedBrawlers: self.writeDataReference(16, i) self.writeString(player.Region) self.writeString(player.ContentCreator) self.writeVint(19) self.writeLong(2, 1) # Unknown self.writeLong(3, 0) # TokensGained self.writeLong(4, 0) # TrophiesGained self.writeLong(6, 0) # DemoAccount self.writeLong(7, 0) # InvitesBlocked self.writeLong(8, 0) # StarPointsGained self.writeLong(9, 1) # ShowStarPoints self.writeLong(10, 0) # PowerPlayTrophiesGained self.writeLong(12, 1) # Unknown self.writeLong(14, 0) # CoinsGained self.writeLong(15, 0) # AgeScreen | 3 = underage (disable social media) | 1 = age popup self.writeLong(16, 1) self.writeLong(17, 1) # TeamChatMuted self.writeLong(18, 1) # EsportButton self.writeLong(19, 1) # ChampionShipLivesBuyPopup self.writeLong(20, 0) # GemsGained self.writeLong(21, 1) # LookingForTeamState self.writeLong(22, 1) self.writeLong(24, 1) # Have already watched club league stupid animation self.writeVint(0) self.writeVint(2) # Brawlpass for i in range(8, 10): self.writeVint(i) self.writeVint(34500) self.writeBoolean(True) self.writeVint(0) self.writeUInt8(2) self.writeUInt(4294967292) self.writeUInt(4294967295) self.writeUInt(511) self.writeUInt(0) self.writeUInt8(1) self.writeUInt(4294967292) self.writeUInt(4294967295) self.writeUInt(511) self.writeUInt(0) self.writeVint(0) self.writeBoolean(True) self.writeVint(0) self.writeBoolean(True) self.writeVint(ownedPinsCount + ownedThumbnailCount) # Vanity Count for i in player.OwnedPins: self.writeDataReference(52, i) self.writeVint(1) for i in range(1): self.writeVint(1) self.writeVint(1) for i in player.OwnedThumbnails: self.writeDataReference(28, i) self.writeVint(1) for i in range(1): self.writeVint(1) self.writeVint(1) self.writeBoolean(False) self.writeInt(0) self.writeVint(0) self.writeVint(25) # Count self.writeVint(1) self.writeVint(2) self.writeVint(3) self.writeVint(4) self.writeVint(5) self.writeVint(6) self.writeVint(7) self.writeVint(8) self.writeVint(9) self.writeVint(10) self.writeVint(11) self.writeVint(12) self.writeVint(13) self.writeVint(14) self.writeVint(15) self.writeVint(16) self.writeVint(17) self.writeVint(20) self.writeVint(21) self.writeVint(22) self.writeVint(23) self.writeVint(24) self.writeVint(30) self.writeVint(31) self.writeVint(32) self.writeVint(3) # Events eventIndex = 1 for i in [5, 7, 24]: self.writeVint(-1) self.writeVint(eventIndex) # EventType self.writeVint(0) # EventsBeginCountdown self.writeVint(51208) # Timer self.writeVint(0) # tokens reward for new event self.writeDataReference(15, i) # MapID self.writeVint(-1) # GameModeVariation self.writeVint(2) # State self.writeString() self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(0) # Modifiers self.writeVint(0) self.writeVint(0) self.writeBoolean(False) # Map Maker Map Structure Array self.writeVint(0) self.writeBoolean(False) # Power League Data Array self.writeVint(0) self.writeVint(0) self.writeBoolean(False) # ChronosTextEntry self.writeBoolean(False) self.writeBoolean(False) self.writeVint(-1) self.writeBoolean(False) self.writeBoolean(False) eventIndex += 1 self.writeVint(0) # Comming Events self.writeVint(10) # Brawler Upgrade Cost self.writeVint(20) self.writeVint(35) self.writeVint(75) self.writeVint(140) self.writeVint(290) self.writeVint(480) self.writeVint(800) self.writeVint(1250) self.writeVint(1875) self.writeVint(2800) self.writeVint(4) # Shop Coins Price self.writeVint(20) self.writeVint(50) self.writeVint(140) self.writeVint(280) self.writeVint(4) # Shop Coins Amount self.writeVint(150) self.writeVint(400) self.writeVint(1200) self.writeVint(2600) self.writeBoolean(True) # Show Offers Packs self.writeVint(0) self.writeVint(23) # IntValueEntry self.writeLong(10008, 501) self.writeLong(65, 2) self.writeLong(1, 41000036) # ThemeID self.writeLong(60, 36270) self.writeLong(66, 1) self.writeLong(61, 36270) # SupportDisabled State | if 36218 < state its true self.writeLong(47, 41381) self.writeLong(29, 0) # Skin Group Active For Campaign self.writeLong(48, 41381) self.writeLong(50, 0) # Coming up quests placeholder self.writeLong(1100, 500) self.writeLong(1101, 500) self.writeLong(1003, 1) self.writeLong(36, 0) self.writeLong(14, 0) # Double Token Event self.writeLong(31, 0) # Gold rush event self.writeLong(79, 149999) self.writeLong(80, 160000) self.writeLong(28, 4) self.writeLong(74, 1) self.writeLong(78, 1) self.writeLong(17, 4) self.writeLong(10046, 1) self.writeVint(0) # Timed Int Value Entry self.writeVint(0) # Custom Event self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeLong(player.ID[0], player.ID[1]) # PlayerID self.writeVint(0) # NotificationFactory self.writeVint(-1) self.writeBoolean(False) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVLong(player.ID[0], player.ID[1]) self.writeVLong(0, 0) self.writeVLong(0, 0) self.writeString(player.Name) self.writeBoolean(player.Registered) self.writeInt(0) self.writeVint(15) self.writeVint(3 + ownedBrawlersCount) for brawlerInfo in player.OwnedBrawlers.values(): self.writeDataReference(23, brawlerInfo["CardID"]) self.writeVint(1) self.writeDataReference(5, 8) self.writeVint(player.Coins) self.writeDataReference(5, 10) self.writeVint(player.StarPoints) self.writeDataReference(5, 13) self.writeVint(99999) # Club coins self.writeVint(ownedBrawlersCount) for brawlerID,brawlerInfo in player.OwnedBrawlers.items(): self.writeDataReference(16, brawlerID) self.writeVint(brawlerInfo["Trophies"]) self.writeVint(ownedBrawlersCount) for brawlerID, brawlerInfo in player.OwnedBrawlers.items(): self.writeDataReference(16, brawlerID) self.writeVint(brawlerInfo["HighestTrophies"]) self.writeVint(0) self.writeVint(ownedBrawlersCount) for brawlerID, brawlerInfo in player.OwnedBrawlers.items(): self.writeDataReference(16, brawlerID) self.writeVint(brawlerInfo["PowerPoints"]) self.writeVint(ownedBrawlersCount) for brawlerID, brawlerInfo in player.OwnedBrawlers.items(): self.writeDataReference(16, brawlerID) self.writeVint(brawlerInfo["PowerLevel"] - 1) self.writeVint(0) self.writeVint(ownedBrawlersCount) for brawlerID, brawlerInfo in player.OwnedBrawlers.items(): self.writeDataReference(16, brawlerID) self.writeVint(brawlerInfo["State"]) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(0) self.writeVint(player.Gems) # Diamonds self.writeVint(player.Gems) # Free Diamonds self.writeVint(player.Level) # Player Level self.writeVint(100) self.writeVint(0) # CumulativePurchasedDiamonds or Avatar User Level Tier | 10000 < Level Tier = 3 | 1000 < Level Tier = 2 | 0 < Level Tier = 1 self.writeVint(0) # Battle Count self.writeVint(0) # WinCount self.writeVint(0) # LoseCount self.writeVint(0) # WinLooseStreak self.writeVint(0) # NpcWinCount self.writeVint(0) # NpcLoseCount self.writeVint(2) # TutorialState | shouldGoToFirstTutorialBattle = State == 0 self.writeVint(0) def decode(self): fields = {} # fields["AccountID"] = self.readLong() # fields["HomeID"] = self.readLong() # fields["PassToken"] = self.readString() # fields["FacebookID"] = self.readString() # fields["GamecenterID"] = self.readString() # fields["ServerMajorVersion"] = self.readInt() # fields["ContentVersion"] = self.readInt() # fields["ServerBuild"] = self.readInt() # fields["ServerEnvironment"] = self.readString() # fields["SessionCount"] = self.readInt() # fields["PlayTimeSeconds"] = self.readInt() # fields["DaysSinceStartedPlaying"] = self.readInt() # fields["FacebookAppID"] = self.readString() # fields["ServerTime"] = self.readString() # fields["AccountCreatedDate"] = self.readString() # fields["StartupCooldownSeconds"] = self.readInt() # fields["GoogleServiceID"] = self.readString() # fields["LoginCountry"] = self.readString() # fields["KunlunID"] = self.readString() # fields["Tier"] = self.readInt() # fields["TencentID"] = self.readString() # # ContentUrlCount = self.readInt() # fields["GameAssetsUrls"] = [] # for i in range(ContentUrlCount): # fields["GameAssetsUrls"].append(self.readString()) # # EventUrlCount = self.readInt() # fields["EventAssetsUrls"] = [] # for i in range(EventUrlCount): # fields["EventAssetsUrls"].append(self.readString()) # # fields["SecondsUntilAccountDeletion"] = self.readVint() # fields["SupercellIDToken"] = self.readCompressedString() # fields["IsSupercellIDLogoutAllDevicesAllowed"] = self.readBoolean() # fields["isSupercellIDEligible"] = self.readBoolean() # fields["LineID"] = self.readString() # fields["SessionID"] = self.readString() # fields["KakaoID"] = self.readString() # fields["UpdateURL"] = self.readString() # fields["YoozooPayNotifyUrl"] = self.readString() # fields["UnbotifyEnabled"] = self.readBoolean() # super().decode(fields) return fields def execute(message, calling_instance, fields): pass def getMessageType(self): return 24101 def getMessageVersion(self): return self.messageVersion
31.844538
152
0.599419
[ "Apache-2.0" ]
ServerBSvvv/BSDS-V41
Classes/Packets/Server/Home/OwnHomeDataMessage.py
15,158
Python
from sympy.logic.boolalg import to_cnf, eliminate_implications, distribute_and_over_or, \ compile_rule, conjuncts, disjuncts, to_int_repr, fuzzy_not, Boolean, is_cnf from sympy import symbols, And, Or, Xor, Not, Nand, Nor, Implies, Equivalent, ITE from sympy.utilities.pytest import raises, XFAIL def test_overloading(): """Test that |, & are overloaded as expected""" A, B, C = list(map(Boolean, symbols('A,B,C'))) assert A & B == And(A, B) assert A | B == Or(A, B) assert (A & B) | C == Or(And(A, B), C) assert A >> B == Implies(A, B) assert A << B == Implies(B, A) assert ~A == Not(A) assert A ^ B == Xor(A, B) def test_And(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert And() == True assert And(A) == A assert And(True) == True assert And(False) == False assert And(True, True ) == True assert And(True, False) == False assert And(False, False) == False assert And(True, A) == A assert And(False, A) == False assert And(True, True, True) == True assert And(True, True , A) == A assert And(True, False, A) == False def test_Or(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert Or() == False assert Or(A) == A assert Or(True) == True assert Or(False) == False assert Or(True, True ) == True assert Or(True, False) == True assert Or(False, False) == False assert Or(True, A) == True assert Or(False, A) == A assert Or(True, False, False) == True assert Or(True, False, A) == True assert Or(False, False, A) == A def test_Xor(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert Xor() == False assert Xor(A) == A assert Xor(True) == True assert Xor(False) == False assert Xor(True, True ) == False assert Xor(True, False) == True assert Xor(False, False) == False assert Xor(True, A) == ~A assert Xor(False, A) == A assert Xor(True, False, False) == True assert Xor(True, False, A) == ~A assert Xor(False, False, A) == A def test_Not(): assert Not(True) == False assert Not(False) == True assert Not(True, True ) == [False, False] assert Not(True, False) == [False, True ] assert Not(False,False) == [True, True ] def test_Nand(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert Nand() == False assert Nand(A) == ~A assert Nand(True) == False assert Nand(False) == True assert Nand(True, True ) == False assert Nand(True, False) == True assert Nand(False, False) == True assert Nand(True, A) == ~A assert Nand(False, A) == True assert Nand(True, True, True) == False assert Nand(True, True , A) == ~A assert Nand(True, False, A) == True def test_Nor(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert Nor() == True assert Nor(A) == ~A assert Nor(True) == False assert Nor(False) == True assert Nor(True, True ) == False assert Nor(True, False) == False assert Nor(False, False) == True assert Nor(True, A) == False assert Nor(False, A) == ~A assert Nor(True, True, True) == False assert Nor(True, True , A) == False assert Nor(True, False, A) == False def test_Implies(): A, B, C = list(map(Boolean, symbols('A,B,C'))) raises(ValueError, "Implies(A,B,C)") assert Implies(True, True) == True assert Implies(True, False) == False assert Implies(False, True) == True assert Implies(False, False) == True assert A >> B == B << A def test_Equivalent(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A) assert Equivalent() == True assert Equivalent(A, A) == Equivalent(A) == True assert Equivalent(True, True) == Equivalent(False, False) == True assert Equivalent(True, False) == Equivalent(False, True) == False assert Equivalent(A, True) == A assert Equivalent(A, False) == Not(A) assert Equivalent(A, B, True) == A & B assert Equivalent(A, B, False) == ~A & ~B def test_bool_symbol(): """Test that mixing symbols with boolean values works as expected""" A, B, C = list(map(Boolean, symbols('A,B,C'))) assert And(A, True) == A assert And(A, True, True) == A assert And(A, False) == False assert And(A, True, False) == False assert Or(A, True) == True assert Or(A, False) == A def test_subs(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert (A & B).subs(A, True) == B assert (A & B).subs(A, False) == False assert (A & B).subs(B, True) == A assert (A & B).subs(B, False) == False assert (A & B).subs({A: True, B:True}) == True assert (A | B).subs(A, True) == True assert (A | B).subs(A, False) == B assert (A | B).subs(B, True) == True assert (A | B).subs(B, False) == A assert (A | B).subs({A: True, B:True}) == True """ we test for axioms of boolean algebra see http://en.wikipedia.org/wiki/Boolean_algebra_(structure) """ def test_commutative(): """Test for commutivity of And and Or""" A, B = list(map(Boolean, symbols('A,B'))) assert A & B == B & A assert A | B == B | A def test_and_associativity(): """Test for associativity of And""" A, B, C = list(map(Boolean, symbols('A,B,C'))) assert (A & B) & C == A & (B & C) def test_or_assicativity(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert ((A | B) | C) == (A | (B | C)) def test_double_negation(): a = Boolean() assert ~(~a) == a def test_De_Morgan(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert ~(A & B) == (~A) | (~B) assert ~(A | B) == (~A) & (~B) assert ~(A | B | C) == ~A & ~B & ~C # test methods def test_eliminate_implications(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications(A >> (C >>Not(B))) == Or(Or(Not(B), Not(C)), Not(A)) def test_conjuncts(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert conjuncts(A & B & C) == set([A, B, C]) assert conjuncts((A | B) & C) == set([A | B, C]) assert conjuncts(A) == set([A]) assert conjuncts(True) == set([True]) assert conjuncts(False) == set([False]) def test_disjuncts(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert disjuncts(A | B | C) == set([A, B, C]) assert disjuncts((A | B) & C) == set([(A | B) & C]) assert disjuncts(A) == set([A]) assert disjuncts(True) == set([True]) assert disjuncts(False) == set([False]) def test_distribute(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) def test_to_cnf(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert to_cnf(~(B | C)) == And(Not(B), Not(C)) assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C)) assert to_cnf(A >> B) == (~A) | B assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C) assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A))) assert to_cnf(Equivalent(A, B & C)) == (~A | B) & (~A | C) & (~B | ~C | A) assert to_cnf(Equivalent(A, B | C)) == \ And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A))) def test_compile_rule(): from sympy import sympify assert compile_rule("A & B") == sympify("A & B") def test_to_int_repr(): x, y, z = list(map(Boolean, symbols('x,y,z'))) def sorted_recursive(arg): try: return sorted(sorted_recursive(x) for x in arg) except TypeError: #arg is not a sequence return arg assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \ sorted_recursive([[1, 2], [1, 3]]) assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \ sorted_recursive([[1, 2], [3, -1]]) def test_is_cnf(): x, y, z = symbols('x,y,z') assert is_cnf(x | y | z) == True assert is_cnf(x & y & z) == True assert is_cnf((x | y) & z) == True assert is_cnf((x & y) | z) == False def test_ITE(): A, B, C = list(map(Boolean, symbols('A,B,C'))) assert ITE(True, False, True) == False assert ITE(True, True, False) == True assert ITE(False, True, False) == False assert ITE(False, False, True) == True A = True assert ITE(A, B, C) == B A = False assert ITE(A, B, C) == C B = True assert ITE(And(A, B), B, C) == C assert ITE(Or(A, False), And(B, True), False) == False
32.097015
89
0.562892
[ "BSD-3-Clause" ]
cielavenir/sympy
py3k-sympy/sympy/logic/tests/test_boolalg.py
8,602
Python
import argparse from pathlib import Path import tempfile from typing import List from gensim.models import KeyedVectors from gensim.scripts.glove2word2vec import glove2word2vec from target_extraction.data_types import TargetTextCollection from target_extraction.tokenizers import spacy_tokenizer def parse_path(path_string: str) -> Path: path_string = Path(path_string).resolve() return path_string def shrink_glove_file(glove_fp: Path, filter_words: List[str], save_fp: Path ) -> None: ''' :param glove_fp: File path to the glove file that is to be shrinked :param filter_words: List of words to filter/shrink the glove file/vectors by :param save_fp: ''' with save_fp.open('w+') as save_file: with glove_fp.open('r') as glove_file: for glove_vector in glove_file: glove_parts = glove_vector.split() if (len(glove_parts) == 301 or len(glove_parts) == 51 or len(glove_parts) == 201): pass else: continue glove_word = glove_parts[0] if glove_word in filter_words: save_file.write(glove_vector) #python tdsa_augmentation/data_creation/shrink_glove_to_targets.py ./data/original_restaurant_sentiment/train.json ./resources/word_embeddings/glove.840B.300d.txt ./here if __name__ == '__main__': glove_fp_help = 'File path to the Glove embedding to be shrunk and '\ 'converted to Word2Vec format' parser = argparse.ArgumentParser() parser.add_argument("json_train_data", type=parse_path, help='File path JSON training data') parser.add_argument("glove_embedding_fp", type=parse_path, help=glove_fp_help) parser.add_argument("target_only_word2vec_path", type=parse_path, help='File path to save the embedding too.') args = parser.parse_args() save_fp = args.target_only_word2vec_path if save_fp.exists(): print('A file already exists at the location to store ' f'the new Word2Vec model/vector: {save_fp}\n' 'Thus skipping the rest of this script.') else: dataset = TargetTextCollection.load_json(args.json_train_data) all_targets = list(dataset.target_count(lower=True).keys()) tokenizer = spacy_tokenizer() tokenised_targets = [target for targets in all_targets for target in tokenizer(targets)] with tempfile.TemporaryDirectory() as temp_dir: shrink_glove_temp_fp = Path(temp_dir, 'temp_glove') shrink_word_vec_temp_fp = Path(temp_dir, 'temp_wordvec') shrink_glove_file(args.glove_embedding_fp, tokenised_targets, shrink_glove_temp_fp) glove2word2vec(shrink_glove_temp_fp, shrink_word_vec_temp_fp) model = KeyedVectors.load_word2vec_format(shrink_word_vec_temp_fp) model.save(str(save_fp)) print(f'Word2Vec shrunk to target model saved to {save_fp}')
42.863014
169
0.660914
[ "Apache-2.0" ]
apmoore1/tdsa_augmentation
tdsa_augmentation/data_creation/shrink_glove_to_targets.py
3,129
Python
import platform import random import shutil import subprocess import textwrap from pathlib import Path, PurePath import pytest from cibuildwheel.docker_container import DockerContainer from cibuildwheel.environment import EnvironmentAssignment # for these tests we use manylinux2014 images, because they're available on # multi architectures and include python3.8 pm = platform.machine() if pm == "x86_64": DEFAULT_IMAGE = "quay.io/pypa/manylinux2014_x86_64:2020-05-17-2f8ac3b" elif pm == "aarch64": DEFAULT_IMAGE = "quay.io/pypa/manylinux2014_aarch64:2020-05-17-2f8ac3b" elif pm == "ppc64le": DEFAULT_IMAGE = "quay.io/pypa/manylinux2014_ppc64le:2020-05-17-2f8ac3b" elif pm == "s390x": DEFAULT_IMAGE = "quay.io/pypa/manylinux2014_s390x:2020-05-17-2f8ac3b" @pytest.mark.docker def test_simple(): with DockerContainer(DEFAULT_IMAGE) as container: assert container.call(["echo", "hello"], capture_output=True) == "hello\n" @pytest.mark.docker def test_no_lf(): with DockerContainer(DEFAULT_IMAGE) as container: assert container.call(["printf", "hello"], capture_output=True) == "hello" @pytest.mark.docker def test_environment(): with DockerContainer(DEFAULT_IMAGE) as container: assert ( container.call( ["sh", "-c", "echo $TEST_VAR"], env={"TEST_VAR": "1"}, capture_output=True ) == "1\n" ) @pytest.mark.docker def test_cwd(): with DockerContainer(DEFAULT_IMAGE, cwd="/cibuildwheel/working_directory") as container: assert container.call(["pwd"], capture_output=True) == "/cibuildwheel/working_directory\n" assert container.call(["pwd"], capture_output=True, cwd="/opt") == "/opt\n" @pytest.mark.docker def test_container_removed(): with DockerContainer(DEFAULT_IMAGE) as container: docker_containers_listing = subprocess.run( "docker container ls", shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True, ).stdout assert container.name in docker_containers_listing old_container_name = container.name docker_containers_listing = subprocess.run( "docker container ls", shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True, ).stdout assert old_container_name not in docker_containers_listing @pytest.mark.docker def test_large_environment(): # max environment variable size is 128kB long_env_var_length = 127 * 1024 large_environment = { "a": "0" * long_env_var_length, "b": "0" * long_env_var_length, "c": "0" * long_env_var_length, "d": "0" * long_env_var_length, } with DockerContainer(DEFAULT_IMAGE) as container: # check the length of d assert ( container.call(["sh", "-c", "echo ${#d}"], env=large_environment, capture_output=True) == f"{long_env_var_length}\n" ) @pytest.mark.docker def test_binary_output(): with DockerContainer(DEFAULT_IMAGE) as container: # note: the below embedded snippets are in python2 # check that we can pass though arbitrary binary data without erroring container.call( [ "/usr/bin/python2", "-c", textwrap.dedent( """ import sys sys.stdout.write(''.join(chr(n) for n in range(0, 256))) """ ), ] ) # check that we can capture arbitrary binary data output = container.call( [ "/usr/bin/python2", "-c", textwrap.dedent( """ import sys sys.stdout.write(''.join(chr(n % 256) for n in range(0, 512))) """ ), ], capture_output=True, ) data = bytes(output, encoding="utf8", errors="surrogateescape") for i in range(512): assert data[i] == i % 256 # check that environment variables can carry binary data, except null characters # (https://www.gnu.org/software/libc/manual/html_node/Environment-Variables.html) binary_data = bytes(n for n in range(1, 256)) binary_data_string = str(binary_data, encoding="utf8", errors="surrogateescape") output = container.call( ["python2", "-c", 'import os, sys; sys.stdout.write(os.environ["TEST_VAR"])'], env={"TEST_VAR": binary_data_string}, capture_output=True, ) assert output == binary_data_string @pytest.mark.docker def test_file_operations(tmp_path: Path): with DockerContainer(DEFAULT_IMAGE) as container: # test copying a file in test_binary_data = bytes(random.randrange(256) for _ in range(1000)) original_test_file = tmp_path / "test.dat" original_test_file.write_bytes(test_binary_data) dst_file = PurePath("/tmp/test.dat") container.copy_into(original_test_file, dst_file) output = container.call(["cat", dst_file], capture_output=True) assert test_binary_data == bytes(output, encoding="utf8", errors="surrogateescape") @pytest.mark.docker def test_dir_operations(tmp_path: Path): with DockerContainer(DEFAULT_IMAGE) as container: test_binary_data = bytes(random.randrange(256) for _ in range(1000)) original_test_file = tmp_path / "test.dat" original_test_file.write_bytes(test_binary_data) # test copying a dir in test_dir = tmp_path / "test_dir" test_dir.mkdir() test_file = test_dir / "test.dat" shutil.copyfile(original_test_file, test_file) dst_dir = PurePath("/tmp/test_dir") dst_file = dst_dir / "test.dat" container.copy_into(test_dir, dst_dir) output = container.call(["cat", dst_file], capture_output=True) assert test_binary_data == bytes(output, encoding="utf8", errors="surrogateescape") # test glob assert container.glob(dst_dir, "*.dat") == [dst_file] # test copy dir out new_test_dir = tmp_path / "test_dir_new" container.copy_out(dst_dir, new_test_dir) assert test_binary_data == (new_test_dir / "test.dat").read_bytes() @pytest.mark.docker def test_environment_executor(): with DockerContainer(DEFAULT_IMAGE) as container: assignment = EnvironmentAssignment("TEST=$(echo 42)") assert assignment.evaluated_value({}, container.environment_executor) == "42"
33.385
98
0.634417
[ "BSD-2-Clause" ]
YannickJadoul/cibuildwheel
unit_test/docker_container_test.py
6,677
Python
