prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#Script to do a grid search of gas dump mass and gas dump time #Compares against 4 different sets of ages - linear correct form astroNN; lowess correct from astroNN; Sanders & Das; APOKASC import numpy as np import matplotlib.pyplot as plt import math import h5py import json from astropy.io import fits from astropy.table import Table, join import pandas as pd import subprocess import os import sys sys.path.append('./scripts/') from chemevo import * data_file_1 = '/data/ktfm2/apogee_data/apogee_astroNN_DR16.fits' #The astroNN VAC for APOGEE DR16 hdf5_file = '/data/ktfm2/apogee_data/gaia_spectro.hdf5' #The hdf5 file for Sanders and Das data_file_2 = '/data/jls/apokasc_astroNN.fits' #The APOKASC data file joined with AstroNN hdf = h5py.File(hdf5_file, "r") dataset = hdf['data'] log_age_data = dataset["log10_age"] ID_data = dataset["APOGEE_ID"] SD_table = Table([ID_data, log_age_data], names=('apogee_id', 'log_age_data')) hdu_list_1 = fits.open(data_file_1, memmap=True) #open fits file apogee_data = Table(hdu_list_1[1].data) #Creates table from fits file hdu_list_1.close() #Close the fits file hdu_list_2 = fits.open(data_file_2, memmap=True) #open fits file apokasc_data = Table(hdu_list_2[1].data) #Creates table from fits file hdu_list_2.close() #Close the fits file #Join tables together full_table = join(apogee_data, SD_table) #Define functions for the filter def betw(x,l,u): return (x>l)&(x<u) def outs(x,l,u): return (x<l)|(x>u) #Define filter for apogee data, use guiding centre radius RL, galactic height GALZ, surface gravity LOGG #Have 4 different filters and so on for linear age, lowess age, S&D age, APOKASC age - this extends to have disc stars NaN_bit1 = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['age_lowess_correct']))&(~pd.isna(apogee_data['GALZ']))&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['FE_H_ERR']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['MG_H_ERR']))&(~pd.isna(apogee_data['LOGG'])) fltr1 = NaN_bit1&(apogee_data['age_lowess_correct']>0.0)&(apogee_data['LOGG']<3.5)&(betw(apogee_data['GALZ'],-5.0,5.0))&(outs(apogee_data['GALZ'],-1.0,1.0))&(apogee_data['FE_H_ERR']<0.2)&(betw(apogee_data['rl'],7.6,8.6)) NaN_bit2 = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['age_linear_correct']))&(~pd.isna(apogee_data['GALZ']))&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['FE_H_ERR']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['MG_H_ERR']))&(~pd.isna(apogee_data['LOGG'])) fltr2 = NaN_bit2&(apogee_data['age_linear_correct']>0.0)&(apogee_data['LOGG']<3.5)&(betw(apogee_data['GALZ'],-5.0,5.0))&(outs(apogee_data['GALZ'],-1.0,1.0))&(apogee_data['FE_H_ERR']<0.2)&(betw(apogee_data['rl'],7.6,8.6)) NaN_bit3 = (~pd.isna(full_table['rl']))&(~pd.isna(full_table['log_age_data']))&(~pd.isna(full_table['GALZ']))&(~pd.isna(full_table['FE_H']))&(~pd.isna(full_table['FE_H_ERR']))&(~pd.isna(full_table['MG_H']))&(~pd.isna(full_table['MG_H_ERR']))&(~pd.isna(full_table['LOGG'])) fltr3 = NaN_bit3&(full_table['LOGG']<3.5)&(betw(full_table['GALZ'],-5.0,5.0))&(outs(full_table['GALZ'],-1.0,1.0))&(full_table['FE_H_ERR']<0.2)&(betw(full_table['rl'],7.6,8.6)) NaN_bit4 = (~
pd.isna(apokasc_data['rl'])
pandas.isna
import numpy as np import pandas as pd import re from itertools import chain def import_csvs(pbp_cols, year=2018, weeks=16, encoding="ISO-8859-1"): for week in range(1, weeks + 1): df = pd.DataFrame( pd.read_csv(f"../data/raw/pbp/{year} Week {week}.csv", encoding=encoding), columns=pbp_cols, ) df.fillna({"clock.minutes": 0, "clock.seconds": 0}, inplace=True) df["week"] = week df = df.sort_values(["id"]) df["id"] = df["id"].floordiv(1000000000) data = data.append(df, ignore_index=True) # finish establishing the data object and returning it from the function def get_pbp( pbp_cols=[ "id", "week", "offense", "offense_conference", "defense", "defense_conference", "offense_score", "defense_score", "drive_id", "period", "clock.minutes", "clock.seconds", "yard_line", "down", "distance", "yards_gained", "play_type", "play_text", ], matchup_cols=["id", "home_team", "away_team", "neutral_site", "conference_game"], export_missing=True, ): # Import Play-by-Play and Matchup data # # Initialize necessary DataFrames data = pd.DataFrame(columns=pbp_cols) locations =
pd.DataFrame(columns=matchup_cols)
pandas.DataFrame
from urllib.request import urlopen from http.cookiejar import CookieJar from io import StringIO from app.extensions import cache from app.api.constants import PERMIT_HOLDER_CACHE, DORMANT_WELLS_CACHE, LIABILITY_PER_WELL_CACHE, TIMEOUT_15_MINUTES, TIMEOUT_60_MINUTES, TIMEOUT_12_HOURS, TIMEOUT_1_YEAR from flask import Flask, current_app from threading import Thread import requests import urllib import pandas as pd import pyarrow as pa import time from .ogc_data_constants import PERMIT_HOLDER_CSV_DATA, DORMANT_WELLS_CSV_DATA, LIABILITY_PER_WELL_CSV_DATA # TODO: Stick into environment variables PERMIT_HOLDER_CSV = 'http://reports.bcogc.ca/ogc/f?p=200:201:14073940726161:CSV::::' DORMANT_WELLS_CSV = 'https://reports.bcogc.ca/ogc/f?p=200:81:9680316354055:CSV::::' LIABILITY_PER_WELL_CSV = 'https://reports.bcogc.ca/ogc/f?p=200:10:10256707131131:CSV::::' session = requests.session() def refreshOGCdata(app, cache_key, csv_url, process): with app.app_context(): serializer = pa.default_serialization_context() data = cache.get(cache_key) expiry_token = cache.get(cache_key + '_EXPIRY_TOKEN') if not expiry_token: current_app.logger.debug(f'OGC DATA SERVICE - {cache_key} - Cached data not found.') # set 15 minute token to mitigate multiple threads requesting data at the same time cache.set(cache_key + '_EXPIRY_TOKEN', True, timeout=TIMEOUT_15_MINUTES) else: current_app.logger.debug(f'OGC DATA SERVICE - {cache_key} - Cached data up to date.') return try: cookieProcessor = urllib.request.HTTPCookieProcessor() opener = urllib.request.build_opener(cookieProcessor) response = session.get(csv_url) df = pd.read_table(StringIO(response.text), sep=",") df = process(df) updated_from_web = True current_app.logger.debug( f'OGC DATA SERVICE - {cache_key} - Successful get from OGC reporting.') df = process(df) except: # on error, if we don't have data in the cache initialize it from static content if not data: current_app.logger.debug( f'OGC DATA SERVICE - {cache_key} - Falling back to static content.') if cache_key is PERMIT_HOLDER_CACHE: df = pd.read_table(StringIO(PERMIT_HOLDER_CSV_DATA), sep=",") if cache_key is DORMANT_WELLS_CACHE: df = pd.read_table(StringIO(DORMANT_WELLS_CSV_DATA), sep=",") if cache_key is LIABILITY_PER_WELL_CACHE: df = pd.read_table(StringIO(LIABILITY_PER_WELL_CSV_DATA), sep=",") df = process(df) row_count = df.shape[0] # only update cache if there is a good dataset if row_count > 1: current_app.logger.debug(f'OGC DATA SERVICE - {cache_key} - Updating cached data.') cache.set( cache_key, serializer.serialize(df).to_buffer().to_pybytes(), timeout=TIMEOUT_1_YEAR) if updated_from_web: cache.set(cache_key + '_EXPIRY_TOKEN', True, timeout=TIMEOUT_60_MINUTES) else: current_app.logger.warning( f'OGC DATA SERVICE - {cache_key} - FAILED TO RETRIEVE UPDATED DATA') class OGCDataService(): @classmethod def refreshAllData(cls): cls.getPermitHoldersDataFrame() cls.getDormantWellsDataFrame() cls.getLiabilityPerWellDataFrame() @classmethod def getOGCdataframe(cls, cache_key, csv_url, process): serializer = pa.default_serialization_context() data = cache.get(cache_key) app = current_app._get_current_object() #if empty dataset refresh data synchronously, otherwise refresh in the background and continue if not data: df = refreshOGCdata(app, cache_key, csv_url, process) else: thread = Thread( target=refreshOGCdata, args=( app, cache_key, csv_url, process, )) thread.daemon = True thread.start() #update data and return data = cache.get(cache_key) if data: df = serializer.deserialize(data) return df @classmethod def getPermitHoldersDataFrame(cls): def process(df): df.columns = [ 'operator_id', 'organization_name', 'phone_num', 'address_line_1', 'address_line_2', 'city', 'province', 'postal_code', 'country' ] return df return cls.getOGCdataframe(PERMIT_HOLDER_CACHE, PERMIT_HOLDER_CSV, process) @classmethod def getDormantWellsDataFrame(cls): def process(df): df.columns = [ 'operator_name', 'operator_id', 'well_auth_number', 'well_name', 'dormant_status', 'current_status', 'well_dormancy_date', 'site_dormancy_date', 'site_dormancy_type', 'site_dormant_status', 'surface_location', 'field', 'abandonment_date', 'last_spud_date', 'last_rig_rels_date', 'last_completion_date', 'last_active_production_year', 'last_active_inj_display_year', 'wellsite_dormancy_declaration_date', 'multi_well' ] df['well_dormancy_date'] = pd.to_datetime( df['well_dormancy_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if pd.notnull(x) else None) df['site_dormancy_date'] = pd.to_datetime( df['site_dormancy_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if pd.notnull(x) else None) df['abandonment_date'] = pd.to_datetime( df['abandonment_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if
pd.notnull(x)
pandas.notnull
# -*- coding: utf-8 -*- """ Created on Mon Jan 4 14:39:07 2021 This scripts tests for the (in)dependence between tide and skew surge @author: acn980 """ import pandas as pd import matplotlib.pyplot as plt import numpy as np import os,sys,glob import scipy.stats as sp import statsmodels.api as sm sys.path.insert(0,r'E:\github\seasonality_risk\Functions') from Functions_HCMC import get_skew_surge #%% save = False fn_trunk = 'E:/surfdrive/Documents' fn = os.path.join(fn_trunk, 'Master2019\Thomas\data\matlab_csv') fn_files = 'Master2019/Thomas/data' fn2 = os.path.join(fn_trunk,fn_files) #%% We import the total water level and tide to obtain the high tide and skew surge #We import the tide fn_tide = os.path.join(fn,'Tide_WACC_VungTau_Cleaned_Detrended_Strict_sel_const.csv') date_parser = lambda x:
pd.datetime.strptime(x, "%d-%m-%Y %H:%M:%S")
pandas.datetime.strptime
from flask import render_template, flash, redirect, url_for, request, send_file, send_from_directory from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from werkzeug.urls import url_parse from app import app from app.forms import LoginForm import boto3 from flask_login import current_user, login_user, logout_user, login_required from app.models import User import csv import shutil import requests import json import os import pandas as pd import numpy as np import exifread s3_client = boto3.client('s3') bucket_name = 'w210-img-upload' s3_resource = boto3.resource('s3') my_bucket = s3_resource.Bucket(bucket_name) db_string = "postgres://dbmaster:dbpa$$w0rd!@w210postgres01.c8siy60gz3hg.us-east-1.rds.amazonaws.com:5432/w210results" def df_to_geojson(df, properties, lat='Lat', lon='Long'): geojson = {'type':'FeatureCollection', 'features':[]} for _, row in df.iterrows(): feature = {'type':'Feature', 'properties':{}, 'geometry':{'type':'Point', 'coordinates':[]}} feature['geometry']['coordinates'] = [row[lon],row[lat]] for prop in properties: feature['properties'][prop] = row[prop] geojson['features'].append(feature) return geojson def gpsParser(x): if x == 0.0: return 0.0 else: degrees = int(x[1:-1].split(',')[0]) try: minNumerator = int(x[1:-1].split(',')[1].split('/')[0]) minDenominator = int(x[1:-1].split(',')[1].split('/')[1]) except IndexError: minNumerator = int(x[1:-1].split(',')[1].split('/')[0]) minDenominator = 1.0 try: secNumerator = int(x[1:-1].split(',')[2].split('/')[0]) secDenominator = int(x[1:-1].split(',')[2].split('/')[1]) except IndexError: secNumerator = int(x[1:-1].split(',')[2].split('/')[0]) secDenominator = 1.0 deciMinutes = minNumerator/minDenominator/60 deciSeconds = secNumerator/secDenominator/3600 return(np.round(degrees+deciMinutes+deciSeconds,6)) def exifExtractor(file): image = open(file, 'rb') tags = exifread.process_file(image) gpsInfo = {'fileName': image.name.lower().split('/')[-1]} for k in ['GPS GPSLatitudeRef', 'GPS GPSLatitude', 'GPS GPSLongitudeRef', 'GPS GPSLongitude']: try: gpsInfo[k] = str(tags[k]) except KeyError: gpsInfo[k] = 0.0 return gpsInfo def formatLabel(x): if x == 'american_black_bear': return 'Black bear' elif x == 'domestic_cow': return 'Cow' elif x == 'domestic_dog': return 'Dog' elif x == 'gray_fox': return 'Gray fox' elif x == 'red_fox': return 'Red fox' elif x == 'white_tailed_deer': return 'White-tailed deer' elif x == 'mule_deer': return 'Mule deer' elif x == 'wild_turkey': return 'Wild turkey' elif x == 'red_deer': return 'Elk' else: return x.capitalize() def purge_local(dir): excepts = [] prefix = current_user.username+'/' my_bucket.objects.filter(Prefix=prefix).delete() engine = create_engine(db_string, echo=True) connection = engine.connect() connection.execute("DROP TABLE IF EXISTS {}".format('test_upload')) connection.close() engine.dispose() for file in os.listdir(dir): file_path = os.path.join(dir,file) try: if os.path.isfile(file_path): os.remove(file_path) except Exception as e: excepts.append(e) return excepts @app.route('/') @app.route('/index') def index(): return render_template('index.html', title='Home') @app.route('/about') def about(): return render_template('about.html', title='About Us') @app.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('upload')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user is None or not user.check_password(form.password.data): flash('Invalid username or password') return redirect(url_for('login')) login_user(user, remember=form.remember_me.data) next_page = request.args.get('next') if not next_page or url_parse(next_page).netloc != '': next_page = url_for('upload') return redirect(next_page) return render_template('login_page.html', title='Sign In', form=form) @app.route('/logout') def logout(): logout_user() return redirect(url_for('index')) @app.route('/upload', methods=['GET', 'POST']) @login_required def upload(): check_file = app.config['DOWNLOAD_FOLDER']+current_user.username+'/'+current_user.username+'_results.csv' if os.path.isfile(check_file): purge_local(os.path.join(app.config['DOWNLOAD_FOLDER'],current_user.username)) if request.method == 'POST': data_files = request.files.getlist('file[]') for data_file in data_files: name, ext = os.path.splitext(data_file.filename) if ext.lower() in [".jpg",".jpeg",".png"]: filename_old = current_user.username+'/upload/'+data_file.filename filename_new = filename_old.lower() s3_client.upload_fileobj(data_file, bucket_name, filename_new) print("Uploading "+data_file.filename+" to "+bucket_name+".") else: pass upload_dir = '/home/ubuntu/s3bucket/'+current_user.username+'/upload/' dfGPSRaw = pd.DataFrame() for file in os.listdir(upload_dir): df_tmp = pd.DataFrame.from_dict([exifExtractor(os.path.join(upload_dir,file))],orient='columns') dfGPSRaw = dfGPSRaw.append(df_tmp) dfGPSRaw['LatRef'] = dfGPSRaw['GPS GPSLatitudeRef'].apply(lambda x: 1 if x == 'N' else -1) dfGPSRaw['LonRef'] = dfGPSRaw['GPS GPSLongitudeRef'].apply(lambda x: 1 if x == 'E' else -1) dfGPSRaw['Lat'] = dfGPSRaw['GPS GPSLatitude'].apply(gpsParser)*dfGPSRaw['LatRef'] dfGPSRaw['Long'] = dfGPSRaw['GPS GPSLongitude'].apply(gpsParser)*dfGPSRaw['LonRef'] dfGPStmp = dfGPSRaw[['fileName','Lat', 'Long']] dfGPStmp = dfGPStmp.set_index('fileName') geotags_file = app.config['DOWNLOAD_FOLDER']+current_user.username+'/geotags.csv' if os.path.isfile(geotags_file): dfGPSold = pd.read_csv(geotags_file) dfGPSnew = pd.concat([dfGPSold, dfGPStmp]) dfGPSnew.to_csv(geotags_file) else: dfGPStmp.to_csv(geotags_file) return redirect(url_for('complete')) else: username = current_user.username return render_template('upload.html', title='File Upload', username = username) @app.route('/complete', methods=['GET', 'POST']) @login_required def complete(): if request.method == "POST": if 'upload_again' in request.form: return redirect(url_for('upload')) elif 'launcher' in request.form: return redirect(url_for('classify')) else: return render_template('complete.html', title='Thank You!') @app.route('/output', methods=['GET', 'POST']) @login_required def output(): engine = create_engine(db_string, echo=True) Base = declarative_base(engine) output_file = app.config['DOWNLOAD_FOLDER']+current_user.username+'/'+current_user.username+'_results.csv' # os.remove(output_file) class Results(Base): __tablename__ = 'test_upload' # __tablename__ = 'dummy_table' # __tablename__ = str(current_user.username + '_results') __table_args__ = {'autoload':True} metadata = Base.metadata Session = sessionmaker(bind=engine) session = Session() qry = session.query(Results) with open(output_file, 'w') as csvfile: outcsv = csv.writer(csvfile, delimiter=',',quotechar='"', quoting = csv.QUOTE_MINIMAL) header = Results.__table__.columns.keys() outcsv.writerow(header) for record in qry.all(): outcsv.writerow([getattr(record, c) for c in header ]) df_results = pd.read_csv(output_file) df_resTransform = df_results.loc[df_results.groupby(['fileName'])['probability'].idxmax()] dfGPS = pd.read_csv(app.config['DOWNLOAD_FOLDER']+current_user.username+'/geotags.csv') df_output =
pd.merge(df_resTransform, dfGPS, on='fileName')
pandas.merge
import time import d2l.torch import numpy as np import pandas as pd import torch.nn as nn import torch import torchsummary import torchvision.io from torchvision import datasets from torchvision import transforms from torch.utils import data import matplotlib.pyplot as plt import torch.nn.functional as F from sklearn.preprocessing import LabelEncoder from PIL import Image import os import kaggle class residual(nn.Module): def __init__(self, inputChannels, outputChannels, stride=1): super(residual, self).__init__() self.conv1 = nn.Conv2d(inputChannels, outputChannels, kernel_size=(3, 3), stride=stride, padding=(1, 1)) self.conv2 = nn.Conv2d(outputChannels, outputChannels, kernel_size=(3, 3), padding=(1, 1)) if stride != 1: self.conv3 = nn.Conv2d(inputChannels, outputChannels, stride=stride, kernel_size=(1, 1)) else: self.conv3 = None self.bn1 = nn.BatchNorm2d(outputChannels) self.bn2 = nn.BatchNorm2d(outputChannels) self.relu = nn.ReLU(inplace=True) def forward(self, x): y = self.relu(self.bn1(self.conv1(x))) y = self.bn2(self.conv2(y)) if self.conv3: x = self.conv3(x) y += x return self.relu(y) def initParameters(m): if type(m) == nn.Linear or type(m) == nn.Conv2d: nn.init.xavier_uniform_(m.weight) b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(2, 2)), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=(3, 3), stride=2, padding=1)) b1.apply(initParameters) def resnetBlock(inputChannel, outputChannel, numResidual, first=False): blk = [] for _ in range(numResidual): if not first and _ == 0: blk.append(residual(inputChannel, outputChannel, 2)) else: blk.append(residual(outputChannel, outputChannel)) return blk b2 = nn.Sequential(*resnetBlock(64, 64, 2, first=True)) b3 = nn.Sequential(*resnetBlock(64, 128, 2)) b4 = nn.Sequential(*resnetBlock(128, 256, 2)) b5 = nn.Sequential(*resnetBlock(256, 512, 2)) b2.apply(initParameters) b3.apply(initParameters) b4.apply(initParameters) b5.apply(initParameters) net = nn.Sequential(b1, b2, b3, b4, b5, nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(512, 176), nn.Softmax(dim=0)) net.apply(initParameters) class DataSets(torch.utils.data.Dataset): def __init__(self, isTrain): self.features, self.labels = getData(isTrain) self.isTrain = isTrain def __getitem__(self, item): if self.isTrain: return self.features[item].float(), self.labels[item] else: return self.features[item].float() def __len__(self): return len(self.features) labelNum = 0 def getData(isTrain): global labelNum trainIdx = pd.read_csv('/beginner/classification/data/leavesClassification\\miniImages.csv') testIdx = pd.read_csv('/data/leavesClassification/test.csv') le = LabelEncoder() label = torch.tensor(le.fit_transform(trainIdx['label']), dtype=torch.long) labelNum = len(label.unique()) dataBase = 'D:\\torchProjects\\data\\leavesClassification\\' Data = [] if isTrain: idx = trainIdx.set_index('image') else: label = None idx = testIdx.set_index('image') for Idx, (imgName, target) in enumerate(idx.iterrows()): if not Idx % 1000: print(Idx) Data.append(torchvision.io.read_image(dataBase + imgName)) return Data, label def loadData(train=True): Iter = data.DataLoader(DataSets(train), 64 if not train else batchSize) return Iter def accuracy(predict, y): mask = torch.ones(len(y)) mask = mask[predict.max(axis=1).indices == y] return float(sum(mask)) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' lr, numEpoch, batchSize = 0.22, 200, 64 # newNet = torchvision.models.resnet50(True) # newNet.fc = nn.Linear(newNet.fc.in_features, labelNum) # nn.init.xavier_uniform_(newNet.fc.weight) def main(): # torchsummary.summary(net, (3, 64, 64), device='cpu') # input() trainIter = loadData(True) # trainIter = [100, 10] print("已读取完数据,使用{}".format(device)) loss = nn.CrossEntropyLoss() # paramList = [param for name, param in newNet.named_parameters() if name not in ['fc.weight', 'fc.bias']] # optimizer = torch.optim.SGD([{'params': paramList}, {'params': newNet.fc.parameters(), 'lr': 0.1}], lr=0.01) net.load_state_dict(torch.load('./savedModel11.pkl')) # net[7] = nn.Sequential(nn.Linear(512, 256), # nn.BatchNorm1d(256), # nn.ReLU(), # nn.Dropout(), # nn.Linear(256, 176)) # net[7].apply(initParameters) newParamsId = list(map(id, net[7].parameters())) baseParams = filter(lambda x: id(x) not in newParamsId, net.parameters()) # net.to(device) flag = 0 lrList = [0.002, 0.0005] threshList = [50] lastScore = 0 for epoch in range(numEpoch): L = 0 accumulator = [0, 0, 0] optimizer = torch.optim.SGD([{'params': baseParams}, {'params': net[7].parameters(), 'lr': lrList[flag] * 200}], lr=lrList[flag]) if flag < len(threshList) and epoch > threshList[flag]: flag += 1 optimizer = torch.optim.SGD([{'params': baseParams}, {'params': net[7].parameters(), 'lr': lrList[flag] * 200}], lr=lrList[flag]) for X, y in trainIter: # X, y = X.to(device), y.to(device) optimizer.zero_grad() predict = torch.argmax(net(X), dim=1) l = loss(predict, y) l.backward() optimizer.step() L += l * len(y) accumulator[0] += float(l) * len(y) accumulator[1] += accuracy(predict, y) accumulator[2] += len(y) print(f'loss on train {accumulator[0] / accumulator[2]}, accu on train {accumulator[1] / accumulator[2]}') if accumulator[1] / accumulator[2] > 0.85 and accumulator[1] / accumulator[2] > lastScore: lastScore = accumulator[1] / accumulator[2] torch.save(net.state_dict(), './savedModel' + str(epoch) + '.pkl') # net.load_state_dict(torch.load('./savedModel.pkl')) # if accumulator[0] / accumulator[2] > bestScore: # bestScore = accumulator[0] / accumulator[2] # torch.save(net.state_dict(), './resNet18' + str(epoch) + '.pt') # pltX.append(epoch) # pltY.append(accumulator[0] / accumulator[2]) # pltAccu.append(accumulator[1] / accumulator[2]) # plt.plot(pltX, pltY, 'k') # plt.show() # plt.pause(0.01) def test(): net.load_state_dict(torch.load('./savedModel11.pkl', map_location='cpu')) # net.to('cuda') trainCSV = pd.read_csv('/data/leavesClassification/train.csv') testIter = loadData(False) le = LabelEncoder() label = pd.DataFrame(le.fit_transform(trainCSV['label'])) benchmark =
pd.concat((label, trainCSV), axis=1)
pandas.concat
""" Module for calling the FEWS REST API. The module contains one class and methods corresponding with the FEWS PI-REST requests: https://publicwiki.deltares.nl/display/FEWSDOC/FEWS+PI+REST+Web+Service#FEWSPIRESTWebService-GETtimeseries """ import pandas as pd import geopandas as gpd from shapely.geometry import Point import requests from fewsbokeh.time import Timer _GEODATUM_MAPPING = {"WGS 1984": "epsg:4326", "Rijks Driehoekstelsel": "epsg:28992"} _REQUEST_PARAMETERS_ALLOWED = { "timeseries": [ "locationIds", "startTime", "endTime", "filterId", "parameterIds", "qualifierIds", "documentVersion", "thinning", "onlyHeaders", "showStatistics" ] } class Api: """ FEWS PI-REST api it needs an server url and a logger. All variables related to PI-REST variables are defined camelCase. All others are snake_case. """ def __init__(self, url, logger, filterId, ssl_verify=False): self.document_format = "PI_JSON" self.url = url self.parameters = None self.locations = None self.logger = logger self.timer = Timer(logger) self.ssl_verify = ssl_verify self._get_parameters(filterId) self._get_locations(filterId) def _get_parameters(self, filterId): self.parameters = self.get_parameters(filterId=filterId) def _get_locations(self, filterId): self.locations = self.get_locations(filterId=filterId) def get_parameters(self, filterId): rest_url = f"{self.url}parameters" parameters = dict(filterId=filterId, documentFormat=self.document_format) self.timer.reset() response = requests.get(rest_url, parameters, verify=self.ssl_verify) self.timer.report("Parameters request") print(response.url) if response.status_code == 200: if "timeSeriesParameters" in response.json().keys(): par_df = pd.DataFrame(response.json()["timeSeriesParameters"]) par_df.set_index("id", inplace=True) result = par_df else: result = None self.timer.report("Parameters parsed") else: self.logger.error(f"FEWS Server responds {response.text}") return result def get_filters(self, filterId=None): """Get filters as dictionary, or sub-filters if a filterId is specified.""" rest_url = f"{self.url}filters" parameters = {"documentFormat": self.document_format, "filterId": filterId} self.timer.reset() response = requests.get(rest_url, parameters, verify=self.ssl_verify) self.timer.report("Filters request") if response.status_code == 200: if "filters" in response.json().keys(): filters = { item["id"]: { key: value for key, value in item.items() if not key == "id" } for item in response.json()["filters"] } result = filters else: self.logger.warning('no filter returned') result = None self.timer.report("Filters parsed") return result def get_headers(self, filterId, endTime, parameterIds=None, locationIds=None): """Get parameters. FilterId is required. A list of locations optional.""" result = None if not parameterIds: parameterIds = self.parameters.index.to_list() timeseries = self.get_timeseries( filterId=filterId, locationIds=locationIds, startTime=endTime, endTime=endTime, parameterIds=parameterIds, onlyHeaders=True, showStatistics=True ) if "timeSeries" in timeseries.keys(): result = [ts['header'] for ts in timeseries["timeSeries"]] # ids = list(set([ # series["header"]["parameterId"] for series in timeseries["timeSeries"]]) # ) # timesteps = {item: [] for item in ids} # for series in timeseries["timeSeries"]: # parameter_id = series["header"]["parameterId"] # timesteps[parameter_id] += [series["header"]["timeStep"]] # timesteps = {key: list(map(dict, set(tuple(sorted( # d.items())) for d in value))) for key, value in timesteps.items()} # qualifiers = {item: [] for item in ids} # for series in timeseries["timeSeries"]: # parameter_id = series["header"]["parameterId"] # if "qualifierId" in series["header"].keys(): # qualifiers[parameter_id] += [series["header"]["qualifierId"]] # qualifiers = {key: [ # list(x) for x in set(tuple(x) for x in value)] # for key, value in qualifiers.items()} else: self.logger.warning( f"no timeSeries in filter {filterId} for locations {locationIds}" ) result = None return result def to_parameter_names(self, parameterIds): """Convert parameterIds to names.""" return self.parameters.loc[parameterIds]["name"].to_list() def to_parameter_ids(self, names): """Convert parameterIds to parameterIds.""" return self.parameters.loc[self.parameters["name"].isin(names)].index.to_list() def get_locations(self, showAttributes=False, filterId=None, includeLocationRelations=False): """Get location en return as a GeoDataFrame.""" rest_url = f"{self.url}locations" parameters = dict( documentFormat=self.document_format, showAttributes=showAttributes, filterId=filterId, includeLocationRelations=includeLocationRelations ) self.timer.reset() response = requests.get(rest_url, parameters, verify=self.ssl_verify) self.timer.report("Locations request") gdf = gpd.GeoDataFrame() if response.status_code == 200: gdf = gpd.GeoDataFrame(response.json()["locations"]) gdf["geometry"] = gdf.apply( (lambda x: Point(float(x["x"]), float(x["y"]))), axis=1 ) gdf.crs = _GEODATUM_MAPPING[response.json()["geoDatum"]] gdf = gdf.to_crs("epsg:3857") gdf["x"] = gdf["geometry"].x gdf["y"] = gdf["geometry"].y drop_cols = [ col for col in gdf.columns if col not in [ "locationId", "description", "shortName", "parentLocationId", "relations", "x", "y", "geometry", ] ] gdf = gdf.drop(drop_cols, axis=1) gdf.index = gdf["locationId"] # self.locations = gdf self.timer.report("Locations parsed") return gdf def get_timeseries( self, filterId, locationIds=None, startTime=None, endTime=None, parameterIds=None, qualifierIds=None, documentVersion=None, thinning=None, onlyHeaders=False, unreliables=False, showStatistics=False, buffer=None ): """Get timeseries within a filter, optionally filtered by other variables.""" result = None rest_url = f"{self.url}timeseries" #print(f"thinning: {thinning}") parameters = { key: value for key, value in locals().items() if value and (key in _REQUEST_PARAMETERS_ALLOWED["timeseries"]) } #apply buffer (if supplied): if buffer: time_delta = pd.Timestamp(endTime) - pd.Timestamp(startTime) buffer_delta = time_delta * buffer parameters["startTime"] = ( pd.Timestamp(startTime) - buffer_delta ).strftime("%Y-%m-%dT%H:%M:%SZ") parameters["endTime"] = ( pd.Timestamp(endTime) + buffer_delta ).strftime("%Y-%m-%dT%H:%M:%SZ") parameters.update({"documentFormat": self.document_format}) self.timer.reset() #print(parameters) response = requests.get(rest_url, parameters, verify=self.ssl_verify) self.logger.debug(response.url) if response.status_code == 200: if onlyHeaders: self.timer.report("Timeseries headers request") result = response.json() elif "timeSeries" in response.json().keys(): self.timer.report("TimeSeries request") result = [] for time_series in response.json()["timeSeries"]: ts = {} if "header" in time_series.keys(): ts["header"] = time_series["header"] if "events" in time_series.keys(): df = pd.DataFrame(time_series["events"]) if not unreliables: df = df.loc[pd.to_numeric(df["flag"]) < 6] df["datetime"] = pd.to_datetime(df["date"]) + pd.to_timedelta( df["time"] ) df["value"] =
pd.to_numeric(df["value"])
pandas.to_numeric
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. import os import posixpath import numpy as np import pandas import tables import warnings from pyiron_base import GenericParameters, Settings from pyiron.atomistics.job.potentials import PotentialAbstract, find_potential_file_base __author__ = "<NAME>" __copyright__ = ( "Copyright 2020, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "development" __date__ = "Sep 1, 2017" s = Settings() class VaspPotentialAbstract(PotentialAbstract): """ Args: potential_df: default_df: selected_atoms: """ def __init__(self, potential_df=None, default_df=None, selected_atoms=None): if potential_df is None: potential_df = self._get_potential_df( plugin_name="vasp", file_name_lst={"potentials_vasp.csv"}, backward_compatibility_name="vasppotentials", ) super(VaspPotentialAbstract, self).__init__( potential_df=potential_df, default_df=default_df, selected_atoms=selected_atoms, ) def default(self): if self._default_df is not None: return pandas.concat( [ self._potential_df[ ( self._potential_df["Name"] == self._default_df.loc[atom].values[0] ) ] for atom in self._selected_atoms ] ) return None def find_default(self, element): if isinstance(element, set): element = element elif isinstance(element, list): element = set(element) elif isinstance(element, str): element = set([element]) else: raise TypeError("Only, str, list and set supported!") element_lst = list(element) if self._default_df is not None: merged_lst = list(set(self._selected_atoms + element_lst)) return pandas.concat( [ self._potential_df[ ( self._potential_df["Name"] == self._default_df.loc[atom].values[0] ) ] for atom in merged_lst ] ) return None def find(self, element): if isinstance(element, set): element = element elif isinstance(element, list): element = set(element) elif isinstance(element, str): element = set([element]) else: raise TypeError("Only, str, list and set supported!") element_lst = list(element) merged_lst = list(set(self._selected_atoms + element_lst)) return pandas.concat( [super(VaspPotentialAbstract, self).find({atom}) for atom in merged_lst] ) def list(self): if len(self._selected_atoms) != 0: return pandas.concat( [ super(VaspPotentialAbstract, self).find({atom}) for atom in self._selected_atoms ] ) else: return pandas.DataFrame({}) def list_potential_names(self): df = self.list() if len(df) != 0: return list(self.list()["Name"]) else: return [] @staticmethod def _return_potential_file(file_name): for resource_path in s.resource_paths: resource_path_potcar = os.path.join( resource_path, "vasp", "potentials", file_name ) if os.path.exists(resource_path_potcar): return resource_path_potcar return None def __dir__(self): return [val.replace("-", "_") for val in self.list_potential_names()] def __getitem__(self, item): item_replace = item.replace("_gga_pbe", "-gga-pbe").replace("_lda", "-lda") if item_replace in self.list_potential_names(): df = self.list() return self._return_potential_file( file_name=list(df[df["Name"] == item_replace]["Filename"])[0][0] ) selected_atoms = self._selected_atoms + [item] return VaspPotentialAbstract( potential_df=self._potential_df, default_df=self._default_df, selected_atoms=selected_atoms, ) class VaspPotentialFile(VaspPotentialAbstract): """ The Potential class is derived from the PotentialAbstract class, but instead of loading the potentials from a list, the potentials are loaded from a file. Args: xc (str): Exchange correlation functional ['PBE', 'LDA'] """ def __init__(self, xc=None, selected_atoms=None): potential_df = self._get_potential_df( plugin_name="vasp", file_name_lst={"potentials_vasp.csv"}, backward_compatibility_name="vasppotentials", ) if xc == "PBE": default_df = self._get_potential_default_df( plugin_name="vasp", file_name_lst={"potentials_vasp_pbe_default.csv"}, backward_compatibility_name="defaultvasppbe", ) potential_df = potential_df[(potential_df["Model"] == "gga-pbe")] elif xc == "GGA": default_df = self._get_potential_default_df( plugin_name="vasp", file_name_lst={"potentials_vasp_pbe_default.csv"}, backward_compatibility_name="defaultvasppbe", ) potential_df = potential_df[(potential_df["Model"] == "gga-pbe")] elif xc == "LDA": default_df = self._get_potential_default_df( plugin_name="vasp", file_name_lst={"potentials_vasp_lda_default.csv"}, backward_compatibility_name="defaultvasplda", ) potential_df = potential_df[(potential_df["Model"] == "lda")] else: raise ValueError( 'The exchange correlation functional has to be set and it can either be "LDA" or "PBE"' ) super(VaspPotentialFile, self).__init__( potential_df=potential_df, default_df=default_df, selected_atoms=selected_atoms, ) def add_new_element(self, parent_element, new_element): """ Adding a new user defined element with a different POTCAR file. It is assumed that the file exists Args: parent_element (str): Parent element new_element (str): Name of the new element (the name of the folder where the new POTCAR file exists """ ds = self.find_default(element=parent_element) ds["Species"].values[0][0] = new_element path_list = ds["Filename"].values[0][0].split("/") path_list[-2] = new_element name_list = ds["Name"].values[0].split("-") name_list[0] = new_element ds["Name"].values[0] = "-".join(name_list) ds["Filename"].values[0][0] = "/".join(path_list) self._potential_df = self._potential_df.append(ds) if new_element not in self._default_df.index.values: ds =
pandas.Series()
pandas.Series
#-------------------------------------------------------- # Import Packages #-------------------------------------------------------- from neorl.benchmarks import KP from neorl import PPO2, DQN, ACER, ACKTR, A2C from neorl import MlpPolicy, DQNPolicy from neorl import RLLogger import matplotlib.pyplot as plt import pandas as pd import numpy as np import sys #-------------------------------------------------------- # KP Data #-------------------------------------------------------- def KP_Data(n_objects): """" Function provides initial data to construct a Knapsack problem enviroment :param n_objects: (int) number of objects, choose either 50 or 100 :return: obj_list (list), optimum_knapsack (list), episode_length (int), weight_capacity (int) """ if n_objects == 50: #---50 objects obj_list = [[3,4],[8,4],[4,2],[9,4],[5,9],[3,6],[3,1],[9,2],[8,3],[6,8],[9,4],[4,2],[4,7],[5,1],[6,4],[5,8],[2,1],[5,7],[2,5],[7,4],\ [6,3],[8,2],[7,7],[4,8],[5,8],[2,1],[3,7],[7,4],[9,1],[1,4],[2,2],[6,4],[7,3],[2,6],[7,3],[9,1],[1,1],[1,9],[2,3],[5,8],[5,1],[3,9],\ [5,6],[5,7],[4,2],[2,3],[1,4],[8,3],[7,5],[1,6]] #optimal solution for comparison optimum_knapsack = [1,2,3,4,7,8,9,10,11,12,14,15,16,17,18,20,21,22,23,25,26,28,29,31,32,33,35,36,39,41,43,44,45,48,49] #episode length episode_length = 2 weight_capacity = 125 elif n_objects == 100: #---100 objects obj_list = [[1,4],[9,5],[9,7],[6,8],[3,7],[8,4],[8,6],[2,1],[2,6],[9,7],[8,2],[6,6],[6,9],[6,7],[4,4],[7,8],[1,9],[1,3],[5,3],[8,1],\ [5,7],[8,6],[2,8],[3,5],[3,8],[4,3],[8,2],[6,7],[4,9],[3,5],[9,1],[9,3],[5,6],[2,2],[2,1],[5,9],[6,2],[1,3],[8,3],[8,8],[3,8],[4,6],\ [4,7],[9,7],[9,4],[8,8],[2,7],[4,4],[1,2],[3,4],[8,8],[6,9],[4,7],[6,8],[8,7],[4,8],[7,9],[5,9],[8,8],[5,4],[2,2],[4,9],[1,4],[1,8],\ [8,6],[4,5],[9,1],[3,1],[6,2],[7,1],[1,6],[1,7],[9,7],[7,5],[7,1],[5,6],[3,5],[8,8],[8,9],[2,9],[3,1],[5,9],[7,8],[4,3],[2,8],[8,4],\ [9,5],[6,7],[8,2],[3,5],[2,6],[3,2],[9,7],[1,1],[6,7],[7,4],[6,4],[7,6],[6,4],[3,2]] #optimal solution for comparison optimum_knapsack = [2,3,6,7,8,10,11,12,14,15,16,19,20,22,26,27,28,31,32,34,35,37,39,40,44,45,46,48,51,55,59,60,61,65,66,67,68,69,\ 70,73,74,75,78,79,81,83,84,86,87,89,92,93,94,96,97,98,99,100] #episode length episode_length = 2 weight_capacity= 250 else: raise ValueError('--error: n_objects is not defined, either choose 50 or 100') return obj_list, optimum_knapsack, episode_length, weight_capacity #-------------------------------------------------------- # User Parameters for RL Optimisation #-------------------------------------------------------- try: total_steps=int(sys.argv[1]) #get time steps as external argument (for quick testing) except: total_steps=8000 #or use default total time steps to run all optimizers n_steps=12 #update frequency for A2C, ACKTR, PPO n_objects=50 #number of objects: choose 50 or 100 n_sum_steps=10 #this is for logging and averaging purposes #---get some data to initialize the enviroment--- obj_list, optimum_knapsack, episode_length, weight_capacity=KP_Data(n_objects=n_objects) #-------------------------------------------------------- # DQN #-------------------------------------------------------- #create an enviroment object from the class env=KP(obj_list=obj_list, optimum_knapsack=optimum_knapsack, episode_length=episode_length, weight_capacity=weight_capacity, method = 'dqn') #create a callback function to log data cb_dqn=RLLogger(check_freq=1) #To activate logger plotter, add following arguments to cb_dqn: #plot_freq = 50,n_avg_steps=10,pngname='DQN-reward' #Also applicable to ACER. #create a RL object based on the env object dqn = DQN(DQNPolicy, env=env, seed=1) #optimise the enviroment class dqn.learn(total_timesteps=total_steps*n_sum_steps, callback=cb_dqn) #-------------------------------------------------------- # ACER #-------------------------------------------------------- env=KP(obj_list=obj_list, optimum_knapsack=optimum_knapsack, episode_length=episode_length, weight_capacity=weight_capacity, method = 'acer') cb_acer=RLLogger(check_freq=1) acer = ACER(MlpPolicy, env=env, seed=1) acer.learn(total_timesteps=total_steps*n_sum_steps, callback=cb_acer) #-------------------------------------------------------- # PPO #-------------------------------------------------------- env=KP(obj_list=obj_list, optimum_knapsack=optimum_knapsack, episode_length=episode_length, weight_capacity=weight_capacity, method = 'ppo') cb_ppo=RLLogger(check_freq=1) #To activate logger plotter, add following arguments to cb_ppo: #plot_freq = 1, n_avg_steps=10, pngname='PPO-reward' #Also applicable to A2C, ACKTR. ppo = PPO2(MlpPolicy, env=env, n_steps=n_steps, seed = 1) ppo.learn(total_timesteps=total_steps, callback=cb_ppo) #-------------------------------------------------------- # ACKTR #-------------------------------------------------------- env=KP(obj_list=obj_list, optimum_knapsack=optimum_knapsack, episode_length=episode_length, weight_capacity=weight_capacity, method = 'acktr') cb_acktr=RLLogger(check_freq=1) acktr = ACKTR(MlpPolicy, env=env, n_steps=n_steps, seed = 1) acktr.learn(total_timesteps=total_steps, callback=cb_acktr) #-------------------------------------------------------- # A2C #-------------------------------------------------------- env=KP(obj_list=obj_list, optimum_knapsack=optimum_knapsack, episode_length=episode_length, weight_capacity=weight_capacity, method = 'a2c') cb_a2c=RLLogger(check_freq=1) a2c = A2C(MlpPolicy, env=env, n_steps=n_steps, seed = 1) a2c.learn(total_timesteps=total_steps, callback=cb_a2c) #-------------------------------- #Summary Results #-------------------------------- print('--------------- DQN results ---------------') print('The best value of x found:', cb_dqn.xbest) print('The best value of y found:', cb_dqn.rbest) print('--------------- ACER results ---------------') print('The best value of x found:', cb_acer.xbest) print('The best value of y found:', cb_acer.rbest) print('--------------- PPO results ---------------') print('The best value of x found:', cb_ppo.xbest) print('The best value of y found:', cb_ppo.rbest) print('--------------- ACKTR results ---------------') print('The best value of x found:', cb_acktr.xbest) print('The best value of y found:', cb_acktr.rbest) print('--------------- A2C results ---------------') print('The best value of x found:', cb_a2c.xbest) print('The best value of y found:', cb_a2c.rbest) #-------------------------------- #Summary Plots #-------------------------------- log_dqn = pd.DataFrame(cb_dqn.r_hist).cummax(axis = 0).values log_acer = pd.DataFrame(cb_acer.r_hist).cummax(axis = 0).values log_ppo = pd.DataFrame(cb_ppo.r_hist).cummax(axis = 0).values log_acktr =
pd.DataFrame(cb_acktr.r_hist)
pandas.DataFrame
"""Module for data preprocessing. You can consolidate data with `data_consolidation` and optimize it for example for machine learning models. Then you can preprocess the data to be able to achieve even better results. There are many small functions that you can use separately, but there is main function `preprocess_data` that call all the functions based on input params for you. For inverse preprocessing use `preprocess_data_inverse` """ from __future__ import annotations from typing import TYPE_CHECKING, Generic, Any, cast, Union from dataclasses import dataclass, astuple import warnings import importlib.util from typing_extensions import Literal import numpy as np import pandas as pd import mylogging from .custom_types import DataFrameOrArrayGeneric if TYPE_CHECKING: from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler ScalerType = Union[MinMaxScaler, RobustScaler, StandardScaler] # Lazy load # import scipy.signal # import scipy.stats # from sklearn import preprocessing def data_consolidation( data: pd.DataFrame | np.ndarray, predicted_column: int | str = None, other_columns: int = 1, datalength: int = 0, datetime_column: str | int | None = "", resample_freq: str | None = None, resample_function: Literal[None, "sum", "mean"] = "sum", embedding: Literal[None, "label", "one-hot"] = "label", unique_threshold: float = 0.6, remove_nans_threshold: float = 0.85, remove_nans_or_replace: str | float = "interpolate", dtype: str | np.dtype | pd.DataFrame | list = "float32", ) -> pd.DataFrame: """Transform input data in various formats and shapes into data in defined shape optimal for machine learning models, that other functions rely on. If you have data in other format than dataframe, use `load_data` first. Note: This function return only numeric data. All string columns will be removed (use embedding if you need) Predicted column is moved on index 0 !!! Args: data (pd.DataFrame | np.ndarray): Input data in well standardized format. predicted_column (int | str, optional): Predicted column name or index. Move on first column and test if number. If None, it's ignored. Defaults to None. other_columns (int, optional): Whether use other columns or only predicted one. Defaults to 1. datalength (int, optional): Data length after resampling. Defaults to 0. datetime_column (str | int | None, optional): Name or index of datetime column. Defaults to None. resample_freq (str | None, optional): Frequency of resampled data. Defaults to None. resample_function (Literal[None, 'sum', 'mean'], optional): 'sum' or 'mean'. Whether sum resampled columns, or use average. Defaults to 'sum'. embedding(Literal[None, "label", "one-hot"], optional): 'label' or 'one-hot'. Categorical encoding. Create numbers from strings. 'label' give each category (unique string) concrete number. Result will have same number of columns. 'one-hot' create for every category new column. Only columns, where are strings repeating (unique_threshold) will be used. Defaults to 'label'. unique_threshold(float, optional): Remove string columns, that have to many categories. E.g 0.9 define, that if column contain more that 90% of NOT unique values it's deleted. Min is 0, max is 1. It will remove ids, hashes etc. Defaults to 0.6. remove_nans_threshold (float, optional): From 0 to 1. Require that many non-nan numeric values to not be deleted. E.G if value is 0.9 with column with 10 values, 90% must be numeric that implies max 1 np.nan can be presented, otherwise column will be deleted. Defaults to 0.85. remove_nans_or_replace (str | float, optional): 'interpolate', 'remove', 'neighbor', 'mean' or value. Remove or replace rest nan values. If you want to keep nan, setup value to np.nan. If you want to use concrete value, use float or int type. Defaults to 'interpolate'. dtype (str | np.dtype | pd.DataFrame | list, optional): Output dtype. For possible inputs check pandas function `astype`. Defaults to 'float32'. Raises: KeyError, TypeError: May happen if wrong params. E.g. if predicted column name not found in dataframe. Returns: np.ndarray, pd.DataFrame, str: Data in standardized form. Data array for prediction - predicted column on index 0, and column for ploting as pandas dataframe. Data has the same type as input. """ if not isinstance(data, pd.DataFrame): try: data = pd.DataFrame(data) except Exception as err: raise ( RuntimeError( mylogging.return_str( "Check configuration file for supported formats. It can be path of file (csv, json, parquet...) or it " "can be data in python format (numpy array, pandas dataframe or series, dict or list, ). It can also be other " "format, but then it have to work with pd.DataFrame(your_data)." f"\n\n Detailed error: \n\n {err}", caption="Data load failed", ) ) ) data_for_predictions_df = data.copy() if data_for_predictions_df.shape[0] < data_for_predictions_df.shape[1]: mylogging.info( "Input data must be in shape (n_samples, n_features) that means (rows, columns) Your shape is " f" {data.shape}. It's unusual to have more features than samples. Probably wrong shape.", caption="Data transposed warning!!!", ) data_for_predictions_df = data_for_predictions_df.T if predicted_column or predicted_column == 0: if isinstance(predicted_column, str): predicted_column_name = predicted_column if predicted_column_name not in data_for_predictions_df.columns: raise KeyError( mylogging.return_str( f"Predicted column name - '{predicted_column}' not found in data. Change 'predicted_column' in config" f". Available columns: {list(data_for_predictions_df.columns)}", caption="Column not found error", ) ) elif isinstance(predicted_column, int) and isinstance( data_for_predictions_df.columns[predicted_column], str ): predicted_column_name = data_for_predictions_df.columns[predicted_column] else: predicted_column_name = "Predicted column" data_for_predictions_df.rename( columns={data_for_predictions_df.columns[predicted_column]: predicted_column_name}, inplace=True, ) # Make predicted column index 0 data_for_predictions_df.insert( 0, predicted_column_name, data_for_predictions_df.pop(predicted_column_name) ) else: predicted_column_name = None reset_index = False if datetime_column not in [None, False, ""]: try: if isinstance(datetime_column, str): data_for_predictions_df.set_index(datetime_column, drop=True, inplace=True) else: data_for_predictions_df.set_index( data_for_predictions_df.columns[datetime_column], drop=True, inplace=True, ) data_for_predictions_df.index = pd.to_datetime(data_for_predictions_df.index) except Exception: raise KeyError( mylogging.return_str( f"Datetime name / index from config - '{datetime_column}' not found in data or not datetime format. " f"Change in config - 'datetime_column'. Available columns: {list(data_for_predictions_df.columns)}" ) ) # Convert strings numbers (e.g. '6') to numbers data_for_predictions_df = data_for_predictions_df.apply(pd.to_numeric, errors="ignore") if embedding: data_for_predictions_df = categorical_embedding( data_for_predictions_df, embedding=embedding, unique_threshold=unique_threshold, ) # Keep only numeric columns data_for_predictions_df = data_for_predictions_df.select_dtypes(include="number") if predicted_column_name: # TODO [predictit] setup other columns in define input so every model can choose and simplier config input types if not other_columns: data_for_predictions_df = pd.DataFrame(data_for_predictions_df[predicted_column_name]) if predicted_column_name not in data_for_predictions_df.columns: raise KeyError( mylogging.return_str( "Predicted column is not number datatype. Setup correct 'predicted_column' in py. " f"Available columns with number datatype: {list(data_for_predictions_df.columns)}", caption="Prediction available only on number datatype column.", ) ) if datetime_column not in [None, False, ""]: if resample_freq: data_for_predictions_df.sort_index(inplace=True) if resample_function == "mean": data_for_predictions_df = data_for_predictions_df.resample(resample_freq).mean() elif resample_function == "sum": data_for_predictions_df = data_for_predictions_df.resample(resample_freq).sum() data_for_predictions_df = data_for_predictions_df.asfreq(resample_freq, fill_value=0) else: data_for_predictions_df.index.freq = pd.infer_freq(data_for_predictions_df.index) if data_for_predictions_df.index.freq is None: reset_index = True mylogging.warn( "Datetime index was provided from config, but frequency guess failed. " "Specify 'resample_freq' in config to resample and have equal sampling if you want " "to have date in plot or if you want to have equal sampling. Otherwise index will " "be reset because cannot generate date indexes of predicted values.", caption="Datetime frequency not inferred", ) # If frequency is not configured nor infered or index is not datetime, it's reset to be able to generate next results if reset_index or not isinstance( data_for_predictions_df.index, (pd.core.indexes.datetimes.DatetimeIndex, pd._libs.tslibs.timestamps.Timestamp), ): data_for_predictions_df.reset_index(inplace=True, drop=True) # Define concrete dtypes in number columns if dtype: data_for_predictions_df = data_for_predictions_df.astype(dtype, copy=False) # Trim the data on defined length data_for_predictions_df = data_for_predictions_df.iloc[-datalength:, :] data_for_predictions_df = pd.DataFrame(data_for_predictions_df) # Remove columns that have to much nan values if remove_nans_threshold: data_for_predictions_df = data_for_predictions_df.iloc[:, 0:1].join( data_for_predictions_df.iloc[:, 1:].dropna( axis=1, thresh=len(data_for_predictions_df) * (remove_nans_threshold) ) ) # Replace rest of nan values if remove_nans_or_replace == "interpolate": data_for_predictions_df.interpolate(inplace=True) elif remove_nans_or_replace == "remove": data_for_predictions_df.dropna(axis=0, inplace=True) elif remove_nans_or_replace == "neighbor": # Need to use both directions if first or last value is nan data_for_predictions_df.fillna(method="ffill", inplace=True) elif remove_nans_or_replace == "mean": for col in data_for_predictions_df.columns: data_for_predictions_df[col] = data_for_predictions_df[col].fillna( data_for_predictions_df[col].mean() ) if isinstance(remove_nans_or_replace, (int, float) or np.isnan(remove_nans_or_replace)): data_for_predictions_df.fillna(remove_nans_or_replace, inplace=True) # Forward fill and interpolate can miss som nans if on first row else: data_for_predictions_df.fillna(method="bfill", inplace=True) return data_for_predictions_df @dataclass class PreprocessedData(Generic[DataFrameOrArrayGeneric]): """To be able to do inverse preprocessing (function preprocess_data_inverse), there are some values going with preprocessed data. Attributes: preprocessed (DataFrameOrArrayGeneric): Preprocessed data. last_undiff_value (Any): Last value from predicted column. This is necessary for inverse diff transformation. final_scaler("ScalerType" | None): For inverse standardization. """ __slots__ = ("preprocessed", "last_undiff_value", "final_scaler") preprocessed: DataFrameOrArrayGeneric last_undiff_value: Any final_scaler: "ScalerType" | None def __iter__(self): yield from astuple(self) def preprocess_data( data: DataFrameOrArrayGeneric, remove_outliers: int | float | None = False, smoothit: None | tuple[int, int] = None, correlation_threshold: float | int | None = None, data_transform: Literal["difference", None] = None, standardizeit: Literal[None, "standardize", "01", "-11", "robust"] = "standardize", bins: None | int = False, binning_type: Literal["cut", "qcut"] = "cut", ) -> PreprocessedData[DataFrameOrArrayGeneric]: """Main preprocessing function, that call other functions based on configuration. Mostly for preparing data to be optimal as input into machine learning models. Args: data (DataFrameOrArrayGeneric): Input data that we want to preprocess. remove_outliers (int | float | None, optional): Whether remove unusual values far from average. Defaults to False. smoothit (None | tuple[int, int], optional): Whether smooth the data with Savitzky-Golay filter. Insert tuple with (window, polynom_order) parameters as in `smooth` function e.g (11, 2). Defaults to False. correlation_threshold (float | None, optional): Whether remove columns that are corelated less than configured value Value must be between 0 and 1. But if 0, than None correlation threshold is applied. Defaults to 0. data_transform (Literal["difference", None], optional): Whether transform data. 'difference' transform data into differences between neighbor values. Defaults to None. standardizeit (Literal[None, "standardize", "-11", "01", "robust"], optional): How to standardize data. '01' and '-11' means scope from to for normalization. 'robust' use RobustScaler and 'standard' use StandardScaler - mean is 0 and std is 1. If no standardization, use None. Defaults to 'standardize'. bins (None | int, optional): Whether to discretize values into defined number of bins (their average). None make no discretization, int define number of bins. Defaults to False. binning_type (str, optional): "cut" for equal size of bins intervals (different number of members in bins) or "qcut" for equal number of members in bins and various size of bins. It uses pandas cut or qcut function. Defaults to 'cut'. Returns: PreprocessedData: If input in numpy array, then also output in array, if dataframe input, then dataframe output. """ preprocessed = data.copy() if remove_outliers: preprocessed = remove_the_outliers(preprocessed, threshold=remove_outliers) if smoothit: preprocessed = smooth(preprocessed, smoothit[0], smoothit[1]) if correlation_threshold: preprocessed = keep_corelated_data(preprocessed, threshold=correlation_threshold) if data_transform == "difference": if isinstance(preprocessed, np.ndarray): last_undiff_value = preprocessed[-1, 0] else: last_undiff_value = preprocessed.iloc[-1, 0] preprocessed = do_difference(preprocessed) else: last_undiff_value = None if standardizeit: preprocessed, final_scaler = standardize(preprocessed, used_scaler=standardizeit) else: final_scaler = None if bins: preprocessed = binning(preprocessed, bins, binning_type) preprocessed = cast(DataFrameOrArrayGeneric, preprocessed) return PreprocessedData[DataFrameOrArrayGeneric](preprocessed, last_undiff_value, final_scaler) def preprocess_data_inverse( data: np.ndarray, standardizeit: str | None = None, final_scaler: "ScalerType" | None = None, data_transform: Literal["difference", None] = None, last_undiff_value: None | Any = None, ) -> np.ndarray: """Undo all data preprocessing to get real data. Not not inverse all the columns, but only predicted one. Only predicted column is also returned. Order is reverse than preprocessing. Output is in numpy array. Args: data (np.ndarray): One dimension (one column) preprocessed data. Do not use ndim > 1. standardizeit (str | None, optional): Whether use inverse standardization and what. Choices [None, 'standardize', '-11', '01', 'robust']. Defaults to False. final_scaler ("ScalerType" | None, optional): Scaler used in standardization. Defaults to None. data_transform (Literal["difference", None], optional): Use data transformation. Choices [False, 'difference]. Defaults to False. last_undiff_value (None | Any, optional): Last used value in difference transform. Defaults to None. Returns: np.ndarray: Inverse preprocessed data Raises: TypeError: If variable necessary for particular inverse conversion is not defined. """ if standardizeit: if final_scaler: if TYPE_CHECKING: final_scaler = cast(ScalerType, final_scaler) data = final_scaler.inverse_transform(data.reshape(1, -1)).ravel() else: raise TypeError( mylogging.return_str( "If using `standardizeit`, then you need to define `final_scaler` for inverse transform." ) ) if data_transform == "difference": if last_undiff_value: last_undiff_value = cast(float, last_undiff_value) data = inverse_difference(data, last_undiff_value) else: raise TypeError( mylogging.return_str( "If using `data_transform == 'difference'`, then you need to define `last_undiff_value` for inverse transform." ) ) return data def categorical_embedding( data: pd.DataFrame, embedding: Literal["label", "one-hot"] = "label", unique_threshold: float = 0.6 ) -> pd.DataFrame: """Transform string categories such as 'US', 'FR' into numeric values, that can be used in machine learning model. Args: data (pd.DataFrame): Data with string (pandas Object dtype) columns. embedding("label", "one-hot", optional): 'label' or 'one-hot'. Categorical encoding. Create numbers from strings. 'label' give each category (unique string) concrete number. Result will have same number of columns. 'one-hot' create for every category new column. Only columns, where are strings repeating (unique_threshold) will be used. Defaults to "label". unique_threshold(float, optional): Remove string columns, that have to many categories (ids, hashes etc.). E.g 0.9 defines that in column of length 100, max number of categories to not to be deleted is 10 (90% non unique repeating values). Defaults to 0.6. Min is 0, max is 1. Defaults is 0.6. Returns: pd.DataFrame: Dataframe where string columns transformed to numeric. """ data_for_embedding = data.copy() to_drop = [] for i in data_for_embedding.select_dtypes(exclude=["number"]): try: if (data_for_embedding[i].nunique() / len(data_for_embedding[i])) > (1 - unique_threshold): to_drop.append(i) continue data_for_embedding[i] = data_for_embedding[i].astype("category", copy=False) if embedding == "label": data_for_embedding[i] = data_for_embedding[i].cat.codes if embedding == "one-hot": data_for_embedding = data_for_embedding.join(pd.get_dummies(data_for_embedding[i])) to_drop.append(i) except Exception: to_drop.append(i) # Drop columns with too few categories - drop all columns at once to better performance data_for_embedding.drop(to_drop, axis=1, inplace=True) return data_for_embedding ### Data preprocessing functions... def keep_corelated_data(data: DataFrameOrArrayGeneric, threshold: float = 0.5) -> DataFrameOrArrayGeneric: """Remove columns that are not corelated enough to predicted columns. Predicted column is supposed to be 0. Args: data (DataFrameOrArrayGeneric): Time series data. threshold (float, optional): After correlation matrix is evaluated, all columns that are correlated less than threshold are deleted. Defaults to 0.5. Returns: DataFrameOrArrayGeneric: Data with no columns that are not corelated with predicted column. If input in numpy array, then also output in array, if dataframe input, then dataframe output. """ if data.ndim == 1 or data.shape[1] == 1: return data if isinstance(data, np.ndarray): # If some row have no variance - RuntimeWarning warning in correlation matrix computing and then in comparing with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) corr = np.corrcoef(data.T) corr = np.nan_to_num(corr, 0) range_array = np.array(range(corr.shape[0])) columns_to_del = range_array[abs(corr[0]) <= threshold] data = np.delete(data, columns_to_del, axis=1) elif isinstance(data, pd.DataFrame): corr = data.corr().iloc[0, :] corr = corr[~corr.isnull()] names_to_del = list(corr[abs(corr) <= threshold].index) data.drop(columns=names_to_del, inplace=True) return data def remove_the_outliers( data: DataFrameOrArrayGeneric, threshold: int | float = 3, main_column: int | str = 0 ) -> DataFrameOrArrayGeneric: """Remove values far from mean - probably errors. If more columns, then only rows that have outlier on predicted column will be deleted. Predicted column is supposed to be 0. Args: data (DataFrameOrArrayGeneric): Time series data. Must have ndim = 2, if univariate, reshape... threshold (int, optional): How many times must be standard deviation from mean to be ignored. Defaults to 3. main_column (int | str, optional): Main column that we relate outliers to. Defaults to 0. Returns: DataFrameOrArrayGeneric: Cleaned data. Examples: >>> data = np.array([[1, 3, 5, 2, 3, 4, 5, 66, 3]]) >>> print(remove_the_outliers(data)) [[ 1 3 5 2 3 4 5 66 3]] """ if isinstance(data, np.ndarray): data_mean = data[:, main_column].mean() data_std = data[:, main_column].std() range_array = np.array(range(data.shape[0])) names_to_del = range_array[abs(data[:, main_column] - data_mean) > threshold * data_std] data = np.delete(data, names_to_del, axis=0) elif isinstance(data, pd.DataFrame): if isinstance(main_column, int): main_column = data.columns[main_column] data_mean = data[main_column].mean() data_std = data[main_column].std() data = data[abs(data[main_column] - data_mean) < threshold * data_std] return data def do_difference(data: DataFrameOrArrayGeneric) -> DataFrameOrArrayGeneric: """Transform data into neighbor difference. For example from [1, 2, 4] into [1, 2]. Args: data (DataFrameOrArrayGeneric): Data. Returns: DataFrameOrArrayGeneric: Differenced data in same format as inserted. Examples: >>> data = np.array([1, 3, 5, 2]) >>> print(do_difference(data)) [ 2 2 -3] """ if isinstance(data, np.ndarray): return np.diff(data, axis=0) elif isinstance(data, (pd.DataFrame, pd.Series)): return data.diff().iloc[1:] else: raise TypeError(mylogging.return_str("Only DataFrame, Series or numpy array supported.")) def inverse_difference(differenced_predictions: np.ndarray, last_undiff_value: float) -> np.ndarray: """Transform do_difference transform back. Args: differenced_predictions (np.ndarray): One dimensional!! differenced data from do_difference function. last_undiff_value (float): First value to computer the rest. Returns: np.ndarray: Normal data, not the additive series. Examples: >>> data = np.array([1, 1, 1, 1]) >>> print(inverse_difference(data, 1)) [2 3 4 5] """ assert differenced_predictions.ndim == 1, "Data input must be one-dimensional." return np.insert(differenced_predictions, 0, last_undiff_value).cumsum()[1:] def standardize( data: DataFrameOrArrayGeneric, used_scaler: Literal["standardize", "01", "-11", "robust"] = "standardize" ) -> tuple[DataFrameOrArrayGeneric, "ScalerType"]: """Standardize or normalize data. More standardize methods available. Predicted column is supposed to be 0. Args: data (DataFrameOrArrayGeneric): Time series data. used_scaler (Literal['standardize', '01', '-11', 'robust'], optional): '01' and '-11' means scope from to for normalization. 'robust' use RobustScaler and 'standardize' use StandardScaler - mean is 0 and std is 1. Defaults to 'standardize'. Returns: tuple[DataFrameOrArrayGeneric, ScalerType]: Standardized data and scaler for inverse transformation. """ if not importlib.util.find_spec("sklearn"): raise ImportError( "sklearn library is necessary for standardize function. Install via `pip install sklearn`" ) from sklearn import preprocessing if used_scaler == "01": scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)) elif used_scaler == "-11": scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)) elif used_scaler == "robust": scaler = preprocessing.RobustScaler() elif used_scaler == "standardize": scaler = preprocessing.StandardScaler() else: raise TypeError( mylogging.return_str( f"Your scaler {used_scaler} not in options. Use one of ['01', '-11', 'robust', 'standardize']" ) ) # First normalized values are calculated, then scler just for predicted value is computed again so no full matrix is necessary for inverse if isinstance(data, pd.DataFrame): normalized = data.copy() normalized.iloc[:, :] = scaler.fit_transform(data.copy().values) final_scaler = scaler.fit(data.values[:, 0].reshape(-1, 1)) else: normalized = scaler.fit_transform(data) final_scaler = scaler.fit(data[:, 0].reshape(-1, 1)) return normalized, final_scaler def standardize_one_way( data: DataFrameOrArrayGeneric, min: float, max: float, axis: Literal[0, 1] = 0, inplace: bool = False, ) -> DataFrameOrArrayGeneric: """Own implementation of standardization. No inverse transformation available. Reason is for builded applications to do not carry sklearn with build. Args: data (DataFrameOrArrayGeneric): Data. min (float): Minimum in transformed axis. max (float): Max in transformed axis. axis (Literal[0, 1], optional): 0 to columns, 1 to rows. Defaults to 0. inplace (bool, optional): If true, no copy will be returned, but original object. Defaults to False. Returns: DataFrameOrArrayGeneric: Standardized data. If numpy inserted, numpy returned, same for dataframe. If input in numpy array, then also output in array, if dataframe input, then dataframe output. """ if not inplace: data = data.copy() values = data.values if isinstance(data, pd.DataFrame) else data if axis == 0: values[:, :] = (values - np.nanmin(values, axis=0)) / ( np.nanmax(values, axis=0) - np.nanmin(values, axis=0) ) * (max - min) + min elif axis == 1: values[:, :] = ( (values.T - np.nanmin(values.T, axis=0)) / (np.nanmax(values.T, axis=0) - np.nanmin(values.T, axis=0)) * (max - min) + min ).T return data def binning( data: DataFrameOrArrayGeneric, bins: int, binning_type: Literal["cut", "qcut"] = "cut" ) -> DataFrameOrArrayGeneric: """Discretize value on defined number of bins. It will return the same shape of data, where middle (average) values of bins interval returned. Args: data (DataFrameOrArrayGeneric): Data for preprocessing. ndim = 2 (n_samples, n_features). bins (int): Number of bins - unique values. binning_type (Literal["cut", "qcut"], optional): "cut" for equal size of bins intervals (different number of members in bins) or "qcut" for equal number of members in bins and various size of bins. It uses pandas cut or qcut function. Defaults to "cut". Returns: DataFrameOrArrayGeneric: Discretized data of same type as input. If input in numpy array, then also output in array, if dataframe input, then dataframe output. Example: >>> import mydatapreprocessing.preprocessing as mdpp ... >>> mdpp.binning(np.array(range(10)), bins=3, binning_type="cut") array([[1.4955], [1.4955], [1.4955], [1.4955], [4.5 ], [4.5 ], [4.5 ], [7.5 ], [7.5 ], [7.5 ]]) """ convert_to_array = True if isinstance(data, np.ndarray) else False data =
pd.DataFrame(data)
pandas.DataFrame
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Experiments consist of a # - workload # - data generator # - query generator # - oracle # - sketches # # Running an experiment will generate a csv containing the experimental results # This can be fed into a function/script/notebook to process and plot the results # # For an existing problem and new, experimental sketch, one just needs to create a sketch that wraps the # implementation with the simple API used in the test. # # For a novel problem, one must also write a query generator and an oracle that will compute the correct answer and calculate the error # when comparing to a sketch's answer. # # # Replicates in an experiment come from # - reordering / generating new data sequences (runs) # - randomization at the sketch level (repetitions) # To make things parallelizable we # - For each run, write a workload's data sequence to disk (unless it's just drawing from a distribution) # - Compute the oracle's answers for that sequence and cache it on disk # - Create a bunch of jobs to evaluate a sketch on the data sequence using the cached answers # # Since our jobs contain nested class instances, python's default pickle doesn't work # So we use dill to pickle the instances ourselves and unpickle when its run ############################################################################################################################# import os, psutil import logging import time from random import uniform import pandas as pd import numpy as np from enum import Enum import copy import dill # needed to pickle classes/functions for use in multiprocessing from collections import deque import importlib from concurrent.futures import ProcessPoolExecutor from experiment_utils import makeDict ############ class ResultAccumulator: def __init__(self, save_answers=False): self.results = [] self.timings = [] self.save_answers = save_answers def addResult(self, sketch, error, answer, truth, query, workload): if not self.save_answers: answer = None query_info = query.info() sketch_info = sketch.info() workload_info = workload.info() result = makeDict(error=error, answer=answer, truth=truth, **query_info, **workload_info, **sketch_info) #qid=query.qid, **workload_info, **sketch_info) self.results.append(result) def extend(self, results: list): self.results.extend(results) def merge(self, results): self.results.extend(results.results) self.timings.extend(results.timings) def toDataFrame(self): df =
pd.DataFrame(self.results)
pandas.DataFrame