import numpy as np from envs.babyai.oracle.teacher import Teacher class LandmarkCorrection(Teacher): def empty_feedback(self): """ Return a tensor corresponding to no feedback. """ return np.array([-1, -1]) def random_feedback(self): """ Return a tensor corresponding to no feedback. """ raise NotImplementedError('random feedback not implemented') def compute_feedback(self): """ Return the expert action from the previous timestep. """ # TODO: Unhardocde this # Hardcoded 1 time-step away # Iterate through the objects and order them by their distance from the current object # Pick the first one that is closer to the goal than the current object. If none, then return the goal dist_pos = np.array(self.env.dist_pos) # Distance agent to objects agentobj_distances = np.sum(np.abs(dist_pos - self.env.agent_pos), axis=1) # Distance agent to goal curr_dist = np.sum(np.abs(self.env.obj_pos - self.env.agent_pos)) # Distance object to goal goalobj_distances = np.sum(np.abs(dist_pos - self.env.obj_pos), axis=1) idx_closer = np.where(goalobj_distances < curr_dist) if len(idx_closer[0]) == 0: return np.array([self.env.obj_color, self.env.obj_type]) else: idx_agentobj = range(len(agentobj_distances)) idx_agentobj = [x for _,x in sorted(zip(agentobj_distances, idx_agentobj))] for idx in idx_agentobj: if idx in idx_closer[0]: break return np.array([self.env.dist_colors[idx], self.env.dist_types[idx]]) def feedback_condition(self): """ Returns true when we should give feedback. Currently returns true when the agent's past action did not match the oracle's action. """ # For now, we're being lazy and correcting the agent any time it strays from the agent's optimal set of actions. # This is kind of sketchy since multiple paths can be optimal. return len(self.agent_actions) > 0 and (not self.agent_actions[-1] == self.oracle_actions[-1])
39.660714
120
0.638001
[ "MIT" ]
AliengirlLiv/babyai
envs/babyai/oracle/landmark_correction.py
2,221
Python
from inits import * import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS # global unique layer ID dictionary for layer name assignment _LAYER_UIDS = {} def get_layer_uid(layer_name=''): """Helper function, assigns unique layer IDs.""" if layer_name not in _LAYER_UIDS: _LAYER_UIDS[layer_name] = 1 return 1 else: _LAYER_UIDS[layer_name] += 1 return _LAYER_UIDS[layer_name] def sparse_dropout(x, keep_prob, noise_shape): """Dropout for sparse tensors.""" random_tensor = keep_prob random_tensor += tf.random_uniform(noise_shape) dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool) pre_out = tf.sparse_retain(x, dropout_mask) return pre_out * (1./keep_prob) def dot(x, y, sparse=False): """Wrapper for tf.matmul (sparse vs dense).""" if sparse: res = tf.sparse_tensor_dense_matmul(x, y) else: res = tf.matmul(x, y) return res class Layer(object): """Base layer class. Defines basic API for all layer objects. Implementation inspired by keras (http://keras.io). # Properties name: String, defines the variable scope of the layer. logging: Boolean, switches Tensorflow histogram logging on/off # Methods _call(inputs): Defines computation graph of layer (i.e. takes input, returns output) __call__(inputs): Wrapper for _call() _log_vars(): Log all variables """ def __init__(self, **kwargs): allowed_kwargs = {'name', 'logging'} for kwarg in kwargs.keys(): assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg name = kwargs.get('name') if not name: layer = self.__class__.__name__.lower() name = layer + '_' + str(get_layer_uid(layer)) self.name = name self.vars = {} logging = kwargs.get('logging', False) self.logging = logging self.sparse_inputs = False def _call(self, inputs): return inputs def __call__(self, inputs): with tf.name_scope(self.name): if self.logging and not self.sparse_inputs: tf.summary.histogram(self.name + '/inputs', inputs) outputs = self._call(inputs) if self.logging: tf.summary.histogram(self.name + '/outputs', outputs) return outputs def _log_vars(self): for var in self.vars: tf.summary.histogram(self.name + '/vars/' + var, self.vars[var]) class Dense(Layer): """Dense layer.""" def __init__(self, input_dim, output_dim, placeholders, dropout=0., sparse_inputs=False, act=tf.nn.relu, bias=False, featureless=False, **kwargs): super(Dense, self).__init__(**kwargs) if dropout: self.dropout = placeholders['dropout'] else: self.dropout = 0. self.act = act self.sparse_inputs = sparse_inputs self.featureless = featureless self.bias = bias # helper variable for sparse dropout self.num_features_nonzero = placeholders['num_features_nonzero'] with tf.variable_scope(self.name + '_vars'): self.vars['weights'] = glorot([input_dim, output_dim], name='weights') if self.bias: self.vars['bias'] = zeros([output_dim], name='bias') if self.logging: self._log_vars() def _call(self, inputs): x = inputs # dropout if self.sparse_inputs: x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero) else: x = tf.nn.dropout(x, 1-self.dropout) # transform output = dot(x, self.vars['weights'], sparse=self.sparse_inputs) # bias if self.bias: output += self.vars['bias'] return self.act(output) class GraphConvolution(Layer): """Graph convolution layer.""" def __init__(self, input_dim, output_dim, placeholders, dropout=0., sparse_inputs=False, act=tf.nn.relu, bias=False, featureless=False, **kwargs): super(GraphConvolution, self).__init__(**kwargs) if dropout: self.dropout = placeholders['dropout'] else: self.dropout = 0. self.act = act self.support = placeholders['support'] self.sparse_inputs = sparse_inputs self.featureless = featureless self.bias = bias # helper variable for sparse dropout self.num_features_nonzero = placeholders['num_features_nonzero'] with tf.variable_scope(self.name + '_vars'): for i in range(len(self.support)): self.vars['weights_' + str(i)] = glorot([input_dim, output_dim], name='weights_' + str(i)) if self.bias: self.vars['bias'] = zeros([output_dim], name='bias') if self.logging: self._log_vars() def _call(self, inputs): x = inputs # dropout if self.sparse_inputs: x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero) else: x = tf.nn.dropout(x, 1-self.dropout) # convolve supports = list() for i in range(len(self.support)): if not self.featureless: pre_sup = dot(x, self.vars['weights_' + str(i)], sparse=self.sparse_inputs) else: pre_sup = self.vars['weights_' + str(i)] support = dot(self.support[i], pre_sup, sparse=True) supports.append(support) output = tf.add_n(supports) # bias if self.bias: output += self.vars['bias'] return self.act(output) class TAGraphConvolution(Layer): """Graph convolution layer.""" def __init__(self, input_dim, output_dim, placeholders, dropout=0., sparse_inputs=False, act=tf.nn.relu, bias=False, featureless=False, **kwargs): super(TAGraphConvolution, self).__init__(**kwargs) if dropout: self.dropout = placeholders['dropout'] else: self.dropout = 0. self.act = act self.support = placeholders['support'] self.sparse_inputs = sparse_inputs self.featureless = featureless self.bias = bias # helper variable for sparse dropout self.num_features_nonzero = placeholders['num_features_nonzero'] with tf.variable_scope(self.name + '_vars'): for k in range(2): self.vars['weights_' + str(k)] = tf.get_variable(shape=[input_dim, output_dim], name=('weights_' + str(k)), initializer=tf.contrib.layers.xavier_initializer()) if self.bias: # self.vars['bias'] = ones([1],name='bias') # self.vars['bias'] = self.vars['bias'] * np.ones([2708,output_dim],dtype=np.float32) self.vars['bias'] = zeros([output_dim], name='bias') # zeros([2708,output_dim], name='bias') self.conv = np.zeros(output_dim,dtype=np.float32) if self.logging: self._log_vars() def _call(self, inputs): x = inputs # dropout if self.sparse_inputs: x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero) else: x = tf.nn.dropout(x, 1-self.dropout) # convolve supports = list() for k in range(2): w_k = self.support[:,:,k] # s = tf.matmul(w_k,x) # G_k = self.vars['weights_' + str(k)] res = dot(x,G_k,sparse=self.sparse_inputs) # res = tf.matmul(s,G_k) res = dot(w_k,res) supports.append(res) output = tf.add_n(supports) # self.conv = tf.add(self.conv,res) # bias if self.bias: output += self.vars['bias'] # self.conv += self.vars['bias'] return self.act(output) # self.conv
31.297297
175
0.576733
[ "MIT" ]
krohak/TAGCN
layers.py
8,106
Python
import numpy import mysql.connector from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn import tree ##--------------------------Catch Data from data base-------------------------------- cnx = mysql.connector.connect(user = [type your user] , password = [type your password] , host = [type your host] , database = [type your database name] ) cur = cnx.cursor() cur.execute("SELECT Neighborhood, Area, rooms, Antiquity FROM specifications") inputData = cur.fetchall() cur.execute("SELECT Price FROM specifications") outputData = cur.fetchall() if cur: cur.close() if cnx: cnx.close() ## TestData newApartments = [['ولنجک', 120, '2','2'], ['میرداماد', 110, '2','0'], ['هروی', 200, '4','2']] for i in newApartments: ## Add newApartments to input of table inputData.append(i) Neighborhood = list() Area = list() rooms = list() Antiquity = list() for i in inputData : Neighborhood.append(i[0]) Area.append(i[1]) rooms.append(i[2]) Antiquity.append(i[3]) # Encode Neighborhood values = numpy.array(Neighborhood) # integer encode labelEncoder = LabelEncoder() integer_encoded = labelEncoder.fit_transform(values) # binary encode NeighborhoodOHE = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) NeighborhoodOHE = NeighborhoodOHE.fit_transform(integer_encoded) test= Area+rooms x = numpy.column_stack((NeighborhoodOHE, Area,rooms, Antiquity)) y = outputData print(x[1]) print(len(x)) print(len(x[1])) temp = numpy.split(x, [(-1)*len(newApartments)]) x = temp[0] newApartments_enc = temp[1] # Start training and testing clf = tree.DecisionTreeClassifier() clf = clf.fit(x, y) # Encode New Apartment answer = clf.predict(newApartments_enc) for i in range(len(answer)): print("The price of Apartment in %s with %i metters Area, is approaximately %s Tomans." % (newApartments[i][0],newApartments[i][1], answer[i]))
29.450704
148
0.66045
[ "MIT" ]
AlirezaMojtabavi/Predict-Price-of-an-Apartment-in-Tehran
PredictPrice.py
2,108
Python
# Given a statement, find the parse tree that led to it. from tree_parser import * import pickle #pickle.dump(database.proof_datas, open(output_file,'wb')) from copy import deepcopy from tree import * #output_file = 'tree_parse_data' # class InitialStringSearcher: # def __init__(self): # self.nodes = {} # self.return_value = None # # def add(self,string,value): # return self.add() # # def add_with_index(self,string, value,index): # if index==len(string): # self.value=value # char = string[index] # if char not in self.nodes: # self.nodes[char] = InitialStringSearcher() # self.nodes[char].add_with_index(string,value,index+1) class InitialStringSearcher: def __init__(self): self.known_values = {} #self.known_lengths = {} def add(self,string,value): self.known_values[tuple(string)]=value #print 'found new substring', value[0] #self.known_lengths[string]=len(string) def find_longest(self,string): #label=any(label for label in self.known_values if is_initial_string(label,string)) for l in self.known_values: if is_initial_string(l,string): return self.known_values[l] return False def clear(self): self.known_values = {} class StatementParser: def __init__(self,database): # this is a really ugly hack. self.wff_variables = set(['ph','ps','ch','th','et','ze','si','rh','mu','la','ka','ta']) self.set_variables = set(['a', 'a"', "a'", 'a0', 'a0_', 'a1', 'a1_', 'b', 'b"', "b'", 'b0', 'b0_', 'b1', 'b1_', 'c', 'c"', "c'", 'c0_', 'c1_', 'd', 'd"', "d'", 'd0', 'd1', 'e', 'e"', "e'", 'e0', 'e1', 'f', 'f"', "f'", 'f0_', 'f1', 'g', 'g"', "g'", 'g0', 'g1', 'h', 'h"', "h'", 'h0', 'h1', 'i', 'i"', "i'", 'i0', 'i1', 'j', 'j"', "j'", 'j0', 'j1', 'k', 'k"', "k'", 'k0', 'k1', 'l', 'l"', "l'", 'l0', 'l1', 'm', 'm"', "m'", 'm0', 'm1', 'n', 'n"', "n'", 'n0_', 'n1', 'o', 'o"', 'o"_', "o'", "o'_", 'o0', 'o0_', 'o1', 'o1_', 'p', 'p"', "p'", 'p0', 'p1', 'q', 'q"', "q'", 'q0', 'q1', 'r', 'r"', "r'", 'r0', 'r1', 's', 's"', 's"_', "s'", "s'_", 's0', 's1', 't', 't"', "t'", 't0', 't1', 'u', 'u"', "u'", 'u0', 'u1', 'v', 'v"', 'v"_', "v'", "v'_", 'v0', 'v1', 'v2', 'w', 'w"', "w'", 'w0', 'w1', 'x', 'x"', "x'", 'x0', 'x1', 'y', 'y"', "y'", 'y0', 'y1', 'z', 'z"', "z'", 'z0', 'z1']) self.search = InitialStringSearcher() self.failed_parses = set() self.propositions = database.non_entails_axioms # self.propositions = {} # for label in database.propositions: # statement = database.propositions[label].statement # if statement[0] != '|-': # used in the parse tree # self.propositions[label] = database.propositions[label]#statement # add all the variables we ever use to self.variables # self.variables = set() # for label in database.propositions: # self.variables=self.variables.union(database.propositions[label].block.v) # predefine self.variables because why not self.variables = set(['.0.', "d'", 'd"', 'D"', 'c0_', 'd0', 'd1', 'q1', 'q0', 'x1', 'G2', 'G1', 'G0', "G'", '-t', '-w', 'q"', 'G"', 'th', 'ta', 'g1', 'g0', 'H', '+t', 'p0', '.0b', "g'", 'P', 'F3', 'g"', 'X', "W'", 'W"', 'h', "ch'", 'J0', 'J1', 't0', 't1', 'p', 'W2', 'W1', '.(x)', "t'", "J'", 't"', 'J"', "w'", "M'", 'j', 'w"', 'M"', 'ze', 'j0', 'j1', '.id', 'M1', 'M0', 'w1', 'M2', "j'", 'j"', 'mu', 'et0', 'et1', 'H1_', "Z'", 'Z"', 'et"', "et'", 'Z0', 'Z1', 'C', 'P1', 'K', "z'", 'z"', 'P"', 'S', "v'_", "P'", 'z0', 'z1', 'c', 'L1_', '0w', "s'_", 'k', './\\', 'r"', 's', 'ch', 'O1_', 'S2', 'S1', 'S0', 'S"', 'v"_', 'b0_', 'ps', "m'", 'E1', 'm"', 'C"', 'o0_', "C'", 'G1_', 'm1', 'm0', 'C2', 'ph', 'C0', 'S1_', "q'", 'F', 'c"', "c'", 'N', 'V', 'f0_', 'F0', 'F1', 'F2', 'p1', '0t', 'f', 'D1_', 'n', 'p"', 'ch1', 'F"', "p'", 'v', 'f1', 'ph"', "ph'", 'o"_', 'f"', "f'", 'ph1', 'ph0', "ze'", 'V"', '.dom', "O'", "V'", 'I1', 'I0', 's1', 's0', 's"_', 'th1', 'th0', 'V0', 'V1', 'V2', 'V3', "th'", 's"', 'I"', "s'", 'th"', "I'", 'A', "L'", 'v"', 'L"', 'ta1', "v'", 'I', 'i0', 'Q', 'v1', 'v2', "ta'", 'L2', 'L3', 'L0', 'L1', 'Y', 'i"', '/t', "i'", 'a', 'si1', 'si0', 'Y1', 'i', 'Y"', 'D2', "Y'", 'q', 'si"', 'si', 'ze1', "si'", 'y', 'Y0', 'I2', 'ps"', 'y"', "ps'", "y'", 'y1', 'y0', 'ps0', 'ps1', 'O2', 'O1', 'O0', "o'_", 'la', '.Morphism', 'n0_', 'k0', 'O"', 'ze"', 'R0', 'D', 'L', 'ze0', "R'", 'c1_', 'T', 'R"', '.X.', '.1.', 'a0_', "l'", "B'", 'l"', 'd', 'B"', 'l', 'B0', 't', 'l0', 'l1', "b'", 'b"', '.(+)', 'U1', 'U0', 'h"', 'b0', 'b1', 'ta0', "U'", 'U"', "o'", "S'", "E'", 'o"', 'E"', 'i1', '+w', 'F1_', '.xb', 'Ro1', 'Ro2', 'rh', 'E0', 'o1', 'o0', "F'", 'B2', 'G', 'R1_', "e'", 'W0', 'I1_', 'O', 'e"', '._|_', 'W', 'x', 'e1', 'e0', '1t', '<_b', 'v0', '<_a', 'r0', 'r1', 'g', 'H2', 'H0', 'H1', 'o', "r'", 'w', 'H"', '.x.', "H'", 'K"', "K'", 'ta"', 'h0', 'h1', "X'", 'K1', 'K0', "T'", 'ch"', "h'", 'M1_', '.*', '.+', '.,', '.-', './', 'X"', 'u1', 'u0', '.<', "u'", 'X1', 'u"', 'ch0_', 'B', 'x"', 'N"', 'J', "x'", "N'", 'R', '.^', 'N0', 'N1', 'x0', 'Z', '.cod', 'C1', 'b', 'o1_', 'X0', '.graph', 'r', '.~', 'B1_', 'z', '.t', '.<_', '.w', 'Q1', 'Q0', 'V1_', 'rh1', 'rh0', 'w0', '~t', '~w', 'Q"', "Q'", 'et', 'rh"', '.||', "rh'", 'k"', 'A"', "k'", "A'", 'P0', 'a1_', '.\\/', 'B1', 'A1', 'A0', 'k1', 'A2', 'C1_', '.+b', 'a"', 'E', "a'", 'A1_', 'M', 'T0', 'T1', 'a1', 'a0', 'U', 'b1_', 'T"', 'ka', 'e', "D'", 'n"', 'm', "n'", 'u', 'D0', 'n1', '.Object', '.+^', 'D1']) def parse_new_statement(self,statement,context): string, tree = self.parse_statement(statement,context) self.search.clear() self.failed_parses = set() return string,tree # This checks whether we're just parsing a variable and otherwise check whether any of the propositions # describes it. def parse_statement(self,statement,context): # this should return a parse tree for a list of strings that form statement # check whether we are doomed to failure if (statement[0],len(statement)) in self.failed_parses: return False,False # attempt to search for the phrase tuples = self.search.find_longest(statement) if tuples: return tuples # check if it's just a variable # if statement[1] in self.variables and not (statement[0]=='wff' and statement[1] not in self.wff_variables) and not (statement[0]=='set' and statement[1] not in self.set_variables): # #yep. It's just a variable. Skip the type checking. Variables can only have one type ever, right? # length = 1; # exclude the wff term # string = statement[:2] # tree = Tree(value='VAR'+statement[1]) # return string,tree if statement[1] in self.variables: for f in context.f.values(): if f.variable == statement[1] and f.vclass == statement[0]: return statement[:2], f.tree #found_valid_parsing = False for prop_label in self.propositions: prop = self.propositions[prop_label] string, tree = self.proposition_describes_statement(prop,statement,context) if string == False: continue #print 'found',string #if statement[0]=='wff' self.search.add(string,(string,tree)) # add to the search tree return string, tree #print 'could not find expression for ',statement self.failed_parses.add((statement[0],len(statement))) return False, False # this is a brutally inefficient way to go about this # when it completes it returns a parse tree for the statement and the length of the tree def proposition_describes_statement(self,proposition,s,context): prop_s = proposition.statement # the types of all the free variables variable_types = {hyp.variable:hyp.vclass for hyp in proposition.f.values()} # string definitions of all the free variables variable_definitions = {hyp.variable:None for hyp in proposition.f.values()} #tree defintions of all the free variables variable_trees = {hyp.variable:None for hyp in proposition.f.values()} index_into_s = 0 index_into_prop_s=0 while index_into_prop_s < len(prop_s): if index_into_s>=len(s): #print 'ran out of s' return False,False prop_value = prop_s[index_into_prop_s] if prop_value in variable_types: # it's a variable # check if already defined if variable_definitions[prop_value]==None: #then we need to figure out the parsing of the substatement #print 'testing ',[variable_types[prop_value]]+s[index_into_s:],' because of ',proposition.label,prop_s string, tree = self.parse_statement([variable_types[prop_value]]+s[index_into_s:],context) if string == False: return False,False length = len(string)-1 # skip the wff/set/class bit index_into_s+=length index_into_prop_s+=1 variable_definitions[prop_value] = string[1:] variable_trees[prop_value] = tree continue else: #we've already seen this expression before if is_initial_string(variable_definitions[prop_value],statement): # Yes, yes, we get the point index_into_s+=len(variable_definitions[prop_value]) index_into_prop_s+=1 continue else: return False,False # eh. Whatever. else: #it's not a variable if prop_value == s[index_into_s]: index_into_s+=1 index_into_prop_s+=1 continue else: #it's not a variable and it doesn't match return False,False #we have the entire parsing and it appears to work leaves = [variable_trees[hyp.variable] for hyp in proposition.hyps if hyp.type == 'f'] tree = Tree(value=proposition.label,leaves = leaves) #now construct the string. out_string = s[:index_into_s] return out_string, tree def is_initial_string(initial_string,string): #return (len(string)>=len(initial_string)) and string[:len(initial_string)]==initial_string if len(initial_string)>len(string): return False for i in range(len(initial_string)): if initial_string[i]!=string[i]: return False return True
57.671958
2,466
0.503761
[ "MIT" ]
dwhalen/holophrasm
statement_to_tree.py
10,900
Python
""" const $ = new Env("京东饭粒"); 京东饭粒任务 活动入口:https://u.jd.com/ytWx4w0 每天60豆小毛,爱要不要 cron: 46 9 * * * jd_fanli.py """ import os import time import re import requests import random proxies = {"http": None, "https": None} def randomstr(num): randomstr = "" for i in range(num): randomstr = randomstr + random.choice("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789") return randomstr def randomstr1(): randomstr = "" for i in range(16): randomstr = randomstr + random.choice("0123456789") randomstr += "-" for i in range(16): randomstr = randomstr + random.choice("0123456789") return randomstr def getheader(ck): return { "Host": "ifanli.m.jd.com", "Connection": "keep-alive", "Accept": "application/json, text/plain, */*", "Cache-Control": "no-cache", "User-Agent": "jdapp;android;10.2.2;11;%s;model/Mi 10;osVer/30;appBuild/91077;partner/xiaomi001;eufv/1;jdSupportDarkMode/0;Mozilla/5.0 (Linux; Android 11; Mi 10 Build/RKQ1.200826.002; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/77.0.3865.120 MQQBrowser/6.2 TBS/045715 Mobile Safari/537.36" % randomstr1(), "Sec-Fetch-Mode": "cors", "X-Requested-With": "com.jingdong.app.mall", "Sec-Fetch-Site": "same-origin", "Referer": "https://ifanli.m.jd.com/rebate/earnBean.html?paltform=null", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7", "Cookie": ck, "Content-Type": "application/json;charset=UTF-8" } def getTaskList(ck): url = "https://ifanli.m.jd.com/rebateapi/task/getTaskList" headers = getheader(ck) r = requests.get(url, headers=headers, proxies=proxies) # print(r.text) return r.json()["content"] def getTaskFinishCount(ck): url = "https://ifanli.m.jd.com/rebateapi/task/getTaskFinishCount" headers = getheader(ck) r = requests.get(url, headers=headers, proxies=proxies) print('已完成任务次数:', r.json()["content"]["finishCount"], '总任务次数:', r.json()["content"]["maxTaskCount"]) return r.json()["content"] def saveTaskRecord(ck, taskId): url = "https://ifanli.m.jd.com/rebateapi/task/saveTaskRecord" headers = getheader(ck) data = '{"taskId":%s,"taskType":4}' % taskId r = requests.post(url, headers=headers, data=data, proxies=proxies) # print(r.text) return r.json()["content"]["uid"], r.json()["content"]["tt"] def saveTaskRecord1(ck, taskId, uid, tt): # tt=int(time.time()*1000) url = "https://ifanli.m.jd.com/rebateapi/task/saveTaskRecord" headers = getheader(ck) data = '{"taskId":%s,"taskType":4,"uid":"%s","tt":%s}' % (taskId, uid, tt) # print(data) r = requests.post(url, headers=headers, data=data, proxies=proxies) print(r.json()["content"]["msg"]) if __name__ == '__main__': cks = os.environ["JD_COOKIE"].split("&") for ck in cks: ptpin = re.findall(r"pt_pin=(.*?);", ck)[0] print("--------开始京东账号", ptpin, "--------") try: count = getTaskFinishCount(ck) if count["finishCount"] < count["maxTaskCount"]: for times in range(count["maxTaskCount"] - count["finishCount"]): tasks = getTaskList(ck) for i in tasks: if i["taskType"] == 4: uid, tt = saveTaskRecord(ck, i["taskId"]) time.sleep(10) saveTaskRecord1(ck, i["taskId"], uid, tt) except: print("发生异常错误")
33.453704
331
0.599779
[ "Apache-2.0" ]
w123113/loon
jd_fanli.py
3,715
Python