#%% import os import xml import heapq import warnings import numpy as np import pandas as pd from tqdm import tqdm from shapely import wkt import geopandas as gpd from xml.dom import minidom from collections import deque import matplotlib.pyplot as plt from haversine import haversine, Unit from shapely.geometry import Point, LineString, box from utils.classes import Digraph from utils.pickle_helper import PickleSaver from utils.log_helper import LogHelper, logbook from utils.interval_helper import merge_intervals from coords.coordTransfrom_shp import coord_transfer from utils.geo_helper import gdf_to_geojson, gdf_to_postgis, edge_parallel_offset from setting import filters as way_filters from setting import SZ_BBOX, GBA_BBOX, PCL_BBOX, FT_BBOX warnings.filterwarnings('ignore') #%% class Digraph_OSM(Digraph): def __init__(self, bbox=None, xml_fn='../input/futian.xml', road_info_fn='../input/osm_road_speed.xlsx', combine_link=True, reverse_edge=True, two_way_offeset=True, logger=None, upload_to_db='shenzhen', *args, **kwargs): assert not(bbox is None and xml_fn is None), "Please define one of the bbox or the xml path." if bbox is not None: xml_fn = f"../cache/osm_{'_'.join(map(str, bbox))}.xml" self.download_map(xml_fn, bbox, True) self.df_nodes, self.df_edges = self.get_road_network(xml_fn, road_info_fn) self.node_dis_memo = {} self.route_planning_memo = {} self.logger = logger super().__init__(self.df_edges[['s', 'e', 'dist']].values, self.df_nodes.to_dict(orient='index'), *args, **kwargs) self.df_edges.set_crs('EPSG:4326', inplace=True) self.df_nodes.set_crs('EPSG:4326', inplace=True) if combine_link: self.df_edges = self.combine_rids() self.df_edges.reset_index(drop=True, inplace=True) if reverse_edge: self.df_edges = self.add_reverse_edge(self.df_edges) self.df_edges.reset_index(drop=True, inplace=True) self.df_edges.loc[:, 'eid'] = self.df_edges.index if combine_link or reverse_edge: # self.df_nodes = self.df_nodes.loc[ np.unique(np.hstack((self.df_edges.s.values, self.df_edges.e.values))),:] super().__init__(self.df_edges[['s', 'e', 'dist']].values, self.df_nodes.to_dict(orient='index'), *args, **kwargs) if two_way_offeset: self.df_edges = self.edge_offset() order_atts = ['eid', 'rid', 'name', 's', 'e', 'order', 'road_type', 'dir', 'lanes', 'dist', 'oneway', 'is_ring', 'geometry', 'geom_origin'] self.df_edges = self.df_edges[order_atts] def download_map(self, fn, bbox, verbose=False): """Download OSM map of bbox from Internet. Args: fn (function): [description] bbox ([type]): [description] verbose (bool, optional): [description]. Defaults to False. """ if os.path.exists(fn): return if verbose: print("Downloading {}".format(fn)) if isinstance(bbox, list) or isinstance(bbox, np.array): bbox = ",".join(map(str, bbox)) import requests url = f'http://overpass-api.de/api/map?bbox={bbox}' r = requests.get(url, stream=True) with open(fn, 'wb') as ofile: for chunk in r.iter_content(chunk_size=1024): if chunk: ofile.write(chunk) if verbose: print("Downloaded success.\n") return True def get_road_network(self, fn, fn_road, in_sys='wgs', out_sys='wgs', signals=True, road_type_filter=way_filters['auto']['highway'], keep_cols=['name', 'rid', 'order', 'road_type', 'lanes', 's', 'e', 'dist', 'oneway', 'maxspeed', 'geometry'] ): dom = xml.dom.minidom.parse(fn) root = dom.documentElement nodelist = root.getElementsByTagName('node') waylist = root.getElementsByTagName('way') # nodes nodes = [] for node in tqdm(nodelist, 'Parse nodes: \t'): pid = node.getAttribute('id') taglist = node.getElementsByTagName('tag') info = {'pid': int(pid), 'y':float(node.getAttribute('lat')), 'x':float(node.getAttribute('lon'))} for tag in taglist: if tag.getAttribute('k') == 'traffic_signals': info['traffic_signals'] = tag.getAttribute('v') nodes.append(info) nodes = gpd.GeoDataFrame(nodes) nodes.loc[:, 'geometry'] = nodes.apply(lambda i: Point(i.x, i.y), axis=1) # FIXME "None of ['pid'] are in the columns" nodes.set_index('pid', inplace=True) if in_sys != out_sys: nodes = coord_transfer(nodes, in_sys, out_sys) nodes.loc[:,['x']], nodes.loc[:,['y']] = nodes.geometry.x, nodes.geometry.y # traffic_signals self.traffic_signals = nodes[~nodes.traffic_signals.isna()].index.unique() # edges edges = [] for way in tqdm(waylist, 'Parse ways: \t'): taglist = way.getElementsByTagName('tag') info = { tag.getAttribute('k'): tag.getAttribute('v') for tag in taglist } if 'highway' not in info or info['highway'] in road_type_filter: continue info['rid'] = int(way.getAttribute('id')) ndlist = way.getElementsByTagName('nd') nds = [] for nd in ndlist: nd_id = nd.getAttribute('ref') nds.append( nd_id ) for i in range( len(nds)-1 ): edges.append( { 'order': i, 's':nds[i], 'e':nds[i+1], 'road_type': info['highway'], **info} ) edges = pd.DataFrame( edges ) edges.loc[:, ['s','e']] = pd.concat((edges.s.astype(np.int), edges.e.astype(np.int)), axis=1) edges = edges.merge( nodes[['x','y']], left_on='s', right_index=True ).rename(columns={'x':'x0', 'y':'y0'}) \ .merge( nodes[['x','y']], left_on='e', right_index=True ).rename(columns={'x':'x1', 'y':'y1'}) edges = gpd.GeoDataFrame( edges, geometry = edges.apply( lambda i: LineString( [[i.x0, i.y0], [i.x1, i.y1]] ), axis=1 ) ) edges.loc[:, 'dist'] = edges.apply(lambda i: haversine((i.y0, i.x0), (i.y1, i.x1), unit=Unit.METERS), axis=1) edges.sort_values(['rid', 'order'], inplace=True) # nodes filter ls = np.unique(np.hstack((edges.s.values, edges.e.values))) nodes = nodes.loc[ls,:] if fn_road and os.path.exists(fn_road): road_speed = pd.read_excel(fn_road)[['road_type', 'v']] edges = edges.merge( road_speed, on ='road_type' ) keep_cols = [i for i in keep_cols if i in edges.columns] return nodes, edges[keep_cols] def add_reverse_edge(self, df_edges): """Add reverse edge. Args: df_edges (gpd.GeoDataFrame): The edge file parsed from OSM. Check: rid = 34900355 net.df_edges.query( f"rid == {rid} or rid == -{rid}" ).sort_values(['order','rid']) """ def _juedge_oneway(oneway_flag): # https://wiki.openstreetmap.org/wiki/Key:oneway # reversible, alternating: https://wiki.openstreetmap.org/wiki/Tag:oneway%3Dreversible if oneway_flag == 'yes' or oneway_flag == '1' or oneway_flag == True: flag = True elif oneway_flag == '-1': flag = True # way.is_reversed = True elif oneway_flag == 'no' or oneway_flag == '0' or oneway_flag == False: flag = False elif oneway_flag in ['reversible', 'alternating']: flag = False else: flag = False if self.logger is not None: self.logger.warning(f'new road type detected at: {oneway_flag}') return flag df_edges.oneway = df_edges.oneway.fillna('no').apply(_juedge_oneway) df_edges.loc[:, 'is_ring'] = df_edges.geometry.apply( lambda x: x.is_ring) df_edge_rev = df_edges.query('oneway == False and not is_ring') df_edge_rev.loc[:, 'order'] = -df_edge_rev.order - 1 df_edge_rev.loc[:, 'geometry'] = df_edge_rev.geometry.apply( lambda x: LineString(x.coords[::-1]) ) df_edge_rev.rename(columns={'s':'e', 'e':'s'}, inplace=True) df_edge_rev.loc[:, 'dir'] = -1 df_edges.loc[:, 'dir'] = 1 return df_edges.append(df_edge_rev).reset_index(drop=True) def get_intermediate_point(self): """Identify the road segment with nodes of 1 indegree and 1 outdegree. Returns: [list]: Road segement list. """ return self.degree.query( "indegree == 1 and outdegree == 1" ).index.unique().tolist() def combine_links_of_rid(self, rid, omit_rids, df_edges, plot=False, save_folder=None): """Combine OSM link. Args: rid (int): The id of link in OSM. omit_rids (df): Subset of df_edges, the start point shoule meet: 1) only has 1 indegree and 1 outdegree; 2) not the traffic_signals point. df_edges (df, optional): [description]. Defaults to net.df_edges. Returns: pd.DataFrame: The links after combination. Example: `new_roads = combine_links_of_rid(rid=25421053, omit_rids=omit_rids, plot=True, save_folder='../cache')` """ new_roads = df_edges.query(f"rid == @rid").set_index('order') combine_orders = omit_rids.query(f"rid == @rid").order.values combine_seg_indxs = merge_intervals([[x-1, x] for x in combine_orders if x > 0]) drop_index = [] for start, end, _ in combine_seg_indxs: segs = new_roads.query(f"{start} <= order <= {end}") pids = np.append(segs.s.values, segs.iloc[-1]['e']) new_roads.loc[start, 'geometry'] = LineString([[self.node[p]['x'], self.node[p]['y']] for p in pids]) new_roads.loc[start, 'dist'] = segs.dist.sum() new_roads.loc[start, 'e'] = segs.iloc[-1]['e'] drop_index += [ i for i in range(start+1, end+1) ] new_roads.drop(index=drop_index, inplace=True) new_roads.reset_index(inplace=True) if save_folder is not None: gdf_to_geojson(new_roads, os.path.join(save_folder, f"road_{rid}_after_combination.geojson")) if plot: new_roads.plot() return new_roads def combine_rids(self, ): omit_pids = [ x for x in self.get_intermediate_point() if x not in self.traffic_signals ] omit_records = self.df_edges.query( f"s in @omit_pids" ) omit_rids = omit_records.rid.unique().tolist() keep_records = self.df_edges.query( f"rid not in @omit_rids" ) res = [] for rid in tqdm(omit_rids, 'Combine links: \t'): res.append(self.combine_links_of_rid(rid, omit_records, self.df_edges)) comb_rids = gpd.GeoDataFrame(
pd.concat(res)
pandas.concat
import pandas as pd df =
pd.read_csv('data.csv', delimiter=',')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Data analysis for golf courses. """ # Import modules import geopandas as gpd import pandas as pd import numpy as np import glob import matplotlib.pyplot as plt from scipy import stats # Define path to data path = '/Users/jryan4/Dropbox (University of Oregon)/Parks_and_Golf/data/' # Define save path savepath = '/Users/jryan4/Dropbox (University of Oregon)/Parks_and_Golf/figures/' # Define save data path datapath = '/Users/jryan4/Dropbox (University of Oregon)/Parks_and_Golf/repo/' ############################################################################### # Number of golf courses in GolfNationwide.com directory ############################################################################### database_list = glob.glob(path + 'golfnationwide/*.csv') df_list = [] for infile in database_list: # Read file data =
pd.read_csv(infile)
pandas.read_csv
import pandas as pd import numpy as np import re from tqdm.notebook import tqdm import random import sklearn.metrics from sklearn.pipeline import Pipeline # For XGBoost Regression and Classification import xgboost as xgb from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV, cross_val_score, KFold from sklearn.metrics import mean_squared_error, f1_score, r2_score, mean_absolute_error import catboost from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor import lightgbm from sklearn.linear_model import LinearRegression from sklearn.ensemble import VotingRegressor class ModelsParameters: def __init__(self, dictionary_params): self.dictionary_params = dictionary_params """ I need this function for having all keys for the coming functions """ ## Functions for creating a dictionary by simply inputting values of the params for ## each type of estimator # Create dictionary with all params of RandomForest def random_forest_params( n_estimators=[100], # The number of trees in the forest. criterion=['mse'], # {“mse”, “mae”}, default=”mse”. The function to measure the quality of a split. max_depth=[None], # The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples min_samples_split=[2], # The minimum number of samples required to split an internal node min_samples_leaf=[1], # The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf=[0.0], # The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node max_features=['auto'], # {“auto”, “sqrt”, “log2”}, int or float, default=”auto” The number of features to consider when looking for the best split. If auto, == n_features [if not so many] max_leaf_nodes=[None], # pruning? [FIX] min_impurity_decrease=[0.0], min_impurity_split=[None], bootstrap=[True], oob_score=[False], # whether to use out-of-bag samples to estimate the R^2 on unseen data [should be true? FIX but then it will be less comparable] n_jobs=[None], random_state=[None], verbose=[0], warm_start=[False], ccp_alpha=[0.0], # Complexity parameter used for Minimal Cost-Complexity Pruning [FIX]. The subtree with the largest cost complexity that is smaller than ccp_alpha will be chosen. max_samples=[None], # bootstrap is True, the number of samples to draw from X to train each base estimator. If None, == to X.shape[0] ): params_dict = { 'n_estimators': [n_estimators][0], 'criterion': [criterion][0], 'max_depth': [max_depth][0], 'min_samples_split': [min_samples_split][0], 'min_samples_leaf': [min_samples_leaf][0], 'min_weight_fraction_leaf': [min_weight_fraction_leaf][0], 'max_features': [max_features][0], 'max_leaf_nodes': [max_leaf_nodes][0], 'min_impurity_decrease': [min_impurity_decrease][0], 'min_impurity_split': [min_impurity_split][0], 'bootstrap': [bootstrap][0], 'oob_score': [oob_score][0], 'n_jobs': [n_jobs][0], 'random_state': [random_state][0], 'verbose': [verbose][0], 'warm_start': [warm_start][0], 'ccp_alpha': [ccp_alpha][0], 'max_samples': [max_samples][0], } return params_dict def rf_params_pipeline(self, existing_prefix='', prefix_to_add='rf__'): params_dict = { prefix_to_add+'n_estimators': self.dictionary_params[existing_prefix+'n_estimators'], prefix_to_add+'criterion': self.dictionary_params[existing_prefix+'criterion'], prefix_to_add+'max_depth': self.dictionary_params[existing_prefix+'max_depth'], prefix_to_add+'min_samples_split': self.dictionary_params[existing_prefix+'min_samples_split'], prefix_to_add+'min_samples_leaf': self.dictionary_params[existing_prefix+'min_samples_leaf'], prefix_to_add+'min_weight_fraction_leaf': self.dictionary_params[existing_prefix+'min_weight_fraction_leaf'], prefix_to_add+'max_features': self.dictionary_params[existing_prefix+'max_features'], prefix_to_add+'max_leaf_nodes': self.dictionary_params[existing_prefix+'max_leaf_nodes'], prefix_to_add+'min_impurity_decrease': self.dictionary_params[existing_prefix+'min_impurity_decrease'], prefix_to_add+'min_impurity_split': self.dictionary_params[existing_prefix+'min_impurity_split'], prefix_to_add+'bootstrap': self.dictionary_params[existing_prefix+'bootstrap'], prefix_to_add+'oob_score': self.dictionary_params[existing_prefix+'oob_score'], prefix_to_add+'n_jobs': self.dictionary_params[existing_prefix+'n_jobs'], prefix_to_add+'random_state': self.dictionary_params[existing_prefix+'random_state'], prefix_to_add+'verbose': self.dictionary_params[existing_prefix+'verbose'], prefix_to_add+'warm_start': self.dictionary_params[existing_prefix+'warm_start'], prefix_to_add+'ccp_alpha': self.dictionary_params[existing_prefix+'ccp_alpha'], prefix_to_add+'max_samples': self.dictionary_params[existing_prefix+'max_samples'], } return params_dict def adaboost_params( base_estimator=[None], n_estimators=[50], learning_rate=[1.0], loss=['linear'], random_state=[None] ): params_dict = { 'base_estimator': [base_estimator][0], 'n_estimators': [n_estimators][0], 'learning_rate': [learning_rate][0], 'loss': [loss][0], 'random_state': [random_state][0] } return params_dict def ab_params_pipeline(self, existing_prefix='', prefix_to_add='ab__'): params_dict = { prefix_to_add+'base_estimator': self.dictionary_params[existing_prefix+'base_estimator'], prefix_to_add+'n_estimators': self.dictionary_params[existing_prefix+'n_estimators'], prefix_to_add+'learning_rate': self.dictionary_params[existing_prefix+'learning_rate'], prefix_to_add+'loss': self.dictionary_params[existing_prefix+'loss'], prefix_to_add+'random_state': self.dictionary_params[existing_prefix+'random_state'], } return params_dict def gradientboost_params( loss=['ls'], learning_rate=[0.1], n_estimators=[100], subsample=[1.0], criterion=['friedman_mse'], min_samples_split=[2], min_samples_leaf=[1], min_weight_fraction_leaf=[0.0], max_depth=[3], min_impurity_decrease=[0.0], # min_impurity_split=[None], # deprecated FIX init=[None], random_state=[None], max_features=[None], alpha=[0.9], verbose=[0], max_leaf_nodes=[None], warm_start=[False], presort=['deprecated'], validation_fraction=[0.1], n_iter_no_change=[None], tol=[0.0001], ccp_alpha=[0.0], ): params_dict = { 'loss': [loss][0], 'learning_rate': [learning_rate][0], 'n_estimators': [n_estimators][0], 'subsample': [subsample][0], 'criterion': [criterion][0], 'min_samples_split': [min_samples_split][0], 'min_samples_leaf': [min_samples_leaf][0], 'min_weight_fraction_leaf': [min_weight_fraction_leaf][0], 'max_depth': [max_depth][0], 'min_impurity_decrease': [min_impurity_decrease][0], # 'min_impurity_split': [min_impurity_split][0], 'init': [init][0], 'random_state': [random_state][0], 'max_features': [max_features][0], 'alpha': [alpha][0], 'verbose': [verbose][0], 'max_leaf_nodes': [max_leaf_nodes][0], 'warm_start': [warm_start][0], 'presort': [presort][0], 'validation_fraction': [validation_fraction][0], 'n_iter_no_change': [n_iter_no_change][0], 'tol': [tol][0], 'ccp_alpha': [ccp_alpha][0], } return params_dict def gb_params_pipeline(self, existing_prefix='', prefix_to_add='gb__'): params_dict = { prefix_to_add+'loss': self.dictionary_params[existing_prefix+'loss'], prefix_to_add+'learning_rate': self.dictionary_params[existing_prefix+'learning_rate'], prefix_to_add+'n_estimators': self.dictionary_params[existing_prefix+'n_estimators'], prefix_to_add+'subsample': self.dictionary_params[existing_prefix+'subsample'], prefix_to_add+'criterion': self.dictionary_params[existing_prefix+'criterion'], prefix_to_add+'min_samples_split': self.dictionary_params[existing_prefix+'min_samples_split'], prefix_to_add+'min_samples_leaf': self.dictionary_params[existing_prefix+'min_samples_leaf'], prefix_to_add+'min_weight_fraction_leaf': self.dictionary_params[existing_prefix+'min_weight_fraction_leaf'], prefix_to_add+'max_depth': self.dictionary_params[existing_prefix+'max_depth'], prefix_to_add+'min_impurity_decrease': self.dictionary_params[existing_prefix+'min_impurity_decrease'], # prefix_to_add+'min_impurity_split': self.dictionary_params[existing_prefix+'min_impurity_split'], prefix_to_add+'init': self.dictionary_params[existing_prefix+'init'], prefix_to_add+'random_state': self.dictionary_params[existing_prefix+'random_state'], prefix_to_add+'max_features': self.dictionary_params[existing_prefix+'max_features'], prefix_to_add+'alpha': self.dictionary_params[existing_prefix+'alpha'], prefix_to_add+'verbose': self.dictionary_params[existing_prefix+'verbose'], prefix_to_add+'max_leaf_nodes': self.dictionary_params[existing_prefix+'max_leaf_nodes'], prefix_to_add+'warm_start': self.dictionary_params[existing_prefix+'warm_start'], prefix_to_add+'presort': self.dictionary_params[existing_prefix+'presort'], prefix_to_add+'validation_fraction': self.dictionary_params[existing_prefix+'validation_fraction'], prefix_to_add+'n_iter_no_change': self.dictionary_params[existing_prefix+'n_iter_no_change'], prefix_to_add+'tol': self.dictionary_params[existing_prefix+'tol'], prefix_to_add+'ccp_alpha': self.dictionary_params[existing_prefix+'ccp_alpha'], } return params_dict # XGBoost def xgb_params( objective=['reg:squarederror'], n_estimators=[100], max_depth=[10], learning_rate=[0.3], verbosity=[0], booster=[None], # 'gbtree' tree_method=['auto'], n_jobs=[1], gamma=[0], min_child_weight=[None], max_delta_step=[None], subsample=[None], colsample_bytree=[None], colsample_bylevel=[None], colsample_bynode=[None], reg_alpha=[0], reg_lambda=[0], scale_pos_weight=[None], base_score=[None], random_state=[random.randint(0, 500)], missing=[np.nan], num_parallel_tree=[None], monotone_constraints=[None], interaction_constraints=[None], importance_type=['gain'] ): params_dict = { 'objective': [objective][0], 'n_estimators': [n_estimators][0], 'max_depth': [max_depth][0], 'learning_rate': [learning_rate][0], 'verbosity': [verbosity][0], 'booster': [booster][0], 'tree_method': [tree_method][0], 'n_jobs': [n_jobs][0], 'gamma': [gamma][0], 'min_child_weight': [min_child_weight][0], 'max_delta_step': [max_delta_step][0], 'subsample': [subsample][0], 'colsample_bytree': [colsample_bytree][0], 'colsample_bylevel': [colsample_bylevel][0], 'colsample_bynode': [colsample_bynode][0], 'reg_alpha': [reg_alpha][0], 'reg_lambda': [reg_lambda][0], 'scale_pos_weight': [scale_pos_weight][0], 'base_score': [base_score][0], 'random_state': [random_state][0], 'missing': [missing][0], 'num_parallel_tree': [num_parallel_tree][0], 'monotone_constraints': [monotone_constraints][0], 'interaction_constraints': [interaction_constraints][0], 'importance_type': [importance_type][0] } return params_dict def xgb_params_pipeline(self, existing_prefix='', prefix_to_add='xgb__'): params_dict = { prefix_to_add+'objective': self.dictionary_params[existing_prefix+'objective'], prefix_to_add+'n_estimators': self.dictionary_params[existing_prefix+'n_estimators'], prefix_to_add+'max_depth': self.dictionary_params[existing_prefix+'max_depth'], prefix_to_add+'learning_rate': self.dictionary_params[existing_prefix+'learning_rate'], prefix_to_add+'verbosity': self.dictionary_params[existing_prefix+'verbosity'], prefix_to_add+'booster': self.dictionary_params[existing_prefix+'booster'], prefix_to_add+'tree_method': self.dictionary_params[existing_prefix+'tree_method'], prefix_to_add+'n_jobs': self.dictionary_params[existing_prefix+'n_jobs'], prefix_to_add+'gamma': self.dictionary_params[existing_prefix+'gamma'], prefix_to_add+'min_child_weight': self.dictionary_params[existing_prefix+'min_child_weight'], prefix_to_add+'max_delta_step': self.dictionary_params[existing_prefix+'max_delta_step'], prefix_to_add+'subsample': self.dictionary_params[existing_prefix+'subsample'], prefix_to_add+'colsample_bytree': self.dictionary_params[existing_prefix+'colsample_bytree'], prefix_to_add+'colsample_bylevel': self.dictionary_params[existing_prefix+'colsample_bylevel'], prefix_to_add+'colsample_bynode': self.dictionary_params[existing_prefix+'colsample_bynode'], prefix_to_add+'reg_alpha': self.dictionary_params[existing_prefix+'reg_alpha'], prefix_to_add+'reg_lambda': self.dictionary_params[existing_prefix+'reg_lambda'], prefix_to_add+'scale_pos_weight': self.dictionary_params[existing_prefix+'scale_pos_weight'], prefix_to_add+'base_score': self.dictionary_params[existing_prefix+'base_score'], prefix_to_add+'random_state': self.dictionary_params[existing_prefix+'random_state'], prefix_to_add+'missing': self.dictionary_params[existing_prefix+'missing'], prefix_to_add+'num_parallel_tree': self.dictionary_params[existing_prefix+'num_parallel_tree'], prefix_to_add+'monotone_constraints': self.dictionary_params[existing_prefix+'monotone_constraints'], prefix_to_add+'interaction_constraints': self.dictionary_params[existing_prefix+'interaction_constraints'], prefix_to_add+'importance_type': self.dictionary_params[existing_prefix+'importance_type'], } return params_dict # Greedy search? def create_spaces(self, prefix_pipeline, estimator_name): df = pd.DataFrame(data=[self.dictionary_params]) params_range = {} for col in df.columns: number = 0 string = 0 # not needed so far nones = 0 trees = 0 string_key = str(col) for i in df[col][0]: type_i = type(i) if (type_i == int) | (type_i == float): number += 1 elif type_i == str: # not needed string += 1 elif i == None: # not needed? nones += 1 elif (type_i == DecisionTreeRegressor): trees += 1 # Ranges for simple numeric values - FIX check upon them if (number == len(df)) & (col != prefix_pipeline+'verbose') & \ (col != (prefix_pipeline+'random_state')) & (col != (prefix_pipeline+'verbosity')) \ & (col != (prefix_pipeline+'n_jobs')) & (trees == 0) & + (col != (prefix_pipeline+'n_iter_no_change')) & \ (col != (prefix_pipeline+'missing')) & (col != (prefix_pipeline+'validation_fraction')): output = df[col][0][0] if estimator_name == 'RandomForest': range_output, lower_output, upper_output = ModelsParameters.rf_ranges(self, col, prefix_pipeline, output) elif estimator_name == 'AdaBoost': range_output, lower_output, upper_output = ModelsParameters.ab_ranges(self, col, prefix_pipeline, output, trees) elif estimator_name == 'GradientBoosting': range_output, lower_output, upper_output = ModelsParameters.gb_ranges(self, col, prefix_pipeline, output) elif estimator_name == 'XGBoost': range_output, lower_output, upper_output = ModelsParameters.xgb_ranges(self, col, prefix_pipeline, output) # Further Conditions on the allowed output range and append data_to_append = ModelsParameters.create_outputs(self, output, range_output, string_key, lower_output, upper_output) params_range.update(data_to_append) # Special Range for AdaBoost trees' max_depth elif (trees > 0): data_to_append = ModelsParameters.range_ab_decision_tree(df, self.dictionary_params, col, prefix_pipeline) params_range.update(data_to_append) # Else cases - just repeat the same value else: data_to_append = {string_key: [i]} params_range.update(data_to_append) return params_range def rf_ranges(self, col, prefix_pipeline, output): if col == prefix_pipeline+'n_estimators': range_output = 5 elif col == prefix_pipeline+'max_depth': range_output = 3 elif col == prefix_pipeline+'min_samples_split': range_output = 2 elif col == prefix_pipeline+'min_samples_leaf': range_output = 1 elif col == prefix_pipeline+'min_weight_fraction_leaf': range_output = 0.05 elif col == prefix_pipeline+'max_features': range_output = 0 elif col == prefix_pipeline+'max_leaf_nodes': range_output = 0 elif col == prefix_pipeline+'min_impurity_decrease': range_output = 0.2 elif col == prefix_pipeline+'ccp_alpha': range_output = 0.2 elif col == prefix_pipeline+'max_samples': range_output = 0 lower_output = output - range_output upper_output = output + range_output return range_output, lower_output, upper_output def ab_ranges(self, col, prefix_pipeline, output, trees): # FIX later: for not needed, thinking of merging with the estimator for tree if trees == 0: if col == prefix_pipeline+'n_estimators': range_output = 5 elif col == prefix_pipeline+'learning_rate': range_output = 0.01 # FIX: is learning rate max == 1? else: pass lower_output = output - range_output upper_output = output + range_output return range_output, lower_output, upper_output def range_ab_decision_tree(df, start_params, col, prefix_pipeline): # # For AdaBoost range of base_estimator max_depth tree = df[col][0][0] # not needed for i in start_params[col]: x = re.split("\=", str(i)) y = re.split("\)", str(x[1]))[0] max_depth = int(str(y)) output = sklearn.tree.DecisionTreeRegressor(max_depth=max_depth) if col == prefix_pipeline+'base_estimator': range_output = 3 lower_output = max_depth - range_output upper_output = max_depth + range_output if (range_output != 0) & (lower_output > 0): data_to_append = {str(col): [ sklearn.tree.DecisionTreeRegressor(max_depth=lower_output), output, sklearn.tree.DecisionTreeRegressor(max_depth=upper_output) ]} elif (range_output != 0) & (lower_output <= 0): data_to_append = {str(col): [ output, sklearn.tree.DecisionTreeRegressor(max_depth=upper_output) ]} elif (range_output == 0): data_to_append = {str(col): [ output ]} return data_to_append def gb_ranges(self, col, prefix_pipeline, output): if col == prefix_pipeline+'learning_rate': range_output = 0 # FIX: is learning rate max == 1? elif col == prefix_pipeline+'n_estimators': range_output = 5 elif col == prefix_pipeline+'subsample': range_output = 0 elif col == prefix_pipeline+'min_samples_split': range_output = 2 elif col == prefix_pipeline+'min_samples_leaf': range_output = 1 elif col == prefix_pipeline+'min_weight_fraction_leaf': range_output = 0.05 elif col == prefix_pipeline+'max_depth': range_output = 3 elif col == prefix_pipeline+'min_impurity_decrease': range_output = 0.2 elif col == prefix_pipeline+'max_features': range_output = 0 elif col == prefix_pipeline+'alpha': range_output = 0 elif col == prefix_pipeline+'max_leaf_nodes': range_output = 0 elif col == prefix_pipeline+'tol': range_output = 0 elif col == prefix_pipeline+'ccp_alpha': range_output = 0 lower_output = output - range_output upper_output = output + range_output return range_output, lower_output, upper_output def xgb_ranges(self, col, prefix_pipeline, output): if col == prefix_pipeline+'n_estimators': range_output = 5 elif col == prefix_pipeline+'max_depth': range_output = 3 elif col == prefix_pipeline+'learning_rate': range_output = 0 # FIX: is learning rate max == 1? elif col == prefix_pipeline+'gamma': range_output = 0 elif col == prefix_pipeline+'min_child_weight': range_output = 0 elif col == prefix_pipeline+'max_delta_stop': range_output = 0 elif col == prefix_pipeline+'subsample': range_output = 0 elif col == prefix_pipeline+'colsample_bytree': range_output = 0 elif col == prefix_pipeline+'colsample_bylevel': range_output = 0 elif col == prefix_pipeline+'colsample_bynode': range_output = 0 elif col == prefix_pipeline+'reg_alpha': range_output = 0 elif col == prefix_pipeline+'reg_lambda': range_output = 0 elif col == prefix_pipeline+'scale_pos_weight': range_output = 0 elif col == prefix_pipeline+'base_score': range_output = 0 elif col == prefix_pipeline+'monotone_constraints': range_output = 0 elif col == prefix_pipeline+'interaction_constraints': range_output = 0 lower_output = output - range_output upper_output = output + range_output return range_output, lower_output, upper_output ## def create_outputs(self, output, range_output, string_key, lower_output, upper_output): if range_output == 0: data_to_append = {string_key: [ output ]} elif (range_output != 0) & (lower_output > 0): data_to_append = {string_key: [ lower_output, output, upper_output ]} # FIX could be controversial in certain instances in case you want lower bound to be 0 elif (range_output != 0) & (lower_output == 0): data_to_append = {string_key: [ output, upper_output ]} elif (lower_output < 0) & (output != 0): data_to_append = {string_key: [ 0, output, upper_output]} elif (lower_output < 0) & (output == 0): data_to_append = {string_key: [ output, upper_output]} return data_to_append def best_model_pipeline(X, Y, pipeline, params_range, cv, scoring='neg_mean_squared_error'): optimal_model = GridSearchCV(pipeline, params_range, scoring=scoring, cv=cv, refit=True) # when there is a list in scoring, it needs an explicit one. NP because here comes "s", not "scoring" print('Below are the params_range') print(params_range) result = optimal_model.fit(X, Y) best_params = result.best_estimator_ # result.best_params_ needed when refit=False dict_parameters_pipeline = {} for param in params_range: # list of parameters dict_parameters_pipeline[str(param)] = [best_params.get_params()[str(param)]] print('Below are the best params') print(dict_parameters_pipeline) return result, dict_parameters_pipeline ## def NestedCV(X, Y, params, pipeline, prefix_pipeline=None, estimator=None, estimator_name=None, NUM_TRIALS=1, # for repeated. Note that the sample is anew every time CHECK inner_n_splits=5, outer_n_splits=5, adaptive_grid='yes', scoring=['neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error'], ): best_params = pd.DataFrame() df_feature_importance = pd.DataFrame() mse = list() mae = list() rmse = list() score_list = list() score_metric = list() # PROPOSAL: evaluate with metrics listed. BLOCK for metrics] ## WRONG FIX. it is just differnet metric at the end. Shouldn0t be in loop like this for s in scoring: # PROPOSAL: nested CV for i in tqdm(range(NUM_TRIALS)): # configure the cross-validation procedure cv_outer = KFold(n_splits=outer_n_splits, shuffle=True, random_state=i) # [BLOCK for nested CV? for train_ix, test_ix in cv_outer.split(X): # split data X_train, X_test = X.iloc[train_ix, :], X.iloc[test_ix, :] Y_train, Y_test = Y.iloc[train_ix], Y.iloc[test_ix] # configure the cross-validation procedure cv_inner = KFold(n_splits=inner_n_splits, shuffle=True, random_state=i) if (pipeline==None) & (adaptive_grid=='yes'): params = ModelsParameters(params).create_spaces(prefix_pipeline='', estimator=estimator) # create range RF params in format for pipeline result, best_params_grid = ModelsParameters.best_model_pipeline(X_train, Y_train, pipeline=estimator, params_range=params, scoring=s, cv=cv_inner) #print(best_params_grid) print('done without pipeline') # FIX test this version feature_importances = pd.DataFrame(result.best_estimator_.feature_importances_.reshape(1, -1), columns=X_train.columns) df_feature_importance = df_feature_importance.append( feature_importances, ignore_index=True) # FIX features importance of the best model. Excluded with pipeline because there are no elif (pipeline!=None) & (adaptive_grid=='yes'): params = ModelsParameters(params).create_spaces(prefix_pipeline=prefix_pipeline, estimator_name=estimator_name) # create range RF params in format for pipeline result, best_params_grid = ModelsParameters.best_model_pipeline(X_train, Y_train, pipeline=pipeline, params_range=params, scoring=s, cv=cv_inner) for value in best_params_grid: data_to_update = {str(value): best_params_grid[value]} params.update(data_to_update) #print(best_params_grid) print('done one with pipeline') elif (pipeline!=None) & (adaptive_grid=='no'): result, best_params_grid = ModelsParameters.best_model_pipeline(X_train, Y_train, pipeline=pipeline, params_range=params, scoring=s, cv=cv_inner) #print(best_params_grid) print('done one with pipeline with no adaptive grid') elif (pipeline==None) & (adaptive_grid=='no'): result, best_params_grid = ModelsParameters.best_model_pipeline(X_train, Y_train, pipeline=estimator, params_range=params, scoring=s, cv=cv_inner) #print(best_params_grid) print('done without pipeline and without adaptive grid') feature_importances = pd.DataFrame(result.best_estimator_.feature_importances_.reshape(1, -1), columns=X_train.columns) df_feature_importance = df_feature_importance.append( feature_importances, ignore_index=True) # PROPOSAL: END function for metrics # evaluate model on the hold out dataset (i.e. the test set) # FIX the score_ variables names if s == 'neg_mean_squared_error': #best_model.fit(X_train, Y_train) #score = best_model.score(X_test, Y_test) # for using pipeline? score = mean_squared_error(Y_test, result.predict(X_test)) # result.predict(X_test): needed when refit=False score_list.append(score) # which quickest? FIX score_metric.append('MSE') print('MSE=%.3f, est=%.3f' % (score, -result.best_score_)) elif s == 'neg_mean_absolute_error': score = mean_absolute_error(Y_test, result.predict(X_test)) score_list.append(score) score_metric.append('MAE') print('MAE=%.3f, est=%.3f' % (score, -result.best_score_)) elif s == 'neg_root_mean_squared_error': score = mean_squared_error(Y_test, result.predict(X_test), squared=False) score_list.append(score) score_metric.append('RMSE') print('RMSE=%.3f, est=%.3f' % (score, -result.best_score_)) # best parameters best_params = best_params.append(best_params_grid, ignore_index=True) # [BLOCK for proper output? or just not? best_params['Score Value'] = score_list best_params['Metric'] = score_metric return best_params, df_feature_importance """ FIND overall metrics/hyperparameters as sum/count/.. """ def find_best_params(best_params): df = pd.DataFrame() # Pretransform the format of the params dataframe for col in best_params.loc[:, (best_params.columns != 'Score Value') & (best_params.columns != 'Metric')]: # & (best_params.columns != 'RMSE')]: new_list = [] for i in range(len(best_params)): new_item = best_params[str(col)][i][0] new_list.append(new_item) best_params[str(col)] = new_list for metric in best_params['Metric'].unique(): data = {} selected_metric_df = best_params.loc[best_params['Metric']==metric] for col in selected_metric_df.columns: number = 0 string = 0 nones = 0 trees = 0 string_col = str(col) for i in selected_metric_df[col]: type_i = type(i) if (type_i == int) | (type_i == float): number += 1 elif type_i == str: string += 1 elif i == None: nones += 1 elif (type_i == DecisionTreeRegressor): # for Adaboost trees += 1 # If the params are numbers, it reports the mean if (number == len(selected_metric_df[col])) & (nones == 0): integer = 0 for i in selected_metric_df[col]: type_i = type(i) if (type_i == int): output = int(selected_metric_df[col].mean()) data_to_append = {string_col: [output]} data.update(data_to_append) elif (type_i == float): output = float(selected_metric_df[col].mean()) data_to_append = {string_col: [output]} data.update(data_to_append) # In case of string params, the most frequent one elif (string == len(selected_metric_df[col])) & (nones == 0): output = selected_metric_df[col].value_counts().reset_index()['index'][0] data_to_append = {string_col: [output]} data.update(data_to_append) # In case of all Nones values, the value will be None elif nones == len(selected_metric_df[col]): data_to_append = {string_col: [None]} data.update(data_to_append) # In case some are Nones and other not, see below FIX elif (nones > 0) & (nones != len(selected_metric_df[col])): if (type(i) == int for i in selected_metric_df[col]): if ((selected_metric_df[col].value_counts().sum() >= len(selected_metric_df)/2) == True): output = int(selected_metric_df[col].value_counts().reset_index()['index'][0]) data_to_append = {string_col: [output]} data.update(data_to_append) else: data_to_append = {string_col: [None]} data.update(data_to_append) elif (type(i) == float for i in selected_metric_df[col]): if ((selected_metric_df[col].value_counts().sum() >= len(selected_metric_df)/2) == True): output = float(selected_metric_df[col].value_counts().reset_index()['index'][0]) data_to_append = {string_col: [output]} data.update(data_to_append) else: data_to_append = {string_col: [None]} data.update(data_to_append) df_partial =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np from netCDF4 import Dataset from PolutantsTable import PolutantsTable as pt class DataManager: # originalDF conté el dataframe amb les dades baixades de la XVPCA # Ex: data/AirQualityData/QualitatAire2016TotCatalunya2016.csv originalDF = pd.DataFrame() ''' dicctionary that stores a dataframe for each polutant in the originalDF ''' by_polutant_dataframes = {} wrf_files_path = 'D:\\URBAG\\Simulation\\' def load_original_file(self, original_file): ''' reads a CVS file in the XVPCA format where the column DATA is parsed as datetime ''' dateparse = lambda x:
pd.datetime.strptime(x, '%d/%m/%Y')
pandas.datetime.strptime
import folium import pandas df =
pandas.read_csv('oco.csv', delimiter='~')
pandas.read_csv
# Loading Python libraries import numpy as np import pandas as pd import scipy.stats as stats import statsmodels.api as sm import statsmodels.stats.multicomp as multi from statsmodels.formula.api import ols from IPython.display import Markdown #%matplotlib inline import matplotlib.pyplot as plt import seaborn as sns #sns.set() #pd.options.display.float_format = '{:.3f}'.format #np.set_printoptions(precision=3, suppress=True) # Statistics functions def parammct(data=None, independent=None, dependent=None): independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return parammct_df = pd.DataFrame() for value in pd.unique(data[independent]): mean = data[dependent][data[independent]==value].mean() stdev = data[dependent][data[independent]==value].std() n = data[dependent][data[independent]==value].count() sdemean = stdev/np.sqrt(n) ci = 1.96*sdemean lowerboundci = mean-ci upperboundci = mean+ci parammct_df[value] = pd.Series([mean, stdev, n, sdemean, lowerboundci, upperboundci], index = ['Mean','SD','n','SEM','Lower bound CI', 'Upper bound CI']) return parammct_df def non_parammct(data=None, independent=None, dependent=None): independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return non_parammct_df = pd.DataFrame() for value in pd.unique(data[independent]): median = data[dependent][data[independent]==value].median() minimum = data[dependent][data[independent]==value].quantile(0) q25 = data[dependent][data[independent]==value].quantile(0.25) q75 = data[dependent][data[independent]==value].quantile(0.75) maximum = data[dependent][data[independent]==value].quantile(1) n = data[dependent][data[independent]==value].count() non_parammct_df[value] = pd.Series([median, minimum, q25,q75, maximum, n], index = ['Median', 'Minimum', 'Lower bound IQR', 'Upper bound IQR', 'Maximum', 'n']) return non_parammct_df def histograms(data=None, independent=None, dependent=None): independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return for value in pd.unique(data[independent]): sns.distplot(data[dependent][data[independent]==value], fit=stats.norm, kde=False) plt.title(dependent + ' by ' + independent + '(' + str(value).lower() + ')', fontweight='bold', fontsize=16) plt.ylabel('Frequency', fontsize=14) plt.xlabel(dependent, fontsize=14) plt.show() return def t_test(data=None, independent=None, dependent=None): pd.set_eng_float_format(accuracy=3, use_eng_prefix=False) independent_groups = pd.unique(data[independent]) if len(independent_groups)>2: print('There are more than 2 groups in the independent variable') print('t-test is not the correct statistical test to run in that circumstance,') print('consider running an ANOVA') return mct = parammct(data=data, independent=independent, dependent=dependent) t_test_value, p_value = stats.ttest_ind(data[dependent][data[independent] == independent_groups[0]], data[dependent][data[independent] == independent_groups[1]]) difference_mean = np.abs(mct.loc['Mean'][0] - mct.loc['Mean'][1]) pooled_sd = np.sqrt( ( ((mct.loc['n'][0]-1)*mct.loc['SD'][0]**2) + ((mct.loc['n'][1]-1)*mct.loc['SD'][1]**2) ) / (mct.loc['n'][0] + mct.loc['n'][1] - 2) ) sedifference = pooled_sd * np.sqrt( (1/mct.loc['n'][0]) + (1/mct.loc['n'][1]) ) difference_mean_ci1 = difference_mean + (t_test_value * sedifference) difference_mean_ci2 = difference_mean - (t_test_value * sedifference) if difference_mean_ci1>difference_mean_ci2: difference_mean_cilower = difference_mean_ci2 difference_mean_ciupper = difference_mean_ci1 else: difference_mean_cilower = difference_mean_ci1 difference_mean_ciupper = difference_mean_ci2 cohend = difference_mean / pooled_sd t_test_result= pd.DataFrame ([difference_mean, sedifference, t_test_value, p_value, difference_mean_cilower, difference_mean_ciupper, cohend], index = ['Difference between means', 'SE difference', 't-test', 'p-value', 'Lower bound difference CI', 'Upper bound difference CI', 'Cohen\'s d'], columns=['Value']) return t_test_result def anova(data=None, independent=None, dependent=None): pd.set_eng_float_format(accuracy=3, use_eng_prefix=False) independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return formula = dependent + ' ~ ' + independent model = ols(formula, data=data).fit() aov_table = sm.stats.anova_lm(model, typ=2) aov_table.rename(columns={'PR(>F)':'p'}, inplace=True) aov_table['F'] = pd.Series([aov_table['F'][0], ''], index = [independent, 'Residual']) aov_table['p'] = pd.Series([aov_table['p'][0], ''], index = [independent, 'Residual']) eta_sq = aov_table['sum_sq'][0]/(aov_table['sum_sq'][0]+aov_table['sum_sq'][1]) aov_table['Eta squared'] = pd.Series([eta_sq, ''], index = [independent, 'Residual']) return aov_table def tukey(data=None, independent=None, dependent=None): pd.set_eng_float_format(accuracy=3, use_eng_prefix=False) independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return test = multi.MultiComparison(data[dependent], data[independent]) res = test.tukeyhsd() display(res.summary()) res.plot_simultaneous() return def chi_square(data=None, variable1=None, variable2=None): pd.set_eng_float_format(accuracy=3, use_eng_prefix=False) variable1 = str(variable1) variable2 = str(variable2) if input_check_categorical_categorical(data, variable1, variable2): return values_var1=pd.unique(data[variable1]) values_var2=pd.unique(data[variable2]) problem_found=False for variable in [values_var1, values_var2]: if len(variable)<2: print(variable, 'has less than two categories. It has:', len(variable)) problem_found=True if problem_found: return contingency_table = pd.crosstab(data[variable1], data[variable2]) contingency_table = pd.DataFrame(contingency_table) display(Markdown('**Contingency Table**')) display(contingency_table) chi2_test=stats.chi2_contingency(contingency_table, correction=False) chi2_result = pd.Series ([chi2_test[0], chi2_test[1], chi2_test[2], chi2_test[3]], index = ['Chi-square value', 'p-value', 'Degrees of freedom', 'Expected frequencies']) chi2_result =
pd.DataFrame(chi2_result, columns=['Value'])
pandas.DataFrame
#!/usr/bin/env python3 """ Main file for processing data by age and week """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from io import StringIO from os.path import join from sklearn.preprocessing import LabelEncoder from matplotlib.patches import Patch from loguru import logger from typing import Dict, List, Tuple, Any, Union, Optional from utils.enums import DatasetName, AgeGroup, Sexes from utils.utils import get_file_path_relative from utils.variables import path_dict, visualizations_folder, age_key, sex_key, week_key, covid_deaths_key def to_categorical(input: pd.Series) -> List[Any]: """ returns the mapping of int to categorical value, and the categorized pandas series """ le = LabelEncoder() output: np.ndarray = le.fit_transform(input) le_name_mapping: Tuple[int, str] = tuple(zip(le.transform(le.classes_), le.classes_)) return [le_name_mapping,
pd.Series(output)
pandas.Series
""" Author: <NAME> Created: 14/08/2020 11:04 AM """ import os import numpy as np import pandas as pd from basgra_python import run_basgra_nz, _trans_manual_harv, get_month_day_to_nonleap_doy from input_output_keys import matrix_weather_keys_pet from check_basgra_python.support_for_tests import establish_org_input, get_org_correct_values, get_lincoln_broadfield, \ test_dir, establish_peyman_input, _clean_harvest, base_auto_harvest_data, base_manual_harvest_data from supporting_functions.plotting import plot_multiple_results # used in test development and debugging verbose = False drop_keys = [ # newly added keys that must be dropped initially to manage tests, datasets are subsequently re-created 'WAFC', 'IRR_TARG', 'IRR_TRIG', 'IRRIG_DEM', 'RYE_YIELD', 'WEED_YIELD', 'DM_RYE_RM', 'DM_WEED_RM', 'DMH_RYE', 'DMH_WEED', 'DMH', 'WAWP', 'MXPAW', 'PAW', 'RESEEDED', ] view_keys = [ 'WAL', 'WCL', 'DM', 'YIELD', 'BASAL', 'ROOTD', 'IRRIG_DEM', 'HARVFR', 'RYE_YIELD', 'WEED_YIELD', 'DM_RYE_RM', 'DM_WEED_RM', 'DMH_RYE', 'DMH_WEED', 'DMH', 'WAWP', # # mm # Water in non-frozen root zone at wilting point 'MXPAW', # mm # maximum Profile available water 'PAW', # mm Profile available water at the time step ] def test_trans_manual_harv(update_data=False): test_nm = 'test_trans_manual_harv' print('testing: ' + test_nm) params, matrix_weather, days_harvest, doy_irr = establish_org_input() days_harvest = _clean_harvest(days_harvest, matrix_weather) np.random.seed(1) days_harvest.loc[:, 'harv_trig'] = np.random.rand(len(days_harvest)) np.random.seed(2) days_harvest.loc[:, 'harv_targ'] = np.random.rand(len(days_harvest)) np.random.seed(3) days_harvest.loc[:, 'weed_dm_frac'] = np.random.rand(len(days_harvest)) out = _trans_manual_harv(days_harvest, matrix_weather) data_path = os.path.join(test_dir, '{}_data.csv'.format(test_nm)) if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out, dropable=False) def _output_checks(out, correct_out, dropable=True): """ base checker :param out: basgra data from current test :param correct_out: expected basgra data :param dropable: boolean, if True, can drop output keys, allows _output_checks to be used for not basgra data and for new outputs to be dropped when comparing results. :return: """ if dropable: # should normally be empty, but is here to allow easy checking of old tests against versions with a new output drop_keys_int = [ ] out2 = out.drop(columns=drop_keys_int) else: out2 = out.copy(True) # check shapes assert out2.shape == correct_out.shape, 'something is wrong with the output shapes' # check datatypes assert issubclass(out.values.dtype.type, np.float), 'outputs of the model should all be floats' out2 = out2.values correct_out2 = correct_out.values out2[np.isnan(out2)] = -9999.99999 correct_out2[np.isnan(correct_out2)] = -9999.99999 # check values match for sample run isclose = np.isclose(out2, correct_out2) asmess = '{} values do not match between the output and correct output with rtol=1e-05, atol=1e-08'.format( (~isclose).sum()) assert isclose.all(), asmess print(' model passed test\n') def test_org_basgra_nz(update_data=False): print('testing original basgra_nz') params, matrix_weather, days_harvest, doy_irr = establish_org_input() days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) # test against my saved version (simply to have all columns data_path = os.path.join(test_dir, 'test_org_basgra.csv') if update_data: out.to_csv(data_path) print(' testing against full dataset') correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) # test to the original data provided by <NAME>ward out.drop(columns=drop_keys, inplace=True) # remove all of the newly added keys print(' testing against Simon Woodwards original data') correct_out2 = get_org_correct_values() _output_checks(out, correct_out2) def test_irrigation_trigger(update_data=False): print('testing irrigation trigger') # note this is linked to test_leap, so any inputs changes there should be mapped here params, matrix_weather, days_harvest, doy_irr = establish_org_input('lincoln') matrix_weather = get_lincoln_broadfield() matrix_weather.loc[:, 'max_irr'] = 15 matrix_weather.loc[:, 'irr_trig'] = 0.5 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather = matrix_weather.loc[:, matrix_weather_keys_pet] params['IRRIGF'] = 1 # irrigation to 100% of field capacity doy_irr = list(range(305, 367)) + list(range(1, 91)) days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, 'test_irrigation_trigger_output.csv') if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_irrigation_fraction(update_data=False): print('testing irrigation fraction') params, matrix_weather, days_harvest, doy_irr = establish_org_input('lincoln') matrix_weather = get_lincoln_broadfield() matrix_weather.loc[:, 'max_irr'] = 10 matrix_weather.loc[:, 'irr_trig'] = 1 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather = matrix_weather.loc[:, matrix_weather_keys_pet] params['IRRIGF'] = .60 # irrigation of 60% of what is needed to get to field capacity doy_irr = list(range(305, 367)) + list(range(1, 91)) days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, 'test_irrigation_fraction_output.csv') if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_water_short(update_data=False): print('testing water shortage') params, matrix_weather, days_harvest, doy_irr = establish_org_input('lincoln') matrix_weather = get_lincoln_broadfield() matrix_weather.loc[:, 'max_irr'] = 5 matrix_weather.loc[matrix_weather.index > '2015-08-01', 'max_irr'] = 15 matrix_weather.loc[:, 'irr_trig'] = 0.8 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather = matrix_weather.loc[:, matrix_weather_keys_pet] params['IRRIGF'] = .90 # irrigation to 90% of field capacity doy_irr = list(range(305, 367)) + list(range(1, 91)) days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, 'test_water_short_output.csv') if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_short_season(update_data=False): print('testing short season') params, matrix_weather, days_harvest, doy_irr = establish_org_input('lincoln') matrix_weather = get_lincoln_broadfield() matrix_weather.loc[:, 'max_irr'] = 10 matrix_weather.loc[:, 'irr_trig'] = 1 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather = matrix_weather.loc[:, matrix_weather_keys_pet] params['IRRIGF'] = .90 # irrigation to 90% of field capacity doy_irr = list(range(305, 367)) + list(range(1, 61)) days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, 'test_short_season_output.csv') if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_variable_irr_trig_targ(update_data=False): print('testing time variable irrigation triggers and targets') params, matrix_weather, days_harvest, doy_irr = establish_org_input('lincoln') matrix_weather = get_lincoln_broadfield() matrix_weather.loc[:, 'max_irr'] = 10 matrix_weather.loc[:, 'irr_trig'] = 0.5 matrix_weather.loc[matrix_weather.index > '2013-08-01', 'irr_trig'] = 0.7 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather.loc[(matrix_weather.index < '2012-08-01'), 'irr_targ'] = 0.8 matrix_weather.loc[(matrix_weather.index > '2015-08-01'), 'irr_targ'] = 0.8 matrix_weather = matrix_weather.loc[:, matrix_weather_keys_pet] params['IRRIGF'] = 1 doy_irr = list(range(305, 367)) + list(range(1, 61)) days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, 'test_variable_irr_trig_targ.csv') if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_irr_paw(update_data=False): test_nm = 'test_irr_paw' print('testing: ' + test_nm) params, matrix_weather, days_harvest, doy_irr = establish_org_input('lincoln') matrix_weather = get_lincoln_broadfield() matrix_weather.loc[:, 'max_irr'] = 5 matrix_weather.loc[:, 'irr_trig'] = 0.5 matrix_weather.loc[:, 'irr_targ'] = 0.9 matrix_weather = matrix_weather.loc[:, matrix_weather_keys_pet] params['IRRIGF'] = 1 # irrigation to 100% of field capacity doy_irr = list(range(305, 367)) + list(range(1, 91)) params['irr_frm_paw'] = 1 days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, '{}_data.csv'.format(test_nm)) if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_pet_calculation(update_data=False): # note this test was not as throughrougly investigated as it was not needed for my work stream print('testing pet calculation') params, matrix_weather, days_harvest, doy_irr = establish_peyman_input() days_harvest = _clean_harvest(days_harvest, matrix_weather) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose, dll_path='default', supply_pet=False) data_path = os.path.join(test_dir, 'test_pet_calculation.csv') if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) # Manual Harvest tests def test_fixed_harvest_man(update_data=False): test_nm = 'test_fixed_harvest_man' print('testing: ' + test_nm) params, matrix_weather, days_harvest, doy_irr = establish_org_input() params['fixed_removal'] = 1 params['opt_harvfrin'] = 1 days_harvest = base_manual_harvest_data() idx = days_harvest.date < '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 2500 days_harvest.loc[idx, 'harv_targ'] = 1000 days_harvest.loc[idx, 'weed_dm_frac'] = 0 idx = days_harvest.date >= '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 1000 days_harvest.loc[idx, 'harv_targ'] = 10 days_harvest.loc[idx, 'weed_dm_frac'] = 0 idx = days_harvest.date >= '2017-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 2000 days_harvest.loc[idx, 'harv_targ'] = 100 days_harvest.loc[idx, 'weed_dm_frac'] = 0 days_harvest.drop(columns=['date'], inplace=True) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, '{}_data.csv'.format(test_nm)) if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_harv_trig_man(update_data=False): # test manaual harvesting dates with a set trigger, weed fraction set to zero test_nm = 'test_harv_trig_man' print('testing: ' + test_nm) params, matrix_weather, days_harvest, doy_irr = establish_org_input() params['fixed_removal'] = 0 params['opt_harvfrin'] = 1 days_harvest = base_manual_harvest_data() idx = days_harvest.date < '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 0.5 days_harvest.loc[idx, 'harv_trig'] = 2500 days_harvest.loc[idx, 'harv_targ'] = 2200 days_harvest.loc[idx, 'weed_dm_frac'] = 0 idx = days_harvest.date >= '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 1000 days_harvest.loc[idx, 'harv_targ'] = 500 days_harvest.loc[idx, 'weed_dm_frac'] = 0 idx = days_harvest.date >= '2017-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 1500 days_harvest.loc[idx, 'harv_targ'] = 1000 days_harvest.loc[idx, 'weed_dm_frac'] = 0 days_harvest.drop(columns=['date'], inplace=True) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, '{}_data.csv'.format(test_nm)) if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) def test_weed_fraction_man(update_data=False): # test manual harvesting trig set to zero +- target with weed fraction above 0 test_nm = 'test_weed_fraction_man' print('testing: ' + test_nm) params, matrix_weather, days_harvest, doy_irr = establish_org_input() params['fixed_removal'] = 0 params['opt_harvfrin'] = 1 days_harvest = base_manual_harvest_data() idx = days_harvest.date < '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 0.5 days_harvest.loc[idx, 'harv_trig'] = 2500 days_harvest.loc[idx, 'harv_targ'] = 2200 days_harvest.loc[idx, 'weed_dm_frac'] = 0 idx = days_harvest.date >= '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 1000 days_harvest.loc[idx, 'harv_targ'] = 500 days_harvest.loc[idx, 'weed_dm_frac'] = 0.5 idx = days_harvest.date >= '2017-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 1500 days_harvest.loc[idx, 'harv_targ'] = 1000 days_harvest.loc[idx, 'weed_dm_frac'] = 1 days_harvest.drop(columns=['date'], inplace=True) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose) data_path = os.path.join(test_dir, '{}_data.csv'.format(test_nm)) if update_data: out.to_csv(data_path) correct_out = pd.read_csv(data_path, index_col=0) _output_checks(out, correct_out) # automatic harvesting tests def test_auto_harv_trig(update_data=False): test_nm = 'test_auto_harv_trig' print('testing: ' + test_nm) # test auto harvesting dates with a set trigger, weed fraction set to zero params, matrix_weather, days_harvest, doy_irr = establish_org_input() params['opt_harvfrin'] = 1 days_harvest = base_auto_harvest_data(matrix_weather) idx = days_harvest.date < '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 1 days_harvest.loc[idx, 'harv_trig'] = 3000 days_harvest.loc[idx, 'harv_targ'] = 2000 days_harvest.loc[idx, 'weed_dm_frac'] = 0 idx = days_harvest.date >= '2014-01-01' days_harvest.loc[idx, 'frac_harv'] = 0.75 days_harvest.loc[idx, 'harv_trig'] = 2500 days_harvest.loc[idx, 'harv_targ'] = 1500 days_harvest.loc[idx, 'weed_dm_frac'] = 0 days_harvest.drop(columns=['date'], inplace=True) out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose, auto_harvest=True) data_path = os.path.join(test_dir, '{}_data.csv'.format(test_nm)) if update_data: out.to_csv(data_path) correct_out =
pd.read_csv(data_path, index_col=0)
pandas.read_csv
from flask import Flask, render_template, request, redirect, url_for,session import os from os.path import join, dirname, realpath from joblib import dump,load import xgboost import pandas as pd import sklearn import numpy as np from flask import Flask, render_template, redirect, request, session app = Flask(__name__) # enable debugging mode app.config["DEBUG"] = True # secret key is needed for session app.secret_key = 'Munir4638143' # Upload folder UPLOAD_FOLDER = 'static/files' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # Root URL @app.route('/') def index(): # Set The upload HTML template '\templates\index.html' prediction=session.get('prediction') return render_template('index.html',prediction_text='The provider is {}'.format(prediction)) # Get the uploaded files @app.route("/", methods=['POST']) def uploadFiles(): # get the uploaded file uploaded_inpatient = request.files['inpatient'] if uploaded_inpatient.filename != '': inpatient_path = os.path.join(app.config['UPLOAD_FOLDER'], uploaded_inpatient.filename) # set the file path uploaded_inpatient.save(inpatient_path) uploaded_outpatient = request.files['outpatient'] if uploaded_outpatient.filename != '': outpatient_path = os.path.join(app.config['UPLOAD_FOLDER'], uploaded_outpatient.filename) # set the file path uploaded_outpatient.save(outpatient_path) uploaded_benefeciary = request.files['benefeciary'] if uploaded_benefeciary.filename != '': benefeciary_path = os.path.join(app.config['UPLOAD_FOLDER'], uploaded_benefeciary.filename) # set the file path uploaded_benefeciary.save(benefeciary_path) df_benefeciary=pd.read_csv(benefeciary_path) df_inpatient=pd.read_csv(inpatient_path) df_outpatient=pd.read_csv(outpatient_path) print("\nReaded all csv's.") print(df_benefeciary.columns) print(df_inpatient.columns) print(df_outpatient.columns) Provider='PRV51001' dfInpatientProvider=df_inpatient[df_inpatient['Provider']==Provider] dfOutpatientProvider=df_outpatient[df_outpatient['Provider']==Provider] ## COMBINING df_inpatient AND df_outpatient df_patient_data=pd.concat([dfInpatientProvider,dfOutpatientProvider]) #joining df_patient_data and df_beneficiary using BeneID Train_ProviderWithPatient_data=pd.merge(df_patient_data,df_benefeciary,left_on='BeneID',right_on='BeneID',how='inner') ## AGE # creating a timestamp for date '2009-12-01' to measure the age of live benefeciaries from this date x =
pd.to_datetime('2009-12-01',format='%Y-%m-%d')
pandas.to_datetime
''' /******************************************************************************* * Copyright 2016-2019 Exactpro (Exactpro Systems Limited) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ ''' import numpy import matplotlib.pyplot as plt import scipy.stats as stats import pandas import datetime import calendar class RelativeFrequencyChart: # returns coordinates for each chart column def get_coordinates(self, data, bins): # bins - chart columns count self.btt = numpy.array(list(data)) self.y, self.x, self.bars = plt.hist(self.btt, weights=numpy.zeros_like(self.btt) + 1. / self.btt.size, bins=bins) return self.x, self.y class FrequencyDensityChart: def get_coordinates_histogram(self, data, bins): self.btt = numpy.array(list(data)) self.y, self.x, self.bars = plt.hist(self.btt, bins=bins, density=True) return self.x, self.y def get_coordinates_line(self, data): try: self.btt = numpy.array(list(data)) self.density = stats.kde.gaussian_kde(list(data)) self.x_den = numpy.linspace(0, data.max(), data.count()) self.density = self.density(self.x_den) return self.x_den, self.density except numpy.linalg.linalg.LinAlgError: return [-1], [-1] class DynamicChart: def get_coordinates(self, frame, step_size): self.plot = {} # chart coordinates self.dynamic_bugs = [] self.x = [] self.y = [] self.plot['period'] = step_size if step_size == 'W-SUN': self.periods = DynamicChart.get_periods(self, frame, step_size) # separates DataFrame to the specified periods if len(self.periods) == 0: return 'error' self.cumulative = 0 # cumulative total of defect submission for specific period for self.period in self.periods: # checks whether the first day of period is Monday (if not then we change first day to Monday) if pandas.to_datetime(self.period[0]) < pandas.to_datetime(frame['Created_tr']).min(): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(self.period[1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()))) self.y.append(self.cumulative) else: self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(self.period[0])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(self.period[1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str((self.period[0]))) self.y.append(self.cumulative) # check whether the date from new DataFrame is greater than date which is specified in settings if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(self.periods[-1][1]): # processing of days which are out of full period set self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) > pandas.to_datetime(self.periods[-1][1])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(datetime.datetime.date(pandas.to_datetime(self.periods[-1][1], format='%Y-%m-%d')) + datetime.timedelta(days=1))) self.y.append(self.cumulative) self.dynamic_bugs.append(self.x) self.dynamic_bugs.append(self.y) self.plot['dynamic bugs'] = self.dynamic_bugs self.cumulative = 0 return self.plot if step_size in ['7D', '10D', '3M', '6M', 'A-DEC']: self.count0 = 0 self.count1 = 1 self.periods = DynamicChart.get_periods(self, frame, step_size) # DataFrame separation by the specified periods if len(self.periods) == 0: return 'error' self.cumulative = 0 self.countPeriodsList = len(self.periods) # count of calculated periods self.count = 1 if self.countPeriodsList == 1: if step_size == '7D': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()) +datetime.timedelta(days=7)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=7)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+ datetime.timedelta(days=7))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=7), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '10D': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '3M': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >=
pandas.to_datetime(frame['Created_tr'])
pandas.to_datetime
#!/usr/bin/python3 import argparse import os import sys import webbrowser from datetime import timedelta import numpy as np import pandas as pd import pandas_datareader.data as web import requests_cache from plotly import graph_objs as go from plotly.subplots import make_subplots from tqdm import tqdm from finance_benchmark import config def get_asset_data(assets_ticker, startdate): """Retrieve assets data from yahoo finance Args: assets_ticker ([str]): list of assets to download startdate (str): start date """ df =
pd.DataFrame()
pandas.DataFrame
# coding: utf-8 # ### Import # In[1]: from bs4 import BeautifulSoup import requests import numpy as np import pandas as pd import xgboost import xgboost as xgb from xgboost.sklearn import XGBClassifier from sklearn.metrics import * from IPython.core.display import Image from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix from sklearn.tree import export_graphviz import io from sklearn.preprocessing import Imputer import pydot from sklearn import preprocessing import lightgbm as lgb from scipy.stats import mode import re from datetime import datetime from lightgbm import plot_importance import warnings warnings.filterwarnings('ignore') # --- # ### Date read # In[12]: age_gender_bkts = pd.read_csv("age_gender_bkts.csv") countries = pd.read_csv("countries.csv") sessions = pd.read_csv("sessions.csv") test_users = pd.read_csv("test_users.csv") train_users_2 = pd.read_csv("train_users_2.csv") sample_submission_NDF = pd.read_csv("sample_submission_NDF.csv") merged_sessions = pd.read_csv("merged_sessions.csv") # --- # ### Date setting - Base1 # In[13]: def pre_age_set_data(train_users_2, test_users): check = pd.concat([train_users_2, test_users], ignore_index=True) check["first_affiliate_tracked"] = check["first_affiliate_tracked"].replace(np.nan, "untracked") check["date_account_created"] = pd.to_datetime(check["date_account_created"], format = "%Y-%m-%d") check["timestamp_first_active"] = pd.to_datetime(check["timestamp_first_active"], format="%Y%m%d%H%M%S") s_lag = check["timestamp_first_active"] - check["date_account_created"] check["lag_days"] = s_lag.apply(lambda x : -1 * x.days) check["lag_seconds"] = s_lag.apply(lambda x : x.seconds) s_all_check = (check['age'] < 120) & (check['gender'] != '-unknown-') check['faithless_sign'] = s_all_check.apply(lambda x : 0 if x == True else 1) pre_age = check.drop("date_first_booking",axis = 1) pre_age['date_account_created_y'] = pre_age["date_account_created"].apply(lambda x : x.year) pre_age['date_account_created_m'] = pre_age["date_account_created"].apply(lambda x : x.month) pre_age['date_account_created_d'] = pre_age["date_account_created"].apply(lambda x : x.day) pre_age['timestamp_first_active_y'] = pre_age["timestamp_first_active"].apply(lambda x : x.year) pre_age['timestamp_first_active_m'] = pre_age["timestamp_first_active"].apply(lambda x : x.month) pre_age['timestamp_first_active_d'] = pre_age["timestamp_first_active"].apply(lambda x : x.day) pre_age = pre_age.drop("date_account_created" , axis=1) pre_age = pre_age.drop("timestamp_first_active" , axis=1) return check, pre_age # --- # ### Date setting - Base2 # In[14]: def pre_age_predict_data(pre_age): pre_age['age'] = pre_age['age'].fillna(-1) pre_age_sub = pre_age.filter(items = ['age', 'country_destination','id']) pre_age_dum = pre_age.filter(items = ['affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'language', 'signup_app', 'signup_flow', 'signup_method', 'date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d',"lag_days","lag_seconds", "faithless_sign"]) pre_age_dum[['date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y','timestamp_first_active_m', 'timestamp_first_active_d']] = pre_age_dum[['date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d']].astype(str) pre_age_dum = pd.get_dummies(pre_age_dum) pre_age_dum_con = pd.concat([pre_age_dum, pre_age_sub], axis=1) pre_age_dum_con["age"] = pre_age_dum_con["age"].replace(-1, np.nan) pre_age_mission = pre_age_dum_con[pre_age_dum_con["age"].isna()].reset_index() pre_age_train = pre_age_dum_con[pre_age_dum_con["age"].notna()].reset_index() pre_age_mission_test = pre_age_mission.drop("index", axis=1) pre_age_train_test = pre_age_train.drop("index", axis=1) pre_age_mission_test_drop = pre_age_mission_test.drop(['id', 'age', 'country_destination'], axis=1) pre_age_train_test_drop = pre_age_train_test.drop(['id', 'age', 'country_destination'], axis=1) return pre_age_mission_test, pre_age_train_test, pre_age_mission, pre_age_train, pre_age_mission_test_drop, pre_age_train_test_drop # In[15]: def pre_age_predict_data_cat(pre_age_train): bins = [0, 15, 25, 35, 60, 9999] labels = ["미성년자", "청년", "중년", "장년", "노년"] cats = pd.cut(pre_age_train['age'], bins, labels=labels) cats = pd.DataFrame(cats) return cats # --- # ### Predict gender data setting - Only gender # In[16]: def add_gender(pre_age): pred_gen_data = pd.read_csv("model_gen_lgb.csv") pre_gen_sub = pre_age.filter(items = ['age', 'country_destination', 'id', 'gender']) pre_gen_dum = pre_age.filter(items = ['affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'language', 'signup_app', 'signup_flow', 'signup_method', 'date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d',"lag_days","lag_seconds", "faithless_sign"]) pre_gen_dum = pd.get_dummies(pre_gen_dum) pre_gen_dum_con = pd.concat([pre_gen_dum, pre_gen_sub], axis=1) pre_gen_dum_con["gender"] = pre_gen_dum_con["gender"].replace(['-unknown-', 'OTHER'], np.nan) pre_gen_mission = pre_gen_dum_con[pre_gen_dum_con["gender"].isna()].reset_index() pre_gen_train = pre_gen_dum_con[pre_gen_dum_con["gender"].notna()].reset_index() pre_gen_mission_test = pre_gen_mission.drop("index", axis=1) pre_gen_train_test = pre_gen_train.drop("index", axis=1) pre_gen_mission_test_drop = pre_gen_mission_test.drop(['id', 'age', 'country_destination', "gender"], axis=1) pre_gen_train_test_drop = pre_gen_train_test.drop(['id', 'age', 'country_destination', "gender"], axis=1) pre_gen_mission_test_la = pd.concat([pre_gen_mission_test, pred_gen_data], axis=1) pre_gen_mission_test_la = pre_gen_mission_test_la.drop("gender", axis=1) pre_gen_mission_test_la = pre_gen_mission_test_la.rename(columns={"0": 'gender'}) last_gen_add = pd.concat([pre_gen_mission_test_la, pre_gen_train_test]) last_gen_add = last_gen_add.filter(items = ["id",'gender']) return last_gen_add # --- # ### Holiday, Weekend, Day of week data setting - Only Holiday # In[17]: def holiday(train_users_2, test_users): def get_holidays(year): response = requests.get("https://www.timeanddate.com/calendar/custom.html?year="+str(year)+" &country=1&cols=3&df=1&hol=25") dom = BeautifulSoup(response.content, "html.parser") trs = dom.select("table.cht.lpad tr") df =
pd.DataFrame(columns=["date", "holiday"])
pandas.DataFrame
# %% 说明 # ------------------------------------------------------------------->>>>>>>>>> # 最后更新ID name的时候用这个脚本,从师兄的list汇总完成替换 # os.chdir("/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/Manuscript/20220311_My_tables") # ------------------------------------------------------------------->>>>>>>>>> # %% imports and settings from pandarallel import pandarallel import datar.all as r from datar import f import plotnine as p9 import os import numpy as np import pandas as pd import seaborn as sns import glob sns.set() pd.set_option("max_colwidth", 100) # column最大宽度 pd.set_option("display.width", 250) # dataframe宽度 pd.set_option("display.max_columns", None) # column最大显示数 pd.set_option("display.max_rows", 50) # row最大显示数 pandarallel.initialize() # 多线程设置,默认使用全部核心 nb_workers=24 # %% os.chdir os.chdir( "/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/TargetSeq/20220305_TargetSeq_bmat_alldone_add_v2" ) os.listdir() # %% load table all target # load target-seq df = pd.read_csv("table/20220305_DdCBE-target-seq-info.csv.gz") df.drop("bmat_name", axis=1, inplace=True) # # 查看treatment print(df.treatment.value_counts()) # # 看一下na情况 print(df.info()) print(df.isna().sum()) # %%load base index # 每个off-target region中指定base的TargetSeq ratio df_idx = pd.read_excel( "./table/20220305_DdCBE_only_one_mut_index_info.xlsx", sheet_name="Sheet1" ) # print(df_idx) # df_idx.info() df_idx = df_idx[["region_id", "ref_base", "relative_pos"]].copy() df_idx # %% filter # %%% filter_删除某些点 df = df[~(df.region_id == "ND516-share-1")].copy() # ND516-share-1 没做 df = df[~(df.region_id == "share-new-3")].copy() # share-new-3 扔掉了的点 df = df[~(df.region_id == "ND6-new-only17")].copy() # ND6-new-only17 扔掉了的点 # 查看所有位点 sorted(df.region_id.value_counts().index.tolist()) # %%% filter_删除某些replication ls_treatment = [ # 脱靶验证系列1 【最终画barplot用】 'ND4-Det-Q5U', 'ND4-LIPO2000-Q5U', 'ND5-1-Det-Q5U', 'ND5-1-LIPO2000-Q5U', 'ND6-Det-Q5U', 'ND6-LIPO2000-Q5U', 'ND6-LTX-12-Q5U', 'untreat-Q5U' ] df = df[df.treatment.map(lambda x: x in ls_treatment)].copy() sorted(list(set(df.treatment.values))) # %% fix # 发现rep3有一个 ND5.1-new-only24,实际上是补实验替代rep1的 df[df.rep == 'rep3'].region_id.value_counts() # ND5.1-new-only24 1140 # Name: region_id, dtype: int64 df.loc[df.rep == 'rep3', 'rep'] = 'rep1' # %% merge all-target table and index table df_one_base = df_idx.merge(df, how="left", on=["region_id", "ref_base", "relative_pos"]) # check df_one_base # 135个点,没错 print(df_one_base.region_id.value_counts().index.__len__()) # %% calculating # %%% 计算mut_ratio * 100 df_one_base["mut_ratio"] = df_one_base.mut_count / df_one_base.total_count * 100 df_one_base # %%% filter C2T or G2A df_one_base_filter_base = df_one_base[ ((df_one_base.ref_base == "C") & (df_one_base.mut_base == "T")) | (df_one_base.ref_base == "G") & (df_one_base.mut_base == "A") ].copy() # %%% filter 用cutoff3(off) cutoff0(on) def filter_cutoff(x): if (x["cutoff"] == 3) and ("on-target" not in x["region_id"]): return True elif (x["cutoff"] == 0) and ("on-target" in x["region_id"]): return True else: return False df_one_base_filter_base = df_one_base_filter_base[ df_one_base_filter_base.apply(filter_cutoff, axis=1) ].copy() df_use = df_one_base_filter_base.copy() # check df_one_base # 133个点,没错, 因为on-target不止count了一次 print(df_use.region_id.value_counts().index.__len__()) # %%% 计算mean df_use1 = ( df_use >> r.group_by(f.region_id, f.treatment) >> r.summarise(mut_ratio_mean=np.mean(f.mut_ratio)) ) df_use2 = ( df_use >> r.select(f.region_id, f.treatment, f.rep, f.mut_ratio) >> r.left_join(df_use1) ) df_plot = df_use2.copy() df_plot # %% plot # 配色 https://blog.csdn.net/black000shirt/article/details/113724245 def off_barplot(df): fig = ( p9.ggplot() + p9.geom_bar( data=df, mapping=p9.aes(x="region_id", y="mut_ratio_mean", fill="treatment"), stat=p9.stats.stat_identity, position=p9.positions.position_dodge( width=0.9, preserve="total" # Bar width ), color="black", size=0.1, raster=False, ) + p9.geom_point( data=df, mapping=p9.aes( x="region_id", y="mut_ratio", # fill="treatment", group="treatment", ), # color="black", position=p9.positions.position_dodge( width=0.9, preserve="total" # Bar width ), size=0.2, ) + p9.scale_x_discrete(name="Off-target sites") + p9.scale_y_continuous( name="Editing ratio by Targeted deep sequencing (%)", # breaks=np.arange(0, df.mut_ratio.max(), round(df.mut_ratio.max() / 10, 1)), labels=lambda L: ["%.1f" % v for v in L], ) + p9.coord_flip() + p9.theme_classic() # + p9.scale_fill_brewer(type="qualitative", palette="Set2") # 画share old的时候注释掉这一行不然颜色不够用 + p9.ggtitle("Targeted deep sequencing ratio") ) return fig def off_barplot_log10(df): # fix log10 df["mut_ratio"] = np.log10(df.mut_ratio) + 5 df["mut_ratio"] = df.mut_ratio.map(lambda x: x if x > 0 else 0) df["mut_ratio_mean"] = np.log10(df.mut_ratio_mean) + 5 df["mut_ratio_mean"] = df.mut_ratio_mean.map(lambda x: x if x > 0 else 0) # plot fig = ( p9.ggplot() + p9.geom_bar( data=df, mapping=p9.aes(x="region_id", y="mut_ratio_mean", fill="treatment"), stat=p9.stats.stat_identity, position=p9.positions.position_dodge( width=0.9, preserve="total" # Bar width ), color="black", size=0.1, raster=False, ) + p9.geom_point( data=df, mapping=p9.aes( x="region_id", y="mut_ratio", # fill="treatment", group="treatment", ), # color="black", position=p9.positions.position_dodge( width=0.9, preserve="total" # Bar width ), size=0.2, ) + p9.scale_x_discrete(name="Off-target sites") + p9.scale_y_continuous( # fix log10 limits=np.log10([0.00001, 100]) + 5, breaks=np.log10([0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]) + 5, labels=[0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100], name="log10(Editing ratio by Targeted deep sequencing (%))", ) + p9.coord_flip() + p9.theme_classic() # + p9.scale_fill_brewer(type="qualitative", palette="Set2") # 画share old的时候注释掉这一行不然颜色不够用 + p9.ggtitle("Targeted deep sequencing ratio") ) return fig def off_jitterplot(df): fig = ( p9.ggplot( data=df, mapping=p9.aes(x="treatment", y="mut_ratio", fill="treatment"), ) + p9.geom_jitter( **{ "stat": "identity", "na_rm": False, "width": 0.1, "height": 0, "random_state": None, } ) + p9.geom_boxplot(alpha=0.2) + p9.scale_y_continuous(breaks=np.arange(0, df.mut_ratio.max(), 0.5)) + p9.theme_classic() ) return fig # %%% final list df_mut_ratio = df_use2[['region_id', 'treatment', 'rep', 'mut_ratio']].copy() df_mut_ratio_mean = df_use1.copy() ls_nd4 = ([f'ND4-only-{i}' for i in range(1, 11)] + [f'ND4-new-only{i}' for i in range(1, 14)] + [f'ND516-share-{i}' for i in range(2, 14)] + [f'share-new-{i}' for i in [1, 2, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 31]]) ls_nd5_1 = ([f'ND5.1-only-{i}' for i in range(1, 11)] + [f'ND5.1-new-only{i}' for i in range(1, 26)] + [f'ND516-share-{i}' for i in range(2, 14)] + [f'share-new-{i}' for i in [1, ] + list(range(5, 27)) + [28, 29, 30, 31, 32]]) ls_nd6 = ([f'ND6-only-{i}' for i in range(1, 14)] + [f'ND6-new-only{i}' for i in range(1, 17)] + [f'ND516-share-{i}' for i in range(2, 14)] + [f'share-new-{i}' for i in [5, 8, ] + list(range(11, 33))]) # %% 处理、点的名字归类 df_plot['belongto'] = None flt4 = df_plot.apply(lambda x: (x['region_id'] in ls_nd4) & (x['treatment'] in ['ND4-Det-Q5U', 'ND4-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt5_1 = df_plot.apply(lambda x: (x['region_id'] in ls_nd5_1) & (x['treatment'] in ['ND5-1-Det-Q5U', 'ND5-1-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt6 = df_plot.apply(lambda x: (x['region_id'] in ls_nd6) & (x['treatment'] in ['ND6-Det-Q5U', 'ND6-LIPO2000-Q5U', 'ND6-LTX-12-Q5U', 'untreat-Q5U']), axis=1) df_plot.loc[flt4, 'belongto'] = 'ND4' df_plot.loc[flt5_1, 'belongto'] = 'ND5.1' df_plot.loc[flt6, 'belongto'] = 'ND6' df_mut_ratio['belongto'] = None flt4 = df_mut_ratio.apply(lambda x: (x['region_id'] in ls_nd4) & (x['treatment'] in ['ND4-Det-Q5U', 'ND4-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt5_1 = df_mut_ratio.apply(lambda x: (x['region_id'] in ls_nd5_1) & (x['treatment'] in ['ND5-1-Det-Q5U', 'ND5-1-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt6 = df_mut_ratio.apply(lambda x: (x['region_id'] in ls_nd6) & (x['treatment'] in ['ND6-Det-Q5U', 'ND6-LIPO2000-Q5U', 'ND6-LTX-12-Q5U', 'untreat-Q5U']), axis=1) df_mut_ratio.loc[flt4, 'belongto'] = 'ND4' df_mut_ratio.loc[flt5_1, 'belongto'] = 'ND5.1' df_mut_ratio.loc[flt6, 'belongto'] = 'ND6' flt4 = df_mut_ratio.apply(lambda x: (x['region_id'] in ls_nd4) & (x['treatment'] in ['ND4-Det-Q5U', 'ND4-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt5_1 = df_mut_ratio.apply(lambda x: (x['region_id'] in ls_nd5_1) & (x['treatment'] in ['ND5-1-Det-Q5U', 'ND5-1-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt6 = df_mut_ratio.apply(lambda x: (x['region_id'] in ls_nd6) & (x['treatment'] in ['ND6-Det-Q5U', 'ND6-LIPO2000-Q5U', 'ND6-LTX-12-Q5U', 'untreat-Q5U']), axis=1) df_mut_ratio.loc[flt4, 'belongto'] = 'ND4' df_mut_ratio.loc[flt5_1, 'belongto'] = 'ND5.1' df_mut_ratio.loc[flt6, 'belongto'] = 'ND6' df_mut_ratio_mean['belongto'] = None flt4 = df_mut_ratio_mean.apply(lambda x: (x['region_id'] in ls_nd4) & (x['treatment'] in ['ND4-Det-Q5U', 'ND4-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt5_1 = df_mut_ratio_mean.apply(lambda x: (x['region_id'] in ls_nd5_1) & (x['treatment'] in ['ND5-1-Det-Q5U', 'ND5-1-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt6 = df_mut_ratio_mean.apply(lambda x: (x['region_id'] in ls_nd6) & (x['treatment'] in ['ND6-Det-Q5U', 'ND6-LIPO2000-Q5U', 'ND6-LTX-12-Q5U', 'untreat-Q5U']), axis=1) df_mut_ratio_mean.loc[flt4, 'belongto'] = 'ND4' df_mut_ratio_mean.loc[flt5_1, 'belongto'] = 'ND5.1' df_mut_ratio_mean.loc[flt6, 'belongto'] = 'ND6' flt4 = df_mut_ratio_mean.apply(lambda x: (x['region_id'] in ls_nd4) & (x['treatment'] in ['ND4-Det-Q5U', 'ND4-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt5_1 = df_mut_ratio_mean.apply(lambda x: (x['region_id'] in ls_nd5_1) & (x['treatment'] in ['ND5-1-Det-Q5U', 'ND5-1-LIPO2000-Q5U', 'untreat-Q5U']), axis=1) flt6 = df_mut_ratio_mean.apply(lambda x: (x['region_id'] in ls_nd6) & (x['treatment'] in ['ND6-Det-Q5U', 'ND6-LIPO2000-Q5U', 'ND6-LTX-12-Q5U', 'untreat-Q5U']), axis=1) df_mut_ratio_mean.loc[flt4, 'belongto'] = 'ND4' df_mut_ratio_mean.loc[flt5_1, 'belongto'] = 'ND5.1' df_mut_ratio_mean.loc[flt6, 'belongto'] = 'ND6' df_mut_ratio_mean.loc[df_mut_ratio_mean.treatment == 'ND1-Det-Q5U', 'belongto'] = 'ND1' df_mut_ratio_mean.loc[df_mut_ratio_mean.treatment == 'ND4-L1333N-Det-Q5U', 'belongto'] = 'ND4-L1333N' df_mut_ratio_mean.loc[df_mut_ratio_mean.treatment == 'ND4-L1397C-Det-Q5U', 'belongto'] = 'ND4-L1397C' df_mut_ratio_mean.loc[df_mut_ratio_mean.treatment == 'ND5-1-L1333N-Det-Q5U', 'belongto'] = 'ND5-1-L1333N' df_mut_ratio_mean.loc[df_mut_ratio_mean.treatment == 'ND5-3-L1397C-Det-Q5U', 'belongto'] = 'ND5-3-L1397C' # %% map mpmat_index df_index_m = pd.read_excel("/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/20220224_TargetSeq_IDs/20220307_name_match_target-seq_list-True-mpmat-index.xlsx") # %% map V4 list name # ND4 onlys df_info = df_mut_ratio.copy() df_name4 = pd.read_excel("/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/20220224_TargetSeq_IDs/20220312-DdCBE-off_target_type.FinallistV4.CheckPrimer.AddV4ID.xlsx") df_out_info = df_name4[['region_id', 'off_target_id.V4.ND4', 'off_target_id.V4.ND5.1', 'off_target_id.V4.ND6']].copy() df_out_info.columns = ['mpmat_index', 'ND4', 'ND5.1', 'ND6'] df_out = df_info[df_info['region_id'].map(lambda x: 'on-target' not in x)].copy() df_out_final = df_out.merge(df_index_m, how='left').merge(df_out_info, how='left') df_out_final.groupby(['belongto', 'treatment', 'rep']).describe() df_out_final[(df_out_final['ND5.1'].isna()) & (df_out_final.belongto == "ND5.1")].region_id.value_counts().index.tolist() # # 临时Fix df_out_final.loc[ ((df_out_final['ND4'].isna()) & (df_out_final.belongto == "ND4") | df_out_final.loc[df_out_final.treatment == 'untreat-Q5U', 'ND4'].isna()), 'ND4'] = df_out_final.loc[(df_out_final['ND4'].isna()) & (df_out_final.belongto == "ND4"), 'mpmat_index'] df_out_final.loc[ ((df_out_final['ND5.1'].isna()) & (df_out_final.belongto == "ND5.1") | df_out_final.loc[df_out_final.treatment == 'untreat-Q5U', 'ND5.1'].isna()), 'ND5.1'] = df_out_final.loc[(df_out_final['ND5.1'].isna()) & (df_out_final.belongto == "ND5.1"), 'mpmat_index'] # ls_noname4 = ['ND5.1-only-2', # 'ND5.1-only-4', # 'ND5.1-only-8', # 'ND5.1-only-10', # 'ND5.1-new-only24', # 'ND5.1-new-only17', # 'ND5.1-new-only21'] # df_index_m[df_index_m.region_id.map(lambda x: x in ls_noname4)] df_out_final.groupby(['belongto', 'treatment', 'rep']).describe() # %% 输出graphpad表格 # %%% 输出转染条件比较的数据 # df_out_final[(df_out_final.region_id=='ND516-share-10') & (df_out_final.treatment=='untreat-Q5U')] # df_out_final[(df_out_final.region_id=='ND516-share-12') & (df_out_final.treatment=='untreat-Q5U')] # only的old ,share 的old sort_for_table = False # True for fig False for table df_trans_4 = df_out_final[ df_out_final.region_id.map(lambda x: ("ND4" in x) and ("new" not in x) and ("on-target" not in x)) # ND4 old only | (df_out_final.region_id.map(lambda x: ("share" in x) and ("new" not in x) and ("on-target" not in x)) & df_out_final.treatment.map(lambda x: ("ND4" in x) | ("untreat-Q5U" in x))) # ND4 old share ].copy() df_trans_4 = pd.pivot_table( data=df_trans_4, index=["region_id", 'ND4'], # index=["region_id"], columns=["treatment", "rep"], values=["mut_ratio"], ) df_trans_4["sort_key"] = df_trans_4[ [ ("mut_ratio", "ND4-Det-Q5U", "rep1"), ("mut_ratio", "ND4-Det-Q5U", "rep2"), ] ].mean(axis=1) df_trans_4.sort_values("sort_key", ascending=sort_for_table, inplace=True) df_trans_4.drop(columns="sort_key", inplace=True) df_trans_4 # only的old ,share 的old df_trans_5 = df_out_final[ df_out_final.region_id.map(lambda x: ("ND5.1" in x) and ("new" not in x) and ("on-target" not in x)) # ND5.1 old only | (df_out_final.region_id.map(lambda x: ("share" in x) and ("new" not in x) and ("on-target" not in x)) & df_out_final.treatment.map(lambda x: ("ND5-1" in x) | ("untreat-Q5U" in x))) # ND5.1 old share ].copy() df_trans_5 = pd.pivot_table( data=df_trans_5, index=["region_id", 'ND5.1'], columns=["treatment", "rep"], values=["mut_ratio"], ) df_trans_5["sort_key"] = df_trans_5[ [ ("mut_ratio", "ND5-1-Det-Q5U", "rep1"), ("mut_ratio", "ND5-1-Det-Q5U", "rep2"), ] ].mean(axis=1) df_trans_5.sort_values("sort_key", ascending=sort_for_table, inplace=True) df_trans_5.drop(columns="sort_key", inplace=True) df_trans_5 # only的old ,share 的old df_trans_6 = df_out_final[ df_out_final.region_id.map(lambda x: ("ND6" in x) and ("new" not in x) and ("on-target" not in x)) # ND6 old only | (df_out_final.region_id.map(lambda x: ("share" in x) and ("new" not in x) and ("on-target" not in x)) & df_out_final.treatment.map(lambda x: ("ND6" in x) | ("untreat-Q5U" in x))) # ND6 old share ].copy() df_trans_6 = pd.pivot_table( data=df_trans_6, index=["region_id", 'ND6'], # index=["region_id"], columns=["treatment", "rep"], values=["mut_ratio"], ) df_trans_6["sort_key"] = df_trans_6[ [ ("mut_ratio", "ND6-Det-Q5U", "rep1"), ("mut_ratio", "ND6-Det-Q5U", "rep2"), ] ].mean(axis=1) df_trans_6.sort_values("sort_key", ascending=sort_for_table, inplace=True) df_trans_6.drop(columns="sort_key", inplace=True) df_trans_6 # %%% 输出Detect-seq自己的的验证数据 # only的old new ,share 的old new df_comp_4 = df_out_final[ ( df_out_final.region_id.map(lambda x: ("ND4" in x) and ("on-target" not in x)) # only的old new | (df_out_final.region_id.map(lambda x: ("share" in x) and ("on-target" not in x)) & df_out_final.treatment.map(lambda x: ("ND4" in x) | ("untreat-Q5U" in x))) # share 的old new ) & df_out_final.treatment.map(lambda x: 'LIPO2000' not in x) # 排除lipo2000 ].copy() df_comp_4 = pd.pivot_table( data=df_comp_4, index=["region_id", 'ND4'], # index=["region_id"], columns=["treatment", "rep"], values=["mut_ratio"], ) df_comp_4["sort_key"] = df_comp_4[ [ ("mut_ratio", "ND4-Det-Q5U", "rep1"), ("mut_ratio", "ND4-Det-Q5U", "rep2"), ] ].mean(axis=1) df_comp_4.sort_values("sort_key", ascending=sort_for_table, inplace=True) df_comp_4.drop(columns="sort_key", inplace=True) df_comp_4 # only的old new ,share 的old new df_comp_5 = df_out_final[ ( df_out_final.region_id.map(lambda x: ("ND5.1" in x) and ("on-target" not in x)) # only的old new | (df_out_final.region_id.map(lambda x: ("share" in x) and ("on-target" not in x)) & df_out_final.treatment.map(lambda x: ("ND5-1" in x) | ("untreat-Q5U" in x))) # share 的old new ) & df_out_final.treatment.map(lambda x: 'LIPO2000' not in x) # 排除lipo2000 ].copy() df_comp_5 = pd.pivot_table( data=df_comp_5, index=["region_id", 'ND5.1'], # index=["region_id"], columns=["treatment", "rep"], values=["mut_ratio"], ) df_comp_5["sort_key"] = df_comp_5[ [ ("mut_ratio", "ND5-1-Det-Q5U", "rep1"), ("mut_ratio", "ND5-1-Det-Q5U", "rep2"), ] ].mean(axis=1) df_comp_5.sort_values("sort_key", ascending=sort_for_table, inplace=True) df_comp_5.drop(columns="sort_key", inplace=True) df_comp_5 # only的old new ,share 的old new df_comp_6 = df_out_final[ ( df_out_final.region_id.map(lambda x: ("ND6" in x) and ("on-target" not in x)) # only的old new | (df_out_final.region_id.map(lambda x: ("share" in x) and ("on-target" not in x)) & df_out_final.treatment.map(lambda x: ("ND6" in x) | ("untreat-Q5U" in x))) # share 的old new ) & df_out_final.treatment.map(lambda x: ('LIPO2000' not in x) and ('LTX-12' not in x)) # 排除lipo2000 和 ltx 12 ].copy() df_comp_6 = pd.pivot_table( data=df_comp_6, index=["region_id", 'ND6'], # index=["region_id"], columns=["treatment", "rep"], values=["mut_ratio"], ) df_comp_6["sort_key"] = df_comp_6[ [ ("mut_ratio", "ND6-Det-Q5U", "rep1"), ("mut_ratio", "ND6-Det-Q5U", "rep2"), ] ].mean(axis=1) df_comp_6.sort_values("sort_key", ascending=sort_for_table, inplace=True) df_comp_6.drop(columns="sort_key", inplace=True) df_comp_6 # %% save trans 和 comp的表格 v1 20220308 os.chdir("/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/Manuscript/20220311_My_tables") df_trans_4 = df_trans_4.fillna(0) df_comp_4 = df_comp_4.fillna(0) # df_trans_4.index = df_trans_4.index.map(lambda x: '_'.join(x)) # df_trans_5.index = df_trans_5.index.map(lambda x: '_'.join(x)) # df_trans_6.index = df_trans_6.index.map(lambda x: '_'.join(x)) # df_comp_4.index = df_comp_4.index.map(lambda x: '_'.join(x)) # df_comp_5.index = df_comp_5.index.map(lambda x: '_'.join(x)) # df_comp_6.index = df_comp_6.index.map(lambda x: '_'.join(x)) with pd.ExcelWriter('20220308_TargetSeqInfoForBarPlot.xlsx') as writer: # doctest: +SKIP df_trans_4.to_excel(writer, sheet_name='ND4_TRANS') df_trans_5.to_excel(writer, sheet_name='ND5.1_TRANS') df_trans_6.to_excel(writer, sheet_name='ND6_TRANS') df_comp_4.to_excel(writer, sheet_name='ND4_COMP') df_comp_5.to_excel(writer, sheet_name='ND5.1_COMP') df_comp_6.to_excel(writer, sheet_name='ND6_COMP') for df_final in [df_trans_4, df_trans_5, df_trans_6, df_comp_4, df_comp_5, df_comp_6]: for col in df_final: df_final[col] = df_final[col].map(lambda x: x if x >= 0.001 else 0.001) with pd.ExcelWriter('20220308_TargetSeqInfoForBarPlot_fixmin.xlsx') as writer: # doctest: +SKIP df_trans_4.to_excel(writer, sheet_name='ND4_TRANS') df_trans_5.to_excel(writer, sheet_name='ND5.1_TRANS') df_trans_6.to_excel(writer, sheet_name='ND6_TRANS') df_comp_4.to_excel(writer, sheet_name='ND4_COMP') df_comp_5.to_excel(writer, sheet_name='ND5.1_COMP') df_comp_6.to_excel(writer, sheet_name='ND6_COMP') # %% save trans 和 comp的表格 v2 add seq 20220311 # 这里的话前面的sort_for_table变量要设置为False再跑一遍!!!!! os.chdir("/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/Manuscript/20220311_My_tables") df_trans_4_for_tab = df_trans_4.copy() df_trans_5_for_tab = df_trans_5.copy() df_trans_6_for_tab = df_trans_6.copy() df_comp_4_for_tab = df_comp_4.copy() df_comp_5_for_tab = df_comp_5.copy() df_comp_6_for_tab = df_comp_6.copy() # %% next 整理seq信息 # %% load relative index # %% load seq info ls_fa = sorted(glob.glob('reference.fasta/*.fa')) ls_fa_context = [] for i in ls_fa: with open(i, 'r') as f: cont = f.readlines() cont = [i.strip() for i in cont] ls_fa_context.append( [cont[0][1:], cont[1]] ) df_seq = pd.DataFrame(ls_fa_context, columns=['region_id', 'seq']) df_seq2 = df_seq.merge(df_idx) # df_seq2 = df_seq.merge(df_idx, how='left') # df_seq2[df_seq2.ref_base.isna()].region_id # Out[101]: # 0 ND1-on-target # 17 ND4-only-11 # 62 ND5.3-on-target # 63 ND516-share-1 # Name: region_id, dtype: object def find_seq(x): # print(x) idx = x['relative_pos'] - 1 seq = x['seq'] fwd = seq[idx - 10: idx] on = seq[idx] lat = seq[idx + 1: idx + 11] return f"{fwd}[{on}]{lat}" df_seq2['seq'] = df_seq2.apply(find_seq, axis=1) df_seq2 # %% merge seq dt_seq = { 'seq_trans4': df_trans_4_for_tab, 'seq_trans5': df_trans_5_for_tab, 'seq_trans6': df_trans_6_for_tab, 'seq_comp4': df_comp_4_for_tab, 'seq_comp5': df_comp_5_for_tab, 'seq_comp6': df_comp_6_for_tab, } with
pd.ExcelWriter('20220311_TargetSeqInfoForBarPlot_seqinfos.xlsx')
pandas.ExcelWriter
#coding=utf-8 import os import CSZLData import CSZLFeatureEngineering as FE import CSZLModel import CSZLDisplay import CSZLUtils import pandas as pd import datetime import time class CSZLWorkflow(object): """各种workflow 主要就是back testing""" def BackTesting(self): #Default_folder_path='./temp/' Default_folder_path='D:/temp2/' #zzzz=CSZLData.CSZLData("20220101","20220301") #zzzz.getDataSet_all(Default_folder_path) #"20150801","20220425" dayA='20130101'#nomal/small dayB='20170301' #dayB='20200101' #dayA='20150801'#nomal/small #dayB='20220425' dayC='20170301' dayD='20220425' dayA='20150801'#nomal/small dayB='20220425' dayC='20220201' dayD='20220513' #dayA='20190101'#nomal/small #dayB='20190601' #dayC='20210101' #dayD='20220425' zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FE05() #zzzz=FE.CSZLFeatureEngineering("20170301","20220301",Default_folder_path) #testpath=zzzz.FE03() zzzz=FE.CSZLFeatureEngineering(dayC,dayD,Default_folder_path) testpath=zzzz.FE05() #zzzz=FE.CSZLFeatureEngineering("20220101","20220408",Default_folder_path) #testpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20190101","20190301",Default_folder_path) #trainpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20220101","20220301",Default_folder_path) #testpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20190101","20210101",Default_folder_path) #trainpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20220101","20220401",Default_folder_path) #testpath=zzzz.FE03() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain(trainpath) #resultpath2=cur_model.LGBmodelpredict(trainpath,cur_model_path) resultpath=cur_model.LGBmodelpredict(testpath,cur_model_path) #cur_model_path2=cur_model.LGBmodelretrain(trainpath,resultpath2) #resultpath3=cur_model.LGBmodelrepredict(testpath,resultpath,cur_model_path2) resultpath=cur_model.MixOutputresult_groupbalence(testpath,cur_model_path) today_df = pd.read_csv(resultpath,index_col=0,header=0) #lastday=today_df['trade_date'].max() #today_df['ts_code']=today_df['ts_code'].apply(lambda x : x[:-3]) #copy_df=today_df[today_df['trade_date']==lastday] #copy_df.to_csv("Today_NEXT_predict.csv") curdisplay=CSZLDisplay.CSZLDisplay() curdisplay.Topk_nextopen(resultpath) pass def BackTesting_static_0501(self): #生成需要的数据集 nowTime=datetime.datetime.now() delta = datetime.timedelta(days=63) delta_one = datetime.timedelta(days=1) LastTime=nowTime-delta_one month_ago = LastTime - delta month_ago_next=month_ago+delta_one Day_start=month_ago_next.strftime('%Y%m%d') Day_end=LastTime.strftime('%Y%m%d') Day_now=nowTime.strftime('%Y%m%d') #Default_folder_path='./temp2/' Default_folder_path='D:/temp2/' dayA='20150801'#nomal/small dayB='20220425' #dayA='20150801'#nomal/small #dayB='20220425' dayC=Day_start dayD=Day_now #dayD='20220506' zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FE03() zzzz=FE.CSZLFeatureEngineering(dayC,dayD,Default_folder_path) testpath=zzzz.FE03() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain(trainpath) cur_model.LGBmodelpredict(testpath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence(testpath,cur_model_path) today_df = pd.read_csv(resultpath,index_col=0,header=0) lastday=today_df['trade_date'].max() today_df['ts_code']=today_df['ts_code'].apply(lambda x : x[:-3]) copy_df=today_df[today_df['trade_date']==lastday] copy_df.to_csv("Today_NEXT_predict.csv") #curdisplay=CSZLDisplay.CSZLDisplay() #curdisplay.Topk_nextopen(resultpath) pass def BackTesting_static_0515(self): #生成需要的数据集 nowTime=datetime.datetime.now() delta = datetime.timedelta(days=63) delta_one = datetime.timedelta(days=1) LastTime=nowTime-delta_one month_ago = LastTime - delta month_ago_next=month_ago+delta_one Day_start=month_ago_next.strftime('%Y%m%d') Day_end=LastTime.strftime('%Y%m%d') Day_now=nowTime.strftime('%Y%m%d') #Default_folder_path='./temp2/' Default_folder_path='D:/temp2/' dayA='20150801'#nomal/small dayB='20220425' #dayA='20150801'#nomal/small #dayB='20220425' dayC=Day_start dayD=Day_now dayD='20220513' zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FE05() zzzz=FE.CSZLFeatureEngineering(dayC,dayD,Default_folder_path) testpath=zzzz.FE05() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain(trainpath) cur_model.LGBmodelpredict(testpath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence(testpath,cur_model_path) today_df = pd.read_csv(resultpath,index_col=0,header=0) lastday=today_df['trade_date'].max() today_df['ts_code']=today_df['ts_code'].apply(lambda x : x[:-3]) copy_df=today_df[today_df['trade_date']==lastday] copy_df.to_csv("Today_NEXT_predict.csv") #curdisplay=CSZLDisplay.CSZLDisplay() #curdisplay.Topk_nextopen(resultpath) pass def BackTesting2(self): #Default_folder_path='./temp/' Default_folder_path='D:/temp2/' #zzzz=CSZLData.CSZLData("20220101","20220301") #zzzz.getDataSet_all(Default_folder_path) zzzz=FE.CSZLFeatureEngineering("20130101","20170301",Default_folder_path) trainpath=zzzz.FE03() zzzz=FE.CSZLFeatureEngineering("20170301","20220301",Default_folder_path) testpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20220101","20220408",Default_folder_path) #testpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20190101","20190301",Default_folder_path) #trainpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20220101","20220301",Default_folder_path) #testpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20190101","20200301",Default_folder_path) #trainpath=zzzz.FE03() #zzzz=FE.CSZLFeatureEngineering("20210101","20220301",Default_folder_path) #testpath=zzzz.FE03() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain(trainpath) resultpath2=cur_model.LGBmodelpredict(trainpath,cur_model_path) resultpath=cur_model.LGBmodelpredict(testpath,cur_model_path) cur_model_path2=cur_model.LGBmodelretrain(trainpath,resultpath2) resultpath3=cur_model.LGBmodelrepredict(testpath,resultpath,cur_model_path2) #resultpath=cur_model.MixOutputresult(testpath,cur_model_path) curdisplay=CSZLDisplay.CSZLDisplay() curdisplay.Topk_nextopen(resultpath3) pass def RealTimePredict(self): Default_folder_path='./temp2/' #Default_folder_path='D:/temp2/' #cur_model_path="D:/temp2/FE0320190101to20210101_0/LGBmodeltrainLGBmodel_003" #cur_model_path="D:/temp2/FE0320150801to20220425_0/LGBmodeltrainLGBmodel_003" cur_model_path="./temp2/FE0520150801to20220425_0/LGBmodeltrainLGBmodel_003" #是否需要重新生成 if False: #zzzz=FE.CSZLFeatureEngineering("20190101","20210101",Default_folder_path) #trainpath=zzzz.FE03() zzzz=FE.CSZLFeatureEngineering("20150801","20220425",Default_folder_path) trainpath=zzzz.FE05() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain(trainpath) #生成需要的数据集 nowTime=datetime.datetime.now() delta = datetime.timedelta(days=63) delta_one = datetime.timedelta(days=1) LastTime=nowTime-delta_one month_ago = LastTime - delta month_ago_next=month_ago+delta_one Day_start=month_ago_next.strftime('%Y%m%d') Day_end=LastTime.strftime('%Y%m%d') Day_now=nowTime.strftime('%Y%m%d') CSZLData.CSZLDataWithoutDate.get_realtime_quotes(Default_folder_path,Day_start,Day_end) zzzz=FE.CSZLFeatureEngineering(Day_start,Day_end,Default_folder_path) #zzzz=FE.CSZLFeatureEngineering("20220301","20220420",Default_folder_path) #trainpath=zzzz.FE03() #bbbb=pd.read_pickle(trainpath) #aaaa=bbbb.head(10) #aaaa=aaaa.to_csv("tttt.csv") zzzz.FE05_real(int(Day_now)) featurepath="Today_Joinfeature.csv" cur_model=CSZLModel.CSZLModel() #resultpath2=cur_model.LGBmodelpredict(trainpath,cur_model_path) resultpath=cur_model.LGBmodelpredict(featurepath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence(featurepath,cur_model_path,resultpath) pass def RealTimePredict_CB(self): Default_folder_path='./temp2/' #Default_folder_path='D:/temp2/' #cur_model_path="D:/temp2/FE0320190101to20210101_0/LGBmodeltrainLGBmodel_003" #cur_model_path="D:/temp2/FE0320150801to20220425_0/LGBmodeltrainLGBmodel_003" cur_model_path="./temp2/FECB0320130101to20220501_0/LGBmodeltrain_CBLGBmodel_003" #是否需要重新生成 if False: dayA='20130101'#nomal/small dayB='20220501' zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FECB02() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain_CB(trainpath) #生成需要的数据集 nowTime=datetime.datetime.now() delta = datetime.timedelta(days=63) delta_one = datetime.timedelta(days=1) LastTime=nowTime-delta_one month_ago = LastTime - delta month_ago_next=month_ago+delta_one Day_start=month_ago_next.strftime('%Y%m%d') Day_end=LastTime.strftime('%Y%m%d') Day_now=nowTime.strftime('%Y%m%d') CSZLData.CSZLDataWithoutDate.get_realtime_quotes_CB(Default_folder_path,Day_start,Day_end) zzzz=FE.CSZLFeatureEngineering(Day_start,Day_end,Default_folder_path) zzzz.FECB03_real(int(Day_now)) featurepath="Today_Joinfeature_CB.csv" cur_model=CSZLModel.CSZLModel() #resultpath2=cur_model.LGBmodelpredict(trainpath,cur_model_path) resultpath=cur_model.LGBmodelpredict_CB(featurepath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence_CB(featurepath,cur_model_path,resultpath) pass def CBBackTesting(self): Default_folder_path='D:/temp2/' dayA='20130101'#nomal/small dayB='20220501' dayC='20220301' dayD='20220505' #dayD='20220506' dayD='20220513' zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FECB03() zzzz=FE.CSZLFeatureEngineering(dayC,dayD,Default_folder_path) testpath=zzzz.FECB03() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain_CB(trainpath) cur_model.LGBmodelpredict_CB(testpath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence_CB(testpath,cur_model_path) curdisplay=CSZLDisplay.CSZLDisplay() curdisplay.Topk_nextopen_CB(resultpath) pass def CBBackTesting_static_0508(self): #生成需要的数据集 nowTime=datetime.datetime.now() delta = datetime.timedelta(days=63) delta_one = datetime.timedelta(days=1) LastTime=nowTime-delta_one month_ago = LastTime - delta month_ago_next=month_ago+delta_one Day_start=month_ago_next.strftime('%Y%m%d') Day_end=LastTime.strftime('%Y%m%d') Day_now=nowTime.strftime('%Y%m%d') #Default_folder_path='./temp2/' Default_folder_path='D:/temp2/' dayA='20130101'#nomal/small dayB='20220301' dayC=Day_start dayD=Day_now zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FECB02() zzzz=FE.CSZLFeatureEngineering(dayC,dayD,Default_folder_path) testpath=zzzz.FECB02() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain_CB(trainpath) cur_model.LGBmodelpredict_CB(testpath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence_CB(testpath,cur_model_path) today_df = pd.read_csv(resultpath,index_col=0,header=0) lastday=today_df['trade_date'].max() today_df['ts_code']=today_df['ts_code'].apply(lambda x : x[:-3]) copy_df=today_df[today_df['trade_date']==lastday] copy_df.to_csv("Today_NEXT_predict_CB.csv") #curdisplay=CSZLDisplay.CSZLDisplay() #curdisplay.Topk_nextopen_CB(resultpath) pass def CBBackTesting_static_0515(self): #生成需要的数据集 nowTime=datetime.datetime.now() delta = datetime.timedelta(days=63) delta_one = datetime.timedelta(days=1) LastTime=nowTime-delta_one month_ago = LastTime - delta month_ago_next=month_ago+delta_one Day_start=month_ago_next.strftime('%Y%m%d') Day_end=LastTime.strftime('%Y%m%d') Day_now=nowTime.strftime('%Y%m%d') #Default_folder_path='./temp2/' Default_folder_path='D:/temp2/' dayA='20130101'#nomal/small dayB='20220501' dayC=Day_start dayD=Day_now dayD='20220513' zzzz=FE.CSZLFeatureEngineering(dayA,dayB,Default_folder_path) trainpath=zzzz.FECB03() zzzz=FE.CSZLFeatureEngineering(dayC,dayD,Default_folder_path) testpath=zzzz.FECB03() cur_model=CSZLModel.CSZLModel() cur_model_path=cur_model.LGBmodeltrain_CB(trainpath) cur_model.LGBmodelpredict_CB(testpath,cur_model_path) resultpath=cur_model.MixOutputresult_groupbalence_CB(testpath,cur_model_path) today_df =
pd.read_csv(resultpath,index_col=0,header=0)
pandas.read_csv
import click import os import csv import re import functools import pandas as pd import numpy as np import datetime import common import shutil class InvalidSubscenario(Exception):pass class CSVLocation(object): """Documentation for CSVLocation class which acts as wrapper over folder, csv_location """ def __init__(self, csv_location): """ param csv_location - a path where all csvs are strored in gridpath format """ self.csv_location = csv_location def get_scenarios_csv(self): return os.path.join(self.csv_location, "scenarios.csv") def get_csv_data_master(self): return os.path.join(self.csv_location, "csv_data_master.csv") class Scenario(CSVLocation): """Documentation for Scenario it stores all subscenarios in given scenario """ def __init__(self, csv_location, scenario_name): super().__init__(csv_location) scenarios_csv = self.get_scenarios_csv() self.scenario_name = scenario_name self.subscenarios = {} with open(scenarios_csv) as f: csvf = csv.DictReader(f) for row in csvf: subscenario_name = row['optional_feature_or_subscenarios'] subscenario_id = row[scenario_name] if subscenario_id.strip()!="": self.subscenarios[subscenario_name] = int(subscenario_id) setattr(self, subscenario_name, int(subscenario_id)) def get_subscenarios(self): return [Subscenario(name, v, self.csv_location) for name, v in self.subscenarios.items()] def get_subscenario(self, name): if name in self.subscenarios: return Subscenario(name, self.subscenarios[name], self.csv_location) else: raise KeyError(f"Scenario {self.scenario_name} does not have subscenario {name}") def __str__(self): return f"Senario<{self.scenario_name}>" def __repr__(self): return str(self) def test_scenario_class(): rpo30 = Scenario("/home/vikrant/programming/work/publicgit/gridpath/db/csvs_mh", "rpo30") assert rpo30.scenario_name == "rpo30" assert rpo30.csv_location == "/home/vikrant/programming/work/publicgit/gridpath/db/csvs_mh" assert rpo30.temporal_scenario_id == 5 assert rpo30.load_zone_scenario_id == 1 assert rpo30.load_scenario_id == 1 assert rpo30.project_portfolio_scenario_id == 1 assert rpo30.project_operational_chars_scenario_id == 3 assert rpo30.project_availability_scenario_id == 3 assert rpo30.project_load_zone_scenario_id == 1 assert rpo30.project_specified_capacity_scenario_id == 1 assert rpo30.project_specified_fixed_cost_scenario_id == 1 assert rpo30.solver_options_id == 1 assert rpo30.temporal_scenario_id == 5 class Subscenario(CSVLocation): """Documentation for Scenario """ def __init__(self, name, id_, csv_location): super().__init__(csv_location) self.name = name self.id_ = id_ try: self.__find_files() except Exception as e: print(e) print("Creating empty Subscenario") @functools.lru_cache(maxsize=None) def __getattr__(self, name): files = [os.path.basename(f) for f in self.files] attrs = [".".join(f.split(".")[:-1]) for f in files] if name in attrs: file = [f for f in self.get_files() if f.endswith(f"{name}.csv")][0] return pd.read_csv(file) elif name == "data": file = [f for f in self.get_files()][0] return pd.read_csv(file) def get_name(self): return self.name def get_id(self, arg): return self._id def __str__(self): return f"{self.name}<{self.id_}>" def __repr__(self): return str(self) def get_folder(self): master = self.get_csv_data_master() return self.get_subscenario_folder(self.get_csv_data_master(), self.name, self.csv_location) @staticmethod def get_subscenario_folder(master, name, csv_location): with open(master) as f: csvf = csv.DictReader(f) folder = [row['path'] for row in csvf if row['subscenario']==name][0] return os.path.join(csv_location, folder) def __find_files(self): master = self.get_csv_data_master() p = re.compile(f"{self.id_}_.*") p_ = re.compile(f".*-{self.id_}.*.csv") with open(master) as f: csvf = csv.DictReader(f) rows = [row for row in csvf if row['subscenario']==self.name] sub_types = [row['subscenario_type'] for row in rows] project_input = [row['project_input'] for row in rows] filenames = [r['filename'] for r in rows if r['filename']] files = [] if "dir_subsc_only" in sub_types: self.sub_type = "dir_subsc_only" subfolders = [f for f in os.listdir(self.get_folder()) if p.match(f)] path = os.path.join(self.get_folder(), subfolders[0]) files = [os.path.join(path, f) for f in filenames] self.files = files elif "simple" in sub_types: self.sub_type = "simple" path = self.get_folder() if '1' in project_input: p = p_ files = [os.path.join(path, f) for f in os.listdir(self.get_folder()) if p.match(f)] else: raise InvalidSubscenario(f"Invalid subscenario {self.name}") self.files = files def get_files(self): return self.files def writedata(self, subfolder, **kwargs):##FIXME def checkexisting(folder): return os.path.exists(folder) and self.files def writefile(**data): for name, value in data.items(): path = os.path.join(scid_folder,name+".csv") if os.path.exists(path): print(f"File {name}.csv exists, skipping!") else: value.to_csv(path, index=False, date_format='%d-%m-%Y %H:%M') if subfolder: folder = self.get_folder() scid_folder = os.path.join(folder, subfolder) else: scid_folder = self.get_folder() try: os.makedirs(scid_folder) except Exception as e: print(e) print("Not creating folder, probably it exists") for k, v in kwargs.items(): writefile(**{k:v}) self.__find_files() def mergedata(self, merge_on:str, **kwargs): """ only for those subscenarios for which data merging is possbible. for example for exogenous_availability_scenario_id, data of different temporal settings can be stored in same file. """ scid_folder = self.get_folder() try: os.makedirs(scid_folder) except Exception as e: print(e) print("Not creating folder, probably it exists") for name, value in kwargs.items(): path = os.path.join(scid_folder, name + ".csv") if os.path.exists(path): df = pd.read_csv(path) df = df.merge(value, on=merge_on) else: df = value df.to_csv(path, index=False) BALANCING_TYPE = {"year":1, "month":12, "day":365} #"hour":365*24, #"15min":365*96} GRAN = {1:"yearly", 12:"monthly", 365:"daily", 365*24:"hourly", 365*96:"15min"} def test_temporal_scenario_id_class(): tmp5 = Subscenario(5, "/home/vikrant/programming/work/publicgit/gridpath/db/csvs_mh") s = tmp5.structure assert len(s.timepoint[s.spinup_or_lookahead==0])==365*96 def remove_subcenario(s): for f in s.get_files(): os.remove(f) folder = os.path.dirname(s.get_files()[0]) os.removedirs(folder) def test_create_temporal_subscenario(): t1 = Subscenario('temporal_scenario_id', 1, CSV_LOCATION) t75 = create_temporal_subscenario(t1, "month", 'daily', 75) assert len(t75.structure)==365 assert len(t75.horizon_timepoints)==12 t76 = create_temporal_subscenario(t1, "year", 'daily', 76) assert len(t76.structure)==365 assert len(t76.horizon_timepoints)==1 remove_subcenario(t75) remove_subcenario(t76) def create_temporal_subscenario(base:Subscenario, balancing_type_horizon:str, granularity:str, id_:int): structure,horizon_params,horizon_timepoints, period_params = create_temporal_subscenario_data(base, balancing_type_horizon, granularity, id_) steps = len(structure['subproblem_id'].unique()) granularity = len(structure[structure.spinup_or_lookahead==0]) d = GRAN gran = d[granularity] subfolder = f"{id_}_{steps}steps_{gran}_timepoints" tscid = Subscenario(name='temporal_scenario_id', id_=id_, csv_location=base.csv_location) tscid.writedata(subfolder, description=pd.DataFrame({f"{steps} steps":[], f"{gran} timepoints":[]}), structure=structure, horizon_params=horizon_params, horizon_timepoints=horizon_timepoints, period_params=period_params) return tscid def write_endo_project_file(filename, data, headers): if os.path.exists(filename): print(f"File {filename} exists, skipping overwrite.") with open(filename, "w") as f: csvf = csv.DictWriter(f, headers) csvf.writerow(data) def get_project_filename(project, subscenario_id, subscenario_name): return f"{project}-{subscenario_id}-{subscenario_name}.csv" def create_availability_subscenario(csv_location:str, availability:str, endogenous:str, description:str, id_:int ): """ csv_location -> csv_location """ pascid = Subscenario(name = 'project_availability_scenario_id', id_= id_, csv_location = csv_location ) data = pd.read_csv(availability) availdata = data[data.endogenous_availability_scenario_id.notnull()] if endogenous: agg_data = pd.read_csv(endogenous) for project, endoscid_ in availdata[ ['project','endogenous_availability_scenario_id']].drop_duplicates().values: endoscid = Subscenario('endogenous_availability_scenario_id', endoscid_, csv_location) print(endoscid_,"**"*10) df = agg_data[(agg_data.subscenario_id == endoscid_) & (agg_data.project==project)] cols = list(df.columns) cols_ = ['project', 'subscenario_id', 'subscenario_name'] for c in cols_: cols.remove(c) projectdata = df[cols] filename = common.get_subscenario_csvpath(project, 'endogenous_availability_scenario_id', int(float(endoscid_)), endoscid.csv_location, "endo") f = os.path.basename(filename.split(".")[0]) endoscid.writedata(None, **{f:projectdata}) pascid.writedata(None, **{f"{id_}_availability_{description}":data}) return pascid def get_subset(temporal): s = temporal.structure s = s[s.spinup_or_lookahead==0] s = s[['timepoint', 'timestamp']] s['timestamp'] = pd.to_datetime(s.timestamp, format='%d-%m-%Y %H:%M') s.sort_values('timestamp', inplace=True) s.set_index('timestamp', inplace=True) return s def create_horizon_or_timepoint(base, size): pad = len(str(size+1)) if size==1: return np.array([int(base)]) return np.array([int(str(base) + str(i).zfill(pad)) for i in range(1, size+1)]) def create_horizon(period, n): return create_horizon_or_timepoint(period, n) def create_timepoints(horizon, n): return create_horizon_or_timepoint(horizon, n) def create_horizon_params(base, balancing_type_horizon, structure, ): grp = structure.groupby("subproblem_id") period = base.period_params['period'].iloc[0] hname = 'horizon_'+balancing_type_horizon df = grp[[hname]].first().reset_index() n = len(df) subproblem_id = np.array(range(1,n+1)) balancing_type_horizon_ = np.array([balancing_type_horizon]*n) boundary = np.array(["linear"]*n) df['balancing_type_horizon'] = balancing_type_horizon df['boundary'] = boundary df.rename(columns={hname:'horizon'}, inplace=True) return df[["subproblem_id", "balancing_type_horizon", "horizon", "boundary"]] def create_period_params(base): return base.period_params.copy() def get_delta(granularity): if granularity=="15min": return datetime.timedelta(minutes=15) elif granularity=="hourly": return datetime.timedelta(hours=1) elif granularity=="daily": return datetime.timedelta(days=1) def get_subproblem_id_index(balancing_type_horizon, s1): """ s1 is dataframe with columns m, d, period """ if balancing_type_horizon == 'month': index = pd.Index(data=s1['m'].unique(), name='m') elif balancing_type_horizon == 'year': index = pd.Index(data=s1['period'].unique(), name='period') elif balancing_type_horizon == 'day': index = pd.MultiIndex.from_arrays([s1['d'], s1['m']], names=['d','m']).unique() else: raise ValueError(f"Incompatible balancing_type_horizon {balancing_type_horizon}") return index def get_subproblem_id(index): subproblem_id = pd.Series(data=range(1, len(index)+1), index=index, name='subproblem_id') return subproblem_id def get_groupby_cols(granularity): common = ['stage_id', 'period'] if granularity == "daily": grpbycols = ['d', 'm'] elif granularity == "monthly": grpbycols = ['m'] elif granularity == "yearly": grpbycols = [] elif granularity == "hourly" : grpbycols = ['d','m','H'] elif granularity == "15min" : grpbycols = ['d','m','H','M'] else: raise ValueError(f"Incompatible granularity {granularity}") grpbycols.extend(common) return grpbycols def split_timestamp(s): ts = s.timestamp.str.split("-", expand=True) ts.columns = ['d', 'm', 'ys'] ts1 = ts.ys.str.split(expand=True) del ts['ys'] ts['y'] = ts1[0] ts2 = ts1[1].str.split(":", expand=True) ts['H'] = ts2[0] ts['M'] = ts2[1] return ts def get_groupsby_structure(base:Subscenario, granularity): structure = base.structure s = structure[structure.spinup_or_lookahead==0] ts = split_timestamp(s) return s[['timepoint', 'timepoint_weight', 'timestamp']].join(ts) def subset_data(data, temporal:Subscenario): s = temporal.structure s = s[s.spinup_or_lookahead==0] t = s[['timepoint']] return t.merge(data, on='timepoint')[data.columns] def collapse(data, columns, basetemporal:Subscenario, granularity, subtemporal:Subscenario, weighted=False, operation='sum'): ts = get_groupsby_structure(basetemporal, granularity) col_names = [c for c in data.columns] grpbycols = get_groupby_cols(granularity) grpbycols.remove('period') grpbycols.remove('stage_id') data = data.merge(ts, on='timepoint') if weighted: for c in columns: data[c] = data[c]*data.timepoint_weight grp = data.groupby(grpbycols) opgrp = grp[columns] weight = grp['timepoint_weight'] r = opgrp.sum() for c in columns: r[c] = r[c]/weight.sum() else: grp = data.groupby(grpbycols) opgrp = grp[columns] op = getattr(opgrp, operation) r = op() timestamp = grp[['timestamp']+[c for c in col_names if c not in columns and c!='timepoint']].first() r = r.join(timestamp) s = subtemporal.structure s = s[s.spinup_or_lookahead==0][['timepoint','timestamp']] final_r = r.merge(s, on='timestamp') final_r = final_r.sort_values(by="timepoint").reset_index() return final_r[col_names] def create_structure(base:Subscenario, balancing_type_horizon:str, granularity:str): ns = [key for key, value in GRAN.items() if value == granularity] if not ns: raise ValueError("Invalid granularity specified. valid granularity values are {}".format(GRAN.values())) structure = base.structure s = structure[structure.spinup_or_lookahead==0] ts = split_timestamp(s) s1 = s.join(ts) grpbycols = get_groupby_cols(granularity) fcols = ['timepoint_weight', 'previous_stage_timepoint_map','spinup_or_lookahead','linked_timepoint', 'month', 'hour_of_day', 'timestamp'] scols = ['number_of_hours_in_timepoint'] grp = s1.groupby(grpbycols) firstcols = grp[fcols].first() sumcols = grp[scols].sum() #sumcols = sumcols.astype(int) index = get_subproblem_id_index(balancing_type_horizon, s1) subproblem_id = get_subproblem_id(index) horizon = pd.Series(data=create_horizon(base.period_params['period'].iloc[0], len(index)), index = index, name = "horizon_" + balancing_type_horizon) s_ = firstcols.join(sumcols).join(subproblem_id).join(horizon) s_ = create_timepoint_col(s_, horizon) s_['linked_timepoint'].iloc[:] = np.nan colnames = ['subproblem_id','stage_id','timepoint','period','number_of_hours_in_timepoint','timepoint_weight','previous_stage_timepoint_map','spinup_or_lookahead','linked_timepoint','month','hour_of_day','timestamp',horizon.name] return s_[colnames] def create_timepoint_col(s_, horizon): """ s_ is dataframe containing columns with name timestamp in '%d-%m-%Y %H:%M' format make use of these columns to make timepoint """ s_['timestamp_'] =
pd.to_datetime(s_.timestamp, format='%d-%m-%Y %H:%M')
pandas.to_datetime
import xarray as _xr import pathlib as _pl import numpy as _np # import cartopy.crs as ccrs # import metpy # from scipy import interpolate # from datetime import datetime, timedelta from mpl_toolkits.basemap import Basemap as _Basemap from pyproj import Proj as _Proj import urllib as _urllib from pyquery import PyQuery as _pq import pandas as _pd import matplotlib.pyplot as _plt import mpl_toolkits.basemap as _basemap import os as _os import numba as _numba import multiprocessing as _mp import functools as _functools def open_file(p2f, verbose = False): ds = _xr.open_dataset(p2f) product_name = ds.attrs['dataset_name'].split('_')[1] if verbose: print(f'product name: {product_name}') if product_name == 'ABI-L2-AODC-M6': classinst = ABI_L2_AODC_M6(ds) elif product_name[:-1] == 'ABI-L2-MCMIPC-M': classinst = ABI_L2_MCMIPC_M6(ds) elif product_name == 'ABI-L2-LSTC-M6': classinst = ABI_L2_LSTC_M6(ds) if verbose: print(f'identified as: ABI-L2-LSTC-M6') else: classinst = GeosSatteliteProducts(ds) if verbose: print('not identified') # assert(False), f'The product {product_name} is not known yet, programming required.' return classinst class ProjectionProject(object): def __init__(self,sites, # list_of_files = None, # download_files = False, # file_processing_state = 'raw', path2folder_raw = '/mnt/telg/data/smoke_events/20200912_18_CO/goes_raw/ABI_L2_AODC_M6_G16/', path2interfld = '/mnt/telg/tmp/class_tmp_inter', path2resultfld = '/mnt/telg/data/smoke_events/20200912_18_CO/goes_projected/ABI_L2_AODC_M6_G16/', generate_missing_folders = False): self.sites = sites self.list_of_files = None self.download_files = False self.path2folder_raw = _pl.Path(path2folder_raw) self.path2interfld_point = _pl.Path(path2interfld).joinpath('point') self.path2interfld_area = _pl.Path(path2interfld).joinpath('area') self.path2resultfld_point = _pl.Path(path2resultfld).joinpath('point') self.path2resultfld_area = _pl.Path(path2resultfld).joinpath('area') outputfld = [self.path2interfld_point, self.path2interfld_area , self.path2resultfld_point, self.path2resultfld_area] if generate_missing_folders: for fld in outputfld: try: fld.mkdir(exist_ok=True) except: fld.parent.mkdir(exist_ok=True) for fld in outputfld: assert(fld.is_dir()), f'no such folder {fld.as_posix()}, set generate_missing_folders to true to generate folders' self._workplan = None @property def workplan(self): # list_of_files = None, # download_files = False, # file_processing_state = 'raw', # path2folder_raw = '/mnt/telg/data/smoke_events/20200912_18_CO/goes_raw/ABI_L2_AODC_M6_G16/', # path2interfld = '/mnt/telg/tmp/class_tmp_inter', # path2resultfld = '/mnt/telg/data/smoke_events/20200912_18_CO/goes_projected/ABI_L2_AODC_M6_G16/'): """ Parameters ---------- list_of_files : TYPE, optional If this is None then the workplan for the concatination is generated (the files in the intermediate folder will be used). The default is None. file_location: str ('ftp', 'local'), optional file_processing_state: str ('raw', 'intermediate'), optional path2folder_raw : TYPE, optional DESCRIPTION. The default is '/mnt/telg/tmp/class_tmp/'. path2interfld : TYPE, optional DESCRIPTION. The default is '/mnt/telg/tmp/class_tmp_inter'. path2resultfld : TYPE, optional DESCRIPTION. The default is '/mnt/telg/projects/GOES_R_ABI/data/sattelite_at_gml'. Returns ------- df : TYPE DESCRIPTION. """ if isinstance(self._workplan, type(None)): if not self.download_files: # if file_processing_state == 'intermediate': if 0: pass if isinstance(self.list_of_files, type(None)): df = _pd.DataFrame(list(self.path2interfld.glob('*.nc')), columns=['path2intermediate_file']) else: assert(False), 'programming required' # elif file_processing_state == 'raw': elif 1: if isinstance(self.list_of_files, type(None)): df = _pd.DataFrame(list(self.path2folder_raw.glob('*.nc')), columns=['path2tempfile']) else: assert(False), 'programming required' df['path2intermediate_file_point'] =df.apply(lambda row: self.path2interfld_point.joinpath(row.path2tempfile.name), axis = 1) df['path2intermediate_file_area'] =df.apply(lambda row: self.path2interfld_area.joinpath(row.path2tempfile.name), axis = 1) else: assert(False), 'not an option' elif self.download_files: assert(False), 'this will probably not work' df =
_pd.DataFrame(self.list_of_files, columns=['fname_on_ftp'])
pandas.DataFrame
from flask import Flask, render_template, url_for, request,jsonify import numpy as np import pandas as pd import json import operator import time import random import glob #Initialize Flask App app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/rawdata') def organizeDataToJson(date_time,value_array=None): dictionary = dict() i = 0 for stamp in date_time: #Create the key being the day datestr = '{}-{}-{}'.format(stamp.year, stamp.month, stamp.day) if datestr not in dictionary: dictionary[datestr] = { 'AM' : [ 0 for x in range(12) ], 'PM' : [ 0 for x in range(12) ] } if value_array is None: if stamp.hour < 12: dictionary[datestr]['AM'][stamp.hour] += 1 else: dictionary[datestr]['PM'][stamp.hour - 12] += 1 else: if stamp.hour < 12: dictionary[datestr]['AM'][stamp.hour] += value_array[i] else: dictionary[datestr]['PM'][stamp.hour - 12] += value_array[i] i+=1 return json.dumps(dictionary) @app.route('/musicdata') def createMusicDict(): d = dict() dd = dict() for stamp in music_data.Date: #stamp = datetime.strftime("%Y-%m-%d %H:%M") datestr = '{}-{}-{}'.format(stamp.year, stamp.month, stamp.day) #print('{} {}:{}'.format(datestr, stamp.hour, stamp.minute)) if datestr not in d: # create placeholders for am/pm d[datestr] = { 'AM' : [ 0 for x in range(12) ], 'PM' : [ 0 for x in range(12) ] } if stamp.hour < 12: d[datestr]['AM'][stamp.hour] += 1 else: d[datestr]['PM'][stamp.hour - 12] += 1 i = 0 j = 0 for day,value in d.items(): am_array = np.array(value['AM']) am_average = np.average(am_array) am_array[am_array==0] = int(am_average) pm_array = np.array(value['PM']) pm_average = np.average(pm_array) pm_array[pm_array==0] = int(pm_average) if i%6 == 0: datestr = 'week_'+str(j) if datestr not in dd: dd[datestr] = { 'AM' : [ 0 for x in range(12) ], 'PM' : [ 0 for x in range(12) ] } j+=1 #print(dd[datestr]) if am_average > 1: dd[datestr]['AM'] = list(map(operator.add, dd[datestr]['AM'], value['AM'])) if pm_average > 1: dd[datestr]['PM'] = list(map(operator.add, dd[datestr]['PM'], value['PM'])) i+=1 for week,value in dd.items(): # am_array = np.array(value['AM']) am_average = np.average(am_array) am_array[am_array==0] = int(am_average) #add the new array value['AM'] = am_array.tolist() # pm_array = np.array(value['PM']) pm_average = np.average(pm_array) pm_array[pm_array==0] = int(pm_average) #add the new array value['PM'] = pm_array.tolist() return json.dumps(dd) @app.route('/createcsv', methods=['POST']) def createcsv(): # POST request if request.method == 'POST': print('Saving Client data as CSV') #since all the arrays are not the same length jsonObj = request.get_json(force=True) fileName = jsonObj['fileName'] answers = jsonObj['answers'] df = pd.DataFrame.from_dict(answers) #path = '/Answers/' path = '/images/Exp2/Correct-Answers-Experiment-2/' df.to_csv(path+fileName+'.csv',sep=',') #df.to_csv("data.csv") return 'Data saved as csv file!', 200 '''Experiment 1''' @app.route('/stackedbarchart') def stackedbarchart(): return render_template('stackedbarchart.html', humidityData=humidityData, trafficData=trafficData, energyData=energyData, uberData=uberData) @app.route('/adjacentbarchart') def adjacentbarchart(): return render_template('adjacentbarchart.html', humidityData=humidityData, trafficData=trafficData, energyData=energyData, uberData=uberData) @app.route('/combinedbarchart') def combinedbarchart(): return render_template('combinedbarchart.html', humidityData=humidityData, trafficData=trafficData, energyData=energyData, uberData=uberData) '''Experiment 2''' @app.route('/overlaidbarchart') def overlaidbarchart(): return render_template('overlaidbarchart.html', humidityData=humidityData, trafficData=trafficData, energyData=energyData, uberData=uberData) @app.route('/layeredbarchart') def layeredbarchart(): return render_template('layeredbarchart.html', humidityData=humidityData, trafficData=trafficData, energyData=energyData, uberData=uberData) @app.route('/rosebarchart') def rosebarchart(): return render_template('rosebarchart.html', humidityData=humidityData, trafficData=trafficData, energyData=energyData, uberData=uberData) ''' End ''' def createHumidityJson(data): dictionary = dict() data['date_time'] = pd.to_datetime(data['date_time']) data['Phoenix'] = data['Phoenix'].round(0) #time consuming i = 0 for stamp in data['date_time']: #Create the key being the day datestr = '{}-{}-{}'.format(stamp.year, stamp.month, stamp.day) if datestr not in dictionary: dictionary[datestr] = { 'AM' : [ 0 for x in range(12) ], 'PM' : [ 0 for x in range(12) ] } if stamp.hour < 12: dictionary[datestr]['AM'][stamp.hour] += data['Phoenix'][i] else: dictionary[datestr]['PM'][stamp.hour - 12] += data['Phoenix'][i] i+=1 #return json.dumps(dictionary) df = pd.DataFrame.from_dict(dictionary) path = '/static/data/cleanedJsonData/' return df.to_json(path+'PhoenixHumidity.json') def createUberPickupsJson(data): dictionary = dict() #time consuming data.date_time = pd.to_datetime(data.date_time) for stamp in data.date_time: #Create the key being the day datestr = '{}-{}-{}'.format(stamp.year, stamp.month, stamp.day) if datestr not in dictionary: dictionary[datestr] = { 'AM' : [ 0 for x in range(12) ], 'PM' : [ 0 for x in range(12) ] } if stamp.hour < 12: dictionary[datestr]['AM'][stamp.hour] += 1 else: dictionary[datestr]['PM'][stamp.hour - 12] += 1 return json.dumps(dictionary) #df = pd.DataFrame.from_dict(dictionary) #path = '/static/data/cleanedCsvData/' #return df.to_json(path+'NYCUberPickups.json') def createNYCTrafficFlowJson(data): dictionary = dict() for stamp in data['date']: if stamp not in dictionary: dictionary[stamp] = { 'AM' : [ 0 for x in range(12) ], 'PM' : [ 0 for x in range(12) ] } for index, row in data.iterrows(): dictionary[row['date']]['AM'] = [ row.am0,row.am1,row.am2, row.am3,row.am4,row.am5, row.am6,row.am7,row.am8, row.am9,row.am10,row.am11] dictionary[row['date']]['PM'] = [ row.pm0,row.pm1,row.pm2, row.pm3,row.pm4,row.pm5, row.pm6,row.pm7,row.pm8, row.pm9,row.pm10,row.pm11] return json.dumps(dictionary) #df = pd.DataFrame.from_dict(dictionary) #path = '/static/data/cleanedCsvData/' #return df.to_json(path+'NYCTrafficFlow.json') def createAmericanEnergyJson(data): dictionary = dict() data['date_time'] =
pd.to_datetime(data['date_time'])
pandas.to_datetime
#!/usr/bin/env python """Tests for `arcos_py` package.""" from numpy import int64 import pandas as pd import pytest from pandas.testing import assert_frame_equal from arcos4py import ARCOS from arcos4py.tools._errors import noDataError @pytest.fixture def no_bin_data(): """ pytest fixture to generate test data """ data = [item for i in range(10) for item in list(range(1, 11))] m = [0 for i in range(100)] d = {'id': data, 'time': data, 'm': m, 'x': data} print(d) df = pd.DataFrame(d) return df def test_empty_data(no_bin_data: pd.DataFrame): with pytest.raises(noDataError, match='Input is empty'): test_data = no_bin_data[no_bin_data['m'] > 0] pos = ['x'] ts = ARCOS( test_data, posCols=pos, frame_column='time', id_column='id', measurement_column='m', clid_column='clTrackID' ) ts.trackCollev(eps=1, minClsz=1, nPrev=2) def test_1_central_1_prev(): df_in = pd.read_csv('tests/testdata/1central_in.csv') df_true = pd.read_csv('tests/testdata/1central_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true, check_dtype=False) def test_1_central_2_prev(): df_in = pd.read_csv('tests/testdata/1central_in.csv') df_true = pd.read_csv('tests/testdata/1central2prev_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=2) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true, check_dtype=False) def test_1_central_3D(): df_in = pd.read_csv('tests/testdata/1central3D_in.csv') df_true = pd.read_csv('tests/testdata/1central3D_res.csv') pos = ['x', 'y', 'z'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x', 'y', 'z']) assert_frame_equal(out, df_true) def test_1_central_growing(): df_in = pd.read_csv('tests/testdata/1centralGrowing_in.csv') df_true = pd.read_csv('tests/testdata/1centralGrowing_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_2_central_growing(): df_in = pd.read_csv('tests/testdata/2centralGrowing_in.csv') df_true = pd.read_csv('tests/testdata/2centralGrowing_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_2_with_1_common_symmetric(): df_in = pd.read_csv('tests/testdata/2with1commonSym_in.csv') df_true = pd.read_csv('tests/testdata/2with1commonSym_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_2_with_1_common_asymmetric(): df_in = pd.read_csv('tests/testdata/2with1commonAsym_in.csv') df_true = pd.read_csv('tests/testdata/2with1commonAsym_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_3_spreading_1_prev(): df_in = pd.read_csv('tests/testdata/3spreading_in.csv') df_true = pd.read_csv('tests/testdata/3spreading_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_3_spreading_2_prev(): df_in = pd.read_csv('tests/testdata/3spreading_in.csv') df_true = pd.read_csv('tests/testdata/3spreading2prev_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=2) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_5_overlapping_1_prev(): df_in = pd.read_csv('tests/testdata/5overlapping_in.csv') df_true = pd.read_csv('tests/testdata/5overlapping_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_5_overlapping_2_prev(): df_in = pd.read_csv('tests/testdata/5overlapping_in.csv') df_true = pd.read_csv('tests/testdata/5overlapping2prev_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=2) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_6_overlapping(): df_in = pd.read_csv('tests/testdata/6overlapping_in.csv') df_true = pd.read_csv('tests/testdata/6overlapping_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) out['trackID'] = out['trackID'].astype(int64) assert_frame_equal(out, df_true) def test_split_from_single(): df_in = pd.read_csv('tests/testdata/1objSplit_in.csv') df_true = pd.read_csv('tests/testdata/1objSplit_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos']) assert_frame_equal(out, df_true) def test_split_from_2_objects(): df_in = pd.read_csv('tests/testdata/2objSplit_in.csv') df_true = pd.read_csv('tests/testdata/2objSplit_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos']) assert_frame_equal(out, df_true) def test_cross_2_objects(): df_in = pd.read_csv('tests/testdata/2objCross_in.csv') df_true = pd.read_csv('tests/testdata/2objCross_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos'])
assert_frame_equal(out, df_true)
pandas.testing.assert_frame_equal
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from pandas.core.index import Index, Int64Index from pandas.tseries.frequencies import infer_freq, to_offset from pandas.tseries.offsets import DateOffset, generate_range, Tick from pandas.tseries.tools import parse_time_string, normalize_date from pandas.util.decorators import cache_readonly import pandas.core.common as com import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools from pandas.lib import Timestamp import pandas.lib as lib import pandas._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if isinstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if isinstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if isinstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if isinstance(other, datetime): func = getattr(self, opname) result = func(_to_m8(other)) elif isinstance(other, np.ndarray): func = getattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = getattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if isinstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if isinstance(other, timedelta): func = getattr(self, opname) return func(np.timedelta64(other)) else: func = getattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeSeriesError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with copy : bool Make a copy of input ndarray freq : string or pandas offset object, optional One of pandas date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_unique = _join_i8_wrapper( _algos.left_join_indexer_unique_int64, with_indexers=False) _groupby = lib.groupby_arrays # _wrap_i8_function(lib.groupby_int64) _arrmap = _wrap_dt_function(_algos.arrmap_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not isinstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if isinstance(freq, basestring): freq = to_offset(freq) else: if isinstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not isinstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) if isinstance(data, datetime): data = [data] # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.to_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if isinstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', copy=copy) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', copy=copy) else: subarr = tools.to_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_get_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and len(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not isinstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not isinstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end =
normalize_date(end)
pandas.tseries.tools.normalize_date
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 6 09:28:00 2020 @author: <NAME> PCA heterogenity plot """ from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler import pandas as pd import matplotlib.pyplot as plt import numpy as np import matplotlib.gridspec as gridspec import seaborn as sns; sns.set(color_codes=True) def pca_het (adata, x_coordinate='X_position',y_coordinate='Y_position', unique_id='ImageId',subset_image=None, raw_data=True, phenotype='phenotype',phenotype_of_interest=None, genes_of_interest=None,s = 2, alpha=0.8,fontsize=5, widths = [2],heights = [6,1], save_fig=False, save_dir=None, save_name = 'PCA_Heterogenity_Plot', save_format='png', figsize=(10, 10)): # Copy adata bdata = adata if bdata.raw is None: bdata.raw = bdata if subset_image is not None: bdata = bdata[bdata.obs[unique_id] == subset_image] if phenotype_of_interest is not None: bdata = bdata[bdata.obs[phenotype].isin(phenotype_of_interest)] if genes_of_interest is not None: bdata = bdata[:, genes_of_interest] else: genes_of_interest = list(bdata.var.index) # Create a dataframe with the necessary information if raw_data is True: data = pd.DataFrame(np.log1p(bdata.raw[:, genes_of_interest].X), index=bdata.obs.index, columns=bdata.var.index) else: data =
pd.DataFrame(bdata[:, genes_of_interest].X, index=bdata.obs.index, columns=bdata.var.index)
pandas.DataFrame
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt ROOT_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..') DATA_DIR = os.path.join(ROOT_DIR, 'data') RESULTS_DIR = os.path.join(ROOT_DIR, 'results') FIGURES_DIR = os.path.join(ROOT_DIR, 'figures') DOWNLOAD_DIR = os.path.join(DATA_DIR, 'download') def keystrokes2events(df): time_cols = [c for c in df.columns if 'time' in c] dfs = [] for col in time_cols: new_df = df[df.columns.difference(time_cols)] new_df['time'] = df[col] new_df['action'] = col dfs.append(new_df) df =
pd.concat(dfs)
pandas.concat
import datetime as dt import numpy as np import pathlib import pandas as pd from functools import partial from .deprecations import deprecated_kwargs from . import utils from copy import deepcopy from collections import OrderedDict from collections.abc import Iterable from openpyxl import load_workbook from openpyxl.cell.cell import get_column_letter from openpyxl.xml.functions import fromstring, QName from openpyxl.utils import cell from styleframe.container import Container from styleframe.series import Series from styleframe.styler import Styler, ColorScaleConditionalFormatRule try: pd_timestamp = pd.Timestamp except AttributeError: pd_timestamp = pd.tslib.Timestamp class StyleFrame: """ A wrapper class that wraps a :class:`pandas.DataFrame` object and represent a stylized dataframe. Stores container objects that have values and styles that will be applied to excel :param obj: Any object that pandas' dataframe can be initialized with: an existing dataframe, a dictionary, a list of dictionaries or another StyleFrame. :param styler_obj: Will be used as the default style of all cells. :type styler_obj: :class:`.Styler` """ P_FACTOR = 1.3 A_FACTOR = 13 def __init__(self, obj, styler_obj=None): from_another_styleframe = False from_pandas_dataframe = False if styler_obj and not isinstance(styler_obj, Styler): raise TypeError('styler_obj must be {}, got {} instead.'.format(Styler.__name__, type(styler_obj).__name__)) if isinstance(obj, pd.DataFrame): from_pandas_dataframe = True if obj.empty: self.data_df = deepcopy(obj) else: self.data_df = obj.applymap(lambda x: Container(x, deepcopy(styler_obj)) if not isinstance(x, Container) else x) elif isinstance(obj, pd.Series): self.data_df = obj.apply(lambda x: Container(x, deepcopy(styler_obj)) if not isinstance(x, Container) else x) elif isinstance(obj, (dict, list)): self.data_df = pd.DataFrame(obj).applymap(lambda x: Container(x, deepcopy(styler_obj)) if not isinstance(x, Container) else x) elif isinstance(obj, StyleFrame): self.data_df = deepcopy(obj.data_df) from_another_styleframe = True else: raise TypeError("{} __init__ doesn't support {}".format(type(self).__name__, type(obj).__name__)) self.data_df.columns = [Container(col, deepcopy(styler_obj)) if not isinstance(col, Container) else deepcopy(col) for col in self.data_df.columns] self.data_df.index = [Container(index, deepcopy(styler_obj)) if not isinstance(index, Container) else deepcopy(index) for index in self.data_df.index] if from_pandas_dataframe: self.data_df.index.name = obj.index.name self._columns_width = obj._columns_width if from_another_styleframe else OrderedDict() self._rows_height = obj._rows_height if from_another_styleframe else OrderedDict() self._has_custom_headers_style = obj._has_custom_headers_style if from_another_styleframe else False self._cond_formatting = [] self._default_style = styler_obj or Styler() self._index_header_style = obj._index_header_style if from_another_styleframe else self._default_style self._known_attrs = {'at': self.data_df.at, 'loc': self.data_df.loc, 'iloc': self.data_df.iloc, 'applymap': self.data_df.applymap, 'groupby': self.data_df.groupby, 'index': self.data_df.index, 'fillna': self.data_df.fillna} def __str__(self): return str(self.data_df) def __len__(self): return len(self.data_df) def __getitem__(self, item): if isinstance(item, pd.Series): return self.data_df.__getitem__(item).index if isinstance(item, list): return StyleFrame(self.data_df.__getitem__(item)) return Series(self.data_df.__getitem__(item)) def __setitem__(self, key, value): if isinstance(value, (Iterable, pd.Series)): self.data_df.__setitem__(Container(key), list(map(Container, value))) else: self.data_df.__setitem__(Container(key), Container(value)) def __delitem__(self, item): return self.data_df.__delitem__(item) def __getattr__(self, attr): if attr in self.data_df.columns: return self.data_df[attr] try: return self._known_attrs[attr] except KeyError: raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) @property def columns(self): return self.data_df.columns @columns.setter def columns(self, columns): self.data_df.columns = [col if isinstance(col, Container) else Container(value=col) for col in columns] def _get_column_as_letter(self, sheet, column_to_convert, startcol=0): col = column_to_convert.value if isinstance(column_to_convert, Container) else column_to_convert if not isinstance(col, (int, str)): raise TypeError("column must be an index, column letter or column name") column_as_letter = None if col in self.data_df.columns: # column name column_index = self.data_df.columns.get_loc(col) + startcol + 1 # worksheet columns index start from 1 column_as_letter = cell.get_column_letter(column_index) # column index elif isinstance(col, int) and col >= 1: column_as_letter = cell.get_column_letter(startcol + col) # assuming we got column letter elif isinstance(col, str) and col <= get_column_letter(sheet.max_column): column_as_letter = col if column_as_letter is None or cell.column_index_from_string(column_as_letter) > sheet.max_column: raise IndexError("column: %s is out of columns range." % column_to_convert) return column_as_letter @classmethod def read_excel(cls, path, sheet_name=0, read_style=False, use_openpyxl_styles=False, read_comments=False, **kwargs): """ Creates a StyleFrame object from an existing Excel. .. note:: :meth:`read_excel` also accepts all arguments that :func:`pandas.read_excel` accepts as kwargs. :param str path: The path to the Excel file to read. :param sheetname: .. deprecated:: 1.6 Use ``sheet_name`` instead. .. versionchanged:: 4.0 Removed :param sheet_name: The sheet name to read. If an integer is provided then it be used as a zero-based sheet index. Default is 0. :type sheet_name: str or int :param bool read_style: If ``True`` the sheet's style will be loaded to the returned StyleFrame object. :param bool use_openpyxl_styles: If ``True`` (and `read_style` is also ``True``) then the styles in the returned StyleFrame object will be Openpyxl's style objects. If ``False``, the styles will be :class:`.Styler` objects. .. note:: Using ``use_openpyxl_styles=False`` is useful if you are going to filter columns or rows by style, for example: :: sf = sf[[col for col in sf.columns if col.style.font == utils.fonts.arial]] :param bool read_comments: If ``True`` (and `read_style` is also ``True``) cells' comments will be loaded to the returned StyleFrame object. Note that reading comments without reading styles is currently not supported. :return: StyleFrame object :rtype: :class:`StyleFrame` """ def _get_scheme_colors_from_excel(wb): xlmns = 'http://schemas.openxmlformats.org/drawingml/2006/main' if wb.loaded_theme is None: return [] root = fromstring(wb.loaded_theme) theme_element = root.find(QName(xlmns, 'themeElements').text) color_schemes = theme_element.findall(QName(xlmns, 'clrScheme').text) colors = [] for colorScheme in color_schemes: for tag in ['lt1', 'dk1', 'lt2', 'dk2', 'accent1', 'accent2', 'accent3', 'accent4', 'accent5', 'accent6']: accent = list(colorScheme.find(QName(xlmns, tag).text))[0] if 'window' in accent.attrib['val']: colors.append(accent.attrib['lastClr']) else: colors.append(accent.attrib['val']) return colors def _get_style_object(sheet, theme_colors, row, column): cell = sheet.cell(row=row, column=column) if use_openpyxl_styles: return cell else: return Styler.from_openpyxl_style(cell, theme_colors, read_comments and cell.comment) def _read_style(): wb = load_workbook(path) if isinstance(sheet_name, str): sheet = wb[sheet_name] elif isinstance(sheet_name, int): sheet = wb.worksheets[sheet_name] else: raise TypeError("'sheet_name' must be a string or int, got {} instead".format(type(sheet_name))) theme_colors = _get_scheme_colors_from_excel(wb) # Set the headers row height if header_arg is not None: headers_row_idx = header_arg + 1 sf._rows_height[headers_row_idx] = sheet.row_dimensions[headers_row_idx].height get_style_object = partial(_get_style_object, sheet=sheet, theme_colors=theme_colors) for col_index, col_name in enumerate(sf.columns): col_index_in_excel = col_index + 1 if col_index_in_excel == excel_index_col: for row_index, sf_index in enumerate(sf.index, start=2): sf_index.style = get_style_object(row=row_index, column=col_index_in_excel) col_index_in_excel += 1 # Move next to excel indices column sf.columns[col_index].style = get_style_object(row=1, column=col_index_in_excel) for row_index, sf_index in enumerate(sf.index, start=start_row_index): sf.at[sf_index, col_name].style = get_style_object(row=row_index, column=col_index_in_excel) sf._rows_height[row_index] = sheet.row_dimensions[row_index].height sf._columns_width[col_name] = sheet.column_dimensions[sf._get_column_as_letter(sheet, col_name)].width header_arg = kwargs.get('header', 0) if read_style and isinstance(header_arg, Iterable): raise ValueError('Not supporting multiple index columns with read style.') if header_arg is None: start_row_index = 1 else: start_row_index = header_arg + 2 index_col = kwargs.get('index_col') excel_index_col = index_col + 1 if index_col is not None else None if read_style and isinstance(excel_index_col, Iterable): raise ValueError('Not supporting multiple index columns with read style.') sf = cls(pd.read_excel(path, sheet_name, **kwargs)) if read_style: _read_style() sf._has_custom_headers_style = True return sf @classmethod def read_excel_as_template(cls, path, df, use_df_boundaries=False, **kwargs): """ .. versionadded:: 3.0.1 Create a StyleFrame object from an excel template with data of the given DataFrame. .. note:: :meth:`read_excel_as_template` also accepts all arguments that :meth:`read_excel` accepts as kwargs except for ``read_style`` which must be ``True``. :param str path: The path to the Excel file to read. :param df: The data to apply to the given template. :type df: :class:`pandas.DataFrame` :param bool use_df_boundaries: If ``True`` the template will be cut according to the boundaries of the given DataFrame. :return: StyleFrame object :rtype: :class:`StyleFrame` """ sf = cls.read_excel(path=path, read_style=True, **kwargs) num_of_rows, num_of_cols = len(df.index), len(df.columns) template_num_of_rows, template_num_of_cols = len(sf.index), len(sf.columns) num_of_cols_to_copy_with_style = min(num_of_cols, template_num_of_cols) num_of_rows_to_copy_with_style = min(num_of_rows, template_num_of_rows) for col_index in range(num_of_cols_to_copy_with_style): for row_index in range(num_of_rows_to_copy_with_style): sf.iloc[row_index, col_index].value = df.iloc[row_index, col_index] # Insert extra data in cases where the df is larger than the template. for extra_col in df.columns[template_num_of_cols:]: sf[extra_col] = df[extra_col][:template_num_of_rows] for row_index in df.index[template_num_of_rows:]: sf_index = Container(value=row_index) sf.loc[sf_index] = list(map(Container, df.loc[row_index])) sf.rename({sf.columns[col_index].value: df_col for col_index, df_col in enumerate(df.columns)}, inplace=True) if use_df_boundaries: sf.data_df = sf.data_df.iloc[:num_of_rows, :num_of_cols] rows_height = OrderedDict() rows_height_range = range(num_of_rows) for i, (k, v) in enumerate(sf._rows_height.items()): if i in rows_height_range: rows_height[k] = v sf._rows_height = rows_height columns_width = OrderedDict() columns_width_range = range(num_of_cols) for i, (k, v) in enumerate(sf._columns_width.items()): if i in columns_width_range: columns_width[k] = v sf._columns_width = columns_width return sf # noinspection PyPep8Naming @classmethod def ExcelWriter(cls, path, **kwargs): """ A shortcut for :class:`pandas.ExcelWriter`, and accepts any argument it accepts except for ``engine`` """ if 'engine' in kwargs: raise ValueError('`engine` argument for StyleFrame.ExcelWriter can not be set') return pd.ExcelWriter(path, engine='openpyxl', **kwargs) @property def row_indexes(self): """Excel row indexes. StyleFrame row indexes (including the headers) according to the excel file format. Mostly used to set rows height. Excel indexes format starts from index 1. :rtype: tuple :meta private: """ return tuple(range(1, len(self) + 2)) def to_excel(self, excel_writer='output.xlsx', sheet_name='Sheet1', allow_protection=False, right_to_left=False, columns_to_hide=None, row_to_add_filters=None, columns_and_rows_to_freeze=None, best_fit=None, **kwargs): """Saves the dataframe to excel and applies the styles. .. note:: :meth:`to_excel` also accepts all arguments that :meth:`pandas.DataFrame.to_excel` accepts as kwargs. :param excel_writer: File path or existing ExcelWriter :type excel_writer: str or :class:`pandas.ExcelWriter` or :class:`pathlib.Path` :param str sheet_name: Name of sheet the StyleFrame will be exported to :param bool allow_protection: Allow to protect the cells that specified as protected. If used ``protection=True`` in a Styler object this must be set to ``True``. :param bool right_to_left: Makes the sheet right-to-left. :param columns_to_hide: Columns names to hide. :type columns_to_hide: None or str or list or tuple or set :param row_to_add_filters: Add filters to the given row index, starts from 0 (which will add filters to header row). :type row_to_add_filters: None or int :param columns_and_rows_to_freeze: Column and row string to freeze. For example "C3" will freeze columns: A, B and rows: 1, 2. :type columns_and_rows_to_freeze: None or str .. versionadded:: 1.4 :param best_fit: single column, list, set or tuple of columns names to attempt to best fit the width for. .. note:: ``best_fit`` will attempt to calculate the correct column-width based on the longest value in each provided column. However this isn't guaranteed to work for all fonts (works best with monospaced fonts). The formula used to calculate a column's width is equivalent to :: (len(longest_value_in_column) + A_FACTOR) * P_FACTOR The default values for ``A_FACTOR`` and ``P_FACTOR`` are 13 and 1.3 respectively, and can be modified before calling ``StyleFrame.to_excel`` by directly modifying ``StyleFrame.A_FACTOR`` and ``StyleFrame.P_FACTOR`` :type best_fit: None or str or list or tuple or set :return: self :rtype: :class:`StyleFrame` """ # dealing with needed pandas.to_excel defaults header = kwargs.pop('header', True) index = kwargs.pop('index', False) startcol = kwargs.pop('startcol', 0) startrow = kwargs.pop('startrow', 0) na_rep = kwargs.pop('na_rep', '') def get_values(x): if isinstance(x, Container): return x.value else: try: if np.isnan(x): return na_rep else: return x except TypeError: return x def within_sheet_boundaries(row=1, column='A'): return (1 <= int(row) <= sheet.max_row and 1 <= cell.column_index_from_string(column) <= sheet.max_column) def get_range_of_cells(row_index=None, columns=None): if columns is None: start_letter = self._get_column_as_letter(sheet, self.data_df.columns[0], startcol) end_letter = self._get_column_as_letter(sheet, self.data_df.columns[-1], startcol) else: start_letter = self._get_column_as_letter(sheet, columns[0], startcol) end_letter = self._get_column_as_letter(sheet, columns[-1], startcol) if row_index is None: # returns cells range for the entire dataframe start_index = startrow + 1 end_index = start_index + len(self) else: start_index = startrow + row_index + 1 end_index = start_index return '{start_letter}{start_index}:{end_letter}{end_index}'.format(start_letter=start_letter, start_index=start_index, end_letter=end_letter, end_index=end_index) if len(self.data_df) > 0: export_df = self.data_df.applymap(get_values) else: export_df = deepcopy(self.data_df) export_df.columns = [col.value for col in export_df.columns] # noinspection PyTypeChecker export_df.index = [row_index.value for row_index in export_df.index] export_df.index.name = self.data_df.index.name if isinstance(excel_writer, (str, pathlib.Path)): excel_writer = self.ExcelWriter(excel_writer) export_df.to_excel(excel_writer, sheet_name=sheet_name, engine='openpyxl', header=header, index=index, startcol=startcol, startrow=startrow, na_rep=na_rep, **kwargs) sheet = excel_writer.sheets[sheet_name] sheet.sheet_view.rightToLeft = right_to_left self.data_df.fillna(Container('NaN'), inplace=True) if index: if self.data_df.index.name: index_name_cell = sheet.cell(row=startrow + 1, column=startcol + 1) index_name_cell.style = self._index_header_style.to_openpyxl_style() for row_index, index in enumerate(self.data_df.index): try: date_time_types_to_formats = {pd_timestamp: index.style.date_time_format, dt.datetime: index.style.date_time_format, dt.date: index.style.date_format, dt.time: index.style.time_format} index.style.number_format = date_time_types_to_formats.get(type(index.value), index.style.number_format) style_to_apply = index.style.to_openpyxl_style() except AttributeError: style_to_apply = index.style current_cell = sheet.cell(row=startrow + row_index + 2, column=startcol + 1) current_cell.style = style_to_apply if isinstance(index.style, Styler): current_cell.comment = index.style.generate_comment() else: if hasattr(index.style, 'comment'): index.style.comment.parent = None current_cell.comment = index.style.comment startcol += 1 if header and not self._has_custom_headers_style: self.apply_headers_style(Styler.default_header_style()) # Iterating over the dataframe's elements and applying their styles # openpyxl's rows and cols start from 1,1 while the dataframe is 0,0 for col_index, column in enumerate(self.data_df.columns): try: date_time_types_to_formats = {pd_timestamp: column.style.date_time_format, dt.datetime: column.style.date_time_format, dt.date: column.style.date_format, dt.time: column.style.time_format} column.style.number_format = date_time_types_to_formats.get(type(column.value), column.style.number_format) style_to_apply = column.style.to_openpyxl_style() except AttributeError: style_to_apply = Styler.from_openpyxl_style(column.style, [], openpyxl_comment=column.style.comment).to_openpyxl_style() column_header_cell = sheet.cell(row=startrow + 1, column=col_index + startcol + 1) column_header_cell.style = style_to_apply if isinstance(column.style, Styler): column_header_cell.comment = column.style.generate_comment() else: if hasattr(column.style, 'comment') and column.style.comment is not None: column_header_cell.comment = column.style.comment for row_index, index in enumerate(self.data_df.index): current_cell = sheet.cell(row=row_index + startrow + (2 if header else 1), column=col_index + startcol + 1) data_df_style = self.data_df.at[index, column].style try: if '=HYPERLINK' in str(current_cell.value): data_df_style.font_color = utils.colors.blue data_df_style.underline = utils.underline.single else: if best_fit and column.value in best_fit: data_df_style.wrap_text = False data_df_style.shrink_to_fit = False try: date_time_types_to_formats = {pd_timestamp: data_df_style.date_time_format, dt.datetime: data_df_style.date_time_format, dt.date: data_df_style.date_format, dt.time: data_df_style.time_format} data_df_style.number_format = date_time_types_to_formats.get(type(self.data_df.at[index,column].value), data_df_style.number_format) style_to_apply = data_df_style.to_openpyxl_style() except AttributeError: style_to_apply = Styler.from_openpyxl_style(data_df_style, [], openpyxl_comment=data_df_style.comment).to_openpyxl_style() current_cell.style = style_to_apply if isinstance(data_df_style, Styler): current_cell.comment = data_df_style.generate_comment() else: if hasattr(data_df_style, 'comment') and data_df_style.comment is not None: current_cell.comment = data_df_style.comment except AttributeError: # if the element in the dataframe is not Container creating a default style current_cell.style = Styler().to_openpyxl_style() if best_fit: if not isinstance(best_fit, (list, set, tuple)): best_fit = [best_fit] self.set_column_width_dict({column: (max(self.data_df[column].astype(str).str.len()) + self.A_FACTOR) * self.P_FACTOR for column in best_fit}) for column in self._columns_width: column_letter = self._get_column_as_letter(sheet, column, startcol) sheet.column_dimensions[column_letter].width = self._columns_width[column] for row in self._rows_height: if within_sheet_boundaries(row=(row + startrow)): sheet.row_dimensions[startrow + row].height = self._rows_height[row] else: raise IndexError('row: {} is out of range'.format(row)) if row_to_add_filters is not None: try: row_to_add_filters = int(row_to_add_filters) if not within_sheet_boundaries(row=(row_to_add_filters + startrow + 1)): raise IndexError('row: {} is out of rows range'.format(row_to_add_filters)) sheet.auto_filter.ref = get_range_of_cells(row_index=row_to_add_filters) except (TypeError, ValueError): raise TypeError("row must be an index and not {}".format(type(row_to_add_filters))) if columns_and_rows_to_freeze is not None: if not isinstance(columns_and_rows_to_freeze, str) or len(columns_and_rows_to_freeze) < 2: raise TypeError("columns_and_rows_to_freeze must be a str for example: 'C3'") if not within_sheet_boundaries(column=columns_and_rows_to_freeze[0]): raise IndexError("column: %s is out of columns range." % columns_and_rows_to_freeze[0]) if not within_sheet_boundaries(row=columns_and_rows_to_freeze[1]): raise IndexError("row: %s is out of rows range." % columns_and_rows_to_freeze[1]) sheet.freeze_panes = sheet[columns_and_rows_to_freeze] if allow_protection: sheet.protection.autoFilter = False sheet.protection.enable() # Iterating over the columns_to_hide and check if the format is columns name, column index as number or letter if columns_to_hide: if not isinstance(columns_to_hide, (list, set, tuple)): columns_to_hide = [columns_to_hide] for column in columns_to_hide: column_letter = self._get_column_as_letter(sheet, column, startcol) sheet.column_dimensions[column_letter].hidden = True for cond_formatting in self._cond_formatting: sheet.conditional_formatting.add(get_range_of_cells(columns=cond_formatting.columns), cond_formatting.rule) return excel_writer def apply_style_by_indexes(self, indexes_to_style, styler_obj, cols_to_style=None, height=None, complement_style=None, complement_height=None, overwrite_default_style=True): """ Applies a certain style to the provided indexes in the dataframe in the provided columns :param indexes_to_style: Indexes to which the provided style will be applied. Usually passed as pandas selecting syntax. For example, :: sf[sf['some_col'] = 20] :type indexes_to_style: list or tuple or int or Container :param styler_obj: `Styler` object that contains the style that will be applied to indexes in `indexes_to_style` :type styler_obj: :class:`.Styler` :param cols_to_style: The column names to apply the provided style to. If ``None`` all columns will be styled. :type cols_to_style: None or str or list[str] or tuple[str] or set[str] :param height: If provided, set height for rows whose indexes are in `indexes_to_style`. :type height: None or int or float .. versionadded:: 1.5 :param complement_style: `Styler` object that contains the style which will be applied to indexes not in `indexes_to_style` :type complement_style: None or :class:`.Styler` :param complement_height: Height for rows whose indexes are not in `indexes_to_style`. If not provided then `height` will be used (if provided). :type complement_height: None or int or float .. versionadded:: 1.6 :param bool overwrite_default_style: If ``True``, the default style (the style used when initializing StyleFrame) will be overwritten. If ``False`` then the default style and the provided style wil be combined using :meth:`.Styler.combine` method. :return: self :rtype: :class:`StyleFrame` """ if not isinstance(styler_obj, Styler): raise TypeError('styler_obj must be {}, got {} instead.'.format(Styler.__name__, type(styler_obj).__name__)) if isinstance(indexes_to_style, (list, tuple, int)): indexes_to_style = self.index[indexes_to_style] elif isinstance(indexes_to_style, Container): indexes_to_style =