""" test all other .agg behavior """ from collections import OrderedDict import datetime as dt from functools import partial import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, date_range, period_range, ) from pandas.core.groupby.groupby import SpecificationError import pandas.util.testing as tm from pandas.io.formats.printing import pprint_thing def test_agg_api(): # GH 6337 # http://stackoverflow.com/questions/21706030/pandas-groupby-agg-function-column-dtype-error # different api for agg when passed custom function with mixed frame df = DataFrame( { "data1": np.random.randn(5), "data2": np.random.randn(5), "key1": ["a", "a", "b", "b", "a"], "key2": ["one", "two", "one", "two", "one"], } ) grouped = df.groupby("key1") def peak_to_peak(arr): return arr.max() - arr.min() expected = grouped.agg([peak_to_peak]) expected.columns = ["data1", "data2"] result = grouped.agg(peak_to_peak) tm.assert_frame_equal(result, expected) def test_agg_datetimes_mixed(): data = [[1, "2012-01-01", 1.0], [2, "2012-01-02", 2.0], [3, None, 3.0]] df1 = DataFrame( { "key": [x[0] for x in data], "date": [x[1] for x in data], "value": [x[2] for x in data], } ) data = [ [ row[0], (dt.datetime.strptime(row[1], "%Y-%m-%d").date() if row[1] else None), row[2], ] for row in data ] df2 = DataFrame( { "key": [x[0] for x in data], "date": [x[1] for x in data], "value": [x[2] for x in data], } ) df1["weights"] = df1["value"] / df1["value"].sum() gb1 = df1.groupby("date").aggregate(np.sum) df2["weights"] = df1["value"] / df1["value"].sum() gb2 = df2.groupby("date").aggregate(np.sum) assert len(gb1) == len(gb2) def test_agg_period_index(): prng = period_range("2012-1-1", freq="M", periods=3) df = DataFrame(np.random.randn(3, 2), index=prng) rs = df.groupby(level=0).sum() assert isinstance(rs.index, PeriodIndex) # GH 3579 index = period_range(start="1999-01", periods=5, freq="M") s1 = Series(np.random.rand(len(index)), index=index) s2 = Series(np.random.rand(len(index)), index=index) series = [("s1", s1), ("s2", s2)] df = DataFrame.from_dict(OrderedDict(series)) grouped = df.groupby(df.index.month) list(grouped) def test_agg_dict_parameter_cast_result_dtypes(): # GH 12821 df = DataFrame( { "class": ["A", "A", "B", "B", "C", "C", "D", "D"], "time": date_range("1/1/2011", periods=8, freq="H"), } ) df.loc[[0, 1, 2, 5], "time"] = None # test for `first` function exp = df.loc[[0, 3, 4, 6]].set_index("class") grouped = df.groupby("class") tm.assert_frame_equal(grouped.first(), exp) tm.assert_frame_equal(grouped.agg("first"), exp) tm.assert_frame_equal(grouped.agg({"time": "first"}), exp) tm.assert_series_equal(grouped.time.first(), exp["time"]) tm.assert_series_equal(grouped.time.agg("first"), exp["time"]) # test for `last` function exp = df.loc[[0, 3, 4, 7]].set_index("class") grouped = df.groupby("class") tm.assert_frame_equal(grouped.last(), exp) tm.assert_frame_equal(grouped.agg("last"), exp) tm.assert_frame_equal(grouped.agg({"time": "last"}), exp) tm.assert_series_equal(grouped.time.last(), exp["time"]) tm.assert_series_equal(grouped.time.agg("last"), exp["time"]) # count exp = pd.Series([2, 2, 2, 2], index=Index(list("ABCD"), name="class"), name="time") tm.assert_series_equal(grouped.time.agg(len), exp) tm.assert_series_equal(grouped.time.size(), exp) exp = pd.Series([0, 1, 1, 2], index=Index(list("ABCD"), name="class"), name="time") tm.assert_series_equal(grouped.time.count(), exp) def test_agg_cast_results_dtypes(): # similar to GH12821 # xref #11444 u = [dt.datetime(2015, x + 1, 1) for x in range(12)] v = list("aaabbbbbbccd") df = pd.DataFrame({"X": v, "Y": u}) result = df.groupby("X")["Y"].agg(len) expected = df.groupby("X")["Y"].count() tm.assert_series_equal(result, expected) def test_aggregate_float64_no_int64(): # see gh-11199 df = DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 2, 2, 4, 5], "c": [1, 2, 3, 4, 5]}) expected = DataFrame({"a": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5]) expected.index.name = "b" result = df.groupby("b")[["a"]].mean() tm.assert_frame_equal(result, expected) expected = DataFrame({"a": [1, 2.5, 4, 5], "c": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5]) expected.index.name = "b" result = df.groupby("b")[["a", "c"]].mean() tm.assert_frame_equal(result, expected) def test_aggregate_api_consistency(): # GH 9052 # make sure that the aggregates via dict # are consistent df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) grouped = df.groupby(["A", "B"]) c_mean = grouped["C"].mean() c_sum = grouped["C"].sum() d_mean = grouped["D"].mean() d_sum = grouped["D"].sum() result = grouped["D"].agg(["sum", "mean"]) expected = pd.concat([d_sum, d_mean], axis=1) expected.columns = ["sum", "mean"] tm.assert_frame_equal(result, expected, check_like=True) result = grouped.agg([np.sum, np.mean]) expected = pd.concat([c_sum, c_mean, d_sum, d_mean], axis=1) expected.columns = MultiIndex.from_product([["C", "D"], ["sum", "mean"]]) tm.assert_frame_equal(result, expected, check_like=True) result = grouped[["D", "C"]].agg([np.sum, np.mean]) expected = pd.concat([d_sum, d_mean, c_sum, c_mean], axis=1) expected.columns = MultiIndex.from_product([["D", "C"], ["sum", "mean"]]) tm.assert_frame_equal(result, expected, check_like=True) result = grouped.agg({"C": "mean", "D": "sum"}) expected = pd.concat([d_sum, c_mean], axis=1) tm.assert_frame_equal(result, expected, check_like=True) result = grouped.agg({"C": ["mean", "sum"], "D": ["mean", "sum"]}) expected = pd.concat([c_mean, c_sum, d_mean, d_sum], axis=1) expected.columns = MultiIndex.from_product([["C", "D"], ["mean", "sum"]]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = grouped[["D", "C"]].agg({"r": np.sum, "r2": np.mean}) expected = pd.concat([d_sum, c_sum, d_mean, c_mean], axis=1) expected.columns = MultiIndex.from_product([["r", "r2"], ["D", "C"]]) tm.assert_frame_equal(result, expected, check_like=True) def test_agg_dict_renaming_deprecation(): # 15931 df = pd.DataFrame({"A": [1, 1, 1, 2, 2], "B": range(5), "C": range(5)}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False) as w: df.groupby("A").agg( {"B": {"foo": ["sum", "max"]}, "C": {"bar": ["count", "min"]}} ) assert "using a dict with renaming" in str(w[0].message) assert "named aggregation" in str(w[0].message) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df.groupby("A")[["B", "C"]].agg({"ma": "max"}) with tm.assert_produces_warning(FutureWarning) as w: df.groupby("A").B.agg({"foo": "count"}) assert "using a dict on a Series for aggregation" in str(w[0].message) assert "named aggregation instead." in str(w[0].message) def test_agg_compat(): # GH 12334 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) g = df.groupby(["A", "B"]) expected = pd.concat([g["D"].sum(), g["D"].std()], axis=1) expected.columns = MultiIndex.from_tuples([("C", "sum"), ("C", "std")]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g["D"].agg({"C": ["sum", "std"]}) tm.assert_frame_equal(result, expected, check_like=True) expected = pd.concat([g["D"].sum(), g["D"].std()], axis=1) expected.columns = ["C", "D"] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g["D"].agg({"C": "sum", "D": "std"}) tm.assert_frame_equal(result, expected, check_like=True) def test_agg_nested_dicts(): # API change for disallowing these types of nested dicts df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) g = df.groupby(["A", "B"]) msg = r"cannot perform renaming for r[1-2] with a nested dictionary" with pytest.raises(SpecificationError, match=msg): g.aggregate({"r1": {"C": ["mean", "sum"]}, "r2": {"D": ["mean", "sum"]}}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g.agg({"C": {"ra": ["mean", "std"]}, "D": {"rb": ["mean", "std"]}}) expected = pd.concat( [g["C"].mean(), g["C"].std(), g["D"].mean(), g["D"].std()], axis=1 ) expected.columns = pd.MultiIndex.from_tuples( [("ra", "mean"), ("ra", "std"), ("rb", "mean"), ("rb", "std")] ) tm.assert_frame_equal(result, expected, check_like=True) # same name as the original column # GH9052 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = g["D"].agg({"result1": np.sum, "result2": np.mean}) expected = expected.rename(columns={"result1": "D"}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g["D"].agg({"D": np.sum, "result2": np.mean}) tm.assert_frame_equal(result, expected, check_like=True) def test_agg_item_by_item_raise_typeerror(): df = DataFrame(np.random.randint(10, size=(20, 10))) def raiseException(df): pprint_thing("----------------------------------------") pprint_thing(df.to_string()) raise TypeError("test") with pytest.raises(TypeError, match="test"): df.groupby(0).agg(raiseException) def test_series_agg_multikey(): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) def test_series_agg_multi_pure_python(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) def bad(x): assert len(x.values.base) > 0 return "foo" result = data.groupby(["A", "B"]).agg(bad) expected = data.groupby(["A", "B"]).agg(lambda x: "foo") tm.assert_frame_equal(result, expected) def test_agg_consistency(): # agg with ([]) and () not consistent # GH 6715 def P1(a): try: return np.percentile(a.dropna(), q=1) except Exception: return np.nan df = DataFrame( { "col1": [1, 2, 3, 4], "col2": [10, 25, 26, 31], "date": [ dt.date(2013, 2, 10), dt.date(2013, 2, 10), dt.date(2013, 2, 11), dt.date(2013, 2, 11), ], } ) g = df.groupby("date") expected = g.agg([P1]) expected.columns = expected.columns.levels[0] result = g.agg(P1) tm.assert_frame_equal(result, expected) def test_agg_callables(): # GH 7929 df = DataFrame({"foo": [1, 2], "bar": [3, 4]}).astype(np.int64) class fn_class: def __call__(self, x): return sum(x) equiv_callables = [ sum, np.sum, lambda x: sum(x), lambda x: x.sum(), partial(sum), fn_class(), ] expected = df.groupby("foo").agg(sum) for ecall in equiv_callables: result = df.groupby("foo").agg(ecall) tm.assert_frame_equal(result, expected) def test_agg_over_numpy_arrays(): # GH 3788 df = pd.DataFrame( [ [1, np.array([10, 20, 30])], [1, np.array([40, 50, 60])], [2, np.array([20, 30, 40])], ], columns=["category", "arraydata"], ) result = df.groupby("category").agg(sum) expected_data = [[np.array([50, 70, 90])], [np.array([20, 30, 40])]] expected_index = pd.Index([1, 2], name="category") expected_column = ["arraydata"] expected = pd.DataFrame( expected_data, index=expected_index, columns=expected_column ) tm.assert_frame_equal(result, expected) def test_agg_timezone_round_trip(): # GH 15426 ts = pd.Timestamp("2016-01-01 12:00:00", tz="US/Pacific") df = pd.DataFrame( {"a": 1, "b": [ts + dt.timedelta(minutes=nn) for nn in range(10)]} ) result1 = df.groupby("a")["b"].agg(np.min).iloc[0] result2 = df.groupby("a")["b"].agg(lambda x: np.min(x)).iloc[0] result3 = df.groupby("a")["b"].min().iloc[0] assert result1 == ts assert result2 == ts assert result3 == ts dates = [ pd.Timestamp("2016-01-0%d 12:00:00" % i, tz="US/Pacific") for i in range(1, 5) ] df = pd.DataFrame({"A": ["a", "b"] * 2, "B": dates}) grouped = df.groupby("A") ts = df["B"].iloc[0] assert ts == grouped.nth(0)["B"].iloc[0] assert ts == grouped.head(1)["B"].iloc[0] assert ts == grouped.first()["B"].iloc[0] # GH#27110 applying iloc should return a DataFrame assert ts == grouped.apply(lambda x: x.iloc[0]).iloc[0, 0] ts = df["B"].iloc[2] assert ts == grouped.last()["B"].iloc[0] # GH#27110 applying iloc should return a DataFrame assert ts == grouped.apply(lambda x: x.iloc[-1]).iloc[0, 0] def test_sum_uint64_overflow(): # see gh-14758 # Convert to uint64 and don't overflow df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], dtype=object) df = df + 9223372036854775807 index = pd.Index( [9223372036854775808, 9223372036854775810, 9223372036854775812], dtype=np.uint64 ) expected = pd.DataFrame( {1: [9223372036854775809, 9223372036854775811, 9223372036854775813]}, index=index, ) expected.index.name = 0 result = df.groupby(0).sum() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "structure, expected", [ (tuple, pd.DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}})), (list, pd.DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}})), ( lambda x: tuple(x), pd.DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}}), ), ( lambda x: list(x), pd.DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}}), ), ], ) def test_agg_structs_dataframe(structure, expected): df = pd.DataFrame( {"A": [1, 1, 1, 3, 3, 3], "B": [1, 1, 1, 4, 4, 4], "C": [1, 1, 1, 3, 4, 4]} ) result = df.groupby(["A", "B"]).aggregate(structure) expected.index.names = ["A", "B"] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "structure, expected", [ (tuple, pd.Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name="C")), (list, pd.Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name="C")), (lambda x: tuple(x), pd.Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name="C")), (lambda x: list(x), pd.Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name="C")), ], ) def test_agg_structs_series(structure, expected): # Issue #18079 df = pd.DataFrame( {"A": [1, 1, 1, 3, 3, 3], "B": [1, 1, 1, 4, 4, 4], "C": [1, 1, 1, 3, 4, 4]} ) result = df.groupby("A")["C"].aggregate(structure) expected.index.name = "A" tm.assert_series_equal(result, expected) def test_agg_category_nansum(observed): categories = ["a", "b", "c"] df = pd.DataFrame( {"A": pd.Categorical(["a", "a", "b"], categories=categories), "B": [1, 2, 3]} ) result = df.groupby("A", observed=observed).B.agg(np.nansum) expected = pd.Series( [3, 3, 0], index=pd.CategoricalIndex(["a", "b", "c"], categories=categories, name="A"), name="B", ) if observed: expected = expected[expected != 0] tm.assert_series_equal(result, expected) def test_agg_list_like_func(): # GH 18473 df = pd.DataFrame( {"A": [str(x) for x in range(3)], "B": [str(x) for x in range(3)]} ) grouped = df.groupby("A", as_index=False, sort=False) result = grouped.agg({"B": lambda x: list(x)}) expected = pd.DataFrame( {"A": [str(x) for x in range(3)], "B": [[str(x)] for x in range(3)]} ) tm.assert_frame_equal(result, expected) def test_agg_lambda_with_timezone(): # GH 23683 df = pd.DataFrame( { "tag": [1, 1], "date": [ pd.Timestamp("2018-01-01", tz="UTC"), pd.Timestamp("2018-01-02", tz="UTC"), ], } ) result = df.groupby("tag").agg({"date": lambda e: e.head(1)}) expected = pd.DataFrame( [pd.Timestamp("2018-01-01", tz="UTC")], index=pd.Index([1], name="tag"), columns=["date"], ) tm.assert_frame_equal(result, expected)
30.695222
96
0.537784
[ "BSD-3-Clause" ]
ajspera/pandas
pandas/tests/groupby/aggregate/test_other.py
18,632
Python
#!/usr/bin/python # encoding: utf-8 ''' codegen_checker.codegen -- shortdesc codegen_checker.codegen is a description It defines classes_and_methods @author: user_name @copyright: 2013 organization_name. All rights reserved. @license: license @contact: user_email @deffield updated: Updated ''' import sys import os from argparse import ArgumentParser from argparse import RawDescriptionHelpFormatter import glob import re # Local imports import logger __all__ = [] __version__ = 0.1 __date__ = '2013-03-28' __updated__ = '2013-03-28' class CLIError(Exception): '''Generic exception to raise and log different fatal errors.''' def __init__(self, msg): super(CLIError).__init__(type(self)) self.msg = "E: %s" % msg def __str__(self): return self.msg def __unicode__(self): return self.msg def get_class( kls ): parts = kls.split('.') module = ".".join(parts[:-1]) m = __import__( module ) for comp in parts[1:]: m = getattr(m, comp) return m def readVars(filename): result = {} # Prepare a whitespace remover wsr = re.compile(r'\s+') # Read the file in a line at a time for line in open(filename): m = re.match("^\s(.+)\s(\S+);$", line) if m: result[m.group(2)] = re.sub(wsr, "", m.group(1)) return result def main(argv=None): # IGNORE:C0111 '''Command line options.''' if argv is None: argv = sys.argv else: sys.argv.extend(argv) program_name = os.path.basename(sys.argv[0]) program_version = "v%s" % __version__ program_build_date = str(__updated__) program_version_message = '%%(prog)s %s (%s)' % (program_version, program_build_date) program_shortdesc = __import__('__main__').__doc__.split("\n")[1] program_license = '''%s Created by user_name on %s. Copyright 2013 organization_name. All rights reserved. Licensed under the Apache License 2.0 http://www.apache.org/licenses/LICENSE-2.0 Distributed on an "AS IS" basis without warranties or conditions of any kind, either express or implied. EXAMPLE ./tools/codegen/codegen_checker.py -m ./build/tools/strukt_autogen/ -s ./ USAGE ''' % (program_shortdesc, str(__date__)) try: # Setup argument parser parser = ArgumentParser(description=program_license, formatter_class=RawDescriptionHelpFormatter) parser.add_argument("-v", "--verbose", dest="verbose", action="count", help="set verbosity level [default: %(default)s]") parser.add_argument("-m", "--model", dest="model", required=True, help="Model directory") parser.add_argument("-s", "--src", dest="src", required=True, help="Source directory") parser.add_argument('-V', '--version', action='version', version=program_version_message) # Process arguments args = parser.parse_args() log = logger.logger(args.verbose) modelDir = args.model srcDir = args.src log.write("Verbose mode on") # Get the directories in canonical form modelDir = os.path.abspath(modelDir) + "/" srcDir = os.path.abspath(srcDir) + "/" # Find all the model files modelFiles = [] modelFiles.extend(glob.glob(modelDir+"*.h")) for modelFile in modelFiles: # Get the basename filename = os.path.basename(modelFile) # Try to find the existing header file in the usual place. potentialMatches = [] potentialMatches.extend(glob.glob(srcDir + "*/src/" + filename)) # Try to find the existing header file in the usual place but with underscores removed from the file name. if (len(potentialMatches) == 0): potentialMatches.extend(glob.glob(srcDir + "*/src/" + re.sub('_', '', filename))) if (len(potentialMatches) == 0): print "No matches for " + modelFile for potentialMatch in potentialMatches: output = [] # Parse the generated model file modelVars = readVars(modelFile) # Parse the header file headerVars = readVars(potentialMatch) # Compare variables, first starting with ones that are in the model file. keysToRemove = [] for modelVar in modelVars: # Is it in the header file? if (modelVar in headerVars): if (modelVars[modelVar] != headerVars[modelVar]): output.append(" " + "Difference: " + modelFile + ":" + modelVar + " is of type " + modelVars[modelVar] + " but " + potentialMatch + ":" + modelVar + " is of type " + headerVars[modelVar]) keysToRemove.append(modelVar) # Remove keys that we have processed for key in keysToRemove: if (key in modelVars): del modelVars[key] if (key in headerVars): del headerVars[key] # Output missing vars for modelVar in modelVars: output.append(" " + modelFile + ":" + modelVar + " is not in " + potentialMatch) for headerVar in headerVars: output.append(" " + potentialMatch + ":" + headerVar + " is not in " + modelFile) if (len(output) > 0): print "Comparing " + modelFile + " with " + potentialMatch for line in output: print line return 0 except KeyboardInterrupt: ### handle keyboard interrupt ### return 0 # except Exception, e: # indent = len(program_name) * " " # sys.stderr.write(program_name + ": " + repr(e) + "\n") # sys.stderr.write(indent + " for help use --help") # return 2 if __name__ == "__main__": sys.exit(main())
33.636364
218
0.56248
[ "Apache-2.0" ]
MarouenMechtri/accords-platform-1
tools/codegen/codegen_checker.py
6,290
Python
# asot: Localhost tunneling # Copyright 2021, Luna and asot contributors # SPDX-License-Identifier: BSD-3-Clause from .main import main if __name__ == "__main__": main()
19.555556
44
0.732955
[ "BSD-3-Clause" ]
lun-4/asot
server/asot/manage/__main__.py
176
Python
from datetime import datetime import numpy as np import exetera.core.session as sess from exetera.core import dataframe ADATA = '/home/jd21/data/processed_May17_processed.hdf5' VDATA = '/home/jd21/data/vacc.0603.h5' DSTDATA = '/home/jd21/data/full_merge.h5' def asmt_merge_vacc(): """ Merge assessment df with vaccine dataframe, filter out subject has a healthy assessments before vaccine date """ with sess.Session() as s: # open related datasets src = s.open_dataset(ADATA, 'r', 'asmt') asmt = src['assessments'] vacc = s.open_dataset(VDATA, 'r', 'vacc') dst = s.open_dataset(DSTDATA, 'w', 'dst') #filter vaccine type vbrand_filter = (vacc['vaccine_doses']['brand'].data[:] == 2) | \ (vacc['vaccine_doses']['brand'].data[:] == 3) dvacc = dst.create_dataframe('vacc') vacc['vaccine_doses'].apply_filter(vbrand_filter, ddf=dvacc) #join asmt with vaccine using patient_id, write to result asmt_v = dst.create_dataframe('asmt_v') dataframe.merge(asmt, dvacc, asmt_v, 'patient_id', 'patient_id', how='inner') #filter healthy asmt record within 10days of vaccine date symp_list = ['persistent_cough', 'fever', 'fatigue', 'delirium', 'shortness_of_breath', 'diarrhoea', 'abdominal_pain', 'chest_pain', 'hoarse_voice', 'skipped_meals', 'loss_of_smell', 'headache', 'sore_throat', 'chills_or_shivers', 'eye_soreness', 'nausea', 'blisters_on_feet', 'unusual_muscle_pains', 'runny_nose', 'red_welts_on_face_or_lips', 'dizzy_light_headed', 'swollen_glands', 'sneezing', 'skin_burning', 'earache', 'altered_smell', 'brain_fog', 'irregular_heartbeat'] symp_filter = asmt_v['persistent_cough'].data[:] > 1 # has symptom for symptom1 in symp_list: symp_filter |= asmt_v[symptom1].data[:] > 1 # has symptom symp_filter = ~symp_filter # has no symptom symp_filter &= asmt_v['date_taken_specific'].data[:] > asmt_v['updated_at_l'].data[:] # asmt before vaccine symp_filter &= asmt_v['updated_at_l'].data[:] > asmt_v['date_taken_specific'].data[:] - 3600 * 24 * 10 # 10 days asmt_v.apply_filter(symp_filter) # has symptom after vaccine yes_symp_filter = asmt_v['persistent_cough'].data[:] > 1 for symptom1 in symp_list: yes_symp_filter |= asmt_v[symptom1].data[:] > 1 # has symptom yes_symp_filter &= asmt_v['date_taken_specific'].data[:] < asmt_v['updated_at_l'].data[:] # assessment after vaccine yes_symp_filter &= asmt_v['date_taken_specific'].data[:] + 3600 * 24 * 10 > asmt_v['updated_at_l'].data[:] # assessment within 7 days of vaccine asmt_v.apply_filter(yes_symp_filter) print("finish asmt join vaccine.") def join_tests(): """ Merge tests to previous merged (assessments, vaccine), filter out subjects has test records within 10days after vaccine """ with sess.Session() as s: # open related datasets src = s.open_dataset(ADATA, 'r', 'asmt') tests_src = src['tests'] dst = s.open_dataset(DSTDATA, 'r+', 'dst') vacc = dst['asmt_v'] tests_m = dst.create_dataframe('tests_m') dataframe.merge(vacc, tests_src, tests_m, 'patient_id_l', 'patient_id', how='inner') # filter out subjects has tests after 10days of vaccine # date_taken_specific_l is vaccine date, date_taken_specific_r is tests date test_filter = tests_m['date_taken_specific_l'] < tests_m['date_taken_specific_r'] # test after vaccine test_filter &= tests_m['date_taken_specific_l'] > (tests_m['date_taken_specific_r'] - 3600 * 24 * 10) tests_m.apply_filter(test_filter) def count(): with sess.Session() as s: # open related datasets dst = s.open_dataset(DSTDATA, 'r', 'dst') vacc = dst['tests_m'] print(len(dst['tests_m']['patient_id_l_l'])) if __name__ == '__main__': print(datetime.now()) asmt_merge_vacc() join_tests() #count() print(datetime.now())
45.945055
153
0.643387
[ "Apache-2.0" ]
KCL-BMEIS/ExeTeraCovid
scripts/asmt_merge_vacc_exetera.py
4,181
Python
def can_build(plat): return plat=="android" def configure(env): if (env['platform'] == 'android'): env.android_add_dependency("compile 'com.google.android.gms:play-services-ads:8.3.0'") env.android_add_java_dir("android") env.android_add_to_manifest("android/AndroidManifestChunk.xml") env.disable_module()
29
88
0.752351
[ "MIT" ]
Mavhod/GodotAdmob
admob/config.py
319
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Public Title. Doc str for module users .. moduleauthor:: Max Wu <http://maxwu.me> .. References:: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject .. Test Samples in doctest format >>> None """ from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() with open('requirements.txt') as f: required = f.read().splitlines() with open(path.join(here, 'src', 'cistat', 'version.py')) as f: exec(f.read()) VERSION = get_version() setup( name='cistat', version=VERSION, description='A sample Python project', long_description=long_description, # The project's main homepage. url='https://github.com/maxwu/cistat', # Author details author='Max Wu', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Testers, Developers', 'Topic :: Software Test :: Statistic Tools', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', # 'Programming Language :: Python :: 3', # 'Programming Language :: Python :: 3.3', # 'Programming Language :: Python :: 3.4', # 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='CI Stat CircleCI', packages=find_packages("src"), package_dir={"": "src"}, install_requires=required, extras_require={ 'dev': ['check-manifest'], 'test': ['coverage'], }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. #package_data={ # 'sample': ['package_data.dat'], #}, # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'cistat-cli=cistat:cli_app', ], }, )
29.87
79
0.634416
[ "MIT" ]
maxwu/ci-stat
setup.py
2,987
Python
import os from databases import Database from sqlalchemy import MetaData, create_engine SQLALCHEMY_DATABASE_URL = ( os.environ.get("DATABASE_URL") or '{}://{}:{}@{}:{}/{}'.format( os.environ.get("DATABASE"), os.environ.get("DB_USERNAME"), os.environ.get("DB_PASSWORD"), os.environ.get("DB_HOST"), os.environ.get("DB_PORT"), os.environ.get("DB_NAME"), ) ) database = Database( SQLALCHEMY_DATABASE_URL, ssl=False, min_size=5, max_size=20, ) engine = create_engine( SQLALCHEMY_DATABASE_URL, echo=False, ) metadata = MetaData()
19.774194
46
0.631321
[ "MIT" ]
lupinthe14th/ptodo
backend/app/database.py
613
Python