pd.Index([indexes_to_style])
pandas.Index
# -*- coding: utf-8 -*- """ Created on set/2020 json a partir da tabela sqlite @author: github rictom/rede-cnpj 2020-11-25 - Se uma tabela já existir, parece causar lentidão para o pandas pd.to_sql. Não fazer Create table ou criar índice para uma tabela a ser criada ou modificada pelo pandas """ import os, sys, glob import time, copy, re, string, unicodedata, collections import pandas as pd, sqlalchemy from fnmatch import fnmatch ''' from sqlalchemy.pool import StaticPool engine = create_engine('sqlite://', connect_args={'check_same_thread':False}, poolclass=StaticPool) ''' import config try: camDbSqlite = config.config['BASE']['base_receita'] except: sys.exit('o arquivo sqlite não foi localizado. Veja o caminho da base no arquivo de configuracao rede.ini está correto.') camDBSqliteFTS = config.config['BASE'].get('base_receita_fulltext','') caminhoDBLinks = config.config['BASE'].get('base_links', '') caminhoDBEnderecoNormalizado = config.config['BASE'].get('base_endereco_normalizado', '') #logAtivo = True if config['rede']['logAtivo']=='1' else False #registra cnpjs consultados logAtivo = config.config['ETC'].getboolean('logativo',False) #registra cnpjs consultados # ligacaoSocioFilial = True if config['rede']['ligacaoSocioFilial']=='1' else False #registra cnpjs consultados ligacaoSocioFilial = config.config['ETC'].getboolean('ligacao_socio_filial',False) #registra cnpjs consultados class DicionariosCodigos(): def __init__(self): dfaux = pd.read_csv(r"tabelas/tabela-de-qualificacao-do-socio-representante.csv", sep=';') self.dicQualificacao_socio = pd.Series(dfaux.descricao.values,index=dfaux.codigo).to_dict() dfaux = pd.read_csv(r"tabelas/DominiosMotivoSituaoCadastral.csv", sep=';', encoding='latin1', dtype=str) self.dicMotivoSituacao = pd.Series(dfaux['Descrição'].values, index=dfaux['Código']).to_dict() dfaux = pd.read_excel(r"tabelas/cnae.xlsx", sheet_name='codigo-grupo-classe-descr') self.dicCnae =
pd.Series(dfaux['descricao'].values, index=dfaux['codigo'])
pandas.Series
"""A collections of functions to facilitate analysis of HiC data based on the cooler and cooltools interfaces.""" import warnings from typing import Tuple, Dict, Callable import cooltools.expected import cooltools.snipping import pandas as pd import bioframe import cooler import pairtools import numpy as np import multiprocess from .snipping_lib import flexible_pileup # define type aliases CisTransPairs = Dict[str, pd.DataFrame] PairsSamples = Dict[str, CisTransPairs] # define functions def get_expected( clr: cooler.Cooler, arms: pd.DataFrame, proc: int = 20, ignore_diagonals: int = 2 ) -> pd.DataFrame: """Takes a clr file handle and a pandas dataframe with chromosomal arms (generated by getArmsHg19()) and calculates the expected read number at a certain genomic distance. The proc parameters defines how many processes should be used to do the calculations. ingore_diags specifies how many diagonals to ignore (0 mains the main diagonal, 1 means the main diagonal and the flanking tow diagonals and so on)""" with multiprocess.Pool(proc) as pool: expected = cooltools.expected.diagsum( clr, tuple(arms.itertuples(index=False, name=None)), transforms={"balanced": lambda p: p["count"] * p["weight1"] * p["weight2"]}, map=pool.map, ignore_diags=ignore_diagonals, ) # construct a single dataframe for all regions (arms) expected_df = ( expected.groupby(["region", "diag"]) .aggregate({"n_valid": "sum", "count.sum": "sum", "balanced.sum": "sum"}) .reset_index() ) # account for different number of valid bins in diagonals expected_df["balanced.avg"] = expected_df["balanced.sum"] / expected_df["n_valid"] return expected_df def get_arms_hg19() -> pd.DataFrame: """Downloads the coordinates for chromosomal arms of the genome assembly hg19 and returns it as a dataframe.""" # download chromosomal sizes chromsizes = bioframe.fetch_chromsizes("hg19") # download centromers centromeres = bioframe.fetch_centromeres("hg19") centromeres.set_index("chrom", inplace=True) centromeres = centromeres.mid # define chromosomes that are well defined (filter out unassigned contigs) good_chroms = list(chromsizes.index[:23]) # construct arm regions (for each chromosome fro 0-centromere and from centromere to the end) arms = [ arm for chrom in good_chroms for arm in ( (chrom, 0, centromeres.get(chrom, 0)), (chrom, centromeres.get(chrom, 0), chromsizes.get(chrom, 0)), ) ] # construct dataframe out of arms arms = pd.DataFrame(arms, columns=["chrom", "start", "end"]) return arms def _assign_supports(features, supports): """assigns supports to entries in snipping windows. Workaround for bug in cooltools 0.2.0 that duplicate supports are not handled correctly. Copied from cooltools.common.assign_regions""" index_name = features.index.name # Store the name of index features = ( features.copy().reset_index() ) # Store the original features' order as a column with original index if "chrom" in features.columns: overlap = bioframe.overlap( features, supports, how="left", cols1=["chrom", "start", "end"], cols2=["chrom", "start", "end"], keep_order=True, return_overlap=True, ) overlap_columns = [ "index_1", "chrom_1", "start_1", "end_1", ] # To filter out duplicates later overlap["overlap_length"] = overlap["overlap_end"] - overlap["overlap_start"] # Filter out overlaps with multiple regions: overlap = ( overlap.sort_values("overlap_length", ascending=False) .drop_duplicates(overlap_columns, keep="first") .sort_index() ).reset_index(drop=True) # Copy single column with overlapping region name: features["region"] = overlap["name_2"] if "chrom1" in features.columns: for idx in ("1", "2"): overlap = bioframe.overlap( features, supports, how="left", cols1=[f"chrom{idx}", f"start{idx}", f"end{idx}"], cols2=[f"chrom", f"start", f"end"], keep_order=True, return_overlap=True, ) overlap_columns = [ "index_1", f"chrom{idx}_1", f"start{idx}_1", f"end{idx}_1", ] # To filter out duplicates later overlap[f"overlap_length{idx}"] = ( overlap[f"overlap_end{idx}"] - overlap[f"overlap_start{idx}"] ) # Filter out overlaps with multiple regions: overlap = ( overlap.sort_values(f"overlap_length{idx}", ascending=False) .drop_duplicates(overlap_columns, keep="first") .sort_index() ).reset_index(drop=True) # Copy single column with overlapping region name: features[f"region{idx}"] = overlap["name_2"] # Form a single column with region names where region1 == region2, and np.nan in other cases: features["region"] = np.where( features["region1"] == features["region2"], features["region1"], np.nan ) features = features.drop( ["region1", "region2"], axis=1 ) # Remove unnecessary columns features = features.set_index( index_name if not index_name is None else "index" ) # Restore the original index features.index.name = index_name # Restore original index title return features def assign_regions( window: int, binsize: int, chroms: pd.Series, positions: pd.Series, arms: pd.DataFrame, ) -> pd.DataFrame: """Constructs a 2d region around a series of chromosomal location. Window specifies the windowsize for the constructed regions. The total region assigned will be pos-window until pos+window. The binsize specifies the size of the HiC bins. The positions which represent the center of the regions is givin the the chroms series and the positions series.""" # construct windows from the passed chromosomes and positions snipping_windows = cooltools.snipping.make_bin_aligned_windows( binsize, chroms.values, positions.values, window ) # assign chromosomal arm to each position snipping_windows = _assign_supports(snipping_windows, bioframe.parse_regions(arms)) return snipping_windows def assign_regions_2d( window: int, binsize: int, chroms1: pd.Series, positions1: pd.Series, chroms2: pd.Series, positions2: pd.Series, arms: pd.DataFrame, ) -> pd.DataFrame: """Constructs a 2d region around a series of chromosomal location pairs. Window specifies the windowsize for the constructed regions. The total region assigned will be pos-window until pos+window. The binsize specifies the size of the HiC bins. The positions which represent the center of the regions is given by the chroms1 and chroms2 series as well as the positions1 and positions2 series.""" # construct windows from the passed chromosomes 1 and positions 1 windows1 = assign_regions(window, binsize, chroms1, positions1, arms) windows1.columns = [str(i) + "1" for i in windows1.columns] # construct windows from the passed chromosomes 1 and positions 1 windows2 = assign_regions(window, binsize, chroms2, positions2, arms) windows2.columns = [str(i) + "2" for i in windows2.columns] windows = pd.concat((windows1, windows2), axis=1) # concatenate windows windows = pd.concat((windows1, windows2), axis=1) # filter for mapping to different regions windows_final = windows.loc[windows["region1"] == windows["region2"], :] # subset data and rename regions windows_small = windows_final[ ["chrom1", "start1", "end1", "chrom2", "start2", "end2", "region1"] ] windows_small.columns = [ "chrom1", "start1", "end1", "chrom2", "start2", "end2", "region", ] return windows_small def do_pileup_obs_exp( clr: cooler.Cooler, expected_df: pd.DataFrame, snipping_windows: pd.DataFrame, proc: int = 5, collapse: bool = True, ) -> np.ndarray: """Takes a cooler file handle, an expected dataframe constructed by getExpected, snipping windows constructed by assignRegions and performs a pileup on all these regions based on the obs/exp value. Returns a numpy array that contains averages of all selected regions. The collapse parameter specifies whether to return the average window over all piles (collapse=True), or the individual windows (collapse=False).""" region_frame = get_regions_from_snipping_windows(expected_df) oe_snipper = cooltools.snipping.ObsExpSnipper( clr, expected_df, regions=bioframe.parse_regions(region_frame) ) # set warnings filter to ignore RuntimeWarnings since cooltools # does not check whether there are inf or 0 values in # the expected dataframe with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) with multiprocess.Pool(proc) as pool: # extract a matrix of obs/exp average values for each snipping_window oe_pile = cooltools.snipping.pileup( snipping_windows, oe_snipper.select, oe_snipper.snip, map=pool.map ) if collapse: # calculate the average of all windows collapsed_pile = np.nanmean(oe_pile[:, :, :], axis=2) return collapsed_pile return oe_pile def do_pileup_iccf( clr: cooler.Cooler, snipping_windows: pd.DataFrame, proc: int = 5, collapse: bool = True, ) -> np.ndarray: """Takes a cooler file handle and snipping windows constructed by assignRegions and performs a pileup on all these regions based on the corrected HiC counts. Returns a numpy array that contains averages of all selected regions. The collapse parameter specifies whether to return the average window over all piles (collapse=True), or the individual windows (collapse=False).""" # get regions from snipping windows region_frame = get_regions_from_snipping_windows(snipping_windows) iccf_snipper = cooltools.snipping.CoolerSnipper( clr, regions=bioframe.parse_regions(region_frame) ) with multiprocess.Pool(proc) as pool: iccf_pile = cooltools.snipping.pileup( snipping_windows, iccf_snipper.select, iccf_snipper.snip, map=pool.map ) if collapse: # calculate the average of all windows collapsed_pile_plus = np.nanmean(iccf_pile[:, :, :], axis=2) return collapsed_pile_plus return iccf_pile def sliding_diamond( array: np.ndarray, side_len: int = 6, center_x: bool = True ) -> Tuple[np.ndarray, np.ndarray]: """Will slide a diamond of side length 'sideLen' down the diagonal of the passed array and return the average values for each position and the relative position of each value with respect to the center of the array (in Bin units)""" # initialize accumulators for diamond value and x-position diamond_accumulator = list() bin_accumulator = list() if side_len % 2 == 0: half_window = side_len for i in range(0, (array.shape[0] - half_window + 1)): # extract diamond diamond_array = array[i : (i + half_window), i : (i + half_window)] # set inf to nan for calculation of mean diamond_array[np.isinf(diamond_array)] = np.nan diamond_accumulator.append(np.nanmean(diamond_array)) # append x-value for this particular bin bin_accumulator.append( np.median( range( i, (i + half_window), ) ) ) else: half_window = side_len // 2 for i in range(half_window, (array.shape[0] - half_window)): # extract diamond diamond_array = array[ i - half_window : (i + half_window) + 1, i - half_window : (i + half_window) + 1, ] # set inf to nan for calculation of mean diamond_array[np.isinf(diamond_array)] = np.nan diamond_accumulator.append(np.nanmean(diamond_array)) # append x-value for this particular bin bin_accumulator.append( np.median( range( i - half_window, (i + half_window) + 1, ) ) ) if center_x: x_out = np.array(bin_accumulator - np.median(bin_accumulator)) else: x_out = np.array(bin_accumulator) return (x_out, np.array(diamond_accumulator)) def load_pairs(path: str) -> pd.DataFrame: """Function to load a .pairs or .pairsam file into a pandas dataframe. This only works for relatively small files!""" # get handels for header and pairs_body header, pairs_body = pairtools._headerops.get_header( pairtools._fileio.auto_open(path, "r") ) # extract column names from header cols = pairtools._headerops.extract_column_names(header) # read data into dataframe frame =
pd.read_csv(pairs_body, sep="\t", names=cols)
pandas.read_csv
import pandas as pd import numpy as np import scipy.stats import matplotlib as plt from scipy.stats import norm from scipy.optimize import minimize import ipywidgets as widgets from IPython.display import display import math def drawdown(ret_ser: pd.Series): """ Lets Calculate it: 1. Compute wealth index 2. Compute previous peaks 3. Compute Drawdown - which is the wealth value as a percentage of the previous peak """ wealth_index = 1000*(1+ret_ser).cumprod() prev_peak = wealth_index.cummax() draw_down = (wealth_index-prev_peak)/prev_peak return pd.DataFrame({ "Wealth": wealth_index, "Previous Peak": prev_peak, "Drawdown" : draw_down }) def all_pfme(): """ This Function reads all data in the Portfolios_Formed_on_ME_monthly_EW file. """ pfme_df = pd.read_csv("data/Portfolios_Formed_on_ME_monthly_EW.csv", index_col=0 , na_values=-99.99, parse_dates= True) pfme_df.index =
pd.to_datetime(pfme_df.index, format="%Y%m")
pandas.to_datetime
from sklearn.manifold import TSNE from clustering import silhouette as sil from data_processing import MulticlusteringExperimentUtils as expUtils # Keep the clustering experiments that involve outliers here from clustering.KMeansVariations import kMeans_baseline, kMeans_baseline_high_iteration, kMeans_baseline_random_init, \ kMeans_baseline_4_clusters, kMeans_baseline_3_clusters, kMeans_baseline_2_clusters, kMeans_baseline_2_clusters_low_iter,\ kMeans_baseline_2_clusters_high_iter, kMeans_baseline_highest_iteration, kMeans_baseline_highest_iteration_2_clusters,\ kMeans_baseline_5_clusters, kMeans_baseline_3_clusters_random_high_iter, kMeans_baseline_3_clusters_random_med_iter from clustering.tsne import makeTSNEPlot import pandas as pd # --- Remove all of the outliers for the big features ---- # average hold time from data_processing.CleanDataUtils import feature_set, feature_set_complete_vectors_only,feature_set_more_even_vectors, feature_set_3_labels_completeSamplesOnly,feature_set_3_labels_AllSamples, feature_set_4049_reduced from data_processing.dataUtils import getColumnZScores, removeOutliersByZScore def removeOutliersAndNormalizeData(feature_set_input, threshold): feature1 = 'avgSeekTime' feature2 = 'avgHoldTime' feature3 = 'averageNgramTime' feature_set_outliers_removed = feature_set_input feature_set_outliers_removed = getColumnZScores(pd.DataFrame(feature_set_outliers_removed), feature1) feature_set_outliers_removed = getColumnZScores(pd.DataFrame(feature_set_outliers_removed), feature2) feature_set_outliers_removed = getColumnZScores(pd.DataFrame(feature_set_outliers_removed), feature3) feature_set_outliers_removed = removeOutliersByZScore(feature_set_outliers_removed, feature1, threshold) feature_set_outliers_removed = removeOutliersByZScore(feature_set_outliers_removed, feature2, threshold) feature_set_outliers_removed = removeOutliersByZScore(feature_set_outliers_removed, feature3, threshold) feature_set_outliers_removed = expUtils.normalizeLabeledData(pd.DataFrame(feature_set_outliers_removed)) feature_set_outliers_removed = feature_set_outliers_removed.astype(float) feature_set_outliers_removed_labels = pd.DataFrame(feature_set_outliers_removed).get(['label']) feature_set_outliers_removed.drop(columns=['label', 'userID'], inplace=True) return feature_set_outliers_removed, feature_set_outliers_removed_labels def runExperiment(expName, kmeans, labels, feature_set): kmeans_res = kmeans.fit_predict(feature_set) cluster1, cluster2, cluster3, cluster4, cluster5, cluster6 = \ expUtils.getClusterBucketsForMultiClustering(labels, kmeans_res) expUtils.getF1Score(cluster1, cluster2, cluster3, cluster4, cluster5, cluster6, expName) feature_set_labeled = pd.DataFrame(feature_set).join(labels) feature_set_labeled['cluster'] = kmeans_res.copy() sil.makeSilhouettePlot(feature_set, kmeans_res, expName) makeTSNEPlot(feature_set_labeled, experimentName=expName) expUtils.getAverageForAll(cluster1, cluster2, cluster3, cluster4, cluster5, cluster6, expName, labels) feature1 = 'avgSeekTime' feature2 = 'avgHoldTime' feature3 = 'averageNgramTime' set_combined_labels_completeOnly = feature_set_3_labels_completeSamplesOnly normalized_completeOnly_combined, normalized_completeOnly_combined_labels = \ removeOutliersAndNormalizeData(set_combined_labels_completeOnly, 3) runExperiment("jonstest10_Kmeans_baseline_completeVectors_3Clusters", kMeans_baseline_3_clusters, normalized_completeOnly_combined_labels, normalized_completeOnly_combined) set_combined_labels_allSamples = feature_set_3_labels_AllSamples normalized_set_combined_labels_allSamples, set_combined_labels_allSamples_labels = \ removeOutliersAndNormalizeData(set_combined_labels_allSamples, 3) runExperiment("jonstest10_Kmeans_baseline_AllSamples_3Clusters", kMeans_baseline_3_clusters, set_combined_labels_allSamples_labels, normalized_set_combined_labels_allSamples) runExperiment("jonstest10_Kmeans_baseline_completeVectors_3Clusters_randomInitMedIter", kMeans_baseline_3_clusters_random_med_iter, normalized_completeOnly_combined_labels, normalized_completeOnly_combined) runExperiment("jonstest10_Kmeans_baseline_completeVectors_3Clusters_randomInitHighIter", kMeans_baseline_3_clusters_random_high_iter, normalized_completeOnly_combined_labels, normalized_completeOnly_combined) runExperiment("jonstest9_Kmeans_baseline_AllSamples_3Clusters_randomInitMedIter", kMeans_baseline_3_clusters_random_med_iter, set_combined_labels_allSamples_labels, normalized_set_combined_labels_allSamples) runExperiment("jonstest9_Kmeans_baseline_AllSamples_3Clusters_randomInitHighIter", kMeans_baseline_3_clusters_random_high_iter, set_combined_labels_allSamples_labels, normalized_set_combined_labels_allSamples) middleage_reduced = feature_set_4049_reduced normalized_middleage_reduced, middleage_reduced_labels = \ removeOutliersAndNormalizeData(middleage_reduced, 3) runExperiment("middleage_reduced_baseline", kMeans_baseline, middleage_reduced_labels, normalized_middleage_reduced) runExperiment("middleage_reduced_baseline", kMeans_baseline, middleage_reduced_labels, normalized_middleage_reduced) set = feature_set_complete_vectors_only outliersRemovedNotNormalized = getColumnZScores(pd.DataFrame(set), feature1) outliersRemovedNotNormalized = getColumnZScores(pd.DataFrame(outliersRemovedNotNormalized), feature2) outliersRemovedNotNormalized = getColumnZScores(pd.DataFrame(outliersRemovedNotNormalized), feature3) outliersRemovedNotNormalized = removeOutliersByZScore(outliersRemovedNotNormalized, feature1, 3) outliersRemovedNotNormalized = removeOutliersByZScore(outliersRemovedNotNormalized, feature2, 3) outliersRemovedNotNormalized = removeOutliersByZScore(outliersRemovedNotNormalized, feature3, 3) set_normalized = expUtils.normalizeLabeledData(pd.DataFrame(set)) set_normalized = set_normalized.astype(float) print(set_normalized) set_normalized_labels = pd.DataFrame(set_normalized).get(['label']) print(set_normalized_labels) set_normalized.drop(columns=['label', 'userID'], inplace=True) runExperiment("jonstest8_Kmeans_baseline_completeVectors", kMeans_baseline, set_normalized_labels, set_normalized) #with outliers removed set_complete_vectors = set feature1 = 'avgSeekTime' feature2 = 'avgHoldTime' feature3 = 'averageNgramTime' # set_complete_vectors = getColumnZScores(pd.DataFrame(set_complete_vectors), feature1) set_complete_vectors = getColumnZScores(pd.DataFrame(set_complete_vectors), feature2) set_complete_vectors = getColumnZScores(pd.DataFrame(set_complete_vectors), feature3) set_complete_vectors = removeOutliersByZScore(set_complete_vectors, feature1, 3) set_complete_vectors = removeOutliersByZScore(set_complete_vectors, feature2, 3) set_complete_vectors = removeOutliersByZScore(set_complete_vectors, feature3, 3) set_complete_vectors = expUtils.normalizeLabeledData(pd.DataFrame(set_complete_vectors)) set_complete_vectors = set_complete_vectors.astype(float) set_complete_vectors_COPY = set_complete_vectors set_complete_vectors_labels = pd.DataFrame(set_complete_vectors).get(['label']) set_complete_vectors.drop(columns=['label', 'userID'], inplace=True) runExperiment("jonstest8_Kmeans_baseline_completeVectors_outliersRemoved_3clusters", kMeans_baseline_3_clusters, set_complete_vectors_labels, set_complete_vectors) runExperiment("jonstest8_Kmeans_baseline_completeVectors_outliersRemoved_highest_iters", kMeans_baseline_highest_iteration, set_complete_vectors_labels, set_complete_vectors) #EXPERIMENT RUNS WITH ONLY COMPLETE VECTORS even_vectors = feature_set_more_even_vectors even_vectors = getColumnZScores(pd.DataFrame(even_vectors), feature1) even_vectors = getColumnZScores(pd.DataFrame(even_vectors), feature2) even_vectors = getColumnZScores(
pd.DataFrame(even_vectors)
pandas.DataFrame
""" BFR """ import numpy as np import pandas as pd from sklearn.cluster import KMeans class BFR(object): class Local(object): def __init__(self, n_cluster, soft_n_cluster=None, shrink=0.5, input_file_path=None, iter_func=None, chunk_size=None, kmeans_params=None, print_log=True, write_to_file=False, output_file=None, cache_labels=None): """ :param n_cluster: int :param soft_n_cluster: int Used to roughly cluster points. :param shrink: float=0~1.0 Used to reduce the threshold of Clustering Algorithm. :param input_file_path: str The file to read the input results. If parameter "data" is not specified, this parameter is used to build a generator. :param iter_func: function The function used to build iterator. The iterator returns pandas.DataFrame with index. :param output_file_path: str The file to store the output results. """ self._n_cluster = n_cluster self._soft_n_cluster = soft_n_cluster if soft_n_cluster is not None else n_cluster ** 2 self._shrink = shrink self._print_log = print_log self._data_generator = None self.clusters = self.labels = None self._write_to_file, self._output_file = write_to_file, output_file if cache_labels is None: self._cache_labels = not write_to_file else: self._cache_labels = cache_labels if isinstance(kmeans_params, dict): self._kmeans_params = kmeans_params else: self._kmeans_params = {} if input_file_path is None and iter_func is None: print("No data input. Please call add_data(generator) to add data to the model.") else: self.add_data(iter_func=iter_func, input_file_path=input_file_path, chunk_size=chunk_size) def add_data(self, iter_func, input_file_path, chunk_size): """ :param input_file_path: str :param iter_func: function :param chunk_size: int """ if callable(iter_func): self._data_generator = iter_func elif isinstance(input_file_path, str): self._data_generator = lambda: pd.read_table(input_file_path, delimiter="[^0-9a-zA-Z\.\n]", dtype=np.float64, chunksize=chunk_size) else: raise ValueError def run(self): """ DS: (n_clusters, [n, SUM, SUM_SQUARE]) CS: (n_clusters, [n, SUM, SUM_SQUARE]) RS: (n_samples, dimension) """ iterator_vectors = self._data_generator() vectors = next(iterator_vectors) n_dim = vectors.shape[1] """ Initialize DS, CS, RS. """ DS, CS, RS = self._initialization(vectors, n_dim) if self._print_log: print("Tasks start. Start to print intermediate results ...") self.print_log(1, DS, CS, RS) """ Iteratively process chunks """ for i, vectors in enumerate(iterator_vectors): DS, CS, RS = self._iteration(vectors, n_dim, DS, CS, RS) if self._print_log: self.print_log(i+2, DS, CS, RS) DS, CS = self._last_round(DS, CS, n_dim) self.clusters = DS[:, 1:n_dim + 1] if self._print_log: self.print_log("final", DS, CS, RS) """ Save the results: cluster coordinates and point labels. """ if self._cache_labels and self._write_to_file: self.labels = pd.concat(list(self.classify(DS, self._n_cluster, n_dim))) self.labels.to_csv(self._output_file, mode="w", sep=",") elif self._cache_labels: self.labels = pd.concat(list(self.classify(DS, self._n_cluster, n_dim))) elif self._write_to_file:
pd.DataFrame(columns=["cluster"])
pandas.DataFrame
# import csv # with open('C:/Users/Eddie/Desktop/python-playground/Week 4/day 25 - CSV Data + Pandas Library/weather_data.csv') as data: # weather_data = csv.reader(data) # temperature = [] # for row in weather_data: # if row[1] == 'temp': # continue # temperature.append(int(row[1])) # print(temperature) import pandas # access and read CSV data using pandas library data = pandas.read_csv('C:/Users/Eddie/Desktop/python-playground/Week 4/day 25 - CSV Data + Pandas Library/weather_data.csv') # convert CSV dataframe into python object # data_dict = data.to_dict() # print(data_dict) # conver CSV series into python object list # temp = data['temp'].to_list() # average = sum(temp) / len(temp) # print(average) # using methods on series and dataframe # average_temp = data['temp'].mean() # print(average_temp) # max_temp = data['temp'].max() # print(max_temp) # selecting row by a value # monday = data[data.day == 'Monday'] # print(int(monday.temp)*(9/5) + 32) # hottest_day = data[data.temp == data.temp.max()] # print(hottest_day) # creating a dataframe student_dict = { 'student': ['Amy', 'James', 'Angela'], 'score': [76, 56, 65] } student =
pandas.DataFrame(student_dict)
pandas.DataFrame
from http.server import BaseHTTPRequestHandler, HTTPServer import socketserver import pickle import urllib.request import json from pprint import pprint from pandas.io.json import json_normalize import pandas as pd from sklearn import preprocessing from sklearn.preprocessing import PolynomialFeatures from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale from sklearn.preprocessing import PolynomialFeatures import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error from sklearn.linear_model import Ridge from math import sqrt import os import errno from pymongo import MongoClient import urllib.parse as urlparse from influxdb import InfluxDBClient from pymongo import MongoClient import pandas as pd from pandas.io.json import json_normalize from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline from sklearn.linear_model import TheilSenRegressor from sklearn.datasets import make_regression class Terminus(BaseHTTPRequestHandler): def getAllNodeNames(self,client): queryResult = client.query("SHOW TAG VALUES FROM uptime WITH KEY=nodename;") nodeNames_temp = list(queryResult.get_points()) dfnodeNames = pd.DataFrame(nodeNames_temp) allNodeNames = dfnodeNames[:]["value"] return allNodeNames def getNamespaceNames(self,client,node): nsQuery = client.query("SHOW TAG VALUES FROM uptime WITH KEY=namespace_name WHERE nodename = '"+node+"';") nsQuery_temp = list(nsQuery.get_points()) dfnsNames = pd.DataFrame(nsQuery_temp) allnsNames = dfnsNames[:]["value"] return allnsNames def getAllPodNames(self,client,node,ns_name): queryResult = client.query("SHOW TAG VALUES FROM uptime WITH KEY = pod_name WHERE namespace_name = '"+ns_name+"' AND nodename = '"+node+"';") podNames_temp = list(queryResult.get_points()) dfpodNames =
pd.DataFrame(podNames_temp)
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, IndexSlice, NaT, Timestamp, ) import pandas._testing as tm pytest.importorskip("jinja2") from pandas.io.formats.style import Styler from pandas.io.formats.style_render import _str_escape @pytest.fixture def df(): return DataFrame( data=[[0, -0.609], [1, -1.228]], columns=["A", "B"], index=["x", "y"], ) @pytest.fixture def styler(df): return Styler(df, uuid_len=0) def test_display_format(styler): ctx = styler.format("{:0.1f}")._translate(True, True) assert all(["display_value" in c for c in row] for row in ctx["body"]) assert all([len(c["display_value"]) <= 3 for c in row[1:]] for row in ctx["body"]) assert len(ctx["body"][0][1]["display_value"].lstrip("-")) <= 3 def test_format_dict(styler): ctx = styler.format({"A": "{:0.1f}", "B": "{0:.2%}"})._translate(True, True) assert ctx["body"][0][1]["display_value"] == "0.0" assert ctx["body"][0][2]["display_value"] == "-60.90%" def test_format_string(styler): ctx = styler.format("{:.2f}")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "0.00" assert ctx["body"][0][2]["display_value"] == "-0.61" assert ctx["body"][1][1]["display_value"] == "1.00" assert ctx["body"][1][2]["display_value"] == "-1.23" def test_format_callable(styler): ctx = styler.format(lambda v: "neg" if v < 0 else "pos")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "pos" assert ctx["body"][0][2]["display_value"] == "neg" assert ctx["body"][1][1]["display_value"] == "pos" assert ctx["body"][1][2]["display_value"] == "neg" def test_format_with_na_rep(): # GH 21527 28358 df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"]) ctx = df.style.format(None, na_rep="-")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "-" assert ctx["body"][0][2]["display_value"] == "-" ctx = df.style.format("{:.2%}", na_rep="-")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "-" assert ctx["body"][0][2]["display_value"] == "-" assert ctx["body"][1][1]["display_value"] == "110.00%" assert ctx["body"][1][2]["display_value"] == "120.00%" ctx = df.style.format("{:.2%}", na_rep="-", subset=["B"])._translate(True, True) assert ctx["body"][0][2]["display_value"] == "-" assert ctx["body"][1][2]["display_value"] == "120.00%" def test_format_non_numeric_na(): # GH 21527 28358 df = DataFrame( { "object": [None, np.nan, "foo"], "datetime": [None, NaT, Timestamp("20120101")], } ) with tm.assert_produces_warning(FutureWarning): ctx = df.style.set_na_rep("NA")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "NA" assert ctx["body"][0][2]["display_value"] == "NA" assert ctx["body"][1][1]["display_value"] == "NA" assert ctx["body"][1][2]["display_value"] == "NA" ctx = df.style.format(None, na_rep="-")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "-" assert ctx["body"][0][2]["display_value"] == "-" assert ctx["body"][1][1]["display_value"] == "-" assert ctx["body"][1][2]["display_value"] == "-" def test_format_clear(styler): assert (0, 0) not in styler._display_funcs # using default styler.format("{:.2f") assert (0, 0) in styler._display_funcs # formatter is specified styler.format() assert (0, 0) not in styler._display_funcs # formatter cleared to default @pytest.mark.parametrize( "escape, exp", [ ("html", "&lt;&gt;&amp;&#34;%$#_{}~^\\~ ^ \\ "), ( "latex", '<>\\&"\\%\\$\\#\\_\\{\\}\\textasciitilde \\textasciicircum ' "\\textbackslash \\textasciitilde \\space \\textasciicircum \\space " "\\textbackslash \\space ", ), ], ) def test_format_escape_html(escape, exp): chars = '<>&"%$#_{}~^\\~ ^ \\ ' df = DataFrame([[chars]]) s =
Styler(df, uuid_len=0)
pandas.io.formats.style.Styler
from functools import partial from unittest import TestCase, main as unittest_main import numpy as np import pandas as pd from scipy.special import digamma from scipy.stats import beta, norm from gbstats.bayesian.dists import Beta, Norm DECIMALS = 5 round_ = partial(np.round, decimals=DECIMALS) def roundsum(x, decimals=DECIMALS): return np.round(np.sum(x), decimals=decimals) class TestBeta(TestCase): def test_posterior(self): prior = 1, 1 data = 1, 2 result = Beta.posterior(prior, data) outcome = (2, 2) for res, out in zip(result, outcome): self.assertEqual(res, out) prior = 1, 1 data = pd.Series([1, 10]), pd.Series([2, 20]) result = Beta.posterior(prior, data) outcome = pd.Series([2, 11]), pd.Series([2, 11]) for res, out in zip(result, outcome):
pd.testing.assert_series_equal(res, out)
pandas.testing.assert_series_equal
import os import pandas as pd import json import cv2 def CSV_300W_LP(data_dir): folders = [folder for folder in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, folder))] images = [] for idx, folder in enumerate(folders): folder_path = os.path.join(data_dir, folder) folder_images = [image[:-4] for image in os.listdir(folder_path) if '.jpg' in image] for image in folder_images: image_path = os.path.join(folder, image) images.append(image_path) df = pd.DataFrame(images) df.to_csv(os.path.join(data_dir, '300W_LP.txt'), header=False, index=False) def CSV_custom(data_dir, data_type, output_dir, padding_perc = 0.0): images_dir = os.path.join(data_dir,'images', data_type) annotations = os.path.join(data_dir, 'annotations', '%s_400_rigi_essemble.json' %data_type) with open(annotations, 'r') as f: annon_dict = json.loads(f.read()) # Initializes variables avail_imgs = annon_dict.keys() x1_list = [] x2_list = [] y1_list = [] y2_list = [] roll_list = [] pitch_list = [] yaw_list = [] image_paths = [] # Gets path for all images images = [os.path.join(images_dir, image) for image in os.listdir(images_dir) if 'jpg' or 'png' in image] for image in images: # read image (to determine size later) img = cv2.imread(image) # gets images Id img_id = os.path.basename(image)[:-4].lstrip('0') # ensures the image is in the dictionary key if not img_id in avail_imgs: continue for idx, annon in enumerate(annon_dict[img_id].keys()): # ensures we have a face detected if not annon_dict[img_id][annon]['head_pose_pred']: continue bbox = annon_dict[img_id][annon]['head_pose_pred']['box'] x1 = bbox['x1'] x2 = bbox['x2'] y1 = bbox['y1'] y2 = bbox['y2'] # add padding to face upper_y = int(max(0, y1 - (y2 - y1) * padding_perc)) lower_y = int(min(img.shape[0], y2 + (y2 - y1) * padding_perc)) left_x = int(max(0, x1 - (x2 - x1) * padding_perc)) right_x = int(min(img.shape[1], x2 + (x2 - x1) * padding_perc)) # get head pose labels roll = annon_dict[img_id][annon]['head_pose_pred']['roll'] pitch = annon_dict[img_id][annon]['head_pose_pred']['pitch'] yaw = annon_dict[img_id][annon]['head_pose_pred']['yaw'] image_paths.append(os.path.basename(image)[:-4]) x1_list.append(left_x) x2_list.append(right_x) y1_list.append(upper_y) y2_list.append(lower_y) roll_list.append(roll) pitch_list.append(pitch) yaw_list.append(yaw) # saves data in RetinaNet format data = {'image_path': image_paths, 'x1': x1_list, 'x2': x2_list, 'y1': y1_list, 'y2': y2_list, 'roll': roll_list, 'pitch': pitch_list, 'yaw': yaw_list} # Create DataFrame df = pd.DataFrame(data) df.to_csv(os.path.join(output_dir, '%s_labels_headpose_essemble.csv' %data_type), index=False, header=True) def CSV_AFLW2000(data_dir): images = [image[:-4] for image in os.listdir(data_dir) if '.jpg' in image] df = pd.DataFrame(images) df.to_csv(os.path.join(data_dir, 'AFLW2000.txt'), header=False, index=False) def CSV_BIKI(data_dir): folders = [folder for folder in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, folder))] images = [] for idx, folder in enumerate(folders): if folder == 'faces': continue folder_path = os.path.join(data_dir, folder) # Initiating detector and coco annotations folder_images = [os.path.join(folder, frame[:-8]) for frame in os.listdir(folder_path) if 'png' in frame] for image in folder_images: images.append(image) df =
pd.DataFrame(images)
pandas.DataFrame
import numpy as np from sympy import * from scipy.integrate import odeint import pandas as pd import time import matplotlib.pyplot as plt from matplotlib import rcParams import webbrowser import random import copy import csv import time def coeff_vect(mtx): """Входные данные: mtx Выходныее данные: mtx1 Функция выполняет ... действиия """ mtx1 = [] for i in range(len(mtx)): mtx1.append(mtx[i][-1]) return mtx1 def det_my_matrix(mtx): Lmtx=len(mtx) if Lmtx==1: return mtx[0][0] if Lmtx==2: return mtx[0][0]*mtx[1][1]-(mtx[0][1]*mtx[1][0]) result=0 for i in range(Lmtx): factor=1 if i % 2: factor=-1 mtx2=[] for row in range(Lmtx): mtx3=[] for col in range(Lmtx): if row!=0 and col!=i: mtx3.append(mtx[row][col]) if mtx3: mtx2.append(mtx3) result+=factor*mtx[0][i]*det_my_matrix(mtx2) return(result) def GJ_method_2(mtx1): mtx = copy.deepcopy(mtx1) n = len(mtx) if det_my_matrix(mtx) == 0: return 'Вырожденная матрица. Нормально не считается этим методом' for itr in range(n): mtx[itr] = [mtx[itr][i] / mtx[itr][itr] for i in range(n + 1)] for col in range(n): if col != itr: mtx[col] = [mtx[col][i] - mtx[itr][i] * mtx[col][itr] for i in range(n + 1)] return coeff_vect(mtx) def quadratic_function(X,Y): sumX4 = sum([X[i] * X[i] * X[i] * X[i] for i in range(len(X))]) sumX3 = sum([X[i] * X[i] * X[i] for i in range(len(X))]) sumX2 = sum([X[i] * X[i] for i in range(len(X))]) sumXY = sum([X[i] * Y[i] for i in range(len(X))]) sumX2Y = sum([X[i] * X[i] * Y[i] for i in range(len(X))]) matrix = [[sumX4, sumX3, sumX2, sumX2Y], [sumX3, sumX2, sum(X), sumXY], [sumX2, sum(X), len(X), sum(Y)]] GJ_method_abc = GJ_method_2(matrix) a = GJ_method_abc[0] b = GJ_method_abc[1] c = GJ_method_abc[2] x = Symbol('x') result = (eval('x')**2)*a + b*eval('x') + c return(result) def newton1_function(X,Y): h=X[1]-X[0] # Найдем конечные разности y = copy.deepcopy(Y) deltay = [y[0]] while len(y) != 1: y = [y[i]-y[i-1] for i in range(1,len(y))] deltay.append(y[0]) result=deltay[0] x = Symbol('x') deltax = [eval('x')-X[0]] for i in range(1,len(deltay)-1): deltax.append(deltax[i-1]*(eval('x') - X[i])) for i in range(1,len(deltax)+1): deltay[i] /= h**(i) * factorial(i) result+=(deltay[i]*deltax[i-1]) return result def function(x,y,z,col): if col == 1: f = [eval(input("y' = "))] elif col == 2: f1 = eval(input("y' = ")) f2 = eval(input("z' = ")) f = [f1,f2] return f def diff_my(y1, y0, dx): y = (y1 - y0) / dx return y def iteration(): x = Symbol('x') y = Symbol('y') z = Symbol('z') system = input('Хотите ли вы ввести систему из двух уравнений? (Да/Нет):') if system.lower() == 'нет': func = function(x,y,z,1) z0 = '-' try: x0y0 = list(map(float,input('Введите начальные условия [x0,y0]: ').split())) x0 = x0y0[0] y0 = x0y0[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration() try: ab = list(map(int,input('Введите желаемый интервал [a,b]: ').split())) a = ab[0] b = ab[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration() if a > b: print(f'Ошибка в вводе интервала! ({a}!>{b})!!') return iteration() elif system.lower() == 'да': func = function(x,y,z,2) try: x0y0 = list(map(float,input('Введите начальные условия [x0,y0,z0]: ').split())) x0 = x0y0[0] y0 = x0y0[1] z0 = x0y0[2] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration() try: ab = list(map(int,input('Введите желаемый интервал [a,b]: ').split())) a = ab[0] b = ab[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration() if a > b: print(f'Ошибка в вводе интервала! ({a}!>{b})!!') return iteration() n = int(input('Введите количество точек (n): ')) return(func,x0,y0,z0,a,b,n) # Одно уравнение def iteration_once(): x = Symbol('x') y = Symbol('y') z = Symbol('z') func = function(x,y,z,1) try: x0y0 = list(map(float,input('Введите начальные условия [x0,y0]: ').split())) x0 = x0y0[0] y0 = x0y0[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration_once() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration_once() try: ab = list(map(int,input('Введите желаемый интервал [a,b]: ').split())) a = ab[0] b = ab[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration_once() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration_once() if a > b: print(f'Ошибка в вводе интервала! ({a}!>{b})!!') return iiteration_once() n = int(input('Введите количество точек (n): ')) return(func,x0,y0,a,b,n) # Система уравнений def iteration_system(): x = Symbol('x') y = Symbol('y') z = Symbol('z') func = function(x,y,z,2) try: x0y0 = list(map(float,input('Введите начальные условия [x0,y0,z0]: ').split())) x0 = x0y0[0] y0 = x0y0[1] z0 = x0y0[2] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration_system() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration_system() try: ab = list(map(int,input('Введите желаемый интервал [a,b]: ').split())) a = ab[0] b = ab[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return iteration_system() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return iteration_system() if a > b: print(f'Ошибка в вводе интервала! ({a}!>{b})!!') return iteration_system() n = int(input('Введите количество точек (n): ')) return(func,x0,y0,z0,a,b,n) def euler(func, x0, y0, z0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') if type(z0) == type(''): res = [[i, x[i], 0] for i in range(n)] res[0][2] = y0 for i in range(1,n): res[i][0] = i res[i][1] = x[i] res[i][2] = res[i-1][2] + (h*func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2])])) else: res = [[i, x[i], 0, 0] for i in range(n)] res[0][2] = y0 res[0][3] = z0 for i in range(1,n): res[i][0] = i res[i][1] = x[i] res[i][2] = res[i-1][2] + (h*func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2]),(Z,res[i-1][3])])) res[i][3] = res[i-1][3] + (h*func[1].subs([(X,res[i-1][1]),(Y,res[i-1][2]),(Z,res[i-1][3])])) return res # Одно уравнение def euler_once(func, x0, y0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') res = [[i, x[i], 0] for i in range(n)] res[0][2] = y0 for i in range(1,n): res[i][0] = i res[i][1] = x[i] res[i][2] = res[i-1][2] + (h*func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2])])) return res # Система уравнений def euler_system(func, x0, y0, z0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') res = [[i, x[i], 0, 0] for i in range(n)] res[0][2] = y0 res[0][3] = z0 for i in range(1,n): res[i][0] = i res[i][1] = x[i] res[i][2] = res[i-1][2] + (h*func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2]),(Z,res[i-1][3])])) res[i][3] = res[i-1][3] + (h*func[1].subs([(X,res[i-1][1]),(Y,res[i-1][2]),(Z,res[i-1][3])])) return res def eulercauchy(func, x0, y0, z0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') if type(z0) == type(''): _y = [0]*n _y[0] = y0 for i in range(1,n): _y[i] = _y[i-1] + (h*func[0].subs([(X,x[i-1]),(Y,_y[i-1])])) res = [[i, x[i], 0] for i in range(n)] res[0][2] = y0 for i in range(1,n): res[i][2] = res[i-1][2] + (h/2) * ((func[0].subs([(X,x[i-1]),(Y,res[i-1][2])]))+(func[0].subs([(X,x[i]),(Y,_y[i])]))) else: _y = [0]*n _z = [0]*n _y[0] = y0 _z[0] = z0 for i in range(1,n): _y[i] = _y[i-1] + (h*func[0].subs([(X,x[i-1]),(Y,_y[i-1]),(Z,_z[i-1])])) _z[i] = _z[i-1] + (h*func[1].subs([(X,x[i-1]),(Y,_y[i-1]),(Z,_z[i-1])])) res = [[i, x[i], 0, 0] for i in range(n)] res[0][2] = y0 res[0][3] = z0 for i in range(1,n): res[i][2] = res[i-1][2] + (h/2) * ((func[0].subs([(X,x[i-1]),(Y,res[i-1][2]),(Z,res[i-1][3])]))+(func[0].subs([(X,x[i]),(Y,_y[i]),(Z,_z[i])]))) res[i][3] = res[i-1][3] + (h/2) * ((func[1].subs([(X,x[i-1]),(Y,res[i-1][2]),(Z,res[i-1][3])]))+(func[1].subs([(X,x[i]),(Y,_y[i]),(Z,_z[i])]))) return res # Одно уравнение def eulercauchy_once(func, x0, y0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') _y = [0]*n _y[0] = y0 for i in range(1,n): _y[i] = _y[i-1] + (h*func[0].subs([(X,x[i-1]),(Y,_y[i-1])])) res = [[i, x[i], 0] for i in range(n)] res[0][2] = y0 for i in range(1,n): res[i][2] = res[i-1][2] + (h/2) * ((func[0].subs([(X,x[i-1]),(Y,res[i-1][2])]))+(func[0].subs([(X,x[i]),(Y,_y[i])]))) return res # Система уравнений def eulercauchy_system(func, x0, y0, z0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') _y = [0]*n _z = [0]*n _y[0] = y0 _z[0] = z0 for i in range(1,n): _y[i] = _y[i-1] + (h*func[0].subs([(X,x[i-1]),(Y,_y[i-1]),(Z,_z[i-1])])) _z[i] = _z[i-1] + (h*func[1].subs([(X,x[i-1]),(Y,_y[i-1]),(Z,_z[i-1])])) res = [[i, x[i], 0, 0] for i in range(n)] res[0][2] = y0 res[0][3] = z0 for i in range(1,n): res[i][2] = res[i-1][2] + (h/2) * ((func[0].subs([(X,x[i-1]),(Y,res[i-1][2]),(Z,res[i-1][3])]))+(func[0].subs([(X,x[i]),(Y,_y[i]),(Z,_z[i])]))) res[i][3] = res[i-1][3] + (h/2) * ((func[1].subs([(X,x[i-1]),(Y,res[i-1][2]),(Z,res[i-1][3])]))+(func[1].subs([(X,x[i]),(Y,_y[i]),(Z,_z[i])]))) return res def rungekutta(func, x0, y0, z0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') if type(z0) == type(''): res = [[i, x[i], 0] for i in range(n)] res[0][2] = y0 for i in range(1,n): k1 = h * func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2])]) k2 = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k1/2)]) k3 = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k2/2)]) k4 = h * func[0].subs([(X,(res[i-1][1])+h),(Y,(res[i-1][2])+k3)]) res[i][2] = res[i-1][2] + 1/6 * (k1 + 2*k2 + 2*k3 + k4) else: res = [[i, x[i], 0, 0] for i in range(n)] res[0][2] = y0 res[0][3] = z0 for i in range(1,n): k1y = h * func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2]), (Z,res[i-1][3])]) k2y = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k1y/2), (Z,(res[i-1][3])+k1y/2)]) k3y = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k2y/2), (Z,(res[i-1][3])+k2y/2)]) k4y = h * func[0].subs([(X,(res[i-1][1])+h),(Y,(res[i-1][2])+k3y),(Z,(res[i-1][3])+k3y)]) res[i][2] = res[i-1][2] + 1/6 * (k1y + 2*k2y + 2*k3y + k4y) k1z = h * func[1].subs([(X,res[i-1][1]),(Y,res[i-1][2]), (Z,res[i-1][3])]) k2z = h * func[1].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k1z/2), (Z,(res[i-1][3])+k1z/2)]) k3z = h * func[1].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k2z/2), (Z,(res[i-1][3])+k2z/2)]) k4z = h * func[1].subs([(X,(res[i-1][1])+h),(Y,(res[i-1][2])+k3z),(Z,(res[i-1][3])+k3z)]) res[i][3] = res[i-1][3] + 1/6 * (k1z + 2*k2z + 2*k3z + k4z) return res def rungekutta_once(func, x0, y0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') res = [[i, x[i], 0] for i in range(n)] res[0][2] = y0 for i in range(1,n): k1 = h * func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2])]) k2 = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k1/2)]) k3 = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k2/2)]) k4 = h * func[0].subs([(X,(res[i-1][1])+h),(Y,(res[i-1][2])+k3)]) res[i][2] = res[i-1][2] + 1/6 * (k1 + 2*k2 + 2*k3 + k4) return res def rungekutta_system(func, x0, y0, z0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') res = [[i, x[i], 0, 0] for i in range(n)] res[0][2] = y0 res[0][3] = z0 for i in range(1,n): k1y = h * func[0].subs([(X,res[i-1][1]),(Y,res[i-1][2]), (Z,res[i-1][3])]) k2y = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k1y/2), (Z,(res[i-1][3])+k1y/2)]) k3y = h * func[0].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k2y/2), (Z,(res[i-1][3])+k2y/2)]) k4y = h * func[0].subs([(X,(res[i-1][1])+h),(Y,(res[i-1][2])+k3y),(Z,(res[i-1][3])+k3y)]) res[i][2] = res[i-1][2] + 1/6 * (k1y + 2*k2y + 2*k3y + k4y) k1z = h * func[1].subs([(X,res[i-1][1]),(Y,res[i-1][2]), (Z,res[i-1][3])]) k2z = h * func[1].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k1z/2), (Z,(res[i-1][3])+k1z/2)]) k3z = h * func[1].subs([(X,(res[i-1][1])+h/2),(Y,(res[i-1][2])+k2z/2), (Z,(res[i-1][3])+k2z/2)]) k4z = h * func[1].subs([(X,(res[i-1][1])+h),(Y,(res[i-1][2])+k3z),(Z,(res[i-1][3])+k3z)]) res[i][3] = res[i-1][3] + 1/6 * (k1z + 2*k2z + 2*k3z + k4z) return res def odeint_scp(func, x0, y0, a, b, n): h = (b-a)/n x = np.arange(x0,x0+(b-a),h) X = Symbol('x') Y = Symbol('y') Z = Symbol('z') f = lambdify([X,Y],func[0]) res = [[i, x[i], 0] for i in range(n)] y = odeint(f,y0,np.array(x)) for i in range(n): res[i][2] = float(y[i]) return res #func, x0, y0, z0, a, b, n = iteration() #print(func) #print(x0) #print(y0) #print(z0) #print(a) #print(b) #print(n) # In[11]: #euler(func, x0, y0, z0, a, b, n) # In[12]: #eulercauchy(func, x0, y0, z0, a, b, n) # In[13]: #rungekutta(func, x0, y0, z0, a, b, n) # #### Ввод одного уравнения # In[27]: #func, x0, y0, a, b, n = iteration_once() #print(func) #print(x0) #print(y0) #print(a) #print(b) #print(n) # In[28]: #euler_once(func, x0, y0, a, b, n) # In[29]: #eulercauchy_once(func, x0, y0, a, b, n) # In[30]: #rungekutta_once(func, x0, y0, a, b, n) # In[31]: ##odeint_scp(func, x0, y0, a, b, n) # #### Ввод системы уравнений # #### Ввод одного уравнения # In[12]: def obertka(): """ Данная функция оборачивает код ниже для возможности избежания конфликта с константами, для возможности считывания кода библиотекой """ func, x0, y0, a, b, n = iteration_once() t0 = time.time() result_euler = euler_once(func, x0, y0, a, b, n) t1_euler = time.time() t1_euler -= t0 t0 = time.time() result_eulercauchy = eulercauchy_once(func, x0, y0, a, b, n) t1_eulercauchy = time.time() t1_eulercauchy -= t0 t0 = time.time() result_rungekutta = rungekutta_once(func, x0, y0, a, b, n) t1_rungekutta = time.time() t1_rungekutta -= t0 t0 = time.time() result_odeint_scp = odeint_scp(func, x0, y0, a, b, n) t1_odeint_scp = time.time() t1_odeint_scp -= t0 xd = [result_euler[i][1] for i in range(n)] yd_euler = [result_euler[i][2] for i in range(n)] yd_eulercauchy = [result_eulercauchy[i][2] for i in range(n)] yd_rungekutta = [result_rungekutta[i][2] for i in range(n)] yd_odeint_scp = [result_odeint_scp[i][2] for i in range(n)] # Эйлер df_euler = pd.DataFrame({'xi':xd,'yi':yd_euler}) print('--------------------------------------------------------------') print('Решение ОДУ методом Эйлера') print(df_euler) # Эйлер-Коши df_eulercauchy = pd.DataFrame({'xi':xd,'yi':yd_eulercauchy}) print('--------------------------------------------------------------') print('Решение ОДУ методом Эйлера-Коши') print(df_eulercauchy) # Рунге-Кутта df_rungekutta = pd.DataFrame({'xi':xd,'yi':yd_rungekutta}) print('--------------------------------------------------------------') print('Решение ОДУ методом Рунге-Кутты') print(df_rungekutta) # scipy.integrate odeint df_odeint_scp = pd.DataFrame({'xi':xd,'yi':yd_odeint_scp}) print('--------------------------------------------------------------') print('Решение ОДУ scipy.integrate odeint') print(df_odeint_scp) dxa = xd[1] - xd[0] ymydiff = [] for i in range(len(yd_odeint_scp) - 1): ansi = diff_my(yd_odeint_scp[1],yd_odeint_scp[0],dxa) ymydiff.append(ansi) df_ymydiff = pd.DataFrame({'xi':xd,'deltai':yd_odeint_scp}) print('--------------------------------------------------------------') print('Разность между yi и y' + "'" + 'i') print(df_ymydiff) deltai = [(yd_odeint_scp[i] - ymydiff[i]) for i in range(len(ymydiff))] sumx = sum([abs(t) for t in deltai]) rcParams['figure.figsize'] = (30, 20) rcParams['figure.dpi'] = 300 fig = plt.figure() fig,ax = plt.subplots() plt.tick_params(labelsize = 40) plt.grid(b=True, color='DarkTurquoise', alpha=0.75, linestyle=':', linewidth=1) ax.plot(xd[:-1],deltai,color='blue',lw=2,label='Y - Y' + "'") ax.plot(xd[:-1],deltai,color='blue',lw=0,label=f'Сумма отклонений = {sumx}') ax.legend(loc='lower right',title='Легенда',title_fontsize=25,fontsize=20) plt.show() # In[36]: rcParams['figure.figsize'] = (30, 20) rcParams['figure.dpi'] = 300 fig,ax=plt.subplots() plt.tick_params(labelsize = 40) plt.grid(b=True, color='DarkTurquoise', alpha=0.75, linestyle=':', linewidth=1) ax.plot(xd,yd_euler,color='blue',lw=2,label='Решение ОДУ методом Эйлера') ax.plot(xd,yd_eulercauchy,color='red',lw=2,label='Решение ОДУ методом Эйлера-Коши') ax.plot(xd,yd_rungekutta,color='green',lw=2,label='Решение ОДУ методом Рунге-Кутты') ax.plot(xd,yd_odeint_scp,color='black',lw=2,label='Решение ОДУ scipy.integrate odeint') ax.set_title('Решение ОДУ') ax.legend(loc='lower right',title='Легенда',title_fontsize=25,fontsize=15) plt.xlabel('X',fontsize=25) plt.ylabel('Y',fontsize=25) print(f'Аппроксимация МНК для метода Эйлера (XY): \n {quadratic_function(xd,yd_euler)}') print(f'Интерполяция через первую формулу Ньютона для метода Эйлера (XY): \n {expand(newton1_function(xd,yd_euler))}') print('-----------------------------------------------------------------------------------') print(f'Аппроксимация МНК для метода Эйлера-Коши (XY): \n {quadratic_function(xd,yd_eulercauchy)}') print(f'Интерполяция через первую формулу Ньютона для метода Эйлера-Коши (XY): \n {expand(newton1_function(xd,yd_eulercauchy))}') print('-----------------------------------------------------------------------------------') print(f'Аппроксимация МНК для метода Рунге-Кутты (XY): \n {quadratic_function(xd,yd_rungekutta)}') print(f'Интерполяция через первую формулу Ньютона для метода Рунге-Кутты (XY): \n {expand(newton1_function(xd,yd_rungekutta))}') print('-----------------------------------------------------------------------------------') print(f'Аппроксимация МНК для метода Рунге-Кутты (XY): \n {quadratic_function(xd,yd_odeint_scp)}') print(f'Интерполяция через первую формулу Ньютона для метода Рунге-Кутты (XY): \n {expand(newton1_function(xd,yd_odeint_scp))}') t=[] print(f'Время работы метода Эйлера: {t1_euler}.') t.append(t1_euler) print(f'Время работы метода Эйлера-Коши: {t1_eulercauchy}.') t.append(t1_eulercauchy) print(f'Время работы метода Рунге-Кутты: {t1_rungekutta}.') t.append(t1_rungekutta) print(f'Время работы метода из библиотеки: {t1_odeint_scp}.') t.append(t1_odeint_scp) # In[14]: rcParams['figure.figsize'] = (30, 20) rcParams['figure.dpi'] = 300 fig,ax=plt.subplots() plt.tick_params(labelsize = 40) plt.grid(b=True, color='DarkTurquoise', alpha=0.75, linestyle=':', linewidth=1) plt.bar(0, t[0], color = 'purple', label = 'Время работы метода Эйлера') plt.bar(1, t[1], color = 'yellow', label = 'Время работы метода Эйлера-Коши') plt.bar(2, t[2], color = 'lime', label = 'Время работы метода Рунге-Кутты') plt.bar(3, t[3], color = 'red', label = 'Время работы метода из библиотеки') ax.set_title('Анализ времени работы программ', loc = 'center') ax.legend(loc='lower right',title='Легенда',title_fontsize=25,fontsize=15) plt.ylabel('Время (cек.)',fontsize=25) plt.show() # #### Ввод системы уравнений # In[15]: func, x0, y0, z0, a, b, n = iteration_system() t0 = time.time() result_euler = euler_system(func, x0, y0, z0, a, b, n) t1_euler = time.time() t1_euler -= t0 t0 = time.time() result_eulercauchy = eulercauchy_system(func, x0, y0, z0, a, b, n) t1_eulercauchy = time.time() t1_eulercauchy -= t0 t0 = time.time() result_rungekutta = rungekutta_system(func, x0, y0, z0, a, b, n) t1_rungekutta = time.time() t1_rungekutta -= t0 xd = [result_euler[i][1] for i in range(n)] yd_euler = [result_euler[i][2] for i in range(n)] yd_eulercauchy = [result_eulercauchy[i][2] for i in range(n)] yd_rungekutta = [result_rungekutta[i][2] for i in range(n)] # Эйлер zd_euler = [result_euler[i][3] for i in range(n)] df_euler =
pd.DataFrame({'xi':xd,'yi':yd_euler,'zi':zd_euler})
pandas.DataFrame
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, pd.np.NaN], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_different_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) res_exp = pd.Series([-30.20, 2 * 30.5 / 1.32, 10.2 * 0.8], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) assert_series_equal(res, res_exp) def test_to_notional_duplicates(): instrs = pd.Series([1, 1], index=['A', 'A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37, 200.37], index=['A', 'A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100, 100], index=['A', 'A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD', 'USD'], index=['A', 'A']) fx_rate = pd.Series([1.32], index=['USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD'], index=['A']) fx_rate = pd.Series([1.32, 1.32], index=['USDCAD', 'USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) def test_to_notional_bad_fx(): instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) instr_fx = pd.Series(['JPY'], index=['A']) fx_rates = pd.Series([1.32], index=['GBPCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) def test_to_contracts_rounder(): prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) multipliers = pd.Series([1, 1], index=['CLZ6', 'COZ6']) # 30.19 / 30.20 is slightly less than 1 so will round to 0 notional = pd.Series([30.19, 2 * 30.5], index=['CLZ6', 'COZ6']) res = util.to_contracts(notional, prices, multipliers, rounder=pd.np.floor) res_exp = pd.Series([0, 2], index=['CLZ6', 'COZ6']) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier(): notionals = pd.Series([-30.20, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier_rounding(): # won't work out to integer number of contracts so this tests rounding notionals = pd.Series([-30.21, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_trade_with_zero_amount(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, 0], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) + 0 * 0.5 / (50.41*100) - 1, # 0 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 19], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_trade_all_zero_amount_return_empty(): wts = pd.DataFrame([1], index=["CLX16"], columns=[0]) desired_holdings = pd.Series([13], index=[0]) current_contracts = 0 prices = pd.Series([50.32], index=['CLX16']) multiplier = pd.Series([100], index=['CLX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) exp_trades = pd.Series(dtype="int64") assert_series_equal(trades, exp_trades) def test_trade_one_asset(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_multi_asset(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=["CL0", "CL1"]) wts2 = pd.DataFrame([1], index=["COX16"], columns=["CO0"]) wts = {"CL": wts1, "CO": wts2} desired_holdings = pd.Series([200000, -50000, 100000], index=["CL0", "CL1", "CO0"]) current_contracts = pd.Series([0, 1, 0, 5], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) prices = pd.Series([50.32, 50.41, 50.48, 49.50], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) multiplier = pd.Series([100, 100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, # 100000 * 1 / (49.50*100) - 5, exp_trades = pd.Series([20, 14, -5, 15], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_extra_desired_holdings_without_weights(): wts = pd.DataFrame([0], index=["CLX16"], columns=["CL0"]) desired_holdings = pd.Series([200000, 10000], index=["CL0", "CL1"]) current_contracts = pd.Series([0], index=['CLX16']) prices = pd.Series([50.32], index=['CLX16']) multipliers = pd.Series([1], index=['CLX16']) with pytest.raises(ValueError): util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers) def test_trade_extra_desired_holdings_without_current_contracts(): # this should treat the missing holdings as 0, since this would often # happen when adding new positions without any current holdings wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() # non existent contract holdings result in fill value being a float, # which casts to float64 assert_series_equal(trades, exp_trades, check_dtype=False) def test_trade_extra_weights(): # extra weights should be ignored wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000], index=[0]) current_contracts = pd.Series([0, 2], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41], index=['CLX16', 'CLZ16']) multiplier = pd.Series([100, 100], index=['CLX16', 'CLZ16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 2, exp_trades = pd.Series([20, 18], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_get_multiplier_dataframe_weights(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000], index=["CL"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dict_weights(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) wts2 = pd.DataFrame([0.5, 0.5], index=["COX16", "COZ16"], columns=[0]) wts = {"CL": wts1, "CO": wts2} ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16", "COX16", "COZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dataframe_weights_multiplier_asts_error(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) with pytest.raises(ValueError): util.get_multiplier(wts, ast_mult) def test_weighted_expiration_two_generics(): vals = [[1, 0, 1/2, 1/2, 0, 1, 0], [0, 1, 0, 1/2, 1/2, 0, 1]] idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF15'), (TS('2015-01-03'), 'CLG15'), (TS('2015-01-04'), 'CLF15'), (TS('2015-01-04'), 'CLG15'), (TS('2015-01-04'), 'CLH15'), (TS('2015-01-05'), 'CLG15'), (TS('2015-01-05'), 'CLH15')]) weights = pd.DataFrame({"CL1": vals[0], "CL2": vals[1]}, index=idx) contract_dates = pd.Series([TS('2015-01-20'), TS('2015-02-21'), TS('2015-03-20')], index=['CLF15', 'CLG15', 'CLH15']) wexp = util.weighted_expiration(weights, contract_dates) exp_wexp = pd.DataFrame([[17.0, 49.0], [32.0, 61.5], [47.0, 74.0]], index=[TS('2015-01-03'), TS('2015-01-04'), TS('2015-01-05')], columns=["CL1", "CL2"]) assert_frame_equal(wexp, exp_wexp) def test_flatten(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_dict(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5')]) weights2 = pd.DataFrame(1, index=widx, columns=["CO1"]) weights = {"CL": weights1, "CO": weights2} flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_bad_input(): dummy = 0 with pytest.raises(ValueError): util.flatten(dummy) def test_unflatten(): flat_wts = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") wts_exp = pd.DataFrame(vals, index=widx, columns=cols) assert_frame_equal(wts, wts_exp) def test_unflatten_dict(): flat_wts = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") weights1 = pd.DataFrame(vals, index=widx, columns=cols) widx = pd.MultiIndex.from_tuples([(
TS('2015-01-03')
pandas.Timestamp
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import collections import numpy as np import re from numpy import array from statistics import mode import pandas as pd import warnings import copy from joblib import Memory from itertools import chain import ast import timeit from sklearn.neighbors import KNeighborsClassifier # 1 neighbors from sklearn.svm import SVC # 1 svm from sklearn.naive_bayes import GaussianNB # 1 naive bayes from sklearn.neural_network import MLPClassifier # 1 neural network from sklearn.linear_model import LogisticRegression # 1 linear model from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models from joblib import Parallel, delayed import multiprocessing from sklearn.pipeline import make_pipeline from sklearn import model_selection from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from imblearn.metrics import geometric_mean_score import umap from sklearn.metrics import classification_report from sklearn.preprocessing import scale import eli5 from eli5.sklearn import PermutationImportance from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import RFE from sklearn.decomposition import PCA from mlxtend.classifier import StackingCVClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit from scipy.spatial import procrustes # This block of code == for the connection between the server, the database, and the client (plus routing). # Access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def Reset(): global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global dataSpacePointsIDs dataSpacePointsIDs = [] global previousStateActive previousStateActive = [] global StanceTest StanceTest = False global status status = True global factors factors = [1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1] global KNNModelsCount global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount global keyData keyData = 0 KNNModelsCount = 0 SVCModelsCount = 576 GausNBModelsCount = 736 MLPModelsCount = 1236 LRModelsCount = 1356 LDAModelsCount = 1996 QDAModelsCount = 2196 RFModelsCount = 2446 ExtraTModelsCount = 2606 AdaBModelsCount = 2766 GradBModelsCount = 2926 global XData XData = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 5 # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] return 'The reset was done!' # Retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def RetrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global XData XData = [] global previousState previousState = [] global previousStateActive previousStateActive = [] global status status = True global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 # models global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels KNNModels = [] SVCModels = [] GausNBModels = [] MLPModels = [] LRModels = [] LDAModels = [] QDAModels = [] RFModels = [] ExtraTModels = [] AdaBModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() elif data['fileName'] == 'BiodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) DataSetSelection() return 'Everything is okay' def Convert(lst): it = iter(lst) res_dct = dict(zip(it, it)) return res_dct # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def SendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' # Sent data to client @app.route('/data/ClientRequest', methods=["GET", "POST"]) def CollectionData(): json.dumps(DataResultsRaw) response = { 'Collection': DataResultsRaw } return jsonify(response) def DataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' def callPreResults(): global XData global yData global target_names global impDataInst DataSpaceResMDS = FunMDS(XData) DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = DataSpaceResTSNE.tolist() DataSpaceUMAP = FunUMAP(XData) XDataJSONEntireSetRes = XData.to_json(orient='records') global preResults preResults = [] preResults.append(json.dumps(target_names)) # Position: 0 preResults.append(json.dumps(DataSpaceResMDS)) # Position: 1 preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2 preResults.append(json.dumps(yData)) # Position: 3 preResults.append(json.dumps(AllTargets)) # Position: 4 preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5 preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6 preResults.append(json.dumps(impDataInst)) # Position: 7 # Sending each model's results to frontend @app.route('/data/requestDataSpaceResults', methods=["GET", "POST"]) def SendDataSpaceResults(): global preResults callPreResults() response = { 'preDataResults': preResults, } return jsonify(response) # Main function if __name__ == '__main__': app.run() # Debugging and mirroring client @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): if app.debug: return requests.get('http://localhost:8080/{}'.format(path)).text return render_template("index.html") # This block of code is for server computations def column_index(df, query_cols): cols = df.columns.values sidx = np.argsort(cols) return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist() def class_feature_importance(X, Y, feature_importances): N, M = X.shape X = scale(X) out = {} for c in set(Y): out[c] = dict( zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances) ) return out @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/EnsembleMode', methods=["GET", "POST"]) def EnsembleMethod(): global crossValidation global RANDOM_SEED global XData RANDOM_SEED = 42 RetrievedStatus = request.get_data().decode('utf8').replace("'", '"') RetrievedStatus = json.loads(RetrievedStatus) modeMethod = RetrievedStatus['defaultModeMain'] if (modeMethod == 'blend'): crossValidation = ShuffleSplit(n_splits=1, test_size=.20, random_state=RANDOM_SEED) else: crossValidation = 5 return 'Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def RetrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] toggle = RetrievedModel['Toggle'] global crossValidation global XData global yData global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount # loop through the algorithms global allParametersPerformancePerModel start = timeit.default_timer() print('CVorTT', crossValidation) for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = 0 elif (eachAlgor) == 'SVC': clf = SVC(probability=True,random_state=RANDOM_SEED) params = {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']} AlgorithmsIDsEnd = SVCModelsCount elif (eachAlgor) == 'GauNB': clf = GaussianNB() params = {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))} AlgorithmsIDsEnd = GausNBModelsCount elif (eachAlgor) == 'MLP': clf = MLPClassifier(random_state=RANDOM_SEED) params = {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} AlgorithmsIDsEnd = MLPModelsCount elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} AlgorithmsIDsEnd = LRModelsCount elif (eachAlgor) == 'LDA': clf = LinearDiscriminantAnalysis() params = {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']} AlgorithmsIDsEnd = LDAModelsCount elif (eachAlgor) == 'QDA': clf = QuadraticDiscriminantAnalysis() params = {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))} AlgorithmsIDsEnd = QDAModelsCount elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = RFModelsCount elif (eachAlgor) == 'ExtraT': clf = ExtraTreesClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = ExtraTModelsCount elif (eachAlgor) == 'AdaB': clf = AdaBoostClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']} AlgorithmsIDsEnd = AdaBModelsCount else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} AlgorithmsIDsEnd = GradBModelsCount allParametersPerformancePerModel = GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossValidation) # New visualization - model space # header = "model_id,algorithm_id,mean_test_accuracy,mean_test_precision_micro,mean_test_precision_macro,mean_test_precision_weighted,mean_test_recall_micro,mean_test_recall_macro,mean_test_recall_weighted,mean_test_roc_auc_ovo_weighted,geometric_mean_score_micro,geometric_mean_score_macro,geometric_mean_score_weighted,matthews_corrcoef,f5_micro,f5_macro,f5_weighted,f1_micro,f1_macro,f1_weighted,f2_micro,f2_macro,f2_weighted,log_loss\n" # dataReceived = [] # counter = 0 # for indx, el in enumerate(allParametersPerformancePerModel): # dictFR = json.loads(el) # frame = pd.DataFrame.from_dict(dictFR) # for ind, elInside in frame.iterrows(): # counter = counter + 1 # dataReceived.append(str(counter)) # dataReceived.append(',') # dataReceived.append(str(indx+1)) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_accuracy'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_roc_auc_ovo_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['matthews_corrcoef'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['log_loss'])) # dataReceived.append("\n") # dataReceivedItems = ''.join(dataReceived) # csvString = header + dataReceivedItems # fw = open ("modelSpace.csv","w+",encoding="utf-8") # fw.write(csvString) # fw.close() # call the function that sends the results to the frontend stop = timeit.default_timer() print('Time GridSearch: ', stop - start) SendEachClassifiersPerformanceToVisualize() return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossVal): print('loop') # this is the grid we use to train the models grid = GridSearchCV( estimator=clf, param_grid=params, cv=crossVal, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities grid.fit(XData, yData) # process the results cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): modelsIDs.append(AlgorithmsIDsEnd+i) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersPerformancePerModel = parametersPerformancePerModel.to_json() parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(str(index)) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] PerClassMetric = [] perModelProb = [] perModelPrediction = [] resultsMicro = [] resultsMacro = [] resultsWeighted = [] resultsCorrCoef = [] resultsMicroBeta5 = [] resultsMacroBeta5 = [] resultsWeightedBeta5 = [] resultsMicroBeta1 = [] resultsMacroBeta1 = [] resultsWeightedBeta1 = [] resultsMicroBeta2 = [] resultsMacroBeta2 = [] resultsWeightedBeta2 = [] resultsLogLoss = [] resultsLogLossFinal = [] loop = 8 # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() #impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs) for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) if (toggle == 1): perm = PermutationImportance(clf, cv = None, refit = True, n_iter = 25).fit(XData, yData) permList.append(perm.feature_importances_) n_feats = XData.shape[1] PerFeatureAccuracy = [] for i in range(n_feats): scores = model_selection.cross_val_score(clf, XData.values[:, i].reshape(-1, 1), yData, cv=5) PerFeatureAccuracy.append(scores.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) else: permList.append(0) PerFeatureAccuracyAll.append(0) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) perModelPrediction.append(yPredict) # retrieve target names (class names) PerClassMetric.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True)) yPredictProb = clf.predict_proba(XData) yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro')) resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro')) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5)) resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5)) resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5)) resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1)) resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1)) resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1)) resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2)) resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2)) resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(loop,'geometric_mean_score_micro',resultsMicro) metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro) metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef) metrics.insert(loop+4,'f5_micro',resultsMicroBeta5) metrics.insert(loop+5,'f5_macro',resultsMacroBeta5) metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5) metrics.insert(loop+7,'f1_micro',resultsMicroBeta1) metrics.insert(loop+8,'f1_macro',resultsMacroBeta1) metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1) metrics.insert(loop+10,'f2_micro',resultsMicroBeta2) metrics.insert(loop+11,'f2_macro',resultsMacroBeta2) metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2) metrics.insert(loop+13,'log_loss',resultsLogLossFinal) perModelPredPandas = pd.DataFrame(perModelPrediction) perModelPredPandas = perModelPredPandas.to_json() perModelProbPandas = pd.DataFrame(perModelProb) perModelProbPandas = perModelProbPandas.to_json() PerClassMetricPandas = pd.DataFrame(PerClassMetric) del PerClassMetricPandas['accuracy'] del PerClassMetricPandas['macro avg'] del PerClassMetricPandas['weighted avg'] PerClassMetricPandas = PerClassMetricPandas.to_json() perm_imp_eli5PD = pd.DataFrame(permList) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=chi2, k='all') fit = bestfeatures.fit(XData,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(XData.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() # gather the results and send them back results.append(modelsIDs) # Position: 0 and so on results.append(parametersPerformancePerModel) # Position: 1 and so on results.append(PerClassMetricPandas) # Position: 2 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(featureScores) # Position: 5 and so on metrics = metrics.to_json() results.append(metrics) # Position: 6 and so on results.append(perModelProbPandas) # Position: 7 and so on results.append(json.dumps(perModelPredPandas)) # Position: 8 and so on return results # Sending each model's results to frontend @app.route('/data/PerformanceForEachModel', methods=["GET", "POST"]) def SendEachClassifiersPerformanceToVisualize(): response = { 'PerformancePerModel': allParametersPerformancePerModel, } return jsonify(response) def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: if (isinstance(num, float)): if np.isnan(num): pass else: final_list.append(float(num)) else: final_list.append(num) return final_list # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendBrushedParam', methods=["GET", "POST"]) def RetrieveModelsParam(): RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) counterKNN = 0 counterSVC = 0 counterGausNB = 0 counterMLP = 0 counterLR = 0 counterLDA = 0 counterQDA = 0 counterRF = 0 counterExtraT = 0 counterAdaB = 0 counterGradB = 0 global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels global algorithmsList algorithmsList = RetrieveModelsPar['algorithms'] for index, items in enumerate(algorithmsList): if (items == 'KNN'): counterKNN += 1 KNNModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'SVC'): counterSVC += 1 SVCModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'GauNB'): counterGausNB += 1 GausNBModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'MLP'): counterMLP += 1 MLPModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LR'): counterLR += 1 LRModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LDA'): counterLDA += 1 LDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'QDA'): counterQDA += 1 QDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'RF'): counterRF += 1 RFModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'ExtraT'): counterExtraT += 1 ExtraTModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'AdaB'): counterAdaB += 1 AdaBModels.append(int(RetrieveModelsPar['models'][index])) else: counterGradB += 1 GradBModels.append(int(RetrieveModelsPar['models'][index])) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] # this is if we want to change the factors before running the search #if (len(allParametersPerformancePerModel) == 0): # pass #else: global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew global metricsPerModel sumPerClassifierSel = [] sumPerClassifierSel = preProcsumPerMetric(factors) ModelSpaceMDSNew = [] ModelSpaceTSNENew = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) metricsPerModel = preProcMetricsAllAndSel() flagLocal = 0 countRemovals = 0 for l,el in enumerate(factors): if el == 0: loopThroughMetrics.drop(loopThroughMetrics.columns[[l-countRemovals]], axis=1, inplace=True) countRemovals = countRemovals + 1 flagLocal = 1 if flagLocal == 1: ModelSpaceMDSNew = FunMDS(loopThroughMetrics) ModelSpaceTSNENew = FunTsne(loopThroughMetrics) ModelSpaceTSNENew = ModelSpaceTSNENew.tolist() return 'Everything Okay' @app.route('/data/UpdateOverv', methods=["GET", "POST"]) def UpdateOverview(): ResultsUpdateOverview = [] ResultsUpdateOverview.append(sumPerClassifierSel) ResultsUpdateOverview.append(ModelSpaceMDSNew) ResultsUpdateOverview.append(ModelSpaceTSNENew) ResultsUpdateOverview.append(metricsPerModel) response = { 'Results': ResultsUpdateOverview } return jsonify(response) def PreprocessingMetrics(): dicKNN = json.loads(allParametersPerformancePerModel[6]) dicSVC = json.loads(allParametersPerformancePerModel[15]) dicGausNB = json.loads(allParametersPerformancePerModel[24]) dicMLP = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[42]) dicLDA = json.loads(allParametersPerformancePerModel[51]) dicQDA = json.loads(allParametersPerformancePerModel[60]) dicRF = json.loads(allParametersPerformancePerModel[69]) dicExtraT = json.loads(allParametersPerformancePerModel[78]) dicAdaB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[96]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatMetrics def PreprocessingPred(): dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return predictions def PreprocessingPredUpdate(Models): Models = json.loads(Models) ModelsList= [] for loop in Models['ClassifiersList']: ModelsList.append(loop) dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) listProbs = df_concatProbs.index.values.tolist() deletedElements = 0 for index, element in enumerate(listProbs): if element in ModelsList: index = index - deletedElements df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index]) deletedElements = deletedElements + 1 df_concatProbsCleared = df_concatProbs listIDsRemoved = df_concatProbsCleared.index.values.tolist() predictionsAll = PreprocessingPred() PredictionSpaceAll = FunMDS(predictionsAll) PredictionSpaceAllComb = [list(a) for a in zip(PredictionSpaceAll[0], PredictionSpaceAll[1])] predictionsSel = [] for column, content in df_concatProbsCleared.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsSel.append(el) PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])] mtx2PredFinal = [] mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb) a1, b1 = zip(*mtx2Pred) mtx2PredFinal.append(a1) mtx2PredFinal.append(b1) return [mtx2PredFinal,listIDsRemoved] def PreprocessingParam(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_params = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_params def PreprocessingParamSep(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] return [dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered] def preProcessPerClassM(): dicKNN = json.loads(allParametersPerformancePerModel[2]) dicSVC = json.loads(allParametersPerformancePerModel[11]) dicGausNB = json.loads(allParametersPerformancePerModel[20]) dicMLP = json.loads(allParametersPerformancePerModel[29]) dicLR = json.loads(allParametersPerformancePerModel[38]) dicLDA = json.loads(allParametersPerformancePerModel[47]) dicQDA = json.loads(allParametersPerformancePerModel[56]) dicRF = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[74]) dicAdaB = json.loads(allParametersPerformancePerModel[83]) dicGradB = json.loads(allParametersPerformancePerModel[92]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatParams = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatParams def preProcessFeatAcc(): dicKNN = json.loads(allParametersPerformancePerModel[3]) dicSVC = json.loads(allParametersPerformancePerModel[12]) dicGausNB = json.loads(allParametersPerformancePerModel[21]) dicMLP = json.loads(allParametersPerformancePerModel[30]) dicLR = json.loads(allParametersPerformancePerModel[39]) dicLDA = json.loads(allParametersPerformancePerModel[48]) dicQDA = json.loads(allParametersPerformancePerModel[57]) dicRF = json.loads(allParametersPerformancePerModel[66]) dicExtraT = json.loads(allParametersPerformancePerModel[75]) dicAdaB = json.loads(allParametersPerformancePerModel[84]) dicGradB = json.loads(allParametersPerformancePerModel[93]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC =
pd.DataFrame.from_dict(dicSVC)
pandas.DataFrame.from_dict
import pandas as pd import numpy as np from sklearn.cross_validation import StratifiedKFold, KFold import xgboost from sklearn.grid_search import ParameterGrid from sklearn.metrics import mean_squared_error CLASS = False # Whether classification or regression SCORE_MIN = True # Optimizing score through minimum k = 5 # Number of folds best_score = 10 best_params = None best_iter = None train_name = 'train.csv' test_name = 'test.csv' submission_name = 'sample_submission.csv' submission_col = 'SalePrice' submission_target = 'Vayne8.csv' # Read files train = pd.DataFrame.from_csv(train_name) train = train.fillna(-1) test = pd.DataFrame.from_csv(test_name) test = test.fillna(-1) submission = pd.DataFrame.from_csv(submission_name) # Extract target target = train['SalePrice'] del train['SalePrice'] # Label nominal variables to numbers columns = train.columns.values nom_numeric_cols = ['MSSubClass'] dummy_train = [] dummy_test = [] for col in columns: # Only works for nominal data without a lot of factors if train[col].dtype.name == 'object' or col in nom_numeric_cols: dummy_train.append(pd.get_dummies(train[col].values.astype(str), col)) dummy_train[-1].index = train.index dummy_test.append(pd.get_dummies(test[col].values.astype(str), col)) dummy_test[-1].index = test.index del train[col] del test[col] train =
pd.concat([train] + dummy_train, axis=1)
pandas.concat
import os import pandas as pd import numpy as np import scipy import openpyxl from openpyxl import Workbook import scipy.stats as stats import file_functions def sankey_chi_squared(detrended_dem, zs): """This function calculates a chi squared test comparing observed landform transitions vs expected, with expected frequencies proportional to relative abundance. Low p values indicate significant transition preferences. Returns: two dataframes, one containing transitions %, expected %, and p value for both base->bf and bf->vf""" col_labels = ['base', 'bf', 'vf'] code_dict = {-2: 'O', -1: 'CP', 0: 'NC', 1: 'WB', 2: 'NZ'} # code number and corresponding MU landforms = ['Oversized', 'Const. Pool', 'Normal', 'Wide bar', 'Nozzle'] outs = [] if detrended_dem == '': print('Error: Must input detrended DEM parameter in the GUI to set up output folder location') return if type(zs) == str: zs = file_functions.string_to_list(zs, format='float') elif type(zs) != list: print( 'Error: Key flow stage parameter input incorrectly. Please enter stage heights separated only by commas (i.e. 0.2,0.7,3.6)') # set up directories dem_dir = os.path.dirname(detrended_dem) gcs_dir = dem_dir + '\\gcs_tables' out_dir = dem_dir + '\\nesting_analysis' if not os.path.exists(out_dir): os.makedirs(out_dir) # get units for labeling u = file_functions.get_label_units(detrended_dem)[0] # prep input data zs.sort() z_labels = [file_functions.float_keyz_format(z) + u for z in zs] aligned_df = pd.read_csv(gcs_dir + '\\aligned_gcs_table.csv') data = aligned_df.dropna() out_dict = {'from': [], 'to': [], 'to_landform': [], 'expected_freq': [], 'expected_proportion': []} # for each step-wise stage transition, calculate chi-squared test result for i in range(len(zs) - 1): print('Chi Squares test for landform transitions: %s -> %s' % (z_labels[i], z_labels[i + 1])) type_df = data.dropna(axis=0, subset=['code_%s' % z_labels[i], 'code_%s' % z_labels[i + 1]]) total_rows = int(type_df.shape[0]) lower = z_labels[i] higher = z_labels[i + 1] for num in range(-2, 3): out_dict['from'].append(lower) out_dict['to'].append(higher) out_dict['to_landform'].append(landforms[num + 2]) num_df = type_df.loc[lambda type_df: type_df['code_%s' % col_labels[i + 1]] == num] out_dict['expected_freq'].append(num_df.shape[0]) out_dict['expected_proportion'].append(num_df.shape[0] / total_rows) for j, form in enumerate(landforms): if i == 0: out_dict['from_' + form + '_freq'] = [] out_dict['from_' + form + '_proportion'] = [] out_dict['p_value_from_%s' % form] = [] low_index = j - 2 low_code = 'code_%s' % z_labels[i] form_df = type_df.loc[lambda type_df: type_df[low_code] == low_index] form_rows_count = form_df.shape[0] for z, high in enumerate(landforms): high_index = z - 2 high_code = 'code_%s' % z_labels[i + 1] sub_df = form_df.loc[lambda form_df: form_df[high_code] == high_index] freq = sub_df.shape[0] out_dict['from_' + form + '_freq'].append(freq) out_dict['from_' + form + '_proportion'].append(freq / form_rows_count) obs = np.array(out_dict['from_' + form + '_freq']) expect = np.array(out_dict['Expected_freq']) test_out = stats.chisquare(obs, expect) out_dict['p_value_from_%s' % form].extend([test_out[1] for i in range(5)]) # Add p values out_df =
pd.DataFrame.from_dict(out_dict)
pandas.DataFrame.from_dict
import datetime import warnings from copy import copy from types import MappingProxyType from typing import Sequence, Callable, Mapping, Union, TypeVar, TYPE_CHECKING import numpy as np import pandas as pd import sidekick as sk from .clinical_acessor import Clinical from .metaclass import ModelMeta from .. import fitting as fit from .. import formulas from ..diseases import Disease, DiseaseParams, disease as get_disease from ..logging import log from ..mixins import ( Meta, WithParamsMixin, WithDataModelMixin, WithInfoMixin, WithResultsMixin, WithRegionDemography, ) from ..packages import plt from ..utils import today, not_implemented, extract_keys, param_property T = TypeVar("T") NOW = datetime.datetime.now() TODAY = datetime.date(NOW.year, NOW.month, NOW.day) DAY = datetime.timedelta(days=1) pplt = sk.import_later("..plot", package=__package__) if TYPE_CHECKING: from ..model_group import ModelGroup from pydemic_ui.model import UIProperty class Model( WithDataModelMixin, WithInfoMixin, WithResultsMixin, WithParamsMixin, WithRegionDemography, metaclass=ModelMeta, ): """ Base class for all models. """ meta: Meta class Meta: model_name = "Model" data_aliases = {} # Initial values state: np.ndarray = None initial_cases: float = sk.lazy(lambda self: self._initial_cases()) initial_infected: float = sk.lazy(lambda self: self._initial_infected()) # Initial time date: datetime.date = None time: float = 0.0 iter: int = sk.property(lambda m: len(m.data)) dates: pd.DatetimeIndex = sk.property(lambda m: m.to_dates(m.times)) times: pd.Index = sk.property(lambda m: m.data.index) # Common epidemiological parameters R0: float = param_property("R0", default=2.0) K = sk.property(not_implemented) duplication_time = property(lambda self: np.log(2) / self.K) # Special accessors clinical: Clinical = property(lambda self: Clinical(self)) clinical_model: type = None clinical_params: Mapping = MappingProxyType({}) disease: Disease = None disease_params: DiseaseParams = None @property def ui(self) -> "UIProperty": try: from pydemic_ui.model import UIProperty except ImportError as ex: log.warn(f"Could not import pydemic_ui.model: {ex}") msg = ( "must have pydemic-ui installed to access the model.ui attribute.\n" "Please 'pip install pydemic-ui' before proceeding'" ) raise RuntimeError(msg) return UIProperty(self) def __init__( self, params=None, *, run=None, name=None, date=None, clinical=None, disease=None, **kwargs ): self.name = name or f"{type(self).__name__} model" self.date = pd.to_datetime(date or today()) self.disease = get_disease(disease) self._initialized = False # Fix demography demography_opts = WithRegionDemography._init_from_dict(self, kwargs) self.disease_params = self.disease.params(**demography_opts) # Init other mixins WithParamsMixin.__init__(self, params, keywords=kwargs) WithInfoMixin.__init__(self) WithResultsMixin.__init__(self) WithDataModelMixin.__init__(self) if clinical: clinical = dict(clinical) self.clinical_model = clinical.pop("model", None) self.clinical_params = clinical for k, v in kwargs.items(): if hasattr(self, k): try: setattr(self, k, v) except AttributeError: name = type(self).__name__ msg = f"cannot set '{k}' attribute in '{name}' model" raise AttributeError(msg) else: raise TypeError(f"invalid arguments: {k}") if run is not None: self.run(run) def __str__(self): return self.name def _initial_cases(self): raise NotImplementedError("must be implemented in subclass") def _initial_infected(self): raise NotImplementedError("must be implemented in subclass") def epidemic_model_name(self): """ Return the epidemic model name. """ return self.meta.model_name # # Pickling and copying # # noinspection PyUnresolvedReferences def copy(self, **kwargs): """ Copy instance possibly setting new values for attributes. Keyword Args: All keyword arguments are used to reset attributes in the copy. Examples: >>> m.copy(R0=1.0, name="Stable") <SIR(name="Stable")> """ cls = type(self) data = self.__dict__.copy() params = data.pop("_params") data.pop("_results_cache") new = object.__new__(cls) for k in list(kwargs): if k in data: data[k] = kwargs.pop(k) new._params = copy(params) new._results_cache = {} new.__dict__.update(copy(data)) for k, v in kwargs.items(): setattr(new, k, v) return new def split(self, n=None, **kwargs) -> "ModelGroup": """ Create n copies of model, each one may override a different set of parameters and return a ModelGroup. Args: n: Number of copies in the resulting list. It can also be a sequence of dictionaries with arguments to pass to the .copy() constructor. Keyword Args: Keyword arguments are passed to the `.copy()` method of the model. If the keyword is a sequence, it applies the n-th component of the sequence to the corresponding n-th model. """ from ..model_group import ModelGroup if n is None: for k, v in kwargs.items(): if not isinstance(v, str) and isinstance(v, Sequence): n = len(v) break else: raise TypeError("cannot determine the group size from arguments") if isinstance(n, int): options = [{} for _ in range(n)] else: options = [dict(d) for d in n] n: int = len(options) # Merge option dicts for k, v in kwargs.items(): if not isinstance(v, str) and isinstance(v, Sequence): xs = v m = len(xs) if m != n: raise ValueError( f"sizes do not match: " f"{k} should be a sequence of {n} " f"items, got {m}" ) for opt, x in zip(options, xs): opt.setdefault(k, x) else: for opt in options: opt.setdefault(k, v) # Fix name for opt in options: try: name = opt["name"] except KeyError: pass else: opt["name"] = name.format(n=n, **opt) return ModelGroup(self.copy(**opt) for opt in options) def split_children(self, options=MappingProxyType({}), **kwargs) -> "ModelGroup": """ Similar to split, but split into the children of the given class. Args: options: A mapping between region or region id """ from ..model_group import ModelGroup if self.region is None: raise ValueError("model is not bound to a region") for k in self._params: if k not in kwargs: kwargs[k] = self.get_param(k) for attr in ("disease",): kwargs.setdefault(attr, getattr(self, attr)) return ModelGroup.from_children(self.region, type(self), options, **kwargs) def reset(self, date: Union[datetime.date, float] = None, **kwargs): """ Return a copy of the model setting the state to the final state. If a positional "date" argument is given, reset to the state to the one in the specified date. Args: date (float or date): An optional float or datetime selecting the desired date. Keyword Args: Additional keyword arguments are handled the same way as the :method:`copy` method. """ if date is None: date = self.date time = self.time elif isinstance(date, (float, int)): time = float(date) date = self.to_date(date) else: time: float = self.to_time(date) kwargs["data"] = self.data.loc[[time]] kwargs["date"] = date kwargs["state"] = kwargs["data"].iloc[0].values kwargs["time"] = 1 return self.copy(**kwargs) def trim_dates(self, start=0, end=None): """ Trim data in model to the given interval specified by start and end dates or times. Args: start (int or date): Starting date. If not given, start at zero. end (int or date): End date. If not given, select up to the final date. """ start = int(start or 0) end = int(end or self.time) new = self.copy( date=self.to_date(start), data=self.data.iloc[start:end].reset_index(drop=True), time=end - start, state=self.data.iloc[end].values, ) return new # # Initial conditions # def set_ic(self, state=None, **kwargs): """ Set initial conditions. """ if self.state is None: if state is None: state = self.initial_state(**kwargs) self.state = np.array(state, dtype=float) alias = self.meta.data_aliases for k, v in list(kwargs.items()): if k in alias: del kwargs[k] kwargs[alias[k]] = v components = extract_keys(self.meta.variables, kwargs) for k, v in components.items(): idx = self.meta.get_variable_index(k) self.state[idx] = v return self def set_data(self, data): """ Force a dataframe into simulation state. """ data = data.copy() data.columns = [self.meta.data_aliases.get(c, c) for c in data.columns] self.set_ic(state=data.iloc[0]) self.data = data.reset_index(drop=True) self.time = len(data) - 1 self.date = data.index[-1] self.state[:] = data.iloc[-1] self.info["observed.dates"] = data.index[[0, -1]] self._initialized = True return self def set_cases_from_region(self: T) -> T: """ Set the number of cases from region. """ self.set_cases() return self def set_cases(self: T, curves=None, adjust_R0=False, save_observed=False) -> T: """ Initialize model from a dataframe with the deaths and cases curve. This curve is usually the output of disease.epidemic_curve(region), and is automatically retrieved if not passed explicitly and the region of the model is set. Args: curves: Dataframe with cumulative ["cases", "deaths"] columns. If not given, or None, fetches from disease.epidemic_curves(info) adjust_R0: If true, adjust R0 from the observed cases. save_observed: If true, save the cases curves into the model.info["observed.cases"] key. """ if curves is None: warnings.warn("omitting curves from set_cases will be deprecated.") if self.region is None or self.disease is None: msg = 'must provide both "region" and "disease" or an explicit cases ' "curve." raise ValueError(msg) curves = self.region.pydemic.epidemic_curve(self.disease) if adjust_R0: warnings.warn("adjust_R0 argument is deprecated") method = "RollingOLS" if adjust_R0 is True else adjust_R0 Re, _ = value = fit.estimate_R0(self, curves, Re=True, method=method) assert np.isfinite(Re), f"invalid value for R0: {value}" self.R0 = Re # Save notification it in the info dictionary for reference if "cases_observed" in curves: tf = curves.index[-1] rate = curves.loc[tf, "cases_observed"] / curves.loc[tf, "cases"] else: rate = 1.0 self.info["observed.notification_rate"] = rate # Save simulation state from data model = self.epidemic_model_name() curve = fit.cases(curves) data = fit.epidemic_curve(model, curve, self) self.set_data(data) self.initial_cases = curve.iloc[0] if adjust_R0: self.R0 /= self["susceptible:final"] / self.population self.info["observed.R0"] = self.R0 # Optionally save cases curves into the info dictionary if save_observed: key = "observed.curves" if save_observed is True else save_observed df = curves.rename(columns={"cases": "cases_raw"}) df["cases"] = curve self.info[key] = df return self def adjust_R0(self, method="RollingOLS"): curves = self["cases"] self.R0, _ = fit.estimate_R0(self, curves, method=method) self.info["observed.R0"] = self.R0 def initial_state(self, cases=None, **kwargs): """ Create the default initial vector for model. """ if cases is not None: kwargs.setdefault("population", self.population) return formulas.initial_state(self.epidemic_model_name(), cases, self, **kwargs) return self._initial_state() def infect(self, n=1, column="infectious"): """ Convert 'n' susceptible individuals to infectious. """ last = self.data.index[-1] n = min(n, self.data.loc[last, "susceptible"]) self.data.loc[last, column] += n self.data.loc[last, "susceptible"] -= n return self def _initial_state(self): raise NotImplementedError def initialize(self): """ Force initialization. """ if not self._initialized: self.set_ic() self.data = make_dataframe(self) self._initialized = True # # Running simulation # def run(self: T, time) -> T: """ Runs the model for the given duration. """ steps = int(time) self.initialize() if time == 0: return _, *shape = self.data.shape ts = self.time + 1.0 + np.arange(steps) data = np.zeros((steps, *shape)) date = self.date if self.info.get("event.simulation_start") is None: self.info.save_event("simulation_start") self.run_to_fill(data, ts) extra = pd.DataFrame(data, columns=self.data.columns, index=ts) self.data =
pd.concat([self.data, extra])
pandas.concat
from __future__ import print_function import collections import json import logging import os import pickle import sys import numpy as np import pandas as pd import keras from itertools import cycle, islice from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler from sklearn.model_selection import ShuffleSplit, KFold import file_utils file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) # import candle import file_utils global_cache = {} SEED = 2018 P1B3_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B3/' DATA_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot1/combo/' logger = logging.getLogger(__name__) def set_up_logger(verbose=False): sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if verbose else logging.INFO) logger.setLevel(logging.DEBUG) logger.addHandler(sh) def set_seed(seed=SEED): os.environ['PYTHONHASHSEED'] = '0' np.random.seed(seed) random.seed(seed) def get_file(url): fname = os.path.basename(url) return file_utils.get_file(fname, origin=url, cache_subdir='Pilot1') def impute_and_scale(df, scaling='std', imputing='mean', dropna='all'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ if dropna: df = df.dropna(axis=1, how=dropna) else: empty_cols = df.columns[df.notnull().sum() == 0] df[empty_cols] = 0 if imputing is None or imputing.lower() == 'none': mat = df.values else: imputer = Imputer(strategy=imputing, axis=0) mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df def discretize(df, col, bins=2, cutoffs=None): y = df[col] thresholds = cutoffs if thresholds is None: percentiles = [100 / bins * (i + 1) for i in range(bins - 1)] thresholds = [np.percentile(y, x) for x in percentiles] classes = np.digitize(y, thresholds) df[col] = classes return df def save_combined_dose_response(): df1 = load_single_dose_response(combo_format=True, fraction=False) df2 = load_combo_dose_response(fraction=False) df = pd.concat([df1, df2]) df.to_csv('combined_drug_growth', index=False, sep='\t') def load_combined_dose_response(rename=True): df1 = load_single_dose_response(combo_format=True) logger.info('Loaded {} single drug dose response measurements'.format(df1.shape[0])) df2 = load_combo_dose_response() logger.info('Loaded {} drug pair dose response measurements'.format(df2.shape[0])) df = pd.concat([df1, df2]) logger.info('Combined dose response data contains sources: {}'.format(df['SOURCE'].unique())) if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'DOSE1': 'Dose1', 'DOSE2': 'Dose2', 'GROWTH': 'Growth', 'STUDY': 'Study'}) return df def load_single_dose_response(combo_format=False, fraction=True): # path = get_file(DATA_URL + 'combined_single_drug_growth') path = get_file(DATA_URL + 'rescaled_combined_single_drug_growth') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c', na_values=['na', '-', ''], # nrows=10, dtype={'SOURCE': str, 'DRUG_ID': str, 'CELLNAME': str, 'CONCUNIT': str, 'LOG_CONCENTRATION': np.float32, 'EXPID': str, 'GROWTH': np.float32}) global_cache[path] = df df['DOSE'] = -df['LOG_CONCENTRATION'] df = df.rename(columns={'CELLNAME': 'CELL', 'DRUG_ID': 'DRUG', 'EXPID': 'STUDY'}) df = df[['SOURCE', 'CELL', 'DRUG', 'DOSE', 'GROWTH', 'STUDY']] if fraction: df['GROWTH'] /= 100 if combo_format: df = df.rename(columns={'DRUG': 'DRUG1', 'DOSE': 'DOSE1'}) df['DRUG2'] = np.nan df['DOSE2'] = np.nan df['DRUG2'] = df['DRUG2'].astype(object) df['DOSE2'] = df['DOSE2'].astype(np.float32) df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']] return df def load_combo_dose_response(fraction=True): path = get_file(DATA_URL + 'ComboDrugGrowth_Nov2017.csv') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep=',', engine='c', na_values=['na', '-', ''], usecols=['CELLNAME', 'NSC1', 'CONC1', 'NSC2', 'CONC2', 'PERCENTGROWTH', 'VALID', 'SCREENER', 'STUDY'], # nrows=10000, dtype={'CELLNAME': str, 'NSC1': str, 'NSC2': str, 'CONC1': np.float32, 'CONC2': np.float32, 'PERCENTGROWTH': np.float32, 'VALID': str, 'SCREENER': str, 'STUDY': str}, error_bad_lines=False, warn_bad_lines=True) global_cache[path] = df df = df[df['VALID'] == 'Y'] df['SOURCE'] = 'ALMANAC.' + df['SCREENER'] cellmap_path = get_file(DATA_URL + 'NCI60_CELLNAME_to_Combo.txt') df_cellmap = pd.read_csv(cellmap_path, sep='\t') df_cellmap.set_index('Name', inplace=True) cellmap = df_cellmap[['NCI60.ID']].to_dict()['NCI60.ID'] df['CELL'] = df['CELLNAME'].map(lambda x: cellmap[x]) df['DOSE1'] = -np.log10(df['CONC1']) df['DOSE2'] = -np.log10(df['CONC2']) df['DRUG1'] = 'NSC.' + df['NSC1'] df['DRUG2'] = 'NSC.' + df['NSC2'] if fraction: df['GROWTH'] = df['PERCENTGROWTH'] / 100 else: df['GROWTH'] = df['PERCENTGROWTH'] df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']] return df def load_aggregated_single_response(target='AUC', min_r2_fit=0.3, max_ec50_se=3, combo_format=False, rename=True): path = get_file(DATA_URL + 'combined_single_response_agg') df = global_cache.get(path) if df is None: df = pd.read_csv(path, engine='c', sep='\t', dtype={'SOURCE': str, 'CELL': str, 'DRUG': str, 'STUDY': str, 'AUC': np.float32, 'IC50': np.float32, 'EC50': np.float32, 'EC50se': np.float32, 'R2fit': np.float32, 'Einf': np.float32, 'HS': np.float32, 'AAC1': np.float32, 'AUC1': np.float32, 'DSS1': np.float32}) global_cache[path] = df total = len(df) df = df[(df['R2fit'] >= min_r2_fit) & (df['EC50se'] <= max_ec50_se)] df = df[['SOURCE', 'CELL', 'DRUG', target, 'STUDY']] df = df[~df[target].isnull()] logger.info('Loaded %d dose indepdendent response samples (filtered by EC50se <= %f & R2fit >=%f from a total of %d).', len(df), max_ec50_se, min_r2_fit, total) if combo_format: df = df.rename(columns={'DRUG': 'DRUG1'}) df['DRUG2'] = np.nan df['DRUG2'] = df['DRUG2'].astype(object) df = df[['SOURCE', 'CELL', 'DRUG1', 'DRUG2', target, 'STUDY']] if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'STUDY': 'Study'}) else: if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG': 'Drug', 'STUDY': 'Study'}) return df def load_drug_data(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_desc = load_drug_set_descriptors(drug_set='Combined_PubChem', ncols=ncols) df_fp = load_drug_set_fingerprints(drug_set='Combined_PubChem', ncols=ncols) df_desc = pd.merge(df_info[['ID', 'Drug']], df_desc, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_fp = pd.merge(df_info[['ID', 'Drug']], df_fp, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_desc2 = load_drug_set_descriptors(drug_set='NCI60', usecols=df_desc.columns.tolist() if ncols else None) df_fp2 = load_drug_set_fingerprints(drug_set='NCI60', usecols=df_fp.columns.tolist() if ncols else None) df_desc = pd.concat([df_desc, df_desc2]).reset_index(drop=True) df1 = pd.DataFrame(df_desc.loc[:, 'Drug']) df2 = df_desc.drop('Drug', 1) df2 = impute_and_scale(df2, scaling=scaling, imputing=imputing, dropna=dropna) if add_prefix: df2 = df2.add_prefix('dragon7.') df_desc = pd.concat([df1, df2], axis=1) df_fp = pd.concat([df_fp, df_fp2]).reset_index(drop=True) df1 = pd.DataFrame(df_fp.loc[:, 'Drug']) df2 = df_fp.drop('Drug', 1) df2 = impute_and_scale(df2, scaling=None, imputing=imputing, dropna=dropna) if add_prefix: df2 = df2.add_prefix('dragon7.') df_fp = pd.concat([df1, df2], axis=1) logger.info('Loaded combined dragon7 drug descriptors: %s', df_desc.shape) logger.info('Loaded combined dragon7 drug fingerprints: %s', df_fp.shape) return df_desc, df_fp def load_drug_descriptors(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True, feature_subset=None): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_desc = load_drug_set_descriptors(drug_set='Combined_PubChem', ncols=ncols) df_desc = pd.merge(df_info[['ID', 'Drug']], df_desc, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_desc2 = load_drug_set_descriptors(drug_set='NCI60', usecols=df_desc.columns.tolist() if ncols else None) df_desc = pd.concat([df_desc, df_desc2]).reset_index(drop=True) df1 = pd.DataFrame(df_desc.loc[:, 'Drug']) df2 = df_desc.drop('Drug', 1) if add_prefix: df2 = df2.add_prefix('dragon7.') if feature_subset: df2 = df2[[x for x in df2.columns if x in feature_subset]] df2 = impute_and_scale(df2, scaling=scaling, imputing=imputing, dropna=dropna) df_desc = pd.concat([df1, df2], axis=1) logger.info('Loaded combined dragon7 drug descriptors: %s', df_desc.shape) return df_desc def load_drug_fingerprints(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True, feature_subset=None): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_fp = load_drug_set_fingerprints(drug_set='Combined_PubChem', ncols=ncols) df_fp = pd.merge(df_info[['ID', 'Drug']], df_fp, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_fp2 = load_drug_set_fingerprints(drug_set='NCI60', usecols=df_fp.columns.tolist() if ncols else None) df_fp = pd.concat([df_fp, df_fp2]).reset_index(drop=True) df1 =
pd.DataFrame(df_fp.loc[:, 'Drug'])
pandas.DataFrame
import argparse import numpy as np import pandas as pd import seaborn as sns from pathlib import Path import matplotlib.pyplot as plt import context from mhealth.utils.commons import print_title from mhealth.utils.context_info import dump_context from mhealth.utils.plotter_helper import save_figure, setup_plotting def dataset_id(df): # Format for identifiers: "[0-9]{3}[LR]" # For example: "018L" or "042R" pat = df["Patient"].map("{0:03d}".format) side = df["Side"].str[0].str.upper() return pat + side def read_summary(path): df = pd.read_csv(path, header=[0,1], index_col=[0,1,2]) df[("Time","Start")] = pd.to_datetime(df[("Time","Start")]) df[("Time","End")] = pd.to_datetime(df[("Time","End")]) return df def read_exercises(path): df = pd.read_csv(path) df["StartDate"] = pd.to_datetime(df["StartDate"]) df["Duration"] = pd.to_timedelta(df["Duration"]) df["EndDate"] = pd.to_datetime(df["EndDate"]) return df def plot_qualities(df_before, df_after, out_dir): qualities = ["HRQ", "SpO2Q", "QualityClassification"] df_before = df_before.loc[:,pd.IndexSlice[qualities, "mean"]].copy() df_before["Label"] = "before" df_after = df_after.loc[:,pd.IndexSlice[qualities, "mean"]].copy() df_after["Label"] = "after" df =
pd.concat([df_before, df_after], axis=0)
pandas.concat
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ import csv from io import StringIO from pandas import DataFrame import pandas._testing as tm from pandas.io.parsers import TextParser def test_read_data_list(all_parsers): parser = all_parsers kwargs = {"index_col": 0} data = "A,B,C\nfoo,1,2,3\nbar,4,5,6" data_list = [["A", "B", "C"], ["foo", "1", "2", "3"], ["bar", "4", "5", "6"]] expected = parser.read_csv(StringIO(data), **kwargs) with TextParser(data_list, chunksize=2, **kwargs) as parser: result = parser.read()
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, pd.np.NaN], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_different_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) res_exp = pd.Series([-30.20, 2 * 30.5 / 1.32, 10.2 * 0.8], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) assert_series_equal(res, res_exp) def test_to_notional_duplicates(): instrs = pd.Series([1, 1], index=['A', 'A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37, 200.37], index=['A', 'A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100, 100], index=['A', 'A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD', 'USD'], index=['A', 'A']) fx_rate = pd.Series([1.32], index=['USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD'], index=['A']) fx_rate = pd.Series([1.32, 1.32], index=['USDCAD', 'USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) def test_to_notional_bad_fx(): instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) instr_fx = pd.Series(['JPY'], index=['A']) fx_rates = pd.Series([1.32], index=['GBPCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) def test_to_contracts_rounder(): prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) multipliers = pd.Series([1, 1], index=['CLZ6', 'COZ6']) # 30.19 / 30.20 is slightly less than 1 so will round to 0 notional = pd.Series([30.19, 2 * 30.5], index=['CLZ6', 'COZ6']) res = util.to_contracts(notional, prices, multipliers, rounder=pd.np.floor) res_exp = pd.Series([0, 2], index=['CLZ6', 'COZ6']) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier(): notionals = pd.Series([-30.20, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier_rounding(): # won't work out to integer number of contracts so this tests rounding notionals = pd.Series([-30.21, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_trade_with_zero_amount(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, 0], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) + 0 * 0.5 / (50.41*100) - 1, # 0 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 19], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_trade_all_zero_amount_return_empty(): wts = pd.DataFrame([1], index=["CLX16"], columns=[0]) desired_holdings = pd.Series([13], index=[0]) current_contracts = 0 prices = pd.Series([50.32], index=['CLX16']) multiplier = pd.Series([100], index=['CLX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) exp_trades = pd.Series(dtype="int64") assert_series_equal(trades, exp_trades) def test_trade_one_asset(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_multi_asset(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=["CL0", "CL1"]) wts2 = pd.DataFrame([1], index=["COX16"], columns=["CO0"]) wts = {"CL": wts1, "CO": wts2} desired_holdings = pd.Series([200000, -50000, 100000], index=["CL0", "CL1", "CO0"]) current_contracts = pd.Series([0, 1, 0, 5], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) prices = pd.Series([50.32, 50.41, 50.48, 49.50], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) multiplier = pd.Series([100, 100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, # 100000 * 1 / (49.50*100) - 5, exp_trades = pd.Series([20, 14, -5, 15], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_extra_desired_holdings_without_weights(): wts = pd.DataFrame([0], index=["CLX16"], columns=["CL0"]) desired_holdings = pd.Series([200000, 10000], index=["CL0", "CL1"]) current_contracts = pd.Series([0], index=['CLX16']) prices = pd.Series([50.32], index=['CLX16']) multipliers = pd.Series([1], index=['CLX16']) with pytest.raises(ValueError): util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers) def test_trade_extra_desired_holdings_without_current_contracts(): # this should treat the missing holdings as 0, since this would often # happen when adding new positions without any current holdings wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() # non existent contract holdings result in fill value being a float, # which casts to float64 assert_series_equal(trades, exp_trades, check_dtype=False) def test_trade_extra_weights(): # extra weights should be ignored wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000], index=[0]) current_contracts = pd.Series([0, 2], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41], index=['CLX16', 'CLZ16']) multiplier = pd.Series([100, 100], index=['CLX16', 'CLZ16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 2, exp_trades = pd.Series([20, 18], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_get_multiplier_dataframe_weights(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000], index=["CL"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dict_weights(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) wts2 = pd.DataFrame([0.5, 0.5], index=["COX16", "COZ16"], columns=[0]) wts = {"CL": wts1, "CO": wts2} ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16", "COX16", "COZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dataframe_weights_multiplier_asts_error(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) with pytest.raises(ValueError): util.get_multiplier(wts, ast_mult) def test_weighted_expiration_two_generics(): vals = [[1, 0, 1/2, 1/2, 0, 1, 0], [0, 1, 0, 1/2, 1/2, 0, 1]] idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF15'), (TS('2015-01-03'), 'CLG15'), (TS('2015-01-04'), 'CLF15'), (TS('2015-01-04'), 'CLG15'), (TS('2015-01-04'), 'CLH15'), (TS('2015-01-05'), 'CLG15'), (TS('2015-01-05'), 'CLH15')]) weights = pd.DataFrame({"CL1": vals[0], "CL2": vals[1]}, index=idx) contract_dates = pd.Series([TS('2015-01-20'), TS('2015-02-21'), TS('2015-03-20')], index=['CLF15', 'CLG15', 'CLH15']) wexp = util.weighted_expiration(weights, contract_dates) exp_wexp = pd.DataFrame([[17.0, 49.0], [32.0, 61.5], [47.0, 74.0]], index=[TS('2015-01-03'), TS('2015-01-04'), TS('2015-01-05')], columns=["CL1", "CL2"]) assert_frame_equal(wexp, exp_wexp) def test_flatten(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_dict(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5')]) weights2 = pd.DataFrame(1, index=widx, columns=["CO1"]) weights = {"CL": weights1, "CO": weights2} flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_bad_input(): dummy = 0 with pytest.raises(ValueError): util.flatten(dummy) def test_unflatten(): flat_wts = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") wts_exp = pd.DataFrame(vals, index=widx, columns=cols) assert_frame_equal(wts, wts_exp) def test_unflatten_dict(): flat_wts = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [
TS('2015-01-04')
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Mon Jan 4 14:17:17 2021 @author: supokhrel """ from PyQt5 import QtWidgets, uic, QtCore import sys import os import threading File_Path = '' init_dir = os.getcwd() def BrowseFile(): global status global File_Path global init_dir # print("Browsing...") fileName, _ = QtWidgets.QFileDialog.getOpenFileName(None, 'Single File', init_dir , '*.csv') # print(fileName) if (fileName == ''): call.lineEdit.setText("!!!! File Not selected") File_Path = '' else: call.lineEdit.setText(fileName) File_Path = fileName init_dir = os.path.dirname(os.path.abspath(fileName)) call.lineEdit_7.setText("Filling Entries") def string_conveter_func(get_str): new_str = get_str.replace("PM10", "PM$\mathregular{_{10}}$") new_str = new_str.replace("PM2.5", "PM$\mathregular{_{2.5}}$") new_str = new_str.replace("PM1", "PM$\mathregular{_{1}}$") new_str = new_str.replace("O3", "O$\mathregular{_{3}}$") new_str = new_str.replace("CO2", "CO$\mathregular{_{2}}$") new_str = new_str.replace("SO2", "SO$\mathregular{_{2}}$") new_str = new_str.replace("NOx", "NO$\mathregular{_{x}}$") new_str = new_str.replace("NO2", "NO$\mathregular{_{2}}$") new_str = new_str.replace("ug/m3", "µg/m$\mathregular{^{3}}$") new_str = new_str.replace("DEG", "$\degree$") return new_str def is_int_or_float(s): ''' return 1 for int, 2 for float, -1 for not a number''' try: float(s) return 1 if s.count('.')==0 else 2 except ValueError: return -1 from matplotlib import pyplot as plt #import numpy as np plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" def Data_process(): # print("Started") # call.update() call.lineEdit_7.setText('Processing....... Please do not press any button') import pandas as pd import glob # import numpy as np from matplotlib import rc from datetime import datetime global fig, ax # ax = None # fig, ax = plt.subplots() File = glob.glob(File_Path) if not File: # print("Empty Filename") # window.destroy() call.lineEdit_7.setText('Error: No input file selected.') return 0 Plot_title = call.lineEdit_2.text() Plot_title = string_conveter_func(Plot_title) X_lab = call.lineEdit_3.text() X_lab = string_conveter_func(X_lab) Y_lab = call.lineEdit_4.text() Y_lab = string_conveter_func(Y_lab) y_min = call.lineEdit_5.text() y_min_contain = False if(y_min != ''): y_min_contain = True check_ymin = is_int_or_float(y_min) if (check_ymin == 1): y_min = int(y_min) elif (check_ymin == 2): y_min = float(y_min) else: call.lineEdit_7.setText('Error: Y-min is not a numerical value') return 0 y_max = call.lineEdit_6.text() y_max_contain = False if(y_max !=''): y_max_contain = True check_ymax = is_int_or_float(y_max) if (check_ymax == 1): y_max = int(y_max) elif (check_ymax == 2): y_max = float(y_max) else: call.lineEdit_7.setText('Error: Y-max is not a numerical value') return 0 plot_type = call.comboBox.currentText() # print("Plot-type",plot_type ) res_dpi = call.comboBox_2.currentText() X_size = int(call.comboBox_3.currentText()) Y_size = int(call.comboBox_4.currentText()) Y_grid = call.radioButton_3.isChecked() X_grid = call.radioButton_5.isChecked() try: df = pd.concat([pd.read_csv(fp, low_memory=False) for fp in File], ignore_index=True) except: call.lineEdit_7.setText('E rror in reading th e input f ile') return 0 for i in range(1, len(df.columns)): df[df.columns[i]] =
pd.to_numeric(df[df.columns[i]], errors='coerce')
pandas.to_numeric
import pandas as pd import numpy as np import pytest from kgextension.endpoints import DBpedia from kgextension.schema_matching import ( relational_matching, label_schema_matching, value_overlap_matching, string_similarity_matching ) class TestRelationalMatching: def test1_default(self): path_input = "test/data/schema_matching/default_matches_cities_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/default_matches_cities_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = relational_matching(df) output_matches['value'] = pd.to_numeric(output_matches['value']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test2_no_matches(self): path_input = "test/data/schema_matching/no_matches_cities_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/no_matches_cities_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = relational_matching(df) output_matches['value'] = pd.to_numeric(output_matches['value']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test3_uri_querier(self): path_input = "test/data/schema_matching/default_matches_cities_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/default_matches_cities_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = relational_matching(df, uri_data_model=True) output_matches['value'] = pd.to_numeric(output_matches['value']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test4_uri_querier_no_matches(self): path_input = "test/data/schema_matching/no_matches_cities_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/no_matches_cities_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = relational_matching(df, uri_data_model=True) output_matches['value'] = pd.to_numeric(output_matches['value']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test5_match_score(self): score = 0.76 path_input = "test/data/schema_matching/default_matches_cities_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/default_matches_cities_expected.csv" expected_matches = pd.read_csv(path_expected) expected_matches['value'] = np.where( expected_matches['value']==1, score, expected_matches['value']) output_matches = relational_matching(df, match_score=score) output_matches['value'] = pd.to_numeric(output_matches['value']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test6_one_endpoint(self): path_input = "test/data/schema_matching/default_matches_cities_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/default_matches_cities_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = relational_matching(df, endpoints=DBpedia) output_matches['value'] = pd.to_numeric(output_matches['value']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test7_no_http_input(self): df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) expected_matches = pd.DataFrame(columns=["uri_1", "uri_2", "value"]) output_matches = relational_matching(df) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) class TestStringSimilarityMatching(): def test1_default(self): path_input = "test/data/schema_matching/string_matching_input_t1t2.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/string_matching_output_t1.csv" result_expected = pd.read_csv(path_expected) result = string_similarity_matching(df, prefix_threshold=1) pd.testing.assert_frame_equal(result, result_expected, check_like=True) def test2_highthreshold(self): path_input = "test/data/schema_matching/string_matching_input_t1t2.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/string_matching_output_t2.csv" result_expected = pd.read_csv(path_expected) result = string_similarity_matching(df, prefix_threshold=10) pd.testing.assert_frame_equal(result, result_expected, check_like=True) def test3_diffpredicate_diffmetric(self): path_input = "test/data/schema_matching/string_matching_input_t3.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/string_matching_output_t3.csv" result_expected = pd.read_csv(path_expected) result = string_similarity_matching(df, predicate="dbo:abstract", to_lowercase=False, remove_prefixes=False, remove_punctuation=False, similarity_metric="token_set_levenshtein") pd.testing.assert_frame_equal(result, result_expected, check_like=True) class TestLabelSchemaMatching: def test1_default(self): path_input = "test/data/schema_matching/default_matches_cities_boolean_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/default_matches_cities_boolean_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = label_schema_matching(df) output_matches['same_label'] = pd.to_numeric(output_matches['same_label']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test2_no_matches(self): path_input = "test/data/schema_matching/no_matches_cities_boolean_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/no_matches_cities_boolean_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = label_schema_matching(df) output_matches['same_label'] = pd.to_numeric(output_matches['same_label']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test3_uri_querier(self): path_input = "test/data/schema_matching/default_matches_cities_boolean_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/default_matches_cities_boolean_expected.csv" expected_matches = pd.read_csv(path_expected) output_matches = label_schema_matching(df, uri_data_model=True) output_matches['same_label'] = pd.to_numeric(output_matches['same_label']) pd.testing.assert_frame_equal( output_matches, expected_matches, check_like=True) def test4_uri_querier_no_matches(self): path_input = "test/data/schema_matching/no_matches_cities_boolean_input.csv" df = pd.read_csv(path_input) path_expected = "test/data/schema_matching/no_matches_cities_boolean_expected.csv" expected_matches =
pd.read_csv(path_expected)
pandas.read_csv
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the zipline.assets package """ from contextlib import contextmanager from datetime import timedelta from functools import partial import pickle import sys from types import GetSetDescriptorType from unittest import TestCase import uuid import warnings from nose_parameterized import parameterized from numpy import full, int32, int64 import pandas as pd from pandas.util.testing import assert_frame_equal from six import PY2, viewkeys import sqlalchemy as sa from zipline.assets import ( Asset, Equity, Future, AssetDBWriter, AssetFinder, ) from zipline.assets.synthetic import ( make_commodity_future_info, make_rotating_equity_info, make_simple_equity_info, ) from six import itervalues, integer_types from toolz import valmap from zipline.assets.asset_writer import ( check_version_info, write_version_info, _futures_defaults, SQLITE_MAX_VARIABLE_NUMBER, ) from zipline.assets.asset_db_schema import ASSET_DB_VERSION from zipline.assets.asset_db_migrations import ( downgrade ) from zipline.errors import ( EquitiesNotFound, FutureContractsNotFound, MultipleSymbolsFound, MultipleValuesFoundForField, MultipleValuesFoundForSid, NoValueForSid, AssetDBVersionError, SidsNotFound, SymbolNotFound, AssetDBImpossibleDowngrade, ValueNotFoundForField, ) from zipline.testing import ( all_subindices, empty_assets_db, parameter_space, tmp_assets_db, ) from zipline.testing.predicates import assert_equal from zipline.testing.fixtures import ( WithAssetFinder, ZiplineTestCase, WithTradingCalendars, ) from zipline.utils.range import range @contextmanager def build_lookup_generic_cases(asset_finder_type): """ Generate test cases for the type of asset finder specific by asset_finder_type for test_lookup_generic. """ unique_start = pd.Timestamp('2013-01-01', tz='UTC') unique_end = pd.Timestamp('2014-01-01', tz='UTC') dupe_0_start = pd.Timestamp('2013-01-01', tz='UTC') dupe_0_end = dupe_0_start + timedelta(days=1) dupe_1_start = pd.Timestamp('2013-01-03', tz='UTC') dupe_1_end = dupe_1_start + timedelta(days=1) equities = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'duplicated', 'start_date': dupe_0_start.value, 'end_date': dupe_0_end.value, 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'duplicated', 'start_date': dupe_1_start.value, 'end_date': dupe_1_end.value, 'exchange': 'TEST', }, { 'sid': 2, 'symbol': 'unique', 'start_date': unique_start.value, 'end_date': unique_end.value, 'exchange': 'TEST', }, ], index='sid' ) fof14_sid = 10000 futures = pd.DataFrame.from_records( [ { 'sid': fof14_sid, 'symbol': 'FOF14', 'root_symbol': 'FO', 'start_date': unique_start.value, 'end_date': unique_end.value, 'exchange': 'FUT', }, ], index='sid' ) root_symbols = pd.DataFrame({ 'root_symbol': ['FO'], 'root_symbol_id': [1], 'exchange': ['CME'], }) with tmp_assets_db( equities=equities, futures=futures, root_symbols=root_symbols) \ as assets_db: finder = asset_finder_type(assets_db) dupe_0, dupe_1, unique = assets = [ finder.retrieve_asset(i) for i in range(3) ] fof14 = finder.retrieve_asset(fof14_sid) cf = finder.create_continuous_future( root_symbol=fof14.root_symbol, offset=0, roll_style='volume', ) dupe_0_start = dupe_0.start_date dupe_1_start = dupe_1.start_date yield ( ## # Scalars # Asset object (finder, assets[0], None, assets[0]), (finder, assets[1], None, assets[1]), (finder, assets[2], None, assets[2]), # int (finder, 0, None, assets[0]), (finder, 1, None, assets[1]), (finder, 2, None, assets[2]), # Duplicated symbol with resolution date (finder, 'DUPLICATED', dupe_0_start, dupe_0), (finder, 'DUPLICATED', dupe_1_start, dupe_1), # Unique symbol, with or without resolution date. (finder, 'UNIQUE', unique_start, unique), (finder, 'UNIQUE', None, unique), # Futures (finder, 'FOF14', None, fof14), # Future symbols should be unique, but including as_of date # make sure that code path is exercised. (finder, 'FOF14', unique_start, fof14), # Futures int (finder, fof14_sid, None, fof14), # Future symbols should be unique, but including as_of date # make sure that code path is exercised. (finder, fof14_sid, unique_start, fof14), # ContinuousFuture (finder, cf, None, cf), ## # Iterables # Iterables of Asset objects. (finder, assets, None, assets), (finder, iter(assets), None, assets), # Iterables of ints (finder, (0, 1), None, assets[:-1]), (finder, iter((0, 1)), None, assets[:-1]), # Iterables of symbols. (finder, ('DUPLICATED', 'UNIQUE'), dupe_0_start, [dupe_0, unique]), (finder, ('DUPLICATED', 'UNIQUE'), dupe_1_start, [dupe_1, unique]), # Mixed types (finder, ('DUPLICATED', 2, 'UNIQUE', 1, dupe_1), dupe_0_start, [dupe_0, assets[2], unique, assets[1], dupe_1]), # Futures and Equities (finder, ['FOF14', 0], None, [fof14, assets[0]]), # ContinuousFuture and Equity (finder, [cf, 0], None, [cf, assets[0]]), ) class AssetTestCase(TestCase): # Dynamically list the Asset properties we want to test. asset_attrs = [name for name, value in vars(Asset).items() if isinstance(value, GetSetDescriptorType)] # Very wow asset = Asset( 1337, symbol="DOGE", asset_name="DOGECOIN", start_date=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), end_date=pd.Timestamp('2014-06-25 11:21AM', tz='UTC'), first_traded=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), auto_close_date=pd.Timestamp('2014-06-26 11:21AM', tz='UTC'), exchange='THE MOON', ) asset3 = Asset(3, exchange="test") asset4 = Asset(4, exchange="test") asset5 = Asset(5, exchange="still testing") def test_asset_object(self): the_asset = Asset(5061, exchange="bar") self.assertEquals({5061: 'foo'}[the_asset], 'foo') self.assertEquals(the_asset, 5061) self.assertEquals(5061, the_asset) self.assertEquals(the_asset, the_asset) self.assertEquals(int(the_asset), 5061) self.assertEquals(str(the_asset), 'Asset(5061)') def test_to_and_from_dict(self): asset_from_dict = Asset.from_dict(self.asset.to_dict()) for attr in self.asset_attrs: self.assertEqual( getattr(self.asset, attr), getattr(asset_from_dict, attr), ) def test_asset_is_pickleable(self): asset_unpickled = pickle.loads(pickle.dumps(self.asset)) for attr in self.asset_attrs: self.assertEqual( getattr(self.asset, attr), getattr(asset_unpickled, attr), ) def test_asset_comparisons(self): s_23 = Asset(23, exchange="test") s_24 = Asset(24, exchange="test") self.assertEqual(s_23, s_23) self.assertEqual(s_23, 23) self.assertEqual(23, s_23) self.assertEqual(int32(23), s_23) self.assertEqual(int64(23), s_23) self.assertEqual(s_23, int32(23)) self.assertEqual(s_23, int64(23)) # Check all int types (includes long on py2): for int_type in integer_types: self.assertEqual(int_type(23), s_23) self.assertEqual(s_23, int_type(23)) self.assertNotEqual(s_23, s_24) self.assertNotEqual(s_23, 24) self.assertNotEqual(s_23, "23") self.assertNotEqual(s_23, 23.5) self.assertNotEqual(s_23, []) self.assertNotEqual(s_23, None) # Compare to a value that doesn't fit into a platform int: self.assertNotEqual(s_23, sys.maxsize + 1) self.assertLess(s_23, s_24) self.assertLess(s_23, 24) self.assertGreater(24, s_23) self.assertGreater(s_24, s_23) def test_lt(self): self.assertTrue(self.asset3 < self.asset4) self.assertFalse(self.asset4 < self.asset4) self.assertFalse(self.asset5 < self.asset4) def test_le(self): self.assertTrue(self.asset3 <= self.asset4) self.assertTrue(self.asset4 <= self.asset4) self.assertFalse(self.asset5 <= self.asset4) def test_eq(self): self.assertFalse(self.asset3 == self.asset4) self.assertTrue(self.asset4 == self.asset4) self.assertFalse(self.asset5 == self.asset4) def test_ge(self): self.assertFalse(self.asset3 >= self.asset4) self.assertTrue(self.asset4 >= self.asset4) self.assertTrue(self.asset5 >= self.asset4) def test_gt(self): self.assertFalse(self.asset3 > self.asset4) self.assertFalse(self.asset4 > self.asset4) self.assertTrue(self.asset5 > self.asset4) def test_type_mismatch(self): if sys.version_info.major < 3: self.assertIsNotNone(self.asset3 < 'a') self.assertIsNotNone('a' < self.asset3) else: with self.assertRaises(TypeError): self.asset3 < 'a' with self.assertRaises(TypeError): 'a' < self.asset3 class TestFuture(WithAssetFinder, ZiplineTestCase): @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 2468: { 'symbol': 'OMH15', 'root_symbol': 'OM', 'notice_date': pd.Timestamp('2014-01-20', tz='UTC'), 'expiration_date': pd.Timestamp('2014-02-20', tz='UTC'), 'auto_close_date': pd.Timestamp('2014-01-18', tz='UTC'), 'tick_size': .01, 'multiplier': 500.0, 'exchange': "TEST", }, 0: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC'), 'multiplier': 1.0, 'exchange': 'TEST', }, }, orient='index', ) @classmethod def init_class_fixtures(cls): super(TestFuture, cls).init_class_fixtures() cls.future = cls.asset_finder.lookup_future_symbol('OMH15') cls.future2 = cls.asset_finder.lookup_future_symbol('CLG06') def test_str(self): strd = str(self.future) self.assertEqual("Future(2468 [OMH15])", strd) def test_repr(self): reprd = repr(self.future) self.assertIn("Future", reprd) self.assertIn("2468", reprd) self.assertIn("OMH15", reprd) self.assertIn("root_symbol=%s'OM'" % ('u' if PY2 else ''), reprd) self.assertIn( "notice_date=Timestamp('2014-01-20 00:00:00+0000', tz='UTC')", reprd, ) self.assertIn( "expiration_date=Timestamp('2014-02-20 00:00:00+0000'", reprd, ) self.assertIn( "auto_close_date=Timestamp('2014-01-18 00:00:00+0000'", reprd, ) self.assertIn("tick_size=0.01", reprd) self.assertIn("multiplier=500", reprd) def test_reduce(self): assert_equal( pickle.loads(pickle.dumps(self.future)).to_dict(), self.future.to_dict(), ) def test_to_and_from_dict(self): dictd = self.future.to_dict() for field in _futures_defaults.keys(): self.assertTrue(field in dictd) from_dict = Future.from_dict(dictd) self.assertTrue(isinstance(from_dict, Future)) self.assertEqual(self.future, from_dict) def test_root_symbol(self): self.assertEqual('OM', self.future.root_symbol) def test_lookup_future_symbol(self): """ Test the lookup_future_symbol method. """ om = TestFuture.asset_finder.lookup_future_symbol('OMH15') self.assertEqual(om.sid, 2468) self.assertEqual(om.symbol, 'OMH15') self.assertEqual(om.root_symbol, 'OM') self.assertEqual(om.notice_date, pd.Timestamp('2014-01-20', tz='UTC')) self.assertEqual(om.expiration_date, pd.Timestamp('2014-02-20', tz='UTC')) self.assertEqual(om.auto_close_date, pd.Timestamp('2014-01-18', tz='UTC')) cl = TestFuture.asset_finder.lookup_future_symbol('CLG06') self.assertEqual(cl.sid, 0) self.assertEqual(cl.symbol, 'CLG06') self.assertEqual(cl.root_symbol, 'CL') self.assertEqual(cl.start_date, pd.Timestamp('2005-12-01', tz='UTC')) self.assertEqual(cl.notice_date, pd.Timestamp('2005-12-20', tz='UTC')) self.assertEqual(cl.expiration_date, pd.Timestamp('2006-01-20', tz='UTC')) with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('#&?!') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('FOOBAR') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('XXX99') class AssetFinderTestCase(WithTradingCalendars, ZiplineTestCase): asset_finder_type = AssetFinder def write_assets(self, **kwargs): self._asset_writer.write(**kwargs) def init_instance_fixtures(self): super(AssetFinderTestCase, self).init_instance_fixtures() conn = self.enter_instance_context(empty_assets_db()) self._asset_writer = AssetDBWriter(conn) self.asset_finder = self.asset_finder_type(conn) def test_blocked_lookup_symbol_query(self): # we will try to query for more variables than sqlite supports # to make sure we are properly chunking on the client side as_of = pd.Timestamp('2013-01-01', tz='UTC') # we need more sids than we can query from sqlite nsids = SQLITE_MAX_VARIABLE_NUMBER + 10 sids = range(nsids) frame = pd.DataFrame.from_records( [ { 'sid': sid, 'symbol': 'TEST.%d' % sid, 'start_date': as_of.value, 'end_date': as_of.value, 'exchange': uuid.uuid4().hex } for sid in sids ] ) self.write_assets(equities=frame) assets = self.asset_finder.retrieve_equities(sids) assert_equal(viewkeys(assets), set(sids)) def test_lookup_symbol_delimited(self): as_of = pd.Timestamp('2013-01-01', tz='UTC') frame = pd.DataFrame.from_records( [ { 'sid': i, 'symbol': 'TEST.%d' % i, 'company_name': "company%d" % i, 'start_date': as_of.value, 'end_date': as_of.value, 'exchange': uuid.uuid4().hex } for i in range(3) ] ) self.write_assets(equities=frame) finder = self.asset_finder asset_0, asset_1, asset_2 = ( finder.retrieve_asset(i) for i in range(3) ) # we do it twice to catch caching bugs for i in range(2): with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST', as_of) with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST1', as_of) # '@' is not a supported delimiter with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST@1', as_of) # Adding an unnecessary fuzzy shouldn't matter. for fuzzy_char in ['-', '/', '_', '.']: self.assertEqual( asset_1, finder.lookup_symbol('TEST%s1' % fuzzy_char, as_of) ) def test_lookup_symbol_fuzzy(self): metadata = pd.DataFrame.from_records([ {'symbol': 'PRTY_HRD', 'exchange': "TEST"}, {'symbol': 'BRKA', 'exchange': "TEST"}, {'symbol': 'BRK_A', 'exchange': "TEST"}, ]) self.write_assets(equities=metadata) finder = self.asset_finder dt = pd.Timestamp('2013-01-01', tz='UTC') # Try combos of looking up PRTYHRD with and without a time or fuzzy # Both non-fuzzys get no result with self.assertRaises(SymbolNotFound): finder.lookup_symbol('PRTYHRD', None) with self.assertRaises(SymbolNotFound): finder.lookup_symbol('PRTYHRD', dt) # Both fuzzys work self.assertEqual(0, finder.lookup_symbol('PRTYHRD', None, fuzzy=True)) self.assertEqual(0, finder.lookup_symbol('PRTYHRD', dt, fuzzy=True)) # Try combos of looking up PRTY_HRD, all returning sid 0 self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', None)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', dt)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', None, fuzzy=True)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', dt, fuzzy=True)) # Try combos of looking up BRKA, all returning sid 1 self.assertEqual(1, finder.lookup_symbol('BRKA', None)) self.assertEqual(1, finder.lookup_symbol('BRKA', dt)) self.assertEqual(1, finder.lookup_symbol('BRKA', None, fuzzy=True)) self.assertEqual(1, finder.lookup_symbol('BRKA', dt, fuzzy=True)) # Try combos of looking up BRK_A, all returning sid 2 self.assertEqual(2, finder.lookup_symbol('BRK_A', None)) self.assertEqual(2, finder.lookup_symbol('BRK_A', dt)) self.assertEqual(2, finder.lookup_symbol('BRK_A', None, fuzzy=True)) self.assertEqual(2, finder.lookup_symbol('BRK_A', dt, fuzzy=True)) def test_lookup_symbol_change_ticker(self): T = partial(pd.Timestamp, tz='utc') metadata = pd.DataFrame.from_records( [ # sid 0 { 'symbol': 'A', 'asset_name': 'Asset A', 'start_date': T('2014-01-01'), 'end_date': T('2014-01-05'), 'exchange': "TEST", }, { 'symbol': 'B', 'asset_name': 'Asset B', 'start_date': T('2014-01-06'), 'end_date': T('2014-01-10'), 'exchange': "TEST", }, # sid 1 { 'symbol': 'C', 'asset_name': 'Asset C', 'start_date': T('2014-01-01'), 'end_date': T('2014-01-05'), 'exchange': "TEST", }, { 'symbol': 'A', # claiming the unused symbol 'A' 'asset_name': 'Asset A', 'start_date': T('2014-01-06'), 'end_date': T('2014-01-10'), 'exchange': "TEST", }, ], index=[0, 0, 1, 1], ) self.write_assets(equities=metadata) finder = self.asset_finder # note: these assertions walk forward in time, starting at assertions # about ownership before the start_date and ending with assertions # after the end_date; new assertions should be inserted in the correct # locations # no one held 'A' before 01 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('A', T('2013-12-31')) # no one held 'C' before 01 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('C', T('2013-12-31')) for asof in pd.date_range('2014-01-01', '2014-01-05', tz='utc'): # from 01 through 05 sid 0 held 'A' A_result = finder.lookup_symbol('A', asof) assert_equal( A_result, finder.retrieve_asset(0), msg=str(asof), ) # The symbol and asset_name should always be the last held values assert_equal(A_result.symbol, 'B') assert_equal(A_result.asset_name, 'Asset B') # from 01 through 05 sid 1 held 'C' C_result = finder.lookup_symbol('C', asof) assert_equal( C_result, finder.retrieve_asset(1), msg=str(asof), ) # The symbol and asset_name should always be the last held values assert_equal(C_result.symbol, 'A') assert_equal(C_result.asset_name, 'Asset A') # no one held 'B' before 06 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('B', T('2014-01-05')) # no one held 'C' after 06, however, no one has claimed it yet # so it still maps to sid 1 assert_equal( finder.lookup_symbol('C', T('2014-01-07')), finder.retrieve_asset(1), ) for asof in pd.date_range('2014-01-06', '2014-01-11', tz='utc'): # from 06 through 10 sid 0 held 'B' # we test through the 11th because sid 1 is the last to hold 'B' # so it should ffill B_result = finder.lookup_symbol('B', asof) assert_equal( B_result, finder.retrieve_asset(0), msg=str(asof), ) assert_equal(B_result.symbol, 'B') assert_equal(B_result.asset_name, 'Asset B') # from 06 through 10 sid 1 held 'A' # we test through the 11th because sid 1 is the last to hold 'A' # so it should ffill A_result = finder.lookup_symbol('A', asof) assert_equal( A_result, finder.retrieve_asset(1), msg=str(asof), ) assert_equal(A_result.symbol, 'A') assert_equal(A_result.asset_name, 'Asset A') def test_lookup_symbol(self): # Incrementing by two so that start and end dates for each # generated Asset don't overlap (each Asset's end_date is the # day after its start date.) dates = pd.date_range('2013-01-01', freq='2D', periods=5, tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': i, 'symbol': 'existing', 'start_date': date.value, 'end_date': (date + timedelta(days=1)).value, 'exchange': 'NYSE', } for i, date in enumerate(dates) ] ) self.write_assets(equities=df) finder = self.asset_finder for _ in range(2): # Run checks twice to test for caching bugs. with self.assertRaises(SymbolNotFound): finder.lookup_symbol('NON_EXISTING', dates[0]) with self.assertRaises(MultipleSymbolsFound): finder.lookup_symbol('EXISTING', None) for i, date in enumerate(dates): # Verify that we correctly resolve multiple symbols using # the supplied date result = finder.lookup_symbol('EXISTING', date) self.assertEqual(result.symbol, 'EXISTING') self.assertEqual(result.sid, i) def test_fail_to_write_overlapping_data(self): df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': 'multiple', 'start_date': pd.Timestamp('2010-01-01'), 'end_date': pd.Timestamp('2012-01-01'), 'exchange': 'NYSE' }, # Same as asset 1, but with a later end date. { 'sid': 2, 'symbol': 'multiple', 'start_date': pd.Timestamp('2010-01-01'), 'end_date': pd.Timestamp('2013-01-01'), 'exchange': 'NYSE' }, # Same as asset 1, but with a later start_date { 'sid': 3, 'symbol': 'multiple', 'start_date': pd.Timestamp('2011-01-01'), 'end_date': pd.Timestamp('2012-01-01'), 'exchange': 'NYSE' }, ] ) with self.assertRaises(ValueError) as e: self.write_assets(equities=df) self.assertEqual( str(e.exception), "Ambiguous ownership for 1 symbol, multiple assets held the" " following symbols:\n" "MULTIPLE:\n" " intersections: (('2010-01-01 00:00:00', '2012-01-01 00:00:00')," " ('2011-01-01 00:00:00', '2012-01-01 00:00:00'))\n" " start_date end_date\n" " sid \n" " 1 2010-01-01 2012-01-01\n" " 2 2010-01-01 2013-01-01\n" " 3 2011-01-01 2012-01-01" ) def test_lookup_generic(self): """ Ensure that lookup_generic works with various permutations of inputs. """ with build_lookup_generic_cases(self.asset_finder_type) as cases: for finder, symbols, reference_date, expected in cases: results, missing = finder.lookup_generic(symbols, reference_date) self.assertEqual(results, expected) self.assertEqual(missing, []) def test_lookup_none_raises(self): """ If lookup_symbol is vectorized across multiple symbols, and one of them is None, want to raise a TypeError. """ with self.assertRaises(TypeError): self.asset_finder.lookup_symbol(None, pd.Timestamp('2013-01-01')) def test_lookup_mult_are_one(self): """ Ensure that multiple symbols that return the same sid are collapsed to a single returned asset. """ date = pd.Timestamp('2013-01-01', tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': symbol, 'start_date': date.value, 'end_date': (date + timedelta(days=30)).value, 'exchange': 'NYSE', } for symbol in ('FOOB', 'FOO_B') ] ) self.write_assets(equities=df) finder = self.asset_finder # If we are able to resolve this with any result, means that we did not # raise a MultipleSymbolError. result = finder.lookup_symbol('FOO/B', date + timedelta(1), fuzzy=True) self.assertEqual(result.sid, 1) def test_endless_multiple_resolves(self): """ Situation: 1. Asset 1 w/ symbol FOOB changes to FOO_B, and then is delisted. 2. Asset 2 is listed with symbol FOO_B. If someone asks for FOO_B with fuzzy matching after 2 has been listed, they should be able to correctly get 2. """ date = pd.Timestamp('2013-01-01', tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': 'FOOB', 'start_date': date.value, 'end_date': date.max.value, 'exchange': 'NYSE', }, { 'sid': 1, 'symbol': 'FOO_B', 'start_date': (date + timedelta(days=31)).value, 'end_date': (date + timedelta(days=60)).value, 'exchange': 'NYSE', }, { 'sid': 2, 'symbol': 'FOO_B', 'start_date': (date + timedelta(days=61)).value, 'end_date': date.max.value, 'exchange': 'NYSE', }, ] ) self.write_assets(equities=df) finder = self.asset_finder # If we are able to resolve this with any result, means that we did not # raise a MultipleSymbolError. result = finder.lookup_symbol( 'FOO/B', date + timedelta(days=90), fuzzy=True ) self.assertEqual(result.sid, 2) def test_lookup_generic_handle_missing(self): data = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'real', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'also_real', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, # Sid whose end date is before our query date. We should # still correctly find it. { 'sid': 2, 'symbol': 'real_but_old', 'start_date': pd.Timestamp('2002-1-1', tz='UTC'), 'end_date': pd.Timestamp('2003-1-1', tz='UTC'), 'exchange': 'TEST', }, # Sid whose start_date is **after** our query date. We should # **not** find it. { 'sid': 3, 'symbol': 'real_but_in_the_future', 'start_date': pd.Timestamp('2014-1-1', tz='UTC'), 'end_date': pd.Timestamp('2020-1-1', tz='UTC'), 'exchange': 'THE FUTURE', }, ] ) self.write_assets(equities=data) finder = self.asset_finder results, missing = finder.lookup_generic( ['REAL', 1, 'FAKE', 'REAL_BUT_OLD', 'REAL_BUT_IN_THE_FUTURE'], pd.Timestamp('2013-02-01', tz='UTC'), ) self.assertEqual(len(results), 3) self.assertEqual(results[0].symbol, 'REAL') self.assertEqual(results[0].sid, 0) self.assertEqual(results[1].symbol, 'ALSO_REAL') self.assertEqual(results[1].sid, 1) self.assertEqual(results[2].symbol, 'REAL_BUT_OLD') self.assertEqual(results[2].sid, 2) self.assertEqual(len(missing), 2) self.assertEqual(missing[0], 'FAKE') self.assertEqual(missing[1], 'REAL_BUT_IN_THE_FUTURE') def test_security_dates_warning(self): # Build an asset with an end_date eq_end = pd.Timestamp('2012-01-01', tz='UTC') equity_asset = Equity(1, symbol="TESTEQ", end_date=eq_end, exchange="TEST") # Catch all warnings with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered warnings.simplefilter("always") equity_asset.security_start_date equity_asset.security_end_date equity_asset.security_name # Verify the warning self.assertEqual(3, len(w)) for warning in w: self.assertTrue(issubclass(warning.category, DeprecationWarning)) def test_map_identifier_index_to_sids(self): # Build an empty finder and some Assets dt = pd.Timestamp('2014-01-01', tz='UTC') finder = self.asset_finder asset1 = Equity(1, symbol="AAPL", exchange="TEST") asset2 = Equity(2, symbol="GOOG", exchange="TEST") asset200 = Future(200, symbol="CLK15", exchange="TEST") asset201 = Future(201, symbol="CLM15", exchange="TEST") # Check for correct mapping and types pre_map = [asset1, asset2, asset200, asset201] post_map = finder.map_identifier_index_to_sids(pre_map, dt) self.assertListEqual([1, 2, 200, 201], post_map) for sid in post_map: self.assertIsInstance(sid, int) # Change order and check mapping again pre_map = [asset201, asset2, asset200, asset1] post_map = finder.map_identifier_index_to_sids(pre_map, dt) self.assertListEqual([201, 2, 200, 1], post_map) def test_compute_lifetimes(self): num_assets = 4 trading_day = self.trading_calendar.day first_start = pd.Timestamp('2015-04-01', tz='UTC') frame = make_rotating_equity_info( num_assets=num_assets, first_start=first_start, frequency=trading_day, periods_between_starts=3, asset_lifetime=5 ) self.write_assets(equities=frame) finder = self.asset_finder all_dates = pd.date_range( start=first_start, end=frame.end_date.max(), freq=trading_day, ) for dates in all_subindices(all_dates): expected_with_start_raw = full( shape=(len(dates), num_assets), fill_value=False, dtype=bool, ) expected_no_start_raw = full( shape=(len(dates), num_assets), fill_value=False, dtype=bool, ) for i, date in enumerate(dates): it = frame[['start_date', 'end_date']].itertuples() for j, start, end in it: # This way of doing the checks is redundant, but very # clear. if start <= date <= end: expected_with_start_raw[i, j] = True if start < date: expected_no_start_raw[i, j] = True expected_with_start = pd.DataFrame( data=expected_with_start_raw, index=dates, columns=frame.index.values, ) result = finder.lifetimes(dates, include_start_date=True) assert_frame_equal(result, expected_with_start) expected_no_start = pd.DataFrame( data=expected_no_start_raw, index=dates, columns=frame.index.values, ) result = finder.lifetimes(dates, include_start_date=False) assert_frame_equal(result, expected_no_start) def test_sids(self): # Ensure that the sids property of the AssetFinder is functioning self.write_assets(equities=make_simple_equity_info( [0, 1, 2], pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), )) self.assertEqual({0, 1, 2}, set(self.asset_finder.sids)) def test_lookup_by_supplementary_field(self): equities = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'A', 'start_date':