from clvm_tools import binutils from chinilla.types.blockchain_format.program import Program, INFINITE_COST from chinilla.types.announcement import Announcement from chinilla.types.blockchain_format.sized_bytes import bytes32 from chinilla.util.condition_tools import parse_sexp_to_conditions from chinilla.wallet.puzzles.load_clvm import load_clvm SINGLETON_MOD = load_clvm("singleton_top_layer.clvm") LAUNCHER_PUZZLE = load_clvm("singleton_launcher.clvm") P2_SINGLETON_MOD = load_clvm("p2_singleton.clvm") POOL_MEMBER_MOD = load_clvm("pool_member_innerpuz.clvm") POOL_WAITINGROOM_MOD = load_clvm("pool_waitingroom_innerpuz.clvm") LAUNCHER_PUZZLE_HASH = LAUNCHER_PUZZLE.get_tree_hash() SINGLETON_MOD_HASH = SINGLETON_MOD.get_tree_hash() LAUNCHER_ID = Program.to(b"launcher-id").get_tree_hash() POOL_REWARD_PREFIX_VANILLANET = bytes32.fromhex("ccd5bb71183532bff220ba46c268991a00000000000000000000000000000000") def singleton_puzzle(launcher_id: Program, launcher_puzzle_hash: bytes32, inner_puzzle: Program) -> Program: return SINGLETON_MOD.curry((SINGLETON_MOD_HASH, (launcher_id, launcher_puzzle_hash)), inner_puzzle) def p2_singleton_puzzle(launcher_id: Program, launcher_puzzle_hash: bytes32) -> Program: return P2_SINGLETON_MOD.curry(SINGLETON_MOD_HASH, launcher_id, launcher_puzzle_hash) def singleton_puzzle_hash(launcher_id: Program, launcher_puzzle_hash: bytes32, inner_puzzle: Program) -> bytes32: return singleton_puzzle(launcher_id, launcher_puzzle_hash, inner_puzzle).get_tree_hash() def p2_singleton_puzzle_hash(launcher_id: Program, launcher_puzzle_hash: bytes32) -> bytes32: return p2_singleton_puzzle(launcher_id, launcher_puzzle_hash).get_tree_hash() def test_only_odd_coins(): singleton_mod_hash = SINGLETON_MOD.get_tree_hash() # (SINGLETON_STRUCT INNER_PUZZLE lineage_proof my_amount inner_solution) # SINGLETON_STRUCT = (MOD_HASH . (LAUNCHER_ID . LAUNCHER_PUZZLE_HASH)) solution = Program.to( [ (singleton_mod_hash, (LAUNCHER_ID, LAUNCHER_PUZZLE_HASH)), Program.to(binutils.assemble("(q (51 0xcafef00d 200))")), [0xDEADBEEF, 0xCAFEF00D, 200], 200, [], ] ) try: cost, result = SINGLETON_MOD.run_with_cost(INFINITE_COST, solution) except Exception as e: assert e.args == ("clvm raise", "80") else: assert False solution = Program.to( [ (singleton_mod_hash, (LAUNCHER_ID, LAUNCHER_PUZZLE_HASH)), Program.to(binutils.assemble("(q (51 0xcafef00d 201))")), [0xDEADBEEF, 0xCAFED00D, 210], 205, 0, ] ) try: cost, result = SINGLETON_MOD.run_with_cost(INFINITE_COST, solution) except Exception: assert False def test_only_one_odd_coin_created(): singleton_mod_hash = SINGLETON_MOD.get_tree_hash() solution = Program.to( [ (singleton_mod_hash, (LAUNCHER_ID, LAUNCHER_PUZZLE_HASH)), Program.to(binutils.assemble("(q (51 0xcafef00d 203) (51 0xfadeddab 205))")), [0xDEADBEEF, 0xCAFEF00D, 411], 411, [], ] ) try: cost, result = SINGLETON_MOD.run_with_cost(INFINITE_COST, solution) except Exception as e: assert e.args == ("clvm raise", "80") else: assert False solution = Program.to( [ (singleton_mod_hash, (LAUNCHER_ID, LAUNCHER_PUZZLE_HASH)), Program.to(binutils.assemble("(q (51 0xcafef00d 203) (51 0xfadeddab 204) (51 0xdeadbeef 202))")), [0xDEADBEEF, 0xCAFEF00D, 411], 411, [], ] ) try: cost, result = SINGLETON_MOD.run_with_cost(INFINITE_COST, solution) except Exception: assert False def test_p2_singleton(): # create a singleton. This should call driver code. launcher_id = LAUNCHER_ID innerpuz = Program.to(1) singleton_full_puzzle = singleton_puzzle(launcher_id, LAUNCHER_PUZZLE_HASH, innerpuz) # create a fake coin id for the `p2_singleton` p2_singleton_coin_id = Program.to(["test_hash"]).get_tree_hash() expected_announcement = Announcement(singleton_full_puzzle.get_tree_hash(), p2_singleton_coin_id).name() # create a `p2_singleton` puzzle. This should call driver code. p2_singleton_full = p2_singleton_puzzle(launcher_id, LAUNCHER_PUZZLE_HASH) solution = Program.to([innerpuz.get_tree_hash(), p2_singleton_coin_id]) cost, result = p2_singleton_full.run_with_cost(INFINITE_COST, solution) err, conditions = parse_sexp_to_conditions(result) assert err is None p2_singleton_full = p2_singleton_puzzle(launcher_id, LAUNCHER_PUZZLE_HASH) solution = Program.to([innerpuz.get_tree_hash(), p2_singleton_coin_id]) cost, result = p2_singleton_full.run_with_cost(INFINITE_COST, solution) assert result.first().rest().first().as_atom() == expected_announcement assert conditions[0].vars[0] == expected_announcement
39.433071
115
0.720447
[ "Apache-2.0" ]
Chinilla/chinilla-blockchain
tests/wallet/test_singleton.py
5,008
Python
from __future__ import annotations import numpy as np import tcod import g import game.constants import game.engine import game.game_map import game.render_functions from game.tiles import tile_graphics def render_map(console: tcod.Console, gamemap: game.game_map.GameMap) -> None: # The default graphics are of tiles that are visible. light = tile_graphics[gamemap.tiles] light[gamemap.fire > 0] = (ord("^"), (255, 255, 255), (0xCC, 0x22, 0)) # Apply effects to create a darkened map of tile graphics. dark = gamemap.memory.copy() dark["fg"] //= 2 dark["bg"] //= 8 visible = gamemap.visible if g.fullbright: visible = np.ones_like(visible) for entity in sorted(gamemap.entities, key=lambda x: x.render_order.value): if not visible[entity.x, entity.y]: continue # Skip entities that are not in the FOV. light[entity.x, entity.y]["ch"] = ord(entity.char) light[entity.x, entity.y]["fg"] = entity.color console.rgb[0 : gamemap.width, 0 : gamemap.height] = np.select( condlist=[visible, gamemap.explored], choicelist=[light, dark], default=dark, ) for entity in sorted(gamemap.entities, key=lambda x: x.render_order.value): if not visible[entity.x, entity.y]: continue # Skip entities that are not in the FOV. console.print(entity.x, entity.y, entity.char, fg=entity.color) visible.choose((gamemap.memory, light), out=gamemap.memory) def render_ui(console: tcod.Console, engine: game.engine.Engine) -> None: UI_WIDTH = game.constants.ui_width UI_LEFT = console.width - UI_WIDTH LOG_HEIGHT = console.height - 8 engine.message_log.render( console=console, x=UI_LEFT, y=console.height - LOG_HEIGHT, width=UI_WIDTH, height=LOG_HEIGHT ) console.draw_rect(UI_LEFT, 0, UI_WIDTH, 2, 0x20, (0xFF, 0xFF, 0xFF), (0, 0, 0)) game.render_functions.render_bar( console=console, x=UI_LEFT, y=0, current_value=engine.player.fighter.hp, maximum_value=engine.player.fighter.max_hp, total_width=UI_WIDTH, ) game.render_functions.render_names_at_mouse_location(console=console, x=UI_LEFT, y=1, engine=engine) if g.mouse_pos: console.rgb[g.mouse_pos]["fg"] = (0, 0, 0) console.rgb[g.mouse_pos]["bg"] = (255, 255, 255) if g.fullbright or engine.game_map.visible[g.mouse_pos]: console.print( UI_LEFT, 2, f"Fire={engine.game_map.fire[g.mouse_pos]}, Heat={engine.game_map.heat[g.mouse_pos]}, " f"Smoke={engine.game_map.smoke[g.mouse_pos]},\nFuel={engine.game_map.fuel[g.mouse_pos]}", )
34.620253
105
0.652285
[ "CC0-1.0" ]
HexDecimal/7drl-2022
game/rendering.py
2,735
Python
from sys import argv, stdin def cut(input_file, *args): options = process_options(*args) delimiter = d_option(options["-d"]) lines = input_file.readlines() columns = [item.split(delimiter) for item in lines] scope = f_option(options["-f"], len(columns[0])) out_scope = [] for x in scope: out_scope.append([column[x] for column in columns]) pr = [] for line in range(len(out_scope[0])): for rec in out_scope: pr.append(rec[line].strip()) print(delimiter.join(pr), end='') pr.clear() print() def process_options(options): out_opt = dict() last_key = "" for option in options: if option.startswith('-'): out_opt[option] = "" last_key = option else: out_opt[last_key] = option return out_opt def f_option(params: str, file_size: int): if not params: return None inp = params.split('-') if '-' in params else params if '-' not in params and ',' not in params: return int(params) elif params.startswith('-'): return [x for x in range(0, int(inp[1]))] elif params.endswith('-'): return [x - 1 for x in range(int(inp[0]), file_size + 1)] elif ',' in params: return [int(x) for x in params.split(',')] else: return [x - 1 for x in range(int(inp[0]), int(inp[1]) + 1)] def d_option(params): return params if params else ' ' cut(stdin, argv[1:])
26.927273
67
0.576637
[ "MIT" ]
MichalKyjovsky/NPRG065_Programing_in_Python
SandBox/Practicals_05_Cut.py
1,481
Python
import os import platform from datetime import datetime # TODO test counter # def test_count(): # return 0 # f"Count: {test_count()}\n"\ def serve_info(): return f"Stats\n" \ f"UTC: {datetime.utcnow().isoformat()}\n" \ f"\nMachine\n" \ f"Architecture: {platform.machine()}\n" \ f"Name: {platform.node()}\n" \ f"Platform: {platform.platform()}\n" \ f"CPU Model: {platform.processor()}\n" \ f"CPU Count: {os.cpu_count()}\n" \ f"Release: {platform.release()}\n" \ f"System: {platform.system()}\n" \ f"Version: {platform.version()}\n" \ f"\nPython\n" \ f"Branch: {platform.python_branch()}\n" \ f"Build: {platform.python_build()}\n" \ f"Compiler: {platform.python_compiler()}\n" \ f"Implementation: {platform.python_implementation()}\n" \ f"Revision: {platform.python_revision()}\n"
33.275862
68
0.550259
[ "MIT" ]
pwentrys/SubstanceHelpers
utils/logger.py
965
Python
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class SpbNetworkRange(Base): """The SPB Network Range. The SpbNetworkRange class encapsulates a list of spbNetworkRange resources that are managed by the user. A list of resources can be retrieved from the server using the SpbNetworkRange.find() method. The list can be managed by using the SpbNetworkRange.add() and SpbNetworkRange.remove() methods. """ __slots__ = () _SDM_NAME = 'spbNetworkRange' _SDM_ATT_MAP = { 'EnableAdvertiseNetworkRange': 'enableAdvertiseNetworkRange', 'EnableHostName': 'enableHostName', 'EntryColumn': 'entryColumn', 'EntryRow': 'entryRow', 'HostNamePrefix': 'hostNamePrefix', 'InterfaceMetric': 'interfaceMetric', 'NoOfColumns': 'noOfColumns', 'NoOfRows': 'noOfRows', 'StartSystemId': 'startSystemId', 'SystemIdIncrementBy': 'systemIdIncrementBy', } def __init__(self, parent): super(SpbNetworkRange, self).__init__(parent) @property def SpbOutsideLinks(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.spboutsidelinks_dfb7b1e816409cddb14e138ebc2096dc.SpbOutsideLinks): An instance of the SpbOutsideLinks class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.spboutsidelinks_dfb7b1e816409cddb14e138ebc2096dc import SpbOutsideLinks if self._properties.get('SpbOutsideLinks', None) is None: return SpbOutsideLinks(self) else: return self._properties.get('SpbOutsideLinks') @property def SpbmNodeTopologyRange(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.spbmnodetopologyrange_199093afa11cd9f4488faaa1ad3ec3a7.SpbmNodeTopologyRange): An instance of the SpbmNodeTopologyRange class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.spbmnodetopologyrange_199093afa11cd9f4488faaa1ad3ec3a7 import SpbmNodeTopologyRange if self._properties.get('SpbmNodeTopologyRange', None) is None: return SpbmNodeTopologyRange(self) else: return self._properties.get('SpbmNodeTopologyRange') @property def EnableAdvertiseNetworkRange(self): """ Returns ------- - bool: If true, this SPB ISIS Network Range is advertised. """ return self._get_attribute(self._SDM_ATT_MAP['EnableAdvertiseNetworkRange']) @EnableAdvertiseNetworkRange.setter def EnableAdvertiseNetworkRange(self, value): self._set_attribute(self._SDM_ATT_MAP['EnableAdvertiseNetworkRange'], value) @property def EnableHostName(self): """ Returns ------- - bool: If true, the host name of the router is activated. """ return self._get_attribute(self._SDM_ATT_MAP['EnableHostName']) @EnableHostName.setter def EnableHostName(self, value): self._set_attribute(self._SDM_ATT_MAP['EnableHostName'], value) @property def EntryColumn(self): """ Returns ------- - number: The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. """ return self._get_attribute(self._SDM_ATT_MAP['EntryColumn']) @EntryColumn.setter def EntryColumn(self, value): self._set_attribute(self._SDM_ATT_MAP['EntryColumn'], value) @property def EntryRow(self): """ Returns ------- - number: The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. """ return self._get_attribute(self._SDM_ATT_MAP['EntryRow']) @EntryRow.setter def EntryRow(self, value): self._set_attribute(self._SDM_ATT_MAP['EntryRow'], value) @property def HostNamePrefix(self): """ Returns ------- - str: The host name prefix information. """ return self._get_attribute(self._SDM_ATT_MAP['HostNamePrefix']) @HostNamePrefix.setter def HostNamePrefix(self, value): self._set_attribute(self._SDM_ATT_MAP['HostNamePrefix'], value) @property def InterfaceMetric(self): """ Returns ------- - number: The metric cost associated with this emulated SPB ISIS router. """ return self._get_attribute(self._SDM_ATT_MAP['InterfaceMetric']) @InterfaceMetric.setter def InterfaceMetric(self, value): self._set_attribute(self._SDM_ATT_MAP['InterfaceMetric'], value) @property def NoOfColumns(self): """ Returns ------- - number: The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). """ return self._get_attribute(self._SDM_ATT_MAP['NoOfColumns']) @NoOfColumns.setter def NoOfColumns(self, value): self._set_attribute(self._SDM_ATT_MAP['NoOfColumns'], value) @property def NoOfRows(self): """ Returns ------- - number: The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). """ return self._get_attribute(self._SDM_ATT_MAP['NoOfRows']) @NoOfRows.setter def NoOfRows(self, value): self._set_attribute(self._SDM_ATT_MAP['NoOfRows'], value) @property def StartSystemId(self): """ Returns ------- - str: The System ID assigned to the starting SPB ISIS router in this network range. The default is 00 00 00 00 00 00. """ return self._get_attribute(self._SDM_ATT_MAP['StartSystemId']) @StartSystemId.setter def StartSystemId(self, value): self._set_attribute(self._SDM_ATT_MAP['StartSystemId'], value) @property def SystemIdIncrementBy(self): """ Returns ------- - str: This is used when more than one router is to be emulated. The increment value is added to the previous System ID for each additional emulated router in this network range. """ return self._get_attribute(self._SDM_ATT_MAP['SystemIdIncrementBy']) @SystemIdIncrementBy.setter def SystemIdIncrementBy(self, value): self._set_attribute(self._SDM_ATT_MAP['SystemIdIncrementBy'], value) def update(self, EnableAdvertiseNetworkRange=None, EnableHostName=None, EntryColumn=None, EntryRow=None, HostNamePrefix=None, InterfaceMetric=None, NoOfColumns=None, NoOfRows=None, StartSystemId=None, SystemIdIncrementBy=None): """Updates spbNetworkRange resource on the server. Args ---- - EnableAdvertiseNetworkRange (bool): If true, this SPB ISIS Network Range is advertised. - EnableHostName (bool): If true, the host name of the router is activated. - EntryColumn (number): The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. - EntryRow (number): The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. - HostNamePrefix (str): The host name prefix information. - InterfaceMetric (number): The metric cost associated with this emulated SPB ISIS router. - NoOfColumns (number): The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). - NoOfRows (number): The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). - StartSystemId (str): The System ID assigned to the starting SPB ISIS router in this network range. The default is 00 00 00 00 00 00. - SystemIdIncrementBy (str): This is used when more than one router is to be emulated. The increment value is added to the previous System ID for each additional emulated router in this network range. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add(self, EnableAdvertiseNetworkRange=None, EnableHostName=None, EntryColumn=None, EntryRow=None, HostNamePrefix=None, InterfaceMetric=None, NoOfColumns=None, NoOfRows=None, StartSystemId=None, SystemIdIncrementBy=None): """Adds a new spbNetworkRange resource on the server and adds it to the container. Args ---- - EnableAdvertiseNetworkRange (bool): If true, this SPB ISIS Network Range is advertised. - EnableHostName (bool): If true, the host name of the router is activated. - EntryColumn (number): The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. - EntryRow (number): The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. - HostNamePrefix (str): The host name prefix information. - InterfaceMetric (number): The metric cost associated with this emulated SPB ISIS router. - NoOfColumns (number): The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). - NoOfRows (number): The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). - StartSystemId (str): The System ID assigned to the starting SPB ISIS router in this network range. The default is 00 00 00 00 00 00. - SystemIdIncrementBy (str): This is used when more than one router is to be emulated. The increment value is added to the previous System ID for each additional emulated router in this network range. Returns ------- - self: This instance with all currently retrieved spbNetworkRange resources using find and the newly added spbNetworkRange resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained spbNetworkRange resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, EnableAdvertiseNetworkRange=None, EnableHostName=None, EntryColumn=None, EntryRow=None, HostNamePrefix=None, InterfaceMetric=None, NoOfColumns=None, NoOfRows=None, StartSystemId=None, SystemIdIncrementBy=None): """Finds and retrieves spbNetworkRange resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve spbNetworkRange resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all spbNetworkRange resources from the server. Args ---- - EnableAdvertiseNetworkRange (bool): If true, this SPB ISIS Network Range is advertised. - EnableHostName (bool): If true, the host name of the router is activated. - EntryColumn (number): The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. - EntryRow (number): The value is used in combination to specify which virtual router in the Network Range is connected to the current ISIS L2/L3 Router. - HostNamePrefix (str): The host name prefix information. - InterfaceMetric (number): The metric cost associated with this emulated SPB ISIS router. - NoOfColumns (number): The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). - NoOfRows (number): The value is used in combination to create a matrix (grid) for an emulated network range of the following size: The # Rows multiplied the # Cols = Number of routers in this Network Range. (For example, 3 Rows x 3 Columns = 9 Routers). - StartSystemId (str): The System ID assigned to the starting SPB ISIS router in this network range. The default is 00 00 00 00 00 00. - SystemIdIncrementBy (str): This is used when more than one router is to be emulated. The increment value is added to the previous System ID for each additional emulated router in this network range. Returns ------- - self: This instance with matching spbNetworkRange resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of spbNetworkRange data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the spbNetworkRange resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href)
52.080645
266
0.698235
[ "MIT" ]
Vibaswan/ixnetwork_restpy
ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/spbnetworkrange_525415b0593fd4072368412490b137fa.py
16,145
Python
import time, datetime from app import db class ServerInfo(db.Model): __tablename__ = 'servers' __table_args__ = (db.PrimaryKeyConstraint('ip', 'port', name='_ip_port_pk'),) ip = db.Column(db.String(128), nullable=False) port = db.Column(db.Integer, nullable=False) info = db.Column(db.String(1024), nullable=True) player_count = db.Column(db.Integer, nullable=False) player_total = db.Column(db.Integer, nullable=False) servermod_version = db.Column(db.String(32), nullable=True) pastebin_url = db.Column(db.String(32), nullable=True) game_version = db.Column(db.String(32), nullable=True) date_updated = db.Column(db.DateTime, default=db.func.current_timestamp(), onupdate=db.func.current_timestamp()) def __getitem__(self, item): return getattr(self, item) def __setitem__(self, key, value): self.__dict__[key] = value @property def serialize(self): # du_unix = time.mktime(self.date_updated.timetuple()) # now_unix = time.mktime(datetime.datetime.now().timetuple()) return { "ip": self.ip, "port": self.port, "info": self.info, "player_count": self.player_count, "player_total": self.player_total, "game_version": self.game_version, "servermod_version": self.servermod_version, "pastebin_url": self.pastebin_url, "date_updated": time.mktime(self.date_updated.timetuple()) } def prettify_seconds(self, seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) d, h = divmod(h, 24) if d: return "{} days".format(d) if h: return "{} hours".format(h) if m: return "{} minutes".format(m) return "{} seconds".format(s)
35.090909
82
0.58601
[ "MIT" ]
sappykun/scpsl-masterserver
app/modules/serverinfo/models.py
1,930
Python
''' TRIES Trie support search, insert, and deletion in O(L) time where L is length of the key why Trie? * With Trie, we can insert and find strings in O(L) time where L represent the length of a single word. This is obviously faster than BST. This is also faster than Hashing because of the ways it is implemented. We do not need to compute any hash function. No collision handling is required (like we do in open addressing and separate chaining) * Another advantage of Trie is, we can easily print all words in alphabetical order which is not easily possible with hashing. * We can efficiently do prefix search (or auto-complete) with Trie. Issues with Trie Faster but require HUGE memory for storing the strings NOTE: Trie node class struct TrieNode { struct TrieNode *children[ALPHABET_SIZE]; // isEndOfWord is true if the node // represents end of a word bool isEndOfWord; }; ''' class TrieNode: # Trie node class def __init__(self): self.children = [None]*26 # isEndOfWord is True if node represent the end of the word self.isEndOfWord = False
28.925
147
0.703544
[ "MIT" ]
Wmeng98/Leetcode
CTCI/Data Structures/Trees/tries.py
1,157
Python
import argparse import multiprocessing import random import shutil from datetime import datetime from functools import partial from pathlib import Path import chainer import chainer.functions as F import chainer.links as L import cupy import numpy as np from chainer import iterators, optimizers, serializers from chainer.datasets import TransformDataset, get_cifar10 from chainer.training import StandardUpdater, Trainer, extensions import augmentation from metric_learning import MetricLearnClassifier from modified_evaluator import ModifiedEvaluator from modified_updater import ModifiedUpdater from resnet import ResNet50 def apply_augmentation(inputs, mean, std, angle=(-5, 5), scale=(1, 1.2), crop_size=None, train=True): img, label = inputs img = img.copy() img = img.transpose(1, 2, 0) if train: img, _ = augmentation.gamma_correction(img) img -= mean[None, None, :] img /= std[None, None, :] if train: img, _ = augmentation.random_rotate(img, angle=angle) if np.random.rand() < 0.5: img, _ = augmentation.mirror(img) if np.random.rand() < 0.5: img, _ = augmentation.flip(img) img, _ = augmentation.random_resize(img, scale=scale) if crop_size is not None: rnd1 = np.random.randint(img.shape[0] - crop_size) rnd2 = np.random.randint(img.shape[1] - crop_size) img = img[rnd1:rnd1 + crop_size, rnd2:rnd2 + crop_size, :] img = img.transpose(2, 0, 1) return img, label def main(): parser = argparse.ArgumentParser(description='training mnist') parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)') parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of sweeps over the dataset to train') parser.add_argument('--batchsize', '-b', type=int, default=8, help='Number of images in each mini-batch') parser.add_argument('--seed', '-s', type=int, default=0, help='Random seed') parser.add_argument('--report_trigger', '-rt', type=str, default='1e', help='Interval for reporting(Ex.100i, default:1e)') parser.add_argument('--save_trigger', '-st', type=str, default='1e', help='Interval for saving the model(Ex.100i, default:1e)') parser.add_argument('--load_model', '-lm', type=str, default=None, help='Path of the model object to load') parser.add_argument('--load_optimizer', '-lo', type=str, default=None, help='Path of the optimizer object to load') args = parser.parse_args() start_time = datetime.now() save_dir = Path('output/{}'.format(start_time.strftime('%Y%m%d_%H%M'))) random.seed(args.seed) np.random.seed(args.seed) cupy.random.seed(args.seed) model = MetricLearnClassifier(ResNet50(), 512, 10, method='arcface', final_margin=0.5, final_scale=64, target_epoch=100) if args.load_model is not None: serializers.load_npz(args.load_model, model) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() optimizer = optimizers.Adam(alpha=1e-3, weight_decay_rate=5e-4, amsgrad=True) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(5e-4)) if args.load_optimizer is not None: serializers.load_npz(args.load_optimizer, optimizer) train_data, valid_data = get_cifar10(scale=255.) mean = np.mean([x for x, _ in train_data], axis=(0, 2, 3)) std = np.std([x for x, _ in train_data], axis=(0, 2, 3)) train_transform = partial(apply_augmentation, mean=mean, std=std, crop_size=28, train=True) valid_transform = partial(apply_augmentation, mean=mean, std=std, crop_size=28, train=True) train_data = TransformDataset(train_data, train_transform) valid_data = TransformDataset(valid_data, valid_transform) train_iter = iterators.SerialIterator(train_data, args.batchsize) valid_iter = iterators.SerialIterator(valid_data, args.batchsize, repeat=False, shuffle=False) updater = ModifiedUpdater(train_iter, optimizer, device=args.gpu) trainer = Trainer(updater, (args.epoch, 'epoch'), out=save_dir) report_trigger = (int(args.report_trigger[:-1]), 'iteration' if args.report_trigger[-1] == 'i' else 'epoch') trainer.extend(extensions.LogReport(trigger=report_trigger)) trainer.extend(ModifiedEvaluator(valid_iter, model, device=args.gpu), name='val', trigger=report_trigger) trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'main/loss', 'main/accuracy', 'val/main/loss', 'val/main/accuracy', 'elapsed_time']), trigger=report_trigger) trainer.extend(extensions.PlotReport(['main/loss', 'val/main/loss'], x_key=report_trigger[1], marker='.', file_name='loss.png', trigger=report_trigger)) trainer.extend(extensions.PlotReport(['main/accuracy', 'val/main/accuracy'], x_key=report_trigger[1], marker='.', file_name='accuracy.png', trigger=report_trigger)) save_trigger = (int(args.save_trigger[:-1]), 'iteration' if args.save_trigger[-1] == 'i' else 'epoch') trainer.extend(extensions.snapshot_object(model, filename='model_{0}-{{.updater.{0}}}.npz' .format(save_trigger[1])), trigger=save_trigger) trainer.extend(extensions.snapshot_object(optimizer, filename='optimizer_{0}-{{.updater.{0}}}.npz' .format(save_trigger[1])), trigger=save_trigger) trainer.extend(extensions.ProgressBar()) trainer.extend(extensions.ExponentialShift('lr', 0.5), trigger=(30, 'epoch')) if save_dir.exists(): shutil.rmtree(save_dir) save_dir.mkdir() (save_dir / 'training_details').mkdir() # Write parameters text with open(save_dir / 'training_details/train_params.txt', 'w') as f: f.write('model: {}\n'.format(model.predictor.__class__.__name__)) f.write('n_epoch: {}\n'.format(args.epoch)) f.write('batch_size: {}\n'.format(args.batchsize)) f.write('n_data_train: {}\n'.format(len(train_data))) f.write('n_data_val: {}\n'.format(len(valid_data))) f.write('seed: {}\n'.format(args.seed)) trainer.run() if __name__ == '__main__': main()
43.589404
112
0.648891
[ "MIT" ]
diceroll/metric_learning
train_cifar.py
6,582
Python
import lvgl as lv import styles def lv_arc(screen): # Create the arc object on lv screen, ie a lv.scr() object arc = lv.arc(screen) # Set arc size arc.set_size(150, 150) # Set arc background style color blue arc.add_style(arc.PART.BG, styles.gstyle_bg1) # Set arc indicator (i.e. line) style to color red arc.add_style(arc.PART.INDIC, styles.gstyle_line1) # Setup Angles, from docs: # Zero degree is at the middle right (3 o'clock) of the object and the degrees are increasing # in a clockwise direction. The angles should be in [0;360] range. # # Get background angle start and end in degrees start = arc.get_bg_angle_start() # default is 135 end = arc.get_bg_angle_end() # default is 45 # Set background angles #arc.set_bg_angles(180,max) # Set start angle of the arc (0-360 degrees) #arc.set_start_angle(0) # Get current value of arc # print(arc.get_value()) # default is 0 # print(arc.get_min_value()) # default is 0 # print(arc.get_max_value()) # default is 100 # Set the current value (0-100) # A percentage of the arc foreground that is filled # Note: This doesnt work on micropython? # Examples: # 50 is 50% filled # 100 is 100% filled # arc.set_value(5) # # Or set the value base on end angle (0-360) degrees # Set end angle of the arc (0-360 degrees) arc.set_end_angle(200) if __name__ == '__main__': lv.init() scr = lv.obj() lv.scr_load(scr) lv_arc(scr)
29.5
98
0.653846
[ "MIT" ]
ndrogness/lvgl_micropython_examples
widgets/lv_arc/lv_arc.py
1,534
Python
#!/usr/bin/env python from __future__ import print_function import argparse import calendar import codecs import datetime import io import os.path import re import subprocess import sys from pycoinzpub.convention import tx_fee, satoshi_to_mbtc from pycoinzpub.encoding import hash160 from pycoinzpub.key import Key from pycoinzpub.key.validate import is_address_valid from pycoinzpub.networks import address_prefix_for_netcode, full_network_name_for_netcode, network_codes from pycoinzpub.networks.default import get_current_netcode from pycoinzpub.serialize import b2h_rev, h2b, h2b_rev, stream_to_bytes from pycoinzpub.services import spendables_for_address, get_tx_db from pycoinzpub.services.providers import message_about_tx_cache_env, \ message_about_tx_for_tx_hash_env, message_about_spendables_for_address_env from pycoinzpub.tx.exceptions import BadSpendableError from pycoinzpub.tx.script.tools import opcode_list, disassemble_for_opcode_data from pycoinzpub.tx.script.check_signature import parse_signature_blob from pycoinzpub.tx.script.der import UnexpectedDER from pycoinzpub.tx.script.disassemble import disassemble_scripts, sighash_type_to_string from pycoinzpub.tx.tx_utils import distribute_from_split_pool, sign_tx from pycoinzpub.tx.Tx import Spendable, Tx, TxOut from pycoinzpub.ui import standard_tx_out_script DEFAULT_VERSION = 1 DEFAULT_LOCK_TIME = 0 LOCKTIME_THRESHOLD = 500000000 def range_int(min, max, name): def cast(v): v = int(v) if not (min <= v <= max): raise ValueError() return v cast.__name__ = name return cast def validate_bitcoind(tx, tx_db, bitcoind_url): try: from pycoinzpub.services.bitcoind import bitcoind_agrees_on_transaction_validity if bitcoind_agrees_on_transaction_validity(bitcoind_url, tx): print("interop test passed for %s" % tx.id(), file=sys.stderr) else: print("tx ==> %s FAILED interop test" % tx.id(), file=sys.stderr) except ImportError: print("warning: can't talk to bitcoind due to missing library") def dump_header(tx): tx_bin = stream_to_bytes(tx.stream) print("Version: %2d tx hash %s %d bytes" % (tx.version, tx.id(), len(tx_bin))) if tx.has_witness_data(): print(" segwit tx hash %s" % tx.w_id()) print("TxIn count: %d; TxOut count: %d" % (len(tx.txs_in), len(tx.txs_out))) if tx.lock_time == 0: meaning = "valid anytime" elif tx.lock_time < LOCKTIME_THRESHOLD: meaning = "valid after block index %d" % tx.lock_time else: when = datetime.datetime.utcfromtimestamp(tx.lock_time) meaning = "valid on or after %s utc" % when.isoformat() print("Lock time: %d (%s)" % (tx.lock_time, meaning)) print("Input%s:" % ('s' if len(tx.txs_in) != 1 else '')) def make_trace_script(do_trace, use_pdb): if not (do_trace or use_pdb): return None def trace_script(pc, opcode, data, stack, altstack, if_condition_stack, is_signature): from pycoinzpub.serialize import b2h print("stack: [%s]" % ' '.join(b2h(s) for s in stack)) if len(altstack) > 0: print("altstack: %s" % altstack) print("condition stack: %s" % if_condition_stack) print("%3d : %02x %s" % (pc, opcode, disassemble_for_opcode_data(opcode, data))) if use_pdb: import pdb pdb.set_trace() return trace_script def dump_inputs(tx, netcode, verbose_signature, address_prefix, traceback_f, disassembly_level): def signature_for_hash_type_f(hash_type, script): return tx.signature_hash(script, idx, hash_type) for idx, tx_in in enumerate(tx.txs_in): if tx.is_coinbase(): print("%4d: COINBASE %12.5f mBTC" % (idx, satoshi_to_mbtc(tx.total_in()))) continue suffix = "" if tx.missing_unspent(idx): tx_out = None address = tx_in.bitcoin_address(address_prefix=address_prefix) else: tx_out = tx.unspents[idx] sig_result = " sig ok" if tx.is_signature_ok(idx, traceback_f=traceback_f) else " BAD SIG" suffix = " %12.5f mBTC %s" % (satoshi_to_mbtc(tx_out.coin_value), sig_result) address = tx_out.bitcoin_address(netcode=netcode) t = "%4d: %34s from %s:%-4d%s" % (idx, address, b2h_rev(tx_in.previous_hash), tx_in.previous_index, suffix) print(t.rstrip()) if disassembly_level > 0: dump_disassembly(tx_in, tx_out, tx.lock_time, signature_for_hash_type_f) if verbose_signature: dump_signatures(tx, tx_in, tx_out, idx, netcode, address_prefix, traceback_f, disassembly_level) def dump_disassembly(tx_in, tx_out, lock_time, signature_for_hash_type_f): out_script = b'' if tx_out: out_script = tx_out.script for (pre_annotations, pc, opcode, instruction, post_annotations) in \ disassemble_scripts( tx_in.script, out_script, lock_time, signature_for_hash_type_f): for l in pre_annotations: print(" %s" % l) if 1: print(" %4x: %02x %s" % (pc, opcode, instruction)) for l in post_annotations: print(" %s" % l) def dump_signatures(tx, tx_in, tx_out, idx, netcode, address_prefix, traceback_f, disassembly_level): signatures = [] for opcode in opcode_list(tx_in.script): if not opcode.startswith("OP_"): try: signatures.append(parse_signature_blob(h2b(opcode[1:-1]))) except UnexpectedDER: pass if signatures: sig_types_identical = ( tuple(zip(*signatures))[1].count(signatures[0][1]) == len(signatures)) i = 1 if len(signatures) > 1 else '' for sig_pair, sig_type in signatures: print(" r{0}: {1:#x}\n s{0}: {2:#x}".format(i, *sig_pair)) if not sig_types_identical and tx_out: print(" z{}: {:#x} {}".format(i, tx.signature_hash(tx_out.script, idx, sig_type), sighash_type_to_string(sig_type))) if i: i += 1 if sig_types_identical and tx_out: print(" z:{} {:#x} {}".format(' ' if i else '', tx.signature_hash( tx_out.script, idx, sig_type), sighash_type_to_string(sig_type))) def dump_footer(tx, missing_unspents): if not missing_unspents: print("Total input %12.5f mBTC" % satoshi_to_mbtc(tx.total_in())) if 1: print("Total output %12.5f mBTC" % satoshi_to_mbtc(tx.total_out())) if not missing_unspents: print("Total fees %12.5f mBTC" % satoshi_to_mbtc(tx.fee())) def dump_tx(tx, netcode, verbose_signature, disassembly_level, do_trace, use_pdb): address_prefix = address_prefix_for_netcode(netcode) missing_unspents = tx.missing_unspents() traceback_f = make_trace_script(do_trace, use_pdb) dump_header(tx) dump_inputs(tx, netcode, verbose_signature, address_prefix, traceback_f, disassembly_level) def signature_for_hash_type_f(hash_type, script): return tx.signature_hash(script, idx, hash_type) print("Output%s:" % ('s' if len(tx.txs_out) != 1 else '')) for idx, tx_out in enumerate(tx.txs_out): amount_mbtc = satoshi_to_mbtc(tx_out.coin_value) address = tx_out.bitcoin_address(netcode=netcode) or "(unknown)" print("%4d: %34s receives %12.5f mBTC" % (idx, address, amount_mbtc)) if disassembly_level > 0: for (pre_annotations, pc, opcode, instruction, post_annotations) in \ disassemble_scripts(b'', tx_out.script, tx.lock_time, signature_for_hash_type_f): for l in pre_annotations: print(" %s" % l) if 1: print(" %4x: %02x %s" % (pc, opcode, instruction)) for l in post_annotations: print(" %s" % l) dump_footer(tx, missing_unspents) def check_fees(tx): total_in, total_out = tx.total_in(), tx.total_out() actual_tx_fee = total_in - total_out recommended_tx_fee = tx_fee.recommended_fee_for_tx(tx) print("warning: transaction fees recommendations casually calculated and estimates may be incorrect", file=sys.stderr) if actual_tx_fee > recommended_tx_fee: print("warning: transaction fee of %s exceeds expected value of %s mBTC" % (satoshi_to_mbtc(actual_tx_fee), satoshi_to_mbtc(recommended_tx_fee)), file=sys.stderr) elif actual_tx_fee < 0: print("not enough source coins (%s mBTC) for destination (%s mBTC)." " Short %s mBTC" % (satoshi_to_mbtc(total_in), satoshi_to_mbtc(total_out), satoshi_to_mbtc(-actual_tx_fee)), file=sys.stderr) elif actual_tx_fee < recommended_tx_fee: print("warning: transaction fee lower than (casually calculated)" " expected value of %s mBTC, transaction might not propogate" % satoshi_to_mbtc(recommended_tx_fee), file=sys.stderr) return actual_tx_fee EARLIEST_DATE = datetime.datetime(year=2009, month=1, day=1) def parse_locktime(s): s = re.sub(r"[ ,:\-]+", r"-", s) for fmt1 in ["%Y-%m-%dT", "%Y-%m-%d", "%b-%d-%Y", "%b-%d-%y", "%B-%d-%Y", "%B-%d-%y"]: for fmt2 in ["T%H-%M-%S", "T%H-%M", "-%H-%M-%S", "-%H-%M", ""]: fmt = fmt1 + fmt2 try: when = datetime.datetime.strptime(s, fmt) if when < EARLIEST_DATE: raise ValueError("invalid date: must be after %s" % EARLIEST_DATE) return calendar.timegm(when.timetuple()) except ValueError: pass return int(s) parse_locktime.__name__ = 'locktime' def parse_fee(fee): if fee in ["standard"]: return fee return int(fee) def create_parser(): codes = network_codes() EPILOG = ('Files are binary by default unless they end with the suffix ".hex". ' + 'Known networks codes:\n ' + ', '.join(['%s (%s)' % (i, full_network_name_for_netcode(i)) for i in codes])) parser = argparse.ArgumentParser( description="Manipulate bitcoin (or alt coin) transactions.", epilog=EPILOG) parser.add_argument('-t', "--transaction-version", type=range_int(0, 255, "version"), help='Transaction version, either 1 (default) or 3 (not yet supported).') parser.add_argument('-l', "--lock-time", type=parse_locktime, help='Lock time; either a block' 'index, or a date/time (example: "2014-01-01T15:00:00"') parser.add_argument('-n', "--network", default=get_current_netcode(), choices=codes, help='Define network code (BTC=Bitcoin mainnet, XTN=Bitcoin testnet).') parser.add_argument('-a', "--augment", action='store_true', help='augment tx by adding any missing spendable metadata by fetching' ' inputs from cache and/or web services') parser.add_argument('-s', "--verbose-signature", action='store_true', help='Display technical signature details.') parser.add_argument("-i", "--fetch-spendables", metavar="address", action="append", help='Add all unspent spendables for the given bitcoin address. This information' ' is fetched from web services. With no outputs, incoming spendables will be printed.') parser.add_argument('-f', "--private-key-file", metavar="path-to-private-keys", action="append", default=[], help='file containing WIF or BIP0032 private keys. If file name ends with .gpg, ' '"gpg -d" will be invoked automatically. File is read one line at a time, and if ' 'the file contains only one WIF per line, it will also be scanned for a bitcoin ' 'address, and any addresses found will be assumed to be public keys for the given' ' private key.', type=argparse.FileType('r')) parser.add_argument('-g', "--gpg-argument", help='argument to pass to gpg (besides -d).', default='') parser.add_argument("--remove-tx-in", metavar="tx_in_index_to_delete", action="append", type=int, help='remove a tx_in') parser.add_argument("--remove-tx-out", metavar="tx_out_index_to_delete", action="append", type=int, help='remove a tx_out') parser.add_argument('-F', "--fee", help='fee, in satoshis, to pay on transaction, or ' '"standard" to auto-calculate. This is only useful if the "split pool" ' 'is used; otherwise, the fee is automatically set to the unclaimed funds.', default="standard", metavar="transaction-fee", type=parse_fee) parser.add_argument('-C', "--cache", help='force the resultant transaction into the transaction cache.' ' Mostly for testing.', action='store_true'), parser.add_argument("--db", type=Tx.from_hex, help='force the transaction expressed by the given hex ' 'into a RAM-based transaction cache. Mostly for testing.', action="append"), parser.add_argument('-u', "--show-unspents", action='store_true', help='show TxOut items for this transaction in Spendable form.') parser.add_argument('-b', "--bitcoind-url", help='URL to bitcoind instance to validate against (http://user:pass@host:port).') parser.add_argument('-o', "--output-file", metavar="path-to-output-file", type=argparse.FileType('wb'), help='file to write transaction to. This supresses most other output.') parser.add_argument('-d', "--disassemble", action='store_true', help='Disassemble scripts.') parser.add_argument("--pdb", action="store_true", help='Enter PDB debugger on each script instruction.') parser.add_argument("--trace", action='store_true', help='Trace scripts.') parser.add_argument('-p', "--pay-to-script", metavar="pay-to-script", action="append", help='a hex version of a script required for a pay-to-script' 'input (a bitcoin address that starts with 3)') parser.add_argument('-P', "--pay-to-script-file", metavar="pay-to-script-file", nargs=1, type=argparse.FileType('r'), help='a file containing hex scripts ' '(one per line) corresponding to pay-to-script inputs') parser.add_argument("argument", nargs="*", help='generic argument: can be a hex transaction id ' '(exactly 64 characters) to be fetched from cache or a web service;' ' a transaction as a hex string; a path name to a transaction to be loaded;' ' a spendable 4-tuple of the form tx_id/tx_out_idx/script_hex/satoshi_count ' 'to be added to TxIn list; an address/satoshi_count to be added to the TxOut ' 'list; an address to be added to the TxOut list and placed in the "split' ' pool".') return parser def replace_with_gpg_pipe(args, f): gpg_args = ["gpg", "-d"] if args.gpg_argument: gpg_args.extend(args.gpg_argument.split()) gpg_args.append(f.name) popen = subprocess.Popen(gpg_args, stdout=subprocess.PIPE) return popen.stdout def parse_private_key_file(args, key_list): wif_re = re.compile(r"[1-9a-km-zA-LMNP-Z]{51,111}") # address_re = re.compile(r"[1-9a-kmnp-zA-KMNP-Z]{27-31}") for f in args.private_key_file: if f.name.endswith(".gpg"): f = replace_with_gpg_pipe(args, f) for line in f.readlines(): # decode if isinstance(line, bytes): line = line.decode("utf8") # look for WIFs possible_keys = wif_re.findall(line) def make_key(x): try: return Key.from_text(x) except Exception: return None keys = [make_key(x) for x in possible_keys] for key in keys: if key: key_list.append((k.wif() for k in key.subkeys(""))) # if len(keys) == 1 and key.hierarchical_wallet() is None: # # we have exactly 1 WIF. Let's look for an address # potential_addresses = address_re.findall(line) TX_ID_RE = re.compile(r"^[0-9a-fA-F]{64}$") def parse_tx(arg, parser, tx_db, network): # hex transaction id tx = None if TX_ID_RE.match(arg): if tx_db is None: tx_db = create_tx_db(network) tx = tx_db.get(h2b_rev(arg)) if not tx: parser.error("can't find Tx with id %s" % arg) return tx, tx_db # hex transaction data try: return Tx.from_hex(arg), tx_db except Exception: pass if os.path.exists(arg): try: with open(arg, "rb") as f: if f.name.endswith("hex"): f = io.BytesIO(codecs.getreader("hex_codec")(f).read()) tx = Tx.parse(f) tx.parse_unspents(f) except Exception: pass return tx, tx_db def parse_scripts(args): scripts = [] warnings = [] for p2s in args.pay_to_script or []: try: scripts.append(h2b(p2s)) except Exception: warnings.append("warning: error parsing pay-to-script value %s" % p2s) hex_re = re.compile(r"[0-9a-fA-F]+") for f in args.pay_to_script_file or []: count = 0 for l in f: try: m = hex_re.search(l) if m: p2s = m.group(0) scripts.append(h2b(p2s)) count += 1 except Exception: warnings.append("warning: error parsing pay-to-script file %s" % f.name) if count == 0: warnings.append("warning: no scripts found in %s" % f.name) return scripts, warnings def build_p2sh_lookup(args): scripts, warnings = parse_scripts(args) for w in warnings: print(w) p2sh_lookup = {} for script in scripts: p2sh_lookup[hash160(script)] = script return p2sh_lookup def create_tx_db(network): tx_db = get_tx_db(network) tx_db.warning_tx_cache = message_about_tx_cache_env() tx_db.warning_tx_for_tx_hash = message_about_tx_for_tx_hash_env(network) return tx_db def parse_parts(arg, spendables, payables, network): parts = arg.split("/") if 4 <= len(parts) <= 7: # spendable try: spendables.append(Spendable.from_text(arg)) return True except Exception: pass if len(parts) == 2 and is_address_valid(parts[0], allowable_netcodes=[network]): try: payables.append(parts) return True except ValueError: pass def key_found(arg, payables, key_iters): try: key = Key.from_text(arg) # TODO: check network if key.wif() is None: payables.append((key.address(), 0)) return True key_iters.append(iter([key.wif()])) return True except Exception: pass return False def parse_context(args, parser): # we create the tx_db lazily tx_db = None if args.db: the_ram_tx_db = dict((tx.hash(), tx) for tx in args.db) if tx_db is None: tx_db = create_tx_db(args.network) tx_db.lookup_methods.append(the_ram_tx_db.get) # defaults txs = [] spendables = [] payables = [] key_iters = [] # there are a few warnings we might optionally print out, but only if # they are relevant. We don't want to print them out multiple times, so we # collect them here and print them at the end if they ever kick in. warning_spendables = None for arg in args.argument: if is_address_valid(arg, allowable_netcodes=[args.network], allowable_types=[ "address", "pay_to_script", "segwit"]): payables.append((arg, 0)) continue if key_found(arg, payables, key_iters): continue tx, tx_db = parse_tx(arg, parser, tx_db, args.network) if tx: txs.append(tx) continue if parse_parts(arg, spendables, payables, args.network): continue parser.error("can't parse %s" % arg) parse_private_key_file(args, key_iters) if args.fetch_spendables: warning_spendables = message_about_spendables_for_address_env(args.network) for address in args.fetch_spendables: spendables.extend(spendables_for_address(address, args.network)) return (txs, spendables, payables, key_iters, tx_db, warning_spendables) def merge_txs(txs, spendables, payables): txs_in = [] txs_out = [] unspents = [] # we use a clever trick here to keep each tx_in corresponding with its tx_out for tx in txs: smaller = min(len(tx.txs_in), len(tx.txs_out)) txs_in.extend(tx.txs_in[:smaller]) txs_out.extend(tx.txs_out[:smaller]) unspents.extend(tx.unspents[:smaller]) for tx in txs: smaller = min(len(tx.txs_in), len(tx.txs_out)) txs_in.extend(tx.txs_in[smaller:]) txs_out.extend(tx.txs_out[smaller:]) unspents.extend(tx.unspents[smaller:]) for spendable in spendables: txs_in.append(spendable.tx_in()) unspents.append(spendable) for address, coin_value in payables: script = standard_tx_out_script(address) txs_out.append(TxOut(coin_value, script)) return txs_in, txs_out, unspents def calculate_lock_time_and_version(args, txs): # if no lock_time is explicitly set, inherit from the first tx or use default lock_time = args.lock_time if lock_time is None: if txs: lock_time = txs[0].lock_time else: lock_time = DEFAULT_LOCK_TIME # if no version is explicitly set, inherit from the first tx or use default version = args.transaction_version if version is None: if txs: version = txs[0].version else: version = DEFAULT_VERSION return lock_time, version def remove_indices(items, indices): if indices: s = set(indices) items = [i for idx, i in enumerate(items) if idx not in s] return items def wif_iter(iters): while len(iters) > 0: for idx, iter in enumerate(iters): try: wif = next(iter) yield wif except StopIteration: iters = iters[:idx] + iters[idx+1:] break def generate_tx(txs, spendables, payables, args): txs_in, txs_out, unspents = merge_txs(txs, spendables, payables) lock_time, version = calculate_lock_time_and_version(args, txs) if len(unspents) == len(txs_in): unspents = remove_indices(unspents, args.remove_tx_in) txs_in = remove_indices(txs_in, args.remove_tx_in) txs_out = remove_indices(txs_out, args.remove_tx_out) tx = Tx(txs_in=txs_in, txs_out=txs_out, lock_time=lock_time, version=version, unspents=unspents) fee = args.fee try: if len(payables) > 0: distribute_from_split_pool(tx, fee) except ValueError as ex: print("warning: %s" % ex.args[0], file=sys.stderr) return tx def print_output(tx, include_unspents, output_file, show_unspents, network, verbose_signature, disassemble, trace, pdb): if len(tx.txs_in) == 0: print("warning: transaction has no inputs", file=sys.stderr) if len(tx.txs_out) == 0: print("warning: transaction has no outputs", file=sys.stderr) tx_as_hex = tx.as_hex(include_unspents=include_unspents) if output_file: f = output_file if f.name.endswith(".hex"): f.write(tx_as_hex.encode("utf8")) else: tx.stream(f, include_unspents=include_unspents) f.close() elif show_unspents: for spendable in tx.tx_outs_as_spendable(): print(spendable.as_text()) elif len(tx.txs_out) == 0: for spendable in tx.unspents: print(spendable.as_text()) else: if not tx.missing_unspents(): check_fees(tx) dump_tx(tx, network, verbose_signature, disassemble, trace, pdb) if include_unspents: print("including unspents in hex dump since transaction not fully signed") print(tx_as_hex) def do_signing(tx, key_iters, p2sh_lookup, netcode): unsigned_before = tx.bad_signature_count() unsigned_after = unsigned_before if unsigned_before > 0 and key_iters: print("signing...", file=sys.stderr) sign_tx(tx, wif_iter(key_iters), p2sh_lookup=p2sh_lookup, netcode=netcode) unsigned_after = tx.bad_signature_count() if unsigned_after > 0: print("warning: %d TxIn items still unsigned" % unsigned_after, file=sys.stderr) return unsigned_after == 0 def cache_result(tx, tx_db, cache, network): if cache: if tx_db is None: tx_db = create_tx_db(network) tx_db.put(tx) return tx_db def validate_tx(tx, tx_db, network): if not tx.txs_out: return if tx.missing_unspents(): print("\n** can't validate transaction as source transactions missing", file=sys.stderr) else: try: if tx_db is None: tx_db = create_tx_db(network) tx.validate_unspents(tx_db) print('all incoming transaction values validated') except BadSpendableError as ex: print("\n**** ERROR: FEES INCORRECTLY STATED: %s" % ex.args[0], file=sys.stderr) except Exception as ex: print("\n*** can't validate source transactions as untampered: %s" % ex.args[0], file=sys.stderr) def validate_against_bitcoind(tx, tx_db, network, bitcoind_url): if bitcoind_url: if tx_db is None: tx_db = create_tx_db(network) validate_bitcoind(tx, tx_db, bitcoind_url) return tx_db def tx(args, parser): (txs, spendables, payables, key_iters, tx_db, warning_spendables) = parse_context(args, parser) for tx in txs: if tx.missing_unspents() and (args.augment or tx_db): if tx_db is None: tx_db = create_tx_db(args.network) tx.unspents_from_db(tx_db, ignore_missing=True) # build p2sh_lookup p2sh_lookup = build_p2sh_lookup(args) tx = generate_tx(txs, spendables, payables, args) is_fully_signed = do_signing(tx, key_iters, p2sh_lookup, args.network) include_unspents = not is_fully_signed print_output(tx, include_unspents, args.output_file, args.show_unspents, args.network, args.verbose_signature, args.disassemble, args.trace, args.pdb) tx_db = cache_result(tx, tx_db, args.cache, args.network) tx_db = validate_against_bitcoind(tx, tx_db, args.network, args.bitcoind_url) if not args.show_unspents: tx_db = validate_tx(tx, tx_db, args.network) # print warnings if tx_db: for m in [tx_db.warning_tx_cache, tx_db.warning_tx_for_tx_hash]: if m: print("warning: %s" % m, file=sys.stderr) if warning_spendables: print("warning: %s" % warning_spendables, file=sys.stderr) def main(): parser = create_parser() args = parser.parse_args() tx(args, parser) if __name__ == '__main__': main()