pd.Timestamp('2013-1-1', tz='UTC')
pandas.Timestamp
""" """ __version__='192.168.3.11.dev1' import sys import os import logging import pandas as pd import re import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages logger = logging.getLogger('PT3S') try: from PT3S import Rm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Rm - trying import Rm instead ... maybe pip install -e . is active ...')) import Rm try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx def addResVecToDfAlarmEreignisse( dfAlarmEreignisse ,TCsLDSRes1=
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from .DensityFunctions import BaseDensityCalc def raw_delta_calc(times): ''' Given an array of times, this function calculates the deltas between them. Arguments --------- - times: array: This is an array of times that will be used to calculate the deltas. Returns --------- - out: array: This is an array of deltas. ''' out = (times[1:] - times[:-1])*1e-9 out = out.astype(float) return out def single_location_delta(input_df, single_location, columns={'time': 'time', 'location': 'location'}, recall_value=5, return_as_list = False): ''' This function takes the ```input_df``` and calculates the raw time delta between the single_location location time and the time of the ```recall_value``` number of locations immediately before the single_location. This does not separate on subject. Please pass data from a single subject into this function. Arguments --------- - input_df: pandas dataframe: This is a dataframe that contains columns relating to the subject, time and location of sensor trigger. - single_location: string: This is the location value that you wish to calculate the delta to. - columns: dictionary: This is the dictionary with the column names in ```input_df``` for each of the values of data that we need in our calculations. This dictionary should be of the form: ``` {'time': column containing the times of sensor triggers, 'location': column containing the locations of the sensor triggers} ``` - recall_value: integer: This is the number of previous locations to the single_location trigger - return_as_list: bool: This option allows the user to return a list of the dates and data if ```True```. This is used internally by other functions. Returns --------- - out: dictionary: This has the Timestamps of the dates as keys (for example: Timestamp('2021-05-05 00:00:00')) and the arrays of deltas as values. The arrays of deltas are of shape ```(Nt, recall_value)``` where Nt is the number of visits to ```single_location``` on a given day. If there are no ```single_location``` visits found in the data, then an empty dictionary will be returned. ''' time_column = columns['time'] location_column = columns['location'] # format the incoming data to ensure assumptions about structure are met input_df[time_column] = pd.to_datetime(input_df[time_column], utc=True) input_df = input_df.sort_values(time_column) # find the indices of the data that match with the location we want to find the delta to single_location_indices = np.where(input_df[location_column] == single_location)[0].reshape(-1, 1) # making sure that the recall value is not more than the number of sensor triggers before the # first single_location sensor trigger if len(single_location_indices) == 0: if return_as_list: return [], [] else: return {} single_location_indices = single_location_indices[np.argmax(recall_value < single_location_indices):] # indices of the sensor triggers that we need in our calculations recall_indices = np.hstack([single_location_indices - i for i in range(recall_value + 1)]) # the times of the sensor triggers recall_times = input_df[time_column].values[recall_indices] # the delta between the times for each of the previous sensors to recall_value recall_delta = (recall_times[:, 0, None] - recall_times[:, 1:]) * 1e-9 # the times of the single_location triggers single_location_times = input_df[time_column].iloc[single_location_indices.reshape(-1, )] # dates of the single_location triggers single_location_dates = single_location_times.dt.date # out dictionary out = {} if return_as_list: date_list = [] data_list = [] for nd, date in enumerate(single_location_dates.unique()): date_list.append(date) data_to_add = recall_delta[single_location_dates.values == date].astype(float) data_list.append(data_to_add) return pd.to_datetime(date_list), data_list else: # creating the output dictionary for date in single_location_dates.unique(): # saving the delta values for this date to the dictionary out[pd.to_datetime(date)] = recall_delta[single_location_dates.values == date].astype(float) return out class TimeDeltaDensity(BaseDensityCalc): ''' This function allows the user to calculate reverse percentiles on some data, given another dataset. ''' def __init__(self, save_baseline_array=True, sample=False, sample_size=10000, seed=None, verbose=True): BaseDensityCalc.__init__(self, save_baseline_array=save_baseline_array, sample=sample, sample_size=sample_size, seed=seed, verbose=verbose) return def rp_single_location_delta(input_df, single_location, baseline_length_days = 7, baseline_offset_days = 0, columns={'time': 'time', 'location': 'location'}, recall_value=5): ''' This function takes the ```input_df``` and calculates the reverse percentage time delta between the ```single_location``` location time and the time of the ```recall_value``` number of locations immediately before the ```single_location```. The baseline for the reverse percentage calculation is defined by ```baseline_length_days``` and ```baseline_offset_days```. For example: With ```baseline_length_days = 7``` and ```baseline_offset_days = 1```, the rp deltas on the day ```pd.Timestamp('2021-06-29')``` are calculated using the deltas from ```pd.Timestamp('2021-06-21 00:00:00')``` to ```pd.Timestamp('2021-06-28 00:00:00')```. This does not separate on subject. Please pass data from a single subject into this function. NOTE: The reverse percentage is calculated based on all of the deltas coming into a location! This means that the delta is agnostic to the "from" location. Arguments --------- - input_df: pandas dataframe: This is a dataframe that contains columns relating to the time and location of sensor trigger. - single_location: string: This is the location value that you wish to calculate the delta to. - baseline_length_days: integer: This is the length of the baseline in days that will be used. This value is used when finding the ```baseline_length_days``` complete days of ```single_location``` data to use as a baseline. - baseline_offset_days: integer: This is the offset to the baseline period. ```0``` corresponds to a time period ending the morning of the current date being calculated on. - columns: dictionary: This is the dictionary with the column names in ```input_df``` for each of the values of data that we need in our calculations. This dictionary should be of the form: ``` {'time': column containing the times of sensor triggers, 'location': column containing the locations of the sensor triggers} ``` - recall_value: integer: This is the number of previous locations to the single_location trigger Returns --------- - out: dictionary: This has the Timestamps of the dates as keys (for example: Timestamp('2021-05-05 00:00:00')) and the arrays of deltas as values. The arrays of deltas are of shape ```(Nt, recall_value)``` where Nt is the number of visits to ```single_location``` on a given day. ''' # column names time_column = columns['time'] location_column = columns['location'] out = {} # format the incoming data to ensure assumptions about structure are met input_df[time_column] = pd.to_datetime(input_df[time_column], utc=True) input_df = input_df.sort_values(time_column) # getting the single location raw delta date_list, data_list = single_location_delta(input_df, single_location, columns, recall_value, return_as_list=True) # for each date for nd, date in enumerate(date_list): date = pd.to_datetime(date) ''' if len(baseline_offset)>0: baseline_start_tp = pd.to_datetime(date - pd.Timedelta(**baseline_length) - pd.Timedelta(**baseline_offset)) baseline_end_tp = pd.to_datetime(date - pd.Timedelta(**baseline_offset)) else: baseline_start_tp = pd.to_datetime(date - pd.Timedelta(**baseline_length)) baseline_end_tp = pd.to_datetime(date) ''' index_baseline_end = np.where(date_list <= date)[0][-1] index_baseline_end = index_baseline_end - baseline_offset_days index_baseline_start = index_baseline_end - baseline_length_days if index_baseline_start < 0: out[date] = -1*np.ones_like(data_list[nd]) continue baseline_delta = np.vstack([data_list[index] for index in range(index_baseline_start, index_baseline_end)]) td = TimeDeltaDensity(save_baseline_array=True, sample=True, sample_size=10000, seed=None, verbose=False) td.fit(baseline_delta) out[date] = td.transform(data_list[nd]) return out def rp_location_delta(data, columns = {'time': 'start_date', 'location': 'location_name'}, baseline_length_days = 7, baseline_offset_days = 0, all_loc_as_baseline = False): ''' This funciton allows you to calculate the reverse percentage of the delta for each of the locations based on a baseline. This function allows you to specify whether to calculate the rp values based on the deltas to the same location or whether to calculate them using all locations. Arguments --------- - data: pandas dataframe: This is the dataframe containing the time and locations that will be used to calculate the reverse percentage deltas - columns: dictionary: This is the dictionary with the column names in ```input_df``` for each of the values of data that we need in our calculations. This dictionary should be of the form: ``` {'time': column containing the times of sensor triggers, 'location': column containing the locations of the sensor triggers} ``` - baseline_length_days: integer: This is the length of the baseline in days that will be used. This value is used when finding the ```baseline_length_days``` complete days of ```single_location``` data to use as a baseline. - baseline_offset_days: integer: This is the offset to the baseline period. ```0``` corresponds to a time period ending the morning of the current date being calculated on. - all_loc_as_baseline: bool: This argument dictates whether all the locations are used as part of the calculationg for the reverse percentage or if only the values from the ```to``` locations are used. Returns --------- - out: pandas dataframe: This is the outputted data frame, complete with rp values. ''' import time time_col = columns['time'] location_col = columns['location'] data[time_col] = pd.to_datetime(data[time_col]) data = data.sort_values(time_col) if all_loc_as_baseline: times = data[time_col].values raw_delta = raw_delta_calc(times) locations = data[location_col].values df_dict = {'from': locations[:-1], 'to': locations[1:], 'delta': raw_delta, time_col: times} out = pd.DataFrame(dict([(k,pd.Series(v)) for k,v in df_dict.items()])) out['date'] = out[time_col].dt.date baseline_df = out.groupby(by='date')['delta'].apply(list).reset_index() dates = baseline_df['date'].values deltas = baseline_df['delta'].values rp_col = [] for nd in range(dates.shape[0]): date = dates[nd] this_delta = deltas[nd] index_baseline_end = np.where(dates <= date)[0][-1] index_baseline_end = index_baseline_end - baseline_offset_days index_baseline_start = index_baseline_end - baseline_length_days if index_baseline_start < 0: rp_col.extend([np.NAN]*len(this_delta)) else: X_fit = np.hstack(deltas[index_baseline_start:index_baseline_end]).reshape(-1,1) X_transform = np.asarray(this_delta).reshape(-1,1) td = TimeDeltaDensity(sample = True, sample_size = 10000, seed = nd, verbose = False) td.fit(X_fit) rp_col.extend(td.transform(X_transform).reshape(-1,)) out['rp'] = rp_col return out else: unique_locations = data[location_col].unique() data['date'] = pd.to_datetime(data[time_col].dt.date) rp_col = -1*np.ones(data.shape[0]) for location in unique_locations: start_func = time.time() delta_dict = rp_single_location_delta(input_df=data, single_location=location, baseline_length_days=7, baseline_offset_days=0, columns=columns, recall_value=1) end_func = time.time() location_index = np.where(data[location_col] == location)[0] for date in delta_dict: deltas = delta_dict[pd.Timestamp(date)] start_search = time.time() index_add = location_index[np.where(data['date'].iloc[location_index] ==
pd.Timestamp(date)
pandas.Timestamp
import pandas as pd from kf_pedigree.common import get_logger from kf_pedigree.family import find_family_from_family_list logger = get_logger(__name__, testing_mode=False) def gender(x): if isinstance(x, str): if x.lower() == "male": return "1" elif x.lower() == "female": return "2" else: return "0" else: return "0" def case_control(row): if row["is_proband"] or row["affected_status"]: return "2" elif row["is_proband"] is False: return "1" else: return "0" def parent(x): if x != x: return "0" else: return x def build_report( participants, family_relationships, use_external_ids=False, api_or_db_url=None, ): logger.info("Building Pedigree Report") family = participants[["kf_id", "family_id"]] fr = ( family_relationships.merge( family, left_on="participant1", right_on="kf_id", how="left" ) .drop_duplicates() .drop(columns=["kf_id"]) ) fr["participant1_to_participant2_relation"] = fr[ "participant1_to_participant2_relation" ].str.lower() fr["participant2_to_participant1_relation"] = fr[ "participant2_to_participant1_relation" ].str.lower() pedi_1_2 = ( fr[ fr["participant1_to_participant2_relation"] .str.lower() .isin(["mother", "father"]) ] .drop(columns=["participant2_to_participant1_relation"]) .set_index( [ "family_id", "participant2", "participant1_to_participant2_relation", ] )["participant1"] .unstack() .reset_index() .rename(columns={"participant2": "pt_id"}) ) pedi_2_1 = ( fr[ fr["participant2_to_participant1_relation"] .str.lower() .isin(["child"]) ][["participant1", "family_id"]] .drop_duplicates() .rename(columns={"participant1": "pt_id"}) ) participant_info = participants[ ["kf_id", "affected_status", "is_proband", "gender"] ].rename(columns={"kf_id": "pt_id"}) pedigree = (
pd.concat([pedi_1_2, pedi_2_1])
pandas.concat
import os import numpy as np import pandas as pd from pyuplift.utils import download_file def download_hillstrom_email_marketing( data_home=None, url='http://www.minethatdata.com/Kevin_Hillstrom_MineThatData_E-MailAnalytics_DataMiningChallenge_2008.03.20.csv' ): """Downloading the Hillstrom Email Marketing dataset. **************** Data description **************** This dataset contains 64,000 customers who last purchased within twelve months. The customers were involved in an e-mail test. * 1/3 were randomly chosen to receive an e-mail campaign featuring Mens merchandise. * 1/3 were randomly chosen to receive an e-mail campaign featuring Womens merchandise. * 1/3 were randomly chosen to not receive an e-mail campaign. During a period of two weeks following the e-mail campaign, results were tracked. Your job is to tell the world if the Mens or Womens e-mail campaign was successful. +--------------------------+------------+ |Features | 8 | +--------------------------+------------+ |Treatment | 3 | +--------------------------+------------+ |Samples total | 64,000 | +--------------------------+------------+ |Average spend rate | 1.05091 | +--------------------------+------------+ |Average visit rate | 0.14678 | +--------------------------+------------+ |Average conversion rate | 0.00903 | +--------------------------+------------+ More information about dataset you can find in the `official paper <http://minethatdata.com/Stochastic_Solutions_E-Mail_Challenge_2008.04.30.pdf>`_. +-----------------+----------------------------------------------------------------------------------+ | **Parameters** | | **data_home: string** | | | | Specify another download and cache folder for the dataset. | | | | By default the dataset will be stored in the data folder in the same folder. | | | | **url: string** | | | | The URL to file with data. | +-----------------+----------------------------------------------------------------------------------+ | **Returns** | **None** | +-----------------+----------------------------------------------------------------------------------+ """ data_home, dataset_path = __get_data_home_dataset_file_paths(data_home) if not os.path.isdir(data_home): os.makedirs(data_home) if not os.path.exists(dataset_path): download_file(url, dataset_path) def load_hillstrom_email_marketing( data_home=None, load_raw_data=False, download_if_missing=True ): """Loading the Hillstrom Email Marketing dataset from the local file. **************** Data description **************** This dataset contains 64,000 customers who last purchased within twelve months. The customers were involved in an e-mail test. * 1/3 were randomly chosen to receive an e-mail campaign featuring Mens merchandise. * 1/3 were randomly chosen to receive an e-mail campaign featuring Womens merchandise. * 1/3 were randomly chosen to not receive an e-mail campaign. During a period of two weeks following the e-mail campaign, results were tracked. Your job is to tell the world if the Mens or Womens e-mail campaign was successful. +--------------------------+------------+ |Features | 8 | +--------------------------+------------+ |Treatment | 3 | +--------------------------+------------+ |Samples total | 64,000 | +--------------------------+------------+ |Average spend rate | 1.05091 | +--------------------------+------------+ |Average visit rate | 0.14678 | +--------------------------+------------+ |Average conversion rate | 0.00903 | +--------------------------+------------+ More information about dataset you can find in the `official paper <http://minethatdata.com/Stochastic_Solutions_E-Mail_Challenge_2008.04.30.pdf>`_. Parameters ---------- load_raw_data : bool, default: False The loading of raw or preprocessed data? data_home : str, optional (default=None) Specify another download and cache folder for the dataset. By default the dataset will be stored in the data folder in the same folder. download_if_missing : bool, optional (default=True) Download the dataset if it is not downloaded. Returns ------- dataset : dict object with the following attributes: dataset.description : str Description of the Hillstrom email marketing dataset. dataset.data : ndarray, shape (64000, 8) Each row corresponding to the 8 feature values in order. dataset.feature_names : list, size 8 List of feature names. dataset.treatment : ndarray, shape (64000,) Each value corresponds to the treatment. dataset.target : numpy array of shape (64000,) Each value corresponds to one of the outcomes. By default, it's `spend` outcome (look at `target_spend` below). dataset.target_spend : numpy array of shape (64000,) Each value corresponds to how much customers spent during a two-week outcome period. dataset.target_visit : numpy array of shape (64000,) Each value corresponds to whether people visited the site during a two-week outcome period. dataset.target_conversion : numpy array of shape (64000,) Each value corresponds to whether they purchased at the site (“conversion”) during a two-week outcome period. """ data_home, dataset_path = __get_data_home_dataset_file_paths(data_home) if not os.path.exists(dataset_path): if download_if_missing: download_hillstrom_email_marketing(data_home) else: raise FileNotFoundError( 'The dataset does not exist. ' 'Use `download_hillstrom_email_marketing` function to download the dataset.' ) df = pd.read_csv(dataset_path) if not load_raw_data: df = __encode_data(df) description = 'This dataset contains 64,000 customers who last purchased within twelve months. ' \ 'The customers were involved in an e-mail test. ' \ '1/3 were randomly chosen to receive an e-mail campaign featuring Mens merchandise. ' \ '1/3 were randomly chosen to receive an e-mail campaign featuring Womens merchandise. ' \ '1/3 were randomly chosen to not receive an e-mail campaign. ' \ 'During a period of two weeks following the e-mail campaign, results were tracked. ' \ 'Your job is to tell the world if the Mens or Womens e-mail campaign was successful.' drop_fields = ['spend', 'visit', 'conversion', 'segment'] data = { 'description': description, 'data': df.drop(drop_fields, axis=1).values, 'feature_names': np.array(list(filter(lambda x: x not in drop_fields, df.columns))), 'treatment': df['segment'].values, 'target': df['spend'].values, 'target_spend': df['spend'].values, 'target_visit': df['visit'].values, 'target_conversion': df['conversion'].values, } return data def __encode_data(df): df['history_segment'] = df['history_segment'].apply(lambda s: s.split(') ')[1]) col_name = 'zip_code' df =
pd.get_dummies(df, columns=[col_name], prefix=col_name)
pandas.get_dummies
import os import trimesh import numpy as np import pandas as pd from enum import Enum from matplotlib import cm from urdfpy import URDF, JointLimit from tools.utils import io # from tools.visualization import Viewer # override attributes to make effort, velocity optional JointLimit._ATTRIBS = { 'effort': (float, False), 'velocity': (float, False), 'lower': (float, False), 'upper': (float, False), } # set default values JointLimit.effort = 1.0 JointLimit.velocity = 1000 class DatasetName(Enum): SAPIEN = 0 SHAPE2MOTION = 1 MULTISCAN = 2 class JointType(Enum): prismatic = 0 revolute = 1 fixed = -1 continuous = -1 floating = -1 planar = -1 def get_mesh_info(mesh_path): mesh = trimesh.load(mesh_path, force='mesh') assert isinstance(mesh, trimesh.base.Trimesh) min_bound = mesh.bounds[0] max_bound = mesh.bounds[1] center = np.mean(mesh.bounds, axis=0) scale = mesh.scale mesh_info = { 'min_bound': min_bound.tolist(), 'max_bound': max_bound.tolist(), 'center': center.tolist(), 'scale': scale } return mesh_info class DataLoader: def __init__(self, cfg): self.cfg = cfg dataset_name = self.cfg.dataset.name self.dataset_name = DatasetName[dataset_name] if isinstance(dataset_name, str) else dataset_name self.dataset_dir = self.cfg.paths.preprocess.input_dir self.stage1_input = self.cfg.paths.preprocess.stage1.input self.render_dir = os.path.join(self.dataset_dir, self.stage1_input.render.folder_name) self.motion_dir = os.path.join(self.dataset_dir, self.stage1_input.motion.folder_name) self.data_info = pd.DataFrame() def parse_input(self): render_data_info = self.parse_render_input() motion_data_info = self.parse_motion_input() self.data_info = render_data_info.merge(motion_data_info, how='inner', on=['objectCat', 'objectId']) selected_categories = self.data_info['objectCat'].isin(self.cfg.settings.categories) \ if len(self.cfg.settings.categories) > 0 else self.data_info['objectCat'].astype(bool) selected_object_ids = self.data_info['objectId'].isin(self.cfg.settings.object_ids) \ if len(self.cfg.settings.object_ids) > 0 else self.data_info['objectId'].astype(bool) selected_articulation_ids = self.data_info['articulationId'].isin(self.cfg.settings.articulation_ids) \ if len(self.cfg.settings.articulation_ids) > 0 else self.data_info['articulationId'].astype(bool) self.data_info = self.data_info[selected_categories & selected_object_ids & selected_articulation_ids] self.data_info = self.data_info.reset_index(drop=True) def parse_render_input(self): df_list = [] object_cats = os.listdir(self.render_dir) # object categories for object_cat in object_cats: object_cat_path = os.path.join(self.render_dir, object_cat) object_ids = io.alphanum_ordered_folder_list(object_cat_path) # object instance ids for object_id in object_ids: object_id_path = os.path.join(object_cat_path, object_id) articulation_ids = io.alphanum_ordered_folder_list(object_id_path) # object with different articulations instance ids for articulation_id in articulation_ids: articulation_id_path = os.path.join(object_id_path, articulation_id) depth_dir = os.path.join(articulation_id_path, self.stage1_input.render.depth_folder) depth_frames = io.alphanum_ordered_file_list(depth_dir, ext=self.stage1_input.render.depth_ext) mask_dir = os.path.join(articulation_id_path, self.stage1_input.render.mask_folder) mask_frames = io.alphanum_ordered_file_list(mask_dir, ext=self.stage1_input.render.mask_ext) metadata_file = self.stage1_input.render.metadata_file num_renders = len(depth_frames) df_row = pd.concat([pd.DataFrame( [[object_cat, object_id, articulation_id, depth_frames[i], mask_frames[i], metadata_file]], columns=['objectCat', 'objectId', 'articulationId', 'depthFrame', 'maskFrame', 'metadata']) for i in range(num_renders)], ignore_index=True) df_list.append(df_row) return
pd.concat(df_list, ignore_index=True)
pandas.concat
import timeboard as tb from timeboard.interval import Interval, _VoidInterval from timeboard.workshift import Workshift from timeboard.exceptions import (OutOfBoundsError, PartialOutOfBoundsError, VoidIntervalError) from timeboard.timeboard import _Location, OOB_LEFT, OOB_RIGHT, LOC_WITHIN import datetime import pandas as pd import numpy as np import pytest def tb_12_days(): return tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0]) # 31 01 02 03 04 05 06 07 08 09 10 11 12 # 0 1 0 0 1 0 0 1 0 0 1 0 0 class TestIntervalLocatorFromReference(object): def test_interval_locator_default(self): clnd = tb_12_days() assert clnd._get_interval_locs_from_reference( None, False, False) == [_Location(0, LOC_WITHIN), _Location(12, LOC_WITHIN)] def test_interval_locator_with_two_ts(self): clnd = tb_12_days() assert clnd._get_interval_locs_from_reference( ('02 Jan 2017 15:00', '08 Jan 2017 15:00'), False, False) == [ _Location(2, LOC_WITHIN), _Location(8, LOC_WITHIN)] # reverse is ok; it is taken care later in 'get_interval' assert clnd._get_interval_locs_from_reference( ('08 Jan 2017 15:00', '02 Jan 2017 15:00'), False, False) == [ _Location(8, LOC_WITHIN), _Location(2, LOC_WITHIN)] def test_interval_locator_with_with_excessive_item(self): clnd = tb_12_days() assert clnd._get_interval_locs_from_reference( ('02 Jan 2017 15:00','08 Jan 2017 15:00','something'), False, False) == [_Location(2, LOC_WITHIN), _Location(8, LOC_WITHIN)] def test_interval_locator_with_two_pd_ts(self): clnd = tb_12_days() assert clnd._get_interval_locs_from_reference( (pd.Timestamp('02 Jan 2017 15:00'),
pd.Timestamp('08 Jan 2017 15:00')
pandas.Timestamp
import os import uuid from datetime import datetime import pathlib import shutil from send2trash import send2trash from bs4 import (BeautifulSoup, Comment) import lxml # 不一定用,但与bs4解析网页时相关模块有联系,作为模块预装的提示吧 import pandas as pd import re from wordcloud import WordCloud import jieba NOTEINDEXCOLS= ["type","title","path","ctime","mtime","atime" ,"url","att_list","att_num","keywords"] def getDir(dir): d = os.path.abspath(dir) if not os.path.exists(d): os.makedirs(d) # 不同于mkdir makedirs方法可以巢式新建文件夹 return d class Note(): """ :::由于混在一起设计了稍微写下省的犯错::: self.root = 笔记库根目录 self.index = 索引表本身 self.index_cols = 索引中的格列标题 self.index_path = 索引的保存路径 self.index_update_time = 索引的更新时间 self.id = id # self.ext = 扩展名 self.title = 标题 self.type = 分类 self.keywords = 关键词 self.path = 笔记文件夹的路径 os.path.join(self.root, f"{self.type}/{self.id}/") self.url = 外链 self.atime = atime access? self.ctime = ctime create? self.mtime = mtime modify self.content = 内容本身 self.content_name = 内容的文件名 f"{self.title}.html" self.content_path = 内容的保存路径 self.info = info内容本身 self.info_path = info的保存路径 self.att_path = 附件文件夹路径 """ def __init__(self, root): self.root = root self.index_cols = NOTEINDEXCOLS for d in ["Index","Draft","Archive","Trash"]: getDir(os.path.join(root, d)) self.index_path = os.path.join(root, "Index/Note_index.json") self.createIndex() # index ######################## def createIndex(self): if os.path.exists(self.index_path): self.readIndex() else: self.index = pd.DataFrame(columns=self.index_cols) self.writeIndex() def writeIndex(self): try: self.index.to_json(self.index_path, orient='split') #可以保持读取json内容的顺序 #self.index.to_json(self.index_path) except Exception as e: print("索引表保存出错:", e) def readIndex(self): try: self.index = pd.read_json(self.index_path, convert_dates=["atime","ctime","mtime"], orient='split') #self.index = pd.read_json(self.index_path, convert_dates=["atime","ctime","mtime"]) except Exception as e: print("索引表读取出错:", e) def archiveIndex(self): archive_dir = getDir(os.path.join(self.root, "Index/Note_archive")) tstmp = str(datetime.timestamp(datetime.now())) archive_name = f"({tstmp})".join(os.path.splitext(os.path.basename(self.index_path))) #if not os.path.exists(self.index): # 万一索引表被误删除时增加鲁棒性 try: shutil.copy(self.index_path, os.path.join(archive_dir, archive_name)) except Exception as e: print("索引表存档出错:", e) else: self.createIndex() def getUpdateTime(self): self.index_update_time = datetime.fromtimestamp(os.path.getmtime(self.index_path)) # def sortIndex(self, mode): # ds = self.index.loc[self.index['type']==mode].copy() # ds.sort_values(by='title', inplace=True) # return ds # 内容 ######################## def createContent(self): self.content = f"<!DOCTYPE html><html><meta charset='utf-8'><head><title>{self.title}</title></head>" self.content += f'<body>文件生成于{datetime.now().strftime("%Y-%m-%d_%H:%M:%S")},请开始记录吧</body></html>' def writeContent(self): try: f = open(self.content_path, "w", encoding="utf-8") f.write(self.content) except Exception as e: print("内容写入出错:", e) f.close() else: f.close() def readContent(self): codecs= ("utf-8", "gb18030", "ASCII") i = 0 for codec in codecs: try: f = open(self.content_path, "r", encoding=codec) self.content = f.read() except UnicodeDecodeError: print("{}按{}读取错误".format(self.content_path, codec)) self.content = "" else: # print("按{}读取成功".format(codec) i = 1 f.close() if i==1: break if not self.content: print("未能成功读取HTML文件:", self.content_path) # info ########################## def createInfo(self): self.readAtt() self.keywords = ";".join(re.split("[;;|,,]", self.keywords)) # 规整关键词分隔符 self.info = pd.Series([self.type, self.title, self.path, self.ctime, self.mtime, self.atime\ ,self.url, self.att_list, self.att_num, self.keywords] ,index=self.index_cols) def writeInfo(self): self.createInfo() self.info_path = os.path.join(self.path, "{}.info".format(os.path.splitext(self.content_name)[0])) try: self.info.to_json(self.info_path) except Exception as e: print("信息写入出错:", e) def readInfo(self): #self.info = pd.read_json(self.info_path, typ="Series") self.info =
pd.read_json(self.info_path, typ="Series", convert_dates=["atime","ctime","mtime"])
pandas.read_json
"""test_ulogconv.""" from context import mathpandas as mpd import pandas as pd import numpy as np from numpy.testing import assert_almost_equal def test_norm_2d(): """test pythagoras series.""" x = pd.Series([1, 2, 3, 4]) y = pd.Series([2, 3, 4, 5]) r = mpd.get_series_norm_2d(x, y, "test") assert_almost_equal(r.iloc[0], 2.23606797749979) assert_almost_equal(r.iloc[1], 3.605551275463989) assert_almost_equal(r.iloc[2], 5.0) assert_almost_equal(r.iloc[3], 6.4031242374328485) assert r.name == "test_norm" def test_tilt_from_attitude(): """test tilt series.""" q0 = pd.Series([1]) # w q1 =
pd.Series([0])
pandas.Series
# -*- coding: utf-8 -*- import os import dash import pandas as pd import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output #a app = dash.Dash(__name__) server = app.server people =
pd.read_csv("BNOCSFINAL1.csv")
pandas.read_csv
import os, sys import collections import pprint import pandas as pd import pysam class Call: def __init__(self, call, quality = None, is_error = False): self.call = call self.quality = quality self.is_error = is_error self.is_indel = len(call) > 1 def get_call_for_pileup_read(pileup_read, ref = None): if pileup_read.alignment.mapping_quality < 20: return Call('_MAPQ', is_error = True) elif pileup_read.alignment.is_secondary or pileup_read.alignment.is_supplementary or pileup_read.alignment.is_qcfail: return Call('_FLAG', is_error = True) elif pileup_read.alignment.is_duplicate: return Call('_DUPE', is_error = True) elif pileup_read.indel > 0: quals = pileup_read.alignment.query_qualities[pileup_read.query_position:pileup_read.query_position+pileup_read.indel+1] return Call( pileup_read.alignment.query_sequence[pileup_read.query_position:pileup_read.query_position+pileup_read.indel+1], 1.0 * sum(quals) / len(quals) ) elif pileup_read.indel < 0: #print(ref, pileup_read.indel, len(ref), ref[0:-abs(pileup_read.indel)]) #if abs(pileup_read.indel) < len(ref): # return ref[0:-abs(pileup_read.indel)] #else: # return '_DEL' #hacky way to handle deletions... return Call( '%s-%d' % (pileup_read.alignment.query_sequence[pileup_read.query_position], abs(pileup_read.indel)), sum(pileup_read.alignment.query_qualities[pileup_read.query_position:pileup_read.query_position+2]) / 2.0 ) elif pileup_read.is_del: return Call('_DEL', is_error = True) elif pileup_read.is_refskip: return Call('_SKIP', is_error = True) else: return Call(pileup_read.alignment.query_sequence[pileup_read.query_position], pileup_read.alignment.query_qualities[pileup_read.query_position]) def get_read_calls(samfile, chrom, pos1, ref = None, max_depth = 1e7, calculate_stats = False): read_calls = {} read_stats = {} for pileup_column in samfile.pileup(chrom, pos1-1, pos1, max_depth = max_depth, stepper = 'nofilter', truncate=True): print(chrom, pos1, '->', pileup_column.reference_name, pileup_column.reference_pos, ' - found ', pileup_column.nsegments, 'alignments') for pileup_read in pileup_column.pileups: #ignore secondary and supplementary alignments if pileup_read.alignment.is_secondary: continue if pileup_read.alignment.is_supplementary: continue assert not pileup_read.alignment.query_name in read_calls, 'encountered multiple alignments for single read?' read_calls[pileup_read.alignment.query_name] = get_call_for_pileup_read(pileup_read, ref) if calculate_stats: read_stats[pileup_read.alignment.query_name] = { 'length': pileup_read.alignment.infer_query_length(), 'mismatches': pileup_read.alignment.get_tag('NM'), 'mapping_quality': pileup_read.alignment.mapping_quality, 'mean_baseq': 1.0 * sum(pileup_read.alignment.query_qualities) / len(pileup_read.alignment.query_qualities) } if calculate_stats: return read_calls, read_stats else: return read_calls "Get counts of how often each call was observed at each SNP" def get_call_counts(samfile, snps): snp_call_counts = {} for snp in snps.itertuples(): snp_call_counts[snp.name] = collections.Counter() for pileup_column in samfile.pileup(snp.CHROM, snp.POS-1, snp.POS, max_depth = 1e4, stepper = 'nofilter', truncate=True): for pileup_read in pileup_column.pileups: call = get_call_for_pileup_read(pileup_read) #, snp.REF snp_call_counts[snp.name][call.call] += 1 return snp_call_counts def get_allele_type(allele, snp): if allele in snp.paternal and allele in snp.maternal: return 'shared' elif allele in snp.maternal: return 'maternal' elif allele in snp.paternal: return 'paternal' else: return None def get_mutation_allele_type(allele, mutation): if allele == mutation['REF_processed']: return 'wild-type' elif allele == mutation['ALT_processed']: return 'mutation' else: return None def process_family(fam, fam_rows, bam_mask, snps_mask, subsample = None): print() print(fam, 'STARTING') assert 'proband' in fam_rows['relationship'].values, 'need at least one proband' snps_fn = snps_mask % fam if not os.path.isfile(snps_fn): raise Exception('%s: %s missing!' % (fam, snps_fn)) snps = pd.read_csv(snps_fn, sep='\t', dtype={'#CHROM': str, 'POS': int, 'ID': str, 'REF': str, 'ALT': str}) snps.rename(columns = { '#CHROM': 'CHROM' }, inplace=True) snps.loc[~snps['CHROM'].str.startswith('chr'), 'CHROM'] = ['chr' + c for c in snps.loc[~snps['CHROM'].str.startswith('chr'), 'CHROM']] snps['name'] = ['%s_%d' % (snp.CHROM, snp.POS) for snp in snps.itertuples()] #the "calls" we actually get back from the pileup are just a single base, so if we have a deletion #such as GA>G, what we actually see if a G with indel == 0 or indel == 1. #thus, we need to adjust the REF/ALT we actually expect to see #this is stupid, what we should really do is to process the pileups in a smarter way... snps['REF_processed'] = [snp.REF[0] if len(snp.REF) > 1 else snp.REF for snp in snps.itertuples()] snps['ALT_processed'] = ['%s-%d' % (snp.REF[0], len(snp.REF) - len(snp.ALT)) if len(snp.REF) > 1 else snp.ALT for snp in snps.itertuples()] print(snps) mutation = snps[snps.ID == 'mutation'] assert len(mutation) == 1, 'only one mutation allowed' mutation = mutation.iloc[0] background_snps_list = [] for offset in [10, 50, 100]: for sign in [1, -1]: background_snps_list.append( pd.DataFrame([ { 'CHROM': snp.CHROM, 'POS': snp.POS + sign * offset, 'name': '{}_{}'.format(snp.name, sign * offset) } for snp in snps.itertuples() ]) ) background_snps =
pd.concat(background_snps_list)
pandas.concat
""" The :mod:`hillmaker.bydatetime` module includes functions for computing occupancy, arrival, and departure statistics by time bin of day and date. """ # Copyright 2022 <NAME> # import logging import numpy as np import pandas as pd from pandas import DataFrame from pandas import Series from pandas import Timestamp from datetime import datetime from pandas.tseries.offsets import Minute import hillmaker.hmlib as hmlib CONST_FAKE_OCCWEIGHT_FIELDNAME = 'FakeOccWeightField' CONST_FAKE_CATFIELD_NAME = 'FakeCatForTotals' OCC_TOLERANCE = 0.02 # This should inherit level from root logger logger = logging.getLogger(__name__) def make_bydatetime(stops_df, infield, outfield, start_analysis_np, end_analysis_np, catfield=None, bin_size_minutes=60, cat_to_exclude=None, totals=1, occ_weight_field=None, edge_bins=1, verbose=0): """ Create bydatetime table based on user inputs. This is the table from which summary statistics can be computed. Parameters ---------- stops_df: DataFrame Stop data infield: string Name of column in stops_df to use as arrival datetime outfield: string Name of column in stops_df to use as departure datetime start_analysis_np: numpy datetime64[ns] Start date for the analysis end_analysis_np: numpy datetime64[ns] End date for the analysis catfield : string, optional Column name corresponding to the categories. If none is specified, then only overall occupancy is analyzed. bin_size_minutes: int, default 60 Bin size in minutes. Should divide evenly into 1440. cat_to_exclude: list of strings, default None Categories to ignore edge_bins: int, default 1 Occupancy contribution method for arrival and departure bins. 1=fractional, 2=whole bin totals: int, default 1 0=no totals, 1=totals by datetime, 2=totals bydatetime as well as totals for each field in the catfields (only relevant for > 1 category field) occ_weight_field : string, optional (default=1.0) Column name corresponding to the weights to use for occupancy incrementing. verbose : int, default 0 The verbosity level. The default, zero, means silent mode. Returns ------- Dict of DataFrames Occupancy, arrivals, departures by category by datetime bin Examples -------- bydt_dfs = make_bydatetime(stops_df, 'InTime', 'OutTime', ... datetime(2014, 3, 1), datetime(2014, 6, 30), 'PatientType', 60) TODO ---- * Sanity checks on date ranges * Formal test using short stay data * Flow conservation checks Notes ----- References ---------- See Also -------- """ # Number of bins in analysis span num_bins = hmlib.bin_of_span(end_analysis_np, start_analysis_np, bin_size_minutes) + 1 # Compute min and max of in and out times min_intime = stops_df[infield].min() max_intime = stops_df[infield].max() min_outtime = stops_df[outfield].min() max_outtime = stops_df[outfield].max() logger.info(f"min of intime: {min_intime}") logger.info(f"max of intime: {max_intime}") logger.info(f"min of outtime: {min_outtime}") logger.info(f"max of outtime: {max_outtime}") # TODO - Add warnings here related to min and maxes out of whack with analysis range # Occupancy weights # If no occ weight field specified, create fake one containing 1.0 as values. # Avoids having to check during dataframe iteration whether or not to use # default occupancy weight. if occ_weight_field is None: occ_weight_vec = np.ones(len(stops_df.index), dtype=np.float64) occ_weight_df = DataFrame({CONST_FAKE_OCCWEIGHT_FIELDNAME: occ_weight_vec}) stops_df =
pd.concat([stops_df, occ_weight_df], axis=1)
pandas.concat
import numpy as np import pandas as pd import itertools import math import re import matplotlib.pyplot as plt import seaborn as sns import warnings plt.style.use('seaborn-white') class MAM: """ MAM (Marketing Attribution Models) is a class inspired on the R Package ‘GameTheoryAllocation’ from <NAME> and ‘ChannelAttribution’ from <NAME> and <NAME> that was created to bring these concepts to Python and to help us understand how the different marketing channels behave during the customer journey. Parameters: df = None by default, but should only be None if choosing to use a random dataframe. Otherwise, it has to receive a Pandas dataframe; time_till_conv_colname = None by default. Column name in the df containing the time in hours untill the moment of the conversion. The column must have the same elements as the channels_colname has. Values could be on a list ou a string with a separator; conversion_value = 1 by default. Integer that represents a monetary value of a 'conversion', can also receive a string indicating the column name on the dataframe containing the conversion values; channels_colname = None by default. Column name in the df containing the different channels during the customer journey. The column must have the same elements as the time_till_conv_colname has. Values could be on a list ou a string with a separator; journey_with_conv_colname = None by default. group_channels = False by default. Most important parameter on this class. This indicates the input format of the dataframe. True = Each row represents a user session that will be grouped into a user journey; False = Each row represents a user journey and the columns group_channels_by_id_list = Empty list by default. group_timestamp_colname = None by default. create_journey_id_based_on_conversion = False by default. path_separator = ' > ' by default. If using 'group_channels = True', this should match the separator being used on the inputed dataframe in the channels_colname; verbose = False by default. Internal parameter for printing while working with MAM; random_df = False by default. Will create a random dataframe with testing purpose; """ def __init__( self, df=None, time_till_conv_colname=None, conversion_value=1, channels_colname=None, journey_with_conv_colname=None, group_channels=False, group_channels_by_id_list=[], group_timestamp_colname=None, create_journey_id_based_on_conversion = False, path_separator=' > ', verbose=False, random_df=False): self.verbose = verbose self.sep = path_separator self.group_by_channels_models = None ########################################################## ##### Section 0: Funcions needed to create the class ##### ########################################################## def journey_id_based_on_conversion(df, group_id, transaction_colname): """ Internal function that creates a journey_id column into a DF containing a User ID and Boolean column that indicates if there has been a conversion on that instance """ df_temp = df.copy() for i in group_id: df_temp[i] = df_temp[i].apply(str) #Converting bool column to int df_temp['journey_id'] = df_temp[transaction_colname].map(lambda x: 0 if x == False else 1) #Cumsum for each transaction to expand the value for the rows that did not have a transaction df_temp['journey_id'] = df_temp.groupby(group_id)['journey_id'].cumsum() #Subtracting 1 only for the row that had a transaction t = df_temp['journey_id'] - 1 df_temp['journey_id'] = df_temp['journey_id'].where((df_temp[transaction_colname] == False), t).apply(str) df_temp['journey_id'] = 'id:' + df_temp[group_id[0]] + '_J:' + df_temp['journey_id'] del t return df_temp def random_mam_data_frame(user_id = 300, k = 50000, conv_rate = 0.4): import random channels = ['Direct', 'Direct', 'Facebook', 'Facebook', 'Facebook', 'Google Search', 'Google Search', 'Google Search', 'Google Search', 'Google Display', 'Organic', 'Organic', 'Organic', 'Organic', 'Organic', 'Organic', 'Email Marketing', 'Youtube', 'Instagram'] has_transaction = ([True] * int(conv_rate * 100)) + ([False] * int((1 - conv_rate) * 100)) user_id = list(range(0, 700)) day = range(1, 30) month = range(1, 12) res = [] for i in [channels,has_transaction, user_id, day, month]: res.append(random.choices(population=i, k=k)) df =
pd.DataFrame(res)
pandas.DataFrame
import pandas as pd import numpy as np def append_times(df, st, et): df.insert(0, 'START_TIME', st) df.insert(1, 'STOP_TIME', et) df = df.set_index(['START_TIME', 'STOP_TIME']) return df def offset(df, offset_in_secs, start_time_col=0, stop_time_col=None): df_copy = df.copy(deep=True) if start_time_col is not None: start_time_col = df_copy.columns[start_time_col] df_copy[start_time_col] = df_copy[start_time_col] + \ pd.Timedelta(offset_in_secs, unit='s') if stop_time_col is not None: stop_time_col = df_copy.columns[stop_time_col] df_copy[stop_time_col] = df_copy[stop_time_col] + \ pd.Timedelta(offset_in_secs, unit='s') return df_copy def segment(df, start_time=None, stop_time=None, start_time_col=0, stop_time_col=None): if stop_time_col is None: stop_time_col = start_time_col if start_time is None: start_time = df.iloc[0, start_time_col] if stop_time is None: stop_time = df.iloc[-1, stop_time_col] if start_time_col == stop_time_col: mask = (df.iloc[:, start_time_col] >= start_time) & ( df.iloc[:, stop_time_col] < stop_time) return df[mask].copy(deep=True) else: mask = (df.iloc[:, start_time_col] <= stop_time) & ( df.iloc[:, stop_time_col] >= start_time) subset_df = df[mask].copy(deep=True) start_time_col = df.columns[start_time_col] stop_time_col = df.columns[stop_time_col] subset_df.loc[subset_df.loc[:, start_time_col] < start_time, start_time_col] = start_time subset_df.loc[subset_df.loc[:, stop_time_col] > stop_time, stop_time_col] = stop_time return subset_df def segment_sensor(df, start_time=None, stop_time=None): return segment(df, start_time=start_time, stop_time=stop_time) def segment_annotation(df, start_time=None, stop_time=None): return segment(df, start_time=start_time, stop_time=stop_time, start_time_col=1, stop_time_col=2) def start_time(df, start_time_col=0): return df.iloc[0, start_time_col] def end_time(df, stop_time_col=0): return df.iloc[-1, stop_time_col] def get_annotation_labels(df): labels = df.iloc[:, 3].unique() return np.sort(labels) def append_edges(df, before_df=None, after_df=None, duration=120, start_time_col=0, stop_time_col=0): lbound_time = df.iloc[0, start_time_col] rbound_time = df.iloc[-1, stop_time_col] if before_df is not None: ledge_df = segment(before_df, start_time=lbound_time - pd.Timedelta(duration, unit='s'), stop_time=lbound_time, start_time_col=start_time_col, stop_time_col=stop_time_col) else: ledge_df = pd.DataFrame() if after_df is not None: redge_df = segment(after_df, start_time=rbound_time, stop_time=rbound_time + pd.Timedelta(duration, unit='s'), start_time_col=start_time_col, stop_time_col=stop_time_col) else: redge_df = pd.DataFrame() return
pd.concat((ledge_df, df, redge_df))
pandas.concat
import os import glob import numpy as np import pylab as pl import scipy.io as sio # for_Jyotika.m from copy import copy, deepcopy import pickle import matplotlib.cm as cm import pdb import h5py import pandas as pd import bct from collections import Counter import matplotlib.cm as cm import sys import seaborn as sns import scipy.stats as sp_stats sys.path.append("./common/") import analyze as anal data_dir = "./data/" data_target_dir = "./data/" fig_target_dir = "./Figure2/" Fig2_panel_name = dict({"modularity_index":"H","participation_pos":"I","module_degree_zscore":"J","local_assortativity_pos_whole":"K"}) subtype = sys.argv[1] ipsi_contra = sys.argv[2] if subtype == "subtype": if ipsi_contra == "n": graph_prop_df = pd.read_csv(data_dir+"graph_properties_pandas_all.csv") graph_prop_df_null = pd.read_csv(data_dir+"graph_properties_pandas_null_all.csv") prop_names = ["data_type","modularity_index","participation_pos","module_degree_zscore","local_assortativity_pos_whole","gamma","names"]+[subtype] non_string_columns = [ "modularity_index","participation_pos","module_degree_zscore","local_assortativity_pos_whole"] elif ipsi_contra == "y": graph_prop_df = pd.read_csv(data_dir+"graph_properties_pandas_sub_contra_ipsi_all.csv") graph_prop_df_null = pd.read_csv(data_dir+"graph_properties_pandas_sub_contra_ipsi_all_null.csv") prop_names = ["data_type","modularity_index","participation_pos_ipsi","participation_pos_contra","module_degree_zscore_ipsi","module_degree_zscore_contra","local_assortativity_pos_ipsi","local_assortativity_pos_contra","gamma","names"]+[subtype] non_string_columns = [ "modularity_index","participation_pos_ipsi","participation_pos_contra","module_degree_zscore_ipsi","module_degree_zscore_contra","local_assortativity_pos_ipsi","local_assortativity_pos_contra"] #elif ipsi_contra == "y": # graph_properties_with_behavior_pandas_sub_ipsi_contra_all elif subtype == "development": graph_prop_df = pd.read_csv(data_dir+"graph_properties_pandas_days_all.csv") graph_prop_df_null =
pd.read_csv(data_dir+"graph_properties_pandas_days_null_all.csv")
pandas.read_csv
"""<NAME>., 2019 - 2020. All rights reserved.""" import os import sys import unittest from unittest import mock from io import StringIO from test.test_support import TestResource import pandas as pd from pandas.util.testing import assert_frame_equal from eaglevision.similarity_eagle import SimilarityEagle class SimilarityEagleTestCase(unittest.TestCase): """ Class to test the Similarity_eagle.py""" @classmethod def tearDown(cls): filelist = [temp_f for temp_f in os.listdir(os.path.join(TestResource.report, "pattern_and_similarity_report"))] for temp_f in filelist: os.remove(os.path.join(TestResource.report, "pattern_and_similarity_report", temp_f)) def setUp(self): """ Function used to setup the read the console out """ self.held, sys.stdout = sys.stdout, StringIO() @staticmethod def dummy_dataf(): """ Function which creates a dummy data frame for testing""" data_f = { "Uniq ID": [".cpp_BrowserProcessHandler", "cpp_BrowserProcessHandler"], "Code": ["BrowserProcessHandler::BrowserProcessHandler(jobject app_handler) \n{\n\ assertequal = app_handler\n}", "BrowserProcessHandler::~BrowserProcessHandler() {\ base::AutoLock\ lock_scope(router_cfg_lock_)\ router_cfg_.clear()}"] } dataf = pd.DataFrame(data_f, columns=['Uniq ID', 'Code']) return dataf @staticmethod def empty_dataf(): """ Function for testing purpose returns an empty dataframe""" return pd.DataFrame() def test__code_extraction__empty_dataframe_path(self): """ Function to test the report folder creation, empty extraction handling """ similarityobj = SimilarityEagle() self.assertEqual(similarityobj.dataframe, None) self.assertEqual(similarityobj.report_path, None) TestResource.input_json["run_similarity"] = False mocked_class = mock.Mock() mocked_class.return_value = self.empty_dataf() with mock.patch('functiondefextractor.core_extractor.extractor', mocked_class): similarityobj.orchestrate_similarity(TestResource.input_json) out_str = (sys.stdout.getvalue().split('\n')) matches = [c for c in out_str if 'No functions are extracted. Data frame is empty. Recheck your ' \ 'input arguments' in c] if len(list(filter(None, matches))): # pylint: disable= C1801 self.assertEqual(list(filter(None, matches))[0], 'No functions are extracted. Data frame is empty. ' 'Recheck your input arguments') else: self.assertTrue(len(list(filter(None, matches))), "mock is not called, no print seen") # pylint: disable= C1801 self.assertEqual(similarityobj.report_path, os.path.join(TestResource.report, "pattern_and_similarity_report")) self.assertTrue(mocked_class.called) def test__code_extraction_non_empty_df(self): """ Function to test the report folder creation, report file creation, non empty extraction handling """ similarityobj = SimilarityEagle() TestResource.input_json["run_similarity"] = False mocked_class = mock.Mock() mocked_class.return_value = self.dummy_dataf() with mock.patch('functiondefextractor.core_extractor.extractor', mocked_class): similarityobj.orchestrate_similarity(TestResource.input_json) out_str = (sys.stdout.getvalue().split('\n')) matches = [c for c in out_str if c in 'No functions are extracted. Data frame is empty. Recheck your input arguments'] self.assertEqual(len(list(filter(None, matches))), 0) self.assertTrue(mocked_class.called) self.assertEqual(similarityobj.report_path, os.path.join(TestResource.report, "pattern_and_similarity_report")) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "assertPivot"))) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "assert_pattern"))) actual_dataframe = pd.read_html(TestResource.get_result_file_name( "pattern_and_similarity_report", "assertPivot")) expected_dataframe = pd.read_html(os.path.join(TestResource.tst_resource_folder, "golden_assertPivot.html")) assert_frame_equal(actual_dataframe[0], expected_dataframe[0], "check the assertion on html") actual_dataframe = pd.read_excel(TestResource.get_result_file_name( "pattern_and_similarity_report", "assert_pattern"), index_col=0) expected_dataframe = pd.read_excel(os.path.join(TestResource.tst_resource_folder, "golden_assert_pattern.xlsx"), index_col=0) self.assertTrue(actual_dataframe['Uniq ID'].equals(expected_dataframe['Uniq ID'])) self.assertTrue(actual_dataframe['Code'].equals(expected_dataframe['Code'])) self.assertTrue(actual_dataframe['Count of assert in function']. equals(expected_dataframe['Count of assert in function'])) actual_dataframe['assert Statements'].replace(to_replace=[r"\\t|\\n|\\r", "\t|\n|\r"], value=["", ""], regex=True, inplace=True) expected_dataframe['assert Statements'].replace(to_replace=[r"\\t|\\n|\\r", "\t|\n|\r"], value=["", ""], regex=True, inplace=True) self.assertTrue(actual_dataframe['assert Statements'].equals(expected_dataframe['assert Statements'])) def test__code_extraction_non_empty_df_no_pattern(self): """ Function to test the non empty extraction handling with out pattern an no similarity check""" similarityobj = SimilarityEagle() mocked_class = mock.Mock() mocked_class.return_value = self.dummy_dataf() with mock.patch('functiondefextractor.core_extractor.extractor', mocked_class): TestResource.input_json["pattern_match"] = None TestResource.input_json["run_similarity"] = False similarityobj.orchestrate_similarity(TestResource.input_json) out_str = (sys.stdout.getvalue().split('\n')) matches = [c for c in out_str if 'The pattern input is expected to be list and should be of same length as pattern ' \ 'separators' in c] self.assertEqual(len(list(filter(None, matches))), 1) self.assertTrue(mocked_class.called) self.assertFalse(os.path.isfile(os.path.join(TestResource.report, "pattern_and_similarity_report", "assertPivot.html"))) self.assertFalse(os.path.isfile(os.path.join(TestResource.report, "pattern_and_similarity_report", "assert_pattern.xlsx"))) def test__code_extraction_non_empty_df_pattern_and_separator(self): """ Function to test the non empty extraction handling with out pattern and pattern separator and no similarity check""" similarityobj = SimilarityEagle() mocked_class = mock.Mock() mocked_class.return_value = self.dummy_dataf() with mock.patch('functiondefextractor.core_extractor.extractor', mocked_class): TestResource.input_json["pattern_match"] = ["assert", "print"] TestResource.input_json["pattern_seperator"] = ["(", None] TestResource.input_json["run_similarity"] = False similarityobj.orchestrate_similarity(TestResource.input_json) self.assertTrue(mocked_class.called) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "assertPivot"))) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "printPivot"))) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "assert_pattern"))) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "print_pattern"))) def test_similarity_check_with_mock_extraction(self): """ Function to test the similarity check""" similarityobj = SimilarityEagle() mocked_class = mock.Mock() mocked_class.return_value = self.dummy_dataf() with mock.patch('functiondefextractor.core_extractor.extractor', mocked_class): TestResource.input_json["pattern_match"] = None TestResource.input_json["run_similarity"] = True TestResource.input_json["similarity_range"] = "0,100" similarityobj.orchestrate_similarity(TestResource.input_json) self.assertTrue(mocked_class.called) self.assertEqual(similarityobj.report_path, os.path.join(TestResource.report, "pattern_and_similarity_report")) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "similarity_recommendation_0"))) self.assertTrue(os.path.isfile(TestResource.get_result_file_name( "pattern_and_similarity_report", "similarity_brief_report"))) actual_dataframe = pd.read_excel(TestResource.get_result_file_name( "pattern_and_similarity_report", "similarity_recommendation_0"), index_col=0) expected_dataframe = pd.read_excel(os.path.join(TestResource.tst_resource_folder, "golden_similarity_recommendation_0.xlsx"), index_col=0) self.assertTrue(actual_dataframe.equals(expected_dataframe)) actual_dataframe = pd.read_html(TestResource.get_result_file_name("pattern_and_similarity_report", "similarity_brief_report")) expected_dataframe = pd.read_html(os.path.join(TestResource.tst_resource_folder, "golden_similarity_brief_report.html"))
assert_frame_equal(actual_dataframe[0], expected_dataframe[0])
pandas.util.testing.assert_frame_equal
#!/usr/bin/python import warnings warnings.filterwarnings("ignore") import os,numpy,pandas,sys,scipy.io,scipy.sparse,time,numba from optparse import OptionParser # # opts = OptionParser() usage = "Evaluate gene score by TSS peaks\nusage: %prog -s project --gtf hg19.gtf --distal 20000" opts = OptionParser(usage=usage, version="%prog 1.0") opts.add_option("-s", help="The project folder.") opts.add_option("--gtf", default='../reference/hg19_RefSeq_genes.gtf', help="gtf file for genome, default=../reference/hg19_RefSeq_genes.gtf") opts.add_option("--distal", default=20000, help="distal region around TSS for peak searching, default=20000") options, arguments = opts.parse_args() # # def get_tss_region(options): mm10_df = pandas.read_csv(options.gtf, sep='\t', index_col=0) genes = list(set(mm10_df['name2'])) genes.sort() mm10_df.index = mm10_df['name'] names, tss = [], [] for symbol in genes: sub_df = mm10_df.loc[mm10_df['name2']==symbol] if len(sub_df.index.values)>=1: chrom = list(set(sub_df['chrom'].values)) strand = list(set(sub_df['strand'].values)) if len(chrom)==1: if strand[0]=='+': starts = list(set(map(str, sub_df['txStart'].values))) start = ','.join(starts) elif strand[0]=='-': starts = list(set(map(str, sub_df['txEnd'].values))) start = ','.join(starts) names.append(symbol) tss.append([chrom[0], start]) tss = numpy.array(tss) tss_df = pandas.DataFrame(tss, index=names, columns=['chrom', 'tss']) tss_df.to_csv(options.s+'/peak/genes_tss_region.csv', sep='\t') return # # def get_tss_peaks(options): peaks = [[x.split()[0], (int(x.split()[1])+int(x.split()[2]))/2] for x in open(options.s+'/peak/top_filtered_peaks.bed').readlines()] peaks_df = pandas.DataFrame(peaks, index=[str(x) for x in numpy.arange(0,len(peaks))], columns=['chrom', 'center']) tss_df = pandas.read_csv(options.s+'/peak/genes_tss_region.csv', sep='\t', index_col=0) for gene in tss_df.index.values: chrom, tsses = tss_df.ix[gene, 'chrom'], tss_df.ix[gene, 'tss'] tsses = map(int, tsses.split(',')) chr_peaks = peaks_df.loc[peaks_df['chrom']==chrom] proxim_peaks, distal_peaks = [], [] for tss in tsses: peaks1 = chr_peaks.loc[abs(chr_peaks['center']-tss)<=2000].index.values peaks2 = chr_peaks.loc[abs(chr_peaks['center']-tss)<=int(options.distal)].index.values proxim_peaks.extend(peaks1) distal_peaks.extend(peaks2) proxim_peaks = list(set(proxim_peaks)) distal_peaks = list(set(distal_peaks)-set(proxim_peaks)) if len(proxim_peaks)==0: proxim_peaks = ['NONE'] if len(distal_peaks)==0: distal_peaks = ['NONE'] proxim_peaks = ';'.join(proxim_peaks) tss_df.ix[gene, 'proximal'] = proxim_peaks distal_peaks = ';'.join(distal_peaks) tss_df.ix[gene, 'distal'] = distal_peaks tss_df.to_csv(options.s+'/peak/genes_tss_peaks.csv', sep='\t') return # # def get_score_from_peaks(options): tss_df =
pandas.read_csv(options.s+'/peak/genes_tss_peaks.csv', sep='\t', index_col=0)
pandas.read_csv
from bs4 import BeautifulSoup import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import pypatent import requests from c0104_findLatLong import findLatLong def search_pubs(): """ Objective: List Rooster publication with metadata Task 1: Identify search terms for google scholar Task 2: Query Task 3: Structure data """ print("running search_pubs") search_terms = [] search_terms.append('RoosterBio') search_terms.append('Multivascular networks and functional intravascular topologies within biocompatible hydrogels') search_terms.append('Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress') search_terms.append('Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation') search_terms.append('Bone marrow-derived from the human femoral shaft as a new source of mesenchymal stem/stromal cells: an alternative cell material for banking and clinical') search_terms.append('Rooster Basal-MSC') search_terms.append('Rooster Nourish') search_terms.append('Rooster MSC') # Step 2: Scrape # SerpApi search can only be done once a month # search_serpapi(search_terms) # Step 3: Structure data # Parse the html to list all publications parse_html() # Step 4: Find GPS find gps coordinates unique_addresses() # def search_serpapi(search_terms): """ Query serapapi Save in a text file """ results = '' for term in search_terms: startNums = np.arange(0,50,2) if len(term) > 30: startNums = np.arange(0,2,1) for starts in startNums: params = { "api_key": "<KEY>", "engine": "google_scholar", "q": term, "hl": "en", "as_ylo": "2012", "as_yhi": "2022", "start": starts*10, "num": starts*10+20, } search = GoogleSearch(params) result = search.get_dict() errorMessage = 'Your searches for the month are exhausted. You can upgrade plans on SerpApi.com website.' if errorMessage in str(results): print('Error found:' + errorMessage) errorMessage = 'Google hasn\'t returned any results for this query.' if errorMessage in str(results): print('Error found:' + errorMessage) if errorMessage not in str(results): results = results + ' ' + str(result) df = pd.DataFrame() df['text'] = [results] time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') pub_path = os.path.join('searchResults') if not os.path.isdir(pub_path): os.mkdir(pub_path) pub_path = os.path.join('searchResults', 'pubs') if not os.path.isdir(pub_path): os.mkdir(pub_path) pub_path = os.path.join('searchResults', 'pubs', 'scrapeSerpapi') if not os.path.isdir(pub_path): os.mkdir(pub_path) pub_file = os.path.join(pub_path, 'pubsRetrieved' + '_' + str(time) + '.csv') df.to_csv(pub_file) print('pubs saved: ' + pub_file) print("completed search_pubs") def parse_html(): """ """ pubSource = [] pub_path = os.path.join('searchResults', 'pubs', 'saved') arr = os.listdir(pub_path) for path in arr: pubSource.append(os.path.join(pub_path, path)) pub_path = os.path.join('searchResults', 'pubs', 'scrapeSerpapi') arr = os.listdir(pub_path) for path in arr: pubSource.append(os.path.join(pub_path, path)) # print('pubSource = ') # print(pubSource) textFull = '' for file in pubSource: with open(file, newline='') as csvfile: for row in csvfile: textFull = textFull + ' ' + row positionSplit = textFull.split('{\'position\':') tags = [] tags.append('titlePaper|\'title\': \'|\', \'') tags.append('citations|\'cited_by\': {\'total\': |, \'') tags.append('url| \'html_version\': \'|\'') tags.append('scholarUrl|, \'link\': \' |\', \'cites_id\'') tags.append('snippet| \'snippet\': \'|\', \'pu') tags.append('info| \'publication_info\': |, \'resources\'') tags.append('article| | ') df = pd.DataFrame() for tag in tags: list = [] for article in positionSplit: tagTitle, tagBegin, tagEnd = tag.split('|') articleSplit = article.split(tagBegin) if len(articleSplit) > 1: articleSecondSplit = articleSplit[1] articleThirdSplit = articleSecondSplit.split(tagEnd) target = articleThirdSplit[0] else: target = '' if tagTitle == 'article': target = str(article) if tagTitle == 'citations': if len(target) > 0: target = int(target) else: target = 0 list.append(target) df[tagTitle] = list df = df.sort_values(by=['citations'], ascending=False) df = df.drop_duplicates(subset=['titlePaper', 'citations']) df = df.reset_index() del df['index'] print(df) pub_path = os.path.join('searchResults', 'pubs') if not os.path.isdir(pub_path): os.mkdir(pub_path) pub_file = os.path.join(pub_path, 'pubsRooster' + '.csv') df.to_csv(pub_file) print('pubs saved: ' + pub_file) def unique_addresses(): """ List unique addresses with the frequency they occur and latitude / longitude """ pub_path = os.path.join('searchResults', 'pubs', 'manuallyCollected') pub_file = os.path.join(pub_path, 'manuallyCollectedPubData' + '.csv') df =
pd.read_csv(pub_file)
pandas.read_csv