37.086207
120
0.620999
[ "MIT" ]
mewald55/pycoin_ypub-zpub
pycoin/cmds/tx.py
27,963
Python
from __future__ import absolute_import __version__ = '0.3.3' from .core.composition import * from .core.transforms_interface import * from .core.serialization import * from .augmentations.transforms import * from .augmentations.bbox_utils import * from .imgaug.transforms import *
25.727273
40
0.80212
[ "MIT" ]
BelBES/albumentations
albumentations/__init__.py
283
Python
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "WebPersonal.settings") application = get_wsgi_application() #application = DjangoWhiteNoise(application)
30.714286
71
0.84186
[ "Apache-2.0" ]
CristianAAT/web-personal
WebPersonal/WebPersonal/wsgi.py
215
Python
import sys import win32gui import sys import re import os import delete_mark import keyboard import win32com.client import pythoncom from PyQt5.QtWidgets import QApplication from PyQt5.QtGui import QImage import map_insert import pic_locate import delete_mark base_dir = os.path.dirname(os.path.abspath(__file__)) app = QApplication(sys.argv) def JudgeWindowSize(hwnd): screen = QApplication.primaryScreen() pix = screen.grabWindow(hwnd).toImage().convertToFormat(QImage.Format.Format_RGBA8888) print((pix.width(),pix.height())) if pix.width()==1920 and pix.height()==1080: return 1 if pix.width()==1366 and pix.height()==768: return 1 if pix.width()==1280 and pix.height()==720: return 1 return 0 def OpenSearchBox(): st=os.system(r'python {0}\search_box.py'.format(base_dir)) def ImportConfig(): config_list=[] with open('{0}\config.ini'.format(base_dir), 'r', encoding='UTF-8') as f: temp=f.readlines() print(temp) for i in range(5): gp=re.search(r'(:|:)\s*?(\S.*)\s*?', temp[i]) if gp==None or len(gp.groups())<2:config_list.append('') else: config_list.append(gp.group(2)) return config_list if __name__=='__main__': pythoncom.CoInitialize() shell = win32com.client.Dispatch("WScript.Shell") shell.SendKeys('%') hwnd = win32gui.FindWindow('UnityWndClass', None) if JudgeWindowSize(hwnd)==0: print('分辨率尚未适配') else: win32gui.SetForegroundWindow(hwnd) config=ImportConfig() if config[0]!='': keyboard.add_hotkey(config[0],OpenSearchBox,suppress = False) if config[1]!='': keyboard.add_hotkey(config[1],delete_mark.DeleteCenterMark,(map_insert.kp2,map_insert.des2),suppress = False) if config[2]!='': keyboard.add_hotkey(config[2],delete_mark.DeleteMouseMark,(map_insert.kp2,map_insert.des2),suppress = False) if config[3]!='': keyboard.add_hotkey(config[3],delete_mark.GetMarkInfo,(hwnd,map_insert.kp2,map_insert.des2),suppress = False) if config[4]!='': keyboard.add_hotkey(config[4],pic_locate.DeleteAllMarks,(hwnd,),suppress = False) keyboard.wait()
37.733333
121
0.658127
[ "MIT" ]
ChengYang1998/GenshinMapAutoMarkTools
main.py
2,280
Python
from bottle import route, Route, request, default_app, view, HTTPError, response from redis import StrictRedis from redis.utils import pipeline import json import uwsgi import os import logging import requests from config import get_config from worker import get_cache_key, get_wait_key, get_queue_key from worker import init_redis application = None ERROR_RESP = {'archived': False, 'queued': False, 'error': {'msg': 'unknown'}} def init(): """ Init the application and add routes """ logging.basicConfig(format='%(asctime)s: [%(levelname)s]: %(message)s', level=logging.DEBUG) global theconfig theconfig = get_config() global rc rc = init_redis(theconfig) app = default_app() return app @route(['/', '/index.html', '/index.htm']) @view('index') def home(): return {'archives': theconfig['archives'], 'default_archive': theconfig.get('default_archive')} def get_params(): url = request.query.get('url') archive = request.query.get('archive') browser_type = request.query.get('browser', 'chrome') if not url: raise HTTPError(status=400, body='No url= specified') if archive not in theconfig['archives']: raise HTTPError(status=400, body='No archive {0}'.format(archive)) if not url.startswith(('http://', 'https://')): url = 'http://' + url return browser_type, archive, url @route('/archivepage') def archive_page(): browser_type, archive, url = get_params() response_key = get_cache_key(archive, browser_type, url) wait_key = get_wait_key(archive, browser_type, url) queue_key = get_queue_key(browser_type) result = None if not rc.exists(response_key): cmd = dict(request.query) cmd['url'] = url num = rc.incr('total_urls:' + browser_type) cmd['num'] = num cmd = json.dumps(cmd) with pipeline(rc) as pi: waiting_str = {'archived': False, 'queued': True, 'num': num} pi.set(response_key, json.dumps(waiting_str)) pi.rpush(queue_key, cmd) rc.blpop(wait_key, theconfig['wait_timeout_secs']) result = rc.get(response_key) if result: result = json.loads(result) if 'queued' in result: result['queue_pos'] = 0 front = rc.lindex(queue_key, 0) if front: front = json.loads(front) front_num = front.get('num', 0) # pos == 1 implies this url is next up # pos <= 0 implies this url was removed from queue and is being processed pos = result['num'] - front_num + 1 result['queue_pos'] = pos else: result['ttl'] = rc.ttl(response_key) else: result = ERROR_RESP return result @route('/download') def download(): browser_type, archive, url = get_params() response_key = get_cache_key(archive, browser_type, url) result = rc.get(response_key) if not result: raise HTTPError(status=404, body='Url Not Archived') result = json.loads(result) if not 'download_url' in result: raise HTTPError(status=404, body='Download Not Available') headers = {} session = result.get('download_session') if session: headers['Cookie'] = session r = requests.get(result['download_url'], headers=headers, stream=True) if r.status_code != 200: raise HTTPError(status=400, body='Invalid Download Result: {0} {1}'.format(r.status_code, r.reason)) pass_headers = ('Content-Disposition', 'Content-Length', 'Content-Type') for h in pass_headers: response.set_header(h, r.headers.get(h)) response.body = r.iter_content() return response application = init()
24.670886
108
0.611339
[ "MIT" ]
ikreymer/archivethiswebsite
web/app.py
3,898
Python
""" Some common functions for interfacing with the NodeMeister REST API. """ import requests import anyjson import re import logging MISSING_ITEM = '-' DIFF_MARKER = ">" try: logger.debug("importing nodemeisterlib") except NameError: FORMAT = "[%(levelname)s %(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s" logging.basicConfig(level=logging.ERROR, format=FORMAT) logger = logging.getLogger(__name__) def red(text): """ Shameless hack-up of the 'termcolor' python package by Konstantin Lepa - <https://pypi.python.org/pypi/termcolor> to reduce rependencies and only make red text. """ s = '\033[%dm%s\033[0m' % (31, text) return s def print_columns(lines, spacer=' ', onlydifferent=False): """ Take a list of lines, each being a list with 3 elements (the three columns to print) and print in 3 columns. :param lines: list of 3-element lists, each list is a line and each sub-list are the 3 columns in the line :type lines: list of lists :param spacer: spacer between columns, default 3 spaces :type lines: string :param onlydifferent: only output differing lines :type onlydifferent: boolean """ s = "" # get the column width clen = [0, 0, 0] for l in lines: if onlydifferent: if len(l) < 3: continue for c in xrange(0, 3): if len(str(l[c])) > clen[c]: clen[c] = len(str(l[c])) line_spec = "{{0:<{1}s}}{0}{{1:<{2}s}}{0}{{2:<{3}s}}\n".format(' ' * 3, clen[0], clen[1], clen[2]) # print the lines for l in lines: if len(l) > 3 and l[3] == True: s += red(line_spec.format(DIFF_MARKER + l[0], str(l[1]), str(l[2]))) else: if onlydifferent: continue s += line_spec.format(l[0], str(l[1]), str(l[2])) return s def pretty_diff_list(title, oA, oB): """ Generate a pretty diff of two dicts. :param title: the title/heading for the line :type title: string :param oA: first object :param oB: second object :returns: list of lines, each a list of 3 columns :rtype: list of lists """ lines = [] items = set.union(set(oA), set(oB)) for i in sorted(items): if i in oA and i in oB: lines.append(['', i, i]) elif i in oA: lines.append(['', i, MISSING_ITEM, True]) elif i in oB: lines.append(['', MISSING_ITEM, i, True]) return lines def pretty_diff_str(title, oA, oB): """ Generate a pretty diff of two dicts. :param title: the title/heading for the line :type title: string :param oA: first object :param oB: second object :returns: list of lines, each a list of 3 columns :rtype: list of lists """ if oA != oB: return [[title, oA, oB, True]] return [[title, oA, oB]] def pretty_diff_dict(title, oA, oB): """ Generate a pretty diff of two dicts. :param title: the title/heading for the line :type title: string :param oA: first object :param oB: second object :returns: list of lines, each a list of 3 columns :rtype: list of lists """ lines = [[title, '', '']] keys = set.union(set(oA.keys()), set(oB.keys())) for k in sorted(keys): if k in oA and k in oB: if oA[k] == oB[k]: lines.append([k, oA[k], oB[k]]) else: lines.append([k, oA[k], oB[k], True]) elif k in oA: lines.append([k, oA[k], MISSING_ITEM, True]) else: lines.append([k, MISSING_ITEM, oB[k], True]) return lines def pretty_diff_obj(title, oA, oB): """ Generate a pretty diff of two objects (actually just dict, list or string) of lines suitable for use in pretty_diff_dicts() This method is a pass-through to pretty_diff_(dict|string|list) depending on the input type. :param title: the title/heading for the line :type title: string :param oA: first object :param oB: second object :returns: list of lines, each a list of 3 columns :rtype: list of lists """ if type(oA) == type({}) or type(oB) == type({}): return pretty_diff_dict(title, oA, oB) elif type(oA) == type("") or type(oB) == type("") or type(oA) == type(u"") or type(oB) == type(u""): return pretty_diff_str(title, oA, oB) else: return pretty_diff_list(title, oA, oB) return [] def pretty_diff(title, titleA, dictA, titleB, dictB, onlydifferent=False): """ Generate a "pretty" printable diff of two Nodes or Groups containing arbitrarily deep dict, list or string items. Intended to be used for the "text" dicts in migrate_group() and migrate_node(). :param title: overall title of the diff :type title: string :param titleA: title of the first dict :type titleA: string :param dictA: the first dict :type dictA: dict :param titleB: title of the second dict :type titleB: string :param dictB: the second dict :type dictB: dict :param onlydifferent: only output differing lines :type onlydifferent: boolean :returns: multi-line string, columnar diff of dicts :rtype: string """ s = "Diff of %s\n" % title lines = [] lines.append(['', titleA, titleB]) lines.append(['', '-' * len(titleA), '-' * len(titleB)]) lines.append(['name', dictA.get('name', '<none>'), dictB.get('name', '<none>')]) lines.append(['id', dictA.get('id', '<none>'), dictB.get('id', '<none>')]) lines.append(['description', dictA.get('description', '<none>'), dictB.get('description', '<none>')]) dictA.pop('name', None) dictA.pop('id', None) dictA.pop('description', None) dictB.pop('name', None) dictB.pop('id', None) dictB.pop('description', None) lines.append(['', '', '']) k = set.union(set(dictA.keys()), set(dictB.keys())) for p in sorted(k): lines.append([p.capitalize() + ':', '', '']) lines.extend(pretty_diff_obj('', dictA.get(p), dictB.get(p))) #lines.append(['', '', '']) s += print_columns(lines, onlydifferent=onlydifferent) return s def get_nm_node_yaml(nm_host, node_name, ssl_verify=False, verbose=False): """ Get the raw ENC YAML for a given node :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_name: name of the node to get YAML for :type node_name: string :param ssl_verify: whether or not to verify SSL certificate, default False :type ssl_verify: boolean :rtype: string :returns: raw YAML string, or None """ nm_url = "http://%s/enc/puppet/%s" % (nm_host, node_name) r = requests.get(nm_url, headers={'Accept': 'text/yaml'}, verify=ssl_verify) if r.status_code == 200: return r.content else: logger.error("got status code {s} for {u}".format(s=r.status_code, u=nm_url)) return None def get_dashboard_node_yaml(url, ssl_verify=False, verbose=False): """ Given the full URL to a Puppet Dashboard node YAML file, return the content of the YAML file as a string. :param url: full URL to Dashboard node yaml :type url: string :param ssl_verify: whether or not to verify SSL certificate, default False :type ssl_verify: boolean :rtype: string :returns: raw YAML string, or None """ r = requests.get(url, headers={'Accept': 'text/yaml'}, verify=ssl_verify) if r.status_code == 200: return r.content else: logger.error("got status code {s} for {u}".format(s=r.status_code, u=url)) return None def get_json(url): """ uses requests to GET and return deserialized json uses anyjson if the Response object doesn't have .json() :param url: the URL to get :type url: string :rtype: dict/mixed or None :returns: unserialized JSON, or None """ r = requests.get(url) if 'json' in dir(r): return r.json() try: j = anyjson.deserialize(r.content) return j except: logger.error("could not deserialize JSON for {u} (got status code {s})".format(s=r.status_code, u=url)) return None def get_group_names(nm_host): """ Return a dict of groups in the NM instance, id => name :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM groups, dict of the form {id<int>: name<string>} """ j = get_json("http://%s/enc/groups/" % nm_host) names = {} for n in j: names[n['id']] = n['name'] return names def get_nm_group_classes(nm_host): """ Return a dict of all group classes in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM group classes, dict of the form: {id<int>: {'classname': <string>, 'classparams': <string or None>, 'group': <int>, 'id': <int>} """ r = {} j = get_json("http://%s/enc/classes/groups/" % nm_host) for o in j: r[o['id']] = o return r def get_nm_group_params(nm_host): """ Return a dict of all group params in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM group params, dict of the form: {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'group': <int>, 'id': <int>} """ r = {} j = get_json("http://%s/enc/parameters/groups/" % nm_host) for o in j: if o['paramvalue'] is not None: o['paramvalue'] = clean_value(o['paramvalue']) r[o['id']] = o return r def get_nm_group(nm_host, gname=None, gid=None, groupnames=None): """ Return a dict of information about a group in NM, by either name or ID. If gname is specified, it will be resolved to the id. groupnames, if specified, is the output dict from get_group_names(); if it is not specified, get_group_names() will be called internally. :param nm_host: NodeMeister hostname/IP :type nm_host: string :param gname: name of group to get :type gname: string :param gid: ID of group to get, overrides gname :type gid: int :param groupnames: output of get_group_names(), to prevent calling it again if we already have it :type groupnames: dict :rtype: dict :returns: unserialized JSON dict representing the specified group, of the form: {'name': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>], 'groups': [<group IDs>], 'id': <int>, 'description': <string>} """ if gid is None and gname is None: raise ValueError("get_nm_group called without gname or gid") if gid is None: if groupnames is None: groupnames = get_group_names(nm_host) for n in groupnames: if groupnames[n] == gname: gid = n if gid is None: return {} j = get_json("http://%s/enc/groups/%d/" % (nm_host, gid)) return j def interpolate_group(group, classes, params, group_names): """ In the dict returned by get_nm_group, replace class and parameter IDs, and other group IDs, with their appropriate string or dict representations. :param group: the Group dict returned by get_nm_group() :type group: dict :param classes: the dict of classes returned by get_nm_group_classes() :type classes: dict :param params: the dict of parameters returned by get_nm_group_params() :type params: dict :param group_names: the dict of group IDs to names returned by get_group_names() :type group_names: dict :returns: group dict, with classes and params interpolated :rtype: dict """ g_params = group.get('parameters', {}) params_text = {} for p in g_params: foo = params[p] params_text[foo['paramkey']] = foo['paramvalue'] group['parameters'] = params_text g_classes = group.get('classes', {}) classes_text = {} for c in g_classes: foo = classes[c] classes_text[foo['classname']] = foo['classparams'] group['classes'] = classes_text g_parents = group.get('parents', {}) parents_text = [] for p in g_parents: parents_text.append(group_names[p]) group['parents'] = parents_text g_groups = group.get('groups', {}) groups_text = [] for g in g_groups: groups_text.append(group_names[g]) group['groups'] = groups_text return group def add_group(nm_host, name, description, parents=None, groups=None, dry_run=False): """ add a group to NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param name: name of the new group :type name: string :param description: description of the new group :type description: string :param parents: parents of this group :type parents: list of int IDs :param groups: child groups of this group :type groups: list of int IDs :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: int ID of the new group on success or False on failure :rtype: int or False """ payload = {'name': name, 'description': description} if parents is not None: payload['parents'] = parents if groups is not None: payload['groups'] = groups url = "http://%s/enc/groups/" % nm_host status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return get_nm_group_id(nm_host, name, dry_run=dry_run) logger.error("ERROR: add_group got status code %d" % status_code) return False def get_nm_group_id(nm_host, name, groups=None, dry_run=False): """ Get the group ID of a group specified by name :param nm_host: NodeMeister hostname or IP :type nm_host: string :param name: name of the new group :type name: string :param groups: dict of groups as returned by get_group_names() :type groups: dict :returns: int ID of the group or False on failure :rtype: int or False """ if dry_run: return 0 if groups is None: groups = get_group_names(nm_host) for n in groups: if groups[n] == name: return n return False def add_param_to_group(nm_host, gid, pname, pval, dry_run=False): """ add a parameter to a group in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param gid: numeric ID of the group to add param to :type gid: int :param pname: parameter name :type pname: string :param pval: parameter value :type pval: string :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean """ if isinstance(pval, basestring) and (pval.strip() == "" or pval == "" or pval == "''"): pval = None payload = {'group': gid, 'paramkey': pname, 'paramvalue': pval} url = "http://%s/enc/parameters/groups/" % nm_host status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return True logger.error("ERROR: add_param_to_group got status code %d" % status_code) return False def add_class_to_group(nm_host, gid, classname, classparams=None, dry_run=False): """ add a class to a group in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param gid: numeric ID of the group to add param to :type gid: int :param classname: class name :type classname: string :param classparams: class parameters, default None :type classparams: string or None :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean """ payload = {'group': gid, 'classname': classname, 'classparams': classparams} url = "http://%s/enc/classes/groups/" % nm_host status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return True logger.error("ERROR: add_class_to_group got status code %d" % status_code) return False def get_node_names(nm_host): """ Return a dict of nodes in the NM instance, id => hostname :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM nodes, dict of the form {id<int>: hostname<string>} """ j = get_json("http://%s/enc/nodes/" % nm_host) names = {} for n in j: names[n['id']] = n['hostname'] return names def get_nm_node_id(nm_host, hostname, nodenames=None, dry_run=False): """ Get the node ID of a node specified by hostname :param nm_host: NodeMeister hostname or IP :type nm_host: string :param hostname: hostname of the node :type hostname: string :param nodenames: dict of nodes as returned by get_node_names() :type nodenames: dict :returns: int ID of the group or False on failure :rtype: int or False """ if dry_run: return 0 if nodenames is None: nodenames = get_node_names(nm_host) for n in nodenames: if nodenames[n] == hostname: return n logger.error("could not find node ID for {h}".format(h=hostname)) return False def get_nm_node(nm_host, hostname=None, node_id=None, nodenames=None): """ Return a dict of information about a node in NM, by either name or ID. If nodename is specified, it will be resolved to the id. nodenames, if specified, is the output dict from get_node_names(); if it is not specified, get_node_names() will be called internally. :param nm_host: NodeMeister hostname/IP :type nm_host: string :param hostname: name of node to get :type hostname: string :param node_id: ID of node to get, overrides hostname :type node_id: int :param nodenames: output of get_node_names(), to prevent calling it again if we already have it :type nodenames: dict :rtype: dict :returns: unserialized JSON dict representing the specified group, of the form: {'hostname': <string>, 'parameters': [<param IDs>], 'classes': [<class IDs>], 'parents': [<group IDs>], 'groups': [<group IDs>], 'id': <int>, 'description': <string>} """ if node_id is None and hostname is None: raise ValueError("get_nm_node called without hostname or node_id") if node_id is None: if nodenames is None: nodenames = get_node_names(nm_host) for n in nodenames: if nodenames[n] == hostname: node_id = n if node_id is None: logger.error("could not find hode with hostname {h}".format(h=hostname)) return {} j = get_json("http://%s/enc/nodes/%d/" % (nm_host, node_id)) return j def get_nm_node_classes(nm_host): """ Return a dict of all node classes in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM node classes, dict of the form: {id<int>: {'classname': <string>, 'classparams': <string or None>, 'node': <int>, 'id': <int>} """ r = {} j = get_json("http://%s/enc/classes/nodes/" % nm_host) for o in j: r[o['id']] = o return r def get_nm_node_params(nm_host): """ Return a dict of all node params in NM, with their id as the dict key. :param nm_host: NodeMeister hostname/IP :type nm_host: string :rtype: dict :returns: NM node params, dict of the form: {id<int>: {'paramkey': <string>, 'paramvalue': <string or None>, 'node': <int>, 'id': <int>} """ r = {} j = get_json("http://%s/enc/parameters/nodes/" % nm_host) for o in j: r[o['id']] = o return r def add_node(nm_host, hostname, description, groups=None, dry_run=False): """ add a node to NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param hostname: hostname of the new node :type hostname: string :param description: description of the new node :type description: string :param groups: groups that this node is in :type groups: list of int IDs :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: int ID of the new node on success or False on failure :rtype: int or False """ payload = {'hostname': hostname, 'description': description} if groups is not None: payload['groups'] = groups url = "http://%s/enc/nodes/" % nm_host logger.debug("adding node {h}".format(h=hostname)) status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return get_nm_node_id(nm_host, hostname, dry_run=dry_run) logger.error("ERROR: add_node got status code %d" % status_code) return False def add_param_to_node(nm_host, node_id, pname, pval, dry_run=False): """ add a parameter to a node in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_id: numeric ID of the node to add param to :type node_id: int :param pname: parameter name :type pname: string :param pval: parameter value :type pval: string :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean """ if pval.strip() == "" or pval == "" or pval == "''": pval = None payload = {'node': node_id, 'paramkey': pname, 'paramvalue': pval} url = "http://%s/enc/parameters/nodes/" % nm_host logger.debug("adding param '{pname}' to node {n} with val: {pval}".format(n=node_id, pname=pname, pval=pval)) status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return True logger.error("ERROR: add_param_to_node got status code %d" % status_code) return False def add_class_to_node(nm_host, node_id, classname, classparams=None, dry_run=False): """ add a class to a node in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_id: numeric ID of the node to add param to :type node_id: int :param classname: class name :type classname: string :param classparams: class parameters, default None :type classparams: string or None :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean """ payload = {'node': node_id, 'classname': classname, 'classparams': classparams} url = "http://%s/enc/classes/nodes/" % nm_host logger.debug("adding class '{cn}' to node {n} with params: {cp}".format(n=node_id, cn=classname, cp=classparams)) status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return True logger.error("ERROR: add_class_to_node got status code %d" % status_code) return False def get_name_for_class_exclusion(nm_host, class_exclusion_id, verbose): """ Get the excluded class name for a given ClassExclusion ID. :param nm_host: NodeMeister hostname or IP :type nm_host: string :param class_exclusion_id: numeric ID of the class exclusion :type class_exclusion_id: int :returns: string name of class, or False on faliure :rtype: string or False """ r = {} j = get_json("http://%s/enc/exclusions/classes/" % nm_host) if j is None: return False for o in j: if o['id'] == class_exclusion_id: return o['exclusion'] return False def add_node_class_exclusion(nm_host, node_id, classname, dry_run=False, verbose=False): """ add a class exclusion to a node in NodeMeister :param nm_host: NodeMeister hostname or IP :type nm_host: string :param node_id: numeric ID of the node to add param to :type node_id: int :param classname: class name to exclude :type classname: string :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: True on success or False on failure :rtype: boolean """ payload = {'node': node_id, 'exclusion': classname} url = "http://%s/enc/exclusions/classes/" % nm_host logger.debug("adding class exclusion for '{cn}' to node {n}".format(n=node_id, cn=classname)) status_code = do_post(url, payload, dry_run=dry_run) if status_code == 201: return True logger.error("ERROR: add_node_class_exclusion got status code %d" % status_code) return False def clean_value(v, debug=False): """ Strip bad characters off of values """ if debug: print("clean_value '%s'" % v) if type(v) == type("") or type(v) == type(u""): v = v.strip('"\\') return v def do_post(url, payload, dry_run=False): """ Do a POST request with Requests, return the status code. :param url: URL to POST to :type nm_host: string :param payload: the payload data, to be JSON encoded :type name: dict :param dry_run: if True, only print what would be done, do not make any changes :type dry_run: boolean :returns: HTTP status code from the request :rtype: int """ headers = {'content-type': 'application/json'} if dry_run: logger.warning("DRY RUN: do_post to url %s - payload:\n\t%s\n" % (url, payload)) return 201 r = requests.post(url, data=anyjson.serialize(payload), headers=headers) return r.status_code def clone_nodemeister_node(nm_host, dst_name, src_name, munge_res, group_replace=None, noop=False, verbose=False): """ Clone a node in nodemeister, munging all parameters and class params through munge_re, a list of lists, each having 2 elements, a regex and a string to replace matches with. group_replace is a hash of old_group_id => new_group_id to replace when creating the new node """ nodes = get_node_names(nm_host) dst_node_id = get_nm_node_id(nm_host, dst_name, nodenames=nodes) if dst_node_id is not False: logger.error("ERROR: node %s already exists in NodeMeister with id %d." % (dst_name, dst_node_id)) return False src_node = get_nm_node(nm_host, hostname=src_name, nodenames=nodes) if len(src_node) == 0: logger.error("ERROR: could not find source node %s" % src_name) return False if verbose: logger.debug("Got source node id: {n}\n{src}".format(n=src_node['id'], src=src_node)) classes = get_nm_node_classes(nm_host) params = get_nm_node_params(nm_host) # add to the right groups groups = [] for g in src_node['groups']: if group_replace is not None: if g in group_replace: if verbose: logger.debug(" changing group %d to %d (group_replace)" % (g, group_replace[g])) g = group_replace[g] groups.append(g) # TODO - these are going to be difficult because we need to resolve IDs from source to names, # and then map to the correct IDs for our new node # add excluded groups # add excluded params node_id = add_node(nm_host, dst_name, "imported by %s" % __file__, groups=groups, dry_run=noop) if node_id is False: logger.error("ERROR adding node in Nodemeister.") return False else: logger.info("Node added to NodeMeister with id %d" % node_id) ok = True # add excluded classes for c in src_node['excluded_classes']: c_name = get_name_for_class_exclusion(nm_host, c, verbose=verbose) if verbose: logger.debug("excluded class %s (%d)" % (c_name, c)) res = add_node_class_exclusion(nm_host, node_id, c_name, dry_run=noop, verbose=verbose) if not res: logger.error("ERROR adding class exclusion of '%s' to node %d" % (c_name, node_id)) ok = False if verbose: logger.info("added class_exclusion of '%s' to group %d" % (c_name, node_id)) # add the params for p in src_node['parameters']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_node['parameters'][p]) if foo != src_node['parameters'][p] and verbose: logger.debug("Munged value of '%s' from '%s' to '%s'" % (p, src_node['parameters'][p], foo)) src_node['parameters'][p] = foo res = add_param_to_node(nm_host, node_id, p, src_node['parameters'][p], dry_run=noop) if not res: logger.error("ERROR adding param %s with value '%s' to node %d" % (p, src_node['parameters'][p], node_id)) ok = False if verbose: logger.info("\tadded param %s with value '%s' to group %d" % (p, src_node['parameters'][p], node_id)) if len(src_node['classes']) > 0: logger.critical("ERROR: script does not yet migrate classes for nodes.") ok = False if ok is False: return False return node_id def clone_nodemeister_group(nm_host, dst_gname, src_gname, munge_re=None, noop=False, verbose=False): """ Clone a group in nodemeister, munging all parameters and class params through munge_re, a list of lists, each having 2 elements, a regex and a string to replace matches with. """ group_names = get_group_names(nm_host) dst_gid = get_nm_group_id(nm_host, dst_gname, groups=group_names) if dst_gid is not False: logger.error("ERROR: group %s already exists in NodeMeister with id %d." % (dst_gname, dst_gid)) return False src_group = get_nm_group(nm_host, gname=src_gname, groupnames=group_names) if len(src_group) == 0: logger.error("ERROR: could not find source group %s" % src_gname) return False if verbose: logger.debug("Got source group id: {n}\n{src}".format(n=src_group['id'], src=src_group)) classes = get_nm_group_classes(nm_host) params = get_nm_group_params(nm_host) interp_src_group = interpolate_group(src_group, classes, params, group_names) #if verbose: # print("\tInterpolated: %s" % interp_src_group) groups = [] for foo in src_group['groups']: bar = get_nm_group_id(nm_host, foo, groups=group_names) if bar: groups.append(bar) # ok, try adding the group gid = add_group(nm_host, dst_gname, "imported by %s" % __file__, groups=groups, dry_run=noop) if gid is False: logger.error("ERROR adding group in Nodemeister.") return False else: logger.info("Group added to NodeMeister with id %d" % gid) ok = True # add the params for p in src_group['parameters']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_group['parameters'][p]) if foo != src_group['parameters'][p] and verbose: logger.debug("Munged value of '%s' from '%s' to '%s'" % (p, src_group['parameters'][p], foo)) src_group['parameters'][p] = foo res = add_param_to_group(nm_host, gid, p, src_group['parameters'][p], dry_run=noop) if not res: logger.error("ERROR adding param %s with value '%s' to group %d" % (p, src_group['parameters'][p], gid)) ok = False if verbose: logger.info("added param %s with value '%s' to group %d" % (p, src_group['parameters'][p], gid)) for c in src_group['classes']: for (ptn, repl) in munge_re: foo = re.sub(ptn, repl, src_group['classes'][c]) if foo != src_group['classes'][c] and verbose: logger.debug("Munged value of '%s' from '%s' to '%s'" % (c, src_group['classes'][c], foo)) src_group['classes'][c] = foo res = add_class_to_group(nm_host, gid, c, src_group['classes'][c], dry_run=noop) if not res: logger.error("ERROR adding class %s with value '%s' to group %d" % (c, src_group['classes'][c], gid)) ok = False if verbose: logger.info("added class %s with value '%s' to group %d" % (c, src_group['classes'][c], gid)) if ok is False: logger.critical("cloning group failed.") return False return gid
35.338411
168
0.634253
[ "Apache-2.0" ]
coxmediagroup/nodemeister
contrib/cli_scripts/nodemeisterlib.py
32,476
Python
from __future__ import absolute_import from datetime import datetime from django.utils import timezone from sentry.api.serializers import Serializer, register from sentry.models import Event, EventError @register(Event) class EventSerializer(Serializer): _reserved_keys = frozenset(['sentry.interfaces.User', 'sdk', 'device']) def _get_entries(self, event, user, is_public=False): # XXX(dcramer): These are called entries for future-proofing interface_list = [] for key, interface in event.interfaces.iteritems(): # we treat user as a special contextual item if key in self._reserved_keys: continue data = interface.get_api_context(is_public=is_public) # data might not be returned for e.g. a public HTTP repr if not data: continue entry = { 'data': data, 'type': interface.get_alias(), } interface_list.append((interface, entry)) interface_list.sort(key=lambda x: x[0].get_display_score(), reverse=True) return [i[1] for i in interface_list] def get_attrs(self, item_list, user, is_public=False): Event.objects.bind_nodes(item_list, 'data') results = {} for item in item_list: user_interface = item.interfaces.get('sentry.interfaces.User') if user_interface: user_data = user_interface.to_json() else: user_data = None device_interface = item.interfaces.get('device') if device_interface: device_data = device_interface.to_json() else: device_data = None sdk_interface = item.interfaces.get('sdk') if sdk_interface: sdk_data = sdk_interface.to_json() else: sdk_data = None results[item] = { 'entries': self._get_entries(item, user, is_public=is_public), 'user': user_data, 'sdk': sdk_data, 'device': device_data, } return results def serialize(self, obj, attrs, user): errors = [] error_set = set() for error in obj.data.get('errors', []): message = EventError.get_message(error) if message in error_set: continue error_set.add(message) error_result = { 'type': error['type'], 'message': message, 'data': { k: v for k, v in error.iteritems() if k != 'type' }, } errors.append(error_result) tags = sorted([ { 'key': k.split('sentry:', 1)[-1], 'value': v } for k, v in obj.get_tags() ], key=lambda x: x['key']) received = obj.data.get('received') if received: # Sentry at one point attempted to record invalid types here. # Remove after June 2 2016 try: received = datetime.utcfromtimestamp(received).replace( tzinfo=timezone.utc, ) except TypeError: received = None event_type = obj.data.get('type', 'default') metadata = obj.data.get('metadata') or { 'title': obj.message_short, } # TODO(dcramer): move release serialization here d = { 'id': str(obj.id), 'groupID': obj.group.id, 'eventID': str(obj.event_id), 'size': obj.size, 'entries': attrs['entries'], # See GH-3248 'message': obj.get_legacy_message(), 'user': attrs['user'], 'sdk': attrs['sdk'], 'device': attrs['device'], 'context': obj.data.get('extra', {}), 'packages': obj.data.get('modules', {}), 'type': event_type, 'metadata': metadata, 'tags': tags, 'platform': obj.platform, 'dateCreated': obj.datetime, 'dateReceived': received, 'errors': errors, } return d class SharedEventSerializer(EventSerializer): def get_attrs(self, item_list, user): return super(SharedEventSerializer, self).get_attrs( item_list, user, is_public=True ) def serialize(self, obj, attrs, user): result = super(SharedEventSerializer, self).serialize(obj, attrs, user) del result['context'] del result['user'] del result['tags'] return result
32.868056
81
0.530319
[ "BSD-3-Clause" ]
E-LLP/sentry
src/sentry/api/serializers/models/event.py
4,733
Python
import os import sys from envyaml import EnvYAML # Adding the repository root to the sys path so exports work properly sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", ".."))) from examples.common.processes import GUIProcess, ImageCapture, YoloImageProcessor # noqa: E402 from rembrain_robot_framework import RobotDispatcher # noqa: E402 def run_dispatcher(): process_map = { "gui": GUIProcess, "image_capture": ImageCapture, "processor": YoloImageProcessor, } config = EnvYAML(os.path.join(os.path.dirname(__file__), "config", "processes_config.yaml")) processes = {p: {"process_class": process_map[p]} for p in config["processes"]} robot_dispatcher = RobotDispatcher(config, processes, in_cluster=False) robot_dispatcher.start_processes() robot_dispatcher.run(robot_dispatcher.shared_objects["exit_flag"]) robot_dispatcher.stop_logging() if __name__ == "__main__": run_dispatcher()
31.387097
96
0.727646
[ "MIT" ]
francisso/rembrain_robotframework
examples/local/main.py
973
Python
# Purpose: API utilities # # Notes: API credentials must be enabled on Veracode account and placed in ~/.veracode/credentials like # # [default] # veracode_api_key_id = <YOUR_API_KEY_ID> # veracode_api_key_secret = <YOUR_API_KEY_SECRET> # # and file permission set appropriately (chmod 600) import requests import logging from requests.adapters import HTTPAdapter from typing import List from veracode_api_signing.exceptions import VeracodeAPISigningException from veracode_api_signing.plugin_requests import RequestsAuthPluginVeracodeHMAC from .constants import Constants from .exceptions import VeracodeAPIError from .applications import Applications, Sandboxes, CustomFields from .findings import Findings, SummaryReport from .policy import Policies from .sca import ComponentActivity, Workspaces from .collections import Collections from .identity import Users, Teams, BusinessUnits, APICredentials, Roles from .healthcheck import Healthcheck from .dynamic import Analyses, Scans, Occurrences, Configuration, CodeGroups, ScanCapacitySummary, ScanOccurrences, ScannerVariables, DynUtils from .xmlapi import XMLAPI class VeracodeAPI: def __init__(self, proxies=None): self.baseurl = 'https://analysiscenter.veracode.com/api' requests.Session().mount(self.baseurl, HTTPAdapter(max_retries=3)) self.proxies = proxies self.retry_seconds = 120 self.connect_error_msg = "Connection Error" #xml apis def get_app_list(self): return XMLAPI().get_app_list() def get_app_info(self, app_id): return XMLAPI().get_app_info(app_id) def get_sandbox_list(self, app_id): return XMLAPI().get_sandbox_list(app_id) def get_build_list(self, app_id, sandbox_id=None): return XMLAPI().get_build_list(app_id, sandbox_id) def get_build_info(self, app_id, build_id=None, sandbox_id=None): return XMLAPI().get_build_info(app_id,build_id,sandbox_id) def get_detailed_report(self, build_id): return XMLAPI().get_detailed_report(build_id) def set_mitigation_info(self,build_id,flaw_id_list,action,comment): return XMLAPI().set_mitigation_info(build_id,flaw_id_list,action,comment) def generate_archer(self,payload): return XMLAPI().generate_archer(payload) def download_archer(self, token=None): return XMLAPI().download_archer(token) # rest apis ## Healthcheck APIs def healthcheck(self): return Healthcheck().healthcheck() def status(self): return Healthcheck().status() ## Application and Sandbox APIs def get_apps(self): return Applications().get_all() def get_app (self,guid=None,legacy_id=None): return Applications().get(guid,legacy_id) def get_app_by_name (self,appname): return Applications().get_by_name(appname) def create_app(self,app_name,business_criticality, business_unit=None, teams=[]): return Applications().create(app_name,business_criticality,business_unit,teams) def delete_app (self,guid): return Applications().delete(guid) def get_custom_fields (self): return CustomFields().get_all() def get_app_sandboxes (self,guid): return Sandboxes().get_all(guid) def create_sandbox (self, app, name, auto_recreate=False, custom_fields=[]): return Sandboxes().create(app,name,auto_recreate,custom_fields) def update_sandbox (self, app, sandbox, name, auto_recreate=False, custom_fields=[]): return Sandboxes().update(app,sandbox,name,auto_recreate,custom_fields) def delete_sandbox (self, app, sandbox): return Sandboxes().delete(app,sandbox) # Policy APIs def get_policies (self): return Policies().get_all() def get_policy (self,guid): return Policies().get(guid) def create_policy(self, name, description, vendor_policy=False, finding_rules=[], scan_frequency_rules=[], grace_periods={}): return Policies().create(name, description, vendor_policy, finding_rules, scan_frequency_rules, grace_periods) def delete_policy (self,guid): return Policies().delete(guid) def update_policy(self, guid, name, description, vendor_policy=False, finding_rules=[], scan_frequency_rules=[], grace_periods={}): return Policies().update(guid, name, description, vendor_policy, finding_rules, scan_frequency_rules, grace_periods) # Findings and Reporting APIs def get_findings(self,app,scantype='STATIC',annot='TRUE',request_params=None,sandbox=None): return Findings().get_findings(app,scantype,annot,request_params,sandbox) def get_static_flaw_info(self,app,issueid,sandbox=None): return Findings().get_static_flaw_info(app,issueid,sandbox) def get_dynamic_flaw_info(self,app,issueid): return Findings().get_dynamic_flaw_info(app,issueid) def get_summary_report(self,app,sandbox=None): return SummaryReport().get_summary_report(app,sandbox) def add_annotation(self,app,issue_list,comment,action,sandbox=None): return Findings().add_annotation(app,issue_list,comment,action,sandbox) def match_findings(self,origin_finding,potential_matches,approved_findings_only=True): return Findings().match(origin_finding,potential_matches,approved_findings_only) ## Collections APIs def get_collections(self): return Collections().get_all() def get_collections_by_name(self,collection_name): return Collections().get_by_name(collection_name) def get_collections_by_business_unit(self,business_unit_name): return Collections().get_by_business_unit(business_unit_name) def get_collections_statistics(self): return Collections().get_statistics() def get_collection(self,guid): return Collections().get(guid) def get_collection_assets(self,guid): return Collections().get_assets(guid) def create_collection(self,name,description="",tags='',business_unit_guid=None,custom_fields=[],assets=[]): return Collections().create(name,description,tags,business_unit_guid,custom_fields,assets) def update_collection(self,guid,name,description="",tags="",business_unit_guid=None,custom_fields=[],assets=[]): return Collections().update(name,description,tags,business_unit_guid,custom_fields,assets) def delete_collection(self,guid): return Collections().delete(guid) ## Identity APIs def get_users(self): return Users().get_all() def get_user_self (self): return Users().get_self() def get_user(self,user_guid): return Users().get(user_guid) def get_user_by_name(self,username): return Users().get_by_name(username) def get_user_by_search(self, search_term=None, api_id=None, role_id=None, login_status=None, saml_user=None, team_id=None, detailed=False, user_type=None, request_params=None): return Users().get_user_search(search_term,api_id,role_id,login_status,saml_user,team_id,detailed,user_type,request_params) def create_user (self,email,firstname,lastname,username=None,type="HUMAN",roles=[],teams=[],mfa=False): return Users().create(email,firstname,lastname,username,type,roles,teams,mfa=mfa) def update_user_roles (self,user_guid,roles): return Users().update_roles(user_guid,roles) def update_user (self,user_guid,changes): return Users().update(user_guid,changes) def update_user_email_address (self,user_guid,email_address,ignore_verification=False): return Users().update_email_address(user_guid,email_address,ignore_verification) def send_password_reset (self,user_legacy_id): return Users().reset_password(user_legacy_id) def disable_user (self,user_guid): return Users().disable(user_guid) def delete_user (self,user_guid): return Users().delete(user_guid) def get_teams (self, all_for_org=False): return Teams().get_all() def create_team (self, team_name, business_unit=None, members=[]): return Teams().create(team_name,business_unit,members) def update_team (self, team_guid, team_name="", business_unit=None, members=[]): return Teams().update(team_guid,team_name,business_unit,members) def delete_team (self, team_guid): return Teams().delete(team_guid) def get_business_units (self): return BusinessUnits().get_all() def get_business_unit (self, guid): return BusinessUnits().get(guid) def create_business_unit (self, name, teams=[]): return BusinessUnits().create(name,teams) def update_business_unit (self, guid, name='', teams=[]): return BusinessUnits().update(guid,name,teams) def delete_business_unit (self, guid): return BusinessUnits().delete(guid) def get_creds (self,api_id=None): if api_id != None: return APICredentials().get(api_id) else: return APICredentials().get_self() def renew_creds (self): return APICredentials().renew() def revoke_creds (self, api_id): return APICredentials().revoke(api_id) def get_roles (self): return Roles().get_all() ## SCA APIs - note must be human user to use these, not API user def get_workspaces(self): return Workspaces().get_all() def get_workspace_by_name(self,name): return Workspaces().get_by_name(name) def create_workspace(self,name): return Workspaces().create(name) def add_workspace_team(self,workspace_guid,team_id): return Workspaces().add_team(workspace_guid,team_id) def delete_workspace(self,workspace_guid): return Workspaces().delete(workspace_guid) def get_projects(self,workspace_guid): return Workspaces().get_projects(workspace_guid) def get_project(self,workspace_guid,project_guid): return Workspaces().get_project(workspace_guid,project_guid) def get_project_issues(self,workspace_guid,project_guid): return Workspaces().get_project_issues(workspace_guid,project_guid) def get_project_libraries(self,workspace_guid,project_guid): return Workspaces().get_project_libraries(workspace_guid,project_guid) def get_agents(self,workspace_guid): return Workspaces().get_agents(workspace_guid) def get_agent(self,workspace_guid,agent_guid): return Workspaces().get_agent(workspace_guid,agent_guid) def create_agent(self,workspace_guid,name,agent_type='CLI'): return Workspaces().create_agent(workspace_guid,name,agent_type) def get_agent_tokens(self,workspace_guid,agent_guid): return Workspaces().get_agent_tokens(workspace_guid,agent_guid) def get_agent_token(self,workspace_guid,agent_guid,token_id): return Workspaces().get_agent_token(workspace_guid,agent_guid,token_id) def regenerate_agent_token(self,workspace_guid,agent_guid): return Workspaces().regenerate_agent_token(workspace_guid,agent_guid) def revoke_agent_token(self,workspace_guid,agent_guid,token_id): return Workspaces().revoke_agent_token(workspace_guid,agent_guid,token_id) def get_issues(self,workspace_guid): return Workspaces().get_issues(workspace_guid) def get_issue(self,issue_id): return Workspaces().get_issues(issue_id) def get_libraries(self,workspace_guid,unmatched=False): return Workspaces().get_libraries(workspace_guid, unmatched) def get_library(self,library_id): return Workspaces().get_library(library_id) def get_vulnerability(self,vulnerability_id): return Workspaces().get_vulnerability(vulnerability_id) def get_license(self,license_id): return Workspaces().get_license(license_id) def get_sca_events(self,date_gte=None,event_group=None,event_type=None): return Workspaces().get_events(date_gte,event_group,event_type) def get_sca_scan(self,scan_id): return Workspaces().get_scan(scan_id) def get_component_activity(self,component_id): return ComponentActivity().get(component_id) #dynamic APIs def get_analyses(self): return Analyses().get_all() def get_analyses_by_name(self,name): return Analyses().get_by_name(analysis_name=name) def get_analyses_by_target_url(self,url): return