# -*- coding: UTF-8 -*- """ This module contains functions for calculating evaluation metrics for the generated service recommendations. """ import numpy import pandas runtime_metrics = ["Training time", "Overall testing time", "Individual testing time"] quality_metrics = ["Recall", "Precision", "F1", "# of recommendations"] def results_as_dataframe(user_actions, recommendations): """ Converts the recommendation results into a pandas dataframe for easier evaluation. @param user_actions: A list of the actually performed user actions. @param recommendations: For each of the performed actions the list of calculated service recommendations. @return: A pandas dataframe that has as index the performed user actions (there is one row per action). The first column contains for each action the highest scoring recommendation, the second column contains the second best recommendation etc. """ results = pandas.DataFrame(recommendations, index=pandas.Index(user_actions, name="Actual action")) results.columns = [(r+1) for r in range(len(results.columns))] return results class QualityMetricsCalculator(): """ This is a utility class that contains a number of methods for calculating overall quality metrics for the produced recommendations. In general these methods produce pandas dataframes with several rows, where each row corresponds to one "cutoff" point. For example, a cutoff "4" means that the system cuts the number of recommendations at four, i.e. the user is shown at most four recommendations. If some post-processing method was used (e.g. show fewer recommendations if the recommendation conflict is low), then it can happen that fewer than four recommendations are shown. For reference, the column "# of recommendations" lists the average of the number of recommendations that were actually shown to the user. """ def __init__(self, actual_actions, recommendations): """ Initialize the calculation of the quality metrics.. @param actual_actions: A list of strings, each representing one actual user action. @param recommendations: A list of lists of strings with the same length as actual_actions. Each list of strings contains the calculated recommendations for the corresponding actual user action. @return: """ self.results = results_as_dataframe(actual_actions, recommendations) def __unique_actions__(self): """ It can happen that one potential user action never happened, but that the corresponding service was recommended. To be able to count these false positives, we must calculate the list of all potential actions. """ occurring_actions = set(self.results.index.values) occurring_services = pandas.melt(self.results).dropna()["value"] occurring_services = set(occurring_services.unique()) return sorted(occurring_actions | occurring_services) def true_positives(self, action): """ Counts how often the given action was recommended correctly (true positives, TP). @param action: The name of the user action for which to count true positives. @return: A pandas dataset with column TP and several rows, first row lists #TP at cutoff "1", the second row at cutoff "2", etc. """ #get all rows where the actual action corresponds to the given action r = self.results[self.results.index == action] if len(r) == 0: #if there are no such rows, then we have zero true positives, fill result dataframe with zeroes true_positives = pandas.Series(0.0, index=self.results.columns) else: #if recommendation matches the action, set column to "1" (true positive), else set to "0" (false negative) r = r.applymap(lambda col: 1 if col == action else 0).fillna(0) #count how many true positives there are in each column r = r.sum() #if have a true positive for n-th recommendation, then also have true positive for n+1, n+2 etc #-> calculate cumulative sum true_positives = r.cumsum(axis=0).apply(float) true_positives = pandas.DataFrame(true_positives, columns=["TP"]) true_positives.index.name = "cutoff" return true_positives def true_positives_for_all(self): """ Create a matrix that contains information about true positives for all possible actions. @return: A pandas with one column for each action, first row lists #TP at cutoff "1", the second row at cutoff "2", etc. """ tp = [self.true_positives(action) for action in self.__unique_actions__()] tp = pandas.concat(tp, axis=1) tp.columns = self.__unique_actions__() return tp def false_negatives(self, action): """ Counts how often the given action was not recommended correctly (false negatives, FN). @param action: The name of the user action for which to count false negatives. @return: A pandas dataset with column FN and several rows, first row lists #FN cutoff "1", the second row at cutoff "2", etc. """ #the amount of false negatives corresponds to the difference between the total number of occurrences of the #action and the number of false positives true_positives = self.true_positives(action) total_occurrences = len(self.results[self.results.index == action]) total_occurrences = pandas.Series(total_occurrences, index=true_positives.index) false_negatives = total_occurrences - true_positives["TP"] false_negatives = pandas.DataFrame(false_negatives, columns=["FN"]) false_negatives.index.name = "cutoff" return false_negatives def false_positives(self, action): """ Counts how often the given action was recommended even though it didn't occur (false positives, FP). @param action: The name of the user action for which to count false positives. @return: A pandas dataset with column FP and several rows, first row lists #FP at cutoff "1", the second row at cutoff "2", etc. """ #get all rows where the actual service does NOT correspond to the given action r = self.results[self.results.index != action] if len(r) == 0: #if there are no such rows, then we have zero false positives, fill result dataframe with zeroes false_positives = pandas.Series(0.0, index=self.results.columns) else: #if recommendation matches the action, set column to "1" (false positive), else set to "0" (true negative) r = r.applymap(lambda col: 1 if col == action else 0) #count how many false positives there are in each column r = r.sum() #if have a false positive for n-th recommendation, then also have false positive for n+1, n+2 etc #-> calculate cumulative sum false_positives = r.cumsum(axis=0).apply(float) false_positives = pandas.DataFrame(false_positives, columns=["FP"]) false_positives.index.name = "cutoff" return false_positives @staticmethod def precision(counts): """ Calculate the precision as (true positives)/(true positives + false positives). @param counts: A dataframe that contains a column "TP" with true positives and "FP" with false positives. @return: A pandas dataframe with one column "Precision". The first row lists the achieved precision at cutoff "1", the second row at cutoff "2", etc. """ p = counts["TP"]/(counts["TP"] + counts["FP"]) p = pandas.DataFrame({"Precision": p}).fillna(0.0) return p @staticmethod def recall(counts): """ Calculate the recall as (true positives)/(true positives + false negatives). @param counts: A dataframe that contains a column "TP" with true positives and "FN" with false negatives. @return: A pandas dataframe with one column "Recall". The first row lists the achieved recall at cutoff "1", the second row at cutoff "2", etc. """ p = counts["TP"]/(counts["TP"] + counts["FN"]) p = pandas.DataFrame({"Recall": p}).fillna(0.0) return p @staticmethod def f1(metrics): """ Calculate the F1 as the harmonic mean of precision and recall. @param metrics: A dataframe with a column "Precision" and a column "Recall" @return: A pandas dataframe with one column "F1". The first row lists the achieved F1 at cutoff "1", the second row at cutoff "2", etc. """ f = (2.0*metrics["Precision"]*metrics["Recall"]) / (metrics["Precision"]+metrics["Recall"]) f = pandas.DataFrame({"F1": f}).fillna(0.0) return f def number_of_recommendations(self): """ Count how many recommendations the user was actually shown (e.g. when using a dynamic cutoff such as "show less recommendations when recommendation conflict is low").Number of recommendation is not an quality metric but fits here conceptually. @return: A pandas dataframe with one column "# of recommendations". The first row lists the # at cutoff "1", the second row at cutoff "2", etc. """ n = (self.results.count(axis=0)/float(len(self.results))).cumsum() n = pandas.DataFrame({"# of recommendations": n}) n.index.name = "cutoff" return n def calculate_for_action(self, action): """ Calculate precision, recall and F1 for one action (= one possible user action) @param action: Which user action to calculate the metrics for. @return: A pandas dataframe containing columns for "Precision", "Recall", "F1". The first row lists calculated metrics at cutoff "1", the second row at cutoff "2", etc. A fourth column "action" simply lists the action name in all rows, this column is necessary for later merging the metrics of all actions. """ #count how many true positives, false positives and false negatives occurred for this action counts = pandas.concat([self.true_positives(action), self.false_negatives(action), self.false_positives(action)], axis=1) #use these counts to calculate the relevant metrics metrics = pandas.concat([self.precision(counts), self.recall(counts)], axis=1) metrics["F1"] = self.f1(metrics)["F1"] #add column that contains name of the action in all rows, to prepare for merging the metrics for all actions metrics["action"] = pandas.Series(action, index=metrics.index) return metrics def calculate(self): """ Performs the actual calculation of the weighted average of precision, recall and F1 over all actions and counts the number of recommendations that where actually shown to the user. @return: A pandas dataframe containing one column for each of the four quality metrics. The first row lists calculated metrics at cutoff "1", the second row at cutoff "2" """ #make one big matrix with the metrics for all actions actions = self.__unique_actions__() metrics = pandas.concat([self.calculate_for_action(action) for action in actions]) #count for each action how often the corresponding action actually occurred occurrences = pandas.TimeSeries(self.results.index.values).value_counts() occurrences = occurrences.reindex(actions).fillna(0) #calculate the weighted average for each of the metrics (i.e. actions that occur more often have a higher #influence on the overall results for "Precision", "Recall and "F1") actions_as_index = lambda group: group.set_index("action").reindex(actions).fillna(0.0) weighted_average_for_column = lambda col: numpy.average(col.values, weights=occurrences.values) weighted_average = lambda group: actions_as_index(group).apply(weighted_average_for_column) metrics = metrics.groupby(level="cutoff").aggregate(weighted_average) del(metrics["action"]) #get rid of now unnecessary "action" column #do not need weighted average for # of recommendations, simply add counts as fourth column metrics["# of recommendations"] = self.number_of_recommendations() return metrics def confusion_matrix(self): """ Calculate a confusion matrix: for each action count how often each service was recommended @return: A pandas dataframe, with one row for each possible action and one row for each possible service recommendation. Each matrix item counts how often the service was recommended when the action happened. """ cutoff = 1 #only makes sense for cutoff=1 def confusions_for_action(action): r = self.results[self.results.index == action][cutoff] return r.groupby(r).count() actions = self.__unique_actions__() matrix = [confusions_for_action(action) for action in actions] matrix =
pandas.concat(matrix, axis=1)
pandas.concat
# -*- coding: utf-8 -*- import os import glob import pandas as pd import numpy as np from collections import Counter from graphpype.utils_net import read_Pajek_corres_nodes from graphpype.utils_dtype_coord import where_in_coords from graphpype.utils_cor import where_in_labels from graphpype.utils_mod import read_lol_file from graphpype.utils_mod import get_modularity_value_from_lol_file from graphpype.utils_mod import get_values_from_global_info_file from graphpype.utils_mod import get_path_length_from_info_dists_file def glob_natural_sorted(reg_exp): # TODO -> utils.py """sort reg_exp filenames in natural way (for numbers)""" print(reg_exp) files = glob.glob(reg_exp) print(len(files)) natural_sorted_files = [reg_exp.replace( '*', str(i), -1) for i in range(len(files))] return natural_sorted_files, list(range(len(files))) def compute_rada_df(iter_path, df, radatools_version="3.2", mapflow=[], mapflow_name=""): """gather rada """ if radatools_version == "3.2": net_prop_dir = "net_prop" elif radatools_version == "4.0": net_prop_dir = "prep_rada" elif radatools_version == "5.0": net_prop_dir = "net_prop" elif radatools_version == "run": net_prop_dir = "" else: print("Warning, could not find radatools_version {}" .format(radatools_version)) return # modularity if len(mapflow) == 0: modularity_file = os.path.join( iter_path, "community_rada", "Z_List.lol") print(modularity_file) if os.path.exists(modularity_file): mod_val = get_modularity_value_from_lol_file(modularity_file) df['Modularity'] = mod_val print(df) # info_global global_info_file = os.path.join( iter_path, net_prop_dir, "Z_List-info_global.txt") if os.path.exists(global_info_file): global_info_values = get_values_from_global_info_file( global_info_file) df.update(global_info_values) # info_dists path_length_file = os.path.join( iter_path, net_prop_dir, "Z_List-info_dists.txt") if os.path.exists(path_length_file): mean_path_length, diameter, global_efficiency = \ get_path_length_from_info_dists_file(path_length_file) df['Mean_path_length'] = str(mean_path_length) df['Diameter'] = str(diameter) df['Global_efficiency'] = str(global_efficiency) else: print("Could not find file {}".format(path_length_file)) else: df['Modularity'] = [] df[mapflow_name] = [] df['Mean_path_length'] = [] df['Diameter'] = [] df['Global_efficiency'] = [] for i, cond in enumerate(mapflow): df[mapflow_name].append(cond) modularity_file = os.path.join( iter_path, "community_rada", "mapflow", "_community_rada"+str(i), "Z_List.lol") if os.path.exists(modularity_file): mod_val = get_modularity_value_from_lol_file(modularity_file) df['Modularity'].append(mod_val) else: print("Missing modularity file {}".format(modularity_file)) df['Modularity'].append(np.nan) # info_global global_info_file = os.path.join( iter_path, net_prop_dir, "mapflow", "_" + net_prop_dir+str(i), "Z_List-info_global.txt") if os.path.exists(global_info_file): global_info_values = get_values_from_global_info_file( global_info_file) for key, value in global_info_values.items(): if key not in list(df.keys()): df[key] = [] df[key].append(value) # info_dists path_length_file = os.path.join( iter_path, net_prop_dir, "mapflow", "_" + net_prop_dir+str(i), "Z_List-info_dists.txt") if os.path.exists(path_length_file): mean_path_length, diameter, global_efficiency = \ get_path_length_from_info_dists_file(path_length_file) df['Mean_path_length'].append(str(mean_path_length)) df['Diameter'].append(str(diameter)) df['Global_efficiency'].append(str(global_efficiency)) else: df['Mean_path_length'].append(str(np.nan)) df['Diameter'].append(str(np.nan)) df['Global_efficiency'].append(str(np.nan)) def compute_nodes_rada_df( local_dir, gm_coords=[], coords_file="", gm_labels=[], labels_file="", radatools_version="3.2", mapflow=[], mapflow_name=""): """node properties df""" if radatools_version == "3.2": net_prop_dir = "net_prop" elif radatools_version == "4.0": net_prop_dir = "prep_rada" elif radatools_version == "5.0": net_prop_dir = "net_prop" elif radatools_version == "run": net_prop_dir = "" else: print("Warning, could not find radatools_version {}" .format(radatools_version)) return list_df = [] if len(mapflow) == 0: Pajek_file = os.path.join(local_dir, net_prop_dir, "Z_List.net") if os.path.exists(Pajek_file): columns = [] columns_names = [] # nodes in the connected graph node_corres = read_Pajek_corres_nodes(Pajek_file) print(os.path.exists(coords_file)) if os.path.exists(coords_file) and len(gm_coords): # MNI coordinates coords = np.array(np.loadtxt(coords_file), dtype=int) # node_coords node_coords = coords[node_corres, :] # where_in_gm_mask where_in_gm_mask = where_in_coords(node_coords, gm_coords) where_in_gm_mask = where_in_gm_mask.reshape( where_in_gm_mask.shape[0], 1) columns.append(where_in_gm_mask) columns_names.append('Where_in_GM_mask') if os.path.exists(labels_file): labels = np.array( [line.strip() for line in open(labels_file)], dtype=str) node_labels = labels[node_corres].reshape(-1, 1) columns.append(node_coords) columns_names.append('labels') columns.append(node_coords) columns_names.expend(['MNI_x', 'MNI_y', 'MNI_z']) elif os.path.exists(labels_file) and len(gm_labels): # TODO labels = np.array([line.strip() for line in open(labels_file)], dtype=str) node_labels = labels[node_corres].reshape(-1, 1) where_in_gm_mask = where_in_labels(node_labels, labels) columns.append(where_in_gm_mask) columns_names.append('Where_in_GM_mask') columns.append(node_labels) columns_names.append('labels') 0/0 elif len(gm_labels): node_labels = np.array(gm_labels)[node_corres].reshape(-1, 1) where_in_gm_mask = where_in_labels(node_labels, gm_labels).reshape(-1, 1) print(node_labels) print(where_in_gm_mask) columns.append(where_in_gm_mask) columns_names.append('Where_in_GM_mask') columns.append(node_labels) columns_names.append('labels') else: print("No labels, no coords") columns.append(node_corres) columns_names.append('node_corres') print(columns) print(columns_names) list_df.append(pd.DataFrame( np.concatenate(tuple(columns), axis=1), columns=columns_names)) else: print("Missing {}".format(Pajek_file)) info_nodes_file = os.path.join( local_dir, net_prop_dir, "Z_List-info_nodes.txt") print(info_nodes_file) if os.path.exists(info_nodes_file): # loading info_nodes df_node_info = pd.read_table(info_nodes_file) list_df.append(df_node_info) # modules /community_vect partition_file = os.path.join(local_dir, "community_rada", "Z_List.lol") if os.path.exists(partition_file): # loading partition_file community_vect = read_lol_file(partition_file) list_df.append(pd.DataFrame(community_vect, columns=['Module'])) # node roles roles_file = os.path.join(local_dir, "node_roles", "node_roles.txt") part_coeff_file = os.path.join( local_dir, "node_roles", "all_participation_coeff.txt") Z_com_degree_file = os.path.join( local_dir, "node_roles", "all_Z_com_degree.txt") if os.path.exists(roles_file) and os.path.exists(part_coeff_file) and \ os.path.exists(Z_com_degree_file): # loding node roles node_roles = np.array(np.loadtxt(roles_file), dtype=int) part_coeff = np.loadtxt(part_coeff_file) part_coeff = part_coeff.reshape(part_coeff.shape[0], 1) Z_com_degree = np.loadtxt(Z_com_degree_file) Z_com_degree = Z_com_degree.reshape(Z_com_degree.shape[0], 1) list_df.append(pd.DataFrame( np.concatenate((node_roles, part_coeff, Z_com_degree), axis=1), columns=['Role_quality', 'Role_quantity', 'Participation_coefficient', 'Z_community_degree'])) # ndi values ndi_values_file = os.path.join( local_dir, "node_roles", "ndi_values.txt") if os.path.exists(ndi_values_file): # loding node roles ndi_values = np.array(np.loadtxt(ndi_values_file)) list_df.append(pd.DataFrame(ndi_values, columns=['Node_Dissociation_Index'])) else: # Multiple files (mapflow) for i, cond in enumerate(mapflow): list_strip_df = [] Pajek_file = os.path.join(local_dir, "prep_rada", "mapflow", "_prep_rada"+str(i), "Z_List.net") if os.path.exists(coords_file) and os.path.exists(Pajek_file) and \ os.path.exists(labels_file): # labels labels = np.array([line.strip() for line in open(labels_file)], dtype=str) # MNI coordinates coords = np.array(np.loadtxt(coords_file), dtype=int) # nodes in the connected graph node_corres = read_Pajek_corres_nodes(Pajek_file) # node_coords node_coords = coords[node_corres, :] node_labels = labels[node_corres].reshape(-1, 1) # where_in_gm_mask where_in_gm_mask = where_in_coords(node_coords, gm_coords) where_in_gm_mask = where_in_gm_mask.reshape( where_in_gm_mask.shape[0], 1) # print where_in_gm_mask print(where_in_gm_mask.shape) list_strip_df.append(pd.DataFrame( np.concatenate((where_in_gm_mask, node_labels, node_coords), axis=1), columns=['Where_in_GM_mask', 'labels', 'MNI_x', 'MNI_y', 'MNI_z'])) else: if not os.path.exists(coords_file): print("Missing {}".format(coords_file)) if not os.path.exists(Pajek_file): print("Missing {}".format(Pajek_file)) if not os.path.exists(labels_file): print("Missing {}".format(labels_file)) info_nodes_file = os.path.join( local_dir, net_prop_dir, "Z_List-info_nodes.txt") print(info_nodes_file) if os.path.exists(info_nodes_file): # loading info_nodes df_node_info = pd.read_table(info_nodes_file) list_strip_df.append(df_node_info) # modules /community_vect partition_file = os.path.join( local_dir, "community_rada", "mapflow", "_community_rada"+str(i), "Z_List.lol") if os.path.exists(partition_file): # loading partition_file community_vect = read_lol_file(partition_file) list_strip_df.append(pd.DataFrame(community_vect, columns=['Module'])) # node roles roles_file = os.path.join(local_dir, "node_roles", "mapflow", "_node_roles"+str(i), "node_roles.txt") part_coeff_file = os.path.join( local_dir, "node_roles", "mapflow", "_node_roles"+str(i), "all_participation_coeff.txt") Z_com_degree_file = os.path.join( local_dir, "node_roles", "mapflow", "_node_roles"+str(i), "all_Z_com_degree.txt") if os.path.exists(roles_file) and os.path.exists(part_coeff_file) \ and os.path.exists(Z_com_degree_file): node_roles = np.array(np.loadtxt(roles_file), dtype=int) part_coeff = np.loadtxt(part_coeff_file) part_coeff = part_coeff.reshape(part_coeff.shape[0], 1) Z_com_degree = np.loadtxt(Z_com_degree_file) Z_com_degree = Z_com_degree.reshape(Z_com_degree.shape[0], 1) list_strip_df.append(pd.DataFrame( np.concatenate((node_roles, part_coeff, Z_com_degree), axis=1), columns=['Role_quality', 'Role_quantity', 'Participation_coefficient', 'Z_community_degree'])) # ndi values ndi_values_file = os.path.join( local_dir, "node_roles", "mapflow", "_node_roles"+str(i), "ndi_values.txt") if os.path.exists(ndi_values_file): ndi_values = np.array(np.loadtxt(ndi_values_file)) list_strip_df.append(pd.DataFrame( ndi_values, columns=['Node_Dissociation_Index'])) # Converting list_strip_df to df, and adding it to list_df if len(list_strip_df): nb_nodes = len(list_strip_df[0].index) list_strip_df.append(pd.DataFrame([i]*nb_nodes, columns=[mapflow_name])) strip_df = pd.concat(list_strip_df, axis=1) list_df.append(strip_df) return list_df def compute_signif_permuts(permut_df, permut_col="Seed", session_col="Session", start_col=0, stop_col=0, columns=[]): """ Computing permutation-based stats per nodes, over several sheetnames args: compute significance of permutation over a df generated by gather_permuts permut_df: original permutation results (pandas Dataframe) stop_col: last column to be included (in fact, excluded except if value is 0, in this case goes to the last column of the df) return: all_p_higher, all_p_lower: "vector of p_values obtained for 1 tail t-test in both direction, first session - second session" """ seed_index = np.unique(permut_df[permut_col].values) print(seed_index) # should start with -1 if seed_index[0] != -1: print("Error, permut_col {} should start with -1".format(permut_col)) return pd.DataFrame() expected_permut_indexes = list(range(len(seed_index)-1)) nb_permuts = len(expected_permut_indexes) print(nb_permuts) # selecting columns if len(columns) != 0: data_cols = columns else: if stop_col == 0: data_cols = permut_df.columns[start_col:] else: data_cols = permut_df.columns[start_col:stop_col] print(data_cols) # looping over selected columns sum_higher = np.zeros(shape=(len(data_cols)), dtype='float64') - 1 sum_lower = np.zeros(shape=(len(data_cols)), dtype='float64') - 1 all_p_higher = np.zeros(shape=(len(data_cols)), dtype='float64') - 1 all_p_lower = np.zeros(shape=(len(data_cols)), dtype='float64') - 1 count_case = np.zeros(shape=(len(data_cols)), dtype='float64') cols = [] if session_col == -1 or len(permut_df[session_col].unique()) == 1: print("Compairing one session with itself") for index_col, col in enumerate(data_cols): sum_higher[index_col] = np.sum( (permut_df[col].iloc[1:] >= permut_df[col].iloc[0]) .values.astype(int)) all_p_higher[index_col] = ( sum_higher[index_col]+1)/float(permut_df[col].shape[0]) sum_lower[index_col] = np.sum( (permut_df[col].iloc[1:] <= permut_df[col].iloc[0]) .values.astype(int)) all_p_lower[index_col] = (sum_lower[index_col]+1) / \ float(permut_df[col].shape[0]) count_case[index_col] = permut_df[col].shape[0] cols.append(str(col)) else: # should start at 0 and have all values in between if not all(x in seed_index[1:] for x in expected_permut_indexes): print("Error, permut indexes should be consecutive and start with \ #0: {} ".format(expected_permut_indexes)) return pd.DataFrame() print("Compairing diffences between two sessions") # all unique values should have 2 different samples count_elements = Counter(permut_df[permut_col].values) # -1 should be represented Two times: if not count_elements[-1] == 2: print("-1 should be represented Two times") return pd.DataFrame() if not all(val == 2 for val in list(count_elements.values())): print("Warning, all permut indexes should have 2 lines: {}" .format(count_elements)) # computing diff df for index_col, col in enumerate(data_cols): df_col = permut_df.pivot( index=permut_col, columns=session_col, values=col) df_col["Diff"] = pd.to_numeric( df_col.iloc[:, 0]) - pd.to_numeric(df_col.iloc[:, 1]) diff_col = df_col["Diff"].dropna().reset_index(drop=True) if diff_col.shape[0] == 0: sum_higher[index_col] = np.nan sum_lower[index_col] = np.nan all_p_higher[index_col] = np.nan all_p_lower[index_col] = np.nan cols.append(col) continue if diff_col[0] > 0: sum_higher[index_col] = np.sum( np.array(diff_col[1:] >= diff_col[0], dtype=int)) print(col, "sum_higher:", sum_higher[index_col]) all_p_higher[index_col] = \ (sum_higher[index_col]+1)/float(diff_col.shape[0]) elif diff_col[0] < 0: sum_lower[index_col] = np.sum( np.array(diff_col[1:] <= diff_col[0], dtype=int)) print(col, "sum_lower:", sum_lower[index_col]) all_p_lower[index_col] = \ (sum_lower[index_col]+1)/float(diff_col.shape[0]) else: print("not able to do diff") count_case[index_col] = diff_col.shape[0] cols.append(col) df_res = pd.DataFrame([sum_higher, sum_lower, all_p_higher, all_p_lower, count_case], columns=cols) df_res.index = ["Sum Higher", "Sum Lower", "Pval Higher", "Pval Lower", "Count"] return df_res def compute_signif_node_prop(orig_df, list_permut_df, columns): """signif node properties""" permut_df = pd.concat(list_permut_df, axis=0) all_frac_higher = [] for col in columns: assert col in orig_df.columns, \ "Error, {} not in orig columns {}".format(col, orig_df.columns) assert col in permut_df.columns, \ "Error, {} not in permut columns {}".format(col, permut_df.columns) def sum_higher(a, b): def func(el): return np.sum(el[0] < b.values) return np.apply_along_axis(func, 1, a[:, None]) frac_higher = np.array( sum_higher(orig_df[col], permut_df[col])+1, dtype=float)/float(len(permut_df.index) + 1) all_frac_higher.append(frac_higher) df_signif = pd.DataFrame(np.transpose( np.array(all_frac_higher)), columns=columns) return df_signif def gather_diff_con_values(res_path, cond, nb_permuts, labels): """gather con values""" if isinstance(cond, tuple): # si plusieurs conditions = IRMf df_filename = os.path.join( res_path, "permuts_" + ".".join(cond) + '_con_values.csv') else: # si une seule valeur df_filename = os.path.join( res_path, "permuts_" + cond + '_con_values.csv') if not os.path.exists(df_filename): # pair of labels and tri triu_indices triu_indices_i, triu_indices_j = np.triu_indices(len(labels), k=1) pair_labels = [labels[i] + "_" + labels[j] for i, j in zip(triu_indices_i.tolist(), triu_indices_j.tolist())] print(pair_labels) print(len(pair_labels)) # creating dataframe all_vect_cormats = [] all_global_info_values = [] for seed in range(-1, nb_permuts): print(seed) for sess in ['1', '2']: print(sess) dict_global_info_values = {'Session': sess, 'Seed': seed} all_global_info_values.append(dict_global_info_values) # avg_cormat if isinstance(cond, tuple): iter_dir = "_cond_" + \ ".".join(cond) + "_permut_" + str(seed) else: iter_dir = "_freq_band_name_" + \ cond + "_permut_" + str(seed) avg_cormat_file = os.path.join( res_path, iter_dir, "prepare_mean_correl" + sess, "avg_cormat.npy") print(avg_cormat_file) if os.path.exists(avg_cormat_file): avg_cormat = np.load(avg_cormat_file) vect_avg_cormat = avg_cormat[triu_indices_i, triu_indices_j] all_vect_cormats.append(vect_avg_cormat) df_info = pd.DataFrame(all_global_info_values) df_con = pd.DataFrame(all_vect_cormats, columns=pair_labels) df = pd.concat((df_info, df_con), axis=1) df.to_csv(df_filename, index_col=0) else: df = pd.read_csv(df_filename, index_col=0) return df def gather_con_values(res_path, cond, nb_permuts, labels): import os if isinstance(cond, tuple): # si plusieurs conditions = IRMf df_filename = os.path.join( res_path, "permuts_" + ".".join(cond) + '_con_values.csv') else: # si une seule valeur df_filename = os.path.join( res_path, "permuts_" + cond + '_con_values.csv') if not os.path.exists(df_filename): # pair of labels and tri triu_indices triu_indices_i, triu_indices_j = np.triu_indices(len(labels), k=1) pair_labels = [labels[i] + "_" + labels[j] for i, j in zip(triu_indices_i.tolist(), triu_indices_j.tolist())] # creating dataframe all_vect_cormats = [] all_global_info_values = [] for seed in range(-1, nb_permuts): dict_global_info_values = {'Seed': seed} all_global_info_values.append(dict_global_info_values) # avg_cormat if isinstance(cond, tuple): iter_dir = "_cond_" + ".".join(cond) + "_permut_" + str(seed) else: iter_dir = "_freq_band_name_" + cond + "_permut_" + str(seed) avg_cormat_file = os.path.join( res_path, iter_dir, "shuffle_matrix", "shuffled_matrix.npy") if os.path.exists(avg_cormat_file): avg_cormat = np.load(avg_cormat_file) avg_cormat = avg_cormat + np.transpose(avg_cormat) vect_avg_cormat = avg_cormat[triu_indices_i, triu_indices_j] all_vect_cormats.append(vect_avg_cormat) else: print("Warning, could not find file \ {}".format(avg_cormat_file)) df_info =
pd.DataFrame(all_global_info_values)
pandas.DataFrame
import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"]) def test_compare_axis(align_axis): # GH#30429 df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis in (1, "columns"): indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]], index=indices, columns=columns, ) else: indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) columns = pd.Index(["col1", "col3"]) expected = pd.DataFrame( [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "keep_shape, keep_equal", [ (True, False), (False, True), (True, True), # False, False case is already covered in test_compare_axis ], ) def test_compare_various_formats(keep_shape, keep_equal): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, keep_shape=keep_shape, keep_equal=keep_equal) if keep_shape: indices = pd.Index([0, 1, 2]) columns = pd.MultiIndex.from_product( [["col1", "col2", "col3"], ["self", "other"]] ) if keep_equal: expected = pd.DataFrame( [ ["a", "c", 1.0, 1.0, 1.0, 1.0], ["b", "b", 2.0, 2.0, 2.0, 2.0], ["c", "c", np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: expected = pd.DataFrame( [ ["a", "c", np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", 1.0, 1.0], ["c", "c", 3.0, 4.0]], index=indices, columns=columns ) tm.assert_frame_equal(result, expected) def test_compare_with_equal_nulls(): # We want to make sure two NaNs are considered the same # and dropped where applicable df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" result = df.compare(df2) indices = pd.Index([0]) columns = pd.MultiIndex.from_product([["col1"], ["self", "other"]]) expected = pd.DataFrame([["a", "c"]], index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_with_non_equal_nulls(): # We want to make sure the relevant NaNs do not get dropped # even if the entire row or column are NaNs df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = np.nan result = df.compare(df2) indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, np.nan]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("align_axis", [0, 1]) def test_compare_multi_index(align_axis): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]} ) df.columns = pd.MultiIndex.from_arrays([["a", "a", "b"], ["col1", "col2", "col3"]]) df.index = pd.MultiIndex.from_arrays([["x", "x", "y"], [0, 1, 2]]) df2 = df.copy() df2.iloc[0, 0] = "c" df2.iloc[2, 2] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis == 0: indices = pd.MultiIndex.from_arrays( [["x", "x", "y", "y"], [0, 0, 2, 2], ["self", "other", "self", "other"]] ) columns = pd.MultiIndex.from_arrays([["a", "b"], ["col1", "col3"]]) data = [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]] else: indices =
pd.MultiIndex.from_arrays([["x", "y"], [0, 2]])
pandas.MultiIndex.from_arrays
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from pandas.compat import long from pandas.core.arrays import PeriodArray, DatetimeArrayMixin as DatetimeArray @pytest.fixture(params=[1, np.array(1, dtype=np.int64)]) def one(request): # zero-dim integer array behaves like an integer return request.param zeros = [box_cls([0] * 5, dtype=dtype) for box_cls in [pd.Index, np.array] for dtype in [np.int64, np.uint64, np.float64]] zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]]) zeros.extend([0, 0.0, long(0)]) @pytest.fixture(params=zeros) def zero(request): # For testing division by (or of) zero for Index with length 5, this # gives several scalar-zeros and length-5 vector-zeros return request.param # ------------------------------------------------------------------ # Vector Fixtures @pytest.fixture(params=[pd.Float64Index(np.arange(5, dtype='float64')), pd.Int64Index(np.arange(5, dtype='int64')), pd.UInt64Index(np.arange(5, dtype='uint64')), pd.RangeIndex(5)], ids=lambda x: type(x).__name__) def numeric_idx(request): """ Several types of numeric-dtypes Index objects """ return request.param @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return pd.Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Scalar Fixtures @pytest.fixture(params=[pd.Timedelta('5m4s').to_pytimedelta(),
pd.Timedelta('5m4s')
pandas.Timedelta
#!/usr/bin/env python # coding: utf-8 # # US Beveridge Curve Data # # Construct monthly unemploment rate and vacancy rate series for the US from April 1929 through the most recently available date. The methodology is based on the approach described in Petrosky-Nadeau and Zhang (2013): https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2241695 # # 1. This Notebook is compatible with Python 2 and 3. # # 2. **To use this notebook to download the entire dataset, you need the X-13ARIMA-SEATS binary**. If you don't have the binary, set variable `x_13` to `False`. Data that require seasonal adjustment will be loaded from the `txt` directory of the parent directory to this program. # # Binaries for Windows and Linux/Unix are available from https://www.census.gov/srd/www/x13as/. To compile X-13 for Mac OS X, see the instructions here: https://github.com/christophsax/seasonal/wiki/Compiling-X-13ARIMA-SEATS-from-Source-for-OS-X. # In[1]: import statsmodels as sm import fredpy as fp import matplotlib.pyplot as plt plt.style.use('classic') import numpy as np import pandas as pd import os,urllib import warnings warnings.filterwarnings('ignore') get_ipython().run_line_magic('matplotlib', 'inline') # You must change XPATH if you are running this script from anywhere other than the directory containing x13as. XPATH = os.getcwd() # Load fredpy api key fp.api_key = fp.load_api_key('fred_api_key.txt') # Whether x13 binary is available x_13 = False # ## Unemployment Rate # # Construct an unemployment series from April 1929 through the most recent date available by concatenating four U.S. unemployment rate series; all of which are available from FRED (https://fred.stlouisfed.org/). Specifically: # # 1. Seasonally adjusted unemployment rate for the United States from April 1929 through February 1940. FRED series ID: M0892AUSM156SNBR. NBER Indicator: m08292a. # 2. Seasonally adjusted unemployment rate for the United States from March 1940 through December 1946. FRED series ID: M0892BUSM156SNBR. NBER Indicator: m08292b. # 3. Seasonally adjusted unemployment rate for the United States from January 1947 through December 1947. FRED series ID: M0892CUSM156NNBR. NBER Indicator: m08292c. Note: The source data are not seasonally adjusted and contain observations through December 1966. Seasonally adjust the entire series through December 1966 using the U.S. Census Bureau's X-13-ARIMA seasonal adjustment program. Then discard values after December 1947. *Only downloaded if `x_13 == True.`* # 4. Seasonally adjusted unemployment rate for the United States from January 1948 through the most recent date available. FRED series ID: UNRATE. # In[2]: # Historical US unemployment rate from the NBER Macrohistory Database: 1929-04-01 to 1940-02-01; # Seasonally adjusted # Download from FRED and save as a Pandas series unemp_1 = fp.series('M0892AUSM156SNBR') unemp_1 = unemp_1.window(['04-01-1929','02-01-1940']).data # In[3]: # Historical US unemployment rate from the NBER Macrohistory Database: 1940-03-01 to 1946-12-01; # Seasonally adjusted # Download from FRED and save as a Pandas series unemp_2 = fp.series('M0892BUSM156SNBR') unemp_2 = unemp_2.window(['03-01-1940','12-01-1946']).data # In[4]: # Historical US unemployment rate from the NBER Macrohistory Database: 1947-01-01 to 1966-12-01; # Raw series is *not* seasonally adjusted if x_13: # Download from FRED unemp_3 = fp.series('M0892CUSM156NNBR') unemp_3 = unemp_3.window(['01-01-1947','12-01-1966']).data # Run x13_arima_analysis to obtain SA unemployment data. x13results = sm.tsa.x13.x13_arima_analysis(endog = unemp_3,x12path=XPATH, outlier=False,print_stdout=True) unemp_3 = pd.Series(x13results.seasadj.values,index=unemp_3.index) unemp_3 = unemp_3[(unemp_3.index>=pd.to_datetime('01-01-1947')) & (unemp_3.index<=pd.to_datetime('12-01-1947'))] # Export the series to txt unemp_3.to_csv('../txt/unemployment_1947.txt',sep='\t') else: # Import data unemp_3 = pd.read_csv('../txt/unemployment_1947.txt',sep='\t',index_col=0,parse_dates=True)['0'] # In[5]: # US civilian unemployment rate from the BLS: 1948-01-01 to most recent; # Seasonally adjusted unemp_4 = fp.series('UNRATE') unemp_4 = unemp_4.window(['01-01-1948','01-01-2200']).data # In[6]: # Concatenate the first three series unemployment_rate_series = unemp_1.append(unemp_2).sort_index() unemployment_rate_series = unemployment_rate_series.append(unemp_3).sort_index() unemployment_rate_series = unemployment_rate_series.append(unemp_4).sort_index() # plot the series and save the figure fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(unemployment_rate_series,'-',lw=4,alpha = 0.65) ax.set_ylabel('Percent') ax.grid() fig.tight_layout() plt.savefig('../png/fig_data_unrate.png',bbox_inches='tight',dpi=120) # # ## Vacancies (Job openings) # # Construct a series of vacancies for the United States going back to April 1929 by scaling and concatenating three series: # 1. Help-wanted advertising in newspapers index for United States from April 1929 to January 1960. FRED series ID: M0882AUSM349NNBR. NBER Indicator: m08082a. Note: The source data are not seasonally adjusted and contain observations through August 1960. Seasonally adjust the entire series through August 1960 using the United States Census Bureau's X-13-ARIMA seasonal adjustment program. Then discard values after January 1960. *Only downloaded if `x_13 == True.`* # 2. Composite help-wanted index from January 1960 through January 2001 constructed using the method described in and Barnichon (2010). The data are from Barnichon's website https://sites.google.com/site/regisbarnichon/data. Scale this series so that its value in January 1960 equals the value of the NBER's help-wanted index for the same date. # 3. Job openings, total nonfarm for the United States from January 2001 to the most recent date available. FRED series ID: JTSJOL. Scale this series so that its value in January 2001 equals the value of the scaled help-wanted index from Barnichon for the same date. # In[7]: if x_13: # Met life help-wanted index: 1919-01-01 to 1960-08-01; # Not seasonally adjusted vac_1 = fp.series('M0882AUSM349NNBR').data # temp_series = pd.Series(vac_1.data,index=pd.to_datetime(vac_1.dates)) # Run x13_arima_analysis to obtain SA vacancy rate data. x13results = sm.tsa.x13.x13_arima_analysis(endog = vac_1,x12path=XPATH, outlier=False,print_stdout=True) vac_1 = pd.Series(x13results.seasadj.values,index=vac_1.index) vac_1 = vac_1[(vac_1.index>=pd.to_datetime('04-01-1929')) ] # Export the series to txt vac_1.to_csv('../txt/vacancies_1929-1960.txt',sep='\t') else: vac_1 = pd.read_csv('../txt/vacancies_1929-1960.txt',sep='\t',index_col=0,parse_dates=True)['0'] # In[8]: # Composite help-wanted index from Regis Barnichon's site: https://sites.google.com/site/regisbarnichon; # Seasonally adjusted # Import data from Regis Barnichon's site dls = 'https://sites.google.com/site/regisbarnichon/cv/HWI_index.txt?attredirects=0' try: urllib.urlretrieve(dls, '../txt/HWI_index.txt') except: try: urllib.request.urlretrieve(dls, '../txt/HWI_index.txt') except: print('HWI_index.txt is no longer available at given URL') vac_2 = pd.read_csv('../txt/HWI_index.txt',delimiter='\t',skiprows=6) vac_2.columns = ['Date','composite HWI'] # Manage dates dates = [] for d in vac_2['Date']: dates.append(d[-2:]+'-01-'+d[0:4]) vac_2 = pd.Series(vac_2['composite HWI'].values,index = pd.to_datetime(dates)) # Compute a scaling factor to ensure that the January 1, 1960 values of the first vacancy series match # the second. scaling = vac_1.loc['01-01-1960']/vac_2.loc['1960-01-01'] vac_2 = scaling* vac_2 # In[9]: # Job Openings and Labor Turnover Survey (JOLTS) : December 1, 2000 to present # Seasonally adjusted vac_3 = fp.series('JTSJOL').data # Compute a scaling factor to ensure that the December 1, 2000 values of the first vacancy series match # the second. scaling = vac_2.loc['12-01-2000']/vac_3.loc['12-01-2000'] vac_3 = scaling* vac_3 # In[10]: # Truncate each series vac_1 = vac_1.loc[:'12-01-1959'] vac_2 = vac_2.loc['01-01-1960':'12-01-2000'] vac_3 = vac_3.loc['01-01-2001':] # Plot the three truncated and scaled series to verify that they line up fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(vac_1,'-',lw=3,alpha = 0.65) ax.plot(vac_2,'-',lw=3,alpha = 0.65) ax.plot(vac_3,'-',lw=3,alpha = 0.65) ax.set_title('Vacancies (unscaled)') ax.grid() # In[11]: # Create the vacancy series vacancy_series_unscaled = vac_1.append(vac_2).sort_index() vacancy_series_unscaled = vacancy_series_unscaled.append(vac_3).sort_index() # plot the series and save the figure fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot_date(vacancy_series_unscaled.index,vacancy_series_unscaled.values,'-',lw=3,alpha = 0.65) ax.set_title('Vacancies (unscaled)') ax.grid() fig.tight_layout() plt.savefig('../png/fig_data_vacancies.png',bbox_inches='tight',dpi=120) # ## Labor force data # # Next, construct monthly labor force data for the United States from April 1929 by concatenating two series: # 1. Civilian labor force for the United States from January 1948 to the most recent date available. FRED series ID: CLF16OV. # 2. Historical national population estimates from Population Estimates Program, Population Division, U.S. Census Bureau. The source data are annual from July 1, 1900 to July 1, 1999 and not seasonally adjusted. Extend the data to monthly frequency by linear interpolation and discard observations before April 1929 and after January 1948. Then scale this series so that its value in January 1948 equals the value of the civilian labor force series for the same date. # In[12]: # Civilian labor force over 16 years of age in thousands of persons: January 1948 to present; # Seasonally adjusted lf_1 = fp.series('CLF16OV') lf_1 = lf_1.window(['01-01-1800','06-01-2216']).data # In[13]: # Historical National Population Estimates: July 1, 1900 to July 1, 1999 # Source: Population Estimates Program, Population Division, U.S. Census Bureau # Annual, Not seasonally adjusted # Retrieve data from Census dls = 'http://www.census.gov/popest/data/national/totals/pre-1980/tables/popclockest.txt' dls = 'https://www.census.gov/population/estimates/nation/popclockest.txt' dls = 'https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/totals/popclockest.txt' try: urllib.urlretrieve(dls, '../txt/popclockest.txt') except: try: urllib.request.urlretrieve(dls, '../txt/popclockest.txt') except: print('popclockest.txt is no longer available at given URL') # Import data and edit file with open('../txt/popclockest.txt','r') as newfile: lines = newfile.readlines() # Remove leading and trailing whitespace and overwrite spaces in with tabs in lines newlines = [] for i,line in enumerate(lines): newline = line.rstrip().lstrip() newline = newline.replace(' ','\t') newline = newline.replace(' ','\t') newline = newline.replace(' ','\t') newline = newline+'\n' newlines.append(newline) # Collect the population and date information pop = [] dates=[] for i,line in enumerate(newlines[9:]): if len(line.split('\t'))==4: line_split = line.split('\t') dates.append(line_split[0]) pop.append(float(line_split[1].replace(',',''))) # Form the series lf_2 = pd.Series(pop,index = pd.to_datetime(dates)) # Resample data as monthly and interpolate lf_2 = lf_2.sort_index() lf_2 = lf_2.resample('M').mean().interpolate() # Set dates to begining of month instead of middle lf_2.index = lf_2.index + pd.offsets.MonthBegin(0) # Compute a scaling factor to ensure that the Jaunary 1, 1948 values of the first LF series match # the second. scaling = lf_1.iloc[0]/lf_2[lf_2.index==pd.to_datetime('1948-01-01')].values[0] lf_2 = scaling*lf_2[(lf_2.index>=pd.to_datetime('1929-04-01')) & (lf_2.index<pd.to_datetime('1948-01-01'))] # In[14]: # Plot the two truncated and scaled series to verify that they line up fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(lf_2,'-',lw=3,alpha = 0.65) ax.plot(lf_1,'-',lw=3,alpha = 0.65) ax.set_title('Labor force') ax.grid() fig.tight_layout() # In[15]: # form the labor force series labor_force_series = lf_1.append(lf_2).sort_index() # plot the series and save the figure fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(labor_force_series/1000,'-',lw=4,alpha = 0.65) ax.set_title('Labor force') ax.set_ylabel('Millions of persons') ax.grid() fig.tight_layout() plt.savefig('../png/fig_data_labor_force.png',bbox_inches='tight',dpi=120) # ## Vacancy rate # # Now with a vacancy series and a labor force series, compute the monthly vacancy rate for the Unite States by dividing the vacancy rate series by the labor force series. Following Petrosky-Nadeau and Zhang (2013), scale the result so that the average vacancy rate for 1965 is 2.05\% in order to match the vacancy rate estimate for 1965 obtained by Zagorsky (1998). # In[16]: # Construct the vacancy_rate series vacancy_rate_series = vacancy_series_unscaled / labor_force_series # Compute a scaling factor to ensure that the average vacancy rate for 1965 is 0.0205 scaling = vacancy_rate_series[(vacancy_rate_series.index>=pd.to_datetime('1965-01-01')) & (vacancy_rate_series.index<=pd.to_datetime('1965-12-01'))].mean()/0.0205 vacancy_rate_series = 100*vacancy_rate_series/scaling vacancy_series = vacancy_rate_series*labor_force_series/100 unemployment_series = unemployment_rate_series*labor_force_series/100 market_tightness_series = vacancy_series/unemployment_series # In[17]: # plot the series and save the figure fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(vacancy_rate_series,'-',lw=4,alpha = 0.65) ax.set_ylabel('Vacancy rate') ax.grid() fig.tight_layout() plt.savefig('../png/fig_data_vacancy_rate.png',bbox_inches='tight',dpi=120) # ## Organize data # # In the rest of the program, organize the data into DataFrames, construct plots that used in the paper, and export datasets that can be used to replicate the figures and to investigate carefully the data more carefully. # In[18]: # Organize data into DataFrames df_rates =
pd.concat([unemployment_rate_series,vacancy_rate_series,market_tightness_series], join='outer', axis = 1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on 2017-7-7 @author: cheng.li """ import abc import sys import pandas as pd from sqlalchemy import and_ from sqlalchemy import not_ from sqlalchemy import or_ from sqlalchemy import select from alphamind.data.dbmodel.models import Universe as UniverseTable class BaseUniverse(metaclass=abc.ABCMeta): @abc.abstractmethod def condition(self): pass def __add__(self, rhs): return OrUniverse(self, rhs) def __sub__(self, rhs): return XorUniverse(self, rhs) def __and__(self, rhs): return AndUniverse(self, rhs) def __or__(self, rhs): return OrUniverse(self, rhs) def isin(self, rhs): return AndUniverse(self, rhs) @abc.abstractmethod def save(self): pass @classmethod def load(cls, u_desc: dict): pass def query(self, engine, start_date: str = None, end_date: str = None, dates=None): if hasattr(UniverseTable, "flag"): more_conditions = [UniverseTable.flag == 1] else: more_conditions = [] query = select([UniverseTable.trade_date, UniverseTable.code.label("code")]).where( and_( self._query_statements(start_date, end_date, dates), *more_conditions ) ).order_by(UniverseTable.trade_date, UniverseTable.code) df = pd.read_sql(query, engine.engine) df["trade_date"] =
pd.to_datetime(df["trade_date"])
pandas.to_datetime
""" Detection Recipe - 192.168.3.11 References: (1) 'Asteroseismic detection predictions: TESS' by Chaplin (2015) (2) 'On the use of empirical bolometric corrections for stars' by Torres (2010) (3) 'The amplitude of solar oscillations using stellar techniques' by Kjeldson (2008) (4) 'An absolutely calibrated Teff scale from the infrared flux method' by Casagrande (2010) table 4 (5) 'Characterization of the power excess of solar-like oscillations in red giants with Kepler' by Mosser (2011) (6) 'Predicting the detectability of oscillations in solar-type stars observed by Kepler' by Chaplin (2011) (7) 'The connection between stellar granulation and oscillation as seen by the Kepler mission' by Kallinger et al (2014) (8) 'The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives' by Sullivan et al. (2015) (9) Astropysics module at https://pythonhosted.org/Astropysics/coremods/coords.html (10) <NAME>'s calc_noise IDL procedure for TESS. (11) <NAME>lin's soldet6 IDL procedure to calculate the probability of detecting oscillations with Kepler. (12) Coordinate conversion at https://ned.ipac.caltech.edu/forms/calculator.html (13) Bedding 1996 (14) 'The Asteroseismic potential of TESS' by Campante et al. 2016 """ import numpy as np from itertools import groupby from operator import itemgetter import sys import pandas as pd from scipy import stats import warnings warnings.simplefilter("ignore") def bv2teff(b_v): # from Torres 2010 table 2. Applies to MS, SGB and giant stars # B-V limits from Flower 1996 fig 5 a = 3.979145106714099 b = -0.654992268598245 c = 1.740690042385095 d = -4.608815154057166 e = 6.792599779944473 f = -5.396909891322525 g = 2.192970376522490 h = -0.359495739295671 lteff = a + b*b_v + c*(b_v**2) + d*(b_v**3) + e*(b_v**4) + f*(b_v**5) + g*(b_v**6) + h*(b_v**7) teff = 10.0**lteff return teff # from <NAME> 2003. BCv values from Flower 1996 polynomials presented in Torres 2010 # Av is a keword argument. If reddening values not available, ignore it's effect def Teff2bc2lum(teff, parallax, parallax_err, vmag, Av=0): lteff = np.log10(teff) BCv = np.full(len(lteff), -100.5) BCv[lteff<3.70] = (-0.190537291496456*10.0**5) + \ (0.155144866764412*10.0**5*lteff[lteff<3.70]) + \ (-0.421278819301717*10.0**4.0*lteff[lteff<3.70]**2.0) + \ (0.381476328422343*10.0**3*lteff[lteff<3.70]**3.0) BCv[(3.70<lteff) & (lteff<3.90)] = (-0.370510203809015*10.0**5) + \ (0.385672629965804*10.0**5*lteff[(3.70<lteff) & (lteff<3.90)]) + \ (-0.150651486316025*10.0**5*lteff[(3.70<lteff) & (lteff<3.90)]**2.0) + \ (0.261724637119416*10.0**4*lteff[(3.70<lteff) & (lteff<3.90)]**3.0) + \ (-0.170623810323864*10.0**3*lteff[(3.70<lteff) & (lteff<3.90)]**4.0) BCv[lteff>3.90] = (-0.118115450538963*10.0**6) + \ (0.137145973583929*10.0**6*lteff[lteff > 3.90]) + \ (-0.636233812100225*10.0**5*lteff[lteff > 3.90]**2.0) + \ (0.147412923562646*10.0**5*lteff[lteff > 3.90]**3.0) + \ (-0.170587278406872*10.0**4*lteff[lteff > 3.90]**4.0) + \ (0.788731721804990*10.0**2*lteff[lteff > 3.90]**5.0) u = 4.0 + 0.4 * 4.73 - 2.0 * np.log10(parallax) - 0.4 * (vmag - Av + BCv) lum = 10**u # in solar units e_lum = (2.0 / parallax * 10**u)**2 * parallax_err**2 e_lum = np.sqrt(e_lum) return lum, e_lum # calculate seismic parameters def seismicParameters(teff, lum): # solar parameters teff_solar = 5777.0 # Kelvin teffred_solar = 8907.0 #in Kelvin numax_solar = 3090.0 # in micro Hz dnu_solar = 135.1 # in micro Hz cadence = 120 # in s vnyq = (1.0 / (2.0*cadence)) * 10**6 # in micro Hz teffred = teffred_solar*(lum**-0.093) # from (6) eqn 8. red-edge temp rad = lum**0.5 * ((teff/teff_solar)**-2) # Steffan-Boltzmann law numax = numax_solar*(rad**-1.85)*((teff/teff_solar)**0.92) # from (14) return cadence, vnyq, rad, numax, teffred, teff_solar, teffred_solar, numax_solar, dnu_solar # no coordinate conversion before calculating tess field observing time. Only # works with ecliptic coordinates def tess_field_only(e_lng, e_lat): # create a list to append all of the total observing times 'T' in the TESS field to T = [] # units of sectors (0-13) # create a list to append all of the maximum contiguous observations to max_T = [] # units of sectors (0-13) for star in range(len(e_lng)): # 'n' defines the distance between each equidistant viewing sector in the TESS field. n = 360.0/13 # Define a variable to count the total number of sectors a star is observed in. counter = 0 # Define a variable to count all of the observations for each star. # Put each observation sector into sca separately in order to find the largest number # of contiguous observations for each star. sca = [] # 'ranges' stores all of the contiguous observations for each star. ranges = [] # Defines the longitude range of the observing sectors at the inputted stellar latitude lngrange = 24.0/abs(np.cos(np.radians(e_lat[star]))) if lngrange>=360.0: lngrange=360.0 # if the star is in the northern hemisphere: if e_lat[star] >= 0.0: # For each viewing sector. for i in range(1,14): # Define an ra position for the centre of each sector in increasing longitude. # if a hemisphere has an overshoot, replace 0.0 with the value. a = 0.0+(n*(i-1)) # calculate the distances both ways around the # circle between the star and the centre of the sector. # The smallest distance is the one that should be used # to see if the star lies in the observing sector. d1 = abs(e_lng[star]-a) d2 = (360.0 - abs(e_lng[star]-a)) if d1>d2: d1 = d2 # if the star is in the 'overshoot' region for some sectors, calculate d3 and d4; # the distances both ways around the circle bwtween the star and the centre of the # 'overshooting past the pole' region of the sector. # The smallest distance is the one that should be used # to see if the star lies in the observing sector. # the shortest distances between the centre of the sector and star, and the sector's # overshoot and the star should add to 180.0 apart (i.e d1+d3=180.0) d3 = abs(e_lng[star] - (a+180.0)%360.0) d4 = 360.0 - abs(e_lng[star] - (a+180.0)%360.0) if d3>d4: d3 = d4 # check if a star lies in the field of that sector. if (d1<=lngrange/2.0 and 6.0<=e_lat[star]) or (d3<=lngrange/2.0 and 78.0<=e_lat[star]): counter += 1 sca = np.append(sca, i) else: pass # if the star is in the southern hemisphere: if e_lat[star] < 0.0: # For each viewing sector. for i in range(1,14): # Define an ra position for the centre of each sector in increasing longitude. # if a hemisphere has an overshoot, replace 0.0 with the value. a = 0.0+(n*(i-1)) # calculate the distances both ways around the # circle between the star and the centre of the sector. # The smallest distance is the one that should be used # to see if the star lies in the observing sector. d1 = abs(e_lng[star]-a) d2 = (360 - abs(e_lng[star]-a)) if d1>d2: d1 = d2 # if the star is in the 'overshoot' region for some sectors, calculate d3 and d4; # the distances both ways around the circle between the star and the centre of the # 'overshooting past the pole' region of the sector. # The smallest distance of the 2 is the one that should be used # to see if the star lies in the observing sector. d3 = abs(e_lng[star] - (a+180.0)%360.0) d4 = (360 - abs(e_lng[star] - (a+180.0)%360.0)) if d3>d4: d3 = d4 # check if a star lies in the field of that sector. if (d1<=lngrange/2.0 and -6.0>=e_lat[star]) or (d3<=lngrange/2.0 and -78.0>=e_lat[star]): counter += 1 sca = np.append(sca, i) else: pass if len(sca) == 0: ranges = [0] else: for k,g in groupby(enumerate(sca), lambda i_x:i_x[0]-i_x[1]): group = map(itemgetter(1), g) if np.array(group).sum() !=0: ranges.append([len(list(group))]) T=np.append(T, counter) max_T = np.append(max_T, np.max(np.array(ranges))) return T, max_T def calc_noise(imag, exptime, teff, e_lng = 0, e_lat = 30, g_lng = 96, g_lat = -30, subexptime = 2.0, npix_aper = 10, \ frac_aper = 0.76, e_pix_ro = 10, geom_area = 60.0, pix_scale = 21.1, sys_limit = 0): omega_pix = pix_scale**2.0 n_exposures = exptime/subexptime # electrons from the star megaph_s_cm2_0mag = 1.6301336 + 0.14733937*(teff-5000.0)/5000.0 e_star = 10.0**(-0.4*imag) * 10.0**6 * megaph_s_cm2_0mag * geom_area * exptime * frac_aper e_star_sub = e_star*subexptime/exptime # e/pix from zodi dlat = (abs(e_lat)-90.0)/90.0 vmag_zodi = 23.345 - (1.148*dlat**2.0) e_pix_zodi = 10.0**(-0.4*(vmag_zodi-22.8)) * (2.39*10.0**-3) * geom_area * omega_pix * exptime # e/pix from background stars dlat = abs(g_lat)/40.0*10.0**0 dlon = g_lng q = np.where(dlon>180.0) if len(q[0])>0: dlon[q] = 360.0-dlon[q] dlon = abs(dlon)/180.0*10.0**0 p = [18.97338*10.0**0, 8.833*10.0**0, 4.007*10.0**0, 0.805*10.0**0] imag_bgstars = p[0] + p[1]*dlat + p[2]*dlon**(p[3]) e_pix_bgstars = 10.0**(-0.4*imag_bgstars) * 1.7*10.0**6 * geom_area * omega_pix * exptime # compute noise sources noise_star = np.sqrt(e_star) / e_star noise_sky = np.sqrt(npix_aper*(e_pix_zodi + e_pix_bgstars)) / e_star noise_ro = np.sqrt(npix_aper*n_exposures)*e_pix_ro / e_star noise_sys = 0.0*noise_star + sys_limit/(1*10.0**6)/np.sqrt(exptime/3600.0) noise1 = np.sqrt(noise_star**2.0 + noise_sky**2.0 + noise_ro**2.0) noise2 = np.sqrt(noise_star**2.0 + noise_sky**2.0 + noise_ro**2.0 + noise_sys**2.0) return noise2 # calculate the granulation at a set of frequencies from (7) eqn 2 model F def granulation(nu0, dilution, a_nomass, b1, b2, vnyq): # Divide by dilution squared as it affects stars in the time series. # The units of dilution change from ppm to ppm^2 microHz^-1 when going from the # time series to frequency. p6: c=4 and zeta = 2*sqrt(2)/pi Pgran = (((2*np.sqrt(2))/np.pi) * (a_nomass**2/b1) / (1 + ((nu0/b1)**4)) \ + ((2*np.sqrt(2))/np.pi) * (a_nomass**2/b2) / (1 + ((nu0/b2)**4))) / (dilution**2) # From (9). the amplitude suppression factor. Normalised sinc with pi (area=1) eta = np.sinc((nu0/(2*vnyq))) # the granulation after attenuation Pgran = Pgran * eta**2 return Pgran, eta # the total number of pixels used by the highest ranked x number of targets in the tCTL def pixel_cost(x): N = np.ceil(10.0**-5.0 * 10.0**(0.4*(20.0-x))) N_tot = 10*(N+10) total = np.cumsum(N_tot) # want to find: the number of ranked tCTL stars (from highest to lowest rank) that correspond to a pixel cost of 1.4Mpix at a given time per_cam = 26*4 # to get from the total pixel cost to the cost per camera at a given time, divide by this pix_limit = 1.4e6 # the pixel limit per camera at a given time return total[-1], per_cam, pix_limit, N_tot # detection recipe to find whether a star has an observed solar-like Gaussian mode power excess def globalDetections(g_lng, g_lat, e_lng, e_lat, imag, \ lum, rad, teff, numax, max_T, teffred, teff_solar, \ teffred_solar, numax_solar, dnu_solar, sys_limit, dilution, vnyq, cadence, vary_beta=False): dnu = dnu_solar*(rad**-1.42)*((teff/teff_solar)**0.71) # from (14) eqn 21 beta = 1.0-np.exp(-(teffred-teff)/1550.0) # beta correction for hot solar-like stars from (6) eqn 9. if isinstance(teff, float): # for only 1 star if (teff>=teffred): beta = 0.0 else: beta[teff>=teffred] = 0.0 # to remove the beta correction, set Beta=1 if vary_beta == False: beta = 1.0 # modified from (6) eqn 11. Now consistent with dnu proportional to numax^0.77 in (14) amp = 0.85*2.5*beta*(rad**1.85)*((teff/teff_solar)**0.57) # From (5) table 2 values for delta nu_{env}. env_width is defined as +/- some value. env_width = 0.66 * numax**0.88 env_width[numax>100.] = numax[numax>100.]/2. # from (6) p12 total, per_cam, pix_limit, npix_aper = pixel_cost(imag) noise = calc_noise(imag=imag, teff=teff, exptime=cadence, e_lng=e_lng, e_lat=e_lat, \ g_lng=g_lng, g_lat=g_lat, sys_limit=sys_limit, npix_aper=npix_aper) noise = noise*10.0**6 # total noise in units of ppm a_nomass = 0.85 * 3382*numax**-0.609 # multiply by 0.85 to convert to redder TESS bandpass. b1 = 0.317 * numax**0.970 b2 = 0.948 * numax**0.992 # call the function for the real and aliased components (above and below vnyq) of the granulation # the order of the stars is different for the aliases so fun the function in a loop Pgran, eta = granulation(numax, dilution, a_nomass, b1, b2, vnyq) Pgranalias = np.zeros(len(Pgran)) etaalias = np.zeros(len(eta)) # if vnyq is 1 fixed value if isinstance(vnyq, float): for i in range(len(numax)): if numax[i] > vnyq: Pgranalias[i], etaalias[i] = granulation((vnyq - (numax[i] - vnyq)), \ dilution, a_nomass[i], b1[i], b2[i], vnyq) elif numax[i] < vnyq: Pgranalias[i], etaalias[i] = granulation((vnyq + (vnyq - numax[i])), \ dilution, a_nomass[i], b1[i], b2[i], vnyq) # if vnyq varies for each star else: for i in range(len(numax)): if numax[i] > vnyq[i]: Pgranalias[i], etaalias[i] = granulation((vnyq[i] - (numax[i] - vnyq[i])), \ dilution, a_nomass[i], b1[i], b2[i], vnyq[i]) elif numax[i] < vnyq[i]: Pgranalias[i], etaalias[i] = granulation((vnyq[i] + (vnyq[i] - numax[i])), \ dilution, a_nomass[i], b1[i], b2[i], vnyq[i]) Pgrantotal = Pgran + Pgranalias ptot = (0.5*2.94*amp**2.*((2.*env_width)/dnu)*eta**2.) / (dilution**2.) Binstr = 2.0 * (noise)**2. * cadence*10**-6.0 # from (6) eqn 18 bgtot = ((Binstr + Pgrantotal) * 2.*env_width) # units are ppm**2 snr = ptot/bgtot # global signal to noise ratio from (11) fap = 0.05 # false alarm probability pdet = 1.0 - fap pfinal = np.full(rad.shape[0], -99) idx = np.where(max_T != 0) # calculate the indexes where T is not 0 tlen=max_T[idx]*27.4*86400.0 # the length of the TESS observations in seconds bw=1.0 * (10.0**6.0)/tlen nbins=(2.*env_width[idx]/bw).astype(int) # from (11) snrthresh = stats.chi2.ppf(pdet, 2.0*nbins) / (2.0*nbins) - 1.0 pfinal[idx] = stats.chi2.sf((snrthresh+1.0) / (snr[idx]+1.0)*2.0*nbins, 2.*nbins) return pfinal, snr, dnu # snr is needed in TESS_telecon2.py def BV2VI(bv, vmag, g_mag_abs): whole = pd.DataFrame(data={'B-V': bv, 'Vmag': vmag, 'g_mag_abs': g_mag_abs, 'Ai': 0}) # Mg: empirical relation from Tiago to separate dwarfs from giants # note: this relation is observational; it was made with REDDENED B-V and g_mag values whole['Mg'] = 6.5*whole['B-V'] - 1.8 # B-V-to-teff limits from (6) fig 5 whole = whole[(whole['B-V'] > -0.4) & (whole['B-V'] < 1.7)] print(whole.shape, 'after B-V cuts') # B-V limits for dwarfs and giants, B-V conditions from (1) # if a star can't be classified as dwarf or giant, remove it condG = (whole['B-V'] > -0.25) & (whole['B-V'] < 1.75) & (whole['Mg'] > whole['g_mag_abs']) condD1 = (whole['B-V'] > -0.23) & (whole['B-V'] < 1.4) & (whole['Mg'] < whole['g_mag_abs']) condD2 = (whole['B-V'] > 1.4) & (whole['B-V'] < 1.9) & (whole['Mg'] < whole['g_mag_abs']) whole = pd.concat([whole[condG], whole[condD1], whole[condD2]], axis=0) print(whole.shape, 'after giant/dwarf cuts') whole['V-I'] = 100. # write over these values for dwarfs and giants separately # coefficients for giants and dwarfs cg = [-0.8879586e-2, 0.7390707, 0.3271480, 0.1140169e1, -0.1908637, -0.7898824, 0.5190744, 0.5358868] cd1 = [0.8906590e-1, 0.1319675e1, 0.4461807, -0.1188127e1, 0.2465572, 0.8478627e1, 0.1046599e2, 0.3641226e1] cd2 = [-0.5421588e2, 0.8011383e3, -0.4895392e4, 0.1628078e5, -0.3229692e5, 0.3939183e5, -0.2901167e5, 0.1185134e5, -0.2063725e4] # calculate (V-I) for giants x = whole['B-V'][condG] - 1 y = (cg[0] + cg[1]*x + cg[2]*(x**2) + cg[3]*(x**3) + cg[4]*(x**4) +\ cg[5]*(x**5) + cg[6]*(x**6) + cg[7]*(x**7)) whole['V-I'][condG] = y + 1 x, y = [[] for i in range(2)] # calculate (V-I) for dwarfs (1st B-V range) x = whole['B-V'][condD1] - 1 y = (cd1[0] + cd1[1]*x + cd1[2]*(x**2) + cd1[3]*(x**3) + cd1[4]*(x**4) +\ cd1[5]*(x**5) + cd1[6]*(x**6) + cd1[7]*(x**7)) whole['V-I'][condD1] = y + 1 x, y = [[] for i in range(2)] # calculate (V-I) for dwarfs (2nd B-V range) x = whole['B-V'][condD2] - 1 y = (cd2[0] + cd2[1]*x + cd2[2]*(x**2) + cd2[3]*(x**3) + cd2[4]*(x**4) +\ cd2[5]*(x**5) + cd2[6]*(x**6) + cd2[7]*(x**7) + cd2[8]*(x**8)) whole['V-I'][condD2] = y + 1 x, y = [[] for i in range(2)] # calculate Imag from V-I and reredden it whole['Imag'] = whole['Vmag']-whole['V-I'] whole['Imag_reddened'] = whole['Imag'] + whole['Ai'] """ # make Teff, luminosity, Plx and ELat cuts to the data whole = whole[(whole['teff'] < 7700) & (whole['teff'] > 4300) & \ (whole['Lum'] > 0.3) & (whole['lum_D'] < 50) & ((whole['e_Plx']/whole['Plx']) < 0.5) \ & (whole['Plx'] > 0.) & ((whole['ELat']<=-6.) | (whole['ELat']>=6.))] print(whole.shape, 'after Teff/L/Plx/ELat cuts') """ whole.drop(['Ai', 'Imag_reddened', 'Mg'], axis=1, inplace=True) return whole.as_matrix().T # make cuts to the data def cuts(teff, e_teff, metal, e_metal, g_lng, g_lat, e_lng, e_lat, Tmag, e_Tmag, Vmag, e_Vmag, plx, e_plx, lum, star_name): d = {'teff':teff, 'e_teff':e_teff, 'metal':metal, 'e_metal':e_metal, 'g_lng':g_lng, 'g_lat':g_lat, 'e_lng':e_lng, 'e_lat':e_lat, 'Tmag':Tmag, 'e_Tmag':e_Tmag, 'Vmag':Vmag, 'e_Vmag':e_Vmag, 'plx':plx, 'e_plx':e_plx, 'lum':lum, 'star_name':star_name} whole = pd.DataFrame(d, columns = ['teff', 'e_teff', 'metal', 'e_metal', 'g_lng', 'g_lat', 'e_lng', 'e_lat', 'Tmag', 'e_Tmag', 'Vmag', 'e_Vmag', 'plx', 'e_plx', 'lum', 'star_name']) whole = whole[(whole['teff'] < 7700.) & (whole['teff'] > 4300.) & (whole['e_teff'] > 0.) & \ (whole['lum'] > 0.3) & (whole['lum'] < 50.) & ((whole['e_plx']/whole['plx']) < 0.5) & \ (whole['plx'] > 0.) & ((whole['e_lat']<=-6.) | (whole['e_lat']>=6.)) & \ (whole['Tmag'] > 3.5) & (whole['e_metal'] > 0.)] print(whole.shape, 'after cuts to the data') return whole.as_matrix().T if __name__ == '__main__': df = pd.read_csv('files/MAST_Crossmatch_TIC4.csv', header=0, index_col=False) data = df.values # star_name = data[:, 1] teff = pd.to_numeric(data[:, 88]) # e_teff = pd.to_numeric(data[:, 89]) # metal = pd.to_numeric(data[:, 92]) # e_metal = pd.to_numeric(data[:, 93]) # g_lng = pd.to_numeric(data[:, 48]) # g_lat = pd.to_numeric(data[:, 49]) # e_lng = pd.to_numeric(data[:, 50]) # e_lat = pd.to_numeric(data[:, 51]) # Tmag = pd.to_numeric(data[:, 84]) # e_Tmag = pd.to_numeric(data[:, 85]) Vmag = pd.to_numeric(data[:, 54]) # e_Vmag = pd.to_numeric(data[:, 55]) plx = pd.to_numeric(data[:, 45]) e_plx =
pd.to_numeric(data[:, 46])
pandas.to_numeric
from datetime import datetime, date import sys if sys.version_info >= (2, 7): from nose.tools import assert_dict_equal import xlwings as xw try: import numpy as np from numpy.testing import assert_array_equal def nparray_equal(a, b): try: assert_array_equal(a, b) except AssertionError: return False return True except ImportError: np = None try: import pandas as pd from pandas import DataFrame, Series from pandas.util.testing import assert_frame_equal, assert_series_equal def frame_equal(a, b): try: assert_frame_equal(a, b) except AssertionError: return False return True def series_equal(a, b): try: assert_series_equal(a, b) except AssertionError: return False return True except ImportError: pd = None def dict_equal(a, b): try: assert_dict_equal(a, b) except AssertionError: return False return True # Defaults @xw.func def read_float(x): return x == 2. @xw.func def write_float(): return 2. @xw.func def read_string(x): return x == 'xlwings' @xw.func def write_string(): return 'xlwings' @xw.func def read_empty(x): return x is None @xw.func def read_date(x): return x == datetime(2015, 1, 15) @xw.func def write_date(): return datetime(1969, 12, 31) @xw.func def read_datetime(x): return x == datetime(1976, 2, 15, 13, 6, 22) @xw.func def write_datetime(): return datetime(1976, 2, 15, 13, 6, 23) @xw.func def read_horizontal_list(x): return x == [1., 2.] @xw.func def write_horizontal_list(): return [1., 2.] @xw.func def read_vertical_list(x): return x == [1., 2.] @xw.func def write_vertical_list(): return [[1.], [2.]] @xw.func def read_2dlist(x): return x == [[1., 2.], [3., 4.]] @xw.func def write_2dlist(): return [[1., 2.], [3., 4.]] # Keyword args on default converters @xw.func @xw.arg('x', ndim=1) def read_ndim1(x): return x == [2.] @xw.func @xw.arg('x', ndim=2) def read_ndim2(x): return x == [[2.]] @xw.func @xw.arg('x', transpose=True) def read_transpose(x): return x == [[1., 3.], [2., 4.]] @xw.func @xw.ret(transpose=True) def write_transpose(): return [[1., 2.], [3., 4.]] @xw.func @xw.arg('x', dates=date) def read_dates_as1(x): return x == [[1., date(2015, 1, 13)], [date(2000, 12, 1), 4.]] @xw.func @xw.arg('x', dates=date) def read_dates_as2(x): return x == date(2005, 1, 15) @xw.func @xw.arg('x', dates=datetime) def read_dates_as3(x): return x == [[1., datetime(2015, 1, 13)], [datetime(2000, 12, 1), 4.]] @xw.func @xw.arg('x', empty='empty') def read_empty_as(x): return x == [[1., 'empty'], ['empty', 4.]] if sys.version_info >= (2, 7): # assert_dict_equal isn't available on nose for PY 2.6 # Dicts @xw.func @xw.arg('x', dict) def read_dict(x): return dict_equal(x, {'a': 1., 'b': 'c'}) @xw.func @xw.arg('x', dict, transpose=True) def read_dict_transpose(x): return dict_equal(x, {1.0: 'c', 'a': 'b'}) @xw.func def write_dict(): return {'a': 1., 'b': 'c'} # Numpy Array if np: @xw.func @xw.arg('x', np.array) def read_scalar_nparray(x): return nparray_equal(x, np.array(1.)) @xw.func @xw.arg('x', np.array) def read_empty_nparray(x): return nparray_equal(x, np.array(np.nan)) @xw.func @xw.arg('x', np.array) def read_horizontal_nparray(x): return nparray_equal(x, np.array([1., 2.])) @xw.func @xw.arg('x', np.array) def read_vertical_nparray(x): return nparray_equal(x, np.array([1., 2.])) @xw.func @xw.arg('x', np.array) def read_date_nparray(x): return nparray_equal(x, np.array(datetime(2000, 12, 20))) # Keyword args on Numpy arrays @xw.func @xw.arg('x', np.array, ndim=1) def read_ndim1_nparray(x): return nparray_equal(x, np.array([2.])) @xw.func @xw.arg('x', np.array, ndim=2) def read_ndim2_nparray(x): return nparray_equal(x, np.array([[2.]])) @xw.func @xw.arg('x', np.array, transpose=True) def read_transpose_nparray(x): return nparray_equal(x, np.array([[1., 3.], [2., 4.]])) @xw.func @xw.ret(transpose=True) def write_transpose_nparray(): return np.array([[1., 2.], [3., 4.]]) @xw.func @xw.arg('x', np.array, dates=date) def read_dates_as_nparray(x): return nparray_equal(x, np.array(date(2000, 12, 20))) @xw.func @xw.arg('x', np.array, empty='empty') def read_empty_as_nparray(x): return nparray_equal(x, np.array('empty')) @xw.func def write_np_scalar(): return np.float64(2) # Pandas Series if pd: @xw.func @xw.arg('x', pd.Series, header=False, index=False) def read_series_noheader_noindex(x): return series_equal(x, pd.Series([1., 2.])) @xw.func @xw.arg('x', pd.Series, header=False, index=True) def read_series_noheader_index(x): return series_equal(x, pd.Series([1., 2.], index=[10., 20.])) @xw.func @xw.arg('x', pd.Series, header=True, index=False) def read_series_header_noindex(x): return series_equal(x, pd.Series([1., 2.], name='name')) @xw.func @xw.arg('x', pd.Series, header=True, index=True) def read_series_header_named_index(x): return series_equal(x, pd.Series([1., 2.], name='name', index=pd.Index([10., 20.], name='ix'))) @xw.func @xw.arg('x', pd.Series, header=True, index=True) def read_series_header_nameless_index(x): return series_equal(x, pd.Series([1., 2.], name='name', index=[10., 20.])) @xw.func @xw.arg('x', pd.Series, header=True, index=2) def read_series_header_nameless_2index(x): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return series_equal(x, pd.Series([1., 2.], name='name', index=ix)) @xw.func @xw.arg('x', pd.Series, header=True, index=2) def read_series_header_named_2index(x): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]], names=['ix1', 'ix2']) return series_equal(x, pd.Series([1., 2.], name='name', index=ix)) @xw.func @xw.arg('x', pd.Series, header=False, index=2) def read_series_noheader_2index(x): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return series_equal(x, pd.Series([1., 2.], index=ix)) @xw.func @xw.ret(pd.Series, index=False) def write_series_noheader_noindex(): return pd.Series([1., 2.]) @xw.func @xw.ret(pd.Series, index=True) def write_series_noheader_index(): return pd.Series([1., 2.], index=[10., 20.]) @xw.func @xw.ret(pd.Series, index=False) def write_series_header_noindex(): return pd.Series([1., 2.], name='name') @xw.func def write_series_header_named_index(): return pd.Series([1., 2.], name='name', index=pd.Index([10., 20.], name='ix')) @xw.func @xw.ret(pd.Series, index=True, header=True) def write_series_header_nameless_index(): return pd.Series([1., 2.], name='name', index=[10., 20.]) @xw.func @xw.ret(pd.Series, header=True, index=2) def write_series_header_nameless_2index(): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return pd.Series([1., 2.], name='name', index=ix) @xw.func @xw.ret(pd.Series, header=True, index=2) def write_series_header_named_2index(): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]], names=['ix1', 'ix2']) return pd.Series([1., 2.], name='name', index=ix) @xw.func @xw.ret(pd.Series, header=False, index=2) def write_series_noheader_2index(): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return pd.Series([1., 2.], index=ix) @xw.func @xw.arg('x', pd.Series) def read_timeseries(x): return series_equal(x, pd.Series([1.5, 2.5], name='ts', index=[datetime(2000, 12, 20), datetime(2000, 12, 21)])) @xw.func @xw.ret(pd.Series) def write_timeseries(): return pd.Series([1.5, 2.5], name='ts', index=[datetime(2000, 12, 20), datetime(2000, 12, 21)]) @xw.func @xw.ret(pd.Series, index=False) def write_series_nan(): return pd.Series([1, np.nan, 3]) # Pandas DataFrame if pd: @xw.func @xw.arg('x', pd.DataFrame, index=False, header=False) def read_df_0header_0index(x): return frame_equal(x, pd.DataFrame([[1., 2.], [3., 4.]])) @xw.func @xw.ret(pd.DataFrame, index=False, header=False) def write_df_0header_0index(): return
pd.DataFrame([[1., 2.], [3., 4.]])