Analyses().get_by_target_url(target_url=url) def get_analyses_by_search_term(self,search_term): return Analyses().get_by_search_term(search_term=search_term) def get_analysis(self,analysis_id): return Analyses().get(guid=analysis_id) def get_analysis_audits(self,analysis_id): return Analyses().get_audits(guid=analysis_id) def get_analysis_scans(self,analysis_id): return Analyses().get_scans(guid=analysis_id) def get_analysis_scanner_variables(self,analysis_id): return Analyses().get_scanner_variables(guid=analysis_id) def create_analysis(self,name,scans,schedule_frequency='ONCE',business_unit_guid=None,email=None,owner=None): return Analyses().create(name,scans,schedule_frequency,business_unit_guid,email,owner) def update_analysis(self,guid,name,scans,schedule_frequency='ONCE',business_unit_guid=None,email=None,owner=None): return Analyses().update(guid,name,scans,schedule_frequency,business_unit_guid,email,owner) def update_analysis_scanner_variable(self,analysis_guid,scanner_variable_guid,reference_key,value,description): return Analyses().update_scanner_variable(analysis_guid,scanner_variable_guid,reference_key,value,description) def delete_analysis_scanner_variable(self,analysis_guid,scanner_variable_guid): return Analyses().delete_scanner_variable(analysis_guid,scanner_variable_guid) def delete_analysis(self,analysis_guid): return Analyses().delete(guid=analysis_guid) def get_dyn_scan(self,scan_guid): return Scans().get(guid=scan_guid) def get_dyn_scan_audits(self,scan_guid): return Scans().get_audits(guid=scan_guid) def get_dyn_scan_config(self,scan_guid): return Scans().get_configuration(guid=scan_guid) def update_dyn_scan(self,scan_guid,scan): return Scans().update(guid=scan_guid,scan=scan) def delete_dyn_scan(self,scan_guid): return Scans().delete(guid=scan_guid) def get_scan_scanner_variables(self,scan_id): return Scans().get_scanner_variables(guid=scan_id) def update_scan_scanner_variable(self,scan_guid,scanner_variable_guid,reference_key,value,description): return Scans().update_scanner_variable(scan_guid,scanner_variable_guid,reference_key,value,description) def delete_scan_scanner_variable(self,scan_guid,scanner_variable_guid): return Scans().delete_scanner_variable(scan_guid,scanner_variable_guid) def get_analysis_occurrences(self): return Occurrences().get_all() def get_analysis_occurrence(self,occurrence_guid): return Occurrences().get(guid=occurrence_guid) def stop_analysis_occurrence(self,occurrence_guid,save_or_delete): return Occurrences().stop(guid=occurrence_guid,save_or_delete=save_or_delete) def get_scan_occurrences(self,occurrence_guid): return Occurrences().get_scan_occurrences(guid=occurrence_guid) def get_scan_occurrence(self,scan_occ_guid): return ScanOccurrences().get(guid=scan_occ_guid) def stop_scan_occurrence(self,scan_occ_guid,save_or_delete): return ScanOccurrences().stop(guid=scan_occ_guid, save_or_delete=save_or_delete) def get_scan_occurrence_configuration(self,scan_occ_guid): return ScanOccurrences().get_configuration(guid=scan_occ_guid) def get_scan_occurrence_verification_report(self,scan_occ_guid): return ScanOccurrences().get_verification_report(guid=scan_occ_guid) def get_scan_occurrence_notes_report(self,scan_occ_guid): return ScanOccurrences().get_scan_notes_report(guid=scan_occ_guid) def get_scan_occurrence_screenshots(self,scan_occ_guid): return ScanOccurrences().get_screenshots(guid=scan_occ_guid) def get_codegroups(self): return CodeGroups().get_all() def get_codegroup(self,name): return CodeGroups().get(name=name) def get_dynamic_configuration(self): return Configuration().get() def get_dynamic_scan_capacity_summary(self): return ScanCapacitySummary().get() def get_global_scanner_variables(self): return ScannerVariables().get_all() def get_global_scanner_variable(self,guid): return ScannerVariables().get(guid) def create_global_scanner_variable(self,reference_key,value,description): return ScannerVariables().create(reference_key,value,description) def update_global_scanner_variable(self,guid,reference_key,value,description): return ScannerVariables().update(guid,reference_key,value,description) def delete_global_scanner_variable(self,guid): return ScannerVariables().delete(guid) def dyn_setup_user_agent(self,custom_header,type): return DynUtils().setup_user_agent(custom_header,type) def dyn_setup_custom_host(self,host_name,ip_address): return DynUtils().setup_custom_host(host_name,ip_address) def dyn_setup_blocklist(self, urls:List): return DynUtils().setup_blocklist(urls) def dyn_setup_url(self,url,directory_restriction_type='DIRECTORY_AND_SUBDIRECTORY',http_and_https=True): return DynUtils().setup_url(url,directory_restriction_type,http_and_https) def dyn_setup_scan_setting(self,blocklist_configs:list,custom_hosts:List, user_agent:None): return DynUtils().setup_scan_setting(blocklist_configs,custom_hosts,user_agent) def dyn_setup_scan_contact_info(self,email,first_and_last_name,telephone): return DynUtils().setup_scan_contact_info(email,first_and_last_name,telephone) def dyn_setup_crawl_script(self,script_body,script_type='SELENIUM'): return DynUtils().setup_crawl_script(script_body,script_type) def dyn_setup_crawl_configuration(self,scripts:List,disabled=False): return DynUtils().setup_crawl_configuration(scripts,disabled) def dyn_setup_login_logout_script(self,script_body,script_type='SELENIUM'): return DynUtils().setup_login_logout_script(script_body,script_type) def dyn_setup_auth(self,authtype,username,password,domain=None,base64_pkcs12=None,cert_name=None, login_script_data=None, logout_script_data=None): return DynUtils().setup_auth(authtype,username,password,domain,base64_pkcs12,cert_name,login_script_data,logout_script_data) def dyn_setup_auth_config(self,authentication_node:dict): return DynUtils().setup_auth_config(authentication_node) def dyn_setup_scan_config_request(self, url, allowed_hosts:List, auth_config=None, crawl_config=None, scan_setting=None): return DynUtils().setup_scan_config_request(url,allowed_hosts,auth_config,crawl_config,scan_setting) def dyn_setup_scan(self, scan_config_request, scan_contact_info=None, linked_app_guid=None): return DynUtils().setup_scan(scan_config_request,scan_contact_info, linked_app_guid)
39.184584
180
0.747904
[ "MIT" ]
DaYuM/veracode-api-py
veracode_api_py/api.py
19,318
Python
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2021 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version="1.0" encoding="UTF-8"?><xml> <id/> <version>1</version> <name>TS_WANMANAGER_DSLWANoE_FixedMode_ActLink_P_1-1_WAN_Pri-Sec</name> <primitive_test_id/> <primitive_test_name>wanmanager_DoNothing</primitive_test_name> <primitive_test_version>1</primitive_test_version> <status>FREE</status> <synopsis>To check if DSL line is active with FIXED_MODE policy ,WAN Type and priorities being (1,1) (Primary,Secondary) for DSL and WANOE respectively</synopsis> <groups_id/> <execution_time>40</execution_time> <long_duration>false</long_duration> <advanced_script>false</advanced_script> <remarks/> <skip>false</skip> <box_types> <box_type>Broadband</box_type> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> </rdk_versions> <test_cases> <test_case_id>TC_WANMANAGER_55</test_case_id> <test_objective>This test case is to check if DSL line is active with FIXED_MODE policy ,WAN Type and priorities being (1,1) (Primary,Secondary) for DSL and WANOE respectively </test_objective> <test_type>Positive</test_type> <test_setup>Broadband</test_setup> <pre_requisite>1.Ccsp Components should be in a running state else invoke cosa_start.sh manually that includes all the ccsp components and TDK Component 2.TDK Agent should be in running state or invoke it through StartTdk.sh script 3.WAN Manager should be enabled 4.Both DSL WAN and WANOE WAN connections should be available</pre_requisite> <api_or_interface_used>None</api_or_interface_used> <input_parameters>Device.X_RDK_WanManager.Policy Device.X_RDK_WanManager.CPEInterface.1.Wan.Type Device.X_RDK_WanManager.CPEInterface.2.Wan.Type Device.X_RDK_WanManager.CPEInterface.1.Wan.Priority Device.X_RDK_WanManager.CPEInterface.2.Wan.Priority Device.X_RDK_WanManager.CPEInterface.1.Wan.ActiveLink Device.X_RDK_WanManager.CPEInterface.2.Wan.ActiveLink </input_parameters> <automation_approch>1.Load the Module 2.Get the current WAN Priority and WAN Types for DSL and WANOE interfaces 3.Make the priority and WAN Type unequal for further set operations to be success 4.Get the current WAN policy , set the policy to FIXED_MODE if not in the same policy 5.Set the Wan Type and priorities as(1,1) (Primary, Secondary) for DSL and WANOE respectively 6.Get the active link status for DSL and WANOE 7.With the current configurations DSL Line is expected to be active 8.Revert the set values 9.Unload the module</automation_approch> <expected_output>With Fixed Mode policy Wan Type and priorities being (1,1) (Primary, Secondary) for DSL and WANOE respectively - DSL Line is expected to be active </expected_output> <priority>High</priority> <test_stub_interface>WAN_MANAGER</test_stub_interface> <test_script>TS_WANMANAGER_DSLWANoE_FixedMode_ActLink_P_1-1_WAN_Pri-Sec</test_script> <skipped>No</skipped> <release_version>M90</release_version> <remarks>None</remarks> </test_cases> </xml> ''' # tdklib library,which provides a wrapper for tdk testcase script import tdklib; from tdkbVariables import *; from time import sleep; from WanManager_Utility import *; obj = tdklib.TDKScriptingLibrary("tdkbtr181","RDKB"); obj1 = tdklib.TDKScriptingLibrary("sysutil","1"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_WANMANAGER_DSLWANoE_FixedMode_ActLink_P_1-1_WAN_Pri-Sec'); obj1.configureTestCase(ip,port,'TS_WANMANAGER_DSLWANoE_FixedMode_ActLink_P_1-1_WAN_Pri-Sec'); #Get the result of connection with test component and DUT loadmodulestatus =obj.getLoadModuleResult(); loadmodulestatus1 =obj1.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadmodulestatus; print "[LIB LOAD STATUS] : %s" %loadmodulestatus1; if "SUCCESS" in (loadmodulestatus.upper() and loadmodulestatus1.upper()): #Set the result status of execution obj.setLoadModuleStatus("SUCCESS"); obj1.setLoadModuleStatus("SUCCESS"); revertwantype =0; revertpriority =0; expectedresult="SUCCESS"; tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Get'); defaultTypePriority,actualresult = GetCurrentWanTypeAndPriority(tdkTestObj); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1: Get the current WAN Type,Priority values for DSL and WANOE"; print "EXPECTED RESULT 1: Should get the current WAN Type,Priority values for DSL and WANOE" print "ACTUAL RESULT 1 :The current WAN Type,Priority for DSL and WANOE are %s:"%defaultTypePriority; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; step = 2; status, policy_initial = get_policy(tdkTestObj, step); if status == 0: tdkTestObj_Get = obj.createTestStep('TDKB_TR181Stub_Get'); tdkTestObj_Set = obj.createTestStep('TDKB_TR181Stub_Set'); print "***Checking if WAN types are equal and making them Unequal***"; revertwantype,default,actualresult = MakeWANTypeUnEqual(tdkTestObj_Get,tdkTestObj_Set); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "***Checking if WAN priorities are equal and making them Unequal***"; revertpriority,default,actualresult = MakePriorityUnEqual(tdkTestObj_Get,tdkTestObj_Set); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); #Set the Wan Manager Policy to FIXED_MODE new_policy = "FIXED_MODE" expectedresult="SUCCESS"; policyStatus =1; revert = 0 if new_policy != policy_initial: print "Setting the wanmanager policy to :%s"%new_policy set_policy(new_policy, policy_initial, obj1, revert); #Get the WANMANAGER POLICY and cross check with the Set value step = step + 1; status, policy = get_policy(tdkTestObj, step); if status == 0: revert = 1; if policy == new_policy: tdkTestObj.setResultStatus("SUCCESS"); print "The wanmanager policy is set successfully"; tdkTestObj = obj1.createTestStep('ExecuteCmd'); obj1.initiateReboot(); sleep(300); else: policyStatus =0; tdkTestObj.setResultStatus("FAILURE"); print "The wanmanager policy is not set successfully"; else: policyStatus =0; tdkTestObj.setResultStatus("FAILURE"); print "Failed to get wanmanager policy after set "; if policyStatus == 1: print "The current WAN Manager Policy is %s" %new_policy; wanDSL = "Primary"; wanWANOE = "Secondary"; priDSL = "1"; priWANOE ="1"; actualresult = SetWANTypethenPriority(tdkTestObj_Set,wanDSL,wanWANOE,priDSL,priWANOE); revertwantype =1; revertpriority =1; if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 3: Set the (WANtype,Priority)for DSL(%s,%s) and WANOE(%s,%s)" %(wanDSL,priDSL,wanWANOE,priWANOE); print "EXPECTED RESULT 3:Set operation is expected to be successful"; print "ACTUAL RESULT 3:set operations are successful"; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Get'); tdkTestObj.addParameter("ParamName","Device.X_RDK_WanManager.CPEInterface.1.Wan.ActiveLink"); #Execute the test case in DUT tdkTestObj.executeTestCase(expectedresult); actualresult1 = tdkTestObj.getResult(); activeDSL = tdkTestObj.getResultDetails().strip().replace("\\n", ""); tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Get'); tdkTestObj.addParameter("ParamName","Device.X_RDK_WanManager.CPEInterface.2.Wan.ActiveLink"); #Execute the test case in DUT tdkTestObj.executeTestCase(expectedresult); actualresult2 = tdkTestObj.getResult(); activeWANOE = tdkTestObj.getResultDetails().strip().replace("\\n", ""); if expectedresult in (actualresult1 and actualresult2): #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 4: Get the Active link status of DSL and WANOE"; print "EXPECTED RESULT 4: Active link status of DSL and WANOE should be fetched successfully"; print "ACTUAL RESULT 4: Get operation succeeded"; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; if activeDSL == "true" and activeWANOE == "false": #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 5: Get the Active link status of DSL and WANOE"; print "EXPECTED RESULT 5: Active link status of DSL is expected to be true and WANOE as false"; print "ACTUAL RESULT 5: DSL status :%s, WANOE status : %s" %(activeDSL,activeWANOE); #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 5: Get the Active link status of DSL and WANOE"; print "EXPECTED RESULT 5:Active link status of DSL is expected to be true and WANOE as false"; print "ACTUAL RESULT 5: DSL status :%s, WANOE status : %s" %(activeDSL,activeWANOE); #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 4: Get the Active link status of DSL and WANOE"; print "EXPECTED RESULT 4: Active link status of DSL is expected to be true and WANOE as false"; print "ACTUAL RESULT 4: Get operation failed "; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; if revert == 1: set_policy(new_policy, policy_initial, obj1, revert); else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 3: Set the (WANtype,Priority)for DSL(%s,%s) and WANOE(%s,%s)"%(wanDSL,priDSL,wanWANOE,priWANOE); print "EXPECTED RESULT 3:Set operation is expected to be successful"; print "ACTUAL RESULT 3 :set operations failed"; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: print "set operation of WAN Policy failed"; else: tdkTestObj.setResultStatus("FAILURE"); print "Unable to make WAN priorities Un-equal" else: tdkTestObj.setResultStatus("FAILURE"); print "Unable to make WAN Types Un-equal" else: tdkTestObj.setResultStatus("FAILURE"); print "The current policy is not the expected policy"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1: Get the default WAN Type,Priority values for DSL and WANOE"; print "EXPECTED RESULT 1: Should get the default WAN Type,Priority values for DSL and WANOE" print "ACTUAL RESULT 1 :The default WAN Type,Priority for DSL and WANOE are %s:"%defaultTypePriority; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; #Revert operations revertflag =1; if revertpriority ==1: print "Reverting priority to defaults"; paramList = ["Device.X_RDK_WanManager.CPEInterface.1.Wan.Priority","Device.X_RDK_WanManager.CPEInterface.2.Wan.Priority"]; tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Set'); index = 2; for item in paramList: tdkTestObj.addParameter("ParamName",item); tdkTestObj.addParameter("ParamValue",defaultTypePriority[index]); tdkTestObj.addParameter("Type","int"); expectedresult= "SUCCESS"; #Execute testcase on DUT tdkTestObj.executeTestCase(expectedresult); result = tdkTestObj.getResult(); Setresult = tdkTestObj.getResultDetails(); index =index +1; if expectedresult in result: tdkTestObj.setResultStatus("SUCCESS"); else: revertflag =0; print "Revert operation failed for WAN priority"; tdkTestObj.setResultStatus("FAILURE"); break; if revertwantype == 1: print "Reverting WAN Type to defaults"; paramList = ["Device.X_RDK_WanManager.CPEInterface.1.Wan.Type","Device.X_RDK_WanManager.CPEInterface.2.Wan.Type"]; tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Set'); index = 0; for item in paramList: tdkTestObj.addParameter("ParamName",item); tdkTestObj.addParameter("ParamValue",defaultTypePriority[index]); tdkTestObj.addParameter("Type","string"); expectedresult= "SUCCESS"; #Execute testcase on DUT tdkTestObj.executeTestCase(expectedresult); result = tdkTestObj.getResult(); Setresult = tdkTestObj.getResultDetails(); index =index +1; if expectedresult in result: tdkTestObj.setResultStatus("SUCCESS"); else: revertflag =0; print "Revert operation failed for WAN Type"; tdkTestObj.setResultStatus("FAILURE"); break; #printing the final revert status if revertflag == 1: print "Revert operation successful for WAN Type and WAN priority"; else: print "Revert operation failed for either WAN Type or WAN priority"; obj.unloadModule("tdkbtr181"); obj1.unloadModule("sysutil"); else: print "Failed to load module"; obj.setLoadModuleStatus("FAILURE"); obj1.setLoadModuleStatus("FAILURE");
53.936102
199
0.603838
[ "Apache-2.0" ]
rdkcmf/rdkb-tools-tdkb
testscripts/RDKB/component/WAN_MANAGER/TS_WANMANAGER_DSLWANoE_FixedMode_ActLink_P_1-1_WAN_Pri-Sec.py
16,882
Python
from django.shortcuts import render,redirect from .models import Image,Location,Category # Create your views here. def intro(request): images = Image.objects.all() return render(request, 'intro.html',{'images':images}) def search_results(request): if 'image' in request.GET and request.GET["image"]: search_term = request.GET.get("image") searched_images = Image.search_by_cate(search_term) message = f"{search_term}" return render(request,'search.html',{"message":message,"images":searched_images})
38.928571
89
0.713761
[ "MIT" ]
IsaacMurage-dev/Art-Gallery
snaps/views.py
545
Python
class Solution: def removeDuplicates(self, S: str) -> str: i = 1 while i < len(S): if i <= 0: i += 1 continue if S[i] == S[i - 1]: S = S[:i - 1] + S[i + 1:] i = i - 1 else: i = i + 1 return S slu = Solution() print(slu.removeDuplicates("abbaca"))
21.833333
46
0.358779
[ "Apache-2.0" ]
kefirzhang/algorithms
leetcode/python/easy/p1047_removeDuplicates.py
393
Python
"""Assorted utilities shared between parts of apitools.""" import collections import httplib import os import types import urllib2 from apitools.base.py import exceptions __all__ = [ 'DetectGae', 'DetectGce', ] def DetectGae(): """Determine whether or not we're running on GAE. This is based on: https://developers.google.com/appengine/docs/python/#The_Environment Returns: True iff we're running on GAE. """ server_software = os.environ.get('SERVER_SOFTWARE', '') return (server_software.startswith('Development/') or server_software.startswith('Google App Engine/')) def DetectGce(): """Determine whether or not we're running on GCE. This is based on: https://developers.google.com/compute/docs/instances#dmi Returns: True iff we're running on a GCE instance. """ try: o = urllib2.urlopen('http://metadata.google.internal') except urllib2.URLError: return False return o.getcode() == httplib.OK def NormalizeScopes(scope_spec): """Normalize scope_spec to a set of strings.""" if isinstance(scope_spec, types.StringTypes): return set(scope_spec.split(' ')) elif isinstance(scope_spec, collections.Iterable): return set(scope_spec) raise exceptions.TypecheckError( 'NormalizeScopes expected string or iterable, found %s' % ( type(scope_spec),)) def Typecheck(arg, arg_type, msg=None): if not isinstance(arg, arg_type): if msg is None: if isinstance(arg_type, tuple): msg = 'Type of arg is "%s", not one of %r' % (type(arg), arg_type) else: msg = 'Type of arg is "%s", not "%s"' % (type(arg), arg_type) raise exceptions.TypecheckError(msg) return arg
25.477612
74
0.68717
[ "Apache-2.0" ]
Technology-Hatchery/google-cloud-sdk
.install/.backup/lib/apitools/base/py/util.py
1,707
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
39.197561
86
0.62759
[ "MIT" ]
BradyBromley/botorch
botorch/acquisition/monte_carlo.py
16,071
Python
from .fhirbase import fhirbase class Annotation(fhirbase): """ A text note which also contains information about who made the statement and when. Args: authorReference: The individual responsible for making the annotation. authorString: The individual responsible for making the annotation. time: Indicates when this particular annotation was made. text: The text of the annotation. """ __name__ = 'Annotation' def __init__(self, dict_values=None): self.authorReference = None # reference to Reference: identifier self.authorString = None # type: str self.time = None # type: str self.text = None # type: str self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Annotation', 'child_variable': 'authorReference'}, ]
25.2
78
0.614638
[ "MIT" ]
D3-AI/Cardea
cardea/fhir/Annotation.py
1,134
Python
import abc import json import logging import os from typing import Any, Tuple, Union import numpy as np import tifffile import tiledb import zarr from slaid.commons import Mask, BasicSlide from slaid.commons.base import Polygon from slaid.commons.ecvl import BasicSlide as EcvlSlide logger = logging.getLogger(__file__) class Renderer(abc.ABC): @abc.abstractmethod def render( self, array: np.ndarray, filename: str, ): pass class TiffRenderer(Renderer): def __init__(self, tile_size: Tuple[int, int] = (256, 256), rgb: bool = True, bigtiff=True): self.tile_size = tile_size self.channels = 4 if rgb else 2 self.rgb = rgb self.bigtiff = bigtiff def _tiles(self, data: np.ndarray) -> np.ndarray: for y in range(0, data.shape[0], self.tile_size[0]): for x in range(0, data.shape[1], self.tile_size[1]): tile = data[y:y + self.tile_size[0], x:x + self.tile_size[1]] if tile.shape[:2] != self.tile_size: pad = ( (0, self.tile_size[0] - tile.shape[0]), (0, self.tile_size[1] - tile.shape[1]), ) tile = np.pad(tile, pad, 'constant') final_tile = np.zeros( (tile.shape[0], tile.shape[1], self.channels), dtype='uint8') final_tile[:, :, 0] = tile * 255 final_tile[final_tile[:, :, 0] > 255 / 10, self.channels - 1] = 255 yield final_tile def render(self, array: np.ndarray, filename: str): with tifffile.TiffWriter(filename, bigtiff=self.bigtiff) as tif: tif.save(self._tiles(array), dtype='uint8', shape=(array.shape[0], array.shape[1], self.channels), tile=self.tile_size, photometric='rgb' if self.rgb else 'minisblack', extrasamples=('ASSOCALPHA', )) class BaseJSONEncoder(abc.ABC): @abc.abstractproperty def target(self): pass def encode(self, obj: Any): pass class NumpyArrayJSONEncoder(BaseJSONEncoder): @property def target(self): return np.ndarray def encode(self, array: np.ndarray): return array.tolist() class PolygonJSONEncoder(BaseJSONEncoder): @property def target(self): return Polygon def encode(self, obj: Polygon): return obj.coords class Int64JSONEncoder(BaseJSONEncoder): @property def target(self): return np.int64 def encode(self, int_: np.int64): return int(int_) # from https://github.com/hmallen/numpyencoder def convert_numpy_types(obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.complex_, np.complex64, np.complex128)): return {'real': obj.real, 'imag': obj.imag} elif isinstance(obj, (np.ndarray, )): return obj.tolist() elif isinstance(obj, (np.bool_)): return bool(obj) elif isinstance(obj, (np.void)): return None return obj class JSONEncoder(json.JSONEncoder): encoders = [NumpyArrayJSONEncoder(), PolygonJSONEncoder()] def default(self, obj): encoded = None for encoder in self.encoders: if isinstance(obj, encoder.target): encoded = encoder.encode(obj) break if encoded is None: encoded = super().default(obj) return encoded class VectorialRenderer(Renderer): def render(self, slide: BasicSlide, filename: str, one_file_per_patch: bool = False): if one_file_per_patch: raise NotImplementedError() with open(filename, 'w') as json_file: json.dump(slide.patches, json_file, cls=JSONEncoder) def to_json(obj: Any, filename: str = None) -> Union[str, None]: if filename is not None: with open(filename, 'w') as f: json.dump(obj, f, cls=JSONEncoder) else: return json.dumps(obj, cls=JSONEncoder)
28.062893
79
0.575751
[ "MIT" ]
mdrio/slaid
slaid/renderers.py
4,462
Python