pandas.DataFrame
from bs4 import BeautifulSoup import logging import pandas as pd import re import requests from urllib.parse import urljoin logging.basicConfig(format="%(asctime)s %(levelname)s:%(message)s", level=logging.INFO) def get_html(url): return requests.get(url).text class CongressCrawler: def __init__(self): self.base_url = "https://www.camara.leg.br/" self.congress = [] self.search_url = ( self.base_url + "deputados/quem-sao/resultado?search=&partido=&uf=&sexo=" ) def get_congressperson_data(self, url): try: soup = BeautifulSoup(get_html(url), "html.parser") name = soup.find(id="nomedeputado").contents[0] party_state = soup.find(class_="foto-deputado__partido-estado").contents[0] party = re.findall(r".+?(?=\s-)", party_state)[0] email = soup.find(class_="email").contents[0] congressperson = { "name": name, "party": party, "email": email, } return congressperson except Exception: logging.exception(f"failed at {url}") return def get_congressperson_href(self, soup): for link in soup.find_all(href=re.compile(r"/deputados/\d.*")): yield urljoin(self.base_url, link.get("href")) def get_congress_by_page(self, url): logging.info(f"page: {url}") soup = BeautifulSoup(get_html(url), "html.parser") for congressperson_url in self.get_congressperson_href(soup): congressperson = self.get_congressperson_data(congressperson_url) if congressperson: self.congress.append(congressperson) logging.info( f'congressperson: {congressperson_url} - email: {congressperson["email"]} - party: {congressperson["party"]}' ) def get_total_congress(self, legislature): soup = BeautifulSoup( get_html(self.search_url + "&legislatura=" + legislature), "html.parser", ) pfound = soup.find(text=re.compile(r"\d+\sencontrados")) total = re.findall(r"\d{3,}", pfound)[0] return total def get_current_legislature(self): soup = BeautifulSoup(get_html(self.base_url), "html.parser") found = soup.find(text=re.compile(r"\d.*\sLegislatura")) legislature = re.findall(r"\d\d", found)[0] return legislature def run(self): try: legislature = self.get_current_legislature() total = self.get_total_congress(legislature) pages = round(int(total) / 25) + 1 for i in range(1, pages): self.get_congress_by_page( self.search_url + "&legislatura=" + legislature + "&pagina=" + str(i) ) except Exception: logging.exception("global failure") finally: df =
pd.DataFrame(self.congress)
pandas.DataFrame
#!/usr/bin/env python3 """Script for exporting tensorboard logs to csv.""" import re import numpy as np from collections import defaultdict import pandas as pd from tensorboard.backend.event_processing.event_multiplexer import EventMultiplexer class TensorboardDataHelper(): """Class to help extrat summary values from the end of multiple runs""" def __init__(self, logdir, tags=None, tag_filter_fn=None, n_values=1, run_filter_fn=lambda a: True, keep_nans=False): if tags is None and tag_filter_fn is None: raise ValueError('Either tags or tag_filter_fn must be defined!') if tags is not None and tag_filter_fn is not None: raise ValueError( 'Only one of tags or tag_filter_fn can be defined at once!') self.logdir = logdir self.n_values = n_values self.run_filter_fn = run_filter_fn self.keep_nans = keep_nans if tag_filter_fn is not None: self.tag_filter_fn = tag_filter_fn else: self.selected_tags = tags self.tag_filter_fn = lambda a: a in self.selected_tags self.event_multiplexer = EventMultiplexer().AddRunsFromDirectory(logdir) self.reload() def reload(self): self.event_multiplexer.Reload() self.runs_and_scalar_tags = {run: values['scalars'] for run, values in self.event_multiplexer.Runs().items() if self.run_filter_fn(run) } def get_matching_runs(self): return self.runs_and_scalar_tags.keys() def _get_last_events(self, list_of_events): """Get last scalars in terms of training step""" def get_training_step(event): return event.step events = sorted(list_of_events, key=get_training_step) if not self.keep_nans: events = list(filter(lambda ev: np.isfinite(ev.value), events)) return events[-self.n_values:] def generate_directory_of_values(self): # Default value of new key is a new dictionary # makes code look nicer :) output = defaultdict(dict) for run, tags in self.runs_and_scalar_tags.items(): for tag in tags: # skip unwanted tags if not self.tag_filter_fn(tag): continue all_scalars = self.event_multiplexer.Scalars(run, tag) for ev in self._get_last_events(all_scalars): output[(run, ev.step)][tag] = ev.value return output def generate_pandas_dataframe(self): dict_of_values = self.generate_directory_of_values() df =
pd.DataFrame.from_dict(dict_of_values, orient='index')
pandas.DataFrame.from_dict
import tempfile import pytest import pandas as pd import numpy as np import pytz from eemeter.modeling.models.billing import BillingElasticNetCVModel from eemeter.modeling.formatters import ModelDataBillingFormatter from eemeter.structures import EnergyTrace @pytest.fixture def trace(): index = pd.date_range('6/6/2012','6/6/2013',freq='M', tz=pytz.UTC) data = pd.DataFrame( { "value": [1,] * 12, "estimated": [False,] * 12 }, index=index, columns=['value', 'estimated']) return EnergyTrace( interpretation="NATURAL_GAS_CONSUMPTION_SUPPLIED", unit="THERM", data=data) def test_basic_usage(trace, monkeypatch_temperature_data, mock_isd_weather_source): formatter = ModelDataBillingFormatter() model = BillingElasticNetCVModel(65, 65) formatted_input_data = formatter.create_input(trace, mock_isd_weather_source) outputs = model.fit(formatted_input_data) assert 'upper' in outputs assert 'lower' in outputs assert 'n' in outputs assert 'r2' in outputs assert 'rmse' in outputs assert 'cvrmse' in outputs assert 'model_params' in outputs index = pd.date_range( '2011-01-01', freq='H', periods=365 * 24, tz=pytz.UTC) formatted_predict_data = formatter.create_demand_fixture(index, mock_isd_weather_source) outputs, variance = model.predict(formatted_predict_data, summed=False) assert outputs.shape == (365,) assert variance > 0 index =
pd.date_range('2011-01-01', freq='D', periods=365, tz=pytz.UTC)
pandas.date_range
""" Evaluation of predictions againsts given dataset (in TXT format the same as training). We expect that the predictions are in single folder and image names in dataset are the same python evaluate.py \ --path_dataset ../model_data/VOC_2007_train.txt \ --path_results ../results \ --confidence 0.5 \ --iou 0.5 \ --visual It generates * statistic per image (mean over all classes) * statistic per class (mean over all images) See: - https://github.com/rafaelpadilla/Object-Detection-Metrics """ import os import sys import argparse import logging from functools import partial from pathos.multiprocessing import ProcessPool import tqdm import pandas as pd sys.path += [os.path.abspath('.'), os.path.abspath('..')] from keras_yolo3.utils import check_params_path, nb_workers, image_open, update_path from keras_yolo3.model import compute_detect_metrics from keras_yolo3.visual import draw_bounding_box CSV_NAME_RESULTS_IMAGES = 'detection-results_conf=%.2f_iou=%.2f_stat-images.csv' CSV_NAME_RESULTS_CLASSES = 'detection-results_conf=%.2f_iou=%.2f_stat-classes.csv' ANNOT_COLUMNS = ('xmin', 'ymin', 'xmax', 'ymax', 'class') # DETECT_COLUMNS = ('xmin', 'ymin', 'xmax', 'ymax', 'class', 'confidence') TEMP_IMAGE_NAME = '%s_visual.jpg' def parse_params(): # class YOLO defines the default value, so suppress any default HERE parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS) parser.add_argument('-d', '--path_dataset', type=str, required=True, help='path to the dataset, with single instance per line') parser.add_argument('-r', '--path_results', type=str, required=True, help='path to the predictions') parser.add_argument('-c', '--confidence', type=float, required=False, default=0.5, help='detection confidence score') parser.add_argument('--iou', type=float, required=False, default=0.5, help='intersection over union') parser.add_argument('--nb_jobs', type=float, help='number of parallel processes', default=0.9, required=False) parser.add_argument('--visual', default=False, action='store_true', help='visualize annot & predict') arg_params = vars(parser.parse_args()) arg_params = check_params_path(arg_params) logging.debug('PARAMETERS: \n %s', repr(arg_params)) return arg_params def draw_export_bboxes(img_path, path_out, bboxes_anot, bboxes_pred): img_name, _ = os.path.splitext(os.path.basename(img_path)) image = image_open(img_path) for bb in bboxes_anot: image = draw_bounding_box(image, bb[4], bb[:4], swap_xy=True, color=(0, 255, 0), thickness=2) for bb in bboxes_pred: image = draw_bounding_box(image, bb[4], bb[:4], swap_xy=True, color=(255, 0, 0), thickness=2) name_visu = TEMP_IMAGE_NAME % img_name path_visu = os.path.join(update_path(path_out), name_visu) image.save(path_visu) return path_visu def eval_image(line, path_results, thr_confidence=0.5, thr_iou=0.5, path_out=None): line_elems = line.strip().split() img_path = line_elems[0] img_name, _ = os.path.splitext(os.path.basename(img_path)) path_pred = os.path.join(path_results, '%s.csv' % img_name) if not os.path.isfile(path_pred): return None boxes = [list(map(int, el.split(','))) for el in line_elems[1:]] df_annot = pd.DataFrame(boxes, columns=list(ANNOT_COLUMNS)) if df_annot.empty: df_annot = pd.DataFrame(columns=ANNOT_COLUMNS) df_preds = pd.read_csv(path_pred, index_col=None) if df_preds.empty: df_preds =
pd.DataFrame(columns=ANNOT_COLUMNS)
pandas.DataFrame
import pandas as pd from sodapy import Socrata import datetime import definitions # global variables for main data: hhs_data, test_data, nyt_data_us, nyt_data_state, max_hosp_date = [],[],[],[],[] """ get_data() Fetches data from API, filters, cleans, and combines with provisional. After running, global variables are filled for use in subsequent functions """ def get_data(): global nyt_data_us global nyt_data_state global test_data global hhs_data global max_hosp_date nyt_data_us = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us.csv") nyt_data_state = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us-states.csv") client = Socrata("healthdata.gov", None) results = client.get("g62h-syeh", limit=2000000) test_results = client.get("j8mb-icvb", limit=2000000) print("LOG: Fetched all raw data") # Filter data to get columns of interest hhs_data = pd.DataFrame.from_records(results)[['state', 'date', 'inpatient_beds_used_covid']] hhs_data.inpatient_beds_used_covid = hhs_data.inpatient_beds_used_covid.fillna(0) hhs_data = hhs_data.astype({'inpatient_beds_used_covid': 'int32'}) test_data = pd.DataFrame.from_records(test_results)[['state', 'date', 'overall_outcome', 'new_results_reported']] test_data.new_results_reported = test_data.new_results_reported.fillna(0) test_data = test_data.astype({'new_results_reported': 'int32'}) print("LOG: Filtered Data") # For provisional data, gets days since most recent update of HHS time series max_date = hhs_data.date.max() max_hosp_date = max_date provisional = client.get("4cnb-m4rz", limit=2000000, where=f"update_date > '{max_date}'") hhs_provisional = pd.DataFrame.from_records(provisional)[['update_date', 'archive_link']] hhs_provisional.update_date = hhs_provisional.update_date.apply(lambda x: x[:10]) hhs_provisional.update_date = pd.to_datetime(hhs_provisional.update_date) # Gets last archive of every day group = hhs_provisional.groupby(['update_date']) hhs_provisional = group.last() # Add provisional data to HHS data frames = [] for a in hhs_provisional.iterrows(): date = a[0] url = a[1].item()['url'] df = pd.read_csv(url)[['state', 'inpatient_beds_used_covid']] df['date']=date if date > pd.Timestamp(max_date): # Avoids double counting if provisional update came after real update frames.append(df) frames.append(hhs_data) hhs_data = (pd.concat(frames)) print("LOG: Added HHS Provisional data") # Make date columns in proper format # hhs_data.date = hhs_data.date.apply(lambda x: x[:10]) hhs_data.date= pd.to_datetime(hhs_data.date) # hhs_data.to_csv("../data/hospitalizations.csv") print("LOG: Wrote HHS data to CSV") test_data.date = test_data.date.apply(lambda x: x[:10]) test_data.date = pd.to_datetime(test_data.date) nyt_data_us.date = pd.to_datetime(nyt_data_us.date) nyt_data_state.date = pd.to_datetime(nyt_data_state.date) print("LOG: Done getting data") """ get_state_cases Creates dataframe of time series date and cases for given state inputs: state_codes: List of 2-letter codes of states to query start_date (pd.Timestamp): starting date, defaults to 1-1-2020 end_date (pd.Timestamp): ending date, defaults to today returns: df with 'date' and 'test_positivity' """ def get_state_cases(state_codes, start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today(), normalize=True): curr_date = start_date input_states = [definitions.states[s] for s in state_codes] state_data = nyt_data_state[nyt_data_state.state.isin(input_states)][:] max_date = state_data.date.max() states_population = sum([definitions.populations[s] for s in input_states]) lst = [] while(curr_date <= end_date and curr_date <= max_date): day_data = state_data[state_data.date == str(curr_date)] if normalize: case_sum = day_data.cases.sum() / states_population * 1000000 else: case_sum = day_data.cases.sum() newRow = {'date': curr_date, 'cases': case_sum} lst.append(newRow) curr_date += datetime.timedelta(1) return pd.DataFrame(lst) def get_us_cases(start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today()): us_data = nyt_data_us[(nyt_data_us.date >= start_date) & (nyt_data_us.date <= end_date)] return us_data[['date', 'cases']] """ get_state_deaths Same as above, deaths """ def get_state_deaths(state_codes, start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today(), normalize=True): curr_date = start_date input_states = [definitions.states[s] for s in state_codes] state_data = nyt_data_state[nyt_data_state.state.isin(input_states)] max_date = state_data.date.max() states_population = sum([definitions.populations[s] for s in input_states]) lst = [] while(curr_date <= end_date and curr_date <= max_date): day_data = state_data[state_data.date == str(curr_date)] if normalize: case_sum = day_data.deaths.sum() / states_population * 1000000 else: case_sum = day_data.deaths.sum() newRow = {'date': curr_date, 'deaths': case_sum} lst.append(newRow) curr_date += datetime.timedelta(1) return pd.DataFrame(lst) def get_us_deaths(start_date =
pd.Timestamp(2020,1,1)
pandas.Timestamp
import os from pandas import DataFrame, read_csv from networkx import DiGraph, write_gpickle, read_gpickle from memory_profiler import profile from app.decorators.number_decorators import fmt_n from app.job import Job from app.bq_service import BigQueryService from app.file_storage import FileStorage DATE = os.getenv("DATE", default="2020-01-23") TWEET_MIN = int(os.getenv("TWEET_MIN", default="1")) # CHANGED LIMIT = os.getenv("LIMIT") BATCH_SIZE = int(os.getenv("BATCH_SIZE", default="100000")) DESTRUCTIVE = (os.getenv("DESTRUCTIVE", default="false") == "true") #GRAPH_LIMIT = os.getenv("GRAPH_LIMIT") GRAPH_BATCH_SIZE = int(os.getenv("GRAPH_BATCH_SIZE", default="10000")) GRAPH_DESTRUCTIVE = (os.getenv("GRAPH_DESTRUCTIVE", default="false") == "true") #@profile def load_graph(local_graph_filepath): print("LOADING GRAPH...") graph = read_gpickle(local_graph_filepath) print(type(graph), fmt_n(graph.number_of_nodes()), fmt_n(graph.number_of_edges())) return graph if __name__ == "__main__": print("------------------------") print("GRAPHER...") print(" DATE:", DATE) print(" TWEET_MIN:", TWEET_MIN) print(" LIMIT:", LIMIT) print(" BATCH_SIZE:", BATCH_SIZE) print(" DESTRUCTIVE:", DESTRUCTIVE) #print(" GRAPH_LIMIT:", GRAPH_LIMIT) print(" GRAPH_BATCH_SIZE:", GRAPH_BATCH_SIZE) print(" GRAPH_DESTRUCTIVE:", GRAPH_DESTRUCTIVE) print("------------------------") storage = FileStorage(dirpath=f"daily_active_friend_graphs_v4/{DATE}/tweet_min/{TWEET_MIN}") tweets_csv_filepath = os.path.join(storage.local_dirpath, "tweets.csv") bq_service = BigQueryService() job = Job() # # LOAD TWEETS # tweet_id, text, screen_name, bot, created_at # TODO: de-dup RTs so the model will only train/test on a single RT status text (PREVENT OVERFITTING) if os.path.exists(tweets_csv_filepath) and not DESTRUCTIVE: print("LOADING TWEETS...") statuses_df = read_csv(tweets_csv_filepath) else: job.start() print("DOWNLOADING TWEETS...") statuses = [] for row in bq_service.fetch_daily_active_tweeter_statuses_for_model_training(date=DATE, tweet_min=TWEET_MIN, limit=LIMIT): statuses.append(dict(row)) job.counter += 1 if job.counter % BATCH_SIZE == 0: job.progress_report() job.end() statuses_df = DataFrame(statuses) del statuses statuses_df.to_csv(tweets_csv_filepath) print("STATUSES:", fmt_n(len(statuses_df))) # # MAKE GRAPH local_nodes_csv_filepath = os.path.join(storage.local_dirpath, "active_nodes.csv") local_graph_csv_filepath = os.path.join(storage.local_dirpath, "active_edge_graph.csv") #CHANGED if os.path.exists(local_nodes_csv_filepath) and os.path.exists(local_graph_csv_filepath) and not GRAPH_DESTRUCTIVE: nodes_df =
read_csv(local_nodes_csv_filepath)
pandas.read_csv
# Title: Weather Data Aggregator # Description: Aggregates data from the weather station on Cockcroft from the OnCall API. # Author: <NAME> # Date: 17/12/2020 # Version: 1.0 # Import libraries import pandas as pd from pandas import json_normalize import json import requests from datetime import datetime, timedelta from app import csvDump import os # Variable Declarations URL = "http://172.16.17.32/panasense.oncall.finestra.live/api" ENDPOINT = "/dailypollarchive" DEVICE = "0FF00FFA2DBB4A029D2902CD33A43364" # Cockcroft Weather Station GUID ACTION_IDENT_TEMP = "AD7396F9F28D4DA798F0370934C368A9" # Air Tempertaure in C endpoint GUID ACTION_IDENT_HUM = "8C5DAA6DB83E4E5C8310A27F6E549527" # Relative Humidity endpoint GUID ACTION_IDENT_PRE = "E589656878094D03A1554197DC90B5B5" # Pressure endpoint GUID ACTION_IDENT_RF_MM = "90828B8769E74A5B9F74761335CB1676" # Rainfall in mm endpoint GUID ACTION_IDENT_WS_MS = "B04BE963E74F467A875C534B90BE05A0" # Windspeed in ms endpoint GUID ACTION_IDENT_WD_D = "752FC7FCFE584FBF980E2FFCAD991D87" # Wind direction endpoint GUID ACTION_IDENT_SOL_KWM2 = "4EF9B920C87444939DE8069D37ECA200" # Solar Radiation endpoint GUID START = "2021-03-01T00:00:00" END = "2021-09-08T23:00:00" dropCols = ['RECID','Limit','DeviceGUID','ActionGUID','PollType','RV'] # POST credentials with open("./config/.onCallAPI.json") as f: accessToken = json.load(f) API_KEY = accessToken['TOKEN'] DATE_FORMAT = "%Y-%m-%dT%H:%M:%S" # Date format for parsing datetime returned by OnCall API sd = pd.DataFrame() sdH = pd.DataFrame() sdP = pd.DataFrame() sdRF = pd.DataFrame() sdWS = pd.DataFrame() sdWSD = pd.DataFrame() sdS = pd.DataFrame() # Function declaration def RESAMPLE_DATA(df, RESAMPLE_PERIOD = '60min'): #df.index.names = ['Datetime'] df = df.resample(RESAMPLE_PERIOD).mean() # Resample data to an average over a defined period df = df.reindex(pd.date_range(df.index.min(), df.index.max(), freq=RESAMPLE_PERIOD)) return df def RENAME_COLUMNS(df, valName, inplaceB = True): df.rename(columns={"PollTimeStamp": "Datetime", "VarValue": valName}, inplace = inplaceB) # Rename used columns to more appropriate names return df # Main body start = datetime.strptime(START, DATE_FORMAT).date() end = datetime.strptime(END, DATE_FORMAT).date() step = timedelta(days=1) # Sets the step gap for getting data in specific increments while start < end: stepStart = start.strftime(DATE_FORMAT) start += step stepEnd = start.strftime(DATE_FORMAT) print('Step Start ' + str(stepStart) + ' | Step End ' + str(stepEnd)) # Fetch Temperature data REQUEST_URL = URL + ENDPOINT + "/" + DEVICE + "/" + ACTION_IDENT_TEMP + "?start=" + stepStart + "&end=" + stepEnd + "&api_key=" + API_KEY # API URL for temperature data response = requests.get(REQUEST_URL) #print("Temperature Endpoint Status " + str(response.status_code)) if (response.status_code != 200): break # Break the loop is the returned status code is not HTTP 200 jsonLoad = response.json() # Load the recieved JSON file from the request sensorData = json_normalize(jsonLoad) # Convert the JSONs into pandas dataframes if not (sensorData.empty): #print('Valid content returned') sensorData = RENAME_COLUMNS(sensorData, "Temperature in C") # Rename used columns to more appropriate names sensorData.drop(dropCols, axis=1, inplace=True) # Drop irrelevant variables sensorData['Datetime'] = pd.to_datetime(sensorData['Datetime']) sensorData = sensorData.set_index('Datetime') #csvDump("Temperature", RESAMPLE_DATA(sensorData), index_set = True, index_label_usr = "Datetime") else: print("Temperature Response Empty, skipping...") # Fetch Humidity data REQUEST_URL = URL + ENDPOINT + "/" + DEVICE + "/" + ACTION_IDENT_HUM + "?start=" + stepStart + "&end=" + stepEnd + "&api_key=" + API_KEY # API URl for humidity data response = requests.get(REQUEST_URL) #print("Humidity Endpoint Status " + str(response.status_code)) if (response.status_code != 200): break # Break the loop is the returned status code is not HTTP 200 jsonLoad = response.json() # Load the recieved JSON file from the request sensorDataHum = json_normalize(jsonLoad) # Convert the JSONs into pandas dataframes if not (sensorDataHum.empty): sensorDataHum = RENAME_COLUMNS(sensorDataHum, "Humidity in %") # Rename used columns to more appropriate names sensorDataHum.drop(dropCols, axis=1, inplace=True) # Drop irrelevant variables sensorDataHum['Datetime'] = pd.to_datetime(sensorDataHum['Datetime']) sensorDataHum = sensorDataHum.set_index('Datetime') #csvDump("Humidity", RESAMPLE_DATA(sensorDataHum), index_set = True, index_label_usr = "Datetime") else: print("Humidity Response Empty, skipping...") # Fetch Pressure data REQUEST_URL = URL + ENDPOINT + "/" + DEVICE + "/" + ACTION_IDENT_PRE + "?start=" + stepStart + "&end=" + stepEnd + "&api_key=" + API_KEY # API URl for humidity data response = requests.get(REQUEST_URL) #print("Pressure Endpoint Status " + str(response.status_code)) if (response.status_code != 200): break # Break the loop is the returned status code is not HTTP 200 jsonLoad = response.json() # Load the recieved JSON file from the request sensorDataPre = json_normalize(jsonLoad) # Convert the JSONs into pandas dataframes if not (sensorDataPre.empty): sensorDataPre = RENAME_COLUMNS(sensorDataPre, "Pressure in mBar") # Rename used columns to more appropriate names sensorDataPre.drop(dropCols, axis=1, inplace=True) # Drop irrelevant variables sensorDataPre['Datetime'] = pd.to_datetime(sensorDataPre['Datetime']) sensorDataPre = sensorDataPre.set_index('Datetime') #csvDump("Pressure", RESAMPLE_DATA(sensorDataPre), index_set = True, index_label_usr = "Datetime") else: print("Pressure Response Empty, skipping...") # Fetch Rainfall mm data REQUEST_URL = URL + ENDPOINT + "/" + DEVICE + "/" + ACTION_IDENT_RF_MM + "?start=" + stepStart + "&end=" + stepEnd + "&api_key=" + API_KEY # API URl for humidity data response = requests.get(REQUEST_URL) #print("Rainfall Endpoint Status " + str(response.status_code)) if (response.status_code != 200): break # Break the loop is the retur bned status code is not HTTP 200 jsonLoad = response.json() # Load the recieved JSON file from the request sensorDataRF = json_normalize(jsonLoad) # Convert the JSONs into pandas dataframes if not (sensorDataRF.empty): sensorDataRF = RENAME_COLUMNS(sensorDataRF, "Rainfall in mm") # Rename used columns to more appropriate names sensorDataRF.drop(dropCols, axis=1, inplace=True) # Drop irrelevant variables sensorDataRF['Datetime'] = pd.to_datetime(sensorDataRF['Datetime']) sensorDataRF = sensorDataRF.set_index('Datetime') #csvDump("Rainfall", RESAMPLE_DATA(sensorDataRF), index_set = True, index_label_usr = "Datetime") else: print("Rainfall Response Empty, skipping...") # Fetch Windspeed m/s data REQUEST_URL = URL + ENDPOINT + "/" + DEVICE + "/" + ACTION_IDENT_WS_MS + "?start=" + stepStart + "&end=" + stepEnd + "&api_key=" + API_KEY # API URl for humidity data response = requests.get(REQUEST_URL) #print("Windspeed Endpoint Status " + str(response.status_code)) if (response.status_code != 200): break # Break the loop is the returned status code is not HTTP 200 jsonLoad = response.json() # Load the recieved JSON file from the request sensorDataWS = json_normalize(jsonLoad) # Convert the JSONs into pandas dataframes if not (sensorDataWS.empty): sensorDataWS = RENAME_COLUMNS(sensorDataWS, "Windspeed in ms") # Rename used columns to more appropriate names sensorDataWS.drop(dropCols, axis=1, inplace=True) # Drop irrelevant variables sensorDataWS['Datetime'] = pd.to_datetime(sensorDataWS['Datetime']) sensorDataWS = sensorDataWS.set_index('Datetime') #csvDump("Windspeed", RESAMPLE_DATA(sensorDataWS), index_set = True, index_label_usr = "Datetime") else: print("Windspeed Response Empty, skipping...") # Fetch Windspeed direction in degrees data REQUEST_URL = URL + ENDPOINT + "/" + DEVICE + "/" + ACTION_IDENT_WD_D + "?start=" + stepStart + "&end=" + stepEnd + "&api_key=" + API_KEY # API URl for humidity data response = requests.get(REQUEST_URL) #print("Wind direction Endpoint Status " + str(response.status_code)) if (response.status_code != 200): break # Break the loop is the returned status code is not HTTP 200 jsonLoad = response.json() # Load the recieved JSON file from the request sensorDataWSD =
json_normalize(jsonLoad)
pandas.json_normalize
""" Enrich Stocks and ETF data with different indicators and generates a CSV file for analysis """ import argparse from datetime import datetime from pathlib import Path import pandas as pd from common.analyst import fetch_data_from_cache from common.filesystem import output_dir from common.market import load_all_tickers from common.subprocess_runner import run_cmd from common.symbols import macro_etfs def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "-v", "--view-in-browser", action="store_true", default=False, help="Open dTale in browser", ) return parser.parse_args() if __name__ == "__main__": args = parse_args() view_in_browser = args.view_in_browser stock_tickers = load_all_tickers() etf_tickers = macro_etfs.keys() print(f"Analysing {len(stock_tickers)} stocks and {len(etf_tickers)} etfs") stocks_db = filter( lambda val: val, [fetch_data_from_cache(stock, is_etf=False) for stock in stock_tickers], ) etfs_db = filter( lambda val: val, [fetch_data_from_cache(etf, is_etf=True) for etf in etf_tickers], ) combined_db = list(stocks_db) + list(etfs_db) file_path = "{}/{}-data.csv".format( output_dir(), datetime.now().strftime("%Y-%m-%d") ) scanner_df =
pd.DataFrame(combined_db, copy=True)
pandas.DataFrame
import unittest import pandas as pd import numpy as np from autopandas_v2.ml.featurization.featurizer import RelationGraph from autopandas_v2.ml.featurization.graph import GraphEdge, GraphEdgeType, GraphNodeType, GraphNode from autopandas_v2.ml.featurization.options import GraphOptions get_node_type = GraphNodeType.get_node_type class TestRelationGraphFeaturizer(unittest.TestCase): def test_basic_max(self): input_df = pd.DataFrame([[1, 2], [2, 3], [2, 0]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) input_20 = GraphNode("I0", '[2,0]', get_node_type(input_df.iat[2, 0])) input_21 = GraphNode("I0", '[2,1]', get_node_type(input_df.iat[2, 1])) output_df = pd.DataFrame([[2, 3]]) output_00 = GraphNode("O0", '[0,0]', get_node_type(output_df.iat[0, 0])) output_01 = GraphNode("O0", '[0,1]', get_node_type(output_df.iat[0, 1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output_df) rel_graph_edges = rel_graph.edges # positional edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_20, GraphEdgeType.ADJACENCY), GraphEdge(input_20, input_21, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_11, input_21, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_01, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) # equality edges equality_edges = [ GraphEdge(input_10, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_20, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_00, GraphEdgeType.EQUALITY), # redundant GraphEdge(input_11, output_01, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_max_series(self): input_df = pd.DataFrame([[1, 2], [2, 3], [2, 0]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) input_20 = GraphNode("I0", '[2,0]', get_node_type(input_df.iat[2, 0])) input_21 = GraphNode("I0", '[2,1]', get_node_type(input_df.iat[2, 1])) output = pd.DataFrame.max(input_df) output_00 = GraphNode("O0", '[0,0]', get_node_type(output.iat[0])) output_10 = GraphNode("O0", '[1,0]', get_node_type(output.iat[1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges # positional edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_20, GraphEdgeType.ADJACENCY), GraphEdge(input_20, input_21, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_11, input_21, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_10, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) # equality edges equality_edges = [ GraphEdge(input_10, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_20, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_00, GraphEdgeType.EQUALITY), # redundant GraphEdge(input_11, output_10, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_values(self): input_df = pd.DataFrame([[1, 2], [3, 4]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) output = input_df.values output_00 = GraphNode("O0", '[0,0]', get_node_type(output[0, 0])) output_01 = GraphNode("O0", '[0,1]', get_node_type(output[0, 1])) output_10 = GraphNode("O0", '[1,0]', get_node_type(output[1, 0])) output_11 = GraphNode("O0", '[1,1]', get_node_type(output[1, 1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges # positional edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_01, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_10, GraphEdgeType.ADJACENCY), GraphEdge(output_10, output_11, GraphEdgeType.ADJACENCY), GraphEdge(output_01, output_11, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) equality_edges = [ GraphEdge(input_00, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_10, output_10, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_01, GraphEdgeType.EQUALITY), GraphEdge(input_11, output_11, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_dict(self): input_df = pd.DataFrame([[1, 2], [3, 4]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) output = {"A": [1, 3], "B": [2, 4]} output_00 = GraphNode("O0", '[0,0]', get_node_type(output['A'][0])) output_01 = GraphNode("O0", '[0,1]', get_node_type(output['B'][0])) output_10 = GraphNode("O0", '[1,0]', get_node_type(output['A'][1])) output_11 = GraphNode("O0", '[1,1]', get_node_type(output['B'][1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_01, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_10, GraphEdgeType.ADJACENCY), GraphEdge(output_10, output_11, GraphEdgeType.ADJACENCY), GraphEdge(output_01, output_11, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) equality_edges = [ GraphEdge(input_00, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_10, output_10, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_01, GraphEdgeType.EQUALITY), GraphEdge(input_11, output_11, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_groupby_output(self): input_df = pd.DataFrame({ "Name": ["Alice", "Bob", "Mallory", "Mallory", "Bob", "Mallory"], "City": ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]}) output = input_df.groupby("Name") options = GraphOptions() options.NODE_TYPES = True options.ADJACENCY_EDGES = False rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges alice_nodes_in = [ GraphNode("I0", '[0,0]', GraphNodeType.STR) ] alice_nodes_out = [ GraphNode("O0_0", '[0,0]', GraphNodeType.STR) ] bob_nodes_in = [ GraphNode("I0", '[1,0]', GraphNodeType.STR), GraphNode("I0", '[4,0]', GraphNodeType.STR) ] bob_nodes_out = [ GraphNode("O0_1", '[0,0]', GraphNodeType.STR), GraphNode("O0_1", '[1,0]', GraphNodeType.STR) ] mallory_nodes_in = [ GraphNode("I0", '[2,0]', GraphNodeType.STR), GraphNode("I0", '[3,0]', GraphNodeType.STR), GraphNode("I0", '[5,0]', GraphNodeType.STR) ] mallory_nodes_out = [ GraphNode("O0_2", '[0,0]', GraphNodeType.STR), GraphNode("O0_2", '[1,0]', GraphNodeType.STR), GraphNode("O0_2", '[2,0]', GraphNodeType.STR) ] seattle_nodes_in = [ GraphNode("I0", '[0,1]', GraphNodeType.STR), GraphNode("I0", '[1,1]', GraphNodeType.STR), GraphNode("I0", '[3,1]', GraphNodeType.STR), GraphNode("I0", '[4,1]', GraphNodeType.STR), ] seattle_nodes_out = [ GraphNode("O0_0", '[0,1]', GraphNodeType.STR), GraphNode("O0_1", '[0,1]', GraphNodeType.STR), GraphNode("O0_2", '[1,1]', GraphNodeType.STR) ] portland_nodes_in = [ GraphNode("I0", '[2,1]', GraphNodeType.STR), GraphNode("I0", '[5,1]', GraphNodeType.STR) ] portland_nodes_out = [ GraphNode("O0_2", '[0,1]', GraphNodeType.STR), GraphNode("O0_2", '[2,1]', GraphNodeType.STR) ] def check_edges(in_nodes, out_nodes): for in_node in in_nodes: for out_node in out_nodes: edge = GraphEdge(in_node, out_node, GraphEdgeType.EQUALITY) self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) check_edges(alice_nodes_in, alice_nodes_out) check_edges(bob_nodes_in, bob_nodes_out) check_edges(mallory_nodes_in, mallory_nodes_out) check_edges(portland_nodes_in, portland_nodes_out) check_edges(seattle_nodes_in, seattle_nodes_out) def test_groupby_input(self): df = pd.DataFrame({ "Name": ["Alice", "Bob", "Mallory", "Mallory", "Bob", "Mallory"], "City": ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]}) input_ = df.groupby("Name") output = input_.count().reset_index() options = GraphOptions() options.NODE_TYPES = True options.ADJACENCY_EDGES = False rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_], output) rel_graph_edges = rel_graph.edges alice_nodes_in = [ GraphNode("I0_0", '[0,0]', GraphNodeType.STR) ] alice_nodes_out = [ GraphNode("O0", '[0,0]', GraphNodeType.STR) ] bob_nodes_in = [ GraphNode("I0_1", '[0,0]', GraphNodeType.STR), GraphNode("I0_1", '[1,0]', GraphNodeType.STR) ] bob_nodes_out = [ GraphNode("O0", '[1,0]', GraphNodeType.STR) ] mallory_nodes_in = [ GraphNode("I0_2", '[0,0]', GraphNodeType.STR), GraphNode("I0_2", '[1,0]', GraphNodeType.STR), GraphNode("I0_2", '[2,0]', GraphNodeType.STR) ] mallory_nodes_out = [ GraphNode("O0", '[2,0]', GraphNodeType.STR) ] def check_edges(in_nodes, out_nodes): for in_node in in_nodes: for out_node in out_nodes: edge = GraphEdge(in_node, out_node, GraphEdgeType.EQUALITY) self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) check_edges(alice_nodes_in, alice_nodes_out) check_edges(bob_nodes_in, bob_nodes_out) check_edges(mallory_nodes_in, mallory_nodes_out) def test_idx_multi(self): tuples = [("bar", "one"), ("bar", "two")] index = pd.MultiIndex.from_tuples(tuples) data = [[0], [1]] input_df = pd.DataFrame(data, index=index) # 0 # bar one 0 # two 1 output_df = input_df.unstack() # 0 # one two # bar 0 1 options = GraphOptions() options.COLUMN_NODES = True options.INDEX_NODES = True options.ADJACENCY_EDGES = True options.EQUALITY_EDGES = True options.NODE_TYPES = True options.INDEX_EDGES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output_df) rel_graph_edges = rel_graph.edges bar_in_0 = GraphNode("I0", '[0,-2]', GraphNodeType.INDEX) bar_in_1 = GraphNode("I0", '[1,-2]', GraphNodeType.INDEX) bar_out = GraphNode("O0", '[0,-1]', GraphNodeType.INDEX) one_in = GraphNode("I0", '[0,-1]', GraphNodeType.INDEX) two_in = GraphNode("I0", '[1,-1]', GraphNodeType.INDEX) one_out = GraphNode("O0", '[-1,0]', GraphNodeType.COLUMN) two_out = GraphNode("O0", '[-1,1]', GraphNodeType.COLUMN) in_0 = GraphNode("I0", '[0,0]', GraphNodeType.INT) in_1 = GraphNode("I0", '[1,0]', GraphNodeType.INT) out_0 = GraphNode("O0", '[0,0]', GraphNodeType.INT) out_1 = GraphNode("O0", '[0,1]', GraphNodeType.INT) adjacency_edges = [ GraphEdge(bar_in_0, bar_in_1, GraphEdgeType.ADJACENCY), GraphEdge(bar_in_0, one_in, GraphEdgeType.ADJACENCY), GraphEdge(bar_in_1, two_in, GraphEdgeType.ADJACENCY), GraphEdge(one_in, two_in, GraphEdgeType.ADJACENCY) ] for edge in adjacency_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) indexing_edges = [ GraphEdge(bar_in_0, in_0, GraphEdgeType.INDEX), GraphEdge(one_in, in_0, GraphEdgeType.INDEX), GraphEdge(bar_in_1, in_1, GraphEdgeType.INDEX), GraphEdge(two_in, in_1, GraphEdgeType.INDEX), GraphEdge(bar_out, out_0, GraphEdgeType.INDEX), GraphEdge(bar_out, out_1, GraphEdgeType.INDEX) ] for edge in indexing_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) equality_edges = [ GraphEdge(bar_in_0, bar_out, GraphEdgeType.EQUALITY), GraphEdge(bar_in_1, bar_out, GraphEdgeType.EQUALITY), GraphEdge(one_in, one_out, GraphEdgeType.EQUALITY), GraphEdge(two_in, two_out, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_column_multi(self): column_labels = [['bar', 'bar', 'baz', 'baz'], ['one', 'two', 'one', 'two']] tuples = list(zip(*column_labels)) col_index = pd.MultiIndex.from_tuples(tuples) data = [[0, 1, 2, 3], [4, 5, 6, 7]] input_df = pd.DataFrame(data, columns=col_index) # bar baz # one two one two # 0 0 1 2 3 # 1 4 5 6 7 output_df = input_df.stack().reset_index() # level_0 level_1 bar baz # 0 0 one 0 2 # 1 0 two 1 3 # 2 1 one 4 6 # 3 1 two 5 7 options = GraphOptions() options.COLUMN_NODES = True options.ADJACENCY_EDGES = True options.EQUALITY_EDGES = True options.NODE_TYPES = True options.INDEX_EDGES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output_df) rel_graph_edges = rel_graph.edges col_nodes = [[GraphNode("I0", '[-2,0]', GraphNodeType.COLUMN), GraphNode("I0", '[-2,1]', GraphNodeType.COLUMN), GraphNode("I0", '[-2,2]', GraphNodeType.COLUMN), GraphNode("I0", '[-2,3]', GraphNodeType.COLUMN)], [GraphNode("I0", '[-1,0]', GraphNodeType.COLUMN), GraphNode("I0", '[-1,1]', GraphNodeType.COLUMN), GraphNode("I0", '[-1,2]', GraphNodeType.COLUMN), GraphNode("I0", '[-1,3]', GraphNodeType.COLUMN)], ] adjacency_edges = [ GraphEdge(col_nodes[0][0], col_nodes[1][0], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[0][0], col_nodes[0][1], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[1][0], col_nodes[1][1], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[1][1], col_nodes[1][2], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[0][1], col_nodes[1][1], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[0][1], col_nodes[0][2], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[0][2], col_nodes[1][2], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[0][2], col_nodes[0][3], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[1][2], col_nodes[1][3], GraphEdgeType.ADJACENCY), GraphEdge(col_nodes[0][3], col_nodes[1][3], GraphEdgeType.ADJACENCY) ] for edge in adjacency_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) # indexing edges input_coli_elems = [ [GraphNode("I0", '[0,0]', GraphNodeType.INT), GraphNode("I0", '[1,0]', GraphNodeType.INT)], [GraphNode("I0", '[0,1]', GraphNodeType.INT), GraphNode("I0", '[1,1]', GraphNodeType.INT)], [GraphNode("I0", '[0,2]', GraphNodeType.INT), GraphNode("I0", '[1,2]', GraphNodeType.INT)], [GraphNode("I0", '[0,3]', GraphNodeType.INT), GraphNode("I0", '[1,3]', GraphNodeType.INT)] ] def check_edges(in_nodes, out_nodes, edge_type): for in_node in in_nodes: for out_node in out_nodes: edge = GraphEdge(in_node, out_node, edge_type) self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) for i in range(4): in_nodes = [col_nodes[0][i], col_nodes[1][i]] out_nodes = input_coli_elems[i] check_edges(in_nodes, out_nodes, GraphEdgeType.INDEX) # equality_edges bars = [col_nodes[0][0], col_nodes[0][1]] bazs = [col_nodes[0][2], col_nodes[0][3]] ones = [col_nodes[1][0], col_nodes[1][2]] twos = [col_nodes[1][1], col_nodes[1][3]] out_01 = GraphNode("O0", '[0,1]', GraphNodeType.STR) out_11 = GraphNode("O0", '[1,1]', GraphNodeType.STR) out_21 = GraphNode("O0", '[2,1]', GraphNodeType.STR) out_31 = GraphNode("O0", '[3,1]', GraphNodeType.STR) out_col_2 = GraphNode("O0", '[-1,2]', GraphNodeType.COLUMN) out_col_3 = GraphNode("O0", '[-1,3]', GraphNodeType.COLUMN) check_edges(bars, [out_col_2], GraphEdgeType.EQUALITY) check_edges(bazs, [out_col_3], GraphEdgeType.EQUALITY) check_edges(ones, [out_01, out_21], GraphEdgeType.EQUALITY) check_edges(twos, [out_11, out_31], GraphEdgeType.EQUALITY) def test_no_spurious_for_idx_arg(self): df =
pd.DataFrame([[5, 2], [2, 3], [2, 0]], columns=["A", "B"])
pandas.DataFrame
import pandas as pd import sqlalchemy from constants import DB_FOLDER, SYMBOL import matplotlib.pyplot as plt def create_engine(symbol): engine = sqlalchemy.create_engine(f"sqlite:///{DB_FOLDER}/{symbol}-stream.db") return engine def fetch_dataframe(symbol, engine): try: return
pd.read_sql(symbol, engine)
pandas.read_sql
import numpy as np import pandas as pd from scipy.io import loadmat from tqdm import tqdm ORIG_AU_NAMES = [ 'AU1', 'AU1-2', 'AU2', 'AU2L', 'AU4', 'AU5', 'AU6', 'AU6L', 'AU6R', 'AU7L', 'AU7R', 'AU9', 'AU10Open', 'AU10LOpen', 'AU10ROpen', 'AU11L', 'AU11R', 'AU12', 'AU25-12', 'AU12L', 'AU12R', 'AU13', 'AU14', 'AU14L', 'AU14R', 'AU15', 'AU16Open', 'AU17', 'AU20', 'AU20L', 'AU20R', 'AU22', 'AU23', 'AU24', 'AU25', 'AU26', 'AU27i', 'AU38', 'AU39', 'AU43', 'AU7', 'AU12-6' ] rename_au = {'AU10Open': 'AU10', 'AU10LOpen': 'AU10L', 'AU10ROpen': 'AU10R', 'AU16Open': 'AU16', 'AU27i': 'AU27'} au_names = [rename_au[name] if name in rename_au.keys() else name for name in ORIG_AU_NAMES] emo_names = ['happy', 'surprise', 'fear', 'disgust', 'anger', 'sadness', 'other'] resp_mapper = {} i = 1 for emo in emo_names: for inten in range(1, 6): resp_mapper[i] = {'emotion': emo, 'intensity': inten} i += 1 mat = loadmat('data/raw/EA_data_Lukas.mat') resp = mat['responses'].squeeze() stim_au = mat['stim_au_patterns'] stim_gender = mat['stim_gend'].squeeze() stim_id = mat['stim_id'].squeeze() sub_idx = mat['participants'].squeeze() subs = np.unique(sub_idx) for i, sub in tqdm(enumerate(subs)): idx = sub_idx == sub au_data = stim_au[idx, :] idx = [] for ii in range(au_data.shape[0]): au_on = np.where(au_data[ii, :] > 0)[0] this_idx= '_'.join( [f'{au_names[iii]}-{int(100 * au_data[ii, iii])}' for iii in au_on] ) if not this_idx: this_idx = 'empty' idx.append(this_idx) df =
pd.DataFrame(au_data, columns=au_names, index=idx)
pandas.DataFrame
# This scripts generates graphs for # outputs of benchmarks import argparse import itertools import os import matplotlib.pyplot as plt import pandas as pd import numpy as np from matplotlib.lines import Line2D LINE_STYLES = ["-", ":", "-.", "--"] cmap = plt.cm.get_cmap('Dark2') COLORS = [cmap(i) for i in range(5)] MARKERS = ["o", "v", "^", "<", ">", "1", "2", "3", "4", "8", "s", "x", "D"] def style_gen(): for line, color, marker in zip( itertools.cycle(LINE_STYLES), itertools.cycle(COLORS), itertools.cycle(MARKERS)): yield { "line": line, "color": color, "marker": marker } class Data: def __init__(self, filename): self.raw_data = pd.read_csv(filename) self.raw_data.drop("graph_set", axis=1, inplace=True) exclude = ["tlevel-simple", "blevel-simple"] self.raw_data = pd.DataFrame( self.raw_data[~self.raw_data["scheduler_name"].isin(exclude)]) mins = self.raw_data.groupby( ["graph_id", "cluster_name", "bandwidth", "netmodel"] )["time"].transform(pd.Series.min) self.raw_data["score"] = self.raw_data["time"] / mins def prepare(self, cluster_name=None, exclude_single=False, netmodel="maxmin", min_sched_interval=0.1, imode="exact"): rd = self.raw_data if netmodel: f = rd["netmodel"] == netmodel else: f = rd["netmodel"].isin(["simple", "maxmin"]) if min_sched_interval is not None: f &= rd["min_sched_interval"] == min_sched_interval else: f &= rd["min_sched_interval"].isin([0.0, 0.1, 0.4, 1.6, 6.4]) if imode is not None: f &= rd["imode"] == imode else: f &= rd["imode"].isin(["exact", "mean", "user"]) if cluster_name: f &= rd["cluster_name"] == cluster_name if cluster_name: f &= rd["scheduler_name"] != "single" return
pd.DataFrame(rd[f])
pandas.DataFrame
import json, os, logging from typing import Tuple, Optional import pandas as pd from datetime import datetime from jinja2 import Environment, FileSystemLoader, select_autoescape from iplotter import ChartJSPlotter from iplotter import GCPlotter def read_bcl2fastq_stats_data_from_pandas(data: dict) -> Tuple[list, list, list]: ''' A function for parsing Stats.json files from Illumina BCL2Fastq output :param data: A dictionary containing the following keys * ConversionResults * UnknownBarcodes :returns: Three lists ''' try: row_l = list() row_s = list() unknown_df = list() for i in data.get('ConversionResults'): lane_number = i.get('LaneNumber') total_cluster_raw = i.get('TotalClustersRaw') total_cluster_pf = i.get('TotalClustersPF') total_yield = i.get('Yield') row_l.append({ 'Lane': lane_number, 'Total_cluster_raw': total_cluster_raw, 'Total_cluster_pf': total_cluster_pf, 'Total_yield': total_yield}) demux_results = i.get('DemuxResults') for j in demux_results: sample_id = j.get('SampleId') sample_name = j.get('SampleName') index = j.get('IndexMetrics')[0].get('IndexSequence') num_reads = j.get('NumberReads') yield_val = j.get('Yield') perfect_barcodes = j['IndexMetrics'][0]['MismatchCounts']['0'] yield_q30 = 0 qual_score_sum = 0 read_metrics = j.get('ReadMetrics') for read in read_metrics: q30_bases = int(read.get('YieldQ30')) yield_q30 += q30_bases qual_score = int(read.get('QualityScoreSum')) qual_score_sum += qual_score row_s.append({ 'Lane': lane_number, 'Sample_ID': sample_id, 'Sample_Name': sample_name, 'Index_seq': index, 'Num_reads': num_reads, 'Perfect_barcode': perfect_barcodes, 'Yield_q30': yield_q30, 'Yield': int(yield_val), 'Qual_score_sum': qual_score_sum}) for unknown_entry in data.get('UnknownBarcodes'): lane_id = unknown_entry.get('Lane') barcodes = unknown_entry.get('Barcodes') for barcode, read in barcodes.items(): unknown_df.\ append({ 'Lane': lane_id, 'Barcode': barcode, 'Reads': read }) return row_l, row_s, unknown_df except Exception as e: raise ValueError(e) def read_data_via_pandas(data_path: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: ''' A function for reading list of Stats.json files from Illumina BCL2FASTQ output :param data_path: A list of Stats.json file paths :returns: Three Pandas DataFrames ''' try: summary_records = pd.DataFrame() sample_records = pd.DataFrame() undetermined_records = pd.DataFrame() for f in data_path: with open(f, 'r') as fp: json_data = json.load(fp) row_l, row_s, unknown_df = \ read_bcl2fastq_stats_data_from_pandas(json_data) summary_records = \ pd.concat([summary_records, pd.DataFrame(row_l)], ignore_index=True) sample_records = \ pd.concat([sample_records,
pd.DataFrame(row_s)
pandas.DataFrame
import time import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import savefig from sklearn import preprocessing from sklearn.model_selection import KFold from sklearn.naive_bayes import MultinomialNB from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from operator import itemgetter import math import csv attributeType = ["qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "numerical", "qualitative", "qualitative"] def performLabelEncoding(dataframe): le = preprocessing.LabelEncoder() i = 0 # For every column for column in dataframe: # Excluding the last two if i == 20: break # If attribute is qualitative if attributeType[i] == "qualitative": # Label encode it dataframe[column] = le.fit_transform(dataframe[column]) i += 1 return dataframe def createPlots(dataframe): good = dataframe[dataframe["Label"] == 1] bad = dataframe[dataframe["Label"] == 2] i = 0 # For every column for column in dataframe: # Excluding the last two if i == 20: break # If attribute is qualitative if attributeType[i] == "qualitative": plt.title(column + " Good") good[column].value_counts().plot(kind='bar') name = "output/Attribute" + str(i + 1) + "_" + "good.png" savefig(name) plt.figure() plt.title(column + " Bad") bad[column].value_counts().plot(kind='bar') name = "output/Attribute" + str(i + 1) + "_" + "bad.png" savefig(name) if i < 19: plt.figure() # If attribute is numerical elif attributeType[i] == "numerical": plt.title(column + " Good") good.boxplot(column) name = "output/Attribute" + str(i + 1) + "_" + "good.png" savefig(name) plt.figure() plt.title(column + " Bad") bad.boxplot(column) name = "output/Attribute" + str(i + 1) + "_" + "bad.png" savefig(name) if i < 19: plt.figure() i += 1 def classifiers(dataframe): kf = KFold(n_splits=10) attributeColumns = dataframe.iloc[:, 0:20] svm_accuracy = 0 # Run SVM print("Running SVM...(this might take some time)") for train_index, test_index in kf.split(dataframe): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = svm.SVC(gamma=1.0, C=1.0, kernel="rbf").fit(X_train_counts, np.array(dataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) svm_accuracy += accuracy_score(np.array(dataframe["Label"])[test_index], yPred) svm_accuracy /= 10 print("SVM Accuracy: ", svm_accuracy) rf_accuracy = 0 # Run Random Forests print("Running Random Forest...") for train_index, test_index in kf.split(dataframe): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = RandomForestClassifier().fit(X_train_counts, np.array(dataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) rf_accuracy += accuracy_score(np.array(dataframe["Label"])[test_index], yPred) rf_accuracy /= 10 print("Random Forest Accuracy: ", rf_accuracy) nb_accuracy = 0 # Run Naive Bayes print("Running Naive Bayes...") for train_index, test_index in kf.split(dataframe): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = MultinomialNB().fit(X_train_counts, np.array(dataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) nb_accuracy += accuracy_score(np.array(dataframe["Label"])[test_index], yPred) nb_accuracy /= 10 print("Naive Bayes Accuracy: ", nb_accuracy) # Output to a .csv file out_file = open("output/EvaluationMetric_10fold.csv", 'w') wr = csv.writer(out_file, delimiter="\t") firstLine = ["Statistic Measure", "Naive Bayes", "Random Forest", "SVM"] wr.writerow(firstLine) secondLine = ["Accuracy", nb_accuracy, rf_accuracy, svm_accuracy] wr.writerow(secondLine) def predictions(dataframe, test_dataframe): test_dataframe = performLabelEncoding(test_dataframe) # Convert to numpy array only the attributes (exclude label & id) X_train = np.array(dataframe.iloc[:, 0:20]) X_test = np.array(test_dataframe.iloc[:, 0:20]) clf_cv = RandomForestClassifier().fit(X_train, np.array(dataframe["Label"])) predicted = clf_cv.predict(X_test) # Output to a .csv file out_file = open("output/testSet_Predictions.csv", 'w') wr = csv.writer(out_file, delimiter="\t") firstLine = ["Client_ID", "Predicted_Label"] # Write the first line wr.writerow(firstLine) # For every prediction for i in range(len(test_dataframe)): # If its good if predicted[i] == 1: line = [int(test_dataframe["Id"][i]), "Good"] # If its bad else: line = [int(test_dataframe["Id"][i]), "Bad"] # Write the line wr.writerow(line) def entropy(dataframe, attribute): attributeFrequency = {} entropy = 0.0 # For every row of the dataframe, count the frequencies per value for i in range(len(dataframe)): value = dataframe[attribute][i] if value in attributeFrequency: attributeFrequency[value] += 1.0 else: attributeFrequency[value] = 1.0 # For each value apply the entropy formula for frequency in attributeFrequency.values(): entropy += (-frequency / len(dataframe)) * math.log(frequency / len(dataframe), 2) return entropy def informationGain(dataframe, attribute): attributeFrequency = {} subsetEntropy = 0.0 # For every row of the dataframe, count the frequencies per value for i in range(len(dataframe)): value = dataframe[attribute][i] if value in attributeFrequency: attributeFrequency[value] += 1.0 else: attributeFrequency[value] = 1.0 # For each value apply the information gain formula for keyValue in attributeFrequency.keys(): weight = attributeFrequency[keyValue] / sum(attributeFrequency.values()) dataframeSubset =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.preprocessing import StandardScaler from scipy import signal from scipy.io import loadmat from sklearn.metrics import confusion_matrix import os from tensorflow.keras.models import Sequential, Model, load_model import datetime from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow import keras as K from tqdm import tqdm from sklearn.decomposition import PCA import scipy as sp def rms(data): return np.sqrt(np.mean(data ** 2)) def hist(data, nbins=20): histsig, bin_edges = np.histogram(data, bins=nbins) return tuple(histsig) def entropy(data): pk = sp.stats.rv_histogram(np.histogram(data, bins=20)).pdf(data) return sp.stats.entropy(pk) def kurtosis(data): return sp.stats.kurtosis(data) def zero_cross(data): return len(np.where(np.diff(np.sign(data)))[0]) / len(data) def min(data): return np.min(data) def max(data): return np.max(data) def mean(data): return np.mean(data) def median(data): return np.median(data) def fft(data): return np.fft.fft(data) def psd(data): return np.abs(np.fft.fft(data)) ** 2 def get_data(path, file): mat = loadmat(os.path.join(path, file)) data = pd.DataFrame(mat['emg']) data['stimulus'] = mat['restimulus'] data['repetition'] = mat['repetition'] return data def normalise(data, train_reps): x = [np.where(data.values[:, 13] == rep) for rep in train_reps] indices = np.squeeze(np.concatenate(x, axis=-1)) train_data = data.iloc[indices, :] train_data = data.reset_index(drop=True) scaler = StandardScaler(with_mean=True, with_std=True, copy=False).fit(train_data.iloc[:, :12]) scaled = scaler.transform(data.iloc[:, :12]) normalised = pd.DataFrame(scaled) normalised['stimulus'] = data['stimulus'] normalised['repetition'] = data['repetition'] return normalised def filter_data(data, f, butterworth_order=4, btype='lowpass'): emg_data = data.values[:, :12] f_sampling = 2000 nyquist = f_sampling / 2 if isinstance(f, int): fc = f / nyquist else: fc = list(f) for i in range(len(f)): fc[i] = fc[i] / nyquist b, a = signal.butter(butterworth_order, fc, btype=btype) transpose = emg_data.T.copy() for i in range(len(transpose)): transpose[i] = (signal.lfilter(b, a, transpose[i])) filtered = pd.DataFrame(transpose.T) filtered['stimulus'] = data['stimulus'] filtered['repetition'] = data['repetition'] return filtered def rectify(data): return abs(data) def windowing(data, reps, gestures, win_len, win_stride): if reps: x = [np.where(data.values[:, 13] == rep) for rep in reps] indices = np.squeeze(np.concatenate(x, axis=-1)) data = data.iloc[indices, :] data = data.reset_index(drop=True) if gestures: x = [np.where(data.values[:, 12] == move) for move in gestures] indices = np.squeeze(np.concatenate(x, axis=-1)) data = data.iloc[indices, :] data = data.reset_index(drop=True) idx = [i for i in range(win_len, len(data), win_stride)] X = np.zeros([len(idx), win_len, len(data.columns) - 2]) y = np.zeros([len(idx), ]) reps = np.zeros([len(idx), ]) for i, end in enumerate(idx): start = end - win_len X[i] = data.iloc[start:end, 0:12].values y[i] = data.iloc[end, 12] reps[i] = data.iloc[end, 13] return X, y, reps def train_model(model, X_train_wind, y_train_wind, X_test_wind, y_test_wind, save_to, epoch=300): from tensorflow import keras as K opt_adam = K.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) model.compile(loss='categorical_crossentropy', optimizer=opt_adam, metrics=['categorical_accuracy']) # log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=30) mc = ModelCheckpoint(save_to + '_best_model.h5', monitor='val_categorical_accuracy', mode='max', verbose=1, save_best_only=True) history = model.fit(x=X_train_wind, y=y_train_wind, epochs=epoch, shuffle=True, verbose=1, validation_data=(X_test_wind, y_test_wind), callbacks=[es, mc]) saved_model = load_model(save_to + '_best_model.h5') # evaluate the model _, train_acc = saved_model.evaluate(X_train_wind, y_train_wind, verbose=0) _, test_acc = saved_model.evaluate(X_test_wind, y_test_wind, verbose=0) print('Train: %.3f, Test: %.3f' % (train_acc, test_acc)) return history, saved_model def get_categorical(y): return pd.get_dummies(pd.Series(y)).values def plot_cnf_matrix(saved_model, X_valid_cv, target): y_pred = saved_model.predict(X_valid_cv) model_predictions = [list(y_pred[i]).index(y_pred[i].max()) + 1 for i in range(len(y_pred))] conf_mx = confusion_matrix(target, model_predictions) plt.matshow(conf_mx) plt.show() def feature_extractor(features, shape, data): l =
pd.DataFrame()
pandas.DataFrame
"""Network rerouting loss maps """ import os import sys from collections import OrderedDict import numpy as np import geopandas as gpd import pandas as pd import cartopy.crs as ccrs import matplotlib as mpl import cartopy.io.shapereader as shpreader import matplotlib.pyplot as plt import matplotlib.patches as mpatches from shapely.geometry import LineString from atra.utils import * mpl.style.use('ggplot') mpl.rcParams['font.size'] = 10. mpl.rcParams['font.family'] = 'tahoma' mpl.rcParams['axes.labelsize'] = 10. mpl.rcParams['xtick.labelsize'] = 9. mpl.rcParams['ytick.labelsize'] = 9. def plot_ranges(input_data, division_factor,x_label, y_label,plot_title,plot_color,plot_file_path,ylimit=None,yticks_loc=None,y_ticks_labels=None): fig, ax = plt.subplots(figsize=(8, 4)) # vals_min_max = list(zip(*list(h for h in input_data.itertuples(index=False)))) vals_min_max = [] for a, b in input_data.itertuples(index=False): if a < b: min_, max_ = a, b else: min_, max_ = b, a vals_min_max.append((min_, max_)) vals_min_max.sort(key=lambda el: el[1]) vals_min_max = list(zip(*vals_min_max)) percentlies = 100.0*np.arange(0,len(vals_min_max[0]))/len(vals_min_max[0]) ax.plot(percentlies, 1.0*np.array(vals_min_max[0])/division_factor, linewidth=0.5, color=plot_color ) ax.plot(percentlies, 1.0*np.array(vals_min_max[1])/division_factor, linewidth=0.5, color=plot_color ) ax.fill_between(percentlies, 1.0*np.array(vals_min_max[0])/division_factor, 1.0*np.array(vals_min_max[1])/division_factor, alpha=0.5, edgecolor=None, facecolor=plot_color ) if 'BCR' in y_label: ax.plot(np.arange(0,100), np.array([1]*100), linewidth=0.5, color='red', label = 'BCR = 1' ) # ax.set_xscale('log') ax.legend(loc='upper left') if ylimit: max_val = input_data.max().max() y_ticks_labels += [str(int(max_val/division_factor))] ax.set_ylim(bottom=-0.5,top=ylimit/division_factor) plt.yticks(yticks_loc,y_ticks_labels) # ax.set_yscale('log') # ax.tick_params(axis='x', rotation=45) plt.xlabel(x_label, fontweight='bold') plt.ylabel(y_label, fontweight='bold') plt.title(plot_title) plt.tight_layout() plt.savefig(plot_file_path, dpi=500) plt.close() def plot_many_ranges(input_dfs, division_factor,x_label, y_label,plot_title,plot_color,plot_labels,plot_file_path): fig, ax = plt.subplots(figsize=(8, 4)) length = [] for i in range(len(input_dfs)): input_data = input_dfs[i] vals_min_max = [] for a, b in input_data.itertuples(index=False): if a < b: min_, max_ = a, b else: min_, max_ = b, a vals_min_max.append((min_, max_)) # vals_min_max.sort(key=lambda el: el[1]) vals_min_max = list(zip(*vals_min_max)) percentlies = 100.0*np.arange(0,len(vals_min_max[0]))/len(vals_min_max[0]) length.append(len(vals_min_max[0])) ax.plot(percentlies, 1.0*np.array(vals_min_max[0])/division_factor, linewidth=0.5, color=plot_color[i] ) ax.plot(percentlies, 1.0*np.array(vals_min_max[1])/division_factor, linewidth=0.5, color=plot_color[i] ) ax.fill_between(percentlies, 1.0*np.array(vals_min_max[0])/division_factor, 1.0*np.array(vals_min_max[1])/division_factor, alpha=0.5, edgecolor=None, facecolor=plot_color[i], label = plot_labels[i] ) length = max(length) if 'BCR' in y_label: ax.plot(np.arange(0,100), np.array([1]*100), linewidth=0.5, color='red', label = 'BCR = 1' ) # ax.set_xscale('log') ax.set_yscale('log') # ax.tick_params(axis='x', rotation=45) ax.legend(loc='upper left') plt.xlabel(x_label, fontweight='bold') plt.ylabel(y_label, fontweight='bold') plt.title(plot_title) plt.tight_layout() plt.savefig(plot_file_path, dpi=500) plt.close() def change_to_infinity(x,dividend_column,divisor_column): if x[divisor_column] == 0 and x[dividend_column] == 0: return 0 elif x[divisor_column] == 0 and x[dividend_column] > 0: return 1e9 elif x[divisor_column] == 0 and x[dividend_column] < 0: return -1e9 else: return 100.0*(x[dividend_column] - x[divisor_column])/x[divisor_column] def main(): config = load_config() data_path = config['paths']['data'] duration = 10 change_colors = ['#1a9850','#66bd63','#a6d96a','#d9ef8b','#fee08b','#fdae61','#f46d43','#d73027','#969696'] change_labels = ['< -100','-100 to -50','-50 to -10','-10 to 0','0 to 10','10 to 50','50 to 100',' > 100','No change/value'] change_ranges = [(-1e10,-100),(-100,-50),(-50,-10),(-10,0),(0.001,10),(10,50),(50,100),(100,1e10)] region_file_path = os.path.join(config['paths']['data'], 'network', 'rail_edges.shp') region_file = gpd.read_file(region_file_path,encoding='utf-8') fail_file = pd.read_csv(os.path.join(config['paths']['output'], 'failure_results','minmax_combined_scenarios', 'single_edge_failures_minmax_rail_100_percent_disrupt_multi_modal.csv')) fail_file = fail_file[fail_file['max_tr_loss'] < 1e7] region_file = pd.merge(region_file[['edge_id', 'geometry']],fail_file[['edge_id', 'min_tr_loss', 'max_tr_loss']],how='left',on=['edge_id']).fillna(0) flow_file = pd.read_csv(os.path.join(config['paths']['output'], 'failure_results','minmax_combined_scenarios', 'single_edge_failures_minmax_rail_100_percent_disrupt.csv')) region_file = pd.merge(region_file,flow_file[['edge_id', 'min_econ_impact', 'max_econ_impact']],how='left',on=['edge_id']).fillna(0) fail_file = pd.merge(fail_file,flow_file[['edge_id', 'min_econ_impact', 'max_econ_impact']],how='outer', on=['edge_id']).fillna(0) del flow_file flow_file = pd.read_csv(os.path.join(config['paths']['output'], 'risk_results', 'rail_hazard_intersections_risk_weights.csv')) fail_file = pd.merge(fail_file,flow_file,how='left', on=['edge_id']).fillna(0) del flow_file fail_file['min_eael'] = duration*fail_file['risk_wt']*fail_file['min_econ_impact'] fail_file['max_eael'] = duration*fail_file['risk_wt']*fail_file['max_econ_impact'] fail_file['min_eael_multimodal'] = duration*fail_file['risk_wt']*fail_file['min_tr_loss'] fail_file['max_eael_multimodal'] = duration*fail_file['risk_wt']*fail_file['max_tr_loss'] # fail_file.to_csv('test.csv') fail_file = fail_file.groupby(['edge_id', 'climate_scenario'])[ 'min_eael_multimodal','min_eael', 'max_eael_multimodal','max_eael'].sum().reset_index() # fail_file.to_csv('test.csv') fail_file_min = fail_file.groupby(['edge_id'])['min_eael_multimodal','min_eael'].min().reset_index() fail_file_max = fail_file.groupby(['edge_id'])['max_eael_multimodal','max_eael'].max().reset_index() del fail_file region_file = pd.merge(region_file,fail_file_min,how='left',on=['edge_id']).fillna(0) region_file = pd.merge(region_file,fail_file_max,how='left',on=['edge_id']).fillna(0) del fail_file_min,fail_file_max flow_file = pd.read_csv(os.path.join(config['paths']['output'], 'flow_mapping_combined', 'weighted_flows_rail_100_percent.csv')) region_file =
pd.merge(region_file,flow_file,how='left', on=['edge_id'])
pandas.merge
#!/home/bryanfeeney/anaconda3/bin/python3.6 # # Simple script that uses the Microsoft Light Gradient-Boosted Machine-Learnign # toolkit to make predictions *separately* for each value. # from datetime import date, timedelta, datetime import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import sys import json import psycopg2 FutureDaysToCalculate = 16 WeeksOfHistoryForMinTrainigData = 20 WeeksOfHistoryForFeature = 7 WeeksOfHistoryForFeatureOnValidate = 3 TrainingTimePeriodCount = 6 def load_data_csv (cumul_sales_path, cumul_sales_query_path, items_path, stores_path, query_start_date=None): """ Loads four datasets from the file-system in CSV format: cumul_sale_path is the cumulative sales data, should be the last 12 months cumul_sale_query_path enumerates the things to predict items is item data stores is store data query_start_date if this is None, it's inferred from the first row of the cumul_sales_query_path documents. If this is not None, then cumul_sales_query rows before this date are removed. """ cumul_sales = pd.read_csv( cumul_sales_path, usecols=[1, 2, 3, 4, 5], dtype={'onpromotion': bool}, converters={'unit_sales': lambda u: np.log1p(float(u)) if float(u) > 0 else 0}, parse_dates=["date"] ) if cumul_sales_query_path is not None: cumul_sales_query = pd.read_csv( cumul_sales_query_path, usecols=[0, 1, 2, 3, 4], dtype={'onpromotion': bool}, parse_dates=["date"], ) if query_start_date is None: query_start_date = str(cumul_sales_query.iloc[0,1]).split(" ")[0] else: cumul_sales_query = cumul_sales_query[cumul_sales_query.date >= query_start_date] cumul_sales_query = cumul_sales_query.set_index( ['store_nbr', 'item_nbr', 'date'] ) items = pd.read_csv( items_tbl, ).set_index("item_nbr") stores = pd.read_csv( stores_tbl ).set_index("store_nbr") return cumul_sales, cumul_sales_query, query_start_date, items, stores def load_data_sql (cumul_sales_path, cumul_sales_query_path, items_path, stores_path, query_start_date=None): """ Loads three datasets from the file-system in CSV format: cumul_sale_path is the cumulative sales data, should be the last 12 months cumul_sale_query_path enumerates the things to predict items is item data stores is store data """ with open('db.json') as f: conf = json.load(f) print (str(conf)) conn_str = "host={} dbname={} user={} password={}".format(conf['host'], conf['database'], conf['user'], conf['passw']) conn = psycopg2.connect(conn_str) cumul_sales_query =
pd.DataFrame()
pandas.DataFrame
""" generates lists of SARS-CoV-2 samples which occurred before a particular date Also generates a dictionary of reference compressed sequences And a subset of these Together, these can be passed to a ram_persistence object which can be used instead of an fn3persistence object to test the performance of PCA, or for other unit testing purposes. Also useful for investigating how PCA detected the ingress of new strains over time. Uses public cog metadata downloaded from COG-UK 7/4/2021, saved in testdata/pca/cog_metadata.csv.gz, and requires access to an fn3persistence object containing the same data. To run: pipenv run python3 utils/make_temporal_subsets.py """ import os import pandas as pd import datetime import gzip import pickle import progressbar import random from findn.mongoStore import fn3persistence from findn.common_utils import ConfigManager # open connection to existing covid datastore config_file = os.path.join("demos", "covid", "covid_config_v3.json") cfm = ConfigManager(config_file) CONFIG = cfm.read_config() PERSIST = fn3persistence(dbname=CONFIG["SERVERNAME"], connString=CONFIG["FNPERSISTENCE_CONNSTRING"], debug=CONFIG["DEBUGMODE"]) inputfile = "/data/software/fn4dev/testdata/pca/cog_metadata.csv.gz" outputdir = "/data/data/pca/subsets" # or wherever # get samples which are in server extant_sample_ids = PERSIST.guids() print("There are {0} samples in the server".format(len(extant_sample_ids))) # read metadata file into pandas with gzip.open(inputfile, "rt") as f: df =
pd.read_csv(f)
pandas.read_